
Under review as submission to TMLR

INR-V: A Continuous Representation Space for Videos

Anonymous authors
Paper under double-blind review

Abstract

Images are considered a complete signal, whereas videos are usually broken down into a
set of temporally coherent images. Consequently, an image space is leveraged for various
video-based tasks, such as novel video generation and future video segment prediction. This
limits the expressivity of videos to only image-based operations needing network designs
to obtain temporally coherent trajectories in the image space. We propose INR-V, a video
representation network that learns a continuous latent space directly for videos. INR-V
regards videos as complete units parameterized by implicit neural representations (INRs), a
multi-layered perceptron with only a few thousand parameters. A meta-network is then used
to predict these few thousand parameters allowing it to learn a continuous space over the
neural representations. Later, the meta-network can generate novel neural representations
by sampling diverse points over the learned space leading to novel videos. Interestingly, we
find that conditional regularization and progressive weight initialization play a crucial role
in obtaining INR-V. In this work, we analyze INR-V’s several video-based properties. For
instance, we show smooth interpolation of coherent videos between two videos by traversing
along their latent points in the underlying video space. Moreover, learning a video space
allows the network to directly invert an unseen video to its latent point in the latent space.
We show the various applications of video inversion. Lastly, INRs learn a continuous signal
independent of the input dimension letting INR-V generate multi-resolution videos (like
32×32 or 100×100) directly at inference without any finetuning or architectural changes. We
conduct several comparisons and evaluate each of the properties, ultimately demonstrating
the potential of a continuous representation space for videos.

1 Introduction

Learning to generate complex spatio-temporal videos from simple distributions is a challenging problem in
computer vision that has been recently addressed in various ways Tian et al. (2021); Tulyakov et al. (2017);
Clark et al. (2019); Skorokhodov et al. (2021); Ding et al. (2019); Yu et al. (2022); Yan et al. (2021). State-of-
the-art (SOTA) works Skorokhodov et al. (2021); Tian et al. (2021); Yu et al. (2022) treat video generation
as a task of generating a sequence of temporally coherent frames. Although such networks have advanced
the SOTA to generate high-quality frames (such as carefully crafted eyes, nose, and mouth for talking-head
videos), they come with a major limitation: They rely on an image space. This limits the application of the
learned space to image-based operations such as animating images and editing on frames. Direct operations
on videos, such as interpolating intermediate videos between two videos and generating future segment of
a video, become difficult. This is because such operations require learning the set of frame and motion
constraints and ensuring that they are coherently learned.

We propose that videos should be represented as a single unit instead of being broken into a sequence
of images. One can learn a latent space where each latent point represents a complete video. However,
with existing video generator architectures, such representations are difficult. Firstly, such a video generator
would be made of several 3D convolution operations. As the dimension and length of the video increase, such
an architecture would become drastically computationally expensive. Secondly, videos are high-dimensional
signals spanning both spatial and temporal directions. Representing such a highly expressive signal by a single
latent point would require complicated generator architectures and a very high-dimensional latent space.

1

Under review as submission to TMLR

Figure 1: Demonstrating the continuity of the video space learned by INR-V by interpolating novel videos
between two real videos V1 and V2. Note that content (identity, hair) and motion (pose, expressions)
gradually transition as we traverse the trajectory in the latent space between V1 and V2’s latents.

Instead, videos can be parameterized as a function of space and time using implicit neural representations
(INRs). Any point in a video Vhwt can be represented by a function fθ(h, w, t) → RGBhwt where t denotes
the tth frame in the video and h, w denote the spatial location in the frame and RGB denotes the color
at the pixel position {h, w, t}. Here, the dynamic dimension of videos (a few million pixels) is reduced to a
constant number of weights θ (a few thousand) required for the parameterization. A network can then be
used to learn a prior over videos in this parameterized space. This can be obtained through a meta-network
that learns a function to map from a latent space to a reduced parameter space that maps to a video. A
complete video is thus represented as a single latent point.

dΩ f θ

θz
z

Continuous

Video Space

Random

Sampling

Novel Video Instances

INR

Figure 2: Overview of INR-V: INR-V
learns a continuous video space by first pa-
rameterizing videos as implicit neural repre-
sentations denoted by fθz

, where z denotes
a unique video instance Vz. Next, a meta-
network based on hypernetworks denoted
by dΩ is used to learn a continuous represen-
tation over the neural representations. dΩ
is conditioned by an underlying continuous
video space where each point denotes the
condition for a complete video.

We propose INR-V, a video generator network with a contin-
uous video representation space based on learning an implicit
neural representation for videos. It is illustrated in Fig. 2. INR-
V is made of key elements that, when combined, makes it ideal
for video representation: (1) Its INR is free of any convolu-
tional layers and relies on traditional multi-layered perceptrons
(MLPs), leading to very few parameters (a found thousand)
when compared to the existing SOTA architectures (millions
of parameters) Skorokhodov et al. (2021); Tian et al. (2021).
(2) Having very few parameters, INR’s weights can be popu-
lated using a secondary meta-network called hypernetwork Ha
et al. (2016) that learns a continuous function over the INRs by
getting trained on multiple video instances. (3) It is trained on
a deterministic distance loss, such as Euclidean or Manhattan
distance. This allows INR-V to learn the exact requirements of
a coherent video directly from the ground truth video instances.

Hypernetworks have seen wide applications in grahics Sitzmann
et al. (2020; 2021); Chiang et al. (2021); Sitzmann et al. (2019);
however, they have seldom been used for videos. Hypernet-
works are notoriously unstable to train, especially on the pa-
rameterizations of highly expressive signals like videos. Thus,
we propose a key prior regularization and a progressive weight
initialization scheme to stabilize the hypernetwork training al-
lowing it to scale quickly to more than 30,000 videos. As we show in the experimental section, INR-V
demonstrates an expressive and continuous video space by getting trained on these datapoints. The learned
prior enables several downstream tasks such as random video generation. It also demonstrates unique prop-

2

Under review as submission to TMLR

erties such as video inversion, allowing tasks like future segment prediction and video inpainting directly at
a video level. Finally, as shown in Fig. 1, INR-V showcases smooth interpolation of novel videos between
two videos by traversing the path between their latent points. Interpolation morphs different identities and
motions and generates coherent videos. Interestingly, the properties demonstrated in this work are not en-
forced at training but are natural outcomes of the continuous video space. To summarize, our contribution
in this work is as follows:

1. We propose considering videos as a single unit and learning a continuous latent space for videos
where each latent point represents a complete video.

2. We propose INR-V, a video representation technique that parameterizes videos using INRs, bringing
down the dimension of a video from a dynamic few million to a constant few thousand. INR-V uses
a hypernetwork as a meta-network to learn a continuous space over these parameterizations.

3. We demonstrate the benefit of a key regularization and progressive weight initialization scheme to
stabilize the hypernetwork training. We scale the hypernetworks to more than 30,000 video points
enabling it to learn a continuous meaningful latent space over the INRs.

4. Lastly, we demonstrate key properties of the learned video space, such as video interpolation, video
inversion, and so on, by conducting several experiments and evaluations.

2 Related Work

Video Generation. Video generation aims to produce novel videos from scratch. It falls under the paradigm
of ‘video synthesis’ that encompasses several categories, including (1) Video prediction Luc et al. (2020);
Moing et al. (2021); Walker et al. (2021): that predicts the next set of frames given the current frames, (2)
Frame interpolation Park et al. (2021); Niklaus & Liu (2020); Niklaus et al. (2017); Zhang et al. (2021): that
interpolates frames between given frames of a video. These tasks generate the unseen portion of the video
based on the context of the seen portion. On the other hand, video generation produces videos without any
expressive prior context, making the task more challenging. The complexity of the problem has led to a
plethora of works in this area Tian et al. (2021); Tulyakov et al. (2017); Skorokhodov et al. (2021); Clark
et al. (2019); Ding et al. (2019); Yu et al. (2022). VideoGPT Yan et al. (2021) tackled this challenge by first
reducing the raw videos of up to 128 × 128 dimension to a quantized space. It then trained a transformer
architecture to model a prior over the quantized space. Our architecture is conceptually similar to VideGPT,
which used a likelihood-based generative model to learn a video prior. However, VideoGPT operates on a
quantized space that is discontinuous, making the prior less expressive. INR-V, on the other hand, models a
continuous video space. VideoGPT also consists of 3D convolution layers making the model computationally
expensive for larger videos. INR-V is a simple MLP based on a continuous parameterization scheme of INRs,
making it agnostic to the video dimension. This allows scaling to multiple resolutions (64 × 64 or 256 × 256)
at inference without any architectural changes or finetuning. More recent works StyleGAN-V Skorokhodov
et al. (2021), DIGAN Yu et al. (2022), and MoCoGAN-HD Tian et al. (2021) are a GAN-based setup that
model videos as a temporally coherent trajectory over an image space.

