
Neural Active Learning Meets the Partial Monitoring Framework

Maxime Heuillet1 Ola Ahmad1,3 Audrey Durand1,2

1Université Laval, Canada
2Canada-CIFAR AI Chair, Mila, Canada

3Thales Research and Technology (cortAIx), Canada,

Abstract

We focus on the online-based active learning
(OAL) setting where an agent operates over a
stream of observations and trades-off between the
costly acquisition of information (labelled observa-
tions) and the cost of prediction errors. We propose
a novel foundation for OAL tasks based on partial
monitoring, a theoretical framework specialized in
online learning from partially informative actions.
We show that previously studied binary and multi-
class OAL tasks are instances of partial monitoring.
We expand the real-world potential of OAL by in-
troducing a new class of cost-sensitive OAL tasks.
We propose NeuralCBP, the first PM strategy
that accounts for predictive uncertainty with deep
neural networks. Our extensive empirical evalua-
tion on open source datasets shows that Neural-
CBP has competitive performance against state-of-
the-art baselines on multiple binary, multi-class
and cost-sensitive OAL tasks.

1 INTRODUCTION

In active learning [Cohn et al., 1994], an agent decides to
query an expert to obtain labels on selected observations.
This active acquisition of labels efficiently reduces the num-
ber of labelled observations needed to learn a task. Active
learning therefore appears as a cost-effective solution for
modern machine learning, which often relies on large vol-
umes of labelled observations [Kusne et al., 2020].

In this work, we focus on the online-based active learning
(OAL) setting for binary and multi-class classification tasks
Beygelzimer et al. [2009]. The agent operates over a (possi-
bly infinite) stream of observations. For each observation,
the agent predicts the class and either decides to reveal its
prediction or to query an expert to obtain the label. The OAL
setting we consider differs from the batch setting where the

agent gathers fixed-size batches of observations to label
Saran et al. [2023], Amin et al. [2020]. In both the OAL and
the batch-based settings, all decisions are irrevocable and as-
sociated with costs. The goal is to minimize the cumulative
cost over the stream of decisions, by trading-off between
the cost of obtaining new labels (labeling complexity) and
the cost of prediction errors (generalization performance).

In the context of OAL for binary classification, the Margin
strategy [Sculley, 2007] queries the expert when the predic-
tion uncertainty is greater than a user-specified threshold.
In contrast, with Cesa [Cesa-Bianchi et al., 2006], labelled
observations are acquired proportionally to the global predic-
tion error rate of the strategy. Both Margin and Cesa are
specifically analyzed for the class of linear separators and
are designed for binary tasks. More recent studies focused
on multi-class OAL tasks. The Gappletron [van der Ho-
even et al., 2021] leverages graph feedback, making it inher-
ently multi-class. However, simialrly to Cesa and Margin,
Gappletron is specifically analyzed for linear separators.

Modern applications of machine learning involve high-
dimensional observations that require learning complex rep-
resentations. As a result, Neural [Wang et al., 2021] and
ALPS [DeSalvo et al., 2021] proposed multi-class OAL
strategies based on deep neural networks. Neural and
ALPS have been outperformed by INeural [Ban et al.,
2022b], an improved and more practical version of the Neu-
ral strategy [Wang et al., 2021]. The current state-of-
the-art, Neuronal [Ban et al., 2024], addresses scalability
limitations of INeural, opening the door to using sophis-
ticated neural architectures, such as convolutional neural
networks.

In critical real-world applications, the costs of prediction
errors from one class to another may vary significantly. Cost-
sensitive OAL is studied for regression tasks [Cai et al.,
2023], but classification tasks remain an open problem. Ex-
isting OAL strategies all assume uniform costs, i.e. predic-
tion error and labeling costs are the same across all classes.
This assumption is the core of the algorithmic design of ex-

mailto:<maxime.heuillet.1@ulaval.ca>?Subject=Your UAI 2024 paper
mailto:<audrey.durand@ift.ulaval.ca>?Subject=Your UAI 2024 paper

isting approaches, making it challenging to extend them to
cost-sensitive tasks. Motivated by the fact that cost-sensitive
learning has fostered the adoption of supervised learning
in real-world scenarios, such as learning from imbalanced
data [Elkan, 2001], we address the following questions: 1)
How to frame cost-sensitive OAL classification tasks? and,
2) Can we design a practical cost-sensitive OAL agent?

Contributions. We tackle these questions from a novel
perspective based on Partial Monitoring (PM) [Piccolboni
et al., 2001, Bartók et al., 2014], a theoretical framework
for online learning problems with partially informative ac-
tions. 1 Connecting ideas in separate fields: We hypothe-
size and validate that we can establish a novel, non-trivial,
connection between the field of active learning and the PM
framework. 2 Methodological: We show how partial moni-
toring reduces to existing binary and multi-class OAL tasks
and enables the formulation of novel cost-sensitive OAL
tasks. 3 Algorithmic: We propose NeuralCBP (Neural
Confidence Bound Partial Monitoring), a partial monitoring
(PM) strategy able to learn from neural networks. Existing
PM strategies are limited to the linear [Heuillet et al., 2024]
and logistic [Bartók et al., 2012a], which constitute a bottle-
neck towards the adoption of PM in practice. NeuralCBP
presents algorithmic dynamics that differ from existing OAL
strategies, which can be of independent interest to the OAL
community. 4 Empirical: Our empirical evaluation shows
that NeuralCBP competes with the current state-of-the-
art in multiple binary and multi-class settings, and across
various neural architectures. 5 Advocacy: Documented ap-
plied studies of PM are limited to synthetic experiments
Singla et al. [2014], Kirschner et al. [2023], Heuillet et al.
[2024]. Furthermore, PM is a field traditionally more sup-
ported by theoretical advances. Our work shows that PM is
a promising framework that can be effectively applied in ap-
plied settings such as OAL. 6 Reproduciblity: To support
adoption, our study is fully reproducible with open-source
code and implementation details (see Appendix A).

2 BACKGROUND

A PM [Bartók et al., 2014] game is played between a learn-
ing agent and the environment over multiple rounds. The
agent has a finite set of N actions. The environment has a
finite set of M outcomes. The game is defined by a cost
matrix C ∈ [0, 1]N×M and a feedback matrix H ∈ ΣN×M .
The symbol space Σ is arbitrary and is not necessarily nu-
meric (i.e. could be symbols). Without loss of generality, we
assume that feedback symbols associated with one action
are distinct from those induced by the other actions. We note
ci the i-th row of the matrix C. The same notation applies
to matrix H. A summary table of the important notations is
reported in Table 1 in the Appendix.

2.1 DYNAMICS OF A GAME

Matrices C and H are revealed to the agent before the game
begins. The horizon of rounds T is unknown to the agent. At
each round t ∈ {1, 2, . . . , T}, the environment samples an
observation xt ∈ X . We make no assumption regarding the
sampling process of the observations. The environment then
samples an outcome yt ∈ {1, 2, . . . ,M} from an outcome
distribution that depends on xt, and that is denoted p(xt) ∈
∆M ⊂ RM×1, where ∆M is the M -dimensional probability
simplex. We assume outcomes are sampled i.i.d with respect
to the outcome distribution.

The agent observes xt and selects an action it ∈
{1, 2, . . . , N}. Then, the agent then incurs a cost C[it, yt]
and receives a feedback symbol ht = H[it, yt], where [i, y]
denotes the element at row i and column y. Therefore, costs
and feedback symbols are deterministic elements of matri-
ces C and H respectively. We emphasize that the agent only
observes the feedback symbol ht, with neither the outcome
nor the cost being revealed.

The goal is to minimize the cost incurred in each round.
This is achieved by selecting the action i⋆t that minimizes
the expected cost for xt, and is defined such that i⋆t =
argmin1≤i≤N cip(xt). The performance of the agent is
measured by the cumulative regret (to minimize) w.r.t. the
optimal action strategy:

R(T) =

T∑
t=1

(cit − ci⋆t)p(xt), (1)

Eq. 1 scales sub-linearly with T if the agent identifies the
optimal action and commits to it over time. This requires
to balance exploration (playing informative actions) and
exploitation (minimizing per-round regret).

2.2 STRUCTURE OF A GAME

We now introduce two definitions to characterize the cost C
and feedback H matrices of any PM game.

Definition 2.1 (Cell decomposition, Bartók et al. [2012b]).
The cell Oi is defined as the subspace in the probability
simplex ∆M such that action i would be optimal. Formally,
Oi = {p ∈ ∆M ,∀j ∈ {1, ..., N}, (ci − cj)p ≤ 0}.

Based on the above definition, action i is: (i) dominated if
Oi = ∅ (i.e. there is no outcome distribution s.t. the action
is optimal); (ii) degenerate if it is not dominated and there
exist action k such that Oi ⊊ Ok (i.e. actions i and k are
duplicates, both are jointly optimal under some outcome
distribution); and (iii) Pareto-optimal otherwise. The set of
Pareto-optimal actions is denoted P .

For an action i, let σi denote the number of unique feedback
symbols on hi. Let Σi = {s1, ..., sσi

} denote the enumer-
ation of symbols sorted by order of appearance in hi. Let
πi(xt) ∈ ∆σi ⊂ Rσi×1 denote the probability distribution
of receiving each feedback symbol of action i given xt.

Definition 2.2 (Signal matrix, Bartók et al. [2012b]). Given
action i, the elements in the signal matrix Si ∈ {0, 1}σi×M

are defined as Si[u, v] = 1{H[i,v]=su}.

Property 2.3. The outcome distribution is connected to the
feedback symbols distribution of action i through the signal
matrix Si with the relation πi(xt) = Sip(xt).

