
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

FROM LOW TO HIGH-VALUE DESIGNS: OFFLINE
OPTIMIZATION VIA GENERALIZED DIFFUSION

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper studies the black-box optimization task which aims to find the maxima
of a black-box function using only a static set of its observed input-output data.
This is often achieved via learning and optimizing a surrogate function using such
offline dataset. Alternatively, it can also be framed as an inverse modeling task
which maps a desired performance to potential input candidates that achieve it.
Both approaches are limited by the limited amount of offline data. To mitigate
this limitation, we introduce a new perspective which cast offline optimization as
a diffusion process mapping between an implicit distribution of low-value inputs
(i.e., offline data) and a superior distribution of high-value inputs (i.e., solution
candidates). Such diffusion process can be learned using low- and high-value
inputs sampled from synthetic functions that resemble the target function. These
synthetic functions are constructed as the mean posterior of multiple Gaussian
processes fitted with different parameterizations on the offline data, alleviating the
data bottleneck. Experimental results demonstrate that our approach consistently
outperforms previous methods, establishing a new state-of-the-art performance.

1 INTRODUCTION

Numerous engineering and science applications across various domains involve optimization tasks
over complex design spaces guided by running physical lab experiments or computer simula-
tions (Wang et al., 2023). For example, designing energy-efficient hardware accelerators (Ceze et al.,
2016; Bogdan et al., 2019; Kim et al., 2018) for emerging applications/domains requires expensive
cycle-accurate simulations to evaluate hardware configurations. Searching for nanoporous materials
with high adsorption property for absorbing CO2 from the air or storing hydrogen gas for hydrogen-
powered vehicles requires expensive lab experiments for evaluation (Deshwal et al., 2021; Gantzler
et al., 2023). Other examples include designing proteins (Gao et al., 2020), molecules (Deshwal &
Doppa, 2021), and drugs (Schneider et al., 2020) via running numerous experiments.

Black-Box Optimization. As these experiments are often costly, labor-intensive, and have expen-
sive overhead (e.g., the cost of procuring materials and equipment), it is impractical for domain
practitioners to adopt online optimization techniques, such as Bayesian optimization (BO) (Snoek
et al., 2012; 2015; Wang et al., 2018), which rely on running iterative experiments to find the best
design. A more realistic solution approach (Brookes et al., 2019; Kumar & Levine, 2020b) aims to
maximize a black-box experimental process via learning and optimizing a surrogate model using an
existing dataset of its input-output queries.

Challenges. The main problem with this paradigm is that the surrogate’s predictions can become
increasingly erroneous when the search moves away from the offline dataset, especially when the
surrogate model overfits on biased and/or sparse training data.

Prior Approaches. To mitigate this issue, most existing approaches have focused on advancing tech-
niques in (1) forward modeling that penalize high-value surrogate predictions at out-of-distribution
(OOD) inputs (Trabucco et al., 2021; Chen et al., 2024; Yuan et al., 2023), (2) inverse modeling
that find the most promising regions of (reliable) high-performing inputs (Kumar & Levine, 2020a;
Nguyen et al., 2023; Krishnamoorthy et al., 2022; 2023; Chemingui et al., 2024) to sidestep the
OOD issue of forward modeling, and (3) search policies that learn a direct plan to navigate from
low-value inputs to high-value inputs (Krishnamoorthy et al., 2022; Chemingui et al., 2024).
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Limitations. Despite their promising results, forward and inverse approaches depend on learning a
mapping (or inverse mapping) between input designs and their corresponding performance outputs
using offline data. As a result, their effectiveness is inherently limited by the availability of data.
Likewise, learning direct search policies also suffers from the same data bottleneck since these
methods still need to sample heuristic trajectories from the offline dataset to use as learning feedback.

Furthermore, information regarding regions with high-performing inputs is often not observable
from the offline data, especially in low-data scenarios which might further restrict the effectiveness
of the learned models/policies. To mitigate such data bottleneck, we propose to approach offline
optimization from a new perspective of distributional translation, as highlighted below.

New Perspective. The offline dataset is modeled as an implicit distribution of low-value designs,
and offline optimization is recast as learning a probabilistic transformation that translates it into a
(better) distribution of high-value inputs. Interestingly, although the feedback needed to learn this
transformation is absent in the offline dataset, it can be derived from a distribution of synthetic func-
tions that are similar to the (unknown) target function (up to a scale factor). As these functions can be
provably constructed across various output scales, alleviating the data bottleneck and consequently,
broaden the solution scope of offline optimization.

Technical Contributions. This is substantiated via the followings:

1. A diffusion-based framework for offline optimization which studies a direct parameterization
of the high-value input distribution in terms of the output of a multi-step surrogate-based gradient
ascent. This reveals a correspondence between offline optimization and a generalized diffusion
process (Ho et al., 2020) mapping between the (implicit) distribution of (low-value) offline input and
another (target) input distribution. The resulting diffusion process bypasses the explicit construction
of a surrogate model, allowing for external (surrogate-free) guiding information to be used for model
training, alleviating the data bottleneck of offline optimization (Section 3.1).

2. A practical pre-training and adaptation framework that (1) learns multiple Gaussian process pri-
ors (Williams & Rasmussen, 2006) over synthetic functions similar to the target function and (2)
samples low- and high-value inputs from their corresponding mean functions to construct and pre-
train our generalized diffusion model. The pre-trained diffusion model can be used to map from the
offline input distribution to a better distribution over inputs with higher performance (Section 3.2).

3. An extensive empirical evaluation on a variety of benchmark datasets (Trabucco et al., 2022)
establishing a new state-of-the-art performance, which significantly and consistently improves over
previous work. Our empirical evaluation also features a rich ablation studies examining in detail
the practical impact of different components of our framework on its performance, as well as its
sensitivity to several key hyperparameters (Section 4).

For clarity, we also provide a concise related work and background review on Gaussian pro-
cesses (Rasmussen & Williams, 2006) and diffusion models (Ho et al., 2020) in Sections 2 and 5.

2 PROBLEM DEFINITION AND BACKGROUND

We formally define the offline optimization task in Section 2.1 and provide concise background
review on Gaussian processes (Williams & Rasmussen, 2006) and diffusion models (Sohl-Dickstein
et al., 2015; Ho et al., 2020) in Sections 2.2 and 2.3, respectively.

2.1 PROBLEM DEFINITION

Offline optimization is formulated as the maximization of a black-box function g(x) using only an
offline dataset of observations D = {(xi, yi)}ni=1 which denote the past input-output queries ex-
tracted from g(x) in previous experiments. A direct approach to this problem is to learn a surrogate
g(x;ω∗) of g(x) via fitting its parameter ω∗ to the offline dataset,

ω∗ ≜ argmin
ω

L(ω) ≜ argmin
ω

n∑
i=1

ℓ
(
g(xi;ω), yi

)
, (1)
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where ω denotes a parameter candidate of the surrogate and ℓ(g(x;ω), y) denotes the prediction
loss of g(.;ω) on x if its oracle output is y. The (oracle) maxima of g(x) is then approximated via,

x∗ ≜ argmax
x

g(x;ω∗) . (2)

The main issue with this approach is that g(x;ω∗) often predicts erratically at out-of-distribution
(OOD) inputs. To mitigate this, numerous surrogate or search regularizers have been proposed
to either penalize the high-value surrogate prediction at OOD inputs (Trabucco et al., 2021; Chen
et al., 2024; Yuan et al., 2023) or find an inverse mapping from the desired output to potential
inputs (Krishnamoorthy et al., 2023; Nguyen et al., 2023), as further detailed in Section 5.

