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ABSTRACT

Usually, existing works on adaptation in reasoning-based systems assume that the
case base holds only successful cases, i.e., cases having solutions believed to be
appropriate for the corresponding problems. However, in practice, the case base
could hold failed cases, resulting from an earlier adaptation process but discarded
by the revision process. Not considering failed cases would be missing an inter-
esting opportunity to learn more knowledge for improving the adaptation process.
This paper proposes a novel approach to the adaptation process in the case-based
reasoning paradigm, based on an improved barycentric approach by considering
the failed cases. The experiment performed on real data demonstrates the benefit
of the method considering the failed cases in the adaptation process compared to
the classical ones that ignore them, thus, improving the performance of the case-
based reasoning system.

1 INTRODUCTION

Case-based reasoning (CBR) is certainly the most intuitive approach of artificial intelligence to solve
a problem since it mimics human behavior in problem-solving. A CBR system looks in its memory
represented by a base of previously solved experiments called source cases, for cases having similar
problems to the target problem to be solved by adapting their solutions if necessary. The target
solution is revised to make sure of its adequacy to solve the target problem and finally the base of
cases is enriched following the new experiment of resolution of the target case. Each step of the
reasoning process is supported by a process of acquiring the necessary knowledge to perform this
step. It is worth highlighting the close connection between the knowledge of the different stages of
the CBR approach.

Of the four principal stages of the reasoning process, adaptation is a crucial stage since the quality
of the solution heavily depends on its performance. Its focus is on fitting the solutions of similar
source cases to meet the specific requirements of the target problem. This is particularly important
since the source problems usually do not match the target problem, and as a consequence, without
this step, the CBR system cannot ultimately generate an appropriate solution to the target problem.

Awareness of the pivotal role that adaptation plays was noted from the early days of CBR systems,
as a result, there is a large number of studies exploring various approaches to acquiring adaptation
knowledge to improve its performance. According to Wilke et al. (1997), one can distinguish two
approaches to adaptation knowledge acquisition: knowledge-light approaches, which do not require
prior knowledge acquisition but exploit the knowledge already contained in the system Petrovic
et al. (2016); McDonnell & Cunningham (2006), and knowledge-intensive approaches which need
knowledge external to the system, such as knowledge acquired from an expert/user Cordier et al.
(2008); Dı́az-Agudo & González-Calero (2000); Govedarova et al. (2008).

Existing adaptation approaches focus exclusively on cases whose solutions are deemed relevant to
the corresponding problems (hereafter these cases are referred to as successful cases and are denoted
by C+). The appreciation of success is subjective to the application domain, e.g., in the context of
the CBR application in the elaboration of an energy management system in a building, a successful
case would correspond to a scenario satisfying the user’s comfort while minimizing the energy
expenditure. However, there are also failed cases. A failed case (noted hereafter C−) is a case
having an unsatisfactory solution to the problem to solve, in particular, these are cases proposed by
the adaptation process but rejected during the validation phase. Moreover, the adaptation process
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often involves the acquisition of the knowledge required to generate the adaptation rules. Usually,
such knowledge is strongly dependent on the application domain, making the acquisition process
complex and challenging to understand and grasp.

Surprisingly, despite a large number of research studies and an increased interest in the adaptation
issue, few works are concerned with the challenge of proposing a domain-independent adaptation
approach. Even less studies consider adaptation from the solution quality perspective, i.e., address-
ing both failed and successful cases. These cases are seldom used by the CBR systems even though
they constitute potentially useful source of knowledge. We present a comprehensive review of rele-
vant literature on adaptation process in the Appendix A.

In this work, we propose a novel perspective on the adaptation process of the CBR paradigm, based
on a fully domain-independent approach and drawing on both successful and failed cases. We argue
that the improvement of the performance of the CBR framework relies on the enhancement of the
quality of the knowledge supporting the different phases of the CBR approach. In particular, the
present study proposes a new approach to the acquisition of adaptation knowledge exploiting both
successful cases and failed ones. The approach takes its inspiration from studies in the planning of
the path of a robot moving towards a destination in an unknown and insecure environment (includes
obstacles). The originality of this approach consists in applying artificial forces to the solution to be
proposed to move away from failed source solutions and move closer to successful source solutions.

The rest of this paper is arranged as follows. Section 2 introduces an illustration of motivation and
the background of this work. Section 3 details the contribution to harnessing failed and successful
cases for a new adaptation approach. An evaluation of the proposed approach is presented and
discussed in Section 4, before drawing conclusions about this work and outlining some guidelines
for future work in Section 5.

2 MOTIVATING EXAMPLE AND PRELIMINARIES

A CBR-based energy management system (EMS) in a building is a representative case study of the
systems relevant to the scope of this study. The objective of an EMS is to fulfill the user’s desire
for thermal comfort, air quality, etc. while minimizing the energy consumption in the building. In-
deed, a building is a complex system whose potential to save energy depends on several factors with
dependencies difficult to identify Boulmaiz et al. (2021b), such as climate, building materials, geo-
graphical position, and energy rate, but also the occupant of the building exercises a major influence.
Findings of earlier works Zhang et al. (2021); Minor & Marx (2017) have already highlighted the
advantage of acquiring adaptation knowledge in improving the performance of a CBR-based EMS.
Furthermore, due to the growing awareness of environmental issues, several studies have focused
on the correlation between energy consumption in a building and the comfort of its occupants, lead-
ing to the definition of standards Group (2017); ASHRAE (1992; 2009) to estimate the comfort of
users. Thanks to the norms defined in these standards, the revision process can gauge the quality of
the target solution proposed by the adaptation process, allowing the retention process to label this
solution as a successful case C+ or a failed one C−.

In the CBR-based EMS proposed in Boulmaiz et al. (2021a), the objective is to make the user
conscious of the influence of his actions on the energy behavior of the building. For this, the system
guides the user in his actions by advising him on a set of actions aiming at decreasing the energy
waste while considering his comfort. A case describes the energy management scenario of a building
for one day. The actions retained in the system case base are the actions effectively carried out by
the building occupant, so there is no guarantee that they are actions that generate satisfactory effects
for the occupant. For this reason, the system is provided with a function to evaluate the performance
of the actions stored in the case base, allowing to label the corresponding cases with the appropriate
labels.