3 STREAM-BASED ACTIVE LEARNING
AS A PARTIAL MONITORING GAME

OAL problems have been studied under varied feedback
models, such as bandit Erez et al. [2024], Daniely and Hel-
bertal [2013] and full information feedback Sakaue et al.
[2024]. In this work, we propose a connection between OAL
problems and the PM feedback model Bartók et al. [2014].
In particular, we leverage specific PM instances, known as
label-efficient games, to capture OAL problems.

The original label-efficient game [Helmbold et al., 1997]
is characterized by N = 3 actions (predict class 1, predict
class 2, and query the expert), M = 2 outcomes (the ground-
truth classes), and the following cost and feedback matrices:

C =

class 1 class 2

pred. class 1 0 1
pred. class 2 1 0

expert 1 1

,H =

class 1 class 2

♢ ♢
∧ ∧
⊥ ⊙

.
For reproducibility, in Appendix A, we instantiate all the
definitions presented above using the label-efficient game
as an example. Several OAL studies on binary classifica-
tion correspond to instances of the original label-efficient
game [Cohn et al., 1994, Balcan et al., 2007, Beygelzimer
et al., 2009].

Using the game theoretical definitions presented above and
developed in Bartók et al. [2012b], we now introduce a
generalization of this game to multi-class classification with
possibly non-uniform costs and multiple experts.

Generalized label-efficient game The OAL classification
task with M classes and E experts can be cast as a PM game
with N = M +E actions and M outcomes. Without loss of
generality, we assume that the actions {M+1, . . . ,M+E}
correspond to requesting a label from the E ≥ 1 experts.
All actions i > M (i.e. actions associated with an expert)
are dominated (see Def. 2.1) and admit σi = M distinct
symbols. The other actions {1, . . . ,M} lead to a single
feedback symbol, i.e. σi = 1.

The original label-efficient game corresponds to the single-
expert (E = 1) binary task (M = 2) with a uniform cost
matrix. In this work, we focus on single-expert multi-class
(M ≥ 2) games with a potentially non-uniform cost matrix.
The multi-expert setting (E > 1) suggests that experts re-
veal the outcome (ground-truth label) with different stochas-
ticity levels. Capturing this would require a different PM

setting where feedback is subject to noise, as studied by
Kirschner et al. [2020, 2023].

Connecting regret minimization and OAL The cost ma-
trix captures both the cost of querying an expert and the cost
of prediction errors. The goal of PM agents is to minimize
the regret (see Eq. 1), which corresponds to simultaneously
minimizing the cost associated with label queries (label
complexity) and the cost of prediction errors (generalization
performance). This goal aligns with the objectives of es-
tablished OAL methodologies [DeSalvo et al., 2021, Wang
et al., 2021, Ban et al., 2022b, 2024].

4 THE NEURALCBP APPROACH

We now introduce NeuralCBP,a partial monitoring strat-
egy able to learn from neural networks. While the emphasis
of this study is on OAL classification tasks, NeuralCBP is
a general PM strategy that can be applied to the broader di-
versity of PM games. Algorithm 1 displays the pseudo-code
of NeuralCBP.

The proposed NeuralCBP builds upon CBP (Confidence
Bound Partial Monitoring) methods Bartók et al. [2012b],
which currently have limited practical potential due to lin-
ear [Heuillet et al., 2024] and logistic [Bartók et al., 2012a]
model assumptions. For an observation xt, the expected cost
difference between two actions i and j is

δi,j(xt) = (ci − cj)p(xt), (2)

where p(xt) is unknown by definition of the PM game.
Action j is better than action i when δi,j(xt) > 0.

Definition 4.1 (Neighbors, Bartók et al. [2012b]). Two
Pareto-optimal actions i and j are neighbors if Oi ∩Oj is a
(M − 2)-dimensional polytope. The set of all neighbor pairs
is denoted N .

Two actions are neighbors when these actions can not be
jointly optimal for a given outcome distribution. Therefore,
given observation xt, one only needs to compute δi,j(xt)
for neighbor pairs in N at round t, rather than for all the
action pairs {i, j} in the game [Bartók et al., 2012b].

4.1 OUTCOME AND FEEDBACK DISTRIBUTIONS

Recall that the agent does not observe the outcomes. Conse-
quently, the agent cannot directly estimate the outcome dis-
tribution p(xt). As a result, estimating the expected cost dif-
ference δi,j(xt) using Eq. 2 is not feasible in practice. This
motivates additional definitions to estimate the expected
loss difference in practice.

Definition 4.2 (Observer set, Bartók et al. [2012b]). The set
Vi,j includes all actions that verify the relation (ci− cj)⊤ ∈
⊕a∈Vi,j

Im(S⊤
a), where ⊕ corresponds to the direct sum.

Algorithm 1: NeuralCPB
input : P,N
Initialize θ1, θ2
Ga,t = λ1m+σm,∀a ∈ {1, . . . , N}
for t > N do

Initialize U(t)← {}
Receive observation xt

Get π̂(xt) based on f1(xt, θ1)
Get w(xt) based on f2(xt, θ2)
for each action-pair {i, j} ∈ N do

δ̂i,j(t) =
∑

a∈Vi,j
vijaπ̂a(xt)

zi,j(t)←
∑

a∈Vi,j
∥vija∥2wa(xt)

if |δ̂i,j(t)| ≥ zi,j(t) then
Add {i, j} to U(t)

Compute D(t) based on U(t)
Obtain P(t) and N (t) based on D(t)

N+(t)←
⋃

i,j∈N (t) N
+
i,j

V(t)←
⋃

i,j∈N (t) Vi,j

ComputeR(xt)
S(t)← P(t) ∪N+(t) ∪ (V(t) ∩R(xt))
Play at = argmaxa∈S(t) Wawa(xt)

Observe feedback ht

Update θ1, θ2 with Algorithm 2 (Appendix B)
Update G−1

at,t (see Sherman et al. [1950])

Definition 4.3 (Observer vectors, Bartók et al. [2012b]).
Given action a ∈ Vi,j , the observer vector vija ∈ Rσa is
selected to satisfy the relation (ci − cj)⊤ =

∑
a∈Vi,j

S⊤
a vija.

The set Vi,j contains actions that induce informative feed-
back symbols about ci − cj . It is defined such that ci − cj
can be expressed as a linear combination of the signal matrix
images of actions in Vi,j , with the observer vectors being
the coefficients of the combination.

Combining Definitions 4.2 and 4.3 with Property 2.3 allows
to express δi,j(xt) as a function of the feedback distributions
πa(xt) of all actions a ∈ Vi,j :

δi,j(xt) =
∑

a∈Vi,j

v⊤ijaπa(xt). (3)

Consequently, on can compute the estimate δ̂i,j(xt) using
the feedback distribution estimates π̂a(xt) associated with
the actions in Vi,j . Similarly, the uncertainty in the loss
difference estimate δ̂i,j(xt) is:

zi,j(xt) =
∑

a∈Vi,j

∥vija∥∞wa(xt), (4)

where wa(xt) is the uncertainty on π̂a(xt) [Lienert, 2013].
Methods to compute π̂a(xt) and wa(xt) depend on the set-
ting considered, e.g. without side-observation Bartók et al.

[2012b], or with linear Heuillet et al. [2024], or logistic
Bartók et al. [2014] side-information. We now present a
method for the neural setting.

4.2 INFERENCE WITH NEURAL NETWORKS

The strategy INeural [Ban et al., 2022b] frames the OAL
classification task under bandit feedback, where all actions
are self-informative. As a result, INeural leverages the
Explore-Exploit Networks (referred to as EENets) initially
introduced for bandit feedback [Ban et al., 2022a]. The cur-
rent state-of-the art in OAL (Neuronal [Ban et al., 2024]),
is a follow-up strategy based on EENets that showcases
the limitations of a bandit feedback structure in practice and
highlights the importance of finding an adequate and general
feedback structure for the diversity of OAL classification
tasks. As a response, we extend EENets to address the
exploration-exploitation trade-off in the general PM setting.
This extension is non-trivial because the PM feedback/cost
structure requires exploration techniques that go beyond
techniques used in bandit feedback. Further technical differ-
ences between NeuralCBP and other EENets strategies
are discussed in Section 6.

EENets comprise an exploitation network (denoted f1) to
estimate action values and an exploration network (denoted
f2) to quantify the uncertainty on the predictions of f1.

Exploitation network In the PM setting, the exploitation
network f1 predicts the feedback distributions required in
Eq. 3. To instantiate efficiently the exploitation network
f1 in PM, we need to distinguish informative from non-
informative actions.

Definition 4.4 (Set of informative actions). The set of in-
formative actions, I = {i : i ∈ {1, . . . , N}, and σi ≥ 2},
comprises all actions that induce at least two distinct feed-
back symbols.

Definition 4.5 (Valid feedback symbols). The set of valid
feedback symbols is noted ΣI =

⋃
i∈I Σi. The dimension

of ΣI is σ =
∑
i∈I

σi, which represents the total number of

unique symbols induced by the actions in I.

Current CBP strategies Bartók et al. [2012a], Lienert [2013],
Heuillet et al. [2024] estimate the feedback distribution for
all the actions of a game. However, Property 2.3 shows that
for any uninformative action i /∈ I, the learned feedback
distribution is always πi(xt) = 1. In some PM games, most
of the actions are uninformative, as it is the case for gener-
alized label-efficient games (presented in Section 3) where
only expert actions are informative. Therefore, attributing
learnable parameters to uninformative actions, as is done in
current CBP strategies [Heuillet et al., 2024, Bartók et al.,
2012a], turns out to be inefficient. In contrast, NeuralCBP

attributes learnable parameters only to the informative ac-
tions in the game (see Definition 4.4). Restricting learnable
parameters to the subset of informative actions I is essential
because NeuralCBP relies on the Explore-Exploit net-
works (EENets) that require a shared representation for
the actions. Including non-informative actions would cause
overfitting, unstable learning, and increased complexity.

