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Abstract

Time perception is fundamental in our daily life. An important feature of time
perception is temporal scaling (TS): the ability to generate temporal sequences
(e.g., movements) with different speeds. However, it is largely unknown about
the mathematical principle underlying TS in the brain. The present theoretical
study investigates temporal scaling from the Lie group point of view. We propose a
canonical nonlinear recurrent circuit dynamics, modeled as a continuous attractor
network, whose neuronal population responses embed a temporal sequence that is
TS equivariant. We find the TS group operators can be explicitly represented by a
time-invariant control input to the network, whereby the input gain determines the
TS factor (group parameter), and the spatial offset between the control input and
the network state on the continuous attractor manifold gives rise to the generator
of the Lie group. The recurrent circuit’s neuronal responses are consistent with
experimental data. The recurrent circuit can drive a feedforward circuit to generate
complex sequences with different temporal scales, even in the case of negative
temporal scaling (“time reversal”). Our work for the first time analytically links
the abstract temporal scaling group and concrete neural circuit dynamics.

1 Introduction

We are living in a dynamic world and the brain can flexibly process sensory and motor events occurring
at different time scales [1–4]. An example of such temporal flexibility is self-initiated movements,
e.g., singing a song at normal or faster speed. The capability of temporally flexible movements
implies the brain flexibly control the underlying neural circuit dynamics. Indeed, experimental data
converges to an empirical principle of temporal scaling (TS) at the behavioral and neuronal levels
[2–5]. Specifically, when generating movements with longer intervals, it was found the neuronal
population activities evolve along the same (low-dimensional) manifold of the neuronal population
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responses but at a slower speed [2–8]. Although this observation was reproduced in previous modeling
studies that trained recurrent circuit models to achieve temporal scaling (e.g., [2, 6, 7, 9–15]), it is far
from clear about the mathematical principle governing temporal scaling in brain’s recurrent neural
circuits.

Temporal scaling is also fundamental in machine learning (ML) and robotic research. Most of
engineering approaches use time warping to achieve temporal scaling where sinusoidal oscillatory
inputs are needed (e.g., [16–19]). However, no experiments support such oscillation-based signals
are used to represent time information ranging from milliseconds to seconds in the brain [3–5]. Some
other ML studies directly modulated time constants of artificial neurons in recurrent neural networks
to realize TS (e.g., [20]), whereas real neurons’ time constant is thought to be fixed due to biophysical
properties. Earlier studies also introduced neurophysiological properties to achieve temporal scaling,
e.g., using synaptic shunting to adapt the effective integrating time [21] and utilizing time-covariant
time field sizes [22]. However, they ([21, 22]) focused on the scale invariance during the temporal
scaling inference rather than generating temporal sequences with different speeds. Combined, current
ML models adopt different mechanisms to realize TS than neural circuits in the brain.

To provide algebraic and dynamical understanding of temporal scaling in neural circuits, we rigorously
study this question from temporal scaling (Lie) group. We contend that there are two aspects of
realizing TS group transformations in recurrent neural circuits: One is explicitly representing a
TS controller corresponding to TS group operators; and the other is representing a TS equivariant
temporal sequence in spatiotemporal neuronal responses, referred to as TS equivariant representation.
It is unknown how recurrent neural circuits represent abstract TS group operators, nor the equivariant
representation of temporal sequences. And no previous ML study investigated the equivariance of a
Lie group acting on the temporal domain, nor an explicit representation of group operators.

The present study analytically derives a canonical current circuit with continuous manifolds of attrac-
tors, so-called continuous attractor networks (CANs), to equivariantly represent generic sequences
with different temporal scales. And the TS operators are realized by a time-invariant control input
applied to the CAN: The TS factor is represented as the gain (magnitude) of the control input, and
the TS (group) generator emerges from the spatial offset between the control input and the network
state along the continuous attractor manifolds. Moreover, applying a negative (inhibitory) gain of
control input enables the recurrent circuit to generate a time-reversed sequence. The proposed circuit
model reproduces a wide range of experimental findings of temporal scaling. We also demonstrate
the recurrent circuit can drive a feedforward circuit to generate arbitrary, complex temporal sequences
with different time scales, e.g., hand-written sequences. It will shed light on understanding the
flexible timing in the brain, and provides new building blocks to achieve timing tasks in engineering.

The contributions of our work are as follows: It for the first time analytically links the TS group
equivariant representation to a biologically plausible recurrent neural circuit, and analytically identifies
that TS group operators are represented by time-invariant control inputs applied to the circuit. The
proposed circuit with fixed connectivity flexibly generates TS equivariant sequences by just modulating
the gain of control inputs, which is a novel mechanism never used in ML studies (Discussion,
comparison with other works). It also proposes a novel circuit mechanism generating time-flipped
sequences (“time reversal”) with receiving control inputs of negative gain.

