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Abstract

There exist well-developed frameworks for causal
modelling, but these require rather a lot of human
domain expertise to define causal variables and per-
form interventions. In order to enable autonomous
agents to learn abstract causal models through in-
teractive experience, the existing theoretical foun-
dations need to be extended and clarified. Existing
frameworks give no guidance regarding variable
choice / representation, and more importantly, give
no indication as to which behaviour policies or
physical transformations of state space shall count
as interventions. The framework sketched in this
paper describes actions as transformations of state
space, for instance induced by an agent running a
policy. This makes it possible to describe in a uni-
form way both transformations of the micro-state
space and abstract models thereof, and say when
the latter is veridical / grounded / natural. We then
introduce (causal) variables, define a mechanism
as an invariant predictor, and say when an action
can be viewed as a “surgical intervention”, thus
bringing the objective of causal representation &
intervention skill learning into clearer focus.

1 INTRODUCTION

Most work in causal inference is aimed at helping scientists
make causal judgements, particularly when this is difficult
due to lack of interventional data and confounding [Pearl,
2009, Peters et al., 2017]. In such applications, there is
usually a fairly clear idea about the meaning of the causal
variables (e.g. employment rate, cholesterol level, etc.), and
some intuitive understanding of what is meant by “interven-
tion” (e.g. raise minimum wage, provide treatment, etc.).

*Qualcomm AI Research is an initiative of Qualcomm Tech-
nologies, Inc.

As is clear from these examples, one typically relies on a
lot of human perception capabilities, concepts, knowledge,
and skills, which are not available to an autonomous agent
learning about its environment through interaction. Such an
agent must learn not only a causal representation [Schölkopf
et al., 2021], but as we argue here, also a set of intervention
skills (policies/options [Sutton et al., 1999]) to set mecha-
nisms for causal variables, whenever possible. Furthermore,
it would be nice if these intervention skills were “surgical”,
so that they enable simple SCM-like causal reasoning.

Here one runs into foundational issues that must be cleared
up before we can get to work. When can a policy be seen as
an intervention that sets a mechanism for a variable, what
does it mean to do so “surgically”, and what does it even
mean to say that a mapping is a “mechanism”? A common
view is that intervention in MDPs means that the agent
chooses a low-level action at each time step, but this does
not lead to very interesting or meaningful interventions in
case the actions are e.g. a robot’s motor commands.

We propose (Sec. 2) to model actions as transformations
doX(a) : X → X of a state space X induced by running a
policy a, and consider a process procY : X → Y that hap-
pens after taking some actions. The agent also has a model
of the actions and process, which can be seen as an abstrac-
tion (i.e. natural transformation) of the underlying system
dynamics (Sec. 2.2). Like SCMs, our models are essentially
deterministic but one can easily incorporate uncertainty by
putting distributions on noise variables and pushing them
forward through deterministic maps (Sec 2.3).

In Sec. 3 we introduce (causal) variables Yi, and show when
the actions doX(a) behave as surgical interventions that
set a mechanism for a variable. We show how one can en-
code any SCM in our framework, so nothing is lost and our
framework really does capture “causality”. The ideas are il-
lustrated using the example of a robot with arm and camera,
manipulating a set of dominoes. In Sec. 4 we discuss related
work along with implications for causal representation &
intervention skill learning and foundations of causality.
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2 MODELS OF ACTIONS & OUTCOMES