2.1 FOUNDING NOTIONS AND NOTATIONS ABOUT CBR APPROACH

The memory of a CBR system is made of a set of source cases Csr which constitute a case base CB.
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2.1.1 CASE DESCRIPTION

Let C, A, and E be three mutually disjoint sets. A case is a triplet (C ,A, E) ∈ C× A× E where:

• C is an element of the context domain C, i.e., the imposed elements of the problem over
which one cannot exert control. For instance, in a CBR-based disease treatment system,
the context data can be the different physiological measures of the patient (blood pressure,
glycemic rate, etc.).

• A is an element of the action domain A, i.e., elements that can be controlled to achieve
the relevant outcomes. It represents the solution proposed by the system. For instance,
the names and the protocol for administering the drugs prescribed in a CBR-based disease
treatment system.

• E is an element of the effect domain E, i.e., elements describe the state of the system after
applying action A to context C . For instance, the patient’s physiological measures after the
treatment.

A target context Ctg is a context for which the CBR system tries to predict target actions Atg to
generate target effects Etg and thus elaborate a target case Ctg . Formally, the resolution of a problem
in the CBR paradigm is defined by Equation equation 1.

CBR system: (CB,Ctg) 7−→ Atg

Ctg ≜ (Ctg,Atg, Etg)
(1)

With CB – the case base.

2.1.2 RETRIEVING AND ADAPTATION

A full presentation of the reasoning process is beyond the focus of this paper, but due to the partic-
ular connection between adaptation and retrieving knowledge, it is usually necessary to present the
adaptation process in conjunction with the retrieval process. Indeed, the reasoning process modeled
by Equation equation 1 is made up of two steps.

• given a threshold σ for the distance between the context variables of the source cases and
the target context, the retrieval process consists of identifying the source cases having a
context similar to the target context. The profile of the retrieval function is given in Equa-
tion equation 2.

Retrieve: Ctg 7−→ {∀Csr ∈ CB/Distance(Ctg,Csr) ≤ σ} = SCtg (2)

Where Distance(Ctg,Csr) – a metric that computes the distance between the context vari-
ables Ctg of the target case Ctg and the context variables Csr of source cases Csr.
No constraints are imposed on the type of distance to use since it permits handling the
context variables. For instance, the Minkowski metric can be used to calculate the context
distance in a CBR-based EMS since the context variables are real values.

• since the source contexts usually do not match the target context, it is required to define a
function to adapt the source actions to satisfy the requirements of the target context. The
profile of the adaptation function is defined by the Formula equation 3.

Adaptation: ∀Csr ≜ (Csr,Asr, Esr) ∈ SCtg ,

({(Csr,Asr, Esr)},Ctg) 7−→ Atg

(3)

Where SCtg
– the set of similar source cases as defined by equation equation 2.

Note that Equation equation 3 does not impose any constraints on the number of simi-
lar cases considered in the adaptation process, thus we are dealing with a compositional
adaptation (whose single case adaptation is a particular case), where solutions from several
source cases are combined to yield a target solution. Indeed, the experiment indicated that
retaining a single case often gives less accurate results Sizov et al. (2016). This is explained
by the fact that frequently only a part of the problem of the similar source case is relevant
for the target problem, which makes the task of adaptation complicated (if not impossible).
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Figure 1: Artificial potential field.
Figure 2: CBR attractive force

2.2 COLLISIONLESS PATH PLANNING

Robot path planning study focus on the path planning of an autonomous robot moving in an unknown
environment, i.e., guide the robot in its displacement from an initial position to a target position by
calculating the optimal but moreover the safest path, i.e., avoiding obstacles that can occur along the
path towards the target.

Several approaches were proposed to tackle this challenge, in particular, the artificial potential field
approach originally proposed in Khatib (1985) is extensively adopted in robot guidance. The ar-
tificial potential field approach can cope with the reality of the current environment of the robot
displacement by considering both the objectives to be reached and the obstacles to be avoided while
moving. The key idea of this approach is to consider the robot as a point evolving in a 2-dimensional
space (in the basic scenario) subject to the field influences of targets to reach and obstacles to avoid.
Consequently, the robot is subjected to two kinds of forces, including an attractive one Fat generated
by targets and a repulsive one Frp generated by obstacles to move the robot further away.

Whereas repulsive forces are disproportional to the distance between the robot and the obstacles,
i.e. they are strongest close to the obstacles and are less influential at distance, attractive forces are
proportional to the distance between the target and the robot. The combined (total) of all the forces
−→
F =

−→
Fat+

−→
Frp applied to the robot defines the movement direction of the robot and its speed whilst

avoiding collisions with obstacles. For the sake of simplification, the principle of this method for a
robot traveling in a 2-dimensions environment is depicted in Figure 1.

3 REASONING FROM SUCCESSFUL AND FAILED CASES

3.1 PROBLEM FORMALIZATION

The adaptation problem considering failed and successful cases can be formalized as follows. Given
the following observations:

• the case base CB is divided into two partitions of failed cases CB and successful cases
CB+. So,

CB = CB ∪ CB+

.

• by misuse of language, we refer to a target case as the elements of a target context for which
we are looking for a solution. The case structure is not completely defined as the elements
representing the actions and therefore, the effects are unknown.

Find a solution for a target case (thus under construction) is to infer, from source cases having similar
context, a set of target actions that best satisfy the target context, which leads to the definition of the
target effects, and thus to building an effective case containing the three elements: context, actions,
and effects.
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Similar source cases should be handled differently depending on whether they are failed (member
of CB ) or successful (member of CB+) and on their degree of similarity to the target case. The
method to be proposed should provide mechanisms to move towards the solutions of successful
similar source cases and away from failed similar source cases while taking into account that the
closer the source case to the target case the more influence its solution has on the target solution.

3.2 PRINCIPLE

The principle of our approach to considering failed cases in the adaptation process is inspired by
navigation algorithms originating from the literature on the programming of autonomous robots, in
particular, based on the artificial potential field presented in Section 2.2.

Before describing the details of our approach in the next section, to ensure the successful implemen-
tation of an artificial potential field-like concept in the context of this work, some assumptions are
formulated:

• while the labeling process falls outside the scope of this study, we assume that previous
experiences are already labeled as successful or failed cases. Furthermore, we suppose
that the CBR system is given a quality function Q which scores the efficacy of the actions
applied to the context. The highest scores are the best. This implicitly defines a threshold
value PEi

s for each effect feature Ei according to Equation equation 4.