2 The temporal scaling group

We formulate the temporal scaling transformation by using the Lie group. Consider a TS group S
whose group operator S(α) ∈ S will map a time scale t (the scale of the time axis) into a new scale t,

t 7→ t = S(α) · t = tstart + αt, (1)

where the symbol · denotes the action of group operators, and α is the temporal scaling factor. tstart
denotes the start timing, where the tstart = t0 = 0 when α ≥ 0, and otherwise tstart = t∞ regards
as the end timing of the original time scale. Across this study, we use t to represent a “standard”
or reference physical time, and t denotes the scaled time. Then we consider an arbitrary temporal
sequence y(t), which can be high-dimensional and may be regarded as, e.g., hand movements, vocal
sequences, etc. Changing the time scale t will transform y(t) into a new sequence y(t),

y(t) = Ŝ(α) · y(t) = y[S(α) · t] = y(αt), (2)
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Figure 1: (A) An equivariant map between the time and a temporal sequence. (B) Left: A TS operator
Ŝ(α) with α > 0 scales the time by a factor α and then scale temporal sequences accordingly. Right:
A TS operator Ŝ(α) with α < 0 flips and scales the sequence on time axis.

To simplify notation, we suppress tstart in the last term in Eq. (2) and across the study, in that
our focus is the temporal scaling of sequences rather than temporal alignment between them. Our
actual calculations do align tstart appropriately. Ŝ(α) is a TS operator acting on a sequence, in
contrast to S(α) acting on the time t directly. TS group operators are commutative, i.e., the effect of
sequential actions of two operators can be composed into the same operator irrelevant to their order,
i.e., Ŝ(α) · Ŝ(β) = Ŝ(β) · Ŝ(α) = Ŝ(αβ). Other properties of TS group operators can be found in
Supplementary Information (SI) (Eq. S1).

α > 1 (0 < α < 1) corresponds to speed up (slow down) the time, analogous to compress (stretch)
the sequence y(t) along the time t axis (Fig. 1B, left). α = 0 is a particular case where the sequence
remains at a constant value, analogous to “time freezing”. α < 0 implies “time reversal”, i.e., flipping
the sequence over the time axis and then scaling it based on the absolute value of α (Fig. 1B, right).

3 Disentangled neural representation of the sequence time and pattern

We focus on how temporal sequences y(t) with different temporal scales can be flexibly generated by
canonical neural circuits. There are two aspects of temporal sequence generation: One is representing
the temporal pattern (or content) of sequences referred to “pattern” representation, e.g., representing
a song A vs. song B; and another is representing the time and time scale which is referred to as “time”
representation, e.g., singing a song with normal speed vs. 2x speed. We reason the time and pattern
of sequences can be represented separately in neural circuit [8], in that sequences can be scaled
over time whatever their temporal patterns are. Therefore, we posit a disentangled, two-stage circuit
architecture (Fig. 2A): A recurrent circuit acts as an “neural clock” whose population responses of N
neurons, u(t) = {uj(t)}Nj=1, represent the time information; and a feedforward circuit converts the
spatiotemporal responses u(t) into the sequence with the desired pattern, y(t), e.g., a concrete song
or the trajectory of hand-written digits. Mathematically, the disentangled circuit can be denoted as,

y(t) = F [u(t)], (3)

where F [·] is the feedforward circuit storing the pattern information. Since F [·] is memoryless over
time and maps the instantaneous response u(t) into the instantaneous complex sequence value y(t),
scaling the sequence y(t) over time can be realized by just scaling the recurrent circuit’s response,

y(t) = Ŝ(α) · y(t) = Ŝ(α) · F [u(t)] = F
[
Ŝu(α) · u(t)

]
, (4)

where Ŝu(α) is the TS operator acting on neural responses u(t), in contrast with Ŝ(α) acting on y(t).