2.2 GAUSSIAN PROCESSES

A Gaussian process (GP) (Rasmussen & Williams, 2006) defines a probabilistic prior over a random
function g(x). It is parameterized by a mean function m(x) = 01 and a kernel function k(x,x′).
These functions induce a marginal Gaussian prior over the evaluations g = [g(x1) . . . g(xn)]

⊤ of
any finite subset of inputs {x1, . . . ,xn}. Let xτ be an unseen input whose corresponding output
gτ = g(xτ ) we wish to predict. The Gaussian prior over [g(x1) . . . g(xn) g(xτ )]

⊤ implies:

gτ ≜ g(xτ ) | g ∼ N
(
k⊤
τ K

−1g, k(xτ ,xτ )− k⊤
τ K

−1kτ

)
, (3)

where kτ = [k(xτ ,x1) . . . k(xτ ,xn)]
⊤ and K denotes the Gram matrix induced on {x1, . . . ,xn}

for which Kij = k(xi,xj). Assuming a Gaussian likelihood y ∼ N(g(x), σ2), it follows that

gτ ≜ g(xτ ) | y ∼ N
(
k⊤
τ (K + σ2I)−1y, k(xτ ,xτ )− k⊤

τ (K + σ2I)−1kτ

)
, (4)

which explicitly forms the predictive distribution of a Gaussian process. The defining parameter ϕ
of k(x,x′) is crucial to the predictive performance and needs to be optimized via minimizing:

ℓ(ϕ) =
1

2
log

∣∣∣Kϕ + σ2I
∣∣∣+ 1

2
y⊤

(
Kϕ + σ2I

)−1

y , (5)

where we now use the subscript ϕ to indicate that K is a function of ϕ. In the context of this paper,
we adopt the commonly used RBF kernel, k(x,x′) = σ2 exp(−0.5 · ∥x − x′∥2/ℓ2). Its kernel
parameters are ϕ = {σ, ℓ} where σ2 represents the signal variance, controlling the amplitude of the
function, ℓ is the unit length-scale, governing the smoothness of the function.

2.3 DENOISING DIFFUSION PROBABILISTIC MODEL (DDPM)

Denoising diffusion probabilistic model (DDPM) (Sohl-Dickstein et al., 2015; Ho et al., 2020) char-
acterizes (1) a forward diffusion process which map from an (implicit) data distribution to a isotropic
Gaussian distribution; and (2) a parameterized backward diffusion process that reverses the forward
process. In DDPM, the forward process keeps adding Gaussian noises to the input data until the dis-
tribution of the resulting noise-corrupted data converges to an isotropic Gaussian. This is achieved
via simulating the following Markov chain starting from a data point x0 ∼ qD(x),

q
(
x1,x2, . . . ,xT | x0

)
=

T∏
t=1

q
(
xt | xt−1

)
=

T∏
t=1

N
(
xt;

(
1− βt

)1/2
xt−1, βtI

)
, (6)

with transition kernel q(xt|xt−1) ≜ N(xt; (1−βt)
1/2xt−1, βtI), where βt > 0 is a small, manually

set constant. This implies q(xt | x0) = N(xt;x0 ·
√
α̃t, (1 − α̃t)I) where α̃t = (1 − β1) · (1 −

β2) . . . (1− βt) < 1. As such, when t→∞, q(xt | x0) = N(0, I). On the other hand, the reverse
process aims to map from the isotropic distribution back to the original (implicit) data distribution
via simulating another parameterized Markov chain,

pθ

(
x0, . . . ,xT−1 | xT

)
=

T∏
t=1

pθ

(
xt−1 | xt

)
=

T∏
t=1

N
(
xt−1;µθ(xt, t), βtI

)
, (7)

1We assume a zero mean function since the output can always be re-centered around 0.
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Figure 1: The overall workflow of L2HD: (1) multiple Gaussian process posteriors are fitted on the
offline data; (2) low- and high-value inputs of the resulting posterior mean functions were sampled
and used to pre-train our generalized diffusion model which can map between different two (im-
plicit) data distribution; and (3) the backward process of the pre-trained diffusion model is used on
the target (offline) data to find high-performing inputs for the (unknown) target function.

starting from the isotropic Gaussian noise xT ∼ N(0, I). The model is trained via maximizing a
variational lower-bound ELBO(θ) of log pθ(x0) of the induced data marginal likelihood,

ELBO
(
θ
)
∝

T∑
t=2

DKL

(
q
(
xt−1 | xt,x0

)
∥pθ

(
xt−1 | xt

))
+ Eq(x1|x0)

[
log pθ

(
x0 | x1

)]
, (8)

where the conditional backward transition q(xt−1 | xt,x0) = N(xt−1; µ̃(xt,x0), β̃tI) can be
derived in closed-form using Eq. 6. Its specific form is given via

µ̃
(
xt,x0

)
=

1√
1− βt

(
xt −

βt√
1− α̃t

· ϵt
)

and β̃t =

(
1− α̃t−1

1− α̃t

)
· βt (9)

where ϵt ∼ N(0, I). Following Eq. 9, we can likewise parameterize the mean function of the
backward transition model µθ(xt, t) ≜ (1 − βt)

−1/2 · (xt − βt · (1 − α̃t)
−1/2 · ϵθ(xt, t)). This

consequently allows a simplification of the maximization task in Eq. 8 as

θ ≜ argmin
θ

Ex0,ϵt,t

[∥∥∥ϵθ (α̃1/2
t · x0 +

(
1− α̃t

)1/2 · ϵt, t)− ϵt

∥∥∥2] , (10)

where x0 ∼ qD(x), ϵt ∼ N(0, I), and t ∼ [1, 2, . . . , T ]. Once trained, we can use the learned
backward process pθ to decode from an isotropic Gaussian noise pattern xT ∼ N(0, I) back to an
authentic data point x0 ∼ qD(x). Eq. 10 can also be generalized to include output information,

θ ≜ argmin
θ

E(x0,y),γ,ϵt,t

∥∥∥∥∥ϵθ (α̃1/2
t · x0 +

(
1− α̃t

)1/2 · ϵt, (1− γ) · y + γ · y∅, t
)
− ϵt

∥∥∥∥∥
2

(11)

where (x0, y) ∼ qD(x, y), γ ∼ Ber(κ) is a Bernoulli random variable – with bias κ ∈ (0, 1) – that
determines whether (on this instance) we condition on the actual label y or the default label y∅ = 0.
This is known as classifier-free diffusion guidance (Ho & Salimans, 2022).

