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Abstract

Multimodal task specification is essential for enhanced robotic performance, where
Cross-modality Alignment enables the robot to holistically understand complex
task instructions. Directly annotating multimodal instructions for model training
proves impractical, due to the sparsity of paired multimodal data. In this study, we
demonstrate that by leveraging unimodal instructions abundant in real data, we can
effectively teach robots to learn multimodal task specifications. First, we endow the
robot with strong Cross-modality Alignment capabilities, by pretraining a robotic
multimodal encoder using extensive out-of-domain data. Then, we employ two
Collapse and Corrupt operations to further bridge the remaining modality gap in
the learned multimodal representation. This approach projects different modalities
of identical task goal as interchangeable representations, thus enabling accurate
robotic operations within a well-aligned multimodal latent space. Evaluation
across more than 130 tasks and 4000 evaluations on both simulated LIBERO
benchmark and real robot platforms showcases the superior capabilities of our
proposed framework, demonstrating significant advantage in overcoming data
constraints in robotic learning. Website: zh1hao.wang/Robo_MUTUAL

1 INTRODUCTION

Developing robots that can understand task specifications from diverse modalities (e.g., image,
video, text, speech) is a pivotal research area in robot learning [55, 53, 49]. This not only enhances
robot performance but also enriches the human-robot interaction experience [23, 13, 42, 62]. To
correctly interpret multimodal task specifications, one essential capability required is Cross-modality
Alignment [55, 23, 62, 47], where an integral high-level task goal exists across various modalities of
instructions (or known as prompts [55, 23]) to prevent confusion. Existing methods typically acquire
this ability through extensive end-to-end training, raising high demand for meticulously annotated
multimodal prompts [49, 55, 53]. Collecting such prompts via crowd-sourcing is notably expensive
and laborious [55, 61], not to mention impractical, when only unimodal prompts are accessible
(e.g., text instructions are absent and only visual goals are provided). There have been attempts to
synthetically generate missing prompts, but how to ensure data quality remains an open question [61].
Therefore, we wonder “ Can we bypass the stringent demands for paired multimodal prompts via
unimodal task learning?", overcoming significant data constraints and opening new avenues for
efficient robots learning.

*Equal contribution
†Corresponding author

Preprint. Under review.



Unimodal Task Train

Robot Policy

Multimodal Task Eval

Visual Goal

Visual Goal

eval with seen modality

Textual Goal • Pick up the duck

• Open the drawer

• Move the pot

• Fold the cloth

eval with unseen modality

Figure 1: Training robot policies on unimodal task prompts but evaluate using prompts across multi-modalities.

We posit that a positive answer is achievable if the Cross-modality Alignment capability can be
pretrained using multimodal encoders [52, 33, 65, 34]. Consider a multimodal encoder capable of
producing representations for different modalities of prompts that share an identical high-level task
goal. Can we find an effective way to encode the textual and visual embeddings of prompts that
describe the same task (e.g. “open the door") in a unified representation space [20]? If so, prompts
across different modalities will become interchangeable in this shared latent space, allowing unimodal
data to implicitly serve as a proxy for multimodal data, which have been demonstrated possible in
other multimodal domains like text-to-image generation and different modalities are converging in
representation spaces [20, 65, 32, 34].

However, two main challenges must be addressed to apply this methodology to robots: 1) Existing
multimodal encoders are not directly applicable in our setting. They either are not tailored for
robot learning [52], or trained solely on narrow scopes of human activity data [14, 10, 15], different
from robotics domain [33, 38, 45, 25]. 2) Even with well-adapted multimodal encoders, a modality
gap between the representations of different modalities still persists [65, 32, 34], preventing the
convergence of different modalities into a consistent latent space.

We propose Robo-MUTUAL (Robotic MUltimodal Task specifications via UnimodAl Learning). This
new framework enhances the Cross-modality Alignment capability of existing multimodal encoders
by consuming a broader spectrum of robot-relevant data. Specifically, we retrain DecisionNCE [33],
a state-of-the-art robotic multimodal encoder on an all-encompassing dataset, which not only consists
large-scale robot datasets including Open-X [50] and DROID [27], but also incorporates a large
human-activity dataset EPICK-KITCHEN [10]. Combined, these datasets form the most compre-
hensive collection to date for robotic multimodal encoder pretraining. Building on the pretrained
encoders, we explore two training-free methods to bridge the modality gap within the representation
space, where we further introduce an effective cosine-similarity noise to facilitate efficient data
augmentation in representation space to enable generalization to new task prompts. Tested across
over 130 tasks and 4000 evaluations on both simulated LIBERO [35] environments and the real
robots platforms, extensive experiments showcase a promising avenue towards enabling robots to
understand multimodal instructions via unimodal training.