Hypernetworks. Hypernetworks Ha et al. (2016) were introduced as a metafunction that initializes the
weights for a different network called the primary network. Hypernetworks have been widely used for several
purposes, starting from compression Nguyen et al. (2022); Gao et al. (2021), few-shot learning Sendera
et al. (2022); Lamb et al. (2021), continual learning von Oswald et al. (2019), architecture search Zhang
et al. (2018), language modeling Suarez (2017), meta-learning Zhao et al. (2020). We use hypernetworks to
populate our primary video generation network, an MLP parameterizing different video instances.

Implicit Neural Representations. In this paradigm, a continuous signal is represented by a neural
network. INRs have had wide adaptations in 3D Computer Vision Park et al. (2019); Genova et al. (2019);
Sitzmann et al. (2018); Mescheder et al. (2018); Sitzmann et al. (2021); Mildenhall et al. (2020) and Computer
Graphics Guo et al. (2021); Yao et al. (2022). Recently, INR was adopted for images Skorokhodov et al.
(2020) and videos Chen et al. (2021); Sitzmann et al. (2020); Yu et al. (2022); Chen et al. (2022). INR-
GAN Skorokhodov et al. (2020) first showed the application of INRs in generating high-quality images by

3

Under review as submission to TMLR

replacing the generator component of StyleGAN2 Karras et al. (2019) with an MLP-based INR. It then used
a hypernetwork to populate the INR. Unlike INR-GAN, which is trained using a stochastic discriminator,
INR-V relies on a deterministic distance-based loss to train the hypernetwork. SIREN Sitzmann et al. (2020)
proposed periodic activation functions for INRs as a replacement for ReLU activation to parameterize many
different data types like images, videos, sounds, and 3D shapes, with fine details. NeRV Chen et al. (2021)
designed an implicit function as a continuous function of time and used convolution blocks at each time step
to parameterize discrete frames showcasing an improved frame quality over SIREN. Recently, VideoINR Chen
et al. (2022) was proposed that used INRs for video superresolution. DIGAN Yu et al. (2022) incorporated
INRs made of MLP layers for video generation. It consisted of two separate networks that generated spatial
and temporal codes for generating videos in a frame-wise fashion. StyleGAN-V Skorokhodov et al. (2021)
also incorporated INRs and relied on continuous non-periodic positional encodings for each timestep of a
video. Like NeRV, StyleGAN-V used traditional convolution operations for frame-by-frame video generation.
Both DIGAN and StyleGAN-V used a GAN set up to train the video generators. INR-V is based on MLPs
with ReLU activation trained in a fashion similar to Light Field Networks (LFNs) Sitzmann et al. (2021).
LFNs proposed a novel neural scene representation for novel view synthesis and trained a hypernetwork over
multiple object instances using distance-based losses like Euclidean or Manhattan distance. Like LFNs and
INR-GAN, INR-V parameterizes the entire signal (a video) using INRs and relies on a single hypernetwork
to generate the INRs. However, unlike LFNs and INR-GAN, INR-V encodes a denser representation of a
volumetric 3D ∈ R3 data making hypernetwork training more challenging.

3 INR-V: Implicit Neural Representation for Video Synthesis

Each video instance Vn consists of pixels at locations (h, w) at tth frame. We have a particular parameter
vector θn that is used by a network f to generate the value of the color RGBhwt for that pixel location
(h, w, t). We need to learn a network d with parameters Ω that predicts the parameters θn for a particular
video Vn. Here, d is a hyper-network. The overall approach to train the network is illustrated in Fig. 3.

3.1 Hypernetwork for Modeling Multiple Video Instances

As fθ implicitly stores a single video signal, any new video would need its own implicit function. Let fθn

denote the implicit function for a given video {Vn}N
n=1 where N is the total number of available videos in

the training dataset D. Each of these implicit functions, fθn can be modeled using a neural network trained
on each pixel value of the video Vn. Thus, implicit functions minimize the following objective:

L(θn) = 1
T

1
W

1
H

T∑
t=1

W∑
w=1

H∑
h=1

(fθn
(h, w, t) − RGBhwt)2 (1)

Generating a novel video Vz translates to generating a novel implicit function fθz
that represents a meaningful

video. Let us consider fθz , an unseen sample from an underlying distribution Φ. Each point in the distribution
Φ denotes an implicit function of a meaningful video. To randomly sample fθz , we make use of a meta-
network to learn the distribution Φ.

We use a hypernetwork dΩ as a meta-network to parameterize fθ, such that dΩ(mn) = θn for video instance
Vn. Here mn is a a d-dimensional point in the latent space, say τ , and serves as an instance code for Vn.
dΩ is conditioned by mn. Given enough number of samples N , dΩ should be able to learn a representation
over Φ constrained on τ . As can be seen in Fig. 3, a latent code mn is fed to the hyper-network dΩ which
generates a set of parameters θn. The parameters θn are then used to initialize network fθn

to generate Vn.

Let us consider τ as a meta-distribution such that {m}D ∈ τ . At the time of inference, mz can be randomly
sampled from τ . As dΩ has learned a valid representation over Φ constrained on τ , mz enables dΩ to generate
a meaningful implicit function fθz

∈ Φ. Sampling from τ can be made straight forward by making sure τ
is regularized during training. At the time of training, Ω and {mn}N

n=1 are optimized together. θ is a
non-learnable parameter and fθ is initialized as the output of dΩ. The following objective is optimized:

L(Ω, m) = 1
N

1
T

1
W

1
H

N∑
n=1

(
T∑

t=1

W∑
w=1

H∑
h=1

(fθn
(h, w, t) − RGBijk)2

)
and θn = hΩ(mn) (2)

4

Under review as submission to TMLR

θn

w

h

t

Code Instance n

H x W x T
H x W x T

Vn

Codebook C

cn

Real

FC FC FC

fθn

Distance Loss

Prediction

dΩ

FC FC FC

Video-CLIP
Embeddings

gn

mn

FC

Grid

Encoding

Auto-Decoding

Figure 3: Architecture of INR-V: Any video instance Vn is represented by its corresponding implicit
neural representation, an MLP, fθn

. fθn
takes a grid as input denoting the pixel positions of the video

encoded using periodic positional encodings. It then generates the pixel values for all the positions. fθn

is initialized by a meta-network called hypernetworks denoted as dΩ composed of a set of MLPs. dΩ is
conditioned by an instance code mn unique to every video instance Vn. mn is trained by combining (1)
auto-decoding framework to regress to a code cn and (2) encoding-framework to regularize the space using
CLIP embedding that generates Vn’s semantic code gn. At the time of inference, mn is randomly sampled
from an underlying learned distribution τ .

3.2 Regularizing τ for Hypernetwork Conditioning

CLIP CLIP CLIP CLIP

Bi-GRU

Average

gn cn

Video-CLIP

R
ea

l

Figure 4: Video-CLIP: Encoding a
video Vn to a latent vector gn by using
image-level CLIP encodings.

To generate a novel video, a random latent mz is sampled from the
latent space τ . dΩ is then conditioned on mz generating an implicit
function fθz

∈ Φ. In a standard hypernetwork training, mn is opti-
mized in an auto-decoding framework as given in Eqn. 2. However,
given the complexity of the signal V (a 3D volumetric representa-
tion) that dΩ has to model, {m}D can collapse to a single point if τ
is not regularized at the time of training, bringing the expressiveness
of dΩ down to a single implicit function. We regularize τ by lever-
aging pretrained CLIP Radford et al. (2021) designed for generating
semantically meaningful embeddings for images. We design Video-
CLIP that encodes an entire video Vn to a vector gn. As shown
in Fig. 4, Video-CLIP first generates the image-level CLIP embed-
dings. These embeddings are then passed through a bi-directional
GRU. The mean of the hidden state outputs of the final layer pro-
duces gn. The regularized instance code mn is now given as:

mn = ϕ(cn, gn) (3)

where cn is the instance code of Vn optimized in an auto-decoding
fashion at the time of training, and ϕ is a neural network. CLIP regularization encourages the latent codes
to be spaced sufficiently apart by leveraging predefined semantic encoding. This also helps in avoiding a
mode collapse. We observe through our experiments that CLIP regularization leads to a faster convergence
with the implicit functions preserving finer video details. Please find the ablation on CLIP regularization in
Appendix A.1.