Definition 4.6 (Set of informative feedback distributions).
The set of informative feedback distributions, denoted
Π(xt) = {πi(xt), i ∈ I}, contains the (unknown) feed-
back distribution vectors of each informative action.

Remark 4.7. For practical purposes, remark that the set
Π(xt) can be converted into a (flattened) σ-dimensional
row vector. The conversion from a set to a flattened vector,
and conversely from a flattened vector to a set, is possible
because the cardinality σi of each feedback distribution is
known by definition of the PM game.

The network f1, therefore, learns the flattened vector asso-
ciated with Π(xt) and predicts the desired estimates π̂i(xt)
for actions i ∈ I. Network f1 can be instantiated as a fully
connected multi-layer perceptron of depth L and width m:

f1(xt, θ1) = WL
1 Ψ(WL−1

1 Ψ(WL−2
1 . . .Ψ(W 1

1 xt))),

where W 1
1 ∈ Rm×d, W ℓ

1 ∈ Rm×m, 1 < ℓ < L, and
WL

1 ∈ Rσ×m. The notation Ψ(xt) = max(0, xt) refers
to the ReLU activation function. We use a multi-layer per-
ceptron as an example, but we will see in the experiments
that f1 can instantiate other neural architectures.

The network f1 is trained by performing stochastic gradient
descent with the mean squared error L1 between the predic-
tions of f1 and the observed feedback symbols, defined as

L1(θ1) =

t−1∑
τ=1,hτ∈ΣI

(f1(xτ , θ1)− e(hτ))
2

2
,

where e(·) refers to a σ-dimensional one-hot encoding. Note
that θ1 is updated based on the history of valid feedback
symbols (ht ∈ ΣI) and their associated observations (xt).

Based on remark 4.7, the set of feedback distribution esti-
mates over all the N actions in the game is defined as

π̂(xt) = {π̂i(x) if i ∈ I, [1] otherwise , i ∈ {1, . . . , N}},

where [1] is the feedback distribution vector of uninforma-
tive actions and |π̂(x)| = N . The i-th element of π̂(x) is
the feedback distribution estimate of action i. In Sec. 4.3,
we will describe how π̂(x) is used to trade-off between
exploration and exploitation.

Exploration network The exploration network f2 esti-
mates the prediction error of network f1. These estimates
are used to quantify the uncertainty on the predictions of
f1, and they are used to compute the confidence formula
defined in Eq. 4.

Definition 4.8 (End-to-end embedding, Ban et al. [2024]).
Given the exploitation network f1 and an observation xt,
the end-to-end embedding is defined as

ϕ(xt) =
[
Ψ(W 1

1 xt)
⊤,vec(∇WL

1
f1(xt, θ1)

⊤)
]
∈ Rm+σm,

where the first element is the output vector of the first layer
of f1 and the second element is the flattened (represented
by operator vec) partial derivative of f1 with respect to the
parameters of the last layer. In practice, ϕ(xt) is normalized
by dividing all the elements by the l2-norm of the vector.

To produce uncertainty estimates, the network f2 learns the
function Π(xt)− f1(xt, θ1). The network f2 is instantiated
as a multi-layer perceptron of depth L and width m, which
receives the end-to-end embedding ϕ(xt):

f2(xt, θ2) = WL
2 Ψ(WL−1

2 Ψ(WL−2
2 . . .Ψ(W 1

2 ϕ(xt)))),

where W 1
2 ∈ Rm×(m+σm), W ℓ

1 ∈ Rm×m, 1 < ℓ < L, and
WL

1 ∈ Rσ×m. The weights θ2 of network f2 are updated
with stochastic gradient descent using the loss

L2(θ2) =

t−1∑
τ=1,hτ∈ΣI

(f2(xτ , θ2)− (e(hτ)− f1(xτ , θ1)))
2

2
.

Remark 4.9. The network f2 is also based on the flattened
vector representation of Π(xt). Therefore, the predictions of
f2 are σ-dimensional vectors. Since the number of symbols
σi is known for any action by definition of the PM game,
we can convert the flattened prediction vector of f2 into a
set of vectors.

Given remark 4.9, let w(xt) = {max(ŵi(xt)) if i ∈
I, 0 otherwise , i ∈ {1, . . . , N}} denote the set of uncer-
tainty estimates over all actions, where |w(xt)| = N and the
notation wi(xt) refers to the i-th element of w(xt). In other
words, the uncertainty of an informative action corresponds
to the maximum uncertainty value predicted by f2 over the
σi symbols induced by action i, denoted max(ŵi(xt)). This
can be thought of as the worst-case uncertainty for the infor-
mative action i. For uninformative actions, the uncertainty
is 0 following the heuristic that πi(xt) = [1] for i ̸∈ I.

4.3 EXPLORATION AND EXPLOITATION

By leveraging the PM-extended EENets mechanism, Neu-
ralCBP can compute δ̂i,j(xt) for all neighbor action pairs
{i, j} ∈ N using the feedback distributions predicted by
network f1 (see Eq. 3). It can also compute uncertainty esti-
mates zi,j(xt) on δ̂i,j(xt) using the uncertainties predicted
by network f2 (see Eq. 4).

Following the CBP methodology, NeuralCBP then sep-
arates low uncertainty from high uncertainty estimates of
δ̂i,j(xt) by using a successive elimination [Even-Dar et al.,

2002] criteria |δ̂i,j(xt)| > zi,j(xt) for each action pair
{i, j} ∈ N . At round t, the pairs that verify the criteria are
gathered in the set of confident pairs, denoted U(t). Neu-
ralCBP leverages U(t) to compute a sub-space of the prob-
ability simplex ∆M , defined as D(t) = {p ∈ ∆M , {i, j} ∈
U(t), sign(δ̂i,j(xt))(ci− cj)p > 0}. The set D(t) thus con-
tains all likely outcome distributions given the confident
estimates of loss differences. The true (unknown) outcome
distribution p(xt) is included with high confidence in the
sub-space D(t).

NeuralCBP then considers the set of likely Pareto-optimal
actions P(t) ⊆ P containing all Pareto-optimal actions i ∈
P such that their cell Oi intersects with the sub-space D(t).
Similarly, it considers the set of likely neighborsN (t) ⊆ N
containing all neighbor action pairs {i, j} ∈ N such that
their common cellOi∩Oj intersects with D(t). When P(t)
contains only one action, N (t) is automatically empty, and
therefore NeuralCBP exploits. When P(t) contains more
than one action, it explores.

The selected action at round t. Let Xi,t =
{ϕ(xτ)}t−1

τ=1,iτ=i denote the history up to time t (exclu-
sively) of the observations embeddings under which action
i was selected, and let Gi,t = λId + Xi,tX

⊤
i,t denote the

associated Gram matrix. Let the notation ∥x∥2S = x⊤Sx
denote the norm of vector x weighted by some matrix S.

Definition 4.10 (Underplayed actions, Heuillet et al.
[2024]). The set of underplayed actions, R(xt) = {i ∈
{1, . . . , N} s.t. 1/∥xt∥2G−1

i,t

< ηif(t)}, contains actions

that have been played less than some play rate function f(t)
weighted by a scalar ηi > 0. The quantity 1/∥xt∥2G−1

i,t

is a

pseudo-count of the number of times action i was selected,
weighted by the similarity between the current observation
xt and the observations at previous selections of action i.

Definition 4.11 (Neighborhood action set Bartók et al.
[2012b]). The neighborhood action set of a neighbor pair
{i, j} is defined as N+

i,j = {k ∈ {1, . . . N},Oi ∩ Oj ⊆
Ok}. Note that N+

i,j naturally contains i and j. If N+
i,j con-

tains another action k, then Ok = Oi or Ok = Oj or
Ok = Oi ∩ Oj .

NeuralCBP computes the likely neighbor action set
N+(t) =

⋃
{i,j}∈N (t) N

+
i,j based on the remaining action

pairs (likely neighbors) in N (t). Similarly, the set of likely
observer actions is defined as V(t) =

⋃
{i,j}∈N (t) Vi,j .

The final set of actions considered by NeuralCBP at
round t, denoted S(t), contains all potentially optimal
actions (i.e. P(t) ∪ N+(t)) and all informative actions
(i.e. V(t) ∪ R(xt)). From S(t), NeuralCBP selects the
action with the greatest uncertainty weighted by Wa =
max{i,j}∈N ∥vija∥∞, i.e. at = argmaxi∈S(t) Wawa(xt).

5 EXPERIMENTS

We compare the empirical performance of NeuralCBP
to state-of-the-art baselines on a set of binary, multi-class,
and cost-sensitive OAL classification tasks. To evaluate the
robustness across neural architectures, we conduct experi-
ments with a multi-layer perceptron (MLP) and the convolu-
tional architecture LeNet LeCun et al. [1998]. To our knowl-
edge, our experiments are the first to evaluate OAL with
a convolutional architecture. For reproducibility, we open-
source the code base of NeuralCBP and the baselines. We
also open-source the code base of PM-based OAL game en-
vironments. The code base is available on Github: https:
//github.com/MaxHeuillet/neuralCBPside.

Datasets For binary OAL tasks, we evaluate on Adult
[Asuncion et al., 2007], MagicTelescope [Asuncion et al.,
2007], and the modified MNIST [LeCun et al., 2010] (odds
vs. even numbers) datasets. For multiclass OAL tasks, we
consider covertype and shuttle from the UCI repository
[Asuncion et al., 2007], MNIST [LeCun et al., 2010], Fash-
ion [Xiao et al., 2017], and CIFAR10 [Krizhevsky et al.,
2009]. For each dataset, we put aside 15% of the observa-
tions to create a separate fixed size test set, intended ex-
clusively for evaluation of the generalization performance.
We sample from the remaining observations a deployment
stream that has a finite horizon of T = 10k rounds. The
OAL strategies acquire labelled data from the deployment
stream. We run each experiment 25 times with different
dataset splits for each run.