Consider an agent interacting with an environment. Assum-
ing that any stochasticity arises from partial observability,
we can model both agent and environment as deterministic
functions env : E × A → E × O and agent : O ×M →
A ×M (policy), where E is the environment state, A the
action, O the observation, and M the agent memory state.
Composing these functions appropriately, we obtain a map
X → X whereX = E×A×M , as shown below. This map
tells us what happens to X when we run the policy defined
by agent for one step. More generally, running the policy
a for a fixed number of steps, or until some termination
condition is met (as in the options framework1 Sutton et al.
[1999], Precup [2000]), we obtain a map doX(a) : X → X .
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From hereon, we will abstract away from the details
of the agent/environment loop and simply discuss poli-
cies/actions/options/skills/interventions a and the mappings
doX(a) : X → X that they induce. We will assume that
our agent has some elementary actions a, b, . . . called gen-
erators. We can do one action after another, so we also
have composite actions a = bc (first c, then b), and the
corresponding mapping is defined by function composition:
doX(bc) = doX(b) doX(c) (Throughout this paper, we will
omit the composition symbol ◦). For the characteristic phe-
nomena of causality to arise, it is necessary to consider a
process that happens after acting, which is also modeled as
a map procY : X → Y . This map produces for each state
in X an outcome in Y . Note that at this point X and Y are
bare sets, not to be thought of as consisting of variables.

We may or may not be able to choose to initiate the process,
but in any case we assume that during the process we have
no ability or intention to intervene or observe. We would still
like to influence the outcome though (because the outcome
may have a value to us), which we could do by first perform-
ing actions that “change the mechanisms” determining the
outcome. Examples include giving a patient treatment (and
then letting the physiological process unfold), removing one
domino from a chain before initiating the process by push-
ing another, etc. We would like to emphasize that one may
very well wish to reason about taking actions during or after
procY , but here our only objective is to find a minimalistic
setup where we can study grounded causal reasoning.

1Unlike general options, we assume for simplicity that all
actions can always be performed

The outcome of taking an action is what we get by doing
the action and then running the process:

Definition 2.1 (Outcome). The outcome of action a is:

outcomeaY = procY doX(a) : X → Y. (1)

Note that the outcome is a map, because the answer to the
question “what outcome do I get if I do(a)?” depends on
the state. Hence we trivially have counterfactual / rung 3
content built in [Pearl and Mackenzie, 2018, Bareinboim
et al., 2022]; a map tells us what the output would be for any
input. Outcome maps are similar to potential response maps
Ya(u) of SCMs (Pearl [2009], Ch. 7), which depend on
exogenous variables u and intervention a (which determines
the active mechanisms). However, as we explain shortly, in
our setup the state determines both the exogenous variables
and the mechanisms that are active, and interventions act
on the latter. Indeed it is clear that whatever is meant by
“mechanism”, it must be something that depends on the state.
This is because the “mechanisms” are supposed to determine
the outcome of the process, and both classical physics and
our agent/environment model tell us that actually the future
outcome is determined by the present state.

Let us summarize the discussion above with a definition:

Definition 2.2 (Action Model). An action model M =
(X,Y,A, procY ) consists of a set of states X , outcomes
Y , a process procY : X → Y and a collection A of gen-
erator actions doX(a) : X → X (including the identity
doX(id) = idX ), and all composites of these maps. Com-
posite actions are denoted doX(ab) = doX(a)doX(b), and
outcomes by outcomea1···an

Y = procY doX(a1 · · · an).

2.1 RUNNING EXAMPLE: ROBO-DOMINOES

One example that we will use throughout the paper is that of
a robot arm manipulating a configuration of dominoes using
visual input from a camera and skills/policies that execute
low-level motor actions. Here X is some set of physical
configurations of dominoes (plus agent state) where the
model is deemed applicable, and the actions/skills could
include: setting up the dominoes in a particular configura-
tion (initialization, e.g. to a chain, tree, or loop), putting a
barrier between dominoes / removing one, picking / placing
a domino, moving a domino to some position, and desig-
nating (e.g. in agent memory) a domino to be pushed and
the direction of pushing (“choosing a push”). The process
procY consists of pushing the designated domino and wait-
ing for everything to fall and then recording the state. Note
that here Y is a subset of X , but none of our results will
depend on this.

