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ABSTRACT

Image copy detection and retrieval from large databases leverage two components.
First, a neural network maps an image to a vector representation, that is relatively
robust to various transformations of the image. Second, an efficient but approxi-
mate similarity search algorithm trades scalability (size and speed) against quality
of the search, thereby introducing a source of error. This paper improves the
robustness of image copy detection with active indexing, that optimizes the inter-
play of these two components. We reduce the quantization loss of a given image
representation by making imperceptible changes to the image before its release.
The loss is back-propagated through the deep neural network back to the image,
under perceptual constraints. These modifications make the image more retriev-
able. Our experiments show that the retrieval and copy detection of activated
images is significantly improved. For instance, activation improves by +40% the
Recalll @1 on various image transformations, and for several popular indexing
structures based on product quantization and locality sensitivity hashing.

1 INTRODUCTION

The traceability of images on a media sharing platform is a challenge: they are widely used, easily
edited and disseminated both inside and outside the platform. In this paper, we tackle the corre-
sponding task of Image Copy Detection (ICD), i.e. finding whether an image already exists in the
database; and if so, give back its identifier. ICD methods power reverse search engines, photography
service providers checking copyrights, or media platforms moderating and tracking down malicious
content (e.g. Microsoft’s PhotoDNA (2009) or Apple’s NeuralHash (2021)). Image identification
systems have to be robust to identify images that are edited (cropping, colorimetric change, JPEG
compression ...) after their release (Douze et al., 2021; Wang et al., 2022).

The common approach for content-based image retrieval reduces images to high-dimensional vec-
tors, referred to as representations. Early representations used for retrieval were hand-crafted fea-
tures such as color histograms (Swain & Ballard, 1991), GIST (Oliva & Torralba, 2001), or Fisher
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Figure 1: Overview of the method and latent space representation. We start from an original image I, that
can be edited ¢(-) in various ways: its feature extraction f(¢(I,)) spawns the shaded region in the embedding
space. The edited versions should be recoverable by nearest neighbor search on quantized representations. In
the regular (non-active) case, f(I,) is quantized by the index as 0. When the image is edited, t(I,) switches
cells and the closest neighbor returned by the index is the wrong one ©. In active indexing: I, is modified in
an imperceptible way to generate 1™ such that f(I*) is further away from the boundary. When edited copies
f(t(I*)) are queried, retrieval errors are significantly reduced.
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Vectors (Perronnin et al., 2010). As of now, a large body of work on self-supervised learning focuses
on producing discriminative representations with deep neural networks, which has inspired recent
ICD systems. In fact, all submissions to the NeurIPS2021 Image Similarity challenge (Papakipos
et al., 2022) exploit neural networks. They are trained to provide invariance to potential image
transformations, akin to data augmentation in self-supervised learning.

Scalability is another key requirement of image similarity search: searching must be fast on large-
scale databases, which exhaustive vector comparisons cannot do. In practice, ICD engines leverage
approximate neighbor search algorithms, that trade search accuracy against scalability. Approxi-
mate similarity search algorithms speed up the search by not computing the exact distance between
all representations in the dataset (Johnson et al., 2019; Guo et al., 2020). First they lower the num-
ber of scored items by partitioning the representation space, and evaluate the distances of only a
few subsets. Second, they reduce the computational cost of similarity evaluation with quantization
or binarization. These mechanisms make indexing methods subject to the curse of dimensional-
ity. In particular, in high-dimensional spaces, vector representations lie close to boundaries of the
partition (Bohm et al., 2001). Since edited versions of an original image have noisy vector represen-
tations, they sometimes fall into different subsets or are not quantized the same way by the index.
All in all, it makes approximate similarity search very sensitive to perturbations of the edited image
representations, which causes images to evade detection.

In this paper, we introduce a method that improves similarity search on large databases, provided that
the platform or photo provider can modify the images before their release (see Fig. 1). We put the
popular saying “attack is the best form of defense” into practice by applying image perturbations and
drawing inspiration from adversarial attacks. Indeed, representations produced with neural networks
are subject to adversarial examples (Szegedy et al., 2013): small perturbations of the input image
can lead to very different vector representations, making it possible to create adversarial queries
that fool image retrieval systems (Liu et al., 2019; Tolias et al., 2019; Dolhansky & Ferrer, 2020). In
contrast, we modify an image to make it more indexing friendly. With minimal changes in the image
domain, the image representation is pushed towards the center of the indexing partition, rising the
odds that edited versions will remain in the same subset. This property is obtained by minimizing
an indexation loss by gradient descent back to the image pixels, like for adversarial examples. For
indexing structures based on product quantization (Jegou et al., 2010), this strategy amounts to
pushing the representation closer to its quantized codeword, in which case the indexation loss is
simply measured by the reconstruction error. Since the image quality is an important constraint
here, the perturbation is shaped by perceptual filters to remain invisible to the human eye.

Our contributions are:
* anew approach to improve ICD and retrieval, when images can be changed before release;

* an adversarial image optimization scheme that adds minimal perceptual perturbations to images
in order to reduce reconstruction errors, and improve vector representation for indexing;

 experimental evidence that the method significantly improves index performance.

2  PRELIMINARIES: REPRESENTATION LEARNING AND INDEXING

For the sake of simplicity, the exposure focuses on image representations from SSCD net-
works (Pizzi et al., 2022) and the indexing technique IVF-PQ (Jegou et al., 2010), since both are
typically used for ICD. Extensions to other methods can be found in Sec. 5.4.

2.1 DEEP DESCRIPTOR LEARNING

Metric embedding learning aims to learn a mapping f : R*"*® — R9 such that measuring the
similarity between images I and I’ amounts to computing the distance ||f(I) — f(I’)||. In recent
works, f is typically a neural network trained with self-supervision on raw data to learn metri-
cally meaningful representations. Methods include contrastive learning (Chen et al., 2020), self-
distillation (Grill et al., 2020; Caron et al., 2021), or masking random patches of images (He et al.,
2022; Assran et al., 2022). In particular, SSCD (Pizzi et al., 2022) is a training method specialized
for ICD. It employs the contrastive self-supervised method SimCLR (Chen et al., 2020) and entropy
regularization (Sablayrolles et al., 2019) to improve the distribution of the representations.
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2.2 INDEXING

Given a dataset X = {z;}"; C RY of d-dimensional vector representations extracted from n
images and a query vector x4, we consider the indexing task that addresses the problem:
x* 1= argmin ||z — z4]|. (1)
reX
This exact nearest neighbor search is not tractable over large-scale databases. Approximate search

algorithms lower the amount of scored items thanks to space partitioning and/or accelerate the com-
putations of distances thanks to quantization and pre-computation.

Space partitioning and cell-probe algorithms. As a first approximation, nearest neighbors are
sought only within a fraction of X’: at indexing time, X is partitioned into X = U?Zl X;. At search

time, an algorithm Q : R? — {1, ..,b}*" determines a subset of k’ buckets in which to search, such
that &’ = |Q(z,)| < b, yielding the approximation:

argmin ||z — x4l & argmin ||z — x4 (2)
zEX QJEUng(zq) Xi

A well known partition is the KD-tree (Bentley, 1975) that divides the space along predetermined
directions. Subsequently, locality sensitive hashing (LSH) (Indyk & Motwani, 1998; Gionis et al.,
1999) and derivative (Datar et al., 2004; Paulevé et al., 2010) employ various hash functions for
bucket assignment, which implicitly partitions the space.