Baselines We compare NeuralCBP to six baselines. In
the binary setting, we adapt the strategies Cesa and Mar-
gin, originally proposed for linear classifiers, to function
with MLPs. We evaluate the multi-class state-of-the-art
strategies INeural and Neuronal. Both INeural and
Neuronal rely on a hyper-parameter γ that influences
the amount of exploration. We consider respectively two
instances of each strategy: one with the hyper-parameter
configuration specified in their official publications (γ = 6
for Neuronal and INeural) and one that we chose to
induce less exploration (γ = 3 for Neuronal and INeu-
ral). We further discuss implementation details and hyper-
parameters in Appendix C.

Performance metrics To characterize the performance
on the deployment stream, we measure the final cumulative
regret achieved at the end of the stream (Eq. 1), which has to
be minimized. We also report the win count, i.e. the number
of times a strategy achieves the lowest final regret at the end
of the horizon across the 25 runs of each experiment. Lastly,
we perform one-sided Welch’s t-tests to asses if Neural-
CBP’s final regret distribution is significantly lower than the
baselines.

To evaluate the generalization performance and account for
possible data imbalance in the considered datasets, we mea-

https://github.com/MaxHeuillet/neuralCBPside
https://github.com/MaxHeuillet/neuralCBPside

MNIST binary MagicTelescope adult

1k

2k

3k

4k

5k

7k

9k
Fi

na
l r

eg
re

t ±
 9

9%
 C

I

(a) Final regret (lower is better)

10 2 5 100 2 5 1000 2 5 10k

0.5

0.6

0.7

Expert query volume

f1
-s

co
re

 ±
 9

9%
 C

I

(b) Adult

10 2 5 100 2 5 1000 2 5 10k

0.6

0.7

0.8

Expert query volume

f1
-s

co
re

 ±
 9

9%
 C

I

(c) Magic Telescope

10 2 5 100 2 5 1000 2 5 10k

0.6

0.7

0.8

0.9

Expert query volume

f1
-s

co
re

 ±
 9

9%
 C

I

(d) MNIST Binary

Figure 1: Performance on binary OAL with MLP.

sure the weighted f1-score on the test sets. We measure the
weighted f1-score while considering different volumes of
expert-labelled observations acquired on the deployment
stream (10, 25, 50, 100, 150, 250, 300, 400, 500, 750, 1000,
2500, 5000, 7500, 9000). Fixing the number of labelled
observations allows for a fair comparison between the strate-
gies.

Lastly, we report the average number of expert verifica-
tions consumed by each strategy. It is important to note that,
unlike previous experimental protocols [Ban et al., 2024,
2022b, DeSalvo et al., 2021], we do not set a maximum
expert query budget. This choice aims to illustrate how each
strategy effectively adapts its label complexity to the learn-
ing task. This choice reflects the realistic scenario where the
optimal expert budget is unknown prior to deployment (as it
largely depends on the dataset and type of architecture).

5.1 BINARY CASE

Figure 1a reports the final regrets achieved on the deploy-
ment stream. Numerical details are reported in Table 2 of
Appendix C.1. NeuralCBP achieves the best final regret
on the MNISTbinary and Adult datasets. On the MagicTele-
scope dataset, NeuralCBP achieves a final regret compa-
rable Neuronal, Cesa and Margin, suggesting all these

Fashion MNIST covertype shuttle

1k

2k

3k

4k

5k

7k

9k

Fi
na

l r
eg

re
t ±

 9
9%

 C
I

(a) Final regret

10 2 5 100 2 5 1000 2 5

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Expert query volume

f1
-s

co
re

 ±
 9

9%
 C

I

(b) Fashion (M = 10)

10 2 5 100 2 5 1000 2 5

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Expert query volume

f1
-s

co
re

 ±
 9

9%
 C

I

(c) MNIST (M = 10)

10 2 5 100 2 5 1000 2 5 10k

0.3

0.4

0.5

0.6

0.7

Expert query volume

f1
-s

co
re

 ±
 9

9%
 C

I

(d) Covertype (M = 7)

10 2 5 100 2 5 1000 2 5 10k
0.4

0.5

0.6

0.7

0.8

0.9

1

Expert query volume

f1
-s

co
re

 ±
 9

9%
 C

I

(e) Shuttle (M = 7)

Figure 2: Performance on multi-class OAL with MLP.

strategies are close to the optimal solution on this dataset.
We observe that the final regret of all the strategies is sub-
ject to high variance (see Fig. 1a) caused by variations in
the task difficulty over the 25 dataset splits. As a result, it
is insightful to assess the performance solely based on the
average final regret metric. The win count reveals that over
25 trials, NeuralCBP outperforms the baselines with 10
wins on MNISTbinary, 14 wins on MagicTelescope, and 10
wins on Adult.

Figures 1b, 1c, and 1d display the weighted f1-score perfor-
mance on the test sets for different volumes of expert queries.
For each strategy, the f1-score curve stops at different expert-
query volumes, which illustrates the label complexity of
each approach. NeuralCBP exhibits a lower label query
complexity (see Figures 1b and 1c) and achieves a f1-score
performance that is comparable to the one achieved by the
other baselines.

5.2 MULTI-CLASS CASE

Figure 2a reports the final regret on multi-class tasks. Nu-
merical values are reported in Table 4 (Appendix C.1). Neu-
ralCBP consistently achieves the lowest final regret on the
four datasets considered. The improvement in final regret

CIFAR10 Fashion MNIST

1k

2k

3k

4k

5k

7k

Fi
na

l r
eg

re
t ±

 9
9%

 C
I

(a) Final regret

10 2 5 100 2 5 1000 2 5 10k

0.1

0.2

0.3

0.4

Expert query volume

f1
-s

co
re

(b) Cifar10 (M = 10)

10 2 5 100 2 5 1000 2 5 10k

0.3

0.4

0.5

0.6

0.7

0.8

Expert query volume

f1
-s

co
re

(c) Fashion (M = 10)

10 2 5 100 2 5 1000 2 5 10k
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Expert query volume

f1
-s

co
re

(d) MNIST (M = 10)

Figure 3: Performance on multi-class OAL with LeNet.

performance is statistically significant for MNIST, Fashion
and adult datasets (all p-values< 0.01), and NeuralCBP
achieves identical performance to Neuronal (less explo-
ration) on covertype. The improvement ranges from 15% to
40% over the second best baseline (Neuronal with less
exploration) on MNIST, Fashion, and shuttle datasets.

Figures 2b, 2c, 2d and 2e show that given the same volume
of expert queries, NeuralCBP achieves a comparable or
better f1-score performance on the test sets. Other strate-
gies may achieve a f1-score performance increase at the
expense of significantly more expert queries. However, the
generalization improvement obtained from these additional
labelled observations is not reflected in terms of final regret
performance.

Robustness across different neural architectures. We
now evaluate Neuronal and NeuralCBP on a set of
multi-class tasks using the convolutional architecture LeNet
[LeCun et al., 1998]. INeural is omitted because it re-
quires one-hot encodings of observations in the action space,
which is not scalable when operating over multi-dimensional
tensor observations. See numeric details in Table 6.

Figure 3a shows that NeuralCBP achieves the best final

Expl TP TN FP FN

1k

2k

3k

4k

5k

7k

Action

C
ou

nt

(a) Adult

Expl TP TN FP FN

1k

2k

3k

4k

5k

Action

C
ou

nt

(b) MagicTelescope

Expl TP TN FP FN

1k

2k

3k

4k

Action

C
ou

nt

(c) MNIST binary

Figure 4: Distribution of the number of expert queries (Expl),
true positives (TP), true negatives (TN), false positives (FP),
and false negatives (FN) for NeuralCBP playing Label-
efficient with uniform cost vs high cost on FP. Intrinsic goal
of FP-sensitive: Minimize the count of FP.

regret performance. Furthermore, NeuralCBP achieves a
f1-score performance comparable to Neuronal for equiv-
alent volumes of expert queries. This is expected as the un-
derlying networks f1, f2 and embeddings are the same for
both approaches. Although NeuralCBP and Neuronal
curves overlap along the f1-score axis (y-axis), it is worth
noting that NeuralCBP has a smaller label complexity
(x-axis). Neuronal (official) and Neuronal (less explo-
ration) consume more expert queries, which is not translated
into an improved final regret performance.

5.3 SPECIFYING A COST STRUCTURE

In this experiment, we investigate the impact of cost-
sensitivity on the action selection strategy of NeuralCBP.
To our knowledge, NeuralCBP is the only applicable strat-
egy in cost-sensitive OAL tasks. We consider the previous
binary OAL tasks conducted on Adult, MagicTelescope, and
the modified MNIST datasets.

Recall from Section 3 that the original label efficient game
corresponds to a binary classification task where the costs
of prediction errors and expert queries are equal to 1 across
the two classes. We refer to this formulation as the uni-
form costs case. We also consider a cost-sensitive variation
where the cost of false negatives (FN) is twice as low as the
cost of false positives (FP). We refer to this cost-sensitive
variation as the FP-sensitive costs case. In the FP-sensitive
case, the intrinsic goal is to minimize the amount of false
positives. For example, this could refer to a learning sys-

tem constrained to minimize incorrect positive detection in
medical screenings (HIV, cancer, etc).