3 OFFLINE OPTIMIZATION VIA DISTRIBUTIONAL TRANSLATION

This section presents a principled approach to learn a generalized diffusion process mapping from
the (implicit) distribution over offline data to a superior distribution over the high-value input
regimes. To achieve this, we parameterize such high-value input distribution as an affine trans-
formation of an isotropic multivariate Gaussian noise. The transformation is in turn parameterized
using the output of a multi-step surrogate-based gradient ascent. This reveals a generalized Brow-
nian bridge diffusion process that transforms the offline data into samples from a distribution over
high-value inputs (see Section 3.1). Learning this diffusion process therefore presents an alternative
to black-box optimization. This can be achieved via sampling low- and high-value inputs from syn-
thetic functions that resemble the target function. Such functions can be constructed as the posterior
means of multiple Gaussian processes fitted with different parameter initializations on the offline
data (see Section 3.2). See the overall workflow of our framework in Fig. 1.
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3.1 DISTRIBUTIONAL TRANSLATION VIA GENERALIZED DIFFUSION

First, we recall the conventional surrogate-based gradient ascent approach to offline optimization
using a (learnable) surrogate g(x;ω) (see Eq. 1),

xt = xt+1 + η · ∇xg
(
xt+1;ω

)
⇒ xt = xT + η ·

t+1∑
i=T

∇xg
(
xi;ω

)
, (12)

which maps from a (offline) low-value input xT to an input xt with higher output value according
to the surrogate g(xi;ω). Due to the distribution gap between the (implicit) offline data and the
oracle distribution of high-value inputs p(x̂0), xt may correspond to an out-of-distribution (OOD)
sample with respect to this distribution. This will result in poor offline optimization performance.
To elaborate, as the oracle is a GP-distributed function, its high-value input x̂0 obtained via

x̂0 = x̂T + η ·
1∑

i=T

∇x̂g
(
x̂i

)
is a random variable. Here, x̂T = xT (in the offline data) but x̂i and xi are different iterations
following (different) gradients from the oracle and surrogate, respectively.

I. Black-Box Optimization via Sampling from Brownian Bridge Diffusion. Our goal is to learn
and sample from the oracle’s high-value input distribution p(x̂0) to solve offline optimization. This
is however non-trivial since we do not know the oracle’s gradient at unseen input and simulating
this using the surrogate will cause a distributional gap. To compensate for this gap, we instead re-
parameterize p(x̂0) via viewing the random variable x̂0 − xT as a transformation of an isotropic
Gaussian noise ϵt with transformation parameters at · (xt − xT ) and bt as detailed below:

x̂0 − xT = at ·
(
xt − xT

)
+ bt · ϵt , (13)

where at, bt ∈ R and ϵt ∼ N(0, I) denote the isotropic multivariate Gaussian noise. This essen-
tially re-parameterizes p(x̂0) as an affine transformation of a Gaussian noise with parameters bt and
at · (xt − xT ) where xt is determined in Eq. 12. Such parameterized transformation of Gaussian
noise has often been used in flow-based models (Kobyzev et al., 2019) with various designs for the
transformation parameters. Please note that x̂0 ̸= x0 since their respective computation uses gra-
dients from the surrogate and oracle, which are different. As such, this does not over-constrain the
output of the surrogate-based gradient ascent in Eq. 12, which does not result in any contradictions.

Eq. 13 in turn surfaces a diffusion process whose transition can be learned to map between (implicit)
distributions of the offline input and the oracle’s high-value input in what follows. Choosing at =

1/ζt and bt = δ
1/2
t /ζt in Eq. 13,

x̂0 − xT =
1

ζt
·
(
xt − xT

)
+

1

ζt
·
√

δt · ϵt, (14)

where ζt, δt ∈ (0, 1). This inspires an alternate, more robust characterization of xt in which it is
re-parameterized as a random variable rather than a fixed quantity in Eq. 12,

xt ≜
(
1− ζt

)
· xT + ζt · x̂0 −

√
δt · ϵt , (15)

which can help bridge the distributional gap between x0 and x̂0, thus solving the offline optimization
task more robustly. To elaborate, Eq. 12 involves a surrogate which is learned to fit only the offline
data while Eq. 15 corresponds to a Brownian bridge diffusion process will be learned to map between
the distribution of offline data and the high-value input distribution of the oracle. Replacing the
former with the latter will help bridge the aforementioned distributional gap between x0 and x̂0.

To achieve this, we replace Eq. 12 with Eq. 15 above which in turn reduces to a Brownian bridge
diffusion model (BBDM) (Li et al., 2023) when we choose ζt = 1 − mt = 1 − t/T and δt =
2(mt − mt)

2. It can then be used to bypass the need to learn an explicit surrogate in Eq. 12 that
might drift away from the high-value input distribution. Instead, Eq. 15 now characterizes a diffusion
process mapping between the offline and high-value input distributions, which no longer requires
surrogate gradient to simulate xt. Learning the diffusion in Eq. 15 however requires sampling from
the high-value regime of the oracle which is not possible. But, fortunately, we can sample instead

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

from the high-value regimes of similar functions to the oracle to provide surrogates for the oracle’s
high-value regime. This is discussed in detail in Section 3.2.

II. Learning BBDM. Solving offline optimization is then equivalent to learning this BBDM and
then simulating samples from it. To learn this BBDM, we leverage its properties as detailed in Ap-
pendix C.2 to establish a Gaussian form for the reversed forward conditional q(xt−1 | xt, x̂0,xT ),

q
(
xt−1 | xt, x̂0,xT

)
= N

(
xt−1; µ̃

(
xt, x̂0,xT

)
, δ̃t · I

)
, (16)

where the detailed derivation of the mean and variance in Eq. 16 are deferred to Appendix C.2.
Following Eq. 8, we can learn the BBDM via maximizing a variational lower-bound ELBO(θ) of
the marginal backward process log pθ(x̂0),

ELBO(θ) ∝
T∑

t=2

DKL

(
q
(
xt−1 | xt, x̂0,xT

)
∥pθ

(
xt−1 | xt,xT

))
+ Eq(x1|x̂0)

[
log pθ

(
x̂0 | x1,xT

)]
, (17)

where we parameterize the backward process pθ(xt−1 | xt,xT ) ≜ N(xt−1;µθ(xt,xT , t), δ̃t ·
I) with µθ(xt,xT , t) is obtained from replacing ϵt in µ̃(xt, x̂0,xT ) with a parameterized noise
prediction network ϵθ(xt, t). To enable the optimization of Eq. 17, we need to obtain the guiding
information x̂0, e.g., an example of a high-performing input from a similar function. This is achieved
via constructing a prior over a wide spectrum of artificial functions that are guaranteed to be similar
to the target function. Low- and high-value input designs of the sampled function can then be used
as samples of (xT , x̂0) to learn this Brownian bridge diffusion model, as detailed next.

Remark. We are using the reverse index where x̂T = xT denotes the low-value input design while
x̂0 denotes the high-value input design for notational convenience. This is because we are drawing
correspondence between the augmented gradient ascent and the marginal reverse conditional of the
forward diffusion q(xt | xt−1) and the forward diffusion is supposed to go from high-value to
low-value distributions, which means going from xt−1 to xt should be in the decreasing direction.