In summary, realizing TS in the disentangled circuit only needs to modulate the recurrent circuit’s
response u(t) without changing the feedforward circuit (F [·]). In contrast, generating different
patterns only needs to change (functional) feedforward circuits, while keeping the recurrent circuit’s
response u(t) unchanged. The representation of time information in recurrent circuits was supported
by a wide range of neurophysiology experiments in many brain areas, e.g., medial frontal cortex [6],
hippocampus [24], striatum [25], and HVC in songbirds [26], etc. The disentangled architecture is
also supported by a recent study on vocal motor circuits in a highly vocal rodent [27], where the
motor cortex dictates the timing of songs, while the mid-brain or brain stem areas generate music
notes (patterns).
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Figure 2: (A-B) A disentangled neural circuit that represents the sequence’s time and pattern
information in the recurrent and feedforward circuits respectively. The recurrent circuit generates
a neural sequence embedding the “time” manifold z (B top, adapted from [23]) regardless of the
sequence pattern, and then the feedforward circuit maps the neural sequence into sequences with
arbitrary patterns (B bottom). A control input (green circle) is supposed to modulate the temporal
scale of the neural sequences generated by the recurrent circuit. (C) The recurrent circuit is modeled
as a continuous attractor network (CAN) consisting of excitatory (E) and inhibitory (I) neurons. The E
neurons are uniformly distributed in the one-dimensional z manifold of the generic sequence (y-axis
in top figure, panel B). (D) The recurrent connections E neurons, which decays with the difference
between two neurons’ preferred values of the generic sequence. (E) The eigenvalues and eigenvectors
of the CAN, where the eigenvector with the largest eigenvalue corresponds to the movement of
neuronal responses along the “time” manifold. (F) Energy landscape of the CAN without receiving
the time-scale control input. (G) A generic neural sequence is generated by the recurrent circuit when
receiving a time-invariant control input.

3.1 A low-dimensional “time” manifold in recurrent circuit’s responses

We next investigate how the time is represented in u(t) based on experimental observations. It was
found that when generating movements with different time scales, recurrent circuit’s responses u(t)
evolve along the same low-dimensional manifold with different speeds [2–7]. In contrast, the temporal
responses of single neurons under different time scales may not align together. Therefore, we posit
the one-dimensional (1D) time t can be represented (embedded) in a 1D manifold in recurrent circuit
responses u(t). We denote by z the 1D manifold of time representation in the circuit, in order to
distinguish with the reference time t. It is worth noting that the neural response evolution on the
z manifold, z(t), doesn’t need to be linear with reference time t, and such a linear z(t) also lacks
experimental support. Mathematically, it only requires that z(t) is a one-to-one (bijective) mapping
with time t [3]. Combined, the recurrent circuit’s response u(t) represents an internal “time” z, and
in the rest of the paper, we will denote the response as a function of z(t), i.e., u[z(t)].

What is the internal “time” manifold z(t) would look like? Experiments found there is a unique time
for each neuron to reach its maximal response [2–7]. Sorting neurons based on the peak response
timing, the population responses u(t) resemble a bump-profile activity traveling across neurons (Fig.
2B, top). Hence, the 1D “time” manifold z can be regarded as the axis of sorted neurons based on
their peak timing (Fig. 2B, y axis). And the evolution of neurons’ bump-profile responses on the z
manifold forms a sequence z(t) representing the internal “elapsed time” [4, 5, 10, 14]. Eventually,
the time can be explicitly read out by identifying the index of the neuron which reaches its maximal
response, and the time scale (α in Eq. 1) is reflected by the speed of the neural sequence.

3.2 Temporal scaling operator acting on recurrent circuit’s responses

As experiments suggested the TS transformations scale the “time” manifold z rather than each
individual neuron’s temporal responses, we define Ŝu(α) in Eq. (4) as,

u[z(t)] = Ŝu(α) · u[z(t)] = u[z(S(α) · t)] = u[z(αt)]. (5)

And such a neural representation u[z(t)] is called equivariant with the temporal scaling group. To find
the expression of Ŝu(α), we consider an infinitesimal temporal scaling with α close to one (α → 1).
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Reorganizing the scaled neural response as u[z(αt)] = u[z(exp(ln t + lnα))], and performing a
first-order Taylor expansion with amount lnα,

u[z(exp(ln t+ lnα))] ≈ u[z(t)] + (lnα)
du[z(t)]

d ln t
=

[
1 + (lnα)t

dz

dt

∂

∂z

]
· u[z(t)]. (6)

From the above equation, the TS generator acting on neural responses can be defined as,

ĝu = t
dz

dt

∂

∂z
≡ t(∂tz)∂z, (7)

which characterizes the tangential direction of the TS effect on neural responses. Note that ĝu cannot
be simplified into ĝ′u = td/dt by canceling dz and ∂z. This is because ĝu only scales the 1D “time”
manifold z(t) in the high-dimensional neural response u[z(t)], whereas ĝ′u scales every neuron’s
responses. TS operators with arbitrary α can be derived by composing many infinitesimal scaling
transformations,