It is intuitively obvious that these actions, when executed
skillfully, are surgical interventions. Much of the rest of
this paper is dedicated to elucidating the general mathe-
matical properties satisfied by such actions that justify this



interpretation. One may already notice that interventions on
(what we intuitively think of as) independent mechanisms
commute, while interventions targeting the same variable
overwrite. Finally, note that although one can think about
a particular domino setup (with chosen push) as a causal
graph, one cannot easily describe even this relatively sim-
ple domain using a single graph. For instance, when we
designate a different domino and direction to be pushed,
many arrows can change / reverse, completely changing the
graph. Similarly, judiciously turning a domino at a fork that
leads to a loop can reverse all the arrows in the loop. So
we see that although graphs can play an important role in
causal reasoning about actions, common-sense reasoning
capabilities require a more general kind of structure (e.g. a
small category). Before we begin our discussion of causal
variables and mechanisms though, we first need to discuss
the relation between our actions as policies and the agent’s
model thereof.

2.2 NATURAL MAPS BETWEEN MODELS

Usually we do not have access to the full state and out-
come, and we are not interested in modelling the system in
complete detail. For instance, dominoes can be described in
an arbitrarily detailed manner, but normally we only care
about if and which way they fall. Let us therefore denote
the unknown true systemM = (X,Y ,A, procY ) whose ac-
tions are induced by agent policies, and a simplified model
M = (X,Y,A, procY ) that the agent can use to reason
about the outcome of actions. One can think of X as the
computer memory state of a simulation, or a classical physi-
cal state, and X,Y as latent/representation spaces.

The specification of these sets and maps completely defines
the two models, but theoretically the job of modelling is
not done until we specify how the model state and outcome
ought to be related to the system state and outcome. For
this we introduce maps x : X → X and y : Y → Y . For
M to be a perfectly accurate abstraction ofM (i.e. to be
veridical), x and y should define a natural transformation
between the two models, which means that ∀a ∈ A the
following diagram commutes:

X X Y

X X Y

x

procYdoX(a)

x

doX(a)

y

procY

(2)

That this diagram commutes means that if we follow two
directed paths from one node to another, the corresponding
composite maps are equal. For instance, we can see that
x doX(a) = doX(a)x and y procY = procY x. Intuitively
the first equation tells us that if we do an action in the system
X (e.g. by running a policy) and then evaluate x : X → X ,

we get the same thing as if we first evaluate x and then
perform the corresponding action in our model. Similarly,
measuring x and then predicting via procX is the same as
first running the true process procY and then measuring y.

We emphasize that in existing causal modeling frameworks,
one can only define veridicality in natural language, whereas
in our framework it is a mathematical relation between func-
tions. This is because existing frameworks have no analog
of the action doX in the micro-state space. Thus, once we
define causal variables (Sec. 3), we have precisely defined
for the first time what it means for a causal model to be
veridical / grounded. The concept of natural transformation
can also be used for model abstraction, itself an important
topic Abel [2022], Geiger et al. [2021], Chalupka et al.
[2016], Beckers et al. [2019], Beckers and Halpern [2019],
de Haan et al. [2020]. Our definition automatically captures
the idea that the compositional structure of interventions
should be preserved Rubenstein et al. [2017]. As is evident
from the equation doX(a)x = x doX(a), naturality is a
generalization of equivariance, which is the central concept
in geometric DL [Cohen, 2021, Bronstein et al., 2021].

2.3 UNCERTAINTY AND VIRTUAL ACTIONS

As in classical physics, the model state X contains all in-
formation necessary to determine Y , and both X and Y
are deterministic functions of the underlying system micro
state/outcome. This is not to say that X or Y are fully ob-
servable or that we need to have a perfect predictor procY .
In the more likely partially observed scenario, one could
endow X with the structure of a probability space, and view
x : X → X and y : Y → Y as random variables (which are
indeed defined as maps in measure-theoretic foundations of
probability Rosenthal [2006]). In this paper we will not be
concerned with partial observability and beliefs but we note
that the correctness of any probabilistic inference about X
or Y can only be judged once they are defined as random
variables (measurable maps) x, y. For instance, even if a
domino is visually occluded by some object, it still has a
definite physical state that ought to be included in X and Y .