5

Under review as submission to TMLR

3.3 Progressive Training

A video is a dense 3D volume mandating its neural representation to model every single point in the volume.
Although implicit representations have a constant number of parameters made of only a few layers of MLP in
our case, learning a meta-function using a hypernetwork over such dense representations is challenging. As a
result, if not appropriately initialized, the hypernetworks can easily collapse to a single representation despite
CLIP regularization. Moreover, a sub-optimal hypernetwork initialization could result in a significantly
longer convergence period. To tackle this challenge, we adopt a progressive initialization scheme. Firstly,
the training is divided into multiple stages. Each stage, denoted by {l}K

l=1 where K is the total number of
stages, is made of a subset of the training dataset D. The number of samples Nl in each stage l is given as:

Nl =
{

Nl−1 + ϵl l > 1
C l = 1

(4)

where C is a constant and ϵl denotes the number of additional samples for lth stage. Each step l consists of
{Vn}Nl

n=1 datapoints that is computed as:

{Vn}Nl
n=1 = {Vi}

Nl−1
i=1 + {Vj}Nl−1+ϵl

j=Nl−1
(5)

where the order of set {V } is maintained across the training stages. At the start of the training, the model is
trained on C < 10 examples. This allows the hypernetwork to quickly adapt to the handful of examples and
initialize the weights. However, jumping from C to ∼ 30,000 samples cause the network to collapse again.
Thus, we adapt the network progressively to the given examples. A vital step in this method is reusing the
instance codes cn learned at a stage l in the next stage l + 1. If not done, this pushes the hypernetwork to
re-learn all the instances. Instead, we focus on teaching the datapoints to the hypernetwork in stages by
first fitting on a set of examples and then using the experience to learn more examples. Reusing the weights
of the previous stages allows the hypernetworks to retain the previously seen examples.

4 Experiments

Experimental Setup: We perform our experiments on (1) How2Sign Faces Duarte et al. (2020), (2)
SkyTimelapse Xiong et al. (2017), (3) Moving-MNIST Srivastava et al. (2015), and (4) RainbowJelly1. Real
video samples of each dataset is visualized in the Appendix Fig. 11. How2Sign Duarte et al. (2020) is a full-
body sign-language dataset consisting of 11 signers. The signers have elaborate facial expressions, mouth,
and head movements. We modify How2Sign to How2Sign-Faces by cropping the face region out of all the
videos and randomly sample 10,000 talking head videos, each of at least 25 frames, dimension 128 × 128.
SkyTimelapse Xiong et al. (2017) consists of scenic videos focusing on sky changes. It is made of 1803 videos,
each at least 25 frames long. The videos are first center-cropped to 360 × 360 from an original dimension of
360 × 620 and then resized to the 128 × 128 for training. Moving-MNIST Srivastava et al. (2015) is a video
dataset made of moving MNIST classes containing a total of 10,000 datapoints. Each video is 20 frames
long. RainbowJelly is a single underwater video capturing colorful jellyfishes. The video is first extracted
into frames which are then divided into videos of 25 frames each, making a total of 34,526 videos. Similar
to SkyTimelapse, the videos are first center cropped to 360 × 360 and then resized to 128 × 128.

All experiments are performed on 2 NVIDIA-GTX 2080-ti GPUs with 12 GB memory each. All models,
except INR-V, are trained at a resolution of 128 × 128. To make training computationally efficient, INR-V
is trained on a lower resolution of 100 × 100 videos. Based on INRs, INR-V can infer directly at multiple
resolutions (please refer section 5.2). For evaluations and comparisons, INR-V is inferred at 128 × 128 like
the other models. The training setup and model architecture are in Appendix A.22

4.1 Comparing INR-V with Single-INR

INR-V uses hypernetworks to learn a distribution over the INRs of videos. A single hypernetwork dΩ can
initialize the INRs for multiple videos {Vn} based on their respective instance codes mn. Thus, measuring if

1https://www.youtube.com/watch?v=P8Bit37hlsQ
2The codebase, dataset, and pretrained models will be publicly released.

6

https://www.youtube.com/watch?v=P8Bit37hlsQ

Under review as submission to TMLR

Single-INR INR-V
Dataset E ↓ PSNR50 ↑ SSIM50 ↑ E50 ↓ PSNR50 ↑ SSIM50 ↑ PSNRFULL ↑ SSIMFULL ↑

How2Sign-Faces 4.83 29.72 0.925 8.29 25.69 0.850 25.84 0.869
SkyTimelapse 4.69 36.19 0.943 5.87 33.69 0.931 33.94 0.924

Moving-MNIST 3.57 37.26 0.978 6.06 29.81 0.949 29.54 0.975
RainbowJelly 4.17 35.93 0.918 5.02 33.34 0.937 33.57 0.938

Table 1: Quantitative metrics on reconstruction quality. Comparison set is made of 50 videos per training dataset.
INRs trained individually for each video is denoted as Single-INR. INR-V trains a single hypernetwork dΩ to populate
the INRs of all the videos in the training dataset. PSNR50 and SSIM50 are computed on the comparison set,
PSNRFULL and SSIMFULL are computed on the entire training set. E is computed on videos with pixel range [0, 255].

Method How2Sign-Faces SkyTimelapse Moving-MNIST RainbowJelly
MoCoGAN-HD 396.53 321.44 296.95 1856.21

DIGAN 165.89 135.60 144.97 408.19
StyleGAN-V 94.64 85.05 109.85 1227.70

INR-V 161.68 153.42 103.24 356.98
+ Denoising 87.22 - 47.28 -

Table 2: FVD16 metrics computed on random videos generated by the respective models.

dΩ generates the INR functions fθ accurately is crucial. We evaluate this using a set of 50 randomly sampled
videos from the training dataset. Each video is first trained to fit a single INR function fθn using Eqn. 1
denoted as Single-INR. Next, the INRs of these 50 videos are populated using a pretrained hypernetwork dΩ
trained on the entire dataset. We measure the reconstruction quality with PSNR, SSIM, and the error as:

E =
(

1
50

50∑
n=1

1
HWT

(V
′

n − Vn)2

) 1
2

(6)

where V
′

n denote the video generated using the implicit function fθ. Single-INR was optimized for 750 steps
using Eqn. 1 taking ∼ 5.56 minutes for each video (∼ 4.63 hours for 50 videos). Table. 1 presents quantitative
metrics on the videos reconstructed using Single-INR and INR-V. PSNRFULL computes the PSNR on the
entire training dataset, PSNR50 computes the metric on the selected 50 videos for comparison. As can be
seen, although hypernetwork dΩ is trained on huge datasets, it performs comparably with Single-INR. For
RainbowJelly, it even outperforms Single-INR in SSIM metric and performs at par on SkyTimelapse. This
indicates that dΩ has learned to accurately generate INRs for complex spatio-temporal signals.

4.2 Comparing INR-V with SOTA video generation networks

Overview: Fig. 5 and Table 2 present qualitative and quantitative comparisons respectively between
MocoGAN-HD Tian et al. (2021), DIGAN Yu et al. (2022), StyleGAN-V Skorokhodov et al. (2021), and
INR-V. All models were trained from scratch. As we train the models on smaller datasets of ∼ 10,000
datapoints, MoCoGAN-HD is trained on StyleGAN2-ADA Karras et al. (2020) backend. For each model,
the best-performing checkpoint is selected for comparison.

Evaluation: As can be seen in Fig. 5, INR-V generates novel videos with coherent content and motion.
MoCoGAN-HD fails to maintain the identity in a single video instance. For quantitative evaluation, we use
the Frechet Video Distance (FVD) metric as implemented by StyleGAN-V. FVD16 is computed on 2048
videos of 16 frames sampled at a resolution of 128 × 128. As can be seen in Table 2, INR-V outperforms the
existing networks on Moving-MNIST and RainbowJelly and performs comparably on the remaining datasets.