Ŝu(α) = lim
n→∞

[
Ŝu(α

1/n)
]n

= lim
n→∞

(
1 +

lnα

n
ĝu

)n

= exp (lnα · ĝu) , (8)

Eq. (8) is also compatible with a negative α by using the generalized logarithmic function (see Eq.
S9). To find the dynamics of the scaled neural responses, taking the time derivative of the operator,

∂tŜu(α) = ∂t exp (lnα · ĝu) =
∑
n

(lnα)n

n!
∂tĝ

n
u =

∑
n

(lnα)n

n!
(1 + ĝu)

n(∂tz)∂z,

= exp[(lnα)(1 + ĝu)](∂tz)∂z = αŜu(α)(∂tz)∂z,

(9)

where we utilize the result that ∂tĝnu = (1+ ĝu)
n(∂tz)∂z (see Eq. S13 in SI). And then the dynamics

of the scaled equivariant neural sequence is,

∂tu[z(t)] = ∂tŜu(α) · u[z(t)] = αŜu(α)(∂tz)∂z · u[z(t)] = α[∂tz(t)]∂z · u[z(t)]. (10)

Scaling the neural dynamics will modulate its time derivative by α, and the right-hand side (RHS) of
the scaled dynamics (Eq. 10) depends on the scaled z(t) rather than the original z(t). Although the
TS effect on the dynamics can be also derived via the chain rule (e.g., [20]), deriving such an effect
from Lie group give us more insight on the algebraic structure of TS and its circuit representation.

3.3 A concrete neural representation of internal “time”

We next define a concrete neural representation of internal “time” manifold z based on experimental
observations. We consider a parametric representation where each neuron is selective for the internal
z value, and denote xj as the preferred z value of the j-th neuron which implies the neuron will reach
its peak firing rate when z(t) = xj . Moreover, we consider the preferences of neurons, {xj}Nj=1,
are uniformly distributed along the z manifold to simplify the math analysis. Since the population
response has a bump-profile (Fig. 2B, top), we model the mean firing rate (tuning) of j-th neuron as
a Gaussian function over z(t), a widely used approach in neural coding studies (e.g., [28–30]),

ūj [z(t)] = Au exp[−(xj − z(t))2/4a2], (11)

where Au is the peak firing rate, and a the tuning width. Note that ūj regards as the mean neuronal
response, in distinguish with the instantaneous uj(t) which may deviate from the mean response.
Since Lie group operators act on continuous functions (Eq. 5), to simplify the math analysis, we treat
ū[z(t)] as a continuous function corresponding to an infinite number of neurons in the population
(N → ∞), and all neurons’ preferences become a continuous variable, i.e, xj → x. Hence, the mean
population firing rate of all neurons becomes a continuous function of the z(t),

{ūj [z(t)]}Nj=1 ≡ ū[z(t)] = Au exp[−(x− z(t))2/4a2]. (12)

4 A temporal scaling equivariant recurrent neural circuit model

We propose a biologically plausible recurrent circuit dynamics with fixed connectivity to flexibly
generate TS equivariant neural sequences u[z(t)], and study how the circuit can be controlled to
scale the neural sequence. Specifically, the requirements specified by the TS group and neural
representations (Eqs. 5- 12) will be used as objectives of the proposed functional recurrent circuit.
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4.1 The recurrent circuit dynamics

First, we consider a special case of freezing the internal “time” by applying S(0), and hence
z(t) = z(t0) as the initial value. This can be regarded as, e.g., the arm position is fixed over time.
Then the mean, stationary neuronal responses in the recurrent circuit given the z(t0) need to match
the Gaussian profile as indicated by Eq. (12). Moreover, since the initial value z(t0) is arbitrary (e.g.,
the arm location can be stable at any location at any time), stationary neural responses are required to
be stable at any value of z. This implies that the recurrent circuit dynamics should have a family of
stationary states (attractors) along the z manifold. These kinds of networks are called continuous
attractor networks (CANs), which have been widely used to explain the neural coding of continuous
features (e.g., [31–33]). We firstly consider an autonomous CAN dynamics as follows [34–37],

τ∂tu(x, t) = −u(x, t) + ρ

∫
J(x, x′)r(x′, t)dx′, (13a)

r(x, t) = G[u(x, t)] =
[u(x, t)]2+

1 + kρ
∫
[u(x′, t)]2+dx

′ . (13b)

where u(x, t) is the synaptic input received by the excitatory neuron preferring x (Fig. 2C, blue
triangle), and τ is the time constant. G(·) is a nonlinear activation function modeled as divisive
normalization, a canonical operation in the cortex [38], where k is the global inhibition strength
coming from an inhibitory neuron pool (Fig. 2C, red disk). [·]2+ denotes rectifying the negative part
followed by a square function. ρ is the neuronal density on the z manifold. J(x, x′) denotes the
synaptic weight from the pre-synaptic neuron preferring x′ to the post-synaptic neuron preferring x,
and is modeled as a Gaussian function over the difference |x− x′| (Fig. 2D),