3.2 PRE-TRAINING GENERALIZED DIFFUSION MODEL

To create artificial functions that are similar to the target function, we will construct multiple Gaus-
sian processes based on a diverse range of Gaussian process priors equipped with different (fixed)
signal and length-scale parameters. Suppose we are given offline dataset D = {(xi, yi)}ni=1 and
kernel parameter ϕs = {ℓs, σs}, the corresponding posterior is given in Eq. 4 above,

gϕs

(
x
)
∼ N

(
k(ϕs)

⊤(K(ϕs) + σ2I)−1y, kϕs
(x,x)− k(ϕs)

⊤(K(ϕs) + σ2I)−1k(ϕs)
)

(18)

For each such posterior, the mean function gϕs
(x) ≜ k(ϕs)

⊤(K(ϕs) + σ2I)−1y is similar to the
target function at least at the offline data regime since the posterior is shaped based on the offline
dataset. We will construct X−

s and X+
s as the set of low- and high-value inputs of gϕs

(x) via
running M steps of gradient descent and ascent starting from the offline inputs, respectively:

X−
s ≜

{
x−
M ≜ x−

0 − η ·
M∑

m=1

∇xgϕs

(
x−
m−1

) ∣∣∣ x−
0 ∈ D

}
(19)

X+
s ≜

{
x+
M ≜ x+

0 + η ·
M∑

m=1

∇xgϕs

(
x+
m−1

) ∣∣∣ x+
0 ∈ D

}
, (20)

where x+
m+1 ≜ x+

m + η∇xgϕs
(x+

m) and x−
m+1 ≜ x−

m − η∇xgϕs
(x−

m). Here, x+
0 = x−

0 ∈ D. We
can then sample (xT , x̂0) ∼X−

s ×X+
s as pre-training data to learn our diffusion process mapping

between low- and high-value regions across the aforementioned posterior mean functions.

For practical implementation, we can also incorporate the corresponding outputs y−
s and y+

s of X−
s

and X+
s , respectively, as part of the input to the noise prediction network ϵθ(xt, t, y

+
s , y

−
s ) in a

similar manner to how we arrive at Eq. 11 from Eq. 10. Once this generalized diffusion model has
been pre-trained using the synthetic data {(X+

s ,y+
s ), (X

−
s ,y−

s )}
ng

s=1, where ng is the number of

6
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Gaussian processes, we can use the transition kernel, pθ(xt−1 | xt,xT ), of the backward diffusion
process to map from the (implicit) offline data distribution (i.e., empirical distribution over the Q =
128 offline inputs with highest output) to a (better) distribution of high-performing inputs. The
effectiveness of this approach is thoroughly evaluated in Section 4.

4 EXPERIMENTS

This section assesses the effectiveness of our proposed method, Low- to High-Value Diffusion for
Black-Box Optimization, which is named L2HD. Extensive empirical evaluations have been con-
ducted to rigorously compare the performance of L2HD against that of a diverse suite of recent
baselines on a commonly used benchmark for offline optimization (Trabucco et al., 2022). First, our
experiment setup is summarized in Section 4.1. Detailed results and observations are then discussed
in Section 4.2. Furthermore, extensive ablation studies are presented in Section 4.3.

4.1 EXPERIMENTS SETTINGS

Benchmark Tasks. Our investigation covers four real-world tasks selected from the Design-Bench
(Trabucco et al., 2022)2. The chosen tasks cover both discrete and continuous domains. The discrete
tasks, TF-Bind-8 and TF-Bind-10 (Barrera et al., 2016b), aim to discover DNA sequences with
high binding affinity to a specific transcription factor (SIX6 REF R1), with sequence lengths of 8
and 10, respectively. On the continuous side, Ant Morphology (Brockman et al., 2016) and D’Kitty
Morphology (Ahn et al., 2020) focus on optimizing the physical structure of a simulated robot ant
from OpenAI Gym (Brockman et al., 2016) and the D’Kitty robot from ROBEL (Ahn et al., 2020).
For further details on these tasks, please read Appendix A.

Baselines. We selected a diverse group of 11 widely recognized offline optimizers for comparison,
including BO-qEI (Trabucco et al., 2022), CMA-ES (Hansen), REINFORCE (Williams, 1992),
COMs (Trabucco et al., 2021), CbAS (Brookes et al., 2019), MINs (Kumar & Levine, 2020a),
RoMA (Yu et al., 2021), DDOM (Krishnamoorthy et al., 2023), ICT (Yuan et al., 2023), Tri-
mentoring(Chen et al., 2024), and standard gradient ascent (GA).

Evaluation Protocol. Following the approach in (Trabucco et al., 2022), each method generates 128
optimized design candidates, which are then evaluated by the oracle function. The performances are
ranked, and results are recorded at the 50th, 80th, and 100th percentiles. To ensure consistency, all
results are averaged over 8 independent runs.

Hyper-parameter Configuration. For each baseline algorithm, we use the optimized hyper-
parameters reported in the corresponding paper. In L2HD, there are several important hyper-
parameters such as the number of gradient steps M , the step size η during the data generation phase,
as well as the conditional dropping probability κ in Eq. 11. According to the result of fine-tuning,
we achieve optimal performance with M = 100 and κ = 0.15 across all tasks. Additional ablation
studies for the other hyperparameters of our framework are detailed in Section 4.3. For more details
regarding the hyper-parameter configuration of L2HD , please read Appendix C.

4.2 EXPERIMENTAL RESULTS

In this section, we present a comparison of our method against 11 existing baselines. We have
evaluated this at the 50-th, 80-th, and 100-th percentile levels. Due to space constraints, we only
report results of the 100-th percentile level in the main text, while the results for the 50th, 80th

percentiles and score distribution of L2HD with others are provided in Appendix B.

Results on Continuous Tasks: The first two columns of Table 1 highlights L2HD’s performance
on continuous tasks. Notably, we established a new state-of-the-art (SOTA) for the D’Kitty task,
outperforming the runner-up baseline by over 0.022 in the mean score. For the Ant task, our model
secured the runner-up position and surpassed the mean score of the third-ranked Tri-mentoring by
a considerable margin 0.021. In addition, the top-ranked CMA-ES exhibits a significantly larger

2We exclude tasks marked by previous works as having high oracle function noise and inaccuracy
(ChEMBL, Hopper, and Superconductor) and tasks considered too expensive to evaluate (NAS)
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Table 1: Experiments on Design-Bench Tasks. We report max score (100th percentile) among Q =
128 candidates. Blue denotes the best entry in the column, and Green denotes the second best. Mean
Rank means the average rank of the method across all the benchmark datasets.

Benchmarks
Method Ant D’Kitty TFBind8 TFBind10 Mean Rank
Doffline (best) 0.565 0.884 0.439 0.467 -

BO-qEI 0.812 ± 0.000 0.896 ± 0.000 0.825 ± 0.091 0.627 ± 0.033 8.75 / 12
CMA-ES 1.561 ± 0.896 0.724 ± 0.001 0.939 ± 0.039 0.664 ± 0.034 4.75 / 12
REINFORCE 0.263 ± 0.026 0.573 ± 0.204 0.961 ± 0.034 0.618 ± 0.011 9.5 / 12
GA 0.293 ± 0.029 0.860 ± 0.021 0.985 ± 0.011 0.638 ± 0.032 6.75 / 12
COMs 0.882 ± 0.044 0.932 ± 0.006 0.940 ± 0.027 0.621 ± 0.033 6.5 / 12
CbAS 0.846 ± 0.033 0.895 ± 0.016 0.903 ± 0.028 0.649 ± 0.055 6.5 / 12
MINs 0.894 ± 0.022 0.939 ± 0.004 0.908 ± 0.063 0.630 ± 0.019 5.75 / 12
RoMA 0.593 ± 0.066 0.829 ± 0.020 0.665 ± 0.000 0.553 ± 0.000 11.0 / 12
DDOM 0.930 ± 0.029 0.925 ± 0.008 0.885 ± 0.061 0.634 ± 0.015 6.5 / 12
ICT 0.911 ± 0.030 0.945 ± 0.011 0.888 ± 0.047 0.624 ± 0.033 6.5 / 12
Tri-mentoring 0.944 ± 0.033 0.950 ± 0.015 0.899 ± 0.045 0.647 ± 0.039 4.25 / 12

L2HD (ours) 0.965 ± 0.014 0.972 ± 0.005 0.986 ± 0.007 0.685 ± 0.053 1.25 / 12

Table 2: Impact of gradient steps M to the performance of
L2HD.