We focus on the popular clustering and Inverted Files methods (Sivic & Zisserman, 2003), herein
denoted by TVF. They employ a codebook C = {c;}¥_, < R? of k centroids (also called “visual
words” in a local descriptor context), for instance learned with k-means over a training set of repre-
sentations. Then, ) associates x to its nearest centroid g.(z) such that the induced partition is the set
of the k& Voronoi cells. When indexing x, the IVF stores x in the bucket associated with ¢; = g.(x).
When querying z,, IVF searches only the &’ buckets associated to centroids ¢; nearest to z.

Efficient metric computation and product quantization. Another approximation comes from
compressed-domain distance estimation. Vector Quantization (VQ) maps a representation = € R?
to a codeword ¢(z) € C = {C;}X,. The function ¢; is often referred to a quantizer and C; as a
reproduction value. The vector x is then stored as an integer in {1, .., K'} corresponding to gs(z).
The distance between x and query x4 is approximated by ||g¢(«) — z4||, which is an “asymmetric”
distance computation (ADC) because the query is not compressed. This leads to:

argmin ||z — z4|| ~ argmin ||gr(z) — 24| 3)
TEX zeX

Binary quantizers (a.k.a. sketches, Charikar (2002) lead to efficient computations but inaccu-
rate distance estimates (Weiss et al., 2008). Product Quantization (PQ) (Jegou et al., 2010) or
derivatives Ge et al. (2013) offer better estimates. In PQ, a vector z € R? is split into m
subvectors in R¥™: 2 = (u',...,u™). The product quantizer then quantizes the subvectors:
g x> (gt (ub),. .. q"’( ™). If each subquantizer ¢’ has K, reproduction values, the resulting

quantizer gr has a high K K;)™. The squared distance estimate is decomposed as:
lgr () = a4l* = leq (W) — g |*. S

This is efficient since x is stored by the index as g¢(x) which has m log, K bits, and since sum-
mands can be precomputed without requiring decompression at search time.

3 ACTIVE INDEXING

Active indexing takes as input an image I,, adds the image representation to the index and outputs
an activated image I* with better traceability properties for the index. It makes the feature repre-
sentation produced by the neural network more compliant with the indexing structure. The activated
image is the one that is disseminated on the platform, therefore the alteration must not degrade the
perceived quality of the image.
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Images are activated by an optimization on their pixels. The general optimization problem reads:

I* := argmin £ (I;1,), (5)
Iec(l,)

where £ is an indexation loss dependent on the indexing structure, C(I,) is the set of images per-
ceptually close to I,,. Algorithm 1 and Figure 1 provide an overview of active indexing.

3.1 IMAGE OPTIMIZATION DEDICATED TO IVF-PQ (“ACTIVATION")

The indexing structure IVF-PQ involves a coarse
quantizer ¢, built with k-means clustering for space
partitioning, and a fine product quantizer g on the
residual vectors, such that a vector z € R? is ap-

Algorithm 1 Active indexing for IVF-PQ

Input: /,: original image; f: feature extractor;
Add z, = f(I,) to Index, get q(x,);
Initialize 69 = O(cxhxw)

proximated by ¢(z) = qc(z) + gr (v — qc()). fort=0,...,N — 1do

We solve the optimization problem (5) by itera- Iy IO(}')O“HJND([O) © tanh(d¢)
tive gradient descent, back-propagating through the ? j__ Ef (é 4(2)) + ALi(5)
neural network back to the image. The method Sio ef 5, 1 0 % Adam(lﬁ)t

is classically used in adversarial example genera- end for

tion (Szegedy et al., 2013; Carlini & Wagner, 2017) Output: [* = Iy activated image
and watermarking (Vukoti¢ et al., 2020; Fernandez

et al., 2022).

Given an original image I,, the loss is an aggregation of the following objectives:
Li(w,q(z,)) = [l — q(zo)|*  withz, = f(Lo), = = f(I) (6)
Li(1,1,) = |I - L|> (7)

L; is a regularization on the image distortion. Ly is the indexation loss that operates on the represen-
tation space. Ly is the Euclidean distance between x and the target ¢(z,) and its goal is to push the
image feature towards g(x,). With IVF-PQ as index, the representation of the activated image gets
closer to the quantized version of the original representation, but also closer to the coarse centroid.
Finally, the losses are combined as £(I; I,) = L¢(x, q(x,)) + ALi (I, 1,).

3.2 PERCEPTUAL ATTENUATION

It is common to optimize a perturbation § added to the image, rather than the image itself. The
adversarial example literature often considers perceptual constraints in the form of an £,-norm bound
applied on § (Madry et al. (2018) use ||§]jc < & = 8/255). Although a smaller ¢ makes the
perturbation less visible, this constraint is not optimal for the human visual system (HVS), e.g.
perturbations are more noticeable on flat than on textured areas of the image (see App. A.2).

We employ a handcrafted perceptual attenuation model based on a Just Noticeable Difference (JND)
map (Wu et al., 2017), that adjusts the perturbation intensity according to luminance and contrast
masking. Given an image I, the JND map H;nxp (1) € RexhXw models the minimum difference
perceivable by the HVS at each pixel and additionally rescales the perturbation channel-wise since
the human eye is more sensible to red and green than blue color shift (see App. A for details).

The relation that links the image I sent to f, § being optimized and the original I, reads:
1= IO—I—a.HJND(IO) @tanh(é), (8)

with « a global scaling parameter that controls the strength of the perturbation and ® the point-
wise multiplication. Coupled with the regularization £; (6), it enforces that the activated image is
perceptually similar, i.e. I* € C(I,) as required in (5).

3.3 IMPACT ON THE INDEXING PERFORMANCE

Figure 1 illustrates that the representation of the activated image gets closer to the reproduction value
q(f(I,)), and farther away from the Voronoi boundary. This is expected to make image similarity
search more robust because (1) it decreases the probability that x = f(¢(1,)) “falls” outside the
bucket; and (2) it lowers the distance between x and ¢(z), improving the PQ distance estimate.
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Besides, by design, the representation stored by the index is invariant to the activation. Formally
stated, consider two images I, J, and one activated version J* together with their representations
x,y,y*. When querying x = f(I), the distance estimate is ||¢(y*) — z|| = ||¢(y) — ||, so the index
is oblivious to the change J — J*. This means that the structure can index passive and activated
images at the same time. Retrieval of activated images is more accurate but the performance on
passive images does not change. This compatibility property makes it possible to select only a
subset of images to activate, but also to activate already-indexed images at any time.

4 ANALYSES

We provide insights on the method for IVF-PQ, considering the effects of quantization and space
partitioning. For an image I whose representation is # = f(I) € R?, # denotes the representation
of a transformed version: & = f(¢(I)) € R?, and z* the representation of the activated image I*.
For details on the images and the implementation used in the experimental validations, see Sec. 5.1.

4.1 PRODUCT QUANTIZATION: IMPACT ON DISTANCE ESTIMATE
We start by analyzing the distance estimate considered by the index:

12 = a(@)|* = llz — a(@)|* + |2 — 2l* + 2(z — q(x)) " (& — @). 9
The activation aims to reduce the first term, i.e. the quantization error ||z — ¢(z)||?, which in turn
reduces ||& — q(x)||?. Figure 3 shows in blue the empirical distributions of ||z — g(z)||? (passive)
and ||2* — q(z)]|? (activated). As expected the latter has a lower mean, but also a stronger variance.
The variation of the following factors may explain this: i) the strength of the perturbation (due to the
HVS modeled by Hjnp in (8)), i) the sensitivity of the feature extractor ||V, f(z)|| (some features
are easier to push than others), iii) the shapes and sizes of the Voronoi cells of PQ.