J(x, x′) = J(x− x′) = J0 exp[−(x− x′)2/2a2]. (14)

The J0 and a in Eq. (14) denote the peak recurrent weight and the connection width respectively. It
can be checked that the autonomous recurrent circuit can self-consistently generate non-zero, desired
Gaussian profile population responses ū(z) as specified in Eq. (12),

ū(x− z) = Au exp[−(x− z))2/4a2] = ū(z), (15)

as long as the peak recurrent weight J0 is larger than a critical value Jc (can be analytically solved, see
Eq. S30 for details). Note that the z in the above equation is a free parameter, meaning the recurrent
circuit model has a continuous family of attractors over the “time” z manifold (Fig. 2F). Here we use
the notation ū(x− z) to denote the responses generated by the concrete recurrent circuit dynamics
(Eqs. 13a-13b), in distinguishing with ū[z(t)] (Eq. 12) directly specified in earlier derivations.

To generate a moving neural sequence (dynamic z(t); Fig. 2B, top), one possibility is applying a
time-invariant control input I(x) to the recurrent circuit (Fig. 2A, green disk), i.e., inserting I(x) into
the RHS of Eq. (13a) (see Discussion for other mechanisms of generating moving neural sequences),

I(x) = I(x|z∞) = I0 exp[−(x− z∞)2/4a2]. (16)

I0 is the peak controlling input intensity, and z∞ is the final position of the neural sequence (the final
location at y-axis of Fig. 2B, top). Then if the neural response is initiated at u(x, t0) = ū[x− z(t0)],
it will move along z manifold towards z∞ and generates a neural sequence. Fig. 2G shows a moving
neural sequence generated by the recurrent circuit model when receiving such a control input.

4.2 Identify temporal scaling operators in the recurrent circuit dynamics

We pursue a theoretical understanding of how the recurrent circuit dynamics represents temporal
scaling operators. Since an TS operator Ŝu(α) is an exponential map based on the TS factor α and
the TS generator ĝu (Eq. 8), we specifically identify how the recurrent circuit represents α and ĝu.

The TS generator (Eq. 10) requires the neural dynamics only preserves perturbations along the z
manifold while filters out perturbations along other directions. This is because the time derivative
of the neural response is only proportional to the partial derivative over the 1D z manifold, i.e.,
setting α = 1 in Eq. (10) yields ∂tu[z(t)] = (∂tz)∂zu[z(t)]. To test whether this requirement
can be satisfied by the proposed recurrent circuit, we performed perturbative analysis of the circuit
dynamics by considering the instantaneous network state as perturbed from the attactor state, i.e.,

6
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Figure 3: Temporal scaling of the neural sequence in the proposed recurrent circuit by gain modulation
on the time-invariant control input. (A) Left: neural sequence generated with different control input
gains. Right: The actual temporal scale factor with the control input gain. (B) An example excitatory
neuron’s temporal responses (top) and responses scaled over time (bottom) in forward (left) and
reverse (right) conditions. Color: input gain as suggested by dots in (A). (C) The dimensionality
reduction of the neuronal responses at different control input gains. (D) The time interval (absolute
value) decreases with control input gain. (E) Weber’s law in the recurrent circuit where the standard
deviation of the time interval is proportional to the mean interval.

u(x, t) = ū(x − z) + δu(x, t) (ignoring the time dependence on z for brevity). Substituting this
expression into the network dynamics (Eq.13a) yields the perturbation dynamics,

τ∂tδu(x, t) = −δu(x, t) +
∫
K(x, x′|z)δu(x′, t)dx′, (17)

where K(x, x′|z) = ρ
∫
J(x− x′′)∂r̄(x′′ − z)/∂ū(x′ − z)dx′′. Treating K(x, x′|z) as an operator

acting on δu(x, t), its eigenvalues λn can be calculated as (descending order, Fig. 2E) [37, 39],

λ1 = 1, λ2 = 1−
√
1− J2

c /J
2
0 , λn = 22−n (n ≥ 3), (18)

and the (unnormalized) eigenfunction f1(x|z) with the largest eigenvalue λ1 = 1 is calculated as,

f1(x|z) ∝ ∂zū(x− z) ∝ −(x− z) exp[−(x− z)2/4a2], (19)

which is the partial derivative of neural response over the z manifold. The above analysis proves the
CAN does satisfy the requirement of the TS generator approximately (Eq. 8), i.e., only preserving the
perturbation along the z manifold (λ1 = 1) and removing other perturbations since their eigenvalues
are smaller than 1. This is a unique property of the CAN which comes from the translation-invariant
recurrent weights along the z manifold (Eq. 14).