∀Ci ∈ CB , Q : Ei 7−→ R

L(Ci) =

{
Ci+ if Q(Ei) ≥ PEi

s , ∀Ei ∈ E
Ci− otherwise.

(4)

With L – the labeling function, CB – the case base, Ei – an effect feature of case Ci.

• classical CBR methods retrieve a defined number of neighboring cases from the case base
CB regardless of an optimal number of similar ones regarding the target case. This KNN-
like approach poses some issues since the target cases do not necessarily have the same
number of similar neighbors, while some target cases should have more similar cases, oth-
ers less. Furthermore, the configuration where much more source cases with equal distance
from a target case than the predefined number, must be handled. In this work, we assume
the existence of a retrieval approach that adjusts the number of source cases similar to the
target case Ctr by dynamically defining a similarity threshold σCtr

for the context distance
between Ctr and the neighboring source cases. For instance, the work presented in Boul-
maiz et al. (2021a), provides a method to define this threshold by combining a statistical
approach and a genetic algorithm.

The key idea of the approach proposed in this work is to map the type of source cases available
in the case base, i.e., successful and failed cases, to the type of objects handled in the context of
robot moving, i.e., target and obstacles. Therefore, failed cases are assimilated into obstacles and
successful cases into targets. While cases Ci+ ∈ SCtg

with good performances should generate an
attractive force Fat that pulls the target solution towards them, the bad cases Ci− ∈ SCtg should
produce a repulsive force Frp that pushes away the solution from them.

The successful and failed source cases are considered to be sources for generating a potential field
representing the properties of the target solution. As in the robotic potential field method, the CBR
potential field is still composed of two fields. Regarding the attractive potential field, an attractive
force is produced from the target solution to the source solutions of the successful cases by the
configuration of the latter, which allows to pull the target solution towards the solutions of these
cases.

To illustrate this concept, let’s consider, for the sake of presentation, a system with domain knowl-
edge containing only 2 action variables, the attractive potential field generated by any successful
case looks like Figure 2, where at each point of the context space representing the target context,
the force vectors are directed towards the successful source case. Concerning the repulsive potential
field, a pushback force is generated by the configuration of the failed case towards the target solution,
which allows to pull the target solution away from the solutions of these cases. Figure 3 depicts the
CBR repulsive force in a similar configuration to the example illustrating the CBR attractive force.
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Figure 4: CBR total potential force

Ultimately, the configuration of the target solution, i.e., the position of the target solution in the
space of solutions (actions), is determined by summing all repulsive and attractive forces generated
by neighboring failed and successful cases respectively. For the simple case of only two neighbors,
a successful case and a failed case, the total potential field has the shape shown in Figure 4.

3.3 LOCAL PREDICTION OF THE TARGET SOLUTION

Although we are inspired by the potential artificial field method, its application in the context of this
work as applied in the robotics context does not permit determining the solution for many reasons:

• the potential total force in the robotic context depends exclusively on the distance between
the goal/obstacles and the robot. In the CBR context, the magnitude of the attraction and
repulsion forces are not dependent only on the distance between the target context and
the neighboring source contexts but also on the performance of the neighboring source
contexts.

• within the robotics context, unlike the attractive force, the magnitude of the repulsive force
is at its highest value close to the obstacle and decreases proportionally when moving away
from it. Within the context of CBR applications, the magnitude of the two forces should be
proportional to the performance of the source solutions but disproportional to the distance
between the source contexts and the target one.

• there is usually only one goal to reach in robotic applications, but in the case of a multi-goal
environment, one looks for a path that goes through all these goals in sequential order by
optimizing some criteria. for CBR systems, the aim is to combine the knowledge of all the
neighboring source cases to infer the target solution.

• while the purpose of the robotic potential artificial field is to find the safe path to the goal,
its purpose in the CBR application is to acquire new knowledge that guides the adapta-
tion process in the construction of the target solution, i.e., to orient the reasoning process
towards the most useful solutions (closest and best-performing cases) and away from the
worst cases (farthest away or bad performance).

It is, therefore, necessary to adapt the approach of the artificial potential field to take into consid-
eration the specificities of the CBR adaptation process. To do so, our approach defines the target
solution (actions) Atg by the vectorial sum of all attractive forces (FCi+

at ,∀Ci+ ∈ SCtg ) and all
repulsive forces (FCi−

rp ,∀Ci− ∈ SCtg
) as described in equation equation 5.

∀Ci+, Ci− ∈ SCtg ,∑
Ci

FCi
−−−−→
AtgAi =

∑
Ci+

FCi+
at

−−−−−−→
AtgACi+ +

∑
Ci−

FCi−
rp

−−−−−−→
AtgACi− = 0 (5)

As already mentioned earlier, the magnitude of the repulsion and attraction forces depends both on
the distance of the target context from the context of the similar source case and on the performance
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of the latter. From Equation equation 5, the metric FCi defines the magnitude and direction of the
associated force to the case Ci. We propose in Equation equation 6 a formula to estimate its value.

∀Ci ∈ SCtg ,

FCi =


(
1− DC(Ctg,Ci)

σCtg

)
× (Qi − Ps) if Qi ̸= Ps

1− DC(Ctg,Ci)
σCtg

else

(6)

With σCtg – the context distance threshold, Qi – the performance of the case Ci, Ps – the perfor-
mance threshold, DC(Ctg, Ci) – the context distance between Ctg and its neighbor Ci.

From Equation equation 6, one can observe that whatever the type of force, its magnitude progres-
sively decreases at the expense of an increasing context distance until it becomes null when the
context distance equals the similarity threshold σCtg

. Besides defining the magnitude of the force,
the operand Qi −Ps specifies the type of the force. When Qi ≥ Ps, then FCi ≥ 0, and the case Ci

generates an attractive force else, it should be a repulsive force.

In this manner, the actions to be proposed Atg have to satisfy:

Atg =
1∑

Ci
FCi

∑
Ci

FCiAi , ∀Ci ∈ SCtg (7)

Where SCtg
– the set of neighboring cases to the target case Ctg .