Enhancing INR-V’s Visual Quality Enhancing image and video quality has been an area of extensive
research Yang et al. (2021); Chu et al. (2020); Liang et al. (2022); Chadha et al. (2020) with many break-
throughs. We propose that video generation can be partitioned into two stages (1) generating coherent

7

Under review as submission to TMLR

Figure 5: Examples of random videos generated on, from top to bottom, How2Sign-Faces Duarte et al. (2020),
SkyTimeLapse Xiong et al. (2017), RainbowJelly Soomro et al. (2012), and Moving-MNIST Srivastava et al. (2015).
For Moving-MNIST, every 2nd frame of 20 frames long videos are shown. For other datasets, every 3rd frame of
25 frames long generated are shown. Moving-MNIST and How2Sign-Faces are passed through VQVAE2 denoising
network as described in Section 4.2

content and motion (2) enhancing the visual quality. Note that, in the present work, our effort has been on
(1) to propose a novel continuous representation space for videos. Here, we demonstrate (2) by developing
a simple denoising network using a standard VQVAE2 Razavi et al. (2019). We train VQVAE2 as a frame-
by-frame denoising autoencoder making one minor change: Instead of reconstructing the given low-quality
input, we use the high-quality frame for computing the error. The low-quality inputs are the intermediate
video instances reconstructed by INR-V during training. We train denoising VQVAE2 on How2Sign-Faces
and Moving-MNIST. Appendix Fig. 10 demonstrates the results of the denoising network on blurry instances

8

Under review as submission to TMLR

Figure 6: Each cell displays 12th frame of 25 frames long generated videos. The videos demonstrate
interpolation between two given videos (in red boxes) by traversing along a trajectory in the latent space
connecting the latent points of the given videos. Here, MoCoGAN+ and StyleGAN+ denote MoCoGAN-HD
and StyleGAN-V. White boxes indicate a sudden transition in content (e.g. identity) or motion (e.g. pose).

generated by INR-V. As can be seen from the quantitative metrics in Table. 2, using a simple additional
denoising network improves the network’s performance by ∼ 2×.

5 Applications of the continuous video space learned by INR-V

INR-V learns a continuous latent representation for videos allowing complex spatio-temporal video signals
to be represented using a single latent point. In this section, we showcase the advantage of such a latent
space through several demonstrated properties and comparisons. We also benchmark several tasks based on
the inversion of 256 videos on How2Sign-Faces using full and incomplete video context.

5.1 Video Interpolation

MoCoGAN-HD DIGAN StyleGAN-V
100.00 89.43 95.24

Table 3: Video interpolation user
study: % of times INR-V interpolation
was preferred over existing models.

Given two videos V1 and V2, a continuous video space should be able
to make a gradual transition between the two videos such that every
point along the trajectory between the two (1) produces a meaningful
video and (2) shares content and motion properties from V1 and V2.
We demonstrate this property in Fig. 1 and Fig. 6 with Slerp inter-
polation. Each cell in Fig. 6 demonstrate the 12th frame of the 25
frames long videos. As can be seen, INR-V observed a gradual change
in motion (pose, mouth movements, expressions, cloud shift) and con-
tent (identity, visibility of sun). The interpolated videos are spatio-temporally coherent (best seen in videos
added in the supplementary). Appendix Fig. 15 and Fig. 16 demonstrate the spatio-temporal transition on
How2Sign-Faces and SkyTimelapse. As we represent an entire video in a single point in the continuous video
space, interpolation is a natural operation that can be performed with INR-V.

Comparisons: Existing models have different motion and content codes. To interpolate videos, inter-
mediate content codes were interpolated between two videos by Slerp interpolation. INR-V does not have
separate motion and content vectors; thus, videos can be interpolated directly using given video’s latent
points. As shown in Fig. 6, INR-V has a gradual transition in motion and content. For How2Sign-Faces,
StyleGAN-V abruptly changes motion (cell 5-7), and DIGAN abruptly switches identity (cell 1-2, cell 5-6).
This effect is highlighted in white boxes. This is expected as both of these architectures operate in the
image space, and thus a gradual spatio-temporal transition is harder to achieve. We performed a user study
on 30 users to qualitatively evaluate the interpolation quality of INR-V and report the metrics in Table. 3.
INR-V interpolation was randomly shown against either of the other three models. The users provided their
preference on which interpolation looked smoother in terms of transition in content and motion. INR-V was
preferred at least 85% more than all the SOTA video generation methods. This demonstrates the continuous

9

Under review as submission to TMLR

Figure 7: INR-V direct inference on multiple resolutions and frame length. INR-V trained on only
25 frames long 100 × 100 videos. Novel videos of multiple resolutions (64 × 64, 128 × 128, 256 × 256) and
video length (50) are directly generated on the trained model without any architectural change or finetuning.
The images are not upto scale, please refer Appendix Fig. 17 for scaled representation.

nature of the video space learned by INR-V. Please refer to the added supplementary videos for additional
results and comparison.

5.2 Multi-Resolution and Multi-Length Inference
128 × 128 256 × 256 360 × 360

INR-V (Ours) 356.98 290.43 342.14

Table 4: FVD16 metrics on random video generation at
multi-resolution on INR-V. Training was done on only
100 × 100 dimensional videos of 25 frames. Inference
was taken directly on multiple resolutions without any
finetuning or architectural changes.

2× 3× 3.6×
200 × 200 300 × 300 360 × 360

PSNR SSIM PSNR SSIM PSNR SSIM
Bicubic 31.53 0.884 32.13 0.915 32.31 0.920

VideoINR 31.59 0.883 33.01 0.913 - -
INR-V (Ours) 28.62 0.892 29.17 0.894 29.05 0.896

Table 5: Quantitative metrics on video superresolu-
tion using INR-V and SOTA superresolution networks
on video instance seen at the time of training. INR-V
was trained at 100 × 100 video resolution.

An underlying property of INRs is a continuous rep-
resentation of the signal given as fθ(h, w, t) → RGB.
This enables the model to understand a continuous
property of the signal making it agnostic to the dimen-
sion. Thus, one can infer a model on multiple resolu-
tions and video length without changing the model’s
architecture and without any finetuning. In Fig. 7 we
show INR-V trained on videos of only 100 × 100 res-
olution with 25 frames per video, generating random
videos of multiple resolutions and lengths, maintain-
ing the content and motion quality of the output. Ad-
ditional qualitative results are added in the Appendix
Fig. 17 and supplementary videos. Table 4 presents
the FVD16 metrics on 2048 random videos generated
at multiple resolutions on RainbowJelly. Qualitative
results are added in the supplementary videos. As
can be seen, the difference in FVD16 is statistically
insignificant Unterthiner et al. (2018).

Additionally, we compare INR-V with existing SOTA superresolution techniques Chen et al. (2022) in Table 5
on RainbowJelly. 2048 videos are first randomly selected from the training dataset. A pretrained INR-V
model trained on the entire dataset is then used for comparison. As can be seen, INR-V performs comparably
with SOTA methods in the task of superresolution.

5.3 Video Inversion and its applications

Inversion has been widely adopted in many applications prominently for images. StyleGAN2 Karras et al.
(2019) is extensively used for image inversion enabling many downstream image editing tasks such as changing
the emotion, age, or gender of a given face. However, inverting a complete video was a complex task before
needing the inversion of many motion and content codes. In INR-V, inverting a complex spatio temporal
video signal can be achieved by optimizing a single latent code through a simple optimization objective:.

argmin
mz

1
T

1
W

1
H

t=1∑
T

w=1∑
W

h=1∑
H

(fθz
(h, w, t) − RGBs)2 where θz = hΩ(mz) (7)

where mz is the latent point for a video instance Vz. Fig 8 shows the qualitative demonstration of INR-V
inversion trained on How2Sign-Faces for a video outside of the training dataset D.

10

Under review as submission to TMLR

Figure 8: Video Inversion and it’s applications.
INR-V can be directly used for several tasks by simply
inverting a video to its latent point based on the given
context. Here, we demonstrate some qualitative results.