The second term of (9) models the impact of the image transformation in the feature space. Com-
paring the orange and blue distributions in Fig. 3, we see that it has a positive mean, but the shift is
bigger for activated images. We can assume that the third term has null expectation for two reasons:
i) the noise & — « is independent of ¢(z) and centered around 0, ii) in the high definition regime,
quantification noise x — g(x) is independent of x and centered on 0. Thus, this term only increases
the variance. Since * — ¢(x) has smaller norm, this increase is smaller for activated images.

All in all, ||2* — g(z)||* has a lower mean but a stronger variance than its passive counterpart
|# — q(z)]|?>. Nevertheless, the decrease of the mean is so large that it compensates the larger
variance. The orange distribution in active indexing is further away from the green distribution for
negative pairs, i.e. the distance between an indexed vector ¢(z) and an independent query y.
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Figure 2: Precision-Recall curve for ICD with 50k
queries and 1M reference images (more details for
the experimental setup in Sec. 5.1). pi*f is the
probability of failure of the IVF (Sec. 4.2).

Figure 3: Distance estimates histograms (sec. 4.1). With
active indexing, ||z — ¢(z)||? is reduced (<), inducing a
shift (+) in the distribution of ||Z — q(z)||*, where (1)
a hue-shifted version of I. y is a random query.
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4.2  SPACE PARTITIONING: IMPACT ON THE IVF PROBABILITY OF FAILURE

We denote by pr := P(g.(x) # ¢.(Z)) the probability that 7 is assigned to a wrong bucket by IVF
assignment g.. In the single-probe search (k' = 1), the recall (probability that a pair is detected
when it is a true match, for a given threshold 7 on the distance) is upper-bounded by 1 — py:

Rr =P ({ge(?) = ge(2)} 0 {l|1Z — q(@)[] < 7}) <P ({ge(?) = ge(2)}) =1 —pr. (10)
In other terms, even with a high threshold 7 — oo (and low precision), the detection misses represen-
tations that ought to be matched, with probability p¢. It explains the sharp drop at recall R = 0.13 in
Fig. 2. This is why it is crucial to decrease p¢. The effect of active indexing is to reduce ||Z — g.(z)]|
therefore reducing py and increasing the upper-bound for R: the drop shifts towards R = 0.32.

This explanation suggests that pushing x towards g.(x) decreases even more efficiently p¢. This
makes the IVF more robust to transformation but this may jeopardize the PQ search because features
of activated images are packed altogether. In a way, our strategy, which pushes = towards ¢(x),
dispatches the improvement over the IVF and the PQ search.

5 EXPERIMENTAL RESULTS

5.1 EXPERIMENTAL SETUP

Dataset. We use DISC21 (Douze et al., 2021) a dataset dedicated to ICD. It includes 1M reference
images and 50k query images, 10k of which are true copies from reference images. A disjoint 1M-
image set with same distribution as the reference images is given for training. Images resolutions
range from 200200 to 1024 x 1024 pixels (most of the images are around 1024 x 768 pixels).

The queries used in our experiments are not the queries in DISC21, since we need to control the im-
age transformations in our experiments, and most transformations of DISC21 were done manually
so they are not reproducible. Our queries are transformations of images after active indexing. These
transformations range from simple attacks like rotation to more realistic social network transforma-
tions which created the original DISC21 queries (see App. B.1).

Metrics. For retrieval, our main metric is Recall 1@1 (R@1 for simplicity), which corresponds to
the proportion of positive queries where the top-1 retrieved result is the reference image.

For copy detection, we use the same metric as the NeurIPS Image Similarity Challenge (Douze et al.,
2021). We retrieve the £ = 10 most similar database features for every query; and we declare a pair
is a match if the distance is lower than a threshold 7. To evaluate detection efficiency, we use the
10k matching queries above-mentioned together with 40k negative queries (i.e. not included in the
database). We use precision and recall, as well as the area under the precision-recall curve, which is
equivalent to the micro average precision (1AP). While R@1 only measures ranking quality of the
index, uAP takes into account the confidence of a match.

As for image quality metric, we use the Peak Signal-to-Noise Ratio (PSNR) which is defined as
101logy, (255%/MSE(I,1)?), as well as SSIM (Wang et al., 2004) and the norm || — I'|| .

Implementation details. The evaluation procedure is: (1) we train an index on the 1M training
images, (2) index the 1M reference images, (3) activate (or not) 10k images from this reference set.
(4) At search time, we use the index to get closest neighbors (and their distances) of transformed
versions from a query set made of the 10k images.

Unless stated otherwise, we use a IVF4096,PQ8x8 index (IVF quantizer with 4096 centroids, and PQ
with 8 subquantizers of 2% centroids), and use only one probe on IVF search for shortlist selection
(k' = 1). Compared to a realistic setting, we voluntarily use an indexing method that severely
degrades learned representations to showcase and analyze the effect of the active indexing. For
feature extraction, we use an SSCD model with a ResNet50 trunk (He et al., 2016). It takes image
resized to 288 x 288 and generates normalized representations in R2, Optimization (5) is done with
the Adam optimizer (Kingma & Ba, 2015), the learning rate is set to 1, the number of iterations to
N = 10 and the regularization to A = 1. In (8), the distortion scaling is set to & = 3 (leading to an
average PNSR around 43 dB). In this setup, activating 128 images takes around 6s (= 40ms/image)
with a 32GB GPU. It can be sped-up at the cost of some accuracy (see App. C.2).
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Table 1: Comparison of the index performance between activated and passive images. The search is done on a
1M image set and R@1 is averaged over 10k query images submitted to different transformations before search.
Random: randomly apply 1 to 4 transformations. Avg.: average on the transformations presented in the table
(details in App. B.2). No index: exhaustive brute-force nearest neighbor search. IVF-PQ: IVF4096,PQ8x8
index with k’=1 (16 for IVF-PQ'%). IVF-PQ': IVF512,PQ32x8 with k' = 32.

&) © 5 9 LN
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@@9 Q@%\ d.\’\é‘b' é\\’é o‘\\g. o&y 0@?’ .0300\ \»@Q' \Q{» Q)Q o\:\/ 0\9 ‘QQQ @é\, é&/ §50 o

S LR U CAINC TR T & S
Noindex 252 2048 X 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.90 0.99
IVEPQ 038 8 X 1.00 0.73 039 0.73 028 0.62 048 0.72 0.07 0.14 0.14 0.72 0.14 0.13 0.45
: v 100 1.00 0.96 1.00 0.92 1.00 0.96 0.99 0.10 0.50 0.29 1.00 0.43 0.32 0.75
IVEPQIS 042 8 X 1.00 1.00 0.90 1.00 0.78 0.99 0.95 0.99 0.35 0.57 0.57 1.00 0.56 0.39 0.79
' v 100 1.00 1.00 1.00 0.98 1.00 1.00 1.00 0.43 0.88 0.75 1.00 0.84 0.50 0.88
WEPQ! 19 32 X 1.00 1.00 0.99 1.00 0.95 1.00 0.99 1.00 0.72 0.87 0.88 1.00 0.87 0.61 0.92
) : v 100 1.00 0.99 1.00 0.98 1.00 1.00 1.00 0.75 0.92 0.91 1.00 0.92 0.63 0.94

5.2 ACTIVE VS. PASSIVE

This section compares retrieval performance of active and passive indexing. We evaluate R@ 1 when
different transformations are applied to the 10k reference images before search. The “Passive”
lines of Tab. 1 show how the IVF-PQ degrades the recall. This is expected, but the IVF-PQ also
accelerates search 500 and the index is 256 more compact, which is necessary for large-scale
applications. Edited images are retrieved more often when they were activated for the index: increase
of up to +60 R@1 for strong brightness and contrast changes, close to results of the brute-force
search. We also notice that the performance of the active IVF-PQ* =1 is approximately the same as
the one of the passive IVF—PQk/:lﬁ, meaning that the search can be made more efficient at equal
performance. For the IVF-PQT that does less approximation in the search (but is slower and takes
more memory), retrieval on activated images is also improved, though to a lesser extent.