4 EVALUATION

The objective of the evaluation is twofold, i) to study the potential impact of considering both failed
and successful cases on improving the performance of the CBR system. ii) to assess the performance
of the artificial potential field approach, this is referred to as CBR-APF in the following, compared
to other adaptation approaches. To do so, several baselines are considered:

1. the approach proposed in Boulmaiz et al. (2022), denoted CBR-S in the following, exploits
failed and successful cases but with a null adaptation process as the latter consists in making
a vote among the similar cases solutions to select the solution with the best performance
(maximizes the quality function) by applying it directly to the target case. pour tester la fait
davoir plusieurs solution sources

2. a standard barycentric approach that combines solutions from the set of successful and
failed similar source cases, noted CBR-B hereafter. tester le benefice des forces artificiaelle

3. a modified variant denoted CBR-P of our approach is tested, it considers only positive
cases and thus uses only attractive forces. The objective is to illustrate the advantage of
considering both negative and positive cases w.r.t only positive cases.

4. the approach proposed in Patterson et al. (2002) is used as a further baseline. This approach
referred to as CBR-R, is based on a KNN approach to select similar source cases from which
a generalized case is generated. Similar cases are used also to train a linear regression
model, which is applied to the generalized case to predict the target case solution.

The performances of all approaches are compared to the ones of the actions recorded in the case
base (actions effectively performed by the user without assistance, that are denoted CBR-U in the
following) according to three measures: performance enhancement rate (PER), approach efficiency
rate (APR), and effect quality rate (EQR). More details on the semantics and computation of these
metrics are given in Appendix B.6.

4.1 EXPERIMENTAL SETUP

As mentioned in Section 2, the approach is implemented in an EMS whose objective is to make
the user aware of the impact of his actions on the energy use in a building. Concretely, the EMS
proposes to the occupant a series of actions to improve the comfort while consuming less energy.
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More precisely, given the weather forecast of a future day, the EMS looks to identify in its memory
the past days with the same context to suggest the best action schedule to enhance the user’s comfort
for less energy consumption.

To evaluate our approach, we perform an initial experiment using real data collected from an uni-
versity office (see Section B.2 for further information). The generating process of the case base is
detailed in Section B.4.1. Unfortunately, after the pre-processing step described in Section B.3, the
size of the case base retained is relatively small (98 cases). To perform a large-scale validation, we
conduct a second experiment using semi-synthetic data generated from real data used in the initial
experiment. More details on the semi-synthetic data generation process can be found in Section
B.4.2.However, in the following, Due to space constraints, we have chosen to discuss only the re-
sults of the large-scale validation. Other results for the case base generated exclusively from real
data can be found in Section D.

4.2 RESULTS AND ANALYSE

Whatever the adaptation process approach applied in a CBR system, its performance depends par-
tially on the retrieval process. Analyze the latter goes beyond the scope of the present paper, we
detail in Appendix C the procedure applied to extracting similar source cases. It follows that each
target case (test case) has at least one similar source case.

Table 1 summarizes the results of the 5-fold cross-validation of our approach against the four base-
lines considered. Some important findings from this experiment are:

• while the value of the EQR metric (see Appendix 4 for the exact definition) corresponds to
the value of APR for the CBR-S, CBR-B, and CBR-APF approaches, the APR value is less
than that of EQR for the CBR-P and CBR-R approaches, this is due to the ability of the
first three approaches to computing a solution even with a similar set of cases consisting
exclusively of failed cases.

• our CBR-APF approach is clearly better in performance than all other baselines with also
better RPA and EQR, regardless of the test set.

• the number of similar source cases has a significant influence on the quality of the adapta-
tion process, a compositional adaptation (which uses several similar source cases) system-
atically gives a better PER, as illustrated by the comparison between PERs of CBR-APF
which is a compositional approach and CBR-S which uses a single similar case.

• attraction and repulsion forces have an important impact on the results of the adaptation
process. Given the same number of similar cases, by using these forces, our CBR-APF
approach outperforms the CBR-B baseline, which does not use them. CBR-APF is 1.64%
times more performing than CBR-B regarding the improvement of the cases performances
(global PER = 33.49% versus 20.36%) and 1.61% times more efficient according to the
number of cases for which it manages to find a solution (CBR-APF improves the perfor-
mance of the solutions proposed by the user without assistance for 99.98% of cases against
61.87% for CBR-B).

• using failed cases in case-based reasoning significantly influences the performance of a
CBR system. By exploiting both successful and failed cases, the system improves the re-
sults of the reasoning process. Comparing the performance of the CBR-APF approach with
that of the CBR-P and CBR-R approaches ( both do not use failed cases in their reason-
ing), the EQR results (ratio of the number of cases whose performance is improved to the
number of cases whose solutions are found with either improved or degraded performance)
show that the CBR-APF approach outperforms the other baselines. Our CBR-APF ap-
proach is more than three times more efficient than CBR-R and more than 1.5 times more
than CBR-P in improving the performance of test cases.

The validation results on a smaller real dataset are quite similar (see Appendix 5). This strengthens
the initial hypothesis motivating this work, which is using failed cases jointly with successful cases
enhances the adaptation process.
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Table 1: Summery of results on synthetic dataset

APPROACH
TEST SET S1 S2 S3 S4 S5 GLOBAL

METRICS METRICS METRICS METRICS METRICS METRICS
PER (%) APR(%) EQR(%) PER APR EQR PER APR EQR PER APR EQR PER APR EQR PER APR EQR

CBR− S 16.73 59.13 59.13 17.85 48.57 48.57 19.53 60.12 60.12 20.48 56.07 56.07 18.79 64.48 64.48 18.68 57.67 57.67
CBR−B 18.27 57.51 57.51 15.36 63.90 63.90 22.85 59.69 59.69 24.23 65.52 65.52 21.10 662.71 62.71 20.36 61.87 61.87
CBR− P 22.62 42.26 57.10 18.54 48.85 63.71 20.14 50.21 60.10 22.48 52.92 70.19 23.47 39.86 60.09 21.45 46;82 62,24
CBR−R -2.56 32.18 49.75 9.12 29.89 51.19 14.71 43.07 64.24 17.45 39.52 57.74 12.04 41.26 62.84 10.15 37.18 57.15
CBR−APF 34.68 100 100 28.85 99.76 99.76 33.91 100 100 31.27 100 100 38.73 99.88 99.88 33.49 99.92 99.92

5 CONCLUSION

This paper proposed a new approach to the adaptation process in the CBR paradigm by looking
at both failed and successful source cases instead of the traditional practice of considering only
successful source case. We found inspiration in the studies on planning safe paths for a robot moving
in an unknown environment. The concept is that both successful and failed cases generate attraction
and repulsion forces respectively on a likely barycentric solution to drive the reasoning towards the
best performing solutions and away from the failed ones. The experimentation of this approach
in the context of an energy management system showed a significant improvement in the system
performance by considering both successful cases and failed ones.

