
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

BOOTSTRAPPING LANGUAGE AND NUMERICAL FEED-
BACK FOR REINFORCEMENT LEARNING IN LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Reinforcement learning for large language models (LLMs) often relies on scalar
rewards, a practice that discards valuable textual rationale buried in the rollouts
and hampers training efficiency. Naive attempts to incorporate language feedback
are often counterproductive, risking either memorization from leaked solutions or
policy collapse from irrelevant context. To address this, we propose Language-
And-Numerical Policy Optimization (LANPO), a framework that cleanly sepa-
rates the roles of feedback: language guides exploration, while numerical rewards
drive optimization. LANPO builds a dynamic experience pool from past trials
and introduces two principles to ensure feedback is effective: Reward-Agnostic
Reflection for safe intra-sample self-correction and Relevant Abstraction to distill
generalizable lessons from inter-sample experiences. Across mathematical rea-
soning benchmarks, LANPO enables 7B and 14B models to significantly outper-
form strong baselines trained with GRPO in test accuracy. Our work provides a
robust method for integrating historical experiences into the LLM RL loop, creat-
ing more effective and data-efficient learning agents.

1 INTRODUCTION

Reinforcement learning (RL) has become a central ingredient for improving the reasoning abilities
of large language models (LLMs) OpenAI (2024); Guo et al. (2025). In the prevalent pipeline, a
model’s complex reasoning is assessed by a programmatic verifier or an LLM judge, which com-
presses its evaluation into a single scalar reward. Policy optimization algorithms like PPO or its
variants then update the model’s parameters to maximize this scalar signal (Schulman et al., 2017;
Shao et al., 2024a). While effective, this scalarization of feedback discards the rich, explanatory
rationale hidden in the model’s textual responses. Consequently, exploration proceeds largely de
novo for each prompt; the model cannot explicitly reason about why a previous attempt failed and
must generate new rollouts without reusing these lesson-like experiences. This leads to repetitive,
low-diversity exploration where failure patterns persist, causing state-of-the-art reasoning models to
require thousands of RL steps to train He et al. (2025).

Unlike conventional RL agents, LLMs possess the unique ability to process and generate nuanced
language feedback (Brown et al., 2020). This opens the door to learning from past trials by re-
trieving relevant knowledge or reasoning templates within the context window (Lewis et al., 2021;
Yang et al., 2024b). However, naively integrating language feedback into the RL training loop in-
troduces a fundamental paradox. On one hand, providing feedback from trials on the same problem
(intra-sample feedback) risks information leakage; the model may learn to simply copy the correct
answer, inflating training performance while undermining generalization. On the other hand, using
feedback from different problems (inter-sample feedback) often leads to behavior collapse, where
the model ignores the provided context as it is often too specific or irrelevant, finding it easier to gen-
erate a solution from scratch. This dilemma has left language feedback as an underutilized resource
in mainstream LLM training.

To resolve this tension, we propose Language-And-Numerical Policy Optimization (LANPO), a
training paradigm that synergistically bootstraps language and numerical feedback to enhance learn-
ing efficiency. As depicted in Figure 1 (right), LANPO unifies these two signals: language feedback
is used to guide and enrich exploration via context updates, while numerical rewards are retained
to drive robust policy optimization through parameter updates. At its core, LANPO introduces
an experience pool that accumulates and distills past trials into concise, reusable natural-language

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Reinforcement Learning with
Numerical Feedback

Test-time Learning with
Language Feedback

Policy LLM

Language And Numerical Feedback
Policy Optimization (LANPO)

Response

Query Policy LLM

Response

Policy LLM

Response

Reward
Model

Parameter
Update

Critic

Context
Update

Query

Language Feedback Numerical Feedback

Query

Parameter
Update

Context
Update

Reward
Model Critic

Figure 1: Comparison between three learning paradigms for LLMs. Left: RL with numerical feed-
back adopts scalar rewards as the primary source of guidance for learning, where the actor cannot
explicitly learn from past experiences. Middle: Test-time learning with language feedback features
the LLM’s ability to learn and adapt within its context window without parameter updates. Right:
Our proposed language and numerical policy optimization is an RL algorithm that unifies the two
by extracting meaningful language feedback from the previously discarded rollouts.

summaries. To prevent the pitfalls of naive integration, we introduce two key mechanisms: (1)
Reward-Agnostic Reflection for intra-sample feedback, where the model critiques and refines its
own past attempts without access to the ground truth, thereby preventing leakage. (2) Relevant Ab-
straction for inter-sample feedback, which filters for semantically similar problems and summarizes
their solutions into high-level principles, ensuring the guidance is both useful and generalizable, thus
avoiding behavior collapse.

To summarize, our contributions are threefold: (1) Identification and Mitigation of Core Failure
Modes: We identify and analyze two critical failure modes—information leakage and behavior col-
lapse—that impede the effective integration of language feedback within Reinforcement Learning
frameworks for LLMs. To address these challenges, we introduce two novel techniques, Reward-
Agnostic Reflection and Relevant Abstraction, which are designed to safely and effectively ex-
tract valuable information from training rollouts. (2) A Robust Implementation Framework: We
present LANPO, a practical framework that operationalizes our proposed techniques. LANPO con-
sists of three core components: an experience pool, a multi-role LLM actor, and a mixture-of-modes
training schedule. Together, these components enhance the robustness and versatility of the hybrid
language-numerical learning paradigm. (3) Empirical Validation of Effectiveness: We conduct
an extensive empirical evaluation on challenging mathematical reasoning benchmarks. Our results
demonstrate that LANPO consistently outperforms the strong GRPO baseline in sample efficiency.
Notably, LANPO achieves an absolute performance improvement of up to 9.27% on the AIME25
test set after the same number of training steps.

2 RELATED WORK

Our work, LANPO, builds upon and intersects with three primary areas of research: Reinforce-
ment Learning (RL) for LLMs, the use of language feedback for model improvement, and memory-
augmented agent architectures.

RL with Numerical Feedback. The practice of optimizing LLMs with scalar rewards has become
a cornerstone of developing advanced models (Ziegler et al., 2019), leading to powerful instruction-
following agents (Ouyang et al., 2022; Bai et al., 2022) and specialized problem-solvers (OpenAI,
2024; Guo et al., 2025). The underlying algorithms have also evolved from Proximal Policy Opti-
mization (PPO) (Schulman et al., 2017) to more recent methods like Direct Preference Optimization
(DPO) (Rafailov et al., 2023) and GRPO (Shao et al., 2024a). Our work is orthogonal to the choice
of the specific optimization algorithm. LANPO operates a level above, introducing a language-
feedback layer that structures the context provided to the policy. This layer is designed to improve
the quality and efficiency of exploration before the numerical reward is used for the policy update,
making it a complementary component to any of these RL frameworks.

Language Feedback at Test Time. Using language to refine model outputs is a well-explored area.
This includes inference-time correction (Wang et al., 2024a; Kumar et al., 2024), generating self-
critiques (Madaan et al., 2023; Yuan et al., 2024; Ankner et al., 2024), and maintaining reflections

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

across episodes (Shinn et al., 2023; Yuan & Xie, 2025). Other works use feedback as in-context
examples to guide generation (Chen et al., 2024; Baronio et al., 2025; Chen et al., 2025; Li et al.,
2025). LANPO’s contribution lies in how it systematically integrates language feedback into the RL
training loop to overcome specific failure modes. Our reward-agnostic reflection for intra-sample
feedback differs from prior self-correction methods by being fully integrated into a single-turn RL
process without access to gold labels, thus preventing information leakage. For inter-sample feed-
back, our relevant abstraction mechanism—which filters and summarizes trajectories into trans-
ferable principles—directly counteracts the behavior collapse that can occur when naively reusing
raw solutions as context.

Memory-Augmented Language Agents. The concept of an external memory to store and reuse
past experiences is central to many advanced agents. These memories have been used to build skill
libraries (Wang et al., 2023; Yang et al., 2025b), correct errors post-deployment (Madaan et al.,
2022), and serve as an episodic ”Case Bank” at test time (Wang et al., 2025). While LANPO’s
experience pool serves a similar function, it is uniquely designed for the RL training loop. Rather
than just storing raw trajectories for retrieval, LANPO actively processes on-policy rollouts into
abstracted summaries of ”principles and pitfalls.” This distilled knowledge becomes a direct input
for shaping exploration in subsequent RL episodes, creating a tight, synergistic loop between ex-
perience, exploration, and optimization that is absent in architectures where memory is primarily a
test-time or inference-time resource.

3 CHALLENGES IN INTRODUCING LANGUAGE FEEDBACK

None Intra-Sample Inter-Sample
Test-Time Language Feedback

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

M
ea

n@
32

 A
IM

E2
4

Ac
c

9.31

12.29
10.83

(a) Test-time language feedback.

0 25 50 75 100 125
Training Steps

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Tr
ai

n/
AI

M
E2

4
Te

st
 A

cc

Train: GRPO
Train: Direct Intra-Sample Feedback
Test : GRPO
Test : Direct Intra-Sample Feedback

(b) RL with intra-sample feedback.