Although we have motivated the definition of actions as
maps X → X via policies, one could also admit actions in
the modelM for which one does not actually have a policy
that implements it inM (indeed, for many maps there will
not exist such a policy in a given environment). For instance,
people are very well able to consider questions such as
“what would happen to the tides if we removed the moon?”,
without knowing how to actually do the latter [Pearl, 2019].
Which virtual actions are to be admitted is currently not
clear, but one might argue only physically possible ones
are of interest. It has been suggested that the distinction
between possible and impossible transformations is the es-
sential content of physical laws Deutsch [2012], Marletto
[2016] (e.g. transformations must conserve energy).



3 CAUSAL VARIABLES, MECHANISMS
& INTERVENTIONS

Actions change the state and outcome, but intervention is
fundamentally about changing mechanisms. In order to dis-
cuss mechanisms, we need to split the outcome Y into vari-
ables, so let us assume that Y =

d
i∈I Yi where each Yi

is a set of values for the i-th variable (e.g. numbers but
not necessarily). The product comes with projection maps
πi : Y → Yi that forget all variables except i, and similarly
for sets of variables I we have πI : Y → YI and for sub-
sets I ⊆ J we have πJ

I : YJ → YI satisfying πJ
I πJ = πI .

Having defined variables we can consider the outcome of
an action on a subset of variables:

outcomeaYJ
≡ outcomeaJ ≡ πJ procY doX(a) : X → YJ .

(3)

It is important to note that although the maps procY and
outcomeaY output all the Yi variables at once, this should
not be taken to mean that they describe simultaneous events.
We merely assume that at some point in time, when the
process has ended, there is a record of all the variables
Rovelli [2020].

For the unknown and non-factored set of system outcomes
Y , we may assume without loss of generality that all out-
comes are possible, i.e. that procY : X → Y is surjective
so that for each outcome there is a state in X that results
in that outcome (otherwise just restrict Y ). Similarly we
shall assume that x : X → X is surjective, i.e. that all
model states are possible to obtain. However in general a
“disentangled” choice of variables y : Y → uiYi will not be
surjective, so that our model contains “impossible outcomes”
– joint assignments to the variables Yi that can never occur
as a result of running procY and then evaluating y.

For instance, if we want to represent the state of each in-
dividual domino by a variable Yi, we will find that each
domino can be in every position, but no two dominoes can
be in the same position at once, nor is it possible that one
domino falls flat while the next one stays upright. Similarly,
the ideal gas law says that only certain values of temperature,
pressure, and volume are jointly possible for a particular
type and amount of gas. So we see that the image of procY ,
i.e. the set of possible outcomes, represents an important
piece of knowledge about our model of the system.

Instead of considering possible outcomes of procY , one
can consider the image for any outcomeaJ map. Notice that
outcomeaY is obtained from procY by precomposition with
doX(a), and it is a general fact about functions that the act
of precomposing a function can only reduce (not increase)
the set of possible outcomes (i.e. image). In other words,
by taking action before procY , we can make sure that the
outcome is in a restricted set of possible outcomes associated
with the action.

The observation that disentangled representations often con-
tain impossible joint outcomes has important implications
for (causal) representation learning. Indeed, methods such
as VAEs with Gaussian priors Kingma and Welling [2013],
Rezende et al. [2014] attempt to densely pack the represen-
tation space, and learned representations are often evaluated
by their ability to interpolate between data points, or re-
combine different variables from two datapoints (e.g. the
hair style from one image and the facial expression from
another). Whereas for some intuitively meaningful variables
(such as facial expression and hair style, neither of which
causes the other, but which can be controlled independently)
all combinations are possible (i.e. have independent support;
Wang and Jordan [2021]), this is often not the case. So it
is clear that in causal representation learning, we should
not always aim to fill up the representation space Y , nor
assume that an ideal representation should allow arbitrary
interpolation/recombination operations without venturing
into impossible territory.