2 RELATED WORK

2.1 Task Specification in Robot Learning

A series of task specifications have been extensively explored in robot learning. Some works utilize
flexible specifications across various modalities to specify the tasks, such as language instructions [4,
5, 13, 49, 28, 33, 38, 25, 60, 1, 56] or visual goals [39, 46, 8, 9, 63, 3, 21], but are specialized for
unimodal task specifications. In recent years, some works explore multimodal task specifications [37,
42, 40, 22, 55, 23, 62] and demonstrate positive benefits of leveraging multimodal prompts to
enhance the robot policies. In these methods, Cross-modality Alignment is one critical capability
for multimodal task specifications, where multimodal prompts that share the same high-level task
goal should be encoded as similar representations to encourage a well-organized representation
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Figure 2: Robo-MUTUAL training pipeline. I. Pretrain robotic multimodal encoder consuming
broader out-of-domain human and robotics data. II. Utilize the pretrained powerful Cross-modality
Alignment capability and further bridge the modality gap in an efficient and training-free manner.
III. Achieve multimodal task specifications via unimodal task learning leveraging the well-aligned
multimodal representations.

space [55, 40, 42, 62]. However, these methods typically train such ability from scratch on limited
robot data with carefully annotated or synthetic multimodal prompts. In this paper, instead, we aim to
bypass the restrictive demands on paired multimodal prompts but directly utilize unimodal prompts
to achieve multimodal task specifications utilizing the powerful pretrained mutlimodal encoders.

2.2 Multimodal Representation in Robot Learning

Numerous multimodal encoders, such as CLIP [52], BLIP [29] and BLIP2 [31], are designed to align
various modalities within a unified representation space, demonstrating notable success in various
areas such as image/video caption [41, 18, 58], text-to-image generation [69], and also robotics [26].
However, these encoders are not optimally suited for robot learning as they often fail to capture the
temporal visual dynamics critical for robotics [39]. To address this shortfall, specialized robotic
multimodal encoders, such as R3M [45], LIV [38], Voltron [25], Lorel [44] and the recent SOTA
DecisionNCE [33], have been developed to extract these robotic-critical features. However, the
Cross-modality Alignment ability of these models is constrained by the narrow scope of their training
data, typically limited to specific human datasets [10, 15, 14], without covering diverse out-of-domain
robotic data [27, 59, 10, 50].

2.3 Modality Gap in Multimodal Representations

Human can easily summarize similar mental thoughts from multimodal prompts [67, 11, 6], which
is also noticed in neural networks [20] where multimodal representations with same semantics are
converging. This shows the potential for multimodal encoders to construct a well-aligned representa-
tion space, where modalities are interchangeable and unimodal data can approximate multimodal
information. However, a persistent modality gap remains even with well-trained multimodal en-
coders, preventing the convergence of different modality features [34]. Several methods such C3 [65],
CapDec [48], and LAFITE [69], etc [54] try to bridge this gap, but the efficacy of these methods and
how to enhance the generalization for robotics remain unexplored.

3 Method

3.1 Problem Formulation

We aim to learn a goal-conditioned policy πθ(a|s, g) that observes state s ∈ S and outputs actions
a ∈ A conditioned on a task prompt g in various modalities, using a small in-domain robot dataset
DI = {(si, ai, gi)}Ni=1. In this paper, we study the most popular prompt g modalities including
free-form language instruction gL ∈ GL and fine-grained visual goal gV ∈ GV [37, 42, 40, 22], i.e.,
g ∈ {gV , gL} and will explore more modalities like audio in future work. We assume the prompts g
in dataset DI are unimodal. For instance, in the case of gL is missing, we can only obtain a unimodal
visual-goal conditioned policy πθ(a|s, gV ) in common sense. In this paper, we also hope to let πθ
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Figure 3: Heatmaps of cosine similarity between representations of language and visual goals.
The diagonals are matched pairs. DecisionNCE (Robo-MUTUAL) enjoys strong Cross-modality
Alignment capability after absorbing broader out-of-domain data.

understand language prompts and execute similar behaviours given gL that depicts the same task as
gV , i.e., dπθ

gL(s) ≈ dπθ
gV (s), ∀s ∈ S for C(gL) ≈ C(gV ), where C(g) is the high-level task described

by prompts g across different modalities, dπθ
gL and dπθ

gV denote the state occupancy, or widely known
as visitation distribution [43, 30], following the policy πθ(a|s, gL) and πθ(a|s, gV ), respectively.