Compared to the only existing work Lieber & Nauer (2021) based on the same logic as ours (see
Section 1), the advantages of our approach are as follows:

• the approach we have proposed does not impose a Boolean notation to represent the compo-
nents of a case, which is the case in Lieber & Nauer (2021) that requires the transformation
of the problem and solution attributes into a Boolean representation.

• our approach proposes a fully domain-independent adaptation approach that does not re-
quire any expert/user intervention, while the approach presented in Lieber & Nauer (2021)
is a domain-independent task where an expert/user is solicited to establish adaptation rules
between each pair of source cases. Indeed, the adaptation process adopted in Lieber &
Nauer (2021) is based on the well-known difference between cases approach that consists
in establishing adaptation rules by studying the influence of the differences between the
problems of two source cases on the difference between their solutions.

Unfortunately, an obvious negative criticism that can be formulated against our approach is it does
not guarantee to find a successful solution when all similar source cases are failed cases. Indeed,
in this particular case, our approach should propose a solution (actions plan) that is certainly far
from the failed solutions of similar source cases but this is not sufficient to grant that the proposed
solution is successful. However, despite if it is a failed solution, this is interesting from a knowledge
acquisition perspective since this failed case might be used in the future to compute solutions for
other target cases.

In this work we have developed and evaluated an approach considering the whole set of success-
ful and failed cases, it would be interesting to perform a deeper evaluation taking into account the
number of neighboring successful and failed cases considering only the n cases with the best perfor-
mances and the m cases with the worst performances. Another line of future research for this work
would be to explore the possible impact of a failed case on the domain ontology (if any). It could
be useful to suggest new necessary conditions to add to the domain ontology that would avoid the
reappearance of such a negative case in the future.
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Karin Schakib-Ekbatan, Fatma Zehra Çakıcı, Marcel Schweiker, and Andreas Wagner. Does the
occupant behavior match the energy concept of the building? – analysis of a german naturally
ventilated office building. Building and Environment, 84:142–150, 2015. ISSN 0360-1323.
doi: https://doi.org/10.1016/j.buildenv.2014.10.018. URL https://www.sciencedirect.
com/science/article/pii/S0360132314003394.
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A RELATED WORK

A.1 INDEPENDENT DOMAIN ADAPTATION APPROACHES

The authors in Mitra & Basak (2005) reviewed existing adaptation approaches and classified them
according to three criteria: the need for domain knowledge in the specification of adaptation rules,
generating techniques for adaptation methods, and adaptation knowledge type.

A classical design challenge for the case-based reasoning paradigm is to develop approaches inde-
pendently as much as possible from the application domain to acquire the relevant knowledge for
the adaptation process. The adaptation process is so difficult that most CBR systems are developed
to leave it to domain experts. Unfortunately, manual adaption rule generation needs deep domain
knowledge, making this process a difficult, costly, and inaccurate task in many domains. To tackle
this issue, ”lightweight” approaches have been elaborated to generate adaptation knowledge with
minimal or no expert intervention.
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A widespread approach to generating adaptation rules is the application of machine learning tech-
niques. The authors in Patterson et al. (2002) describe how to build adaptation rules by applying
a linear regression model to the differences between the similar source cases to the target case.
The method presented in Craw et al. (2006) proposes to use decision trees for acquiring adaptation
knowledge. An approach consisting in splitting the case base into a small set of reference cases used
to extract cases to produce adaptation rules from is suggested in Craw et al. (2001). In the study
Policastro et al. (2008), a two-component algorithm is developed to automatically perform the adap-
tation process. Estimators based on Multi Layer Perception (MLP) neural network, M5 regression
tree learner, and Support Vector Machine (SVM) technique are applied to produce a data set used
by the combiner to generate adaptation rules.

Alternative approaches based on data mining techniques have been introduced to minimize the in-
tervention of an expert in the adaptation rule elaboration process through an interactive process
between the expert and the CBR system, as presented in Badra et al. (2009); Cordier et al..

The foundation of a particularly rich stream of research on domain-independent adaptation issue is
based on the case difference heuristic approach first introduced in Hanney & Keane (1997). The
rationale of this approach is to compare two source cases by attributing the differences between
the solutions of the two cases to the differences in their problems. This generates an adaptation rule
applicable to a source case having the same differences with the problem of a target case by adjusting
the solution of the source case according to the differences observed during the generation of the
adaptation rule to build the solution of the target case. The authors in Jalali & Leake (2017) combine
the case difference heuristic approach and a linear regression model to acquire adaptation knowledge
for systems described by non-numerical features. The variant reported in McSherry (1998) generates
an adaptation rule using three source cases instead of a single source case. The principle of the
differential adaptation presented Fuchs et al. (2000) consists of evaluating the variations between
the descriptors (features) of the similar source case and the target case and their impact on the
variation of the solution descriptors by defining a set of similarity and dissimilarity rules.

A.2 REASONING FROM FAILED AND SUCCESSFUL CASES

To our knowledge, the only study investigating so far this concept was reported in Lieber & Nauer
(2021), where the authors proposed a three-phase approach. Firstly, an approach is described to
transform a description of a case originally encoded by non-Boolean features into a Boolean encod-
ing. Secondly, the generation of adaptation rules by applying the case difference heuristic approach
Hanney & Keane (1996) between positive cases. The choice of the adaptation rule to apply is
performed using symbolic data mining algorithms, namely the frequent closed set approach (FCI).
Lastly, the use of only positive cases could generate too general adaptation rules whose application
is liable to yield erroneous solutions, to overcome this issue, the negative (failed) cases are used to
filter the too general adaptation rules by applying version space Mitchell (1982) and formal concept
analysis Kuznetsov (2001) techniques.

Although the evaluation of this approach gives promising results, it suffers from some weaknesses:

• the formalism of the Boolean representation imposes to handle cases where the problem
and its solution are represented by Boolean attributes or by attributes that are readily trans-
formable into Boolean ones (for instance nominal data).