Video Completion: Key categories of ‘video
synthesis’ include future prediction (future frames
prediction), completing the video between frames
(frame interpolation), and predicting the missing
part of the video (video inpainting). In INR-V,
a video Vz that is represented by a single latent
code mz can be generated without any additional
knowledge. Thus, all the above operations can be
performed using a modified optimization opera-
tion based on Eqn 7 on the seen part of the video
given as:

argmin
mz

1
S

(fθz
(hs, ws, ts) − RGBs)2

and θz = hΩ(mz)
(8)

where S is the number of context points, hs, ws,
and ts are the context points of Vz seen at the time
of optimization. With the optimized mz, the full
video can simply be generated back with INR-V.
Fig. 8 demonstrates the results for the various op-
eration on a video outside of D with ∼ 2.5 minutes
of optimization on a single 12 GB NVIDIA GTX
2080ti GPU. As can be seen, the network is able
to regress to a latent corresponding to the given
identity while preserving finer details like specta-
cles, mouth shape, pose, etc. In the case of ‘Video
Inpainting’, the network understands the person’s
pose. For ‘Frame Prediction’, although the pose
does not match the ground truth, the overall video
is coherent. In ‘Frame Interpolation’, the model is
able to generate a coherent context between two
frames, including the pose, expressions, identity,
and mouth movements. In ‘Sparse Inpainting’,
we randomly set 25% of all the video pixels as the
context points for optimization. Even with very
sparse context, INR-V is able to regress to the
correct specifications, including the finer content
details, pose, and motion.

Video Superresolution through inversion:
Video Superresolution is the task of enhancing the
resolution of a given video. Recent works such as Chu et al. (2020); Liang et al. (2022); Sajjadi et al. (2018);
Chadha et al. (2020); Wang et al. (2019); Chen et al. (2022) have made significant progress in video super-
resolution, showcasing 4× enhancement. INR-V can directly superresolve seen video instances as showcased
in Table. 5. For unseen instances, combining the capability of video inversion and multi-resolution video
generation, INR-V can superresolve a given video Vz of a lower resolution (say 32 × 32) simply as following:
(1) Invert Vz at the smaller resolution to obtain mz. (2) Render Vz from mz directly at a higher resolution
(say 256 × 256). In Fig. 8, we demonstrate the qualitative results on a video outside the training dataset.
Like the other inversion tasks, the video was optimized at 32 × 32 for ∼ 2.5 minutes on a single 12 GB
NVIDIA-GTX 2080ti GPU. The inverted video was then superresolved at a scale factor of 8× to 256 × 256.
Please note that we do not solve the task of superresolution but rather show superresolution as a potential
application of our work.

Quantitative Evaluation: To quantify the performance of INR-V, we prepare a comparison set by
randomly sampling 256 videos outside of the training set. We compare against StyleGAN-V only on the

11

Under review as submission to TMLR

task of video inversion. StyleGAN-V generates full frames at once thus needing full frame context for
backpropogation. DIGAN is based on INRs and can invert incomplete frame context; thus, we compare
INR-V with DIGAN for the rest of the tasks except Superresolution. For superresolution, we compare with
SOTA techniques Bicubic and VideoINR superresolution at a scale factor of 4× from 32 × 32 to 128 × 128.

Task Method GT-ID ↑ TL-ID ↑ TG-ID ↑ Context-L1 ↓ PSNR ↑ SSIM ↑ Cost ↓

Inv.
DIGAN 0.652 0.953 0.9599 45.08 19.59 0.653 ∼ 4.25
Style-V 0.804 0.985 0.998 42.16 19.65 0.665 ∼ 3.25
INR-V 0.770 0.950 0.950 5.25 21.21 0.773 ∼ 2.75

Inp. DIGAN 0.628 0.960 0.969 45.80 - - ∼ 4.25
INR-V 0.758 0.948 0.939 4.83 - - ∼ 2.75

Pre. DIGAN 0.603 0.940 0.928 40.26 - - ∼ 4.25
INR-V 0.703 0.946 0.932 4.72 - - ∼ 2.75

Int. DIGAN 0.653 0.925 0.921 48.66 - - ∼ 4.25
INR-V 0.702 0.928 0.905 7.46 - - ∼ 2.75

Spr. DIGAN 0.718 0.961 0.967 46.24 19.74 0.671 ∼ 4.25
INR-V 0.768 0.968 0.974 5.29 22.35 0.774 ∼ 2.75

Sup.
4×

Bicubic 0.808 0.923 0.903 - 28.36 0.906 -
VideoINR 0.939 0.982 0.974 - 32.86 0.957 -
INR-V 0.734 0.911 0.903 4.92 21.94 0.742 ∼ 2.75

Table 6: Comparison of INR-V on various video inversion tasks: Video Inversion
(Inv.), Video Inpainting (Inp.), Frame Prediction (Pre.), Frame Interpolation (Int.),
Sparse Interpolation (Spr.), and Superresolution (Sup.). Comparison set is made of
256 videos outside of the training dataset. Metrics used for evaluation is explained
in Sec. 5.3. Cost denotes the time to optimize a single video instance in minutes.

PSNR and SSIM metrics
are used when the gener-
ated video is expected to
match the ground truth.
There is no single correct
prediction for tasks like
‘Future Frame Prediction’,
‘Frame Interpolation’, and
‘Video Inpainting’. Thus,
we adopt the following met-
rics (1) Temporally Locally
(TL-ID) and Temporally
Globally (TG-ID) Identity
Preservation, (2) Context-
L1, and (3) Ground Truth
Identity (GT-ID) Match.
TL-ID and TG-ID were
proposed in ‘Stitch it in
Time Tzaban et al. (2022)’.
They evaluate a video’s
identity consistency at a lo-
cal and global level. For both metrics, a score of 1 would indicate that the method successfully maintains
the identity consistency of the original video. Context-L1 computes the L1 error on the inverted videos at
the given context points. An error of 0 would indicate that the inversion is perfect. The error is computed in
a pixel range of [0, 100]. GT-ID measures the match in identity between the ground truth and the inverted
video. DeepFace 3 face features are extracted for both the videos, and the cosine similarity is computed
between the extracted features.

As can be seen, INR-V outperforms all the existing networks in most of the metrics on video inversion and the
proposed inversion tasks, except ‘Superresolution’, indicating the advantage and robustness of a continuous
video space. Moreover, the optimization time is 1.75× lesser than DIGAN. For the task of Superresolution,
VideoINR performs the best. However, INR-V performs comparably despite inverting at a lower resolution
of 32 × 32. Moreover, VideoINR superresolves a complete video. An accurate inversion opens a vast number
of possibilities, such as inverting an incomplete video (missing frames or missing pixels in each frame due to
video corruption) and then superresolving at a higher resolution.

6 Conclusion

We present INR-V, a continuous video representation network. Unlike existing architectures that extend
superior image generation networks for generating videos one frame at a time, we use implicit neural repre-
sentations to parameterize videos as complete signals allowing a meta-network to encode it to a single latent
point. Given enough examples, the meta-network learns a continuous video space as demonstrated through
video interpolation and inversion tasks. INR-V generates diverse coherent videos outperforming many exist-
ing video generation networks. INR-V opens the door to a multitude of video-based tasks and removes the
dependency on an image generator. For instance, we showcase video inversion using a simple optimization
objective. We propose several downstream tasks and observe that INR-V outperforms the existing works on
a majority of these tasks. We demonstrate the advantages and potential of a continuous video space and
hope to encourage research in this direction.

3https://github.com/serengil/deepface

12

https://github.com/serengil/deepface

Under review as submission to TMLR

References
Aman Chadha, John Britto, and M. Mani Roja. iSeeBetter: Spatio-temporal video super-resolution using

recurrent generative back-projection networks. Computational Visual Media, 6(3):307–317, jul 2020. doi:
10.1007/s41095-020-0175-7. URL https://doi.org/10.1007%2Fs41095-020-0175-7.

Hao Chen, Bo He, Hanyu Wang, Yixuan Ren, Ser-Nam Lim, and Abhinav Shrivastava. Nerv: Neural
representations for videos, 2021. URL https://arxiv.org/abs/2110.13903.

Zeyuan Chen, Yinbo Chen, Jingwen Liu, Xingqian Xu, Vidit Goel, Zhangyang Wang, Humphrey Shi, and
Xiaolong Wang. Videoinr: Learning video implicit neural representation for continuous space-time super-
resolution, 2022. URL https://arxiv.org/abs/2206.04647.