3.2 Cross-modality Alignment in Representation Space

In standard training process, mostly, dπθ
gL(s) ̸= dπθ

gV (s), since language instructions gL and visual
goals gV are two distinct modalities, i.e., gL ̸= gV , where the central challenge is Cross-modality
Alignment, that similar high-level tasks C(gL) ≈ C(gV ) should be extracted by the policy πθ to
avoid this conflicts [55, 23, 62, 47, 40, 22].

We aim to achieve strong Cross-modality Alignment ability by utilizing powerful multimodal encoders
(ϕV , ϕL) pretrained on a diverse out-of-domain dataset DO instead of training from scratch based
on the limited in-domain robot data DI like previous works [55, 22, 40, 47]. If such encoders
are accessible, multimodal prompts that encode similar tasks can be projected as interchangeable
representations, i.e., ϕV (gV ) ≈ ϕL(gL) for C(gL) ≈ C(gV ). Then, we can train multimodal policies
πθ capable of understanding prompts across various modalities within this unified representation
space trained solely on unimodal prompts.

C(gV ) ≈ C(gL)⇔ ϕV (gV ) ≈ ϕL(gL)

⇔ d
πθ,ϕL
gL (s) ≈ d

πθ,ϕV
gV (s),∀s ∈ S.

(1)

where πθ,ϕL
, πθ,ϕV

denotes πθ(a|s, ϕL(gL)) and πθ(a|s, ϕV (gV )), respectively. Targeting this goal,
we propose Robo-MUTUAL (Robotic MUltimodal Task specifications via UnimodAl Learning),
containing three parts (Fig 2): Robotic Multimodal Encoder Pretrain (Section 3.3), Modality Gap
Reduction (Section 3.4), and Robot Policy Train and Evaluation 3.5).

3.3 Robotic Multimodal Encoder Pretraining

Numerous multimodal encoders are available [52, 38, 33], but are not specifically designed for
robotics or trained solely on limited human video that fails to cover the diverse robotics domain. We
evaluate the Cross-modality Alignment capability of several popular multimodal encoders including
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Figure 4: Abs. difference in the means of each embedding dimension cross different modalities. The
modality gap manifests in a few dimensions with large discrepancies across modalities, while others
remain consistent.

Figure 5: t-SNE [57] projection of DecisionNCE (Robo-MUTUAL) representations of matched
visual and language goals. Although different modalities are separate initially, indicating a huge
modality gap, this gap can be reduced through the simple centralize or delete Collapse methods.

CLIP [52], LIV [38] and DecisionNCE [33]. Fig 3 shows that these encoders fail to align matched
visual goals and language instructions well in the robotics domain.

Hence, we aggregate diverse large-scale robot-relevant data for robotic multimodal encoder training,
aiming at improve the Cross-modality Alignment capability as much as possible. This dataset includes
Open-X dataset [50], DROID [27], and EPICK-KITCHEN [10], forming a comprehensive dataset
DO that spans diverse skills/tasks and scenarios. Based on this dataset, numerous robotic multimodal
encoders could be viable, we opted to retrain the recent SOTA DecisionNCE [33] for its superior
temporal consistency and less sensitivity for hyper-parameter tuning. In difference, we freeze the
language encoder ϕL from the pretrained CLIP [52] model, focusing solely on contrasting visual
goals, as we observe CLIP [52] exhibits robust textual generalization, which is likely attributed to the
extensive language data used in CLIP pretraining compared to that in robotics domains. We denote
our encoder as DecisionNCE (Robo-MUTUAL) and the training objective is as follows:

min
ϕV

1

B

∑B

i=1
− log

expS(ϕV (oni+mi)− ϕV (oni), ϕL(li))∑B
j=1 expS(ϕV (onj+mj )− ϕV (onj ), ϕL(li))