As for copy detection, Figure 2 gives the precision-recall curves obtained for a sliding value of 7,
and corresponding pAP. Again, we observe a significant increase (x2) in uAP with active indexing.
Note that the detection performance is much weaker than the brute-force search even in the active
case because of the strong approximation made by space partitioning (more details in Sec. 4.2).

Example of activated images are given in Fig. 5 (more in App. E), while the qualitative image
metrics are as follows: PSNR= 43.8 + 2.2 dB, SSIM= 0.98 + 0.01, and ||[7 — I'||c = 14.5 £ 1.2.
These results are computed on 10k images, the £ indicates the standard deviation.

5.3 IMAGE QUALITY TRADE-OFF

For a fixed index and neural extractor, the performance of active indexing mainly depends on the
scaling « that controls the activated image quality. In Fig. 4, we repeat the previous experiment for
different values of o and plot the AP against the average PSNR. As expected, lower PSNR implies
better £AP. For instance, at PSNR 30 dB, the AP is augmented threefold compared to the passive
case. Indeed, for strong perturbations the objective function of (6) can be further lowered, reducing
even more the gap between representations and their quantized counterparts.

5.4 GENERALIZATION

Generalization to other neural feature extractors.

We first reproduce the experiment of Sec. 5.1 with different extractors, that cover distinct training
methods and architectures. Among them, we evaluate a ResNext101 (Xie et al., 2017) trained with
SSCD (Pizzi et al., 2022), a larger network than the ResNet50 used in our main experiments ;
the winner of the descriptor track of the NeurIPS ISC, LYAKAAP-dtl (Yokoo, 2021), that uses an
EfficientNetv2 architecture (Tan & Le, 2021) ; networks from DINO (Caron et al., 2021), either
based on ResNet50 or ViT (Dosovitskiy et al., 2021), like the ViT-S model (Touvron et al., 2021).



Published as a conference paper at ICLR 2023

Table 2: R@1 for different transformations before search. We use our method to activate images for indexing
with IVE-PQ, with different neural networks used as feature extractors.

& AN
N > 5 D R N 5 &
& N W U S L A S T A S N N\ &
s § FTFS P IFT I ITEL T TR &S
< v LR G GRS R SR AR SR SN O SR R S
ResNet50 X 1.00 0.73 0.39 0.73 0.28 0.62 0.48 0.72 0.07 0.14 0.14 0.72 0.14 0.13 0.45
v 1.00 1.00 096 1.00 0.92 1.00 0.96 0.99 0.10 0.50 0.29 1.00 0.43 0.32 0.75
SSED ResNext101 X 1.00 0.88 0.68 0.88 0.57 0.84 0.46 0.79 0.46 0.63 0.53 0.80 0.48 0.28 0.66
v 1.00 1.00 096 1.00 0.90 0.99 0.77 0.97 0.53 0.85 0.64 1.00 0.74 0.37 0.84
ResNet50 X 1.00 0.66 0.65 0.65 0.52 0.71 0.52 0.82 0.07 0.20 0.51 0.84 0.62 0.18 0.57
v 1.00 0.99 0.88 0.99 0.75 093 0.72 0.94 0.08 0.25 0.57 0.99 0.82 0.23 0.72
DINO ViTes X 1.00 0.89 0.71 0.86 0.64 0.75 0.74 0.90 0.14 0.18 0.57 0.88 0.61 0.25 0.65
v 1.00 0.99 094 099 0.92 098 0.89 0.99 0.15 0.28 0.63 0.99 0.77 0.32 0.77
X 1.00 0.25 0.08 0.16 0.01 0.51 0.54 0.84 0.18 0.16 0.23 0.79 0.16 0.18 0.36
ISC-dtl - EffNetv2 v 1.00 0.57 0.16 0.33 0.01 0.88 0.79 0.97 0.20 0.24 0.29 0.97 0.26 0.26 0.49

Table 2 presents the R@1 obtained on 10k activated images when applying different transforma-
tions before search. The R@1 is better for activated images for all transformations and all neural
networks. The average improvement on all transformations ranges from +12% for DINO ViT-s to
+30% for SSCD ResNet50.

Generalization to other indexes.

The method easily generalizes to other types of indexing structures, the only difference being in the
indexation loss L¢ (6). We present some of them below:

« PQ and OPQ. In PQ (Jegou et al., 2010), a vector x € R? is approximated by ¢¢(x). L¢
reads ||z — g¢(z,)]]. In OPQ (Ge et al., 2013), vectors are rotated by matrix R before codeword
assignment, such that RRT = I. L¢ becomes ||z — R g (Rz,)]|.

* IVE.  Here, we only do space partitioning. Employing £¢ = ||z — g.(z,)]|| (“pushing towards
the cluster centroid”) decreases the odds of x falling in the wrong cell (see Sec. 4.2). In this
case, an issue can be that similar representations are all pushed together to a same centroid,
which makes them less discriminate. Empirically, we found that this does not happen because
perceptual constraint in the image domain prevents features from getting too close.

* LSH. Locality Sensitive Hashing maps 2 € R? to a binary hash b(x) € RL. It is commonly
done with projections against a set of vectors, which give for j € [1,.., L], bj(z) = sign(ijx).
The objective L = —1/L 3" sign(b(z,)) - w] x, allows to push  along the LSH directions and
to improve the robustness of the hash.

Table 3 presents the R@1 and ;4AP obtained on the 50k query set. Again, results are always better
in the active scenario. We remark that active indexing has more impact on space partitioning tech-
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Table 3: R@1 averaged on transformations presented in Tab. 1 and pAP for different indexing structures

. . R@1 avg. HAP
Index Search time Passive Activated Passive Activated
IVF 1024 0.32 ms 0.66 0.89 0.16 0.43
PCA64,LSH  0.99 ms 0.78 0.86 0.25 0.39
OPQ 8x8 5.71 ms 0.92 0.94 0.48 0.55

niques: the improvement for IVF is higher than with PQ and the LSH binary sketches. As to be
expected, the impact is smaller when the indexing method is more accurate.

6 RELATED WORK

Image watermarking hides a message in a host image, such that it can be reliably decoded even
if the host image is edited. Early methods directly embed the watermark signal in the spatial or
transform domain like DCT or DWT (Cox et al., 2007). Recently, deep-learning based methods
jointly train an encoder and a decoder to learn how to watermark images (Zhu et al., 2018; Ahmadi
et al., 2020; Zhang et al., 2020).

Watermarking is an alternative technology for ICD. Our method bridges indexing and watermarking,
where the image is modified before publication. Regarding retrieval performance, active indexing
is more robust than watermarking. Indeed, the embedded signal reinforces the structure naturally
present in the original image, whereas watermarking has to hide a large secret keyed signal indepen-
dent of the original feature. App. D provides a more thorough discussion and experimental results
comparing indexing and watermarking.

Active fingerprint is more related to our work. As far as we know, this concept was invented
by Voloshynovskiy et al. (2012). They consider that the image I € R is mapped to 2 € RY by
an invertible transform W such that WW . The binary fingerprint is obtained by taking the sign
of the projections of z against a set of vectors by,.,br, € RY (a la LSH). Then, they change x to
strengthen the amplitude of these projections so that their signs become more robust to noise. They
recover I* with W . This scheme is applied to image patches in (Kostadinov et al., 2016) where the
performance is measured as a bit error rate after JPEG compression. Our paper adapts this idea from
fingerprinting to indexing, with modern deep learning representations and state-of-the-art indexing
techniques. The range of transformations is also much broader and includes geometric transforms.