Pei-Ze Chiang, Meng-Shiun Tsai, Hung-Yu Tseng, Wei-sheng Lai, and Wei-Chen Chiu. Stylizing 3d scene
via implicit representation and hypernetwork, 2021. URL https://arxiv.org/abs/2105.13016.

Mengyu Chu, You Xie, Jonas Mayer, Laura Leal-Taixé , and Nils Thuerey. Learning temporal coherence via
self-supervision for GAN-based video generation. ACM Transactions on Graphics, 39(4), aug 2020. doi:
10.1145/3386569.3392457. URL https://doi.org/10.1145%2F3386569.3392457.

Aidan Clark, Jeff Donahue, and Karen Simonyan. Adversarial video generation on complex datasets, 2019.
URL https://arxiv.org/abs/1907.06571.

Zihan Ding, Xiao-Yang Liu, Miao Yin, and Linghe Kong. Tgan: Deep tensor generative adversarial nets for
large image generation, 2019. URL https://arxiv.org/abs/1901.09953.

Amanda Duarte, Shruti Palaskar, Lucas Ventura, Deepti Ghadiyaram, Kenneth DeHaan, Florian Metze,
Jordi Torres, and Xavier Giro-i Nieto. How2sign: A large-scale multimodal dataset for continuous american
sign language, 2020. URL https://arxiv.org/abs/2008.08143.

Shangqian Gao, Feihu Huang, and Heng Huang. Model compression via hyper-structure network, 2021. URL
https://openreview.net/forum?id=Oc-Aedbjq0.

Kyle Genova, Forrester Cole, Daniel Vlasic, Aaron Sarna, William T. Freeman, and Thomas Funkhouser.
Learning shape templates with structured implicit functions, 2019. URL https://arxiv.org/abs/1904.
06447.

Yudong Guo, Keyu Chen, Sen Liang, Yong-Jin Liu, Hujun Bao, and Juyong Zhang. Ad-nerf: Audio driven
neural radiance fields for talking head synthesis, 2021. URL https://arxiv.org/abs/2103.11078.

David Ha, Andrew Dai, and Quoc V. Le. Hypernetworks, 2016. URL https://arxiv.org/abs/1609.09106.

Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Analyzing and
improving the image quality of stylegan, 2019. URL https://arxiv.org/abs/1912.04958.

Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Training
generative adversarial networks with limited data, 2020. URL https://arxiv.org/abs/2006.06676.

Angus Lamb, Evgeny Saveliev, Yingzhen Li, Sebastian Tschiatschek, Camilla Longden, Simon Woodhead,
José Miguel Hernández-Lobato, Richard E. Turner, Pashmina Cameron, and Cheng Zhang. Contextual
hypernetworks for novel feature adaptation, 2021. URL https://arxiv.org/abs/2104.05860.

Jingyun Liang, Jiezhang Cao, Yuchen Fan, Kai Zhang, Rakesh Ranjan, Yawei Li, Radu Timofte, and Luc
Van Gool. Vrt: A video restoration transformer, 2022. URL https://arxiv.org/abs/2201.12288.

Pauline Luc, Aidan Clark, Sander Dieleman, Diego de Las Casas, Yotam Doron, Albin Cassirer, and Karen
Simonyan. Transformation-based adversarial video prediction on large-scale data, 2020. URL https:
//arxiv.org/abs/2003.04035.

13

https://doi.org/10.1007%2Fs41095-020-0175-7
https://arxiv.org/abs/2110.13903
https://arxiv.org/abs/2206.04647
https://arxiv.org/abs/2105.13016
https://doi.org/10.1145%2F3386569.3392457
https://arxiv.org/abs/1907.06571
https://arxiv.org/abs/1901.09953
https://arxiv.org/abs/2008.08143
https://openreview.net/forum?id=Oc-Aedbjq0
https://arxiv.org/abs/1904.06447
https://arxiv.org/abs/1904.06447
https://arxiv.org/abs/2103.11078
https://arxiv.org/abs/1609.09106
https://arxiv.org/abs/1912.04958
https://arxiv.org/abs/2006.06676
https://arxiv.org/abs/2104.05860
https://arxiv.org/abs/2201.12288
https://arxiv.org/abs/2003.04035
https://arxiv.org/abs/2003.04035

Under review as submission to TMLR

Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and Andreas Geiger. Occupancy
networks: Learning 3d reconstruction in function space, 2018. URL https://arxiv.org/abs/1812.
03828.

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and Ren
Ng. Nerf: Representing scenes as neural radiance fields for view synthesis, 2020. URL https://arxiv.
org/abs/2003.08934.

Guillaume Le Moing, Jean Ponce, and Cordelia Schmid. Ccvs: Context-aware controllable video synthesis,
2021. URL https://arxiv.org/abs/2107.08037.

Phuoc Nguyen, Truyen Tran, Ky Le, Sunil Gupta, Santu Rana, Dang Nguyen, Trong Nguyen, Shannon
Ryan, and Svetha Venkatesh. Fast conditional network compression using bayesian hypernetworks, 2022.
URL https://arxiv.org/abs/2205.06404.

Simon Niklaus and Feng Liu. Softmax splatting for video frame interpolation, 2020. URL https://arxiv.
org/abs/2003.05534.

Simon Niklaus, Long Mai, and Feng Liu. Video frame interpolation via adaptive separable convolution, 2017.
URL https://arxiv.org/abs/1708.01692.

Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Lovegrove. Deepsdf:
Learning continuous signed distance functions for shape representation, 2019. URL https://arxiv.org/
abs/1901.05103.

Junheum Park, Chul Lee, and Chang-Su Kim. Asymmetric bilateral motion estimation for video frame
interpolation, 2021. URL https://arxiv.org/abs/2108.06815.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever. Learning transferable
visual models from natural language supervision, 2021. URL https://arxiv.org/abs/2103.00020.

Ali Razavi, Aaron van den Oord, and Oriol Vinyals. Generating diverse high-fidelity images with vq-vae-2,
2019. URL https://arxiv.org/abs/1906.00446.

Mehdi S. M. Sajjadi, Raviteja Vemulapalli, and Matthew Brown. Frame-recurrent video super-resolution,
2018. URL https://arxiv.org/abs/1801.04590.

Marcin Sendera, Marcin Przewięźlikowski, Konrad Karanowski, Maciej Zięba, Jacek Tabor, and Przemysław
Spurek. Hypershot: Few-shot learning by kernel hypernetworks, 2022. URL https://arxiv.org/abs/
2203.11378.

Vincent Sitzmann, Justus Thies, Felix Heide, Matthias Nießner, Gordon Wetzstein, and Michael Zollhöfer.
Deepvoxels: Learning persistent 3d feature embeddings, 2018. URL https://arxiv.org/abs/1812.
01024.

Vincent Sitzmann, Michael Zollhoefer, and Gordon Wetzstein. Scene representation networks: Contin-
uous 3d-structure-aware neural scene representations. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/
b5dc4e5d9b495d0196f61d45b26ef33e-Paper.pdf.

Vincent Sitzmann, Julien N. P. Martel, Alexander W. Bergman, David B. Lindell, and Gordon Wetzstein.
Implicit neural representations with periodic activation functions, 2020. URL https://arxiv.org/abs/
2006.09661.

Vincent Sitzmann, Semon Rezchikov, William T. Freeman, Joshua B. Tenenbaum, and Fredo Durand. Light
field networks: Neural scene representations with single-evaluation rendering, 2021. URL https://arxiv.
org/abs/2106.02634.

14

https://arxiv.org/abs/1812.03828
https://arxiv.org/abs/1812.03828
https://arxiv.org/abs/2003.08934
https://arxiv.org/abs/2003.08934
https://arxiv.org/abs/2107.08037
https://arxiv.org/abs/2205.06404
https://arxiv.org/abs/2003.05534
https://arxiv.org/abs/2003.05534
https://arxiv.org/abs/1708.01692
https://arxiv.org/abs/1901.05103
https://arxiv.org/abs/1901.05103
https://arxiv.org/abs/2108.06815
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/1906.00446
https://arxiv.org/abs/1801.04590
https://arxiv.org/abs/2203.11378
https://arxiv.org/abs/2203.11378
https://arxiv.org/abs/1812.01024
https://arxiv.org/abs/1812.01024
https://proceedings.neurips.cc/paper/2019/file/b5dc4e5d9b495d0196f61d45b26ef33e-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/b5dc4e5d9b495d0196f61d45b26ef33e-Paper.pdf
https://arxiv.org/abs/2006.09661
https://arxiv.org/abs/2006.09661
https://arxiv.org/abs/2106.02634
https://arxiv.org/abs/2106.02634

Under review as submission to TMLR

Ivan Skorokhodov, Savva Ignatyev, and Mohamed Elhoseiny. Adversarial generation of continuous images,
2020. URL https://arxiv.org/abs/2011.12026.