• learning adaptation knowledge is a domain-dependent task since it consists in comparing
cases pairwise. Such an expert/user-based comparison has some drawbacks: (1) compari-
son may not be possible in complex applications characterized by many dependent features,
such as EMS, (2) it is a time-consuming process requiring a high level of expertise, (3) it
requires the availability of an expert every time the case base is updated with new case
knowledge to update the adaptation rules.

B CASE STUDY: ENERGY MANAGEMENT IN BUILDING

This section provides details on the process of generating the case base used for evaluating our
proposals.
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B.1 MOTIVATION

Energy is a major economic and strategic issue for modern societies. Indeed, over the last few
decades, the decline in natural energy resources (oil and gas) is coupled with a significant rise in
consumption of energy and associated CO2 emissions as a result of population growth and increasing
comfort requirements of people. Given that buildings consume nearly 40% of primary energy in the
European Union Rocha et al. (2016) and China Agency (2015), representing for the latter a growth
of 37% between 2000 and 2012, and if this trend persists, it could grow by a further 70% by 2050,
the reduction of energy consumption in buildings becomes a necessity.

Roughly speaking, building energy consumption can be regulated by two strategies:

• building material and appliance technology development strategy: This strategy includes
approaches focusing on physical enhancements aimed at optimizing the performance
of building envelopes Moga & Moga (2015) and appliances consuming energy Yun &
Steemers (2011), such as heating, ventilation, and air conditioning systems.

• occupant behavior analysis-based strategy Pisello & Asdrubali (2014): Based on the finding
that occupants form an integral part of the building energy behavior cycle Schakib-Ekbatan
et al. (2015), it is necessary to analyze the dynamics of occupants’ interactions with build-
ing systems to forecast energy use. The objective of this strategy is to give occupants an
active role in reducing energy use and improving their comfort by providing them with en-
ergy information that motivates them to modify their decisions and behaviors in a greener
direction.

.

Unlike the first strategy which is costly to perform physical retrofits, the second strategy is a promis-
ing alternative since it can be implemented, even in buildings already built, at zero cost by intel-
ligently guiding the occupant’s actions. Furthermore, the feeling of taking control of the factors
influencing comfort yields a significant improvement in energy savings while avoiding the recog-
nized discontent of occupants dismissed from the control. This highlights that a successful energy
management strategy is closely tied to the interaction between the occupant and the building. Early
studies D’Oca & Hong (2014); Delzendeh et al. (2017), conclude that basic actions, including win-
dows and doors opening/closing, would reduce energy consumption. Nevertheless, the expected
comfort may not be reached by such basic actions under extreme climatic conditions. To address this
issue, the authors in Langevin et al. (2014) observed that supplementary heating/ cooling systems
could improve the comfort of occupants and, therefore, aid in the energy management of buildings.
Yet, few studies have been conducted to investigate how to include all of these occupant actions to
achieve energy saving in buildings while maximizing occupant comfort.

Motivated by the above discussion, the aim is to provide a user-centered system by proposing an ac-
tion plan to achieve maximum thermal and air quality satisfaction while expending minimal energy.

B.2 ENERGY DATASET

The evaluation is performed using real data collected from a workspace in a French university build-
ing. Numerous sensors are deployed in the workspace to collect data on the state of the indoor
environment. We use a metheological service provider to collect data on the outdoor environment
and the weather forecast. The set of data is represented by variables modeling the measured phe-
nomena. Table 2 classifies the variables into one of the three components of a case according to the
case structure adopted in Section 2.1.1.

Sensors generate data in a stream form at different time intervals, this experiment adopts an hourly
granularity, and therefore the data streams are sampled each hour. The value considered for each
feature at a given hour is the average data flow received during that hour, except for the two features
window opening and door opening, where the values represent the fraction of the hour during which
the window/door is fully opened. For instance, Ed=0.75 for the kth hour corresponds to completely
opening the door for 45 minutes (75% of the k hour).
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Table 2: Variables used in the case study
Type Variable
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B.3 PREPROCESSING

Like any data-driven approach, the data preprocessing stage is crucial to enhance the performance
of the learning algorithms for both the retrieval and adaptation stages. Three types of preprocessing
are applied to the database: date cleaning, data normalization and data filtering.

B.3.1 DATA CLEANING

Data acquisition from sensors installed in the office could induce errors in the collected data, for
instance, missing values or outliers. So it is necessary to deal with these errors to guarantee a correct
reasoning process. We use the AvgKNN class of the Python Outlier Detection framework (PyOD)
Zhao et al. (2019) to detect outliers which are replaced by the average of the previous three nearest
neighbors (based on the acquisition date) and the next three nearest neighbors.

B.3.2 FEATURES NORMALIZATION

Since the features presented in Table 2 describe different physical phenomena that could have a
large range of values, features’ values need to be normalized to eliminate the features’ magnitudes
to balance their contributions and compare their influences. We use MinMax normalization to scale
features’ values between 0 and 1.

B.3.3 HOURS FILTERING

As already mentioned, for this experiment, we study an office at the University of Grenoble, in
France, where two scholars work between 8:00 am and 8:00 pm on working days. Consequently, we
filter out hours when no one is at the office, i.e., weekends, and public holidays.This is motivated by
the absence of actions during these time slots.

However, during weekdays, even if there is no one in the office during the night hours between
9:00 pm and 7:00 am (there are no actions), we consider that night hours in the reasoning process
to account for the inertia of the building, i.e., the capacity of the physical envelope of the building
to dynamically store energy. This phenomenon induces a time shift and smoothing effect on the
various changes in the building’s interior environment, avoiding sudden variations in temperature or
air quality.

B.4 CASE BASE GENERATION AND TESTBED

Collected data from the different sensors and meteorological information are stored in a database
starting in April 2015 and ending in October 2016. So, data are sampled hourly, a day is described by
a 24-value vector for each variable and represents one case in the case base. After the preprocessing
phase, a case base CB contains 98 cases (days) is considered for the experiment.

To validate our approach the case base CB is split in two disjoint sets: CB = CBL ∪ CBT, the learning
set CBL which represents the source cases, and the test set CBT which represents the target cases for
which a solution is sought. However, to compensate for the problem of the limited number of real
data and to give more reliability to the validation process, we have decided to use two datasets with
different approaches for sampling the test and training data. The two datasets and the associated
splitting process are described as follows:
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B.4.1 REAL DATASET

In real dataset experiment, we exclusively use the real data corresponding to the case study described
previously.