We present simple derivations to identify the TS generator in the recurrent circuit with a control input
(rigorous derivations, SI. Sec. 3). The control input will deviate the network state u(x, t) from the
attractor state ū(x− z). Hence, our theory considers the weak limit of control input (small I0), and
substitute the attractor states (Eq. 15) into the circuit dynamics (Eq. 13a),

τ∂tū(x− z) ≈ [−ū(x− z) + ρJ ∗ r̄(x− z)] + I(x|z∞) ≈ I(x|z∞), (20)

where the decaying term −ū(x− z) and the recurrent input term ρJ ∗ ū(x− z) = ρ
∫
J(x, x′)r̄(x′−

z)dx′ will cancel each other due to the definition of attractor states (Eq. 15). Then we treat the control
input I(x|z∞) as a “perturbation” of the attractor state, and decompose it using eigenfunctions,

τ∂tū(x− z) ≈ I(x|z∞) =
∑

n anfn(x|z) ≈ a1f1(x|z) = a1∂zū(x− z), (21)

where we ignore perturbations along directions parallel to eigenfunctions fn(x|z) (n ≥ 2) because
they will eventually vanish (Eq. 18). The coefficient a1 can be obtained by computing the inner
product between the left and right-hand side of the above dynamics with f1(x|s), e.g., a1 = ⟨τ∂tū(x−
z), f1(x|z)⟩ = τ

∫
∂tū(x− z)f1(x|z)dx,

a1 = τ∂tz = I0 ·A−1
u (z∞ − z) exp[−(z∞ − z)2/8a2]. (22)

Combining the above two equations, the proposed recurrent circuit with the control input approxi-
mately achieves the TS equivariance: its attractor state ū(x− z) (Eq. 15) travels along the “time” z
manifold in a way consistent with the scaled dynamics derived from TS group (Eq. 10, α = 1),

∂tū(x− z) ≈ (∂tz)∂zū(x− z).

7



x
y

Reverse order (®<0)

0.25 0.5-0.25-0.5-4 -2 -1 1 2 4

Control input gain ® (determine temporal scale)

Time

Representation

Pattern

representation

Digit written 

sequence

Time scale

control input I

x(t)
x

y

EA C

D

B 1
Target

0

T
im

e
 t
 (

a
.u

.)

1

0

T
im

e
 t
 (

a
.u

.)

Time t (a.u.)Time t (a.u.)

x
y

Forward order (®>0)

y(t)

Time t (a.u.)
0 1

u[z(t)]
Neural response

z(t)

−4 0 4

−4

0

4

A
ct

u
a

l s
ca

le
 f

a
ct

o
r
®

’

Input gain ®
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Feedfwd.

circuit, F[¢]

Figure 4: Generating a sequence pattern by feedforward circuit mapping. (A-B) A proof of concept
example where the feedforward circuit transforms the neural sequence in the recurrent circuit into
the x and y coordinates of a hand-written sequence of the digit ‘6’. (C) The hand-written sequence
at different control input gains in the recurrent circuit. Color: elapsed time t. (D) The temporal
trajectories of the hand-written sequence at forward (left) and reverser (right) order. (E) The actual
temporal scale factor of hand-written sequence is proportional to the control input gain.

In practice, the actual responses u(x, t) will deviate from the attractor state ū(x − z) due to the
control input and noises. The recurrent dynamics will quickly remove distortions perpendicular to the
z manifold, corresponding to pull u(x, t) back to the continuous z manifold, and then the attractor
state ū(x− z) will travel along the z manifold which internally represents “elapsed time”.

The emergence of the TS generator. A non-vanishing TS generator ĝu = t(∂tz)∂z ∝ ta1∂z (Eq.
8) needs a non-zero a1, which can be satisfied with a non-zero offset, z∞ − z, between the final state
z∞ and the initial state z0. Therefore, the spatial offset of control input and the initial network state
on the z manifold emerges the TS generator in the recurrent circuit dynamics.