Ivan Skorokhodov, Sergey Tulyakov, and Mohamed Elhoseiny. Stylegan-v: A continuous video generator
with the price, image quality and perks of stylegan2, 2021. URL https://arxiv.org/abs/2112.14683.

Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. Ucf101: A dataset of 101 human actions classes
from videos in the wild, 2012. URL https://arxiv.org/abs/1212.0402.

Nitish Srivastava, Elman Mansimov, and Ruslan Salakhutdinov. Unsupervised learning of video representa-
tions using lstms, 2015. URL https://arxiv.org/abs/1502.04681.

Joseph Suarez. Language modeling with recurrent highway hypernetworks. In I. Guyon, U. Von Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural Information
Processing Systems, volume 30. Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/
paper/2017/file/f9d1152547c0bde01830b7e8bd60024c-Paper.pdf.

Yu Tian, Jian Ren, Menglei Chai, Kyle Olszewski, Xi Peng, Dimitris N. Metaxas, and Sergey Tulyakov. A
good image generator is what you need for high-resolution video synthesis, 2021. URL https://arxiv.
org/abs/2104.15069.

Sergey Tulyakov, Ming-Yu Liu, Xiaodong Yang, and Jan Kautz. Mocogan: Decomposing motion and content
for video generation, 2017. URL https://arxiv.org/abs/1707.04993.

Rotem Tzaban, Ron Mokady, Rinon Gal, Amit H. Bermano, and Daniel Cohen-Or. Stitch it in time:
Gan-based facial editing of real videos, 2022. URL https://arxiv.org/abs/2201.08361.

Thomas Unterthiner, Sjoerd van Steenkiste, Karol Kurach, Raphael Marinier, Marcin Michalski, and Sylvain
Gelly. Towards accurate generative models of video: A new metric challenges, 2018. URL https://arxiv.
org/abs/1812.01717.

Johannes von Oswald, Christian Henning, Benjamin F. Grewe, and João Sacramento. Continual learning
with hypernetworks, 2019. URL https://arxiv.org/abs/1906.00695.

Jacob Walker, Ali Razavi, and Aäron van den Oord. Predicting video with vqvae, 2021. URL https:
//arxiv.org/abs/2103.01950.

Xintao Wang, Kelvin C. K. Chan, Ke Yu, Chao Dong, and Chen Change Loy. Edvr: Video restoration with
enhanced deformable convolutional networks, 2019. URL https://arxiv.org/abs/1905.02716.

Wei Xiong, Wenhan Luo, Lin Ma, Wei Liu, and Jiebo Luo. Learning to generate time-lapse videos using
multi-stage dynamic generative adversarial networks, 2017. URL https://arxiv.org/abs/1709.07592.

Wilson Yan, Yunzhi Zhang, Pieter Abbeel, and Aravind Srinivas. Videogpt: Video generation using vq-vae
and transformers, 2021. URL https://arxiv.org/abs/2104.10157.

Tao Yang, Peiran Ren, Xuansong Xie, and Lei Zhang. Gan prior embedded network for blind face restoration
in the wild, 2021. URL https://arxiv.org/abs/2105.06070.

Shunyu Yao, RuiZhe Zhong, Yichao Yan, Guangtao Zhai, and Xiaokang Yang. Dfa-nerf: Personalized talking
head generation via disentangled face attributes neural rendering, 2022. URL https://arxiv.org/abs/
2201.00791.

Sihyun Yu, Jihoon Tack, Sangwoo Mo, Hyunsu Kim, Junho Kim, Jung-Woo Ha, and Jinwoo Shin. Generating
videos with dynamics-aware implicit generative adversarial networks, 2022. URL https://arxiv.org/
abs/2202.10571.

Chris Zhang, Mengye Ren, and Raquel Urtasun. Graph hypernetworks for neural architecture search, 2018.
URL https://arxiv.org/abs/1810.05749.

15

https://arxiv.org/abs/2011.12026
https://arxiv.org/abs/2112.14683
https://arxiv.org/abs/1212.0402
https://arxiv.org/abs/1502.04681
https://proceedings.neurips.cc/paper/2017/file/f9d1152547c0bde01830b7e8bd60024c-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/f9d1152547c0bde01830b7e8bd60024c-Paper.pdf
https://arxiv.org/abs/2104.15069
https://arxiv.org/abs/2104.15069
https://arxiv.org/abs/1707.04993
https://arxiv.org/abs/2201.08361
https://arxiv.org/abs/1812.01717
https://arxiv.org/abs/1812.01717
https://arxiv.org/abs/1906.00695
https://arxiv.org/abs/2103.01950
https://arxiv.org/abs/2103.01950
https://arxiv.org/abs/1905.02716
https://arxiv.org/abs/1709.07592
https://arxiv.org/abs/2104.10157
https://arxiv.org/abs/2105.06070
https://arxiv.org/abs/2201.00791
https://arxiv.org/abs/2201.00791
https://arxiv.org/abs/2202.10571
https://arxiv.org/abs/2202.10571
https://arxiv.org/abs/1810.05749

Under review as submission to TMLR

Youjian Zhang, Chaoyue Wang, and Dacheng Tao. Video frame interpolation without temporal priors, 2021.
URL https://arxiv.org/abs/2112.01161.

Dominic Zhao, Seijin Kobayashi, João Sacramento, and Johannes von Oswald. Meta-learning via hypernet-
works. 12 2020.

A Appendix

A.1 Ablation

Figure 9: Qualitative results of CLIP regularization. Results are taken from an intermediate step after 30 hours of
training on 2 NVIDIA GTX 2080ti GPUs. (a) Reconstruction of videos seen during training. CLIP regularization
enables the meta-network to model the INRs with finer details. (b) Videos generated by randomly sampling. CLIP
regularization improves the quality of the sampled videos and encourages variation in the implicit representations.

Figure 10: Denoising VQVAE2 reconstructions to en-
hance the visual quality of relatively blurry videos gen-
erated by INR-V. Please refer Sec. 4.2.

In this section, we compare the training time and the
performance of INR-V (1) with/without CLIP reg-
ularization and (2) with/without ‘progressive train-
ing’. Fig. 9 presents the qualitative results on INR-V
with and without clip regularization after 30 hours
of training on 2 NVIDIA GTX 2080ti GPUs. The
reconstruction quality is much worse without CLIP.
This is expected as Video-CLIP (see Fig. 4) assigns
semantic meaning to the initialized codes for each
video instance. Thus, the optimization is not com-
pletely from scratch. For random generations, we
already see a motion emerging with expressive faces.
In our observations, models trained with clip regularization in a progressive manner train faster. For in-
stance, in RainbowJelly, the model trained progressively using CLIP regularization reached an FVD score of
440.98 in just 66 hours (∼ 2.75 days). The model trained with CLIP regularization but without progressive
training could reach an FVD of 526.15 after 76 hours (∼ 3.25) of training. Without CLIP regularization,
the model reached an FVD of 580.68 and 817.22 after 115 hours (∼ 4.5 days) and 140 hours (∼ 5.75 days)
of training respectively. That is, the model without progressive training or CLIP regularization took the
longest to train. The model reached an FVD16 of 356.98 after ∼ 6 days of training on the same setup with
CLIP regularization and progressive training. The behavior was common across the datasets. However,
SkyTimelapse made of only 1803 datapoints did not have enough datapoints for progressive training. Thus,
the model was trained at once on all the datapoints. The final reported score of 153.43 was achieved using
CLIP regularization.