Steps (M ) Ant DKitty TFBind8 TFBind10
25 0.968 ± 0.009 0.972 ± 0.003 0.952 ± 0.024 0.640 ± 0.039
50 0.968 ± 0.015 0.969 ± 0.003 0.945 ± 0.025 0.639 ± 0.024
75 0.950 ± 0.011 0.969 ± 0.005 0.972 ± 0.013 0.652 ± 0.033

100 0.965 ± 0.014 0.972 ± 0.005 0.986 ± 0.007 0.685 ± 0.053

Table 3: Impact of number of
paired data points to the perfor-
mance of L2HD.

Initial Points (np) Ant TFBind8
128 0.915 ± 0.020 0.948 ± 0.024
256 0.950 ± 0.010 0.968 ± 0.018
512 0.964 ± 0.010 0.974 ± 0.006

1024 0.965 ± 0.014 0.986 ± 0.007

standard deviation of 0.896 compared to L2HD with 0.014 which is 64 times smaller. While CMA-
ES performs well at the 100-th percentile, it receives much lower scores close to 0 at the 80-th and
50-th percentiles (as reported in Appendix B), highlighting the significant instability of this baseline.
Moreover, our standard deviation for this task is lower than that of almost all other methods in the
comparison, except for BO-qEI. This highlights the stability in the performance of L2HD .

Results on Discrete Tasks: The last two columns in Table 1 present the performance of L2HD on
discrete tasks compared to other baseline methods. Our L2HD achieves both the top rank for the
TFBind10 task with a mean score 0.685 and TFBind8 task with 0.986. Our standard deviation
0.007 for the TFBind8 task is even smaller than that of all other baselines, except for RoMa, which
performs poorly. These results demonstrate that L2HD remains a competitive and powerful method
in discrete domains as well, confirming its effectiveness across both continuous and discrete tasks.

Overall, L2HD achieved an impressive mean rank of 1.25 across both discrete and continuous
domains, setting a new SOTA on 3 out of 4 tasks. This demonstrates its consistent effectiveness.

4.3 ABLATION EXPERIMENTS

We additionally conducted ablation studies to investigate the impact of hyperparameters to the per-
formance of our proposed method, L2HD.

Number of Gradient Steps M . We experimented with various numbers of gradient steps (M ),
from the set {25, 50, 75, 100} to construct X−

s and X+
s during the data generation phase (see Sec-

tion 3.2). Our experiments reveal that increasing M consistently improves the overall performance
of the algorithm as illustrated in Table 2. Increasing the number of gradient steps allows our model
to more precisely distinguish between low-value and high-value regions in the distribution, sub-
stantially enhancing our performance. However, increasing the no. of gradient steps also increases
computational time, so we select M = 100 as the best balance between performance and efficiency.
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Table 4: Effectiveness of Gaussian process for generating synthetic data.

Type Ant DKitty TFBind8 TFBind10

No-GP 50th lowest - 50th highest percentile 0.745 ± 0.097 0.952 ± 0.007 0.775 ± 0.057 0.641 ± 0.034
Lowest bins - Highest bins 0.941 ± 0.020 0.952 ± 0.009 0.837 ± 0.055 0.651 ± 0.054

GP GP (1 function) 0.955 ± 0.013 0.971 ± 0.004 0.984 ± 0.012 0.657 ± 0.029
GP (800 functions) 0.965 ± 0.014 0.972 ± 0.005 0.986 ± 0.007 0.685 ± 0.053

Table 5: Performance of L2HD when
changing the type of initial points.

Type Ant TFBind8
Random 0.953 ± 0.014 0.976 ± 0.007
Lowest 0.545 ± 0.214 0.969 ± 0.009

Highest 0.965 ± 0.014 0.986 ± 0.007

Table 6: Experiments on Design-Bench Tasks in a
few-shot experimental design setting. We report max
score (100th percentile) among Q = 128 candidates.

Method Ant TFBind8
ExPT 0.940 ± 0.027 0.874 ± 0.071
Ours 0.942 ± 0.035 0.895 ± 0.086

Number of Initial Points. For each synthetic function generated by the Gaussian process, we will
draw a number of initial data points from the offline dataset to initiate the exploration into the low-
value and high-value regions via gradient descent and ascent, respectively. We experimented with
different numbers of initial points from the set {128, 256, 512, 1024}. As shown in the Table 3,
this consistently led to improved performance. This observation is similar to a previous observation
that having more well-curated training data tends to enhance the overall model performance. We
selected 1024 as the best balance between computational cost and performance score.

Effectiveness of Gaussian process for Generating Synthetic Data. In addition to our main ap-
proach, we investigate alternative methods for generating synthetic data to train our generalized
diffusion process. First, we explore two heuristic methods that do not depend on Gaussian processes
(GP). The first method involves dividing the offline data into two bins: the 50th lowest percentile
and the 50th highest percentile. From these bins, we sample pairs (X−,X+), where X− is sam-
pled from the lowest percentile and X+ from the highest percentile. This method is referred to as
50th lowest - 50th highest percentile. The second method divides the data into 64 bins based on y
values. In this case, X− is sampled from the lowest bin, and X+ from the highest bin, referred to
as Lowest bins - Highest bins. This approach is similar to the sampling strategy in (Krishnamoorthy
et al., 2022), where trajectories with increasing outputs are selected from offline data to train a model
that progressively guides designs from the lowest to the highest bin.

Additionally, we examine two methods that utilize GP for synthetic data generation. In the first
scenario, synthetic training data is produced using only a single function derived from a Gaussian
process, referred to as GP(1 function). The second scenario corresponds to our proposed method,
where multiple functions derived from various Gaussian processes are used to generate synthetic
data. The results presented in Table 4 demonstrate that generating synthetic data using Gaussian
processes consistently outperforms heuristic methods. Moreover, utilizing multiple functions from
various Gaussian processes achieves the best performance.

Changing the Type of Initial Points. We explore three strategies for selecting initial points during
the data generation phase. The first strategy randomly samples points from the offline data. The
second selects points with the lowest objective values, while the third chooses points with the highest
objective values. For all strategies, we perform M steps of gradient ascent and descent on these
initial points to generate low-value and high-value data, respectively. During the adaptation phase,
we select the top 128 points with the highest values from the offline data to represent the (implicit)
distribution of low-value designs. Sequential denoising steps are then applied to approach a better
distribution in the higher-output region of the oracle data. As shown in Table 5, the third strategy
delivers the best performance.

Few-Shot Experimental Designs Setting. In offline optimization, the few-shot experimental de-
signs (ED) setting was introduced in ExPT (Nguyen et al., 2023), presenting a more challenging
task scenario. It is assumed that only a few labeled data points Dlabel = {(xi, yi)}ni=1 are accessi-
ble alongside a larger set of unlabelled data points Dunlabeled = {x̃i}mi=1 for offline optimization.
To evaluate our model in this setting, we follow ExPT’s protocol which utilizes a random 1% of
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the offline data as labeled data points and considers the remaining 99% as unlabeled. To adapt the
generation of synthetic functions for this scenario, we first fit a Gaussian Process (GP) to Dlabel,
generate pseudo-labels for Dunlabeled, and then refit the GP to the combined dataset. The mean
function of this refitted GP is used as the synthetic function, following the same steps as the main
method. As demonstrated in Table 6, our method also outperformed ExPT model in this setting.