Figure 4 illustrates the influence of the cost structure on
NeuralCBP. We measure the count distribution (mean,
median, 1st and 3rd quartiles) of expert queries, true pos-
itives (TP), true negatives (TN), false positives (FP), and
false negatives (FP), over the 25 runs. In Adult and MagicTe-
lescope datasets (Figures 4a and 4b), the third quartile of
the FP count is approximately 3 times smaller under the FP-
sensitive cost structure. On MNIST binary (Figure 4c), the
mean FP count is 336± 112.24 (1-std) in the uniform case;
this value drops to 136± 30 (1-std) in the FP-sensitive case.
These numeric results show that NeuralCBP successfully
accounts for the specified FP-sensitive cost structure.

6 DISCUSSION

Partial monitoring feedback. NeuralCBP is a strategy
designed for the partial monitoring setting. To account for
partial monitoring games, NeuralCBP operates a distinc-
tion between incurred costs (not learned, specified in the
cost matrix C), observable feedbacks (not learned, speci-
fied in the feedback matrix H) and feedback distribution
(learned components noted π̂a(xt) for each action a). The
proposed PM-based formulation enables to specify a cost
structure and possibly the presence of multiple experts.

Distinct exploration principles. In existing EENets
strategies, the predictions of the network f2 are added to
the predictions of f1 to compute an upper confidence bound
on the predictions. Then, the magnitude of the difference
between the top two predictions drives the exploration. In
contrast, the predictions of network f2 in NeuralCBP con-
tribute to a successive elimination criteria (defined in Sec-
tion 4.3) that checks whether the upper and lower confidence
bounds of two different actions overlaps or not.

Sensitivity to hyper-parameters In Neuronal and
INeural strategies, the decision of querying the expert
is based on the difference between the top two class predic-
tions. If the difference is greater than a slack term (obtained
from the theory), the strategy asks for an expert label. The
slack term provided by the theory is not usually computed
in practice Ban et al. [2024]. Therefore, the user must select
a proxy γ of the slack term. As demonstrated in our exper-
iments, we have evaluated the official (γ = 0.6) instances
of Neuronal and INeural, as well as instances that in-
duce less exploration (γ = 3). We observe from Figures 1,
2, and 3, that the final regret performance of Neuronal
and INeural on a specific dataset is sensitive to an ap-
propriate choice of γ. One benefit of NeuralCBP over
Neuronal and INeural is that the exploration is driven
by a successive elimination criteria that is hyper-parameter
free. This is relevant in online learning where deployment

data is typically unknown in advance, making it difficult to
tune hyper-parameters.

7 CONCLUSION

Our work demonstrates the potential of the partial monitor-
ing framework in practice, a field traditionally supported
by theoretical research. We leverage the PM framework to
formulate OAL tasks and propose NeuralCBP, a PM strat-
egy able to learn efficiently from neural networks. While
the emphasis of this paper is on OAL, NeuralCBP is a
general PM approach that can be applied to the broader
diversity of partial monitoring games. Lastly, we demon-
strate the empirical performance of NeuralCBP on a set of
binary, multi-class and cost-sensitive OAL tasks, and high-
light technical and empirical benefits over existing OAL
strategies.

Limitations A limitation of NeuralCBP is that it does
not scale well with large number of classes. Combinato-
rial PM strategies could address this limitation [Lin et al.,
2014]. Furthermore, NeuralCBP does not capture the
multi-expert case. The multi-expert case is studied in Dekel
et al. [2012], Kumar et al. [2022] without the PM framework
but a PM perspective based on Kirschner et al. [2020, 2023]
could be an avenue of future research.

Author Contributions

Maxime Heuillet: conceptualization, methodology, empir-
ical investigation, visualizations, implementation, writing
(original draft, editing), funding acquisition. Ola Ahmad:
conceptualization, writing (review, editing), supervision. Au-
drey Durand: conceptualization, writing (review, editing),
supervision, funding acquisition.

Acknowledgements

This work was funded through a Mitacs Accelerate grant.
We thank Alliance Canada and Calcul Quebec for access
to computational resources and staff expertise consultation.
We would like to thank Dr. Yikun Ban for answering our
technical questions about INeural and Neuronal. We
also acknowledge the library pmlib of Tanguy Urvoy that
was helpful to implement NeuralCBP and PM game envi-
ronments.

References

Kareem Amin, Corinna Cortes, Giulia DeSalvo, and Afshin
Rostamizadeh. Understanding the effects of batching in
online active learning. In Proc. AISTATS, 2020.

Arthur Asuncion et al. Uci machine learning repository,
2007.

Maria-Florina Balcan, Andrei Broder, and Tong Zhang. Mar-
gin based active learning. In Proc. COLT, pages 35–50,
2007.

Yikun Ban, Yuchen Yan, Arindam Banerjee, and Jingrui
He. Ee-net: Exploitation-exploration neural networks in
contextual bandits. In proc. ICLR, 2022a.

Yikun Ban, Ishika Agarwal, Ziwei Wu, Yada Zhu, Kommy
Weldemariam, Hanghang Tong, and Jingrui He. Neural
active learning beyond bandits. In Proc. ICLR, 2024.

Yikun Ban et al. Improved algorithms for neural active
learning. In Proc. NeurIPS, 2022b.

Gábor Bartók et al. Partial monitoring with side information.
In Proc. ALT, 2012a.

Gábor Bartók et al. An adaptive algorithm for finite stochas-
tic partial monitoring. In Proc. ICML, 2012b.

Gábor Bartók et al. Partial monitoring - classification, re-
gret bounds, and algorithms. Mathematics of Operations
Research, 39(4):967–997, 2014.

Alina Beygelzimer, Sanjoy Dasgupta, and John Langford.
Importance weighted active learning. In Proc. ICML,
pages 49–56, 2009.

Ting Cai et al. Active cost-aware labeling of streaming data.
In Proc. AISTATS, 2023.

Nicoló Cesa-Bianchi, Claudio Gentile, and Luca Zaniboni.
Worst-case analysis of selective sampling for linear clas-
sification. JMLR, 7(44):1205–1230, 2006.

David Cohn, Les Atlas, and Richard Ladner. Improving
generalization with active learning. Machine learning,
15:201–221, 1994.

Amit Daniely and Tom Helbertal. The price of bandit in-
formation in multiclass online classification. In Shai
Shalev-Shwartz and Ingo Steinwart, editors, In Proc. ALT,
volume 30 of Proceedings of Machine Learning Research,
pages 93–104, Princeton, NJ, USA, 12–14 Jun 2013.
PMLR.

Ofer Dekel, Claudio Gentile, and Karthik Sridharan. Selec-
tive sampling and active learning from single and multiple
teachers. The Journal of Machine Learning Research, 13
(1):2655–2697, 2012.

Giulia DeSalvo et al. Online active learning with surrogate
loss functions. In Proc. NeurIPS, 2021.

Charles Elkan. The foundations of cost-sensitive learning.
In Proc. IJCAI, 2001.

Liad Erez, Alon Cohen, Tomer Koren, Yishay Mansour, and
Shay Moran. The real price of bandit information in
multiclass classification. In Proc. CoLT, 2024.

Eyal Even-Dar, Shie Mannor, and Yishay Mansour. Pac
bounds for multi-armed bandit and markov decision pro-
cesses. In Proc. COLT, 2002.

David Helmbold et al. Some label efficient learning results.
In Proc. CoLT, 1997.

Maxime Heuillet, Ola Ahmad, and Audrey Durand. Ran-
domized confidence bounds for stochastic partial moni-
toring. In Proc. ICML, 2024.

Johannes Kirschner, Tor Lattimore, and Andreas Krause.
Linear partial monitoring for sequential decision-making:
Algorithms, regret bounds and applications. JMLR, 2023.

Johannes Kirschner et al. Information directed sampling for
linear partial monitoring. PMLR, 2020.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009.

Bhuvesh Kumar et al. ActiveHedge: Hedge meets ac-
tive learning. In Kamalika Chaudhuri, Stefanie Jegelka,
Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato,
editors, In proc. ICML, volume 162, pages 11694–11709,
2022.

A Gilad Kusne, Heshan Yu, Changming Wu, Huairuo Zhang,
Jason Hattrick-Simpers, Brian DeCost, Suchismita Sarker,
Corey Oses, Cormac Toher, Stefano Curtarolo, et al. On-
the-fly closed-loop materials discovery via bayesian ac-
tive learning. Nature communications, 11(1):5966, 2020.

Y. LeCun, C. Cortes, and C. J. C. Burges. The mnist
database of handwritten digits. http://yann.lecun.
com/exdb/mnist/, 2010.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324,
1998.

Ian Lienert. Exploiting side information in partial monitor-
ing games: An empirical study of the cbp-side algorithm
with applications to procurement. Master’s thesis, Eid-
genössische Technische Hochschule Zürich, Department
of Computer Science, 2013.

Tian Lin, Bruno Abrahao, Robert Kleinberg, John Lui, and
Wei Chen. Combinatorial partial monitoring game with
linear feedback and its applications. In Proc. ICML, pages
901–909. PMLR, 2014.

Antonio Piccolboni et al. Discrete prediction games with
arbitrary feedback and loss. In Proc. CoLT, 2001.

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

Shinsaku Sakaue, Han Bao, Taira Tsuchiya, and Taihei Oki.
Online structured prediction with fenchel–young losses
and improved surrogate regret for online multiclass clas-
sification with logistic loss. In Proc. COLT, 2024.

Akanksha Saran, Safoora Yousefi, Akshay Krishnamurthy,
John Langford, and Jordan T Ash. Streaming active
learning with deep neural networks. In Proc. ICML, 2023.

David Sculley. Practical learning from one-sided feedback.
In Proceedings of the 13th ACM SIGKDD international
conference on Knowledge discovery and data mining,
pages 609–618, 2007.

Jack Sherman et al. Adjustment of an Inverse Matrix Corre-
sponding to a Change in One Element of a Given Matrix.
The Annals of Mathematical Statistics, 21(1):124 – 127,
1950.