The representation of the TS factor. Scaling neural sequences over time corresponds to multiplying
the internal “time” dynamics ∂tz ∝ a1 by the scaling factor α (Eq. 10). Since a1 is proportional
to the control input strength I0 (Eq. 22), scaling the neural sequence can be realized by the gain
modulation on the control input by the scaling factor α, i.e., I(x|z∞) → αI(x|z∞) (Eq. 16). And
then the whole TS equivariant recurrent circuit dynamics becomes (∗ denotes the convolution over x),

τ∂tu(x, t) = −u(x, t) + ρJ ∗ r(x, t) + α · I0 exp[−(x− z∞)2/4a2]. (23)

Therefore, the TS factor α determines the control input gain in the recurrent circuit. Generating
sequences with different temporal scales can be realized by simple gain modulation, which is a widely
observed operation in neural circuits (e.g., [40, 41]). Interestingly, by applying a negative input gain
(α < 0) the circuit dynamics can implement “time reversal”, i.e., a flipped sequence over time.

5 Simulation experiments
We simulated the proposed circuit model to test temporal scaling via manipulating the control input’s
gain (SI. Sec. 4.1, network simulation detail). Changing the input gain α varies neural sequences’
time scales (Fig. 3A, left), and the actual scaling factor is proportional to the input gain α as predicted
by our theory (Fig. 3A, right). It is noteworthy that a negative gain enables the circuit to render a
“time reversed” neural sequence, corresponding to flipping the original sequence on the time axis
(comparing heatmaps in Fig. 3A, left). At the single neuron level, temporal scaling also changes the
temporal speed of single neurons’ responses (Fig. 3B). The single neuron’s temporal responses under
gains with the same polarity, but not different polarities, can be scaled and overlap well over time.
Moreover, the dimensionality reduction analysis shows neural sequences under both positive and
negative control input gain all evolve along the z manifold and overlap perfectly (Fig. 3C). These
results are consistent with the experimental finding that single neurons responses might not overlap
well under different time scales, but the population responses at different time scales all evolve along
the same low-dimensional manifold and overlap perfectly [2–7].

A characteristic of temporal scaling at the behavioral level is Weber’s law, meaning the standard
deviation of the time duration of a sequence linearly increases with the mean duration. To reproduce
this phenomenon in the model, we include independent multiplicative noise in the recurrent circuit
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mimicking the Poisson spike variability (inserting
√
τF[u(x, t)]+ξ(x, t) to the RHS of Eq. (23)

with F the Fano factor). The mean time duration (Eq. S34, analytical solution) decreases with the
input gain α, implying the internal “time” representation becomes faster (Fig. 3D). Meanwhile, the
standard deviation of the time duration is proportional to the mean duration, consistent with Weber’s
law.

The recurrent circuit’s population responses u[z(t)] can be mapped to an arbitrary, complex sequence
y(t) through a feedforward circuit (Eq. 3). As a proof of concept, we use a feedforward circuit
(modeled as a three-layer perceptron) to transform u[z(t)] into a 2D sequence (x and y coordinates) of
hand-written digits, e.g., digit “6” (Fig. 4A-B, see details in SI. Sec. 4.3). The feedforward circuit was
trained via back-propagation by only using the neural response and the hand-written sequence (Fig.
4B) at only one temporal scale. After training, we test whether the whole disentangled circuit can
generalize the hand-written “6” sequence at other time scales by manipulating the control input’s gain
(α in Eq. 23). Indeed, the feedforward circuit trained at one temporal scale successfully generates
hand-written sequences over other time scales (Fig. 4C-D), including both positive (forward sequence)
and negative (reversed sequence) temporal scales. The disentangled circuit can also generate hand-
written sequences of other digits once we retrain the feedforward circuit (see SI. Figures).

6 Conclusion and Discussion

The present study investigates the neural circuit mechanism of temporal scaling group equivariant
representation. We propose a disentangled neural circuit that represents the pattern (content) and
the time information of temporal sequences separately. The timing information is equivariantly
represented by neural sequences generated in a recurrent circuit modeled as a CAN, and the sequence
pattern (content) is represented in a feedforward circuit that maps the generic neural sequence to
arbitrary temporal sequences. Moreover, TS operators are explicitly represented as a time-invariant
control input applied to the CAN: the TS factor determines the control input gain, and the TS generator
emerges by the spatial offset between the control input and network state along the continuous attractor
manifold representing “time”. Eventually, modulating the control input gain enables the recurrent
circuit with fixed connectivity to generate sequences with different temporal scales, including “time
reversal” when using a negative gain. Our study for the first time formulates the temporal scaling
problem from the Lie group, and links the abstract group to a concrete, biologically plausible neural
circuit. It gives us insight into the math principle underlying TS representation in neural circuits, and
the proposed model may inspire a new building block for equivariant representation in ML tasks.