3.1 DETERMINATION & EFFECTIVE ACTIONS

The presence of impossible joint outcomes makes it pos-
sible that, even in the absence of subjective probabili-
ties/beliefs, one variable YI can have information about
another variable YJ , in the sense that knowing YI rules out
certain values for YJ . In general, a subset of a product, e.g.
im outcomeaY ⊆

d
i Yi, is called a relation. When there is

for each possible outcome YI only one possible outcome
YJ , we have a functional relation, which we call:

Definition 3.1 (Determination). Let a be an action se-
quence and let I, J be (sets of) variables. We say that
outcomeaJ is determined by outcomeaI via fa : YI → YJ if
the following diagram commutes:

YI

X YJ

outcomeaI
fa

outcomeaJ

i.e.outcomeaJ = fa outcomeaI

The determination is unique if there is exactly one such fa,
which implies that outcomeaI is surjective.

It is tempting to interpret a as setting mechanism fa for YJ ,
but as we will see shortly, determination is necessary but
not sufficient for fa to deserve the name mechanism.

If outcomeaI determines outcomeaJ via fa, then for any b:

outcomeabJ = outcomeaJdo(b) = fa outcomeabI .

In other words, the determination relation is invariant to
precomposition (doing b before a). This makes sense be-
cause determination says that wherever we start in X , after
doX(a) and procY , we can tell the outcome YJ from YI
using fa. However, determination relations are in general



not invariant to doing b after a (but before procY ), and this
observation will be key to understanding mechanisms.

In our example, let Yi be the state of domino i after push-
ing the designated domino and waiting. An action such as
placing domino i at some position will not in general lead
to determination, because the outcome for domino j 6= i
depends completely on the rest of the state. However, this
action might result in determination in some context, i.e. a
subset Xc ⊆ X . For instance, there are sets of states where
if newly placed domino i falls, then also domino j falls. The
context of being in a state “after s” (e.g. initializing) can be
described as Xs = im doX(s) or simply context s.

Initialization itself is an action that satisfies determination
relations unconditionally. Whatever configuration was there
before, it gets replaced by one of our choice. Perhaps our
robot has the skill to set the high-level state to x exactly,
or maybe the setup will vary a bit based on e.g. actuator
noise YI = U which we control nor observe, or maybe
there is an observable but not controllable instruction U ′

for how to place the dominoes. In any case, we see that af-
ter initialization, usually very many determination relations
hold. If the state is exactly x, there is one possible outcome
y = procY x, and so every variable determines every other
one in a highly non-unique way. Hence it is clear that deter-
mination is necessary but not sufficient to speak of causation
and mechanisms.

In SCM theory, one typically considers atomic interventions
do(Vj = v̄j) that set a variable to a value. A value can be
viewed as a map v̄j : 1→ Vj , where 1 is the one-object set,
so we can describe this as a special kind of determination:

Definition 3.2 (Effectiveness). We say that a is effective
at setting āJ : 1 → VJ if outcomeaJ is determined by the
empty product 1 (no variables) via āJ , i.e. outcomeaJ =
āJ outcomea0 (where outcomea0 = π0 is the unique map
from X to 1). In simple terms, outcomeaJ = constāJ

is a
constant map with value āJ . We say that a is effective at
setting āJ : 1→ YJ in context s, if outcomeasJ = constāJ

.

3.2 INVARIANT MECHANISMS

The determination relations that we intuitively think of as
“mechanisms” hold not just for the outcome maps associated
with one intervention a but many. For example, after setting
up a domino configuration and choosing a domino to be
pushed, it could be that an “ancestor domino” i determines
descendant j, but a method of predicting outcome j using i
does not work anymore if we remove a domino in between
the two. However, if j comes right after i, then the end state
of j is determined by the end state of i, and this continues
to be true if we perform interventions such as taking away
previous or later dominoes, placing barriers (except between
i, j), or changing the domino to be pushed (though not if
we push a downstream domino backwards).