5 RELATED WORKS

Existing approaches in offline optimization can be categorized into three main families: forward
modeling, inverse modeling, and learning search policies.

Forward Modeling tackles out-of-distribution (OOD) issues by penalizing high surrogate predic-
tions on OOD inputs (Trabucco et al., 2021; Chen et al., 2024; Yuan et al., 2023; Yu et al., 2021; Dao
et al., 2024; Hoang et al., 2024; Qi et al., 2022; Fu & Levine, 2021; Fannjiang & Listgarten, 2020).
For example, (Trabucco et al., 2021) identifies OOD regions early during gradient updates and re-
trains the surrogate with regularizers to penalize high-value predictions at these inputs. Dao et al.
(2024) introduces a sensitivity-aware regularizer for offline optimizers, while Yuan et al. (2023);
Chen et al. (2024) use co-teaching among surrogates to improve performance.

Inverse Modeling avoids OOD problems by directly learning high-value regions (Kumar & Levine,
2020a; Nguyen et al., 2023; Krishnamoorthy et al., 2023). For instance, Kumar & Levine (2020a)
uses model inversion networks (MINs) to map scores back to inputs, while Nguyen et al. (2023)
combines unsupervised learning and few-shot experimental design for optimizing synthetic func-
tions. Krishnamoorthy et al. (2023) develops a guided diffusion model to generate designs condi-
tioned on function values. The model is trained using weighted sampling from the offline dataset.

Learning Search Policies aims to replicate optimization paths from low- to high-value designs (Kr-
ishnamoorthy et al., 2022; Chemingui et al., 2024). Krishnamoorthy et al. (2022) synthesizes tra-
jectories from offline data using a heuristic for monotonic transitions and trains an auto-regressive
model. Chemingui et al. (2024) reinterprets offline optimization as a reinforcement learning task,
which optimizes for an effective policy using sampled trajectories from the offline dataset.

Overall, these methods remain limited by the available amount of offline data. For example, Krish-
namoorthy et al. (2023) uses guided diffusion to learn an inverse mapping from a desired perfor-
mance output to potential input designs. The adopted diffusion model, however, has to be trained on
weighted sampling from the offline data, which might not contain important information regarding
potential high-performing input regions far from the offline regimes.

To mitigate this data bottleneck, we instead investigate a revisitation of offline optimization as a
distributional translation task. This interestingly shows the equivalence between a direct distribu-
tional augmentation of the surrogate-based gradient update (to compensate for the distributional gap
between the offline and oracle data) and a generalized diffusion model that, unlike previous diffu-
sion models, can map between two (implicit) data distributions. More interestingly, our proposed
approach can leverage external guiding information from related functions to learn the diffusion
model without requiring access to samples from the target distribution. This is essential in our
context since the offline dataset is often sampled from a distribution of low-value inputs.

6 CONCLUSION

To conclude, we have reformulated offline optimization as a distributional translation task. Our
key finding here is the correspondence between a direct stochastic augmentation of a conventional
surrogate-based gradient ascent and an equivalent perspective on generalized diffusion. This results
in a principled model to map from the offline input distribution to another distribution over high-
performing input regions. We adopt a robust learning framework of pre-training and adaptation for
the derived diffusion model in which additional guiding information can be extracted from related
domains to improve its training efficacy. This further reveal a potential future direction to build pre-
trained foundation model for offline optimization which can be fast adapted to optimize effectively
any emerging tasks with sparse data. Our empirical results demonstrate the effectiveness of this
method, setting a new state-of-the-art performance for offline optimization.
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Table 7: Overview of tasks in the Design-Bench benchmark.

Task Offline Size Dimensions Categories Type Oracle
TF Bind 8 32,898 8 4 Discrete Exact
TF Bind 10 10000 10 4 Discrete Exact
Ant Morphology 10004 60 N/A Continuous Exact
D’Kitty Morphology 10004 56 N/A Continuous Exact

A TASK DETAILS

Design-Bench (Trabucco et al., 2022) is a widely adopted benchmark for evaluating offline black-
box optimization algorithms. Table 7 presents the summary of four benchmark tasks in Design-
Bench.

TF Bind 8 and TF Bind 10: DNA sequence optimization. The aim of TF Bind 8 and TF Bind 10
benchmarks is to discover the length-8 DNA sequence with the strongest binding affinity to a specific
transcription factor(SIX6 REF R1 by default) (Barrera et al., 2016a). In the TF Bind8 benchmark,
the binding affinities cover all 65,792 possible sequences. Those are 1,048576 sequences for the
TF Bind 10 benchmark. A sequence is made up of four possible nucleotides, each representing a
categorical choice. In the TF Bind 8, an offline dataset of 32,898 sequences is sampled, while in the
TF Bind 10, we use a set of 10,000 sequences for forming offline data.

Ant and D’Kitty Morphology: robot morphology optimization. This task focuses on optimizing
the physical structure of two simulated robots: Ant from OpenAI Gym Brockman et al. (2016)
and D’Kitty from ROBEL Ahn et al. (2019). For Ant Morphology, the objective is to enhance the
structure of a quadruped robot to maximize its running speed. In D’Kitty Morphology the goal is to
improve the D’Kitty robot’s structure to enable it to reach a specific target. Both tasks aim to discover
optimal robot morphologies for their respective challenges. To control the robots with the newly
optimized structures, a controller is trained using the Soft Actor-Critic algorithm Haarnoja et al.
(2018), tailored for each morphology. The morphology parameters, such as the size, orientation,
and placement of limbs, result in 60 continuous variables for Ant and 56 for D’Kitty. The evaluation
process runs simulations in MuJoCo Todorov et al. (2012) for 100 time steps, averaging results from
16 independent trials to obtain accurate yet computationally efficient performance estimates.

B ADDITIONAL EXPERIMENT RESULTS

In the main manuscript, we reported the 100th percentile scores. Here we present scores at 80th and
50th percentiles, providing additional insights into the performance distribution of our L2HD across
different levels of evaluation.

B.1 PERFORMANCE EVALUATION AT 80TH PERCENTILE LEVEL OF L2HD

As shown in Table 8, our L2HD consistently demonstrates impressive performance at the 80th

percentile level, achieving the best mean rank, i.e., 1.5. Notably, in the Ant and Dkitty tasks, we
exhibit significant improvements over all other baselines, with very small standard deviations of
0.005 and 0.002 respectively. Our L2HD model stands out in these tasks, with score differences
of 0.098 and 0.030 compared to the runner-ups for Ant and Dkitty tasks respectively. For TFBind8,
we continue to secure the best rank, outperforming the GA with a margin of 0.011. It strongly
demonstrates the reliability and stability of our model’s performance.