Adish Singla et al. Contextual procurement in online crowd-
sourcing markets. In Proc. AAAI, 2014.

Dirk van der Hoeven, Federico Fusco, and Nicolò Cesa-
Bianchi. Beyond bandit feedback in online multiclass
classification. In Proc. NeurIPS, 34:13280–13291, 2021.

Zhilei Wang et al. Neural active learning with performance
guarantees. In Proc. NeurIPS, 2021.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-
mnist: a novel image dataset for benchmarking machine
learning algorithms. arXiv preprint arXiv:1708.07747,
2017.

Pan Xu, Zheng Wen, Handong Zhao, and Quanquan Gu.
Neural contextual bandits with deep representation and
shallow exploration. In Proc. ICLR, 2022.

Neural Active Learning Meets the Partial Monitoring Framework
(Supplementary Material)

Maxime Heuillet1 Ola Ahmad1,3 Audrey Durand1,2

1Université Laval, Canada
2Canada-CIFAR AI Chair, Mila, Canada

3Thales Research and Technology (cortAIx), Canada,

Notation Definition Observable by the agent?
N Number of actions ✓
M Number of outcomes ✓
E Number of experts ✓
Σ Feedback space (space of symbols) ✓

C ∈ [0,1]N×M Cost matrix ✓
ci Row i in matrix C (associated with action i) ✓

H ∈ ΣN×M Feedback matrix ✓
hi Row i in matrix H (associated with action i) ✓
σi Number of unique feedback symbols induced by action i (i.e. on row i of H) ✓
∆M Probability simplex of dimension M (i.e. over the outcome space) ✓
∆σi Probability simplex of dimension σi (i.e. over the symbol space induced by action i) ✓
T Total number of rounds in a game (horizon) ✗

it Action played by the agent at round t ✓
yt Outcome at round t ✗

ht Feedback symbol at round t ✓
H[it,yt] Element in matrix H at row It and column Jt (i.e. feedback received at round t) ✓
C[it,yt] Element in matrix C at row It and column Jt (i.e. loss incurred at round t) ✗

X Observation space ✗

I Set of informative actions ✓
ΣI Valid feedback symbols ✓

Π(xt) Set of informative feedback distributions ✗

xt ∈ X Observation received at time t ✓
Xi,t History of end-to-end embeddings for action i up to time t ✓
Gi,t Gram matrix for action i up to time t ✓

p(xt) ∈ ∆M Outcome distribution ✗

Oi ⊆ ∆M Cell of action i ✓
Σi Enumeration of symbols sorted by order of appearance in hi ✓

Si ∈ {0, 1}σi×M Signal matrix of action i ✓
πi(xt) ∈ ∆σi Distribution for the unique feedback symbols induced by action i ✗

δi,j(xt) Expected loss difference between action i and j ✗

P Set of Pareto optimal actions (i.e. set of actions) ✓
N Set of neighbor action pairs (i.e. set of pairs of actions) ✓
U(t) Set of confident action pairs (i.e. set of pairs of actions) ✓
Vi,j Observer set for pair i, j (i.e. set of actions) ✓
vija Observer vector associated with Vi,j (index a indicates to which action in Vi,j it is associated to) ✓
zi,j(t) Confidence for a pair {i, j} at round t ✓

D(t) ⊆ ∆M Sub-space of the simplex based on constraints in U(t), it includes p⋆ with high confidence ✓
N+

i,j Neighbor action set for pair i, j (set of actions) ✓
P(t) Plausible subset of P given D(t) (set of actions) ✓
N (t) Plausible subset of N given D(t) (set of pairs of actions) ✓
R(xt) Set of underplayed actions at time t (set of actions) ✓
e(·) One hot encoding ✓
S(t) Final set of actions considered by CBP (set of actions) ✓

Wa = max{i,j}∈N ∥vija∥∞ Weight of an action ✓

Table 1: List of notations

mailto:<maxime.heuillet.1@ulaval.ca>?Subject=Your UAI 2024 paper
mailto:<audrey.durand@ift.ulaval.ca>?Subject=Your UAI 2024 paper

A ANALYSIS OF THE LABEL EFFICIENT GAME

The original label-efficient game [Helmbold et al., 1997] is defined by the following cost and feedback matrices:

C =

class A class B

pred. class A 0 1
pred. class B 1 0

expert 1 1

,H =

class A classB

♢ ♢
∧ ∧
⊥ ⊙

.
The game includes a set of N = 3 possible actions and M = 2 possible outcomes (class A, and class B). For actions 1 and
2, there is σ1 = σ2 = 1 unique feedback symbol. For action 3, there is σ3 = 2 feedback symbols, and the enumeration is
{⊥,⊙}. Therefore, the set of informative actions is I = {3}.

Signal Matrices: The dimension of the signal matrices are such that S1 ∈ {0, 1}1×2 and S2 ∈ {0, 1}1×2 and
S3 ∈ {0, 1}2×2. The matrices verify:

S1 =
[
1 1

]
, S2 =

[
1 1

]
, S3 =

[
1 0
0 1

]

The outcome distribution is noted p⋆ = [pA, pB]
⊤.

Cells: Each action can be associated to a sub-space of the probability simplex noted cell (see Definition 2.1):

• For action 1, we have: O1 = {p ∈ ∆M ,∀j ∈ {1, . . . , N}, (c1 − cj)p ≤ 0}. This probability space corresponds to the
following constraints: c1 − c1

c1 − c2
c1 − c3

 p =

 0 0
−1 1
−1 0

 p ≤ 0

The first constraint (c1 − c1)p ≤ 0 is always verified. The second constraint (c1 − c2)p ≤ 0 implies −pA + pB ≤
0 ⇐⇒ pB ≤ pA. The third constraint (c1 − c3)p ≤ 0 implies −pA ≤ 0 ⇐⇒ pA ≥ 0.

• For action 2, we have: O2 = {p ∈ ∆M ,∀j ∈ {1, . . . , N}, (c2 − cj)p ≤ 0}. This probability space corresponds to the
following constraints: c2 − c1

c2 − c2
c2 − c3

 p =

1 −1
0 0
0 −1

 p ≤ 0

The second constraint (c2 − c2)p ≤ 0 is always satisfied. The first constraint (c2 − c1)p ≤ 0 implies pA − pB ≤
0 ⇐⇒ pA ≤ pB . The third constraint (c2 − c1)p ≤ 0 implies −pB ≤ 0 ⇐⇒ pB ≥ 0.

• For action 3, we have: O3 = {p ∈ ∆M ,∀j ∈ {1, . . . , N}, (c3 − cj)p ≤ 0}. This probability space corresponds to the
following constraints: c3 − c1

c3 − c2
c3 − c3

 p =

1 0
0 1
0 0

 p ≤ 0

The third constraint (c1 − c1)p ≤ 0 is always verified. The first constraint (c1 − c2)p ≤ 0 implies pA ≤ 0 and the
second constraint (c1 − c3)p ≤ 0 implies pB ≤ 0. There exist no probability vector in ∆M satisfying these three
constraints at the same time.

Pareto optimal actions: From the analysis of the cells, we have O3 = ∅. Therefore, action 3 is dominated, according
to Definition 2.1. The remaining actions 1 and 2 are Pareto optimal because their respective cells are not included in one
another, i.e. P = {1, 2}.

Neighbor actions: In this paragraph, we will determine whether action 1 and 2 are a neighbor pair.

O1 ∩ O2 =

pB ≤ pA

pA ≥ 0

pA ≤ pB

pB ≥ 0

The only point in this vector space is
[
0.5 0.5

]⊤
. Therefore, dim(O1∩O2) = 0 = M −2 and the pair {1, 2} is a neighbor

pair, i.e. N = {{1, 2}, }.

Neighbor action set: This set is defined as N+
ij = {k ∈ {1, . . . , N},Oi ∩ Oj ⊂ Ok}. This yields: N+

1,2 = N+
2,1 = [1, 2]

because the cell of action 3 is empty.

Informative action set Action 3 is the only informative action because σ3 = 2 ≥ 1.

Observer set: We have: V1,2 = {3} same applies to V2,1 = {3}, because action 3 is the only informative action.

Observer vector: For the pair {1, 2}, we have to find vija, a ∈ Vij such that C⊤
1 − C⊤

2 =
∑

a∈Vij
ST
i vija, according to

Definition 4.3. Choosing and v⊤121 =
[
−1 1

]
verifies the relation:

c⊤1 − c⊤2 =

[
−1
1

]
=

[
1 0
0 1

] [
−1
1

]

B IMPLEMENTATION DETAILS

The pseudo-code in Algorithm 2 details how the EENets is updated.

Algorithm 2: Update EENet with gradient descent
input :θ1, θ2
Epoch number K1 and K2, learning rate η1 and η2

Initialize θ
(0)
1 = θ1

for k ∈ {1, . . . ,K1} do
θ
(k)
1 = θ

(k−1)
1 − µ1∇θ

(k−1)
1
L1(θ

(k−1)
1) ;

θ̃1 = θ
(K1)
1

Initialize θ
(0)
2 = θ2

for k ∈ {1, . . . ,K2} do
θ
(k)
2 = θ

(k−1)
2 − µ2∇θ

(k−1)
2
L2(θ

(k−1)
2) ;

θ̃2 = θ
(K2)
2

output : θ̃1, θ̃2

C EXPERIMENT DETAILS.