0 25 50 75 100 125
Training Steps

0.06

0.08

0.10

0.12

0.14

0.16

AI
M

E2
4

Te
st

 A
cc

GRPO
Random Inter-Sample Feedback
Selected Inter-Sample Feedback

(c) RL with inter-sample feedback.

Figure 2: Challenges in introducing language feedback to RL training. (a) At test time, both
intra-sample feedback (self-correction) and inter-sample feedback (in-context examples) yield clear
accuracy gains without sophisticated design. (b) However, intra-sample feedback in training suffers
from information leakage: when the actor can access the ground-truth answer to the exact problem,
training accuracy rises sharply but fails to translate into test-time improvement. (c) Inter-sample
feedback in training, where correct rollouts are reused across problems, fails to surpass GRPO and
often induces behavior collapse, in contrast to the strong ICL benefits seen in inference.

Large language models trained with RL typically generate thousands of rollouts per iteration, which
are then discarded after reward estimation. Yet, these rollouts contain rich intermediate reasoning
steps and successful solution trajectories that could, in principle, serve as language feedback to guide
exploration more effectively. If feedback that improves accuracy at test time could be incorporated
during training, it might accelerate policy search and unlock progress on harder tasks.

We therefore begin by revisiting the effectiveness of language feedback in inference. Using
Qwen2.5-7B-Instruct (Yang et al., 2024a) on the AIME24 benchmark, we find that both intra-sample
feedback (self-correction on wrong attempts (Madaan et al., 2023; Wang et al., 2024b)) and inter-
sample feedback (in-context examples retrieved from MATH500 (Brown et al., 2020)) each boost
mean@32 accuracy compared to the baseline (Figure 2a).

This confirms that language feedback is indeed useful at test time, motivating us to explore incorpo-
rating these language feedback into RL training. However, our preliminary experiments reveal two
critical obstacles when naively applying language feedback in training:

Intra-sample feedback risks information leakage. We provided the correct answer to the same
training problem during rollouts, akin to rejection fine-tuning (RFT). As shown in Figure 2b, training
accuracy (mean@8) spikes quickly, but test accuracy shows no improvement over GRPO. The model
learns to exploit the leaked labels rather than genuinely improve its reasoning ability. Moreover, at

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

inference time, there is no oracle to indicate which solution to correct, making this strategy infeasible
without a label-free design.

Inter-sample feedback suffers from behavior collapse. We attempted to reuse correct trajecto-
ries discovered during training as in-context demonstrations for other problems, either by random
sampling or by selecting similar problems. Both strategies, shown in Figure 2c, fail to outperform
GRPO. Closer inspection reveals that the model often ignores the provided examples and directly
outputs answers, a phenomenon we refer as behavior collapse. This starkly contrasts with the effec-
tiveness of ICL at inference, underscoring a disconnect between test-time and training-time dynam-
ics. We present further discussion into behavior collapse in Appendix A.1.

In summary, while language feedback has clear potential to accelerate exploration in RL, naive in-
tegration during training introduces pitfalls: intra-sample feedback leaks labels and leads to overfit-
ting, while inter-sample feedback collapses into ineffective behavior. These challenges motivate the
need for principled strategies to design language feedback mechanisms that can genuinely improve
RL training—a direction we pursue in the next section.

4 LANPO: LANGUAGE-AND-NUMERICAL POLICY OPTIMIZATION

Our preliminary study (Section 3) exposed a paradox: while language feedback improves test-time
accuracy, naı̈ve attempts to integrate it into RL training suffers from information leakage or behavior
collapse. This motivates the design of Language-And-Numerical Policy Optimization (LANPO),
which introduces mechanisms that allow language and numerical feedback to bootstrap one another.
Language feedback accelerates RL exploration by reusing knowledge from past trajectories reflec-
tion, while numerical rewards identify and reinforce the valuable ones, yielding a stronger policy that
in turn generates better feedback. Through this mutual reinforcement, LANPO transforms signals
that previously conflicted into complementary drivers of efficient and robust policy learning.

4.1 METHODOLOGY

Our preliminary study revealed two major obstacles to using language feedback in RL: informa-
tion leakage in intra-sample feedback and behavior collapse in inter-sample feedback. LANPO
addresses these pitfalls with two key mechanisms.

0 25 50 75 100 125
Training Steps

0.050

0.075

0.100

0.125

0.150

0.175

0.200

AI
M

E2
4T

es
t A

cc

GRPO
Inter-Sample Feedback w/
Relevant Abstraction
Intra-Sample Feedback w/
Reward-Agnostic Reflection

Figure 3: Effectiveness of our algorithm
design: For inter-sample feedback, we
conduct similarity based selection and
high-level summarization. Meanwhile,
we adopt self-reflection to review intra-
sample feedback and explore based on
past attempts.

Reward-agnostic reflection for Intra-sample Feed-
back. Naı̈ve intra-sample feedback, where the gold solu-
tion is revealed, inflates training accuracy but undermines
generalization by encouraging memorization of leaked la-
bels. LANPO replaces this with a reward-agnostic re-
flection mechanism. Instead of accessing the true label,
the model revisits its own earlier attempts, critiques them
step by step, and then produces a refined solution. This
encourages reflective exploration without exposing cor-
rectness signals. Unlike prior multi-stage self-correction
methods (Kumar et al., 2024), our approach integrates
seamlessly into single-turn RL training, treating past at-
tempts as structured context rather than hidden supervi-
sion.

Relevant Abstraction for Inter-sample Feedback. For
inter-sample feedback, naı̈vely reusing raw solutions of-
ten triggers behavior collapse: the model learns to ig-
nore the provided context and instead answers directly,
since this path is equally rewarded and usually simpler.
LANPO overcomes this by introducing relevant abstrac-
tion, which ensures that reused experiences are both se-
mantically aligned with the current problem and distilled into transferable knowledge. The process
has three steps. First, similarity-based filtering restricts retrieval to trajectories drawn from suf-
ficiently related problems, guaranteeing that the added context is more useful than starting from
scratch. Second, summarization and abstraction condense raw solutions into high-level principles
and common pitfalls that can generalize across problems, rather than problem-specific steps. Third,

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Update with Quality Checking

Intra-Sample
Feedback

Inter-Sample
Feedback

Problem: For which n
i s $ n^4 + 6n^3 +
11n^2 + 3n + 31$ a
perfect square?

Experience Pool

Retrieval

Relevance Evaluation +
Answer

Answer Reward
Model

Parameter Update

Feedback
Summarizer

Language
Feedback

Numerical
Feedback

Language Guides Exploration,
Numbers Drive Learning.

Existing RL:
Exploration from Scratch

LANPO:
Experience-Augmented Exploration

Reward-Agnostic
Reflection + Answer

Policy
LLM

Figure 4: LANPO training pipeline. The Language-Guided Exploration Loop shapes the policy’s
exploration. An experience pool stores abstracted principles from past trajectories. The actor uses
this pool to perform inter-sample exploration (using guidance from related problems) and intra-
sample reflection (critiquing its own past attempts). Successful solutions are summarized and added
back to the pool. The Numerical-Driven Learning Loop optimizes the policy. All attempts, whether
guided by language or not, are evaluated by a Reward Model. The numerical reward is then used
to update the policy via reinforcement learning. This architecture cleanly separates the roles of
feedback: language guides where to explore, while numerical rewards determine what to learn.

the actor is explicitly instructed to analyze the retrieved feedback before producing its own plan and
solution, reinforcing active engagement with the context. As shown in Figure 3, relevant abstrac-
tion makes inter-sample feedback consistently beneficial, avoiding collapse and yielding substantial
gains over naı̈ve reuse of rollouts.

Together, reward-agnostic reflection and relevant abstraction transform the pitfalls of language feed-
back into guiding principles for exploration. Intra-sample feedback fosters self-reflection without
leakage, while inter-sample feedback provides reliable, transferable hints without collapse.

4.2 LANPO MODULES AND TRAINING OBJECTIVE

Building on the principles of Reward-Agnostic Reflection and Relevant Abstraction, LANPO orga-
nizes training around a modular pipeline. The design brings these ideas to life through a shared
experience pool, two specialized responders, and a stable on-policy objective.

Experience pool. At the center of LANPO is a capped-size experience pool E that accumulates
distilled experiences from past rollouts. Each entry contains a structured summary with a flow of
thought, transferable principles and pitfalls, and metadata such as reward, source, and timestamp.
When solving a new problem x, the policy retrieves context c ∼ pc(· | x, E): recent attempts on
the same x provide material for reflection, while filtered entries from semantically related problems
supply abstracted guidance. In this way, the pool serves as a dynamic memory that fuels both
reflection and abstraction.

Inter-sample exploration. To make retrieved context genuinely useful rather than ignored, LANPO
equips the policy with an inter-sample exploration module. This component consumes feedback
from related problems, evaluates its relevance, and incorporates it into a high-level solution plan
before answering. In doing so, it enforces the practice of drawing on transferable principles instead
of copying raw solutions, directly realizing the idea of Relevant Abstraction. Summarization and
filtering ensure that the retrieved feedback is both relevant and generalizable, while the exploration
process encourages active engagement with the context during reasoning.