B.2 PERFORMANCE EVALUATION AT 50TH PERCENTILE LEVEL OF L2HD

According to Table 9, our L2HD model achieves the best mean rank of 2.0 at the 50th percentile
level. At this score level, we surpass the Gradient Ascent (GA) in the TFBind8 task with a significant
score difference of 0.072, securing the top rank among all other methods. In the Ant and Dkitty tasks,
we continue to dominate the other baselines with score differences of 0.094 and 0.030 compared to
the runner-ups, respectively. Furthermore, we achieve standard deviations 0.015 and 0.002 which is
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Table 8: Experiments on Design-Bench Tasks. We report 80th percentile score among Q = 128
candidates. Blue denotes the best entry in the column, and Green denotes the second best. Mean
Rank means the average rank of the method over all the experiment benchmarks.

Benchmarks
Method Ant D’Kitty TFBind8 TFBind10 Mean Rank
Doffline (best) 0.565 0.884 0.439 0.467 -

BO-qEI 0.629 ± 0.000 0.884 ± 0.000 0.439 ± 0.000 0.510 ± 0.011 9.0 / 12
CMA-ES 0.007 ± 0.013 0.718 ± 0.001 0.652 ± 0.017 0.543 ± 0.013 7.75 / 12
REINFORCE 0.182 ± 0.017 0.562 ± 0.197 0.622 ± 0.030 0.519 ± 0.007 9.5 / 12
GA 0.189 ± 0.014 0.762 ± 0.036 0.828 ± 0.027 0.516 ± 0.004 7.75 / 12
COMs 0.635 ± 0.031 0.887 ± 0.004 0.738 ± 0.027 0.526 ± 0.012 4.25 / 12
CbAS 0.542 ± 0.034 0.813 ± 0.012 0.585 ± 0.030 0.517 ± 0.008 8.5 / 12
MINs 0.746 ± 0.011 0.908 ± 0.004 0.545 ± 0.031 0.519 ± 0.010 5.5 / 12
RoMA 0.298 ± 0.033 0.738 ± 0.018 0.661 ± 0.010 0.525 ± 0.003 7.5 / 12
DDOM 0.749 ± 0.029 0.865 ± 0.009 0.526 ± 0.017 0.506 ± 0.004 8.0 / 12
ICT 0.708 ± 0.019 0.898 ± 0.004 0.667 ± 0.035 0.525 ± 0.016 4.75 / 12
Tri-mentoring 0.722 ± 0.015 0.902 ± 0.003 0.683 ± 0.047 0.531 ± 0.007 3.25 / 12

Ours 0.847 ± 0.005 0.938 ± 0.002 0.839 ± 0.015 0.526 ± 0.007 1.5 / 12

much lower than other competitive methods, reinforcing the power and consistency of our method
across these tasks.

B.3 SCORE DISTRIBUTION OF L2HD

We combine the candidates from 8 runs (128 × 8 = 1024 designs) to visualize the distribution of
scores for L2HD in comparison to other baselines. The results are shown in Figure 2. Notably, we
split the Ant task into two figures due to the wide range of CMA-ES results, and in each figure, we
plot the L2HD max and L2HD median lines for comparison with the baselines. Figure 2 reveals
that L2HD has a score distribution skewed towards higher-value regions, particularly in the D’Kitty
task. In the Ant task, although the L2HD max score is not as high as that of CMA-ES, CMA-ES
achieves a single best design while the others perform poorly, as also observed in Table 8 and Table
9. Additionally, L2HD demonstrates a superior score distribution compared to other methods in two
discrete tasks: TFBind8 and TFBind10.

Summary

In conclusion, the reported results demonstrate that our L2HD model maintains its position as
the best-performing model across levels of reported scores. This consistent performance not only
highlights the effectiveness and stability of L2HD but also reaffirms the reliability of our novel
approach to the model-based optimization problem.

C DETAIL ALGORITHM AND IMPLEMENTATION OF L2HD MODEL

C.1 GENERATING SYNTHETIC DATA WITH GP

For generating our synthetic function, we first sample the parameters l (lengthscale) and σ2 (vari-
ance) uniformly from the ranges [l0 − δ, l0 + δ] and ]σ2

0 − δ, σ2
0 + δ], where l0, σ2

0 and δ are fixed
initial hyperparameters, as reported in Table 10. After sampling, we compute the mean function
of the Gaussian Process posterior. We then sample np points from the offline data and perform
M = 100 gradient ascent and gradient descent steps with a step size η (more details are presented in
Section 3.2). To enhance the quality of our synthetic data, we exclude any pair of points (x−, y−)
and (x+, y+) with a small objective value margin by a filter. Specifically, if the difference between
y+ and y− is smaller than a threshold, those pairs will be filtered out from the synthetic data. All
key hyperparameters for this process are listed in Table 10. The detailed algorithm is represented in
Algorithm 2.
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Table 9: Experiments on Design-Bench Tasks. We report 50th percentile score among Q = 128
candidates. Blue denotes the best entry in the column, and Green denotes the second best. Mean
Rank means the average rank of the method over all the experiment benchmarks.

Benchmarks
Method Ant D’Kitty TFBind8 TFBind10 Mean Rank
Doffline (best) 0.565 0.884 0.439 0.467 -

BO-qEI 0.569 ± 0.000 0.883 ± 0.000 0.439 ± 0.000 0.469 ± 0.005 6.25 / 12
CMA-ES -0.043 ± 0.007 0.674 ± 0.016 0.536 ± 0.012 0.490 ± 0.015 7.25 / 12
REINFORCE 0.140 ± 0.026 0.510 ± 0.203 0.450 ± 0.024 0.470 ± 0.010 9.0 / 12
GA 0.137 ± 0.014 0.591 ± 0.132 0.603 ± 0.045 0.469 ± 0.006 7.5 / 12
COMs 0.471 ± 0.034 0.862 ± 0.003 0.598 ± 0.031 0.475 ± 0.010 4.75 / 12
CbAS 0.369 ± 0.008 0.748 ± 0.016 0.441 ± 0.021 0.465 ± 0.006 8.75 / 12
MINs 0.618 ± 0.016 0.889 ± 0.003 0.421 ± 0.017 0.467 ± 0.010 6.0 / 12
RoMA 0.224 ± 0.020 0.545 ± 0.170 0.519 ± 0.073 0.518 ± 0.003 7.0 / 12
DDOM 0.568 ± 0.066 0.814 ± 0.016 0.404 ± 0.012 0.456 ± 0.002 9.0 / 12
ICT 0.554 ± 0.018 0.872 ± 0.007 0.557 ± 0.031 0.457 ± 0.033 6.75 / 12
Tri-mentoring 0.572 ± 0.016 0.884 ± 0.001 0.562 ± 0.051 0.475 ± 0.009 3.25 / 12

Ours 0.712 ± 0.014 0.919 ± 0.003 0.675 ± 0.026 0.473 ± 0.004 2.0 / 12
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Figure 2: Score distribution of found candidates of L2HD compared to others. (Tri-men* stands
for Tri-mentoring).

C.2 TRAINING THE BROWNIAN BRIDGE DIFFUSION MODEL

In this section, we describe how BBDM Li et al. (2023) is employed to handle our distributional
translation. From Eq. 15, setting ζt = 1 − mt = 1 − t/T and δt = 2(mt − m2

t ) leads to a
variance-preservation version of Brownian bridge process introduced in the paper BBDM Li et al.
(2023):

xt = (1−mt)x̂0 +mtxT +
√
δtϵt (21)

The above equation serves as a parameterized form of q(xt|x̂0,xT ). Now, using this form at
timestep t− 1,

xt−1 = (1−mt−1)x̂0 +mt−1xT +
√
δt−1ϵt−1 (22)
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Algorithm 1 : Low- to High-Value Diffusion for Offline Optimization ( L2HD )

Input: Offline dataset D = {xi, yi}Ni=1; no. of epochs E; no. of diffusion steps T , scale number
α, best objective value y∗, conditional dropout probability κ, no. of iterations I .