The exceptions we noted here can be thought of as inter-
ventions that change the mechanism(s), meaning that the
old mechanism becomes obsolete (i.e. cannot be used for
prediction anymore), and a new one (with its own invari-
ance properties) is established for the target variable. For an
effective (i.e. atomic) intervention, the new mechanism is
a constant, while in general it may be any function [Correa
and Bareinboim, 2020]. A good (surgical) intervention will
thus replace an old mechanism for Yi by a new one, and
furthermore, leave the mechanisms for other variables intact.
Furthermore, it would be nice if in the new context (after the
intervention), the same invariances hold, so other surgical
interventions remain surgical.

Strictly speaking, in our theory “changing the mechanism”
happens in the agent’s modelM and not in the underlying
systemM, because Y does not have variables that could be
the domain/codomain of a mechanism2.

Let us formalize this kind of invariance:

Definition 3.3 (Invariance of Determination). Let a, b be
actions, āJ : YI → YJ a mapping, and assume that the
determination relation outcomeaJ = āJ outcomeaI holds. If
outcomebaJ = āJ outcomebaI also holds, we say that b leaves
the determination via āJ invariant.

If in some context Xc a certain determination via s̄j :
YPasj → Yj holds and is invariant to many later actions, this
would be useful to know about and we could then call s̄j
a mechanism active in this context. The mechanism, along
with the set of actions that leave it invariant, is thus a piece
of knowledge about Xc that can be used to reason about
actions or other changes in this context. Relative to a set of
mechanisms, an action can be viewed as a surgical interven-
tion if it invalidates exactly one mechanism, and if in the
new context a new mechanism is installed (meaning that the
target variable is determined via this mechanism, and this
relation is invariant).

3.3 STRUCTURAL CAUSAL MODELS

In our general setup, the variables, interventions, outcomes,
and predictors/mechanisms could stand in all sorts of rela-
tions to each other, and we have sketched some desirable
relations such as invariant determination and surgicality.
Next we show how to encode an SCM in our framework,
yielding a model with particularly simple relations. It should
be noted though that for a general system it is not guaranteed
that one can usefully model it in this way. Hence learning
an SCM for a given set of variables is only part of the prob-
lem; finding the variables, figuring out which outcomes are

2One can perhaps find a natural isomorphism to a model
with variables, but probably not canonically. In other words, as
in physics, one should usually not view the coordinates used to
describe a system as intrinsic.



possible and impossible, learning intervention skills, etc., is
likely to be at least as important for AI.

Let (U, V, F ) be an SCM which we wish to encode in our
framework. One defines X = M × U , where U =

d
i Ui

are exogenous variables and M =
d

iMi is a space of
mechanisms for each endogenous variable Vi. Each variable
can be determined by its default (initialized / unintervened)
mechanism fi or intervened on to equal a fixed value in Vi,
so Mi = Vi ∪ {fi}. The space of outcomes is Y = U × V ,
and the process is defined as procY (u,m) = (u, Vm(u)),
where Vm(u) is the potential response defined by the SCM
for intervention condition m and exogenous u (i.e. the so-
lution to the equations indicated by m). One can define an
initialization intervention doX(s) that maps everything to
m0 = (f1, . . . , fn). For each value of each Vi, one can de-
fine an effective intervention vi that sets the corresponding
Mi to that value, while leaving U and other Mj unchanged.

It is clear that interventions on different variables commute
(ab = ba), interventions on the same variable overwrite
(ab = a), and that U is invariant. Furthermore, since the
potential response is defined as the solution to a set of struc-
tural equations, the outcome procY (m,u) satisfies all the
equations corresponding to m, as required in the original
SCM (U, V, F ). Since doX(mj) sets Mj to a particular
mechanism gj = fj or gj = vj , it follows that the determi-
nation relation outcomemj

j = gjoutcomemj

Paj×Uj
holds. It is

easy to see that this determination relation is invariant.