16

https://arxiv.org/abs/2112.01161

Under review as submission to TMLR

A.2 INR-V Implementation Details

The implicit neural representation fθ is an MLP with three 256-dimensional hidden layers. Each hidden
layer is passed through ReLU activations. The hypernetwork dΩ is a set of MLPs. Each MLP predicts the
weights for a single hidden layer and the output layer of fθ. Each MLP has three 256-dimensional hidden
layers. CLIP embeddings are 512-dimensional vectors, Video-CLIP encodes the CLIP embeddings of each
frame through three 512 dimensional, GRU layers. As shown in Fig. 4, Video-CLIP produces 512-dimensional
video-level embedding gn. cn is a 512-dimensional context vector that is regressed in an auto-decoding fashion
during training. ϕ is made of 3-hidden layers that takes a 1024-dimensional vector as input (concatenation
of gn and cn) and produces mn, a 128-dimensional instance code of Vn, as the input for dΩ. The input to
fθ is a periodic positional encoding of ({h}H

h=1, {w}W
w=1, {t}T

t=1) as implemented in Sitzmann et al. (2021).
Adam optimizer is used with a learning rate of 1e − 4 during training and 1e − 2 during inversion tasks.
No scheduler is used. Progressive training is done at a power of 10 where ith stage is made of min(10i, N)
examples. i = 0 . . . K such that 10K+1 < N + 1, where N is the total number of training samples.Each stage
except the last stage is trained until the reconstruction error reaches a threshold of 1e − 3.

A.3 Discussion

Limitations. Although INR-V has learned a powerful video space demonstrating several intriguing prop-
erties, the videos generated by the model are sometimes blurry. This is prominent when moving away to
unseen points in the video space far from the seen instances. Fig. 10 demonstrates the enhancement on one
such blurry sample. This is done by training a standard VQVAE2 network in a denoising fashion (please
refer to Sec. 4.2). However, the entire process is broken into generating a relatively lower quality output and
relying on a second network to improve its quality. A single end-to-end network capable of retaining the
demonstrated powerful properties while generating high-quality videos is a potential future work.

Another limitation of INR-V is infinitely long video generation. Although coupling the content and time
into a single latent has clear advantages, it removes the network’s ability to leverage the temporal dimension
separately and find infinitely long temporally coherent paths in the image space. This can be tackled by
training INR-V to encode video segments of multiple lengths in a single space (1 to 50 or more frames long
video segments). A temporally and semantically coherent trajectory between these video segments can then
be learned. Such a generation technique would directly leverage video segments and potentially remove
repetitions in the long videos. We believe that leveraging a video space for generating infinitely long videos
at multiple resolutions presents an interesting and exciting direction for future research.

Broader Impact. The potential negative impact of our work is similar to existing image-based and
video-based GANs: creating "photorealistic-deepfakes" and using them for malicious purposes. Our simple
training strategy makes it easier to train a model which produces realistic-looking videos. However, this
is partly addressed for the following reasons: (1) Even though our network produces diverse novel videos,
the perceptual quality of our generated videos falls short of the existing state-of-the-art image-based gen-
erators that produce high-resolution images. (2) The availability of high-quality video datasets limits the
intended malicious use of this codebase. Despite these limitations, we believe that the potential of our work
far outweighs its limitations. A continuous video representation space offers tremendous applications in
areas requiring video prediction, interpolation, and conditional video generation. E.g. pedestrian trajectory
prediction is an important area of research for self-driving cars. Pedestrian trajectory prediction through
future frame generation can serve to reduce accidents in fully-autonomous vehicles in the future. Similarly,
conditional video generation can be used for synthesizing novel sign language videos that can be integrated
into schools and universities to encourage and enable hard-of-hearing students.

A.4 Additional Qualitative Results

We encourage our readers to view the supplementary video results of INR-V. Fig. 11 presents the real video
instances in the training set. Fig. 12 and Fig. 13 presents qualitative results on the reconstruction of video
instances from different training datasets. Fig 14 presents random videos generated by INR-V on different
datasets. Fig 15 and Fig. 16 present spatio-temporal view of video interpolations on How2Sign-Faces and

17

Under review as submission to TMLR

Figure 11: Examples of real videos instances of How2Sign-Faces (H2S) Duarte et al. (2020), Moving-MNIST
(MNIST) Srivastava et al. (2015), RainbowJelly (Jelly), and SkyTimelapse (Sky) Xiong et al. (2017) datasets.

SkyTimelapse respectively. Fig. 17 presents the random generation of INR-V on multiple resolutions starting
from 32 × 32 to 256 × 256 jumping a scale factor of 8×. The visualization is up to scale, and one can see the
scale jump. INR-V can also be inferred at multiple frame rates. The supplementary videos include inferences
at 50 frames. Fig. 18 - Fig. 23 present the qualitative results and comparisons on the proposed inversion
tasks. Additional results on several inversion tasks can also be found in the supplementary videos.

18

Under review as submission to TMLR

Figure 12: Examples of video instances in the training set reconstructed by INR-V.

19

Under review as submission to TMLR

Figure 13: Examples of video instances in the training set reconstructed by INR-V.

20

Under review as submission to TMLR

Figure 14: Examples of random videos generated by INR-V.

21

Under review as submission to TMLR

Figure 15: Examples of video interpolation in INR-V on How2Sign-Faces. Two latent points are sampled from
the training dataset. Intermediate videos are then generated by sampling intermediate latent points using
Slerp interpolation technique. We urge the readers to view the supplementary videos for best experience.

22

Under review as submission to TMLR

Figure 16: Examples of video interpolation in INR-V on SkyTimelapse. Two latent points are sampled from
the training dataset. Intermediate videos are then generated by sampling intermediate latent points using
Slerp interpolation technique. We urge the readers to view the supplementary videos for best experience.

23

Under review as submission to TMLR

Figure 17: Examples of random videos generated by INR-V at multiple resolutions of 32 × 32, 64 × 64,
128 × 128, and 256 × 256 on How2Sign-Faces (top) and RainbowJelly (bottom). The videos are 25 frames
long each. The videos are upto scale. INR-V was trained on videos of only 100 × 100 resolution. Please refer
the supplementary videos for better experience and additional results on 50 frames long video generation.

24

Under review as submission to TMLR

Figure 18: Comparison of video inversion. Red boxes highlight the differences and matches between the
ground truth (GT) and the various methods. To note, INR-V is able to preserve the finer mouth movements
well.

25

Under review as submission to TMLR

Figure 19: Comparison of half-context inversion in an inpainting setting. At the time of optimization, the
model only sees the top half of the video. It then generates the full video back. There can be multiple correct
predictions, we showcase one such prediction.

26

Under review as submission to TMLR

Figure 20: Comparison of half-context inversion in a sparse context setting. At the time of optimization,
the model only sees 25% of the full video. INR-V preserve the identity including finer content details like
earrings. It also preserves motion like pose and mouth movements.

27

Under review as submission to TMLR

Figure 21: Comparison of half-context inversion in a future frame prediction setting. At the time of opti-
mization, the model only sees the first 4 frames of the video. There can be multiple correct predictions given
the identity is preserved across the video. We show one such example.

28

Under review as submission to TMLR

Figure 22: Comparison of half-context inversion in a frame interpolation setting. At the time of optimization,
the model only sees the first and last frames of the video. As can be seen, the first and the last frame generated
by INR-V match the context (pose, identity, mouth movements), whereas the intermediate frames are very
different from the ground truth.

29

Under review as submission to TMLR

Figure 23: Comparison of video superresolution. A video of 32 × 32 is given as input to INR-V for opti-
mization. Once the video is optimized, INR-V regenerates the video at a higher resolution of 128 × 128.
VideoINR and Bicubic directly see the 32 × 32 video and superresolves it to 128 × 128. Here, INR-V is not
influenced by the glaze on the spectacles and superresolves to a higher dimension closer to the ground truth.

30

	Introduction
	Related Work
	INR-V: Implicit Neural Representation for Video Synthesis
	Hypernetwork for Modeling Multiple Video Instances
	Regularizing for Hypernetwork Conditioning
	Progressive Training

	Experiments
	Comparing INR-V with Single-INR
	Comparing INR-V with SOTA video generation networks

	Applications of the continuous video space learned by INR-V
	Video Interpolation
	Multi-Resolution and Multi-Length Inference
	Video Inversion and its applications

	Conclusion
	Appendix
	Ablation
	INR-V Implementation Details
	Discussion
	Additional Qualitative Results