Intra-sample exploration. In parallel, LANPO introduces an intra-sample exploration module,
which revisits the model’s own earlier attempts, critiques them step by step, and refines the reason-
ing into a revised solution. This operationalizes Reward-Agnostic Reflection: the model learns to

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

improve on its own outputs without ever relying on gold labels, fostering a self-corrective habit that
strengthens exploration while avoiding leakage. Because this process is integrated into single-turn
RL training, reflection arises naturally within the rollout itself rather than requiring a separate stage.

Seeding atomic capabilities via SFT. Since neither summarization nor feedback-driven reasoning
is innate to a base LLM, LANPO begins with a lightweight supervised fine-tuning (SFT) stage to
provide the policy with three atomic skills: (i) a Summarizer that converts raw trajectories into
concise entries for the pool, (ii) an inter-sample exploration capability that learns to evaluate and
apply retrieved feedback, and (iii) an intra-sample exploration capability that learns to audit and
refine past attempts. The purpose of this stage is not to maximize accuracy, but to instill literacy—the
ability to write, read, and act on structured feedback—so that RL training can fully exploit the
principles of reflection and abstraction.

RL Training loop and objective. During RL, the model alternates between feedback-aware roll-
outs and from-scratch rollouts. With probability pt, a context c is drawn from E , activating either
reflection or abstraction; with probability 1− pt, c = ∅, preserving independence. New trajectories
are summarized and added back into the pool, gradually improving its quality. The policy is updated
with a GRPO-style objective regularized by KL divergence against a reference policy πref :

LLANPO(θ) = E x∼D
c∼pc(·|x,E)
y∼πθ(·|x,c)

[
− A(x, y) log πθ(y | x, c) + β DKL

(
πθ(· | x, c)

∥∥πref(· | x, c)
)]
,

where A(x, y) = (r − b̂(x))/σ̂ is the normalized advantage. The KL term stabilizes training, while
the retrieval distribution pc encodes how exploration is shaped by feedback.

Altogether, the experience pool, the two responders, and the feedback-aware training loop form a
robust and versatile pipeline, enabling a single policy to recycle past attempts, abstract transferable
insights, explore new trajectories, and continually evolve through the joint use of language and
numerical feedback.

4.3 EXPERIENCE-DRIVEN INFERENCE AT TEST TIME

Finally, the same mechanisms that enabled stable training also make LANPO models natively
experience-driven at inference. At test time, the policy can:

• Solve from scratch with no external context, preserving robustness and efficiency.
• Retrieve experience by (i) retrieving relevant entries from the final experience pool E

for inter-sample guidance, or (ii) applying the intra-sample reflection loop on its own first
attempt.

Because the experience pool contains distilled, transferable lessons rather than raw solutions, and
because the self-reflection mechanism we designed is label-free, these inference modes has the
potential to improve performance without external input.

5 EXPERIMENTS

We now turn to a detailed empirical study of LANPO. Our experiments examine its overall effective-
ness, the roles of different design components, and the training dynamics that shed light on why it
works. Each analysis connects back to the challenges identified in Section 3. We briefly summarize
our setup below and defer full details, including hyperparameters, to Appendix B.2.

Models and datasets. We evaluate two base models: Qwen2.5-7B (Yang et al., 2024a) and
Qwen3-14B (Yang et al., 2025a), neither of which are instruction-tuned. For RL training, we use
the DAPO dataset (Yu et al., 2025), which contains ∼17K competition-level math problems. Perfor-
mance is measured on AIME25, AIME24, AMC23, and MATH-500 (Hendrycks et al., 2021) with
mean@32 accuracy following common evaluation configurations.

Training protocols. RL training is performed with VeRL framework (Sheng et al., 2024), using
GRPO (Shao et al., 2024b) with group size 16 as the policy loss. We adopt the clip-higher trick (Yu
et al., 2025) with ϵlow = 0.2, ϵhigh = 0.28. Prompts are truncated at 3,072 tokens and generations at
8,192 tokens. Lastly, the RL training steps is set to 330 (10 epochs) by default.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Performance comparison of Qwen models with different RL strategies and inference modes.
The highest score for each metric within each model group is highlighted in bold.

Model Training Method Inference Mode AIME 25 AIME 24 AMC MATH Avg
Q

w
en

2.
5-

7B
-B

as
e-

SF
T

No RL Zero-shot 7.60 10.83 39.57 70.60 32.15

GRPO Zero-shot 13.02 17.29 52.11 79.80 40.56

LANPO w/ Intra
Zero-shot 13.96 20.42 60.50 82.60 44.37

w/ Self-correction 15.73 22.19 62.54 82.60 45.77

LANPO w/ Inter
Zero-shot 16.04 19.48 59.83 81.20 44.14

w/ Retrieval 16.98 19.48 63.06 79.80 44.83

LANPO w/ Both

Zero-shot 16.77 20.52 59.71 82.60 44.90

w/ Retrieval 16.04 21.35 63.55 82.00 45.74

w/ Self-correction 17.71 22.19 63.55 83.20 46.66

Q
w

en
3-

14
B

-B
as

e-
SF

T

No RL Zero-shot 18.12 20.73 58.43 85.20 45.62

GRPO Zero-shot 33.02 47.40 78.20 92.00 62.66

LANPO w/ Intra
Zero-shot 38.23 46.15 79.89 91.80 64.02

w/ Self-correction 42.29 53.75 82.49 92.80 67.83

LANPO w/ Inter
Zero-shot 36.88 48.65 81.70 92.40 64.91

w/ Retrieval 35.62 46.77 80.80 91.40 63.65

LANPO w/ Both

Zero-shot 34.17 43.23 81.70 92.40 62.88

w/ Retrieval 34.06 43.33 78.84 90.60 61.71

w/ Self-correction 37.50 48.65 82.53 93.60 65.54

LANPO configuration. LANPO pre-computes relatedness scores using Qwen2.5-7B-Math and
retains only experiences with similarity ≥ 0.9, details for which is presented in Appendix C.1. Un-
less otherwise stated, the feedback ratio pt is 0.5. An initial SFT stage with 3K QA pairs from
DeepSeek-V3 DeepSeek-AI et al. (2025) equips models with summarization, inspection, and re-
sponse skills before RL training. We enable inter-sample feedback at test time by retrieving from
the experience pool accumulated by RL training. Meanwhile, benefiting from our reward-agnostic
design of intra-sample feedback, the actor after training is able to self-correct with a two-turn con-
versation without external hints Kumar et al. (2024).

5.1 BENCHMARK PERFORMANCE

Zero-Shot Inference Performance. Table 1 presents the main comparison between GRPO and
LANPO. On Qwen2.5-7B, GRPO achieves an average accuracy of 40.56, whereas LANPO consis-
tently pushes this higher: intra-sample feedback reaches 44.37, inter-sample feedback 44.14, and
combining both with self-correction yields 46.66. The gains extend to Qwen3-14B as well, where
LANPO with inter-sample feedback improves the average accuracy to 64.91 compared to 62.66 for
GRPO.

These improvements demonstrate that LANPO systematically enhances the policy’s ability to solve
problems without additional hints at test time. By making feedback leakage-free and collapse-
resistant during training, the resulting policy internalizes more reusable reasoning strategies, which
translates into stronger zero-shot performance.

Experience Augmented Inference. A second question is whether LANPO-trained models can also
benefit from explicit language feedback at inference. The answer we observe is yes. As Table 1
shows, adding a self-correction step further boosts Qwen2.5-7B from 44.90 (zero-shot with both
feedback pathways) to 46.66. Similarly, Qwen3-14B with intra-sample feedback improves from

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 100 200 300
Training Steps

0.050

0.075

0.100

0.125

0.150

0.175

0.200

M
ea

n@
8

AI
M

E2
5

Te
st

 A
cc

GRPO
Inter-Sample Feedback
Intra-Sample Feedback
Both Feedback

(a) AIME25 test accuracy.

0 100 200 300
Training Steps

0.10

0.12

0.14

0.16

0.18

Ac
to

r G
ra

d
No

rm

GRPO
Inter-Sample Feedback
Intra-Sample Feedback
Both Feedback

(b) Gradient norm.

0 50 100 150 200 250 300
Training Steps

0.2

0.3

0.4

Ac
to

r E
nt

ro
py

 L
os

s

GRPO
Inter-Sample Feedback
Intra-Sample Feedback
Both Feedback

(c) Actor entropy.

Figure 5: Training dynamics. We plot key metrics for LANPO variants and the GRPO baseline on
Qwen2.5-7B. (a) Mean@8 test accuracy on the AIME25 benchmark, where both feedback mecha-
nisms improve performance throughout training process. (b) Actor gradient norm, showing stable
optimization of LANPO. (c) Policy Entropy: The feedback mechanisms have distinct effects on
exploration. Intra-sample feedback maintains high entropy, while inter-sample feedback reduces
entropy.

Table 2: Necessity of relevance filtering for inter-sample feedback. The results demonstrate that
without a proper filtering mechanism, providing inter-sample feedback can be detrimental to per-
formance, as seen in the performance drops for GRPO and naive retrieval. By applying a relevance
filter (γ = 0.9), we reverse this trend and achieve the best overall results.