, (2)

where n is a random selected start frame in a video clip, m is a random segmentation length
and B is batch size. We set B = 1024 and train it on 8×A100 GPU for 8 days. See from
Fig 3 that DecisionNCE (Robo-MUTUAL) aligns matched visual and textual goals well, where
S (ϕV (gV ), ϕL(gL)) is high for C(gV ) ≈ C(gL) and S is cosine similarity. Considering this superior
ability, We will release our check point for DecisionNCE (Robo-MUTUAL) to support researchers
develop other future applications conveniently.
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3.4 Modality Gap Reduction

Nevertheless, huge modality gap exists in the pretrained representation space, where different
modalities with similar semantic meanings fail to absolutely converge but instead are clustered per
modality, resulting in ϕV (gV ) ̸= ϕL(gL) for C(gV ) ≈ C(gL) [65, 24], as shown in Fig 5. Inspired
by recent progresses in minimizing the modality gaps [65, 32, 34, 64], we apply two simple yet
efficient Collapse and Corrupt manipulation to fill the gap.

Collapse. Specifically, the modality gap is primarily characterized as a constant gap between
the span of the visual and textual representations clusters eV := {ϕV (gV )}, gV ∼ GV and
eL := {ϕL(gL)}, gL ∼ GL, as proved in [65, 34]. This gap manifests in a few dimensions of
the embeddings, which display significant discrepancies across modalities, while the remaining
dimensions remain consistent, as shown in [54] and is also observed in Fig 4. Thus, intuitively
this gap can be straightforwardly removed by deleting the most different dimensions to address the
modality gap [54].

detele : ϕ̂V ← del(ϕV , argmax
i
∥ϕi

V − ϕi
L∥),

ϕ̂L ← del(ϕL, argmax
i
∥ϕi

V − ϕi
L∥),

(3)

where, ϕi denotes the i-th dimension of ϕ, and del(ϕ, i) denotes deleting the i-th dimension of ϕ.
Or we can reduce each modality by its mean values to consider the modality difference across all
dimensions, as proved in [64, 34, 65]:

centralize : ϕ̂V ← ϕV − EgV [ϕV (gV )] ,

ϕ̂L ← ϕL − EgL [ϕL(gL)] ,
(4)

where we approximate the expectation term via mini-batch samples from the dataset DO. After these
simple manipulation, the collapsed multimodal representations can mostly bridge the modality gap
and collapse together, i.e., ϕ̂V (gV ) ≈ ϕ̂L(gL) for C(gV ) ≈ C(gL), as shown in Fig 5. In our paper,
we report the main results using Centralize by default and provide ablation studies in experiments.

Corrupt. Note that one language can describe diverse visual goals and vice versa. Hence, we can
conveniently augment the collapsed representations to improve the generalization by adding some
random noise, which enables πθ potentially understand unseen prompts. Some works argue that
the simple Gaussian noise is effective [65], but we found the cosine similarity noise offers superior
augmentation in the high-dimensional embedding spaces [36]. Here we slightly abuse the notation by
simplifying ϕV or ϕL as ϕ:

ϕ̃← s · norm(ϕ̂) +
√
1− s2 · norm(ϕ⊥), ϕ̂⊥ = v − v · ϕ̂

ϕ̂ · ϕ̂
· ϕ̂ (5)

where v is a random embedding, ϕ̂⊥ is the orthogonal vector in v w.r.t ϕ̂, norm(x) := x
∥x∥ , s is

a cosine similarity randomly selected from [α, 1] and we set α to 0.2 as default. The direction of
augmented representations remain close to the original to preserve the semantics after corruption,
i.e., in (5), S(ϕ̃, ϕ̂) = ϕ̃·ϕ̂

∥ϕ̃∥∥ϕ̂∥
= s ≥ α, which however can be potentially destroyed by a too large

Gaussian noise.

3.5 Robot Policy Training and Evaluation

Now, we can achieve Cross-modality Alignment in representation space. For instance, in scenarios
where only visual goals gV are available and language instructions gL are absent, we can utilize the
pretrained DecisionNCE (Robo-MUTUAL) visual encoder ϕV to generate the visual goal representa-
tions ϕV (gV ), then derive the final corrupted representations ϕ̃V (gV ) for training the robot policy πθ.
During deployment, the policy πθ can be prompted with either visual goals gV or language goals gL,
by using the collapsed and aligned representations ϕ̂V (gV ) or ϕ̂L(gL).