7 CONCLUSION & DISCUSSION

We introduce a way to improve ICD in large-scale settings, when images can be changed before
release. It leverages an optimization scheme, similar to adversarial examples, that modifies images
so that (1) their representations are better suited for indexing, (2) the perturbation is invisible to the
human eye. We provide grounded analyses on the method and show that it significantly improves
retrieval performance of activated images, on a number of neural extractors and indexing structures.

Activating images takes time (in the order of 10 ms/image) but one advantage is that the database
may contain both active and passive images: active indexing does not spoil the performance of
passive indexing and vice-versa. This is good for legacy compliance and also opens the door to
flexible digital asset management strategies (actively indexing images of particular importance).

The main limitation of the method is that images need to be activated before release. In the case
of existing databases where images have already been released, images could still be activated for
future releases (meaning that there would be 2 versions of the image online, a passive one that can be
retrieved as long as it is not transformed too strongly, and an activated one with better copy detection
properties). Another one is that it is not agnostic to the indexing structure and extractor that are used
by the similarity search. Finally, an adversary could still break the indexing system in several ways.
In a black-box setting, adversarial purification (Shi et al., 2021) could get rid of the perturbation
that activated the image. In a semi-white-box setting (knowledge of the feature extractor), targeted
mismatch attacks against passive indexing like Tolias et al. (2019) may also degrade the retrieval.
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ETHICS STATEMENT

Societal impact statement. Content tracing is a double-edged sword. On the one hand, it allows
media platforms to more accurately track malicious content (pornographic, terrorist, violent images,
e.g. Apple’s NeuralHash and Microsoft’s PhotoDNA) and to protect copyright (e.g. Youtube’s Con-
tent ID). On the other hand it can be used as a means of societal and political censorship, to restrict
free speech of specific communities. However, we still believe that research needs to be advanced
to improve global moderation in the internet. We also believe that advantages that a better copy
detection could bring are more numerous than its drawbacks.

Environmental impact statement. We roughly estimated that the total GPU-days used for run-
ning all our experiments to 200, or ~ 5000 GPU-hours. Experiments were conducted using a private
infrastructure and we estimate total emissions to be in the order of a ton COqeq. Estimations were
conducted using the MachinelLearning Impact calculator presented in Lacoste et al. (2019). We do
not consider in this approximation: memory storage, CPU-hours, production cost of GPUs/ CPUs,
etc. as well as the environmental cost of training the neural networks used as feature extractors. Al-
though the cost of the experiments and the method is high, it could possibly allow a reduction of the
computations needed in large data-centers thanks to improved performance of indexing structures.

REPRODUCIBILITY STATEMENT

The implementation is available at github.com/facebookresearch/active_indexing. Models used for
feature extraction (SSCD, DINO, ISC-dtl) can be downloaded in their respective repositories. It
builds upon the open-source Pytorch (Paszke et al., 2019) and FAISS (Johnson et al., 2019) libraries.

The main dataset used in the experiments (DISC21) can be freely downloaded on its webpage
https://ai.facebook.com/datasets/disc2 1-dataset/. Dataset processing is described in App. B.1.

REFERENCES

Mahdi Ahmadi, Alireza Norouzi, Nader Karimi, Shadrokh Samavi, and Ali Emami. Redmark:
Framework for residual diffusion watermarking based on deep networks. Expert Systems with
Applications, 2020.

Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent,
Armand Joulin, Michael Rabbat, and Nicolas Ballas. Masked siamese networks for label-efficient
learning. arXiv preprint arXiv:2204.07141, 2022.

Anish Athalye, Logan Engstrom, Andrew Ilyas, and Kevin Kwok. Synthesizing robust adversarial
examples. In ICML. PMLR, 2018.

Jon Louis Bentley. Multidimensional binary search trees used for associative searching. Communi-
cations of the ACM, 18(9):509-517, 1975.

Christian Bohm, Stefan Berchtold, and Daniel A Keim. Searching in high-dimensional spaces: Index
structures for improving the performance of multimedia databases. ACM Computing Surveys
(CSUR), 33(3):322-373, 2001.

Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In 2017
IEEE Symposium on Security and Privacy (SP). IEEE, 2017.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
Armand Joulin. Emerging properties in self-supervised vision transformers. In /CCV. IEEE,
2021.

Moses S Charikar. Similarity estimation techniques from rounding algorithms. In Proceedings of
the thiry-fourth annual ACM symposium on Theory of computing, pp. 380-388, 2002.

10


https://mlco2.github.io/impact#compute
https://github.com/facebookresearch/active_indexing
https://github.com/facebookresearch/sscd-copy-detection/
https://github.com/facebookresearch/dino
https://github.com/lyakaap/ISC21-Descriptor-Track-1st
https://ai.facebook.com/datasets/disc21-dataset/

Published as a conference paper at ICLR 2023

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In /CML. PMLR, 2020.

Chun-Hsien Chou and Yun-Chin Li. A perceptually tuned subband image coder based on the mea-
sure of just-noticeable-distortion profile. IEEE Transactions on circuits and systems for video
technology, 5(6):467-476, 1995.

Ingemar Cox, Matthew Miller, Jeffrey Bloom, Jessica Fridrich, and Ton Kalker. Digital watermark-
ing and steganography. Morgan kaufmann, 2007.

Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S Mirrokni. Locality-sensitive hashing
scheme based on p-stable distributions. In Proceedings of the twentieth annual symposium on
Computational geometry, pp. 253-262, 2004.

Brian Dolhansky and Cristian Canton Ferrer. Adversarial collision attacks on image hashing func-
tions. arXiv preprint arXiv:2011.09473, 2020.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. In /CLR, 2021.

Matthijs Douze, Giorgos Tolias, Ed Pizzi, Zo€ Papakipos, Lowik Chanussot, Filip Radenovic, Tomas
Jenicek, Maxim Maximov, Laura Leal-Taixé, Ismail Elezi, et al. The 2021 image similarity
dataset and challenge. arXiv preprint arXiv:2106.09672, 2021.

Pierre Fernandez, Alexandre Sablayrolles, Teddy Furon, Hervé Jégou, and Matthijs Douze. Water-
marking images in self-supervised latent spaces. In IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, 2022.

Tiezheng Ge, Kaiming He, Qifa Ke, and Jian Sun. Optimized product quantization for approximate
nearest neighbor search. In CVPR. IEEE, 2013.

Aristides Gionis, Piotr Indyk, Rajeev Motwani, et al. Similarity search in high dimensions via
hashing. In Vidb, volume 99, pp. 518-529, 1999.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar,
et al. Bootstrap your own latent-a new approach to self-supervised learning. NeurIPS, 2020.

Ruiqi Guo, Philip Sun, Erik Lindgren, Quan Geng, David Simcha, Felix Chern, and Sanjiv Kumar.
Accelerating large-scale inference with anisotropic vector quantization. In /ICML. PMLR, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In CVPR. IEEE, 2016.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollar, and Ross Girshick. Masked
autoencoders are scalable vision learners. In CVPR, 2022.

Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: towards removing the curse of
dimensionality. In Proceedings of the thirtieth annual ACM symposium on Theory of computing,
pp. 604-613, 1998.

Herve Jegou, Matthijs Douze, and Cordelia Schmid. Product quantization for nearest neighbor
search. Transactions on Pattern Analysis and Machine Intelligence, 33(1):117-128, 2010.