Qwen2.5-7B-Base Inference Mode AIME 25 AIME 24 AMC MATH Avg

GRPO Zero-shot 13.02 17.29 52.11 79.80 40.56
w/ Retrieval 12.50 16.25 51.17 76.60 39.13

w/o filtering (γ = 0.0) Zero-shot 15.21 19.69 60.66 83.00 44.64
w/ Retrieval 13.65 18.65 62.73 81.40 44.11

w/ filtering (γ = 0.9) Zero-shot 16.04 19.48 59.83 81.20 44.14
w/ Retrieval 16.98 19.48 63.06 79.80 44.83

64.02 to 67.83 when allowed to self-correct. Retrieval also helps in selective cases, particularly
when similarity filtering ensures relevance.

This confirms that LANPO not only yields stronger stand-alone solvers but also equips them with the
ability to reuse experiences dynamically at test time. In other words, the experience-driven inference
behavior that motivated our method emerges naturally as a byproduct of training.

5.2 EMPIRICAL UNDERSTANDINGS

Training Dynamics. To understand how LANPO alters the learning process, we inspect the train-
ing dynamics on the AIME25 benchmark, as illustrated in figure 5. Both intra- and inter-sample
feedback mechanisms clearly outperform the GRPO baseline, achieving faster convergence and a
higher final test accuracy (figure 5a). These performance gains are realized without compromising
stability, as evidenced by the smooth decline in the actor gradient norm for all methods (figure 5b).

The actor policy entropy in figure 5c reveals how our feedback mechanisms distinctly shape explo-
ration. Intra-sample feedback, driven by Reward-Agnostic Reflection, sustains the highest entropy.
This suggests the policy is encouraged to critique its own attempts and deviate from familiar pat-
terns, thereby broadening its exploration. Conversely, inter-sample feedback, guided by Relevant
Abstraction, produces the lowest entropy. This indicates that providing targeted principles effec-
tively prunes the search space, focusing the policy’s exploration. In summary, these dynamics con-
firm that LANPO effectively uses language to guide the learning process: reflection prevents the
policy from repeating familiar strategies, while abstraction provides strong heuristics to accelerate
progress. We provide more visualization of training curves in Appendix A.3.

Ablation: Necessity of Filtering. We next ablate the inter-sample feedback filtering mechanism.
Table 2 shows that both GRPO and naı̈ve retrieval without filtering can even suffer performance
decrease when provided with experience, with GRPO decreasing for 1.43 and naive retrieval drop-
ping for 0.53. In contrast, filtering at γ = 0.9 reverses this effect, raising performance to 44.83.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Influence of the feedback ratio (pt) on model performance. A moderate ratio of
pt = 0.50 achieves the optimal balance between leveraging past experiences and preserving gener-
alization, resulting in the highest average accuracy.

Feedback Ratio (pt) Inference Mode AIME 25 AIME 24 AMC MATH Avg

GRPO (pt = 0.0) zero-shot 13.02 17.29 52.11 79.80 40.56
w/ self-correction 13.85 18.02 53.24 80.40 41.38

pt = 0.25
zero-shot 15.10 20.31 57.68 78.80 42.97
w/ self-correction 16.67 20.21 58.36 80.60 43.96

pt = 0.50
zero-shot 13.96 20.42 60.50 82.60 44.37
w/ self-correction 15.73 22.19 62.54 82.60 45.77

pt = 0.75
zero-shot 17.71 17.29 58.02 78.40 42.86
w/ self-correction 19.06 18.85 58.62 80.20 44.18

This demonstrates that collapse-resistant design is not optional: without proper filtering, the model
cannot learn to effectively use inter-sample feedback at test time.

Ablation: Effect of Feedback Ratio. Table 3 proceeds by studying the probability pt of including
feedback during LANPO training. We adopt intra-sample feedback for this ablation. The results
reveal that a low value (0.25) underutilize past experiences, while very high value (0.75) results in
the lowest zero-shot performance on average (42.86). The best trade-off arises at moderate ratios:
pt = 0.50 achieves the highest average accuracy (45.77 with self-correction), outperforming both
lower and higher ratios. This confirms that balancing feedback-aware and from-scratch rollouts is
key to preserving generalization.

Exploration with Language Feedback. Finally, we analyze how language feedback reshapes ex-
ploration. Models trained with LANPO is able to produce rich reasoning chains that reference re-
trieved principles or critically examine their own prior attempts, which is supported by the examples
provided in Appendix D.

6 DISCUSSION AND CONCLUSION

Remark on training overhead: LANPO introduces computational overhead from three primary
sources: (1) managing the experience pool, (2) processing longer sequences for feedback-guided
rollouts, and (3) an auxiliary summarization stage. The cost of experience pool management (stor-
age, filtering, and retrieval) is minimal, as these operations are lightweight and can be executed
on CPUs. The primary overhead arises from increased sequence lengths. Both inter/intra-sample
expand the model’s input prompt and generated output. Since transformer computation scales super-
linearly with sequence length, this directly increases the processing time per step. Additionally, the
summarization step requires a separate generation process. In all, LANPO’s primary costs stem
from processing additional tokens during rollouts and summarization. These can be substantially
mitigated with standard acceleration techniques, such as asynchronous RL frameworks (Wu et al.,
2025) to hide latency or model quantization to speed up forward passes (Krishnan et al., 2022).

To summarize, this work demonstrates that the rollouts generated during LLM RL training can
be harnessed as language feedback to reliably improve sample efficiency when paired with safe-
guards that prevent leakage and collapse. By separating the roles of signals—using reward-agnostic
reflection to support intra-sample refinement and relevant abstraction to enable inter-sample trans-
fer—LANPO turns prior rollouts into structured guidance for exploration, while numerical rewards
determine what the policy ultimately learns. The resulting training pipeline yields consistent gains
across models and benchmarks, improves zero-shot performance, and enables experience-driven
inference without compromising stability.

Beyond empirical improvements, LANPO offers a practical blueprint for integrating linguistic struc-
ture into policy optimization in LLMs: curate distilled experiences, enforce relevance, and promote
reflective reasoning under a stable on-policy objective. These principles scale across settings and
model sizes, opening a path toward more sample-efficient, robust, and adaptable RL for reasoning
tasks. Future work may extend the framework to other domains, automate pool management and
retrieval policies, and further align feedback generation with long-horizon credit assignment.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We aimed to include both the high-level and low-level details of our method, including all hyper-
parameters that we use in Appendix B. Our training and evaluations are performed on open-source
LLMs and benchmarks, with all specific prompts used in Appendix E. Our RL algorithms and in-
frastructure extends the implementation of VeRL Sheng et al. (2024) with relatively simple modifi-
cations. We will open-source the necessary code to implement our ideas, with which we believe the
research community will be able to replicate our findings.

REFERENCES

Zachary Ankner, Bai Liu, Ming Sun, et al. Critique-out-loud reward models. arXiv preprint
arXiv:2408.11791, 2024.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, et al. Training a help-
ful and harmless assistant with reinforcement learning from human feedback. arXiv preprint
arXiv:2204.05862, 2022.

Carlo Baronio, Pietro Marsella, Ben Pan, Simon Guo, and Silas Alberti. Kevin: Multi-turn rl for
generating cuda kernels. 2025.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. NeurIPS, 33:1877–1901, 2020.

Angelica Chen, Jérémy Scheurer, Jon Ander Campos, Tomasz Korbak, Jun Shern Chan, Samuel R.
Bowman, Kyunghyun Cho, and Ethan Perez. Learning from natural language feedback. Trans-
actions on Machine Learning Research, 2024.

Luoxin Chen, Jinming Gu, Liankai Huang, Wenhao Huang, Zhicheng Jiang, Allan Jie, Xiaoran Jin,
Xing Jin, Chenggang Li, Kaijing Ma, Cheng Ren, Jiawei Shen, Wenlei Shi, Tong Sun, He Sun,
Jiahui Wang, Siran Wang, Zhihong Wang, Chenrui Wei, Shufa Wei, Yonghui Wu, Yuchen Wu,
Yihang Xia, Huajian Xin, Fan Yang, Huaiyuan Ying, Hongyi Yuan, Zheng Yuan, Tianyang Zhan,
Chi Zhang, Yue Zhang, Ge Zhang, Tianyun Zhao, Jianqiu Zhao, Yichi Zhou, and Thomas Hanwen
Zhu. Seed-prover: Deep and broad reasoning for automated theorem proving. 2025.

DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Cheng-
gang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Daya Guo, Dejian Yang,
Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting
Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Haowei Zhang, Honghui
Ding, Huajian Xin, Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang, Jianzhong Guo, Jiaqi
Ni, Jiashi Li, Jiawei Wang, Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li,
Junxiao Song, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang,
Lecong Zhang, Lei Xu, Leyi Xia, Liang Zhao, Litong Wang, Liyue Zhang, Meng Li, Miaojun
Wang, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Mingming Li, Ning Tian, Panpan
Huang, Peiyi Wang, Peng Zhang, Qiancheng Wang, Qihao Zhu, Qinyu Chen, Qiushi Du, R. J.
Chen, R. L. Jin, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin Xu, Ruoyu Zhang,
Ruyi Chen, S. S. Li, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shaoqing Wu, Shengfeng
Ye, Shengfeng Ye, Shirong Ma, Shiyu Wang, Shuang Zhou, Shuiping Yu, Shunfeng Zhou, Shut-
ing Pan, T. Wang, Tao Yun, Tian Pei, Tianyu Sun, W. L. Xiao, Wangding Zeng, Wanjia Zhao, Wei
An, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, X. Q. Li, Xiangyue Jin,
Xianzu Wang, Xiao Bi, Xiaodong Liu, Xiaohan Wang, Xiaojin Shen, Xiaokang Chen, Xiaokang
Zhang, Xiaosha Chen, Xiaotao Nie, Xiaowen Sun, Xiaoxiang Wang, Xin Cheng, Xin Liu, Xin
Xie, Xingchao Liu, Xingkai Yu, Xinnan Song, Xinxia Shan, Xinyi Zhou, Xinyu Yang, Xinyuan
Li, Xuecheng Su, Xuheng Lin, Y. K. Li, Y. Q. Wang, Y. X. Wei, Y. X. Zhu, Yang Zhang, Yanhong
Xu, Yanhong Xu, Yanping Huang, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Li, Yaohui Wang,
Yi Yu, Yi Zheng, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Ying Tang, Yishi Piao,
Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yu Wu, Yuan Ou, Yuchen
Zhu, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He, Yukun Zha, Yunfan Xiong, Yunxian Ma,
Yuting Yan, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Z. F. Wu, Z. Z. Ren, Zehui
Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhen Huang, Zhen Zhang, Zhenda Xie, Zhengyan Zhang,
Zhewen Hao, Zhibin Gou, Zhicheng Ma, Zhigang Yan, Zhihong Shao, Zhipeng Xu, Zhiyu Wu,

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Zhongyu Zhang, Zhuoshu Li, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song,
Ziyi Gao, and Zizheng Pan. Deepseek-v3 technical report. 2025.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Jingkai He, Tianjian Li, Erhu Feng, Dong Du, Qian Liu, Tao Liu, Yubin Xia, and Haibo Chen.
History rhymes: Accelerating llm reinforcement learning with rhymerl. 2025.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Srivatsan Krishnan, Maximilian Lam, Sharad Chitlangia, Zishen Wan, Gabriel Barth-Maron, Alek-
sandra Faust, and Vijay Janapa Reddi. Quarl: Quantization for fast and environmentally sustain-
able reinforcement learning. 2022.

Aviral Kumar, Vincent Zhuang, Rishabh Agarwal, Yi Su, John D Co-Reyes, Avi Singh, Kate Baumli,
Shariq Iqbal, Colton Bishop, Rebecca Roelofs, Lei M Zhang, Kay McKinney, Disha Shrivastava,
Cosmin Paduraru, George Tucker, Doina Precup, Feryal Behbahani, and Aleksandra Faust. Train-
ing language models to self-correct via reinforcement learning. 2024.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen tau Yih, Tim Rocktäschel, Sebastian Riedel, and Douwe
Kiela. Retrieval-augmented generation for knowledge-intensive nlp tasks. 2021.

Xiaoya Li, Xiaofei Sun, Jiwei Li, Albert Wang, and Chris Shum. Cuda-l1: Improving cuda opti-
mization via contrastive reinforcement learning. 2025.

Aman Madaan, Niket Tandon, and Others. Memory-assisted prompt editing to improve gpt-3 after
deployment. In EMNLP, 2022.

Aman Madaan, Niket Tandon, Prakhar Gupta, et al. Self-refine: Iterative refinement with self-
feedback. arXiv preprint arXiv:2303.17651, 2023.

OpenAI. Learning to reason with llms, 2024. URL https://openai.com/index/
learning-to-reason-with-llms/.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L Wainwright, et al. Training language
models to follow instructions with human feedback. In NeurIPS, 2022.

Rafael Rafailov et al. Direct preference optimization: Your language model is secretly a reward
model. In NeurIPS, 2023.

Stephen Robertson and Hugo Zaragoza. The probabilistic relevance framework: Bm25 and beyond.
Foundations and Trends in Information Retrieval, 2009.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Zeyu Shao, Peng Wang, Qinkai Zhu, Rui Xu, Jiaxing Song, Ming Zhang, Yuxiao Li, Yuhuai Wu,
and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open language
models. arXiv preprint arXiv:2402.03300, 2024a.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Mingchuan Zhang, YK Li, Y Wu,
and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open language
models. arXiv preprint arXiv:2402.03300, 2024b.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. arXiv preprint
arXiv:2409.19256, 2024.

Noah Shinn, Federico Cassano, Edward Berman, Ashwin Gopinath, Karthik Narasimhan, and
Shunyu Yao. Reflexion: Language agents with verbal reinforcement learning. arXiv preprint
arXiv:2303.11366, 2023.

11

https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, et al. Voyager: An open-ended embodied agent with large
language models. arXiv preprint arXiv:2305.16291, 2023.

Jun Wang, Zihan Wang, Linyi Yang, Huichi Zhou, Kun Shao, Siyuan Guo, Yihang Chen, Guchun
Zhang, Xue Yan, Kin Hei Lee, and Ka Yiu Lee. Agentfly: Fine-tuning llm agents without fine-
tuning llms. 2025.

Yifei Wang, Yuyang Wu, Zeming Wei, Stefanie Jegelka, and Yisen Wang. A theoretical understand-
ing of self-correction through in-context alignment. In NeurIPS 2024, 2024a.

Yifei Wang, Yuyang Wu, Zeming Wei, Stefanie Jegelka, and Yisen Wang. A theoretical understand-
ing of self-correction through in-context alignment. NeurIPS 2024, 2024b.

Bo Wu, Sid Wang, Yunhao Tang, Jia Ding, Eryk Helenowski, Liang Tan, Tengyu Xu, Tushar Gowda,
Zhengxing Chen, Chen Zhu, Xiaocheng Tang, Yundi Qian, Beibei Zhu, and Rui Hou. Llamarl: A
distributed asynchronous reinforcement learning framework for efficient large-scale llm training.
2025.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024a.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
Qiu. Qwen3 technical report. 2025a.

Ling Yang, Zhaochen Yu, Tianjun Zhang, Shiyi Cao, Minkai Xu, Wentao Zhang, Joseph E. Gonza-
lez, and Bin Cui. Buffer of thoughts: Thought-augmented reasoning with large language models.
2024b.

Ling Yang, Zhaochen Yu, Bin Cui, and Mengdi Wang. Reasonflux: Hierarchical llm reasoning via
scaling thought templates. 2025b.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
Fan, Gaohong Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guangming Sheng,
Yuxuan Tong, Chi Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Jinhua Zhu, Jiaze Chen,
Jiangjie Chen, Chengyi Wang, Hongli Yu, Yuxuan Song, Xiangpeng Wei, Hao Zhou, Jingjing
Liu, Wei-Ying Ma, Ya-Qin Zhang, Lin Yan, Mu Qiao, Yonghui Wu, and Mingxuan Wang. Dapo:
An open-source llm reinforcement learning system at scale. arXiv preprint arXiv:2503.14476,
2025.

Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho, Xian Li, Sainbayar Sukhbaatar, Jing Xu,
and Jason Weston. Self-rewarding language models. arXiv preprint arXiv:2401.10020, 2024.

Yurun Yuan and Tengyang Xie. Reinforce LLM reasoning through multi-agent reflection. In ICML
2024, 2025.

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom Brown, Alec Radford, Dario Amodei, Paul
Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences. arXiv
preprint arXiv:1909.08593, 2019.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A ADDITIONAL RESULTS

A.1 DISCUSSION ON BEHAVIOR COLLAPSE

In this section, we provide an example and detailed discussion into the behavior collapse phe-
nomenon we observed. In our case, behavior collapse refers to the model’s tendency to ignore
valuable, provided information—such as an experience or a solved example—and instead generate
a solution from scratch. This often occurs even when the provided experience contains a highly
relevant problem-solving methodology, simply because the surface-level details of the problems do
not match perfectly.

The below case exemplifies behavior collapse as the model demonstrates a failure in analogical
reasoning. It correctly identifies surface-level differences between the problems—the Input Problem
involves reflections, while the Experience problem uses parallel lines. However, this superficial
analysis leads it to erroneously conclude that the provided experience is inapplicable. The model
fails to recognize that the Experience section is not just a solution to a different problem, but a guide
to a powerful, generalizable methodology: using a coordinate or vector system to solve complex
geometry problems by analyzing segment ratios and component areas. Also, the important messages
shown in the take-aways are also left out. This decision to discard the guiding framework based on
a keyword mismatch is the central feature of the collapse.