If one has designed an SCM by hand, it is probably not
useful to encode it in this way. However, when the causal
variables, interventions, and mechanisms are to be learned
from interactive experience, or when a more general kind of
model of interventions is required (as in the general domino
domain, where a single DAG is not enough), a setup like
ours may be more appropriate. Furthermore, because our
framework is based on maps, one automatically obtains
a notion of natural transformation between models which
can be used to define veridicality and model abstraction. Fi-
nally, this encoding shows that our models are easily general
enough to describe any process described by SCMs, while
allowing one to reason about the order of actions and more.

4 DISCUSSION & RELATED WORK

Although our work touches on a lot of topics, it was initiated
to better understand the challenge of causal representation
learning Schölkopf et al. [2021] and skill learning Eysen-
bach et al. [2018], Sharma et al. [2020], and their relation
Bengio et al. [2017], Weichwald et al. [2022]. Causal rep-
resentation learning has recently received a lot of attention
Locatello et al. [2018], Locatello et al. [2020], Brehmer et al.
[2022], Lippe et al. [2022], Mitrovic et al. [2020], Wang
and Jordan [2021], Ke et al. [2020], Thomas et al. [2017].
Most works in this area focus on learning only the causal

representation, using various assumptions on the data gener-
ating process, sometimes including interventional data. As
such, these works do not consider intervention policies.

Earlier theoretical work has identified and grappled with the
problem of variable choice, but there is no complete theory
yet [Eberhardt, 2016, Spirtes, Casini et al., 2021, Wood-
ward, 2016]. As discussed in our paper, the notion of natural
transformation coupled with a definition of intervention
as mapping can be used to say what a permissible choice
of variables is. A related issue is that of ambiguous ma-
nipulations (e.g. setting Total Cholesterol, whose outcome
depends on the level of HDL and LDL cholesterol), and has
been studied in Spirtes and Scheines [2004]. Defining an
intervention as a mapping on a micro state-space completely
eliminates ambiguity, although it is impractical for most
scientific applications of causal modelling. Nevertheless our
framework should be helpful in understanding the issue. The
relation between causality and invariance was studied by
Woodward [1997], Cartwright [2003], Peters et al. [2015],
Arjovsky et al. [2019].

Although both atomic and soft interventions (replacing a
mechanism) have been considered in the literature [Correa
and Bareinboim, 2020], it was not known until now when
one can describe a process at the microscopic (X) level
of description as an atomic or soft intervention in a causal
model – a question of fundamental importance to causal
representation & intervention skill learning. There is inter-
esting work showing how causal models can emerge from
systems of differential equations Mooij and Heskes [2013],
Bongers et al. [2018], Blom and Mooij [2021], Rubenstein
et al. [2016]. These works differ from ours in that we aim to
describe interventions themselves as composable processes,
and that our framework is more basic, relying on bare sets
and maps instead of differential equations.

5 CONCLUSION

We have presented a natural theory of causation and inter-
vention, based on the idea that an intervention must be a
physically possible transformation of the state space of a
system, for instance produced by an agent running a policy.
We answer the question what it should mean for such a
transformation to count as a surgical intervention setting an
invariant mechanism for a variable. Our theory reconstructs
the theory of SCMs, but grounds it in actual behaviours and
generalizes it (for in our framework one can easily describe
actions that are not surgical interventions, drastically change
the graph, and express more knowledge about actions such
as non-commutativity). Conceptually, the notion of inter-
vention is clarified by giving it a concrete interpretation as a
(physical) process, and mechanism as an invariant predictor.
From an AI perspective, our work provides the beginnings
of a theoretical foundation for causal representation & inter-
vention skill learning.
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