Qiuping Jiang, Zhentao Liu, Shiqi Wang, Feng Shao, and Weisi Lin. Towards top-down just notice-
able difference estimation of natural images. IEEE Transactions on Image Processing, 2022.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with gpus. IEEE
Transactions on Big Data, 2019.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015.

Dimche Kostadinov, Slava Voloshynovskiy, Maurits Diephuis, and Taras Holotyak. Local active
content fingerprinting: Optimal solution under linear modulation. In ICIP, 2016.

11



Published as a conference paper at ICLR 2023

Lester E Krueger. Reconciling fechner and stevens: Toward a unified psychophysical law. Behav-
ioral and Brain Sciences, 12(2):251-267, 1989.

Alexandre Lacoste, Alexandra Luccioni, Victor Schmidt, and Thomas Dandres. Quantifying the
carbon emissions of machine learning. arXiv preprint arXiv:1910.09700, 2019.

Cassidy Laidlaw, Sahil Singla, and Soheil Feizi. Perceptual adversarial robustness: Defense against
unseen threat models. In /CLR, 2021.

Zhuoran Liu, Zhengyu Zhao, and Martha Larson. Who’s afraid of adversarial queries? the im-
pact of image modifications on content-based image retrieval. In Proceedings of the 2019 on
International Conference on Multimedia Retrieval, pp. 306-314, 2019.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. In ICLR, 2018.

Sébastien Marcel and Yann Rodriguez. Torchvision the machine-vision package of torch. In Infer-
national Conference on Multimedia. ACM, 2010.

NeuralHash. Apple. https://www.apple.com/child-safety/pdf, 2021.

Aude Oliva and Antonio Torralba. Modeling the shape of the scene: A holistic representation of the
spatial envelope. International journal of computer vision, 42(3):145-175, 2001.

Zoe Papakipos and Joanna Bitton. Augly: Data augmentations for robustness. arXiv preprint
arXiv:2201.06494, 2022.

Zo& Papakipos, Giorgos Tolias, Tomas Jenicek, Ed Pizzi, Shuhei Yokoo, Wenhao Wang, Yifan Sun,
Weipu Zhang, Yi Yang, Sanjay Addicam, et al. Results and findings of the 2021 image similarity
challenge. In NeurIPS 2021 Competitions and Demonstrations Track, pp. 1-12. PMLR, 2022.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett (eds.), NeurIPS. Curran Associates, Inc., 2019.

Loic Paulevé, Hervé Jégou, and Laurent Amsaleg. Locality sensitive hashing: A comparison of hash
function types and querying mechanisms. Pattern recognition letters, 31(11), 2010.

Florent Perronnin, Yan Liu, Jorge Sdnchez, and Hervé Poirier. Large-scale image retrieval with
compressed fisher vectors. In CVPR, pp. 3384-3391. IEEE, 2010.

PhotoDNA. Microsoft. https://www.microsoft.com/en-us/photodna, 2009.

Ed Pizzi, Sreya Dutta Roy, Sugosh Nagavara Ravindra, Priya Goyal, and Matthijs Douze. A self-
supervised descriptor for image copy detection. In CVPR. IEEE, 2022.

Alexandre Sablayrolles, Matthijs Douze, Cordelia Schmid, and Hervé Jégou. Spreading vectors for
similarity search. ICML, 2019.

Changhao Shi, Chester Holtz, and Gal Mishne. Online adversarial purification based on self-
supervised learning. In ICLR, 2021.

Richard Shin and Dawn Song. Jpeg-resistant adversarial images. In NeurlPS Workshop on Machine
Learning and Computer Security, 2017.

Josef Sivic and Andrew Zisserman. Video google: A text retrieval approach to object matching in
videos. In Computer Vision, IEEE International Conference on, volume 3, pp. 1470-1470. IEEE
Computer Society, 2003.

Michael J Swain and Dana H Ballard. Color indexing. International journal of computer vision, 7
(1):11-32, 1991.

12



Published as a conference paper at ICLR 2023

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. In ICLR, 2013.

Mingxing Tan and Quoc Le. Efficientnetv2: Smaller models and faster training. In ICML. PMLR,
2021.

Giorgos Tolias, Filip Radenovic, and Ondrej Chum. Targeted mismatch adversarial attack: Query
with a flower to retrieve the tower. In ICCV. IEEE, 2019.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
Hervé Jégou. Training data-efficient image transformers & distillation through attention. In
International Conference on Machine Learning, 2021.

Sviatoslav Voloshynovskiy, Farzad Farhadzadeh, Oleksiy Koval, and Taras Holotyak. Active content
fingerprinting: a marriage of digital watermarking and content fingerprinting. In International
Workshop on Information Forensics and Security (WIFS), pp. 175-180. IEEE, 2012.

Vedran Vukotié, Vivien Chappelier, and Teddy Furon. Are classification deep neural networks good
for blind image watermarking? Entropy, 2020.

Wenhao Wang, Yifan Sun, and Yi Yang. A benchmark and asymmetrical-similarity learning for
practical image copy detection. arXiv preprint arXiv:2205.12358, 2022.

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment:
from error visibility to structural similarity. IEEE Transactions on image processing, 2004.

Andrew B Watson. Dct quantization matrices visually optimized for individual images. In Human
vision, visual processing, and digital display IV, volume 1913, pp. 202-216. SPIE, 1993.

Yair Weiss, Antonio Torralba, and Rob Fergus. Spectral hashing. NeurIPS, 21, 2008.

Jinjian Wu, Leida Li, Weisheng Dong, Guangming Shi, Weisi Lin, and C-C Jay Kuo. Enhanced just
noticeable difference model for images with pattern complexity. IEEE Transactions on Image
Processing, 2017.

Saining Xie, Ross Girshick, Piotr Dollar, Zhuowen Tu, and Kaiming He. Aggregated residual trans-
formations for deep neural networks. In CVPR. IEEE, 2017.

XK Yang, WS Ling, ZK Lu, Ee Ping Ong, and SS Yao. Just noticeable distortion model and its
applications in video coding. Signal processing: Image communication, 20(7):662-680, 2005.

Shuhei Yokoo. Contrastive learning with large memory bank and negative embedding subtraction
for accurate copy detection. arXiv preprint arXiv:2112.04323, 2021.

Chaoning Zhang, Philipp Benz, Adil Karjauv, Geng Sun, and In So Kweon. Udh: Universal deep
hiding for steganography, watermarking, and light field messaging. NeurIPS, 2020.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In CVPR. IEEE, 2018.

Xiaohui Zhang, Weisi Lin, and Ping Xue. Just-noticeable difference estimation with pixels in im-
ages. Journal of Visual Communication and Image Representation, 19(1):30-41, 2008.

Jiren Zhu, Russell Kaplan, Justin Johnson, and Li Fei-Fei. Hidden: Hiding data with deep networks.
In ECCV, 2018.

13



Published as a conference paper at ICLR 2023

Supplementary material - Active Image Indexing

A DETAILS ON THE PERCEPTUAL ATTENUATION MODEL

A.1 JUST NOTICEABLE DIFFERENCE MAP

The maximum change that the human visual system (HVS) cannot perceive is sometimes referred
to as the just noticeable difference (JND) Krueger (1989). It is used in many applications, such as
image/video watemarking, compression, quality assessment (JND is also used in audio).