Comparison to other works. How temporal scaling is achieved in neural circuits has been an
active topic (e.g., [2, 3, 6, 9, 13, 14, 42–44]. A large body of earlier neural circuit modeling studies
investigated this question via training a recurrent network, e.g., a reservoir network, to represent
different time scales (e.g., [6, 9, 11, 14]). Although the trained networks achieve the TS representation,
the underlying math principle is still lacking. In contrast, the present paper analytically derives a
recurrent circuit implementation of TS equivariant representation, and the explicit representation
of TS group operators. Moreover, our hand-crafted circuit model generalizes over temporal scales
well, which outperforms recent neural circuit models where the trained network cannot generalize
(extrapolate) well to temporal scales beyond the range in the training set [11, 27]. In addition, previous
studies considered generating a moving neural sequence by adding an anti-symmetric recurrent weight
component in the recurrent network (e.g., [45–48]), whose magnitude increases with temporal speed
(or TS factor) [37, 47]. Nonetheless, the TS in the brain happens in short time scales (milliseconds
to a second), which is too short to modulate recurrent weights. In contrast, the control input gain
in the present study can be quickly modulated in short time scales. Last, previous studies proposed
TS covariant networks, inspired by the fact that the width of the temporal field of hippocampal time
cells covaries (increases) with the preferred elapsed time (e.g., [22]). In comparison, the TS covariant
networks aim to achieve TS invariant representation that is beneficial for recognizing sequences with
different temporal scales, while our network model is flexibly generating sequences with different
temporal scales. When inverting the information flow and introducing a feedback loop between the
control input and the recurrent network, our model also has the potential to recognize (infer) the input
sequences and their temporal scaling factors.

Equivariant representation is an active topic in ML research and lots of equivariant neural networks
have been proposed (e.g., [49–53]). Nonetheless, to our best knowledge, previous ML studies
exclusively investigated the equivariance under group transformations in spatial domain rather than
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temporal domain. Moreover, there have not been many ML studies investigating recurrent network
mechanisms of equivariance while most of them studied feedforward equivariant networks. Timing
or TS representation in ML models typically uses a mechanism called time warping, which relies
on a pacemaker (central clock) producing sine waves with different frequencies to represent times.
However, the pacemaker mechanism doesn’t exist in the nervous system representing time scales
ranging from the order of milliseconds to seconds [3]. There are recent ML studies investigated
temporal scaling recurrent networks [20], where they directly modulated the time constant of neural
dynamics (i.e., τ in Eq. 13a). However, the time constant of real neurons hardly changes due to
biophysical properties. And our way of achieving TS by gain modulation of the amplitude of the
time-invariant control input is novel.

Limitations of the model. In order to gain a theoretical understanding of the TS equivariant
representation, we propose a hand-crafted recurrent circuit model rather than training a neural
network model as in previous studies [9–11, 14, 48]. Moreover, we consider a simple model whose
recurrent connections do not have random components (Eq. 14). It is interesting to study how a TS
equivariant recurrent network can be trained in an unsupervised way. In addition, previously trained
network models used reservoir networks containing strong random connections with disordered
(chaotic) dynamics [9–11, 14, 48]. Although chaos provides a rich dynamical repertoire to facilitate
learning, it impairs the robustness of time representation [9]. Since this study does not consider
learning, ignoring the random connections will significantly help us identify how structured recurrent
connections achieve TS equivariance and represent operators. Statistically, a characteristic of chaotic
spiking networks is the Poisson spiking variability [54, 55], whose statistical effect is equivalent to
the injected multiplicative noise in our model. Furthermore, as a proof of concept, the feedforward
circuit used in our model is simple and needs to be retrained to generate a new sequence pattern, e.g.,
other digits’ written sequence, which is unlikely in the brain. One way to improve this is by using
a compositional model (e.g., [56, 57]) which can be flexibly modulated to change its represented
pattern.

Extensions of the model. The proposed neural circuit model has the potential to explain other
brain functions. For example, our model may be used to explain the memory formation in the
hippocampus, where it is believed that hippocampal theta oscillation compresses (speeds up) sensory
input sequences by about 10 times and is beneficial for memory formation [58]. It is possible that
the theta oscillation shares a similar computational mechanism with the proposed temporal scaling
equivariant recurrent network. At last, experiments found “time” cells in the hippocampus whose
temporal firing width (duration) is proportional to their peak timing, i.e., a “time” cell fires later will
fire longer, and time cells’ preferred peak timing is log-scaled [59]. Such a relation doesn’t exist in
the proposed model, and neurons in the current model can be “deployed” in the logarithmic space of
z manifold to reproduce this effect. All of these will form our future research.
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