Example for Bahvior Collapse

Input Problem: In triangle ABC points D and E lie on AB so that AD < AE < AB,
while points F and G lie on AC so that AF < AG ¡ AC. Suppose AD = 4, DE = 16, EB
= 8, AF = 13, FG = 52, and GC = 26. Let M be the reflection of D through F, and let N
be the reflection of G through E. The area of quadrilateral DEGF is 288. Find the area of
heptagon AFNBCEM

EXPERIENCE

Problem: On △ABC let D be a point on side AB, F be a point on side AC, and E be a
point inside the triangle so that DE ∥ AC and EF ∥ AB. Given that AF = 6, AC = 33,
AD = 7, AB = 26, and the area of quadrilateral ADEF is 14, find the area of △ABC

FLOW OF THOUGHT

1. Understanding the Problem Setup: The problem presents us with a triangle
ABC with given segment lengths and parallel lines. The initial steps involve
identifying what each parallel line does to create similar triangles.

2. Visualizing Parallel Lines and Similar Triangles: ...

TAKEAWAYS

1. Visualize the Problem: Always visualize the problem setup to identify parallel
lines and similar triangles.

2. Similarity Ratios: ...
3. Segment Proportions: ...
4. Quadrilateral Area and Proportions: ...
5. Final Area Calculation: ...

RESPONSE FROM A COLLAPSED MODEL

• Analysis: The provided experience outlines a structured approach to solving
geometric problems involving parallel lines, similarity of triangles, and area cal-
culations. However, the current problem is different in its setup and details.
The problem involves reflections and specific segment lengths, which are not
directly addressed by the previous experience.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

• Decision: Since the current problem is different in its setup and requires a differ-
ent approach, I will create a new plan tailored specifically to this problem. The
previous experience is not directly applicable here.

A.2 MORE EVALUATION RESULTS

Table 4 presents the evaluation of SFT and GRPO models when language feedback is provided dur-
ing inference. Two key findings emerge from the results. First, for models trained via Reinforcement
Learning (RL) without exposure to language feedback, their performance at test time still improves
significantly when such feedback is introduced. This improvement is particularly pronounced in
tasks involving intra-sample self-correction. Second, despite this gain, the performance of these
models remains consistently lower than that of models explicitly trained with language feedback
from the outset.

Table 4: Testing SFT & GRPO trained models with language feedback.

Model Configuration AIME25 AIME24 AMC MATH Average
Model Feedback Type (%) (%) (%) (%) (%)

Qwen2.5-7B-base-SFT inter-sample 9.90 4.90 36.60 66.60 29.50
intra-sample 9.69 7.60 37.35 68.00 30.66

RL w/ GRPO inter-sample 12.50 16.25 51.17 76.60 39.13
intra-sample 13.75 18.02 53.24 80.40 41.35

Qwen3-14B-base-SFT inter-sample 19.17 15.62 58.17 83.00 43.99
intra-sample 20.73 18.44 59.00 85.60 45.94

RL w/ GRPOs inter-sample 26.88 34.58 72.18 90.00 55.91
intra-sample 50.94 36.88 80.20 93.00 65.26

A.3 TRAINING CURVES

We present the curves for reward, average response length, and KL divergence during RL training
in Figure 6.

0 50 100 150 200 250 300
Training Steps

0.1

0.2

0.3

0.4

0.5

0.6

Re
wa

rd

GRPO
Inter-Sample Feedback
Intra-Sample Feedback
Both Feedback

(a) Reward

0 100 200 300
Training Steps

1000

1500

2000

2500

3000

3500

Av
g

Re
sp

on
se

 L
en

gt
h

GRPO
Inter-Sample Feedback
Intra-Sample Feedback
Both Feedback

(b) Average response length

0 100 200 300
Training Steps

0.00

0.02

0.04

0.06

0.08

0.10

KL
 D

iv
er

ge
nc

e

GRPO
Inter-Sample Feedback
Intra-Sample Feedback
Both Feedback

(c) KL divergence

Figure 6: Training dynamics for LANPO and GRPO on Qwen2.5-7B. The figure compares key
metrics during reinforcement learning for LANPO variants against the GRPO baseline. We plot: (a)
the policy reward, (b) the average length of generated responses, and (c) the KL divergence from
the reference policy. Notably, for the reward metric in (a), LANPO models receive a 0.1 bonus for
responses that adhere to the correct format when language feedback is utilized.

B EXPERIMENTAL DETAILS

B.1 SFT TRAINING

The key hyperparameters and settings for this SFT process are outlined in Table 5.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 5: Supervised Fine-Tuning (SFT) Hyperparameters

Parameter Value
Training Epochs 1

Global Batch Size 64
Per-GPU Micro-batch Size 1
Max Sequence Length 8192 tokens
Sequence Parallelism Size 2

B.2 RL TRAINING

The core hyper-parameter for RL training are listed in Table 6, and parameters for data handling and
generation are listed in Table 7. Lastly, we set the maximum number of feedback saved in each step
to be 8, the maximum summary length to be 2048, and the experience pool size to be 32 for each
entry.

Table 6: Core Training Hyperparameters of RL

Parameter Value
Policy Loss PPO
Actor Learning Rate 1e-6
LR Schedule Cosine with 10% warmup
PPO Clipping Range (Low, High) [0.20, 0.28]
KL Divergence Loss Coefficient 0.0005
Reward Function Correctness Reward Plus Format Reward
Total Training Epochs 10
PPO Mini-batch Size 64

Table 7: RL Generation Parameters

Parameter Value
Max Prompt Length 3072 tokens
Max Response Length 8192 tokens
Rollout Samples per Prompt (n) 16

Validation Generation Settings

Decoding Strategy Sample
Temperature 0.6
Top-p 0.9
Validation Samples per Prompt (n) 8

B.3 PRELIMINARY STUDY

Test-time Performance: For in-context examples, we always provide one correct example each
time, while we only consider those incorrect responses for self-correction. The inference configura-
tion is same as Table 7.

RL Training: RL training is conducted in a similar but simplified training configuration of the
main experiments, using the same model. Specifically, we reduce response length to 4096, group
size n to be 8, and training epochs to be 5.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

C IMPLEMENTATION DETAILS

C.1 CALCULATION OF RELEVANCE SCORE

To quantify the relevance of a piece of language feedback to a given math problem, we employ
a zero-shot classification approach using a Large Language Model (LLM). For a specific problem
p and a candidate feedback c, we construct a structured prompt, detailed below, which directs the
model to evaluate the feedback’s utility and relevance. The LLM processes this prompt and generates
output logits for the tokens yes and no, which we denote as ly and ln, respectively. The relevance
score, r(p, c), is then computed as the softmax probability of the “yes” token:

r(p, c) =
exp(ly)

exp(ly) + exp(ln)
(1)

At test time, the corpus of candidate feedback is too large for an exhaustive evaluation of every
option. To manage this computational expense, we adopt a two-stage retrieval-and-rerank strategy.
First, we utilize the BM25 algorithm Robertson & Zaragoza (2009) to efficiently retrieve the top-
k most relevant feedback candidates. Subsequently, we apply our LLM-based scoring method (as
defined in Equation 1) to this smaller subset to rerank the candidates and identify the most helpful
feedback.

Prompt for Relevance Estimation

Math Problem: {problem}.
Feedback: {feedback}.
Determine whether the language feedback above is closely relevant and helpful to the
math problem. Carefully think about whether the feedback provides highly useful in-
sights, information, or techniques in solving the problem. Consider inspecting specific
details shown in the feedback and imagine how you would approach the problem using it.
Answer with yes or no.
Answer:

C.2 WEIGHTED SAMPLING

We employ a weighted sampling strategy to prioritize higher-quality language feedback when con-
structing training batches. Feedback is first sorted by relevance score or time order, and a pool is
created from the top candidates. Each feedback in this pool is assigned a weight using a linear decay
function (wi ∝ 1/(i + 1)), which is then normalized to form a probability distribution. We then
sample groups of feedback from this pool without replacement, ensuring that higher-ranked items
are more likely to be selected.

C.3 FORMAT REWARD

To encourage adherence to a specific output structure, we introduce a small format-based reward.
The model receives a +0.1 bonus if its generated text contains certain predefined headers. This
mechanism guides the model to produce more organized and predictable responses.

D REPRESENTATIVE CONVERSATIONS

Example of Inter-Sample Feedback

Problem: Cybil and Ronda are sisters. The 10 letters from their names are placed on
identical cards so that each of 10 cards contains one letter. Without replacement, two
cards are selected at random from the 10 cards. What is the probability that one letter is
from each sister’s name? Express your answer as a common fraction. The answer is in
the form m

n , where gcd(m,n) = 1. Please provide the value of m+ n.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

EXPERIENCE

FLOW OF THOUGHT

1. The problem is about probability, and the keywords “cards,” “randomly se-
lected,” and “without replacement” indicate a combinatorial approach. We need
the total number of ways to draw 2 cards out of 10 and the number of favorable
ways where one card is from Cybil’s name and one from Ronda’s name.

2. Cybil’s name has 5 letters, and Ronda’s name has 5 letters. The total number of
letters is 10, so the total number of ways to choose 2 cards is a combination of
10 taken 2 at a time: (

10

2

)
= 45.

3. For the favorable outcomes, choose 1 letter from Cybil’s 5 letters and 1 letter
from Ronda’s 5 letters:

5× 5 = 25.

4. The probability is then the ratio of favorable outcomes to total outcomes:

25

45
=

5

9
.