JND models in pixel domain directly calculate the JND at each pixel location (i.e. how much pixel
difference is perceivable by the HVS). The JND map that we use is based on the work of Chou &
Li (1995). We use this model for its simplicity, its efficiency and its good qualitative results. More
complex HVS models could also be used if even higher imperceptibility is needed (Watson (1993);
Yang et al. (2005); Zhang et al. (2008); Jiang et al. (2022) to cite a few). The JND map takes into
account two characteristics of the HVS, namely the luminance adaptation (LA) and the contrast
masking (CM) phenomena. We follow the same notations as Wu et al. (2017).

The CM map M is a function of the image gradient magnitude C; (the Sobel filter of the image):
a-C(z)**
Ci(x)? + 32

where « is the pixel location, I(z) the image intensity, « = 16, and 8 = 26. It is an increasing
function of C;, meaning that the stronger the gradient is at x, the more the image is masking a local
perturbation, and the higher the noticeable pixel difference is.

Me(x) = 0.115 x with € = \/V.I(2)? + V,I(x)?, (1)

LA takes into account the fact that the HVS presents different sensitivity to background luminance
(e.g. it is less sensible in dark backgrounds). It is modeled as:

B(x) .
17x [ 1— if B(z) < 127
La(x)= 127 (12)

3% (Bgé_ 120 5 itB@) > 127,

where B(z) is the background luminance, which is calculated as the mean luminance value of a
local patch centered on x.

Finally, both effects are combined with a nonlinear additivity model:
HJND :£A+MC*C'HHH{£A,M0}, (13)

where C'is set to 0.3 and determines the overlapping effect. For color images, the final RGB heatmap
is Hixp = [apH, agH, apH]|, where (ar, ag, ap) are inversely proportional to the mixing co-
efficients for the luminance: (ag, ag,ap) = 0.072/(0.299, 0.587,0.114).

Figure 6: A reference image I from DISC21 (R002815.jpg), and the associated perceptual heatmap Hynp ().
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A.2 COMPARISON WITH /., CONSTRAINT EMBEDDING

Figure 7 shows the same image activated using either the /., constraint (commonly used in the
adversarial attack literature) or our perceptual constraint based on the JND model explained above.
Even with very small € (4 over 255 in the example bellow), the perturbation is visible especially in
the flat regions of the images, such as the sea or sky.

Laidlaw et al. (2021) also show that the /. is not a good perceptual constraint. They use the LPIPS
loss (Zhang et al., 2018) as a surrogate for the HVS to develop more imperceptible adversarial
attacks. Although a similar approach could be used here, we found that at this small level of image
distortion the LPIPS did not capture CM and LA as well as the handcrafted perceptual models
present in the compression and watermarking literature.

i

(a) {oc =4, PSNR = 36.4 dB, SSIM = 0.91 (b) {oo = 23, PSNR = 34.4 dB, SSIM = 0.94

Figure 7: Activated images, either with (a) the o, < 4 constraint or with (b) our perceptual model (best viewed
on screen). We give the corresponding measures between the original and the protected image, as well as the
pixel-wise difference. The perturbation on the right is much less perceptible thanks to the perceptual model,
even though its £, distance with the original image is much higher.

B EXPERIMENTS DETAILS
This section describes the details omitted in experimental sections.

B.1 DATASET

The dataset DISC 2021 was designed for the Image Similarity Challenge (Douze et al., 2021) and
can be downloaded in the dataset webpage: https://ai.facebook.com/datasets/disc21-dataset/.

We want to test performance on edited versions of activated images but in DISC query set transfor-
mations are already applied to images. Therefore the query set cannot be used as it is.

We create a first test set “Refl0k” by selecting the 10k images from the reference set that were
originally used to generate the queries (the “dev queries” from the downloadable version). We also
re-create a query set “Query50k”. To be as close as possible, we use the same images that were used
for generating queries in DISC. Edited images are generated using the AugLy library (Papakipos
& Bitton, 2022), following the guidelines given in the “Automatic Transformations” section of the
DISC paper. Therefore, the main difference between the query set used in our experiments and the
original one is that ours do not have manual augmentations.

B.2 TRANSFORMATIONS SEEN AT TEST TIME

They cover both spatial transformations (crops, rotation, etc.), pixel-value transformations (contrast,
hue, jpeg, etc.) and “everyday life” transformations with the AugLy augmentations. All transforma-
tions are illustrated in Fig. 4. The parameters for all transformations are the ones of the torchvision
library (Marcel & Rodriguez, 2010), except for the crop and resize that represent area ratios. For the
Gaussian blur transformation we use alternatively o, the scaling factor in the exponential, or the ker-
nel size k;, (in torchvision &, = (o — 0.35)/0.15). The “Random” transformation is the one used to
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Table 4: Illustration of all transformations evaluated in Tab. 1.

Identity Contrast 0.5 Contrast 2.0 Brightness 0.5

et

Brightness 2.0

Blur 2.0

Rotation 25

Resize 0.5 Meme Random

o

0509000008 m
ek 2

develop the 50k query set. A series of simple 1-4 AugLy transformations are picked at random, with
skewed probability for a higher number. Among the possible transformations, there are pixel-level,
geometric ones, as well as embedding the image as a screenshot of a social network GUI.

C MORE EXPERIMENTAL RESULTS

C.1 DETAILED METRICS ON DIFFERENT IMAGE TRANSFORMATIONS

On Fig. 8, we evaluate the average R@1 over the 10k images from the reference dataset. The
experimental setup is the same as for Tab. 1 but a higher number of transformation parameters

Rotation Hue Resize Brightness
1.0 1.0 1.0 1.0
0.8 0.8 0.8 0.8
0.6 0.6 0.6 0.6
0.4 0.4 0.4 0.4
0.2 0.2 0.2 0.2
0.0 -50 0 50 %2050 —025 000 025 050 °° 02 04 o6 08 10 °%os 1.0 15
Jpeg Center crop Blur Contrast

Lo Lo 1o "““‘M N
0.8 0.8 0.8 0.8

0.6 0.6 0.6 0.6
0.4 0.4 0.4 0.4

0.2 0.2 0.2 0.2

0.0 20 40 60 80 100 0.0 0.2 0.4 0.6 0.8 1.0 00 10 20 30 0.0 0.5 1.0 15
—A— Passive
—A— Active

Figure 8: Average R@1 comparison between active and passive indexing with IVF-PQ.
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are evaluated. As expected, the higher the strength of the transformation, the lower the retrieval
performance is. The decrease in performance is significantly reduced with activated images.

C.2 ADDITIONAL ABLATIONS

Speeding-up the optimization. In our experiments, the optimization is done using 10 iterations of
gradient descent, which takes approximately 40ms/image. If the indexation time is important (often,
this is not the case and only the search time is), it can be reduced at the cost of some accuracy.

We activated 10k reference images, with the same IVF-PQ indexed presented in Sec. 5.2 with only
one step of gradient descent with a higher learning rate. Activation times are computed on average.
The R@1 results in Tab. 5 indicate that the speed-up in the image optimization has a small cost
in retrieval accuracy. Specifically, it reduces the R@1 for unedited images. The reason is that the
learning rate is too high: it can cause the representation to be pushed too far and to leave the indexing
cell. This is why a higher number number of steps and a lower learning rate are used in practice. If
activation time is a bottleneck, it can however be useful to use less optimization steps.

Table 5: R@1 for different transformations applied before search, with either 1 step at learning rate 10, or 10
steps at learning rate 1. Results are averaged on 10k images.