In training details, we utilize ResNet34 [17] to extract visual feature from both a base and wrist view,
where task embedding ϕ is injected via Film conditioning layers [51]. Then, the visual feature is
passed through a residual MLPs to predict actions similar to IDQL [16]. The policy is optimized with
diffusion loss [19] for its superior effectiveness to model complex distributions [7, 68, 59]. We also
use action chunking [66] to improve the policy smoothness.

6



4 Experiments

The experiments try to answer the following questions:

• Can Robo-MUTUAL achieve multimodal task specifications with unimodal data training?

• Does Robo-MUTUAL outperform baseline models that use synthetic prompts generated
from unimodal data for multimodal task specifications?

• How do specific design choices for Robo-MUTUAL, such as the use of enhanced robotic
multimodal encoders, various collapse, corruption methods, and different scales of corrup-
tion, contribute to its effectiveness?

Figure 6: Simulation and real world robotics evaluation setups.

4.1 Experimental Setup

Simulation Environments. We employ the LIBERO benchmark [35], which consists of 130 robotic
simulation tasks across four distinct suites: LIBERO-Goal/Object/Spatial/100. LIBERO-100 contains
100 tasks, while the other three suites each have 10 tasks. Each task is accompanied by a language
instruction gL and 50 expert trajectories. Collectively, these suites contain 6500 expert demonstrations
and 130 different tasks, which we refer to as LIBERO-All in this paper.

Real Robot Environments. We evaluate 6 tasks on a WidowX robot, spanning skills include pick &
place, fold, flip and move. We collect around 100 demonstrations per task using the Bridgedata
system [59], and annotate each task with a language instruction gL. Successful catching correct
object is recorded as half-completed of the whole task, and a continued correct placement will scored
a full success.

Evaluation Scenarios. 1) We train Robo-MUTUAL in a common scenario where only visual goals
gV are available. Visual goal is provided as the transition between the representations of the initial and
final frames of a video clip [33]. In this case, the policy only observes visual goals gV during training
but is required to understand both visual goals gV and language instructions gL during evaluation.
2) We also explore the reverse scenario, i.e., training exclusively on textual goals gL but evaluating
with visual goals gV to assess bidirectional transferability across modalities. Due to the high cost
associated with real-world evaluations, we compare Robo-MUTUAL against baseline methods in
simulations. However, we believe the 130 tasks in LIBERO benchmark offer comprehensive coverage
across a diverse range of tasks and skills, ensuring fair and sufficient comparisons.

Baselines. 1) GPT4-Synthetic is the main baseline in the common scenario that textual goals
are missing. This approach represents a series of methods that firstly generate missing language
instructions from unimodal visual goals using pretrained large multimodal models [61, 2], and then
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Figure 7: Simulation evaluation. (eval with textual/visual goals) denote the robot policy is evaluated
with textual goal and visual goals, respectively. For each bar, the robot policy is trained on 3 different
random seeds and is evaluated for 10 episodes for each task.
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Figure 8: Real robot evaluation. (eval with textual/visual goals) denote the robot policy is evaluated
with textual goal and visual goals, respectively. For each bar, the robot policy is trained on 3 different
random seeds and is evaluated for 10 episodes for each task.

train policies conditioned on these synthetic goals. During evaluation, we prompt the policies using
the ground truth language instructions to evaluate the success rates. To ensure a fair comparison, we
employ the advanced GPT-4V to generate language instructions based on the initial and final frames
of a trajectory. Furthermore, we incorporate several ground truth examples to enhance the quality of
synthetic instructions leveraging the substantial in-context learning capability of large models [12].
2) Robo-MUTUAL-EPICK adheres the same implementation protocols as our Robo-MUTUAL, but
directly uses the DecisionNCE [33] pretrained solely on the narrow EPICK-KITCHEN dataset [10]
as the robotic multimodal encoder without the specialized improvement in Section 3.3, which may
suffer from limited Cross-modality Alignment capability.

4.2 Main Results

Transfer from Visual to Textual Goals. In the common scenario where only visual goals are
available, both the simulated and real-world evaluations in Fig 7 (a) and Fig 8 (a) clearly demonstrate
that Robo-MUTUAL can successfully understand both visual and textual goals trained exclusively
on visual goals. Specifically, we only observe a moderate performance drop when evaluating Robo-
MUTUAL from visual to textual goals. However, this property is not enjoyed by Robo-MUTUAL-
EPICK, which fails to transfer from visual to textual goals and undergoes severe performance