5. The final answer is the sum of the numerator and denominator of the simplified
fraction:

5 + 9 = 14.

TAKEAWAYS

• Probability problems involving combinations can be solved by calculating total
outcomes and favorable outcomes separately.

• The combination formula
(
n
k

)
is useful for determining the number of ways to

choose k items from n without replacement.
• Simplify fractions to their lowest terms by dividing the numerator and denomi-

nator by their greatest common divisor (gcd).
• Always ensure the answer is in the required format, such as a common fraction

or the sum of numerator and denominator.

Exploration with Inter-Sample Feedback

PROBLEM STATEMENT

Let N be the number of 8-digit integers that can be formed using each of the digits
{1, 2, 3, 4, 5, 6, 7, 8} exactly once, such that the number is divisible by 22. Calculate
the value of N − 2025.

VERIFICATION OF THE SOLUTION METHODOLOGY

The core logic of the solution is broken down into several steps. Each step is verified
below.

STEP 1: DIVISIBILITY RULE FOR 22
A number is divisible by 22 if and only if it is divisible by both 2 and 11.

• Divisibility by 2: The last digit of the number must be even.
• Divisibility by 11: The difference between the sum of digits at odd positions

and the sum of digits at even positions must be a multiple of 11.
Verification: Correct. This is the standard rule for divisibility by 22.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

STEP 2: SUM OF DIGITS

The total sum of the available digits {1, 2, . . . , 8} is:

S =

8∑
i=1

i =
8(8 + 1)

2
= 36

Verification: Correct.

STEP 3: APPLYING THE DIVISIBILITY BY 11 RULE

Let Sodd be the sum of the four digits in odd positions (D1, D3, D5, D7) and Seven be the
sum of the four digits in even positions (D2, D4, D6, D8). We know:

Sodd + Seven = 36

For divisibility by 11, we need Sodd − Seven = 11k for some integer k.
• If k = 0, then Sodd = Seven. This gives 2Sodd = 36 =⇒ Sodd = 18. Thus,
Seven = 18.

• If k = 2, then Sodd − Seven = 22. Combined with Sodd + Seven = 36, this
gives 2Sodd = 58 =⇒ Sodd = 29. This is impossible, as the maximum sum of
four distinct digits from the set is 8 + 7 + 6 + 5 = 26.

• Other non-zero values of k also lead to impossible sums.
Therefore, the only valid condition is Sodd = Seven = 18. Verification: Correct. This
reasoning is sound.

CASE-BY-CASE ANALYSIS AND CORRECTION

We must satisfy two conditions simultaneously:
1. The last digit, D8, must be even: D8 ∈ {2, 4, 6, 8}.
2. The sum of digits in even positions, Seven = D2 +D4 +D6 +D8, must be 18.

We analyze each case based on the choice of D8. For each case, we find the number of
3-digit combinations {a, b, c} from the remaining digits that sum to 18−D8. The number
of ways to arrange these is 3! for the even positions and 4! for the remaining four digits in
the odd positions.

CASE 1: D8 = 2

• Sum needed for {D2, D4, D6}: 18− 2 = 16.
• Available digits for the sum: {1, 3, 4, 5, 6, 7, 8}.
• Combinations summing to 16: {1, 7, 8}, {3, 5, 8}, {3, 6, 7}, {4, 5, 7}.
• Total combinations: 4.
• Number of ways: 4× 3!× 4! = 4× 6× 24 = 576.

CASE 2: D8 = 4

• Sum needed for {D2, D4, D6}: 18− 4 = 14.
• Available digits for the sum: {1, 2, 3, 5, 6, 7, 8}.
• Combinations summing to 14: {1, 5, 8}, {1, 6, 7}, {2, 5, 7}, {3, 5, 6}.
• Total combinations: 4.
• Number of ways: 4× 3!× 4! = 4× 6× 24 = 576.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

CASE 3: D8 = 6 (CORRECTION)
• Sum needed for {D2, D4, D6}: 18− 6 = 12.
• Available digits for the sum: {1, 2, 3, 4, 5, 7, 8}.
• Error Identification: The original solution claimed 5 combinations. Let’s re-

evaluate systematically.
• Correct combinations summing to 12: {1, 3, 8}, {1, 4, 7}, {2, 3, 7}, {3, 4, 5}.
• Total combinations: 4.
• Corrected number of ways: 4 × 3! × 4! = 4 × 6 × 24 = 576. The original

calculation of 720 was incorrect.

CASE 4: D8 = 8

• Sum needed for {D2, D4, D6}: 18− 8 = 10.
• Available digits for the sum: {1, 2, 3, 4, 5, 6, 7}.
• Combinations summing to 10: {1, 2, 7}, {1, 3, 6}, {1, 4, 5}, {2, 3, 5}.
• Total combinations: 4.
• Number of ways: 4× 3!× 4! = 4× 6× 24 = 576.

FINAL CALCULATION

TOTAL NUMBER OF VALID INTEGERS (N)
The total number of valid integers, N , is the sum of the ways from all four cases.

N = 576(for D8 = 2) + 576(for D8 = 4) + 576(for D8 = 6) + 576(for D8 = 8)

N = 4× 576 = 2304

CALCULATING THE FINAL DIFFERENCE

The problem asks for the value of N − 2025.

N − 2025 = 2304− 2025 = 279

CONCLUSION

The verification process confirmed that the initial methodology was sound. However, a
calculation error was found in the case where the last digit is 6. The original solution
incorrectly identified 5 combinations instead of the correct 4. After correcting this error,
the total number of valid integers is N = 2304. The final requested value is:

279

Exploration with Intra-Sample Feedback

Current Problem: Find the sum of all integer bases b > 9 for which 17b is a divisor of
97b.
Source Problem of the Feedback: Let the product (12)(15)(16), with each factor written
in base b, be equal to 3146 in base b. Let s = 12 + 15 + 16, with each term expressed in
base b. Find the value of s in base b

EXPERIENCE

FLOW OF THOUGHT

1. Identify the Problem Type: The problem involves numbers written in a variable
base b. This immediately suggests that we need to convert these numbers into a
common base (e.g., base 10) to manipulate them algebraically.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

2. Convert Numbers to Base 10: For each number Nb (where N is represented
in base b), express it in base 10. This allows us to handle the numbers using
standard arithmetic.

3. Set Up the Equation: Write the given equation in terms of base 10 expressions.
This step ensures that all terms are on the same footing and can be simplified
algebraically.

4. Expand and Simplify: Expand any products or sums in the equation and sim-
plify to form a polynomial equation in terms of b.

5. Solve the Polynomial: Find the roots of the polynomial equation. This step
requires testing possible values or using algebraic methods to find the solution(s).

6. Verify the Solution: Plug the potential b values back into the original equation
to ensure they satisfy the conditions.

7. Calculate the Desired Value: Once b is known, compute the sum s in base 10
and then convert it back to base b to get the final answer.

TAKEAWAYS

1. Base Conversion: Always convert numbers from variable bases to a standard
base (e.g., base 10) for algebraic manipulation. It simplifies solving equations
involving unknown bases.

2. Expand Products: When dealing with products in different bases, expand the
terms fully to combine like terms and simplify the equation.

3. Polynomial Roots: Use polynomial roots to solve for unknowns in equations
where variables represent bases. Rational Root Theorem is often useful for test-
ing potential roots.

4. Verification: Always double-check solutions by substituting back into the orig-
inal problem to ensure consistency.

5. Algebraic Simplification: Practice expanding and simplifying expressions to
identify patterns and viable solutions.

6. Number Representation: Understand that the same number can be represented
differently in different bases, and conversion formulas are essential for compar-
isons and calculations.

RESPONSE:
EXPERIENCE EVALUATION

1. Analysis: The provided experience involves a problem about converting num-
bers from a variable base to base 10, setting up equations, and solving for un-
knowns. This is relevant to the current problem because it also involves numbers
in a variable base b and checking divisibility conditions.

2. Decision: While the experience provides a structured approach to solving prob-
lems with numbers in variable bases, the current problem is about evaluating
integer bases for divisibility conditions. The experience’s steps of converting to
base 10, setting up equations, and solving for unknowns are directly applicable
here.

3. Justification: The experience offers a systematic way to handle problems in-
volving numbers in variable bases. It provides a clear flow of thought, from
identifying the problem type to solving for unknowns. Therefore, I will modify
the current problem-solving plan to align with this structured approach.

FINAL PLAN

1. Understand the Problem: We are given two numbers in base b, 17b and 97b,
and we need to find all integer bases b > 9 for which 17b is a divisor of 97b.