A common strategy used in the literature for splitting the data is the single holdout method, by
randomly selecting a subset of the validation set (the case base) to be used as a test set, which often
has about 10% to 30% of the available cases, the remaining cases forming the training set, which
therefore includes about 90% to 70% of the cases. The holdout method is recommended when
the validation data size is large enough to assure a valid test, unfortunately, in our experimentation
the number of cases is limited, so we use the ”leave-one-out cross-validation” (LOOCV) method,
which is adopted for algorithms evaluation when only small number of instances are available Wong
(2015).

The principle of the LOOCV validation is that one single case is considered as the test set (|CBT| =
1), and all the other cases of the case base CB are considered as the learning set (|CBL| = 97). This
process is reiterated for each of the cases in the case base CB. In this way, the number of test cases
is much larger than the traditional holdout approach. The results of this experiment are summarized
in Appendix D.

B.4.2 SEMI-SYNTHETIC DATASET

To avoid deficiencies in available dataset, we are developing a tool to generate semi-synthetic data
based on the real data already collected in the office. The semi-structured data generation consists
in extending the real data set collected in the office. The principle of the generation approach is to
synthesize the subset of action variables and to use real values for the context variables to generate
effect variables. Precisely, the generating process includes three steps which are summarized as
follows:

• context variables are generated from meteorological data provided by an online weather
data provider provider for the period 01/01/1979 – 31/08/2022 for a total size of 15,948
days (|CB| = 15, 948). Positive cases represent only 34.45% of the case base, i.e., the
occupant failed to choose the optimal actions to achieve his comfort in 65% of the cases
(see Table 3).

• to predict door and window opening/closing actions from the context variables of the
15,948 cases, we developed a dynamic Bayesian network-based tool that models occu-
pants’ actions by probabilistic cause-effect relations derived from expert knowledge as well
as by conditional probabilities inferred from observations (real data collected in the office).

• to simulate the indoor conditions of the office (the effect variables) generated following
the application of the actions to the corresponding contexts, a physical knowledge model
of the office is elaborated. It consists of a set of mathematical equations that describe the
energetic behavior and the air quality in the office.

For the validation process, we perform a 5-fold cross-validation where the original case base is
initially randomly split into five equal-sized subsets: S1, 21, S3, S4, and S5. However, as the case
base is moderately imbalanced with a ratio of 0.37 of positive cases to negative cases (see statistics
in Table 3), the process of splitting the case base could induce a skewed distribution. To deal with
this issue, we proceed as follows:

• the case base CB is split into two sets according to the performance of the cases, a set of
positive cases CB+ and a set of negative cases CB , i.e., CB = CB+ ∪ CB .

• each of the sets CB+ and CB is randomly split in 5 subsets of equal size: S1+, S2+,
S3+, S4+, S5+ and S1 , S2 , S3 , S4 , S5 respectively.

• each of the five final sets S1, S2 S3, S4, and S5 involved in the 5-fold cross-validation is
formed by merging two sets taken randomly from sets {S1+, S2+, S3+, S4+, S5+} and
{S1 , S2 , S3 , S4 , S5 } respectively. Table 3 provides more details on the distribution of
positive and negative cases among the five sets used in the cross-validation.

Next, a single set is selected as a test set CBT (target cases) while the remaining four sets are used
as a learning set CBL (source cases). The cross-validation procedure is performed five times, each
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Table 3: Synthetic dataset Statistics
DATASET C+ CASES C- CASES RATIO TOTAL CASES THRESHOLD σ RECALL PRECISION F1-MEASURE
S1 861 2,329 0.37% 3,190 1.13 77.82 69.94 73.67
S2 861 2,329 0.37% 3,190 1.16 67.23 63.75 65.44
S3 861 2,329 0.37% 3,190 1.13 72.80 70.17 71.46
S4 861 2,329 0.37% 3,190 1.17 79.06 68.10 73.17
S5 861 2,327 0.37% 3,188 1.15 63.96 76.90 69.83
CB 4,305 11,643 0.37% 15,948 - - - -

of the five sets being used once as a test set. The results of the metrics adopted to evaluate the
performance are averaged to provide a final estimate.

B.5 QUALITY FUNCTION

In the EMS context, the performance function is related to the estimation of the user’s satisfaction
with the effects obtained as a result of the application of the actions proposed by the system. In
this experiment, we consider two effect variables (see Table 2), indoor temperature and indoor CO2

concentration.

The following values are established by experts in widely adopted standards (ASHRAE (1992) for
the temperature comfort and for Standardization (2008) for the CO2 concentration) in the residen-
tial and tertiary residence sector. The indoor temperature is considered good between the values
21°c and 23°c, it is acceptable within the intervals ]23, 26] and [18, 21[, and it is bad outside these
intervals. These values allow us to model the thermal dissatisfaction by the performance function
presented in equation 8. The latter determine the temperature performance threshold Ps(T ) that is
fixed to 1, i.e., the temperature performance is considered bad when QT (t) > 1.

Concerning the CO2 concentration, the air quality is evaluated as good when the concentration of
CO2 is below 500 ppm, as acceptable within the interval ]500, 1500], and otherwise it is bad. From
these values, we can establish the Function equation 9 which models the performance function for
CO2 concentration. From these values, one defines the CO2 performance threshold Ps(C) of 1
beyond which the performance in terms of CO2 concentration is considered bad.

Qh
T (t) =


0 if t ∈ [21, 23]

t−23
26−23 if t > 23

21−t
21−18 if t < 21

(8)

Qh
C(c) =

{
0 if c ≤ 500

c−500
1500−500 if c > 500

(9)

Qh =
Qh

T (t) +Qh
C(c)

2
(10)

Global system performance at the h-hour Qh is the average of the two performances Qh
T and Qh

C
as described in Equation equation 10. A case is considered successful if the user is satisfied with
both thermal comfort and air quality, otherwise, it is a failed case. This is formalized in Equation
equation 11. Naturally, these thresholds are scalable and can be refined later to meet the user’s
comfort requirements.

Columns 2 and 3 of Table 3, give statistics concerning the number of successful cases and failed
cases respectively for each test set. It can be noted from Table 4, which represents some statistics
on the performance of the source cases in the training set, that the source solutions are performing
well regarding air quality since the performance of these solutions is below the CO2 performance
threshold (Ps(C) = 1).