The neural components of the strategies refer to two networks f1 and f2 for NeuralCBP, Neuronal and INeural;
f1 is trained using the MSE loss functions L1 and f2 with L2. For strategies Cesa and Margin, the neural component
corresponds to one network f1, which is trained using the MSE loss function L1. In the experiments with a MLP, f1 is
a MLP architecture of width m = 100 and depth L = 2, and f2 is a MLP of width m = 100 and depth L = 2. In the
experiments with a LeNet, f1 is a LeNet architecture LeCun et al. [1998], and f2 is a MLP of width m = 100 and depth
L = 2.

Update protocol for the neural components of the strategies. At the beginning of the game, each strategy plays each
action once. Then, to save compute, we perform updates at every round for the first N ≤ t ≤ 50 steps. We update every
50 rounds for t ≤ 1000. Finally, we update every 500 rounds when t ≥ 1000. An equivalent update protocol has been
used in related neural online learning literature Xu et al. [2022]. This update protocol is implemented for all the strategies
considered in the experiments.

End-to-end embedding down sampling. Both Neuronal and NeuralCBP use the end-to-end embedding (see Defini-
tion 4.8). Due to the dimension of a flattened gradient, the embedding received as input to f2 requires a down-sampling.
Similarly to Ban et al. [2024], we use a block-reduction averaging operator. When f1 is based on a MLP architecture, the
reduction parameter to 51 following Ban et al. [2024]. When f1 is based on a LeNet architecture, we set the reduction
parameter to 51 for MNIST and FASHION datasets. For CIFAR10, we increase the block averaging to 153 = 51× 3 to
account for the three color channels (RGB) of CIFAR10 observations.

NeuralCBP. To speed up compute, the inversion and updates of the Gram matrix are performed on GPU, using the
Sherman-Morison update [Sherman et al., 1950]. We set f(t) = α1/3t2/3 log(t)1/3, ηa = W

2/3
a and α = 1.01 according to

previous literature Heuillet et al. [2024]. This combination of parameters is justified by the theoretical analysis of CBP and
is not meant to be tuned further.

To update f1 and f2, we use the Adam optimizer, with the learning rate set to the default value µ1 = µ2 = 0.001 (both for
MLP and LeNet architectures). Following Ban et al. [2024], we set the batch size to 64 and the number of epochs to 40. We
performed a grid search for the learning rate over {0.0001, 0.001} and found that the value 0.001 performs best.

Neuronal The strategy Neuronal admits a hyper-parameter γ that influences the amount of exploration. For Neu-
ronal (official), we set γ = 6, as reported in Ban et al. [2024]. We also consider the instance γ = 3 for Neuronal (less
exploration), which exhibits less exploration.

Following Ban et al. [2024], we set the batch size to 64 and the number of epochs to K1 = K2 = 40. For f1 and f2, we use
the Adam optimizer, with the value for the learning rate set at µ1 = µ2 = 0.001 for both the MLP, and LeNet architecture.

We performed a grid search and report empirical findings for the learning rate over {0.0001, 0.001}. We observed from
Tables 2, 3, 4, 5 and 6, 7 that a learning rate µ1 = µ2 = 0.001 performs best on most datasets for both instances of
Neuronal (official and γ = 3).

INeural The exploration parameter is set to γ = 6 for INeural (official) and to γ = 3 for INeural (less exploration).
Note that the networks f1 and f2 of INeural have a different input dimension, as they require input observations to be
one-hot-encoded over the action space.

For f1 and f2, we use the Adam optimizer, with the default value for the learning rate set at µ1 = µ2 = 0.001. The batch
size is set to 64 and the number of epochs to 40. This approach is known to be outperformed by Neuronal, we used the
set of optimal hyper-parameters reported in Ban et al. [2024].

Cesa The exploration strategy of the approach Cesa is hyper-parameter free. For the network f1, we use the Adam
optimizer, with the default value for the learning rate set at µ1 = 0.001. The batch size is set to 64 and the number of epochs
to K1 = 40.

Margin The exploration parameter of the Margin approach is set to 1. For network f1, we use the Adam optimizer,
with the default value for the learning rate set at µ1 = 0.001. The batch size is set to 64 and the number of epochs to
K1 = 40.

C.1 NUMERICAL RESULTS

In this Appendix, we report the empirical performance of Neuronal with a learning rate set to µ1 = µ2 = 0.0001. We
also report numeric details for all the figures reported in the main body and appendix.

MNIST binary MagicTelescope adult

1k

2k

3k

4k

5k

7k

9k
Fi

na
l r

eg
re

t ±
 9

9%
 C

I

(a) Final regret (lower is better)

10 2 5 100 2 5 1000 2 5 10k

0.5

0.6

0.7

Expert query volume

f1
-s

co
re

 ±
 9

9%
 C

I

(b) Adult

10 2 5 100 2 5 1000 2 5 10k

0.6

0.7

0.8

Expert query volume

f1
-s

co
re

 ±
 9

9%
 C

I

(c) Magic Telescope

10 2 5 100 2 5 1000 2 5 10k

0.6

0.7

0.8

0.9

Expert query volume

f1
-s

co
re

 ±
 9

9%
 C

I

(d) MNIST Binary

Figure 5: Performance on binary OAL with MLP. Neu-
ronal with µ1 = µ2 = 0.0001.

Fashion MNIST covertype shuttle

1k

2k

3k

4k

5k

7k

9k

Fi
na

l r
eg

re
t ±

 9
9%

 C
I

(a) Final regret

10 2 5 100 2 5 1000 2 5
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Expert query volume

f1
-s

co
re

 ±
 9

9%
 C

I

(b) Fashion (M = 10)

10 2 5 100 2 5 1000 2 5

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Expert query volume

f1
-s

co
re

 ±
 9

9%
 C

I

(c) MNIST (M = 10)

10 2 5 100 2 5 1000 2 5 10k

0.3

0.4

0.5

0.6

0.7

Expert query volume

f1
-s

co
re

 ±
 9

9%
 C

I

(d) Covertype (M = 7)

10 2 5 100 2 5 1000 2 5 10k
0.4

0.5

0.6

0.7

0.8

0.9

1

Expert query volume

f1
-s

co
re

 ±
 9

9%
 C

I

(e) Shuttle (M = 7)

Figure 6: Performance on multi-class OAL with MLP. Neu-
ronal with µ1 = µ2 = 0.0001.

CIFAR10 Fashion MNIST

1k

2k

3k

4k

5k

7k

9k

Fi
na

l r
eg

re
t ±

 9
9%

 C
I

(a) Final regret

10 2 5 100 2 5 1000 2 5 10k

0.1

0.2

0.3

0.4

Expert query volume

f1
-s

co
re

(b) Cifar10 (M = 10)

10 2 5 100 2 5 1000 2 5 10k

0.3

0.4

0.5

0.6

0.7

0.8

Expert query volume

f1
-s

co
re

(c) Fashion (M = 10)

10 2 5 100 2 5 1000 2 5 10k

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Expert query volume

f1
-s

co
re

(d) MNIST (M = 10)

Figure 7: Performance on multi-class OAL with LeNet. Neuronal with µ1 = µ2 = 0.0001.

Dataset Approach Mean regret p-value win count Mean Exploration p-value (exploration)
MNIST binary Neural-CBP 1351.92 1.0 10.0 638.32 1.0
MNIST binary IneurAL (official) 1701.72 0.0 0.0 1311.44 0.0
MNIST binary IneurAL (less exploration) 1701.28 0.103 2.0 624.96 0.756
MNIST binary Neuronal (official) 1566.16 0.0 0.0 1363.88 0.0
MNIST binary Neuronal (less exploration) 1646.16 0.172 13.0 778.4 0.01
MNIST binary Cesa 2627.52 0.0 0.0 303.28 0.0
MNIST binary Margin 3169.6 0.0 0.0 100.28 0.0

MagicTelescope Neural-CBP 3370.36 1.0 14.0 496.68 1.0
MagicTelescope IneurAL (official) 7343.04 0.0 0.0 6452.8 0.0
MagicTelescope IneurAL (less exploration) 4473.2 0.0 0.0 3138.28 0.0
MagicTelescope Neuronal (official) 3716.8 0.207 0.0 1604.84 0.0
MagicTelescope Neuronal (less exploration) 3287.0 0.769 7.0 444.64 0.613
MagicTelescope Cesa 3245.64 0.623 1.0 328.76 0.033
MagicTelescope Margin 3574.12 0.483 3.0 58.04 0.0

adult Neural-CBP 2968.88 1.0 10.0 127.64 1.0
adult IneurAL (official) 8243.12 0.0 0.0 7610.2 0.0
adult IneurAL (less exploration) 3909.48 0.027 0.0 1136.24 0.0
adult Neuronal (official) 3222.24 0.551 1.0 951.72 0.025
adult Neuronal (less exploration) 3035.92 0.884 5.0 89.64 0.379
adult Cesa 3180.0 0.643 3.0 320.12 0.001
adult Margin 3166.56 0.682 6.0 19.92 0.0

Table 2: Supplement for Section 5.1 presented in the main paper (see Figure 1). Neuronal with µ1 = µ2 = 0.001. Mean
regret: average regret at the last step (T = 10k). P-value: Welch’s t-test on the distribution of regrets at the last step, with
NeuralCBP as reference (p-value > 0.05 means no statistical difference). Win count: number of times a given strategy
achieved the lowest final regret (ties included). Mean exploration: average number of expert-verified observations. P-value
(exploration): Welch’s t-test on the distribution of number of expert queries.