Output: High-value candidate x̂0.
1: Phase 1: Pretraining
2: Initialize model parameters θ0
3: for e = 1→ E do
4: Generate synthetic dataset Dsyn from Algorithm 2
5: for i = 1→ I do
6: Sample {x̂0, y0,xT , yT } ∼ Dsyn = {X+,y+,X−,y−}
7: Sample timestep t ∼ Uniform(1, T ), γ ∼ Ber(κ), y = [y0, yT ].
8: Forward diffusion xt = (1−mt) · x̂0 +mt · xT +

√
δtϵ where ϵ ∼ N(0, I)

9: Take gradient descend step on
∇θ∥mt(xT − x̂0) +

√
δtϵ− ϵθ(xt, t, (1− γ) · y + γ · ∅)∥2 – Eq. 30

10: end for
11: end for
12:
13: Phase 2: Zero-shot Adaptation
14: {xT , yT } ← 128 best designs in D, y = [α · y∗, yT ]
15: for t = T → 1 do
16: z ∼ N(0, I) if t > 0 else z = 0
17: Compute ϵθ(xt, t, y) via Eq. 31
18: xt−1 = it · xt + jt · xT + kt · ϵθ(xt, t, y) +

√
δt · z

19: end for
20: return high-value design x̂0 = x0.

Algorithm 2 : Synthetic Data Generation with Gaussian process

Input: Offline dataset D = {xi, yi}Ni=1; no. of function per epoch nf ; no. of points np; no. of
gradient steps M

Output: Synthetic data Dsyn = {X−,y−,X+,y+}
1: Dsyn = ∅
2: for s = 1→ nf do
3: Sample uniformly ls ∼ U(l0 − δ, l0 + δ), σs

2 ∼ U(σ2
0 − δ, σ2

0 + δ)
4: Compute the mean function ḡϕs

of posterior Gaussian process via Eq. 18
5: Sample np top points from offline data {xi

0, y
i
0}

np

i=1 ∼ D
6: Compute low-value design X−

s via Eq. 19
7: Compute high-value design X+

s via Eq. 20
8: Compute corresponding low and high scores y−

s ,y
+
s = ḡϕs(X

−
s ), ḡϕs(X

+
s )

9: Dsyn = Dsyn

⋃
{X−

s ,y−
s ,X

+
s ,y+

s }
10: end for
11: return synthetic data Dsyn

Substituting expression of x̂0 from Eq. 22 to Eq. 21, leading to

q(xt|xt−1,xT ) = N
(

1−mt

1−mt−1
xt−1 +

(
mt −

1−mt

1−mt−1

)
xT , δt|t−1I

)
(23)

where δt|t−1 is computed as

δt|t−1 = δt − δt−1

(
1−mt

1−mt−1

)2

(24)

By combining Eq. 23 and Eq. 21, we can derive q(xt−1|xt, x̂0,xT ) through Bayes’ theorem and
Markov chain property:

q(xt−1|xt, x̂0,xT ) =
q(xt|xt−1,xT ) · q(xt−1|x̂0,xT )

q(xt|x̂0,xT )

= N(xt−1; µ̃(xt, x̂0,xT ), δ̃t · I) (25)
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Table 10: Hyperparameters for the synthetic data generation of L2HD.

Hyperparameter Value

l0, σ
2
0

1.0 (continuous)
6.25 (discrete)

δ 0.25

Step size (η) 0.001 (continuous)
0.05 (discrete)

Number of gradient steps (M ) 100

Threshold 0.001

where the variance δ̃t =
(
δt − δt−1

(1−mt)
2

(1−mt−1)2

)
δt−1

δt
and the mean

µ̃(xt, x̂0,xT ) = it · xt + jt · xT + kt ·
(
mt(xT − x̂0) +

√
δtϵ

)
(26)

with

it =
δt−1

δt

1−mt

1−mt−1
+

δt − δt−1
(1−mt)

2

(1−mt−1)2

δt
(1−mt−1)

jt = mt−1 −mt
1−mt

1−mt−1

δt−1

δt

kt = (1−mt−1)
δt − δt−1

(1−mt)
2

(1−mt−1)2

δt

Regarding reverse process, BBDM parameterizes the pθ(xt−1|xt,xT ) as:

pθ(xt−1|xt,xT ) = N(xt−1;µθ(xt,xT , t), δ̃t · I) (27)
where the µθ is parameterized following the Eq. 26:

µθ(xt,xT , t) = it · xt + jt · xT + kt · ϵθ(xt, t) (28)
Therefore, the training objective ELBO in Eq. 17 can be simplified as:

Ex̂0,xT ,ϵ

[
∥mt(xT − x̂0) +

√
δtϵ− ϵθ(xt, t)∥2

]
(29)

For practical implementation, we leverage the synthetic data for our BBDM training, particularly
{x̂0, y0,xT , yT } ∼ Dsyn = {X+,y+,X−,y−}, where y0, yT is corresponding score of x̂0,xT .
In addition, we integrate y = (y0, yT ) as a condition with the classifier-free guidance diffusion
technique that is similar to Eq. 11:

θ∗ ≜ argmin
θ

Ex̂0,y0,xT ,yT ,ϵ

[
∥mt(xT − x̂0) +

√
δtϵ− ϵθ(xt, t, (1− γ) · y + γ · ∅)∥2

]
(30)

where γ ∼ Ber(κ). After training, the noise network ϵθ is computed as below in the zero-shot
adaptation phase:

ϵθ(xt, t, y) = (1 + β) · ϵθ(xt, t, y)− β · ϵθ(xt, t) (31)
where β is the classifier free guidance weight and y = [α · y∗, yT ] with y∗ is the maximum oracle
score to generate high-value design x̂0. Our detail algorithm is represented in Algorithm 1.

For hyperparameters, we utilize an MLP ϵθ(xt, t, y) comprising four layers, each with a hidden size
of 1024. Each layer employs the Swish activation function, defined as Swish(z) = zσ(z), where
σ(z) is the sigmoid function. The MLP is trained using the Adam optimizer for 100 epochs with a
learning rate of 0.001. During each epoch, we sample nf = 8 synthetic functions from the Gaussian
process and generate np = 1024 samples for each function. At the testing phase, we sample high-
design candidates from the 128 best designs in the offline data, using T = 200 sequential denoising
steps. All hyperparameters for modeling, training, and sampling with our model are summarized in
Table 11.

For more details on the implementation, you can also check out our code provided at the following
link: https://anonymous.4open.science/r/ICLR25-A100-03EA
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Table 11: Hyperparameters for the Generalized diffusion process in L2HD .

Hyperparameter Value

Architecture
Hidden size 1024
Number of layers 4
Activation Swish

Training

Number of epochs 100
Number of functions (per one epoch) 8
Number of data points (per one function) 1024
Learning rate 0.001
Optimizer Adam
Batch size 64
Conditional dropout (κ) 0.15

Sampling
α 0.8

, β -1.5
, Denoising steps 200
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