∀Ci ∈ CB,

L(Ci) =

{
Ci+ if Qh

T (t) ≤ Ps(T ) ∧Qh
C(c) ≤ Ps(C),∀h ∈ [0, 23]

Ci− otherwise.
(11)
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Table 4: Dissatisfaction Statistics
DISSATISFACTION MAX. VALUE MIN. VALUE
Qs(T ) 2.3306 0.0098
Qs(C) 0.0624 0.0

With L – the labeling function, CB - the case base, Ps(T ) – the temperature threshold, Ps(C) – the
CO2 threshold.

A physical model Pal et al. (2018) of the workspace is used to simulate the effects of the actions
proposed to the user to compare them to the actions effectively performed by the user. However, for
the sake of consistency, the effects of the latter are also simulated by the physical model.

B.6 PERFORMANCE METRICS

We use the following metrics:

• performance enhancement rate (PER): The efficiency of the different baselines approaches
(see Section 4) is evaluated by comparing, for each test case Ci, the average of the thermal
performances Q∗

T , the air quality performances Q∗
C , and the global performance Q∗ of

the proposed actions to the corresponding values Qr
T , Qr

C , and Qr of the actions already
recorded in the case base. The performance enhancement HCi

related to the test case Ci,
if any, is given by the equation 12. The global performance improvement of a baseline
approach is calculated by averaging the performance improvements of all test cases.

PERCi =
Q∗ −Qr

Qr
(12)

• approach efficiency rate (APR): Global efficiency of a baseline approach is defined as the
average of the ratio of the number of test cases whose performance is improved by applying
the actions recommended by this approach to the total number of test cases.

APR =
Z+

Z
(13)

With Z = |CBT | – the set of test cases, Z+ = {Ci ∈ CBT / PERCi > 0}
• effects quality rate (EQR): This measure is the average of the ratio between the number

of test cases whose performance is improved by applying the actions recommended by
the approach and the total number of the test cases for which the approach successfully
proposed a solution (improving or degrading performance compared to the user’s actions).

B.7 IMPLEMENTATION

• Software environment: All steps of the experimental process (the physical model of the
office used for the generation of the database, the similar case retrieval process, and the
adaptation process) are implemented using the Python 3.9 language running on Windows
10 Professional.

• Computation material: We have run both the dataset generation and the evaluation tests on
a laptop equipped with an Intel® Core™ i7-8559U CPU (having 2.70GHz and 2.60 GHz
clock speed) and 16 GB of RAM.

C SIMILAR CASES RETRIEVAL

We use the approach given in Boulmaiz et al. (2021b) to estimate the similarity and define the similar
source cases in the training set to each target case in the test set. The similarity consists in defining
a threshold context distance σ beyond which the cases are not considered similar, in this case, the
similar cases are all the source cases (learning cases) having a context distance to the target case
(test case) below the threshold σ.

The authors propose a two-step approach to identify source cases similar to the target problem:
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Table 5: Genetic algorithm parameters
PARAMETER VALUE
Population size 50
Chromosome size 12
Mutation rate 0.01
Crossover rate 0.8
Selection method Roulette wheel
Generations 500

1. a combined method of a genetic algorithm and a clustering algorithm is used to weight the
variables.
The weighting process starts by initializing a vector with random values between 0 and
1 whose sum is 1, corresponding to context and actions variables’ weights. The vector
length corresponds to the number of context and action variables to be weighted (12). The
context and action variables thus weighted are used to cluster the cases in the case base
using Kmeans based on a context-action Euclidean distance as shown in Equation 3.
An optimization approach based on a genetic algorithm is used to find the optimal values of
the weights. The optimization process (the fitness function) consists in minimizing both the
average of the context-action distance and the average of the Euclidean distance between
the effect variables of the cases in each cluster. Table 5 gives the parameters of the genetic
algorithm.
For each test set, the genetic algorithm is applied to the validation set (the four other sets
of the k-fold cross validation, see Section B.4.2).

2. a statistical method based on F1-measure is applied to determine the threshold of the con-
text distance for which the source cases are considered similar to the target case. We rely on
the context distance to determine the source cases (from learning set) similar to the target
cases (from test set) using the context variables because the latter are the only data available
for the target case.
The objective is to learn the maximum context distance between the source cases (learning
set) for which two cases are considered similar. This distance is used as a threshold σ
to determine source cases similar to the target case (from the test set) by computing the
context distance between the latter and the source cases.
The rationale of this approach is to use the F1-measure to determine the context distance σ
between the cases in the learning set that maximizes both precision (proportion of selected
similar cases to the total number of selected cases) and recall (ratio of selected similar cases
to the total number of similar cases).
Columns 6, 7, 8, and 9 of Table 3 report the results for the threshold context distance related
to each test set as well as the corresponding recall, precision, and F1-score.

D FURTHER EXPERIMENTS: REAL DATASET

D.1 SIMILAR CASES RETRIEVAL

Recall that the real dataset validation process uses the LOOCV method (see Section B.4.1) where
each case in the case base is used as a test set (target case) and the rest of the cases (97 cases) are
used as a learning set (source cases). This is repeated such that each case is, in one iteration, the
test case. Applying the approach described in Section C to extract source cases similar to the test
case, generates as many context distance thresholds as the number of cases in the case base. This is
illustrated in Figure 5, which depicts the context distance threshold for each iteration corresponding
to a single test case. While the maximum threshold reaches the value of 1.208 for the test case
with index 84, the minimum threshold distance is obtained for the case of index 51 with the value
of 1.134. Figure 6 shows the F1-score, precision, and recall obtained for each threshold distance
associated with each test case. The best score for the F1-measure is obtained for the test case 54
(80.43%) with a precision of 79.72% and a recall of 81.15%. The worst score is 58.41% which is
recorded for test case 81 where the precision is 57.94% and the recall is 58.897%.
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Figure 5: Context distance threshold for real dataset.
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Figure 6: F1-measure, recall, and precision of each distance threshold for real datset evaluation.

Table 6 shows the evaluation results using the real dataset. The analysis of the results confirms the
findings found in the analysis of the validation process on the synthetic dataset

Table 6: Summery of results on real dataset

APPROACH
TEST SET S1

METRICS
PER (%) APR(%) EQR(%)

CBR− S 19.73 50.23 50.23
CBR−B 20.73 49.85 49.85
CBR− P 26.12 39.64 48.09
CBR−R 13.54 28.80 37.95
CBR−APF 30.23 100 100
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