Dataset Approach Mean regret p-value win count Mean Exploration p-value (exploration)
MNIST binary Neural-CBP 1351.92 1.0 15.0 638.32 1.0
MNIST binary IneurAL (official) 1701.72 0.0 0.0 1311.44 0.0
MNIST binary IneurAL (less exploration) 1701.28 0.103 8.0 624.96 0.756
MNIST binary Neuronal (official) 1730.08 0.0 0.0 1558.76 0.0
MNIST binary Neuronal (less exploration) 1440.48 0.005 2.0 987.84 0.0
MNIST binary Cesa 2627.52 0.0 0.0 303.28 0.0
MNIST binary Margin 3169.6 0.0 0.0 100.28 0.0

MagicTelescope Neural-CBP 3370.36 1.0 16.0 496.68 1.0
MagicTelescope IneurAL (official) 7343.04 0.0 0.0 6452.8 0.0
MagicTelescope IneurAL (less exploration) 4473.2 0.0 0.0 3138.28 0.0
MagicTelescope Neuronal (official) 4226.96 0.002 0.0 2555.96 0.0
MagicTelescope Neuronal (less exploration) 3372.2 0.994 4.0 556.52 0.631
MagicTelescope Cesa 3245.64 0.623 3.0 328.76 0.033
MagicTelescope Margin 3574.12 0.483 2.0 58.04 0.0

adult Neural-CBP 2968.88 1.0 10.0 127.64 1.0
adult IneurAL (official) 8243.12 0.0 0.0 7610.2 0.0
adult IneurAL (less exploration) 3909.48 0.027 2.0 1136.24 0.0
adult Neuronal (official) 4819.44 0.001 1.0 3395.52 0.0
adult Neuronal (less exploration) 2523.64 0.155 3.0 305.96 0.032
adult Cesa 3180.0 0.643 3.0 320.12 0.001
adult Margin 3166.56 0.682 6.0 19.92 0.0

Table 3: Supplement for Figure 5. Neuronal with µ1 = µ2 = 0.0001. Mean regret: average regret at the last step
(T = 10k). P-value: Welch’s t-test on the distribution of regrets at the last step, with NeuralCBP as reference (p-value
> 0.05 means no statistical difference). Win count: number of times a given strategy achieved the lowest final regret (ties
included). Mean exploration: average number of expert-verified observations. P-value (exploration): Welch’s t-test on the
distribution of number of expert queries.

Dataset Approach Mean regret p-value win count Mean Exploration p-value (exploration)
MNIST Neural-CBP 1811.96 1.0 25.0 1305.24 1.0
MNIST IneurAL (official) 4016.84 0.0 0.0 3870.12 0.0
MNIST IneurAL (less exploration) 2371.36 0.0 0.0 1818.56 0.0
MNIST Neuronal (official) 3275.0 0.0 0.0 3224.84 0.0
MNIST Neuronal (less exploration) 2213.16 0.0 0.0 2030.44 0.0
Fashion Neural-CBP 2898.24 1.0 25.0 1523.92 1.0
Fashion IneurAL (official) 4882.48 0.0 0.0 4382.88 0.0
Fashion IneurAL (less exploration) 3437.76 0.0 0.0 2210.2 0.0
Fashion Neuronal (official) 4466.76 0.0 0.0 4193.28 0.0
Fashion Neuronal (less exploration) 3417.44 0.0 0.0 2777.44 0.0

covertype Neural-CBP 5060.24 1.0 12.0 446.96 1.0
covertype IneurAL (official) 9129.68 0.0 0.0 8235.72 0.0
covertype IneurAL (less exploration) 7707.72 0.0 0.0 4862.12 0.0
covertype Neuronal (official) 5970.96 0.0 0.0 4802.48 0.0
covertype Neuronal (less exploration) 5060.92 0.997 13.0 1330.4 0.001

shuttle Neural-CBP 907.56 1.0 14.0 190.08 1.0
shuttle IneurAL (official) 7989.88 0.0 0.0 7901.0 0.0
shuttle IneurAL (less exploration) 2810.08 0.0 1.0 2292.48 0.0
shuttle Neuronal (official) 1547.08 0.004 7.0 183.48 0.902
shuttle Neuronal (less exploration) 1524.0 0.003 4.0 157.16 0.437

Table 4: Numeric values in support of Section 5.2 presented in the main paper (see Figure 2). Neuronal with µ1 = µ2 =
0.001. Mean regret: average regret at the last step (T = 10k). P-value: Welch’s t-test on the distribution of regrets at the last
step, with NeuralCBP as reference (p-value > 0.05 means no statistical difference). Win count: number of times a given
strategy achieved the lowest final regret (ties included). Mean exploration: average number of expert-verified observations.
P-value (exploration): Welch’s t-test on the distribution of number of expert queries.

Dataset Approach Mean regret p-value win count Mean Exploration p-value (exploration)
MNIST Neural-CBP 1811.96 1.0 25.0 1305.24 1.0
MNIST IneurAL (official) 4016.84 0.0 0.0 3870.12 0.0
MNIST IneurAL (less exploration) 2371.36 0.0 0.0 1818.56 0.0
MNIST Neuronal (official) 4123.8 0.0 0.0 4093.68 0.0
MNIST Neuronal (less exploration) 2722.72 0.0 0.0 2605.16 0.0
Fashion Neural-CBP 2898.24 1.0 25.0 1523.92 1.0
Fashion IneurAL (official) 4882.48 0.0 0.0 4382.88 0.0
Fashion IneurAL (less exploration) 3437.76 0.0 0.0 2210.2 0.0
Fashion Neuronal (official) 4881.16 0.0 0.0 4709.56 0.0
Fashion Neuronal (less exploration) 3584.28 0.0 0.0 3089.64 0.0

covertype Neural-CBP 5060.24 1.0 20.0 446.96 1.0
covertype IneurAL (official) 9129.68 0.0 1.0 8235.72 0.0
covertype IneurAL (less exploration) 7707.72 0.0 0.0 4862.12 0.0
covertype Neuronal (official) 7831.48 0.0 0.0 7287.32 0.0
covertype Neuronal (less exploration) 5659.96 0.0 4.0 3431.8 0.0

shuttle Neural-CBP 907.56 1.0 20.0 190.08 1.0
shuttle IneurAL (official) 7989.88 0.0 0.0 7901.0 0.0
shuttle IneurAL (less exploration) 2810.08 0.0 0.0 2292.48 0.0
shuttle Neuronal (official) 1661.08 0.0 1.0 1277.04 0.0
shuttle Neuronal (less exploration) 1666.0 0.0 4.0 404.56 0.011

Table 5: Numeric values in support of Figure 6. Neuronal with µ1 = µ2 = 0.0001. Mean regret: average regret at the last
step (T = 10k). P-value: Welch’s t-test on the distribution of regrets at the last step, with NeuralCBP as reference (p-value
> 0.05 means no statistical difference). Win count: number of times a given strategy achieved the lowest final regret (ties
included). Mean exploration: average number of expert-verified observations. P-value (exploration): Welch’s t-test on the
distribution of number of expert queries.

Dataset Approach Mean regret p-value win count Mean Exploration p-value (exploration)
MNIST Neural-CBP 954.458 1.0 17.0 439.75 1.0
MNIST Neuronal (official) 1342.24 0.0 0.0 1284.16 0.0
MNIST Neuronal (less exploration) 992.6 0.015 7.0 817.92 0.0
Fashion Neural-CBP 2749.72 1.0 20.0 606.52 1.0
Fashion Neuronal (official) 3576.76 0.0 0.0 3027.96 0.0
Fashion Neuronal (less exploration) 2818.8 0.072 6.0 1698.16 0.0

CIFAR10 Neural-CBP 6865.92 1.0 25.0 2515.04 1.0
CIFAR10 Neuronal (official) 8535.76 0.0 0.0 7519.36 0.0
CIFAR10 Neuronal (less exploration) 7478.12 0.0 0.0 5114.48 0.0

Table 6: Numeric values in support of Section 5.2 presented in the main paper (see Figure 3). Neuronal with µ1 = µ2 =
0.001. Mean regret: average regret at the last step (T = 10k). P-value: Welch’s t-test on the distribution of regrets at the last
step, with NeuralCBP as reference (p-value > 0.05 means no statistical difference). Win count: number of times a given
strategy achieved the lowest final regret (ties included). Mean exploration: average number of expert-verified observations.
P-value (exploration): Welch’s t-test on the distribution of number of expert queries.

Dataset Approach Mean regret p-value win count Mean Exploration p-value (exploration)
MNIST Neural-CBP 954.458 1.0 24.0 439.75 1.0
MNIST Neuronal (official) 2009.04 0.0 0.0 1975.8 0.0
MNIST Neuronal (less exploration) 1274.24 0.0 0.0 1154.96 0.0
Fashion Neural-CBP 2749.72 1.0 24.0 606.52 1.0
Fashion Neuronal (official) 4182.96 0.0 0.0 3919.52 0.0
Fashion Neuronal (less exploration) 3095.28 0.0 1.0 2352.64 0.0

CIFAR10 Neural-CBP 6865.92 1.0 25.0 2515.04 1.0
CIFAR10 Neuronal (official) 9410.12 0.0 0.0 9130.44 0.0
CIFAR10 Neuronal (less exploration) 8483.68 0.0 0.0 6674.24 0.0

Table 7: Numeric values in support of Figure 7. Neuronal with µ1 = µ2 = 0.0001. Mean regret: average regret at the last
step (T = 10k). P-value: Welch’s t-test on the distribution of regrets at the last step, with NeuralCBP as reference (p-value
> 0.05 means no statistical difference). Win count: number of times a given strategy achieved the lowest final regret (ties
included). Mean exploration: average number of expert-verified observations. P-value (exploration): Welch’s t-test on the
distribution of number of expert queries.

	Introduction
	background
	Dynamics of a game
	Structure of a game

	Stream-based active learning as a partial monitoring game
	The NeuralCBP approach
	Outcome and feedback distributions
	Inference with neural networks
	Exploration and exploitation

	Experiments
	Binary case
	Multi-class case
	Specifying a cost structure

	Discussion
	Conclusion
	Analysis of the label efficient game
	Implementation details
	Experiment details.
	Numerical results