& 5 D R P N 5 ©
i S s \\,&q’g & P S o
v SRSHECHEE R A A S G S S

Passive - 1.00 0.73 0.39
Adam,Ir=1 - 10 steps  39.8 ms/img 1.00 1.00 0.96
Adam,Ir=10 - 1 step 4.3 ms/img 0.99 0.99 0.92

0.73 028 0.62 048 0.72 0.07 0.14 0.14 0.72 0.14 0.13 0.45
1.00 092 1.00 096 0.99 0.10 0.50 0.29 1.00 0.43 032 0.75
099 0.84 099 095 0.99 0.10 0.39 0.25 0.99 0.36 0.27 0.72

Data augmentation at indexing time and EoT. Expectation over Transformations (Athalye et al.,
2018) was originally designed to create adversarial attacks robust to a set of image transformations.
We follow a similar approach to improve robustness of the marked image against a set of augmenta-
tions 7. At each optimization step, we randomly sample A augmentations {t;}.; in 7 and consider

the average loss: Ly = ZiA:l L(I,t;;1,)/A. In our experiments, 7 encompasses rotations, Gaus-
sian blurs, color jitters and a differentiable approximation of the JPEG compression Shin & Song
(2017). Ais set to 8 and we always take the un-augmented image in the chosen set of augmentations.

We activated 10k reference images, with the same IVF-PQ as Sec. 5.2 with or without using EoT.
Table 6 shows the average R@1 performance over the images submitted to different transformations
before search. EoT brings a small improvement, specifically on transformations where base perfor-
mance is low (e.g. rotation or crops here). However, it comes at a higher computational cost since
each gradient descent iteration needs A passes through the network, and since fewer images can be
jointly activated due to GPU memory limitations (we need to store and back-propagate through A
transformations for every image). If the time needed to index or activate an image is not a bottleneck,
using EoT can therefore be useful. Otherwise, it is not worth the computational cost.

Table 6: R@1 for different transformations applied before search, with or without EoT when activating the
images. Results are averaged on 10k images.

$ 5 9 @ D
S S 2O O SN S SN N o
c‘;\\% & 0& O& .&\o‘g '&}\ OQ’Q \"& {(’0 0\.'\, o"'o’ & & @‘& fé‘bo &%
v NN A A R R A S SR CREE I
Without EOT 40ms 1.00 1.00 0.96 1.00 0.92 1.00 0.96 0.99 0.10 0.50 0.29 1.00 0.43 0.32 0.75

With EOT

870ms 1.00 1.00 0.95

1.00 0.92

1.00 0.95 0.99 0.14 0.64 033 1.00 0.45 0.33 0.76
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D ACTIVE INDEXING VS. WATERMARKING

Discussion. Watermarking and active indexing both modify images for tracing and authentication,
however there are significant differences between them. Watermarking embeds arbitrary information
into the image. The information can be a message, a copyright, a user ID, etc. In contrast, active
indexing modifies it to improve the efficiency of the search engine. Watermarking also focuses on
the control over the False Positive Rate of copyright detection, i.e. a bound on the probability that a
random image has the same message as the watermarked one (up to a certain distance).

Although watermarking considers different settings than indexing methods, it could also be lever-
aged to facilitate the re-identification of near-duplicate images. In this supplemental section, we
consider it to address a use-case similar to the one we address in this paper with our active indexing
approach. In this scenario, the watermark encoder embeds binary identifiers into database images.
The decoded identifier is then directly mapped to the image (as the index of a list of images).

Experimental setup. In the rest of the section, we compare active indexing against recent water-
marking techniques based on deep learning.

* For indexing, we use the same setting as in Sec. 5.1 (IVF-PQ index with 1M reference images).
When searching for an image, we look up the closest neighbor with the help of the index.

« For watermarking, we encode 20-bit messages into images, which allows to represent 210 ~ 106
images (the number of reference images). When searching for an image, we use the watermark
decoder to get back an identifier and the corresponding image in the database.

Like before, we use R@1 as evaluation metric. For indexing, it corresponds to the accuracy of
the top-1 search result. For watermarking, the R@1 also corresponds to the word accuracy of the
decoding, that is the proportion of images where the message is perfectly decoded. Indeed, with
20-bit encoding almost all messages have an associated image in the reference set, so an error on a
single bit causes a mis-identification (there is no error correction').

We use two state-of-the-art watermarking methods based on deep learning: SSL Watermarking (Fer-
nandez et al., 2022), which also uses an adversarial-like optimization to embed messages, and HiD-
DeN (Zhu et al., 2018), which encodes and decodes messages thanks to Conv-BN-ReLU networks.
The only difference with the original methods is that their perturbation § is modulated by the hand-
crafted perceptual attenuation model presented in App. A. This approximately gives the same image
quality, thereby allowing for a direct comparison between active indexing and watermarking.

Results. Tab. 7 compares the R@1 when different transformations are applied before search or
decoding. Our active indexing method is overall the best by a large margin. For some transforma-
tions, watermarking methods are not as effective as passive indexing, yet for some others, like crops
for HiDDeN, the watermarks are more robust.

Table 7: R@1 for different transformations applied before search, when using either watermarking or active
indexing. Results are averaged on 1k images. Best result is in bold and second best in italic.

) Q Q") q,Q &
LA I S A " S BN &
0&\\ & & ‘?}\\ ‘?}\\ &Q e‘% ‘(»0 \'q' \9 R é& Qbo &
SIS S A R R U SR SO S~
Passive indexing 1.00 0.73 039 0.73 028 0.62 048 0.72 0.07 0.14 0.14 0.72 0.14 0.13 045
Active indexing (ours)  1.00 1.00 0.96 1.00 0.92 1.00 0.96 0.99 0.10 0.50 0.29 1.00 0.43 0.32 0.75

SSL Watermarking
(Fernandez et al., 2022)
HiDDeN?

(Zhu et al., 2018)

1.00 0.98 0.53 098 063 085 0.13 0.00 0.00 0.I5 0.11 0.00 0.46 0.07 0.42

094 0.87 036 0.85 0.55 0.00 0.8 0.00 0.00 0.00 092 0.44 0.77 0.16 048

'In order to provide error correction capabilities, one needs longer messages. This makes it more difficult
to insert bits: in our experiments, with 64 bits we observe a drastic increase of the watermarking bit error rate.

2Our implementation. As reported in other papers from the literature, results of the original paper are hard
to reproduce. Therefore to make it work better, our model is trained on higher resolution images (224 x224),
with a payload of 20-bits, instead of 30 bits embedded into 128 x128. Afterwards, the same network is used
on images of arbitrary resolutions, to predict the image distortion which is later rescaled as in Eq. (8). In this
setting the watermark can not always be inserted (6% failure).
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E MORE QUALITATIVE RESULTS

Figure 10 gives more examples of activated images from the DISC dataset, using the same parame-
ters as in Sec. 5.2. The perturbation is very hard to notice (if not invisible), even in flat areas of the
images because the perceptual model focuses on textures. We also see that the perturbation forms a
regular pattern. This is due to the image (bilinear) resize that happens before feature extraction.

Figure 9 gives example of an image activated at several values of perturbation strength « of Eq. (8)
(for instance, for a = 20 the image has PSNR 27dB and for o = 1 the image has PSNR 49dB). The
higher the «, the more visible the perturbation induced by the activation is. Nevertheless, even with
low PSNR values (< 35dB), it is hard to notice if an image is activated or not.

a=20.0, PSNR=27dB  0=15.0, PSNR=29dB  0=11.3, PSNR=31dB  0=8.43, PSNR=34dB  0=6.32, PSNR=36dB

-

Figure 10: Example of activated images for « = 3.0. (Left) original images, (Middle) activated images, (Right)
pixel-wise difference.
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Figure 10: Example of activated images for o = 3.0. (Left) original images, (Middle) activated images, (Right)
pixel-wise difference. Images are RO00005.jpg, RO00045.jpg, RO00076.jpg, RO0O0172.jpg and RO00396.jpg.
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