2. Convert Numbers from Base b to Base 10:

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

• The number 17b in base b can be expressed in base 10 as:

17b = 1 · b+ 7 = b+ 7

• The number 97b in base b can be expressed in base 10 as:

97b = 9 · b+ 7

3. Divisibility Condition: We need 17b to divide 97b. In base 10 terms, this means:

b+ 7 divides 9b+ 7

Mathematically, this can be written as:

9b+ 7 ≡ 0 (mod b+ 7)

4. Simplify the Divisibility Condition: To check the divisibility condition 9b+7 ≡
0 (mod b+ 7), we perform polynomial division or use modular arithmetic. We
need to find b such that:

9b+ 7 ≡ 0 (mod b+ 7)

This means that 9b+7 should be divisible by b+7. Perform polynomial division
of 9b+ 7 by b+ 7:

• Divide the leading term 9b by the leading term b to get 9.
• Multiply 9 by b+ 7 to get 9b+ 63.
• Subtract 9b+ 63 from 9b+ 7 to get:

(9b+ 7)− (9b+ 63) = 7− 63 = −56

Therefore, we have:
9b+ 7 = (b+ 7) · 9− 56

So, the condition 9b+ 7 ≡ 0 (mod b+ 7) is equivalent to:

−56 ≡ 0 (mod b+ 7)

This means b + 7 must be a divisor of −56, or equivalently, b + 7 must be a
divisor of 56. The divisors of 56 are:

±1,±2,±4,±7,±8,±14,±28,±56

5. Find Valid b Values: Since b > 9, we need b+7 > 16, which means b+7 must
be a divisor of 56 that results in b > 9. Let’s evaluate the divisors of 56:

• The positive divisors of 56 are: 1, 2, 4, 7, 8, 14, 28, 56.
• We need b+ 7 to be one of these, and solve for b > 9:

– If b+ 7 = 14, then b = 14− 7 = 7 (which does not satisfy b > 9).
– If b+ 7 = 28, then b = 28− 7 = 21 (which satisfies b > 9).
– If b+ 7 = 56, then b = 56− 7 = 49 (which satisfies b > 9).

So, the valid b values are 21 and 49.
6. Sum the Valid b Values: The integer bases b > 9 for which 17b divides 97b are

21 and 49. The sum of these bases is:

21 + 49 = 70

SOLUTION

1. Convert Numbers:
• 17b in base b is 1 · b+ 7 = b+ 7.
• 97b in base b is 9 · b+ 7.

2. Divisibility Condition: We need b+ 7 to divide 9b+ 7. This means:

9b+ 7 ≡ 0 (mod b+ 7)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

3. Find Divisors: We need to find the values of b such that b + 7 divides 9b + 7.
We can express 9b+ 7 in terms of b+ 7:

9b+ 7 = 9(b+ 7)− 56

Therefore:
9b+ 7 ≡ −56 (mod b+ 7)

For the remainder to be 0, b + 7 must divide 56. The divisors of 56 are:
±1,±2,±4,±7,±8,±14,±28,±56. Since b > 9, we have b + 7 > 16. So
we only consider the divisors of 56 that are greater than 16:

• b+ 7 = 28 ⇒ b = 21

• b+ 7 = 56 ⇒ b = 49

So, the possible values for b are 21 and 49.
4. Sum the Valid Bases: The integer bases b > 9 for which 17b divides 97b are 21

and 49. The sum of these bases is:

21 + 49 = 70

Now, let’s verify the calculations:
• For b = 21:

– 1721 = 1 · 21 + 7 = 28

– 9721 = 9 · 21 + 7 = 189 + 7 = 196

– We check if 28 divides 196:

196÷ 28 = 7

Since 196 is divisible by 28, b = 21 works.
• For b = 49:

– 1749 = 1 · 49 + 7 = 56

– 9749 = 9 · 49 + 7 = 441 + 7 = 448

– We check if 56 divides 448:

448÷ 56 = 8

Since 448 is divisible by 56, b = 49 works.
Both b = 21 and b = 49 satisfy the conditions. Therefore, the sum of all such integer
bases b > 9 is:

21 + 49 = 70

FINAL ANSWER

The sum of all integer bases b > 9 for which 17b is a divisor of 97b is:

70

E PROMPTS

Zero-Shot Prompt

Let’s think step by step and output the final answer within \boxed{}.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Summarizer System Prompt

You are an expert problem-solver who generates strategic thinking guides in a specific
format.
Your task is to create a ”Flow of Thought” guide based on the user’s problem. This guide
should be a reusable, first-person internal monologue that reveals an expert’s strategic
thinking process.
Core Principles:

1. First-Person & Strategic: Write the ”Flow of thought” from an expert’s per-
spective (”I,” ”my”). Don’t just say what you’re doing, explain why you’re doing
it. What clue in the problem triggered this step?

2. General & Reusable: Abstract the strategy. The ”Flow of thought” should
be a general blueprint for solving this class of problems, not just one specific
instance.

3. Synthesize Takeaways: After detailing the thought process, distill the main
strategies into a list of concise, high-level ”Takeaways.”

Output Format: Your response MUST strictly follow this structure:

ANALYSIS

(Your analysis of the user’s request goes here.)

EXPERIENCE

Output Schema: The JSON object under ### Experience must conform to this
exact schema:

FLOW OF THOUGHT

A string containing the first-person internal monologue, formatted as a numbered list.
Avoid specific problem details.”,

TAKEAWAYS

A list of strings, where each string is a concise, high-level, and generalizable lesson not
specific to the problem, which can be applied to other problems. Below is An Example
of Experience

EXPERIENCE

FLOW OF THOUGHT

1. The request for the ’best’ or ’shortest’ route immediately signals a graph
problem. My first step is to model it as such.

2. The cities become nodes, and the roads are edges. Since there are travel times,
the edges are weighted.

3. With positive weights and a single destination, Dijkstra’s algorithm is the ideal
choice for finding the shortest path.

TAKEAWAYS

1. Keywords like ’best’, ’shortest’, or ’cheapest’ often point to shortest path graph
algorithms.

2. Always explicitly define your nodes, edges, and weights when modeling a prob-
lem as a graph.

3. For shortest path problems with non-negative weights, Dijkstra’s is the standard
algorithm.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Intra-Sample Feedback System Prompt

You are an AI expert in solution analysis. You will be given a problem and a previous
experience for solving it. Your primary task is to perform a detailed, step-by-step analysis
of the provided experience before reaching a final conclusion. You must show your
reasoning process first and follow this exact structure:

1. STEP-BY-STEP VERIFICATION

• Goal: Meticulously examine the logic and calculations of the provided experi-
ence.

• Action: Break down the experience into its individual steps. For each step,
explicitly state whether it is correct or not and briefly explain why.

Example for this section:
• Step 1 (Calculation of X): The experience calculated X as 5. This is correct.

The formula A+B=C was applied properly with the given values.

2. CONCLUSION

• Goal: State the final verdict based on your verification.
• Action: Based only on the findings in your ”Step-by-Step Verification,” declare

the overall experience as either Correct or Incorrect.

3. FINAL OUTPUT

Your response from this point forward depends on the verdict in your ”Conclusion.”
— If the Conclusion was CORRECT, provide the following:

VALIDATION

1. Confirmation: Reiterate that the previous experience and its solution are cor-
rect.

2. Explanation: Provide a holistic summary of why the solution is sound, refer-
encing the key correct steps you identified in the verification phase.

— If the Conclusion was INCORRECT, provide the following:

CORRECTED SOLUTION

1. Summary of Errors: Briefly summarize the mistakes you identified during
the ”Step-by-Step Verification.” Pinpoint exactly where the logic or calculations
went wrong.

2. New Step-by-Step Plan: Propose and execute a new, correct plan. Clearly out-
line each step of your new approach.

3. Final Answer: Present the final, verified answer from your corrected plan.

Inter-Sample System Prompt

You are an expert problem-solver. You will be given a problem and previous experiences
to guide your solution.
Your task is to assess the experiences and then solve the problem. Your response MUST
be organized into the following three parts:
Experience Evaluation:

• Analyze the provided experiences.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

• State whether you will follow some of them, modify them, or create a new plan
entirely.

• Provide a clear justification for your decision. If you are modifying the plan,
explain what changes you are making and why they are necessary for a more
effective or accurate solution.

Final Plan:

• Outline the definitive, step-by-step plan that you will execute. This should be
either the experience (if adopted) or your refined version.

Solution:

• Carry out your Final Plan step-by-step.

• Show all your work, calculations, and reasoning in detail.

• State the final answer clearly.

F THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this work, LLMs are primarily employed for two purposes: (1) polishing the language of the
manuscript to ensure grammatical correctness and coherence, and (2) assisting in the standardized
organization and documentation of the released codebase. Importantly, all conceptual development,
theoretical analysis, experimental design, and result interpretation are conducted independently by
the authors. The use of LLMs is strictly limited to auxiliary tasks, ensuring that the scientific con-
tributions of this paper remain entirely unaffected by such tools

25

	Introduction
	Related Work
	Challenges in Introducing Language Feedback
	LANPO: Language-And-Numerical Policy Optimization
	Methodology
	LANPO Modules and Training Objective
	Experience-Driven Inference at Test Time

	Experiments
	Benchmark Performance
	Empirical Understandings

	Discussion and Conclusion
	Additional Results
	Discussion on Behavior Collapse
	More Evaluation Results
	Training Curves

	Experimental Details
	SFT Training
	RL Training
	Preliminary Study

	Implementation Details
	Calculation of Relevance Score
	Weighted Sampling
	Format Reward

	Representative Conversations
	Prompts
	The Use of Large Language Models (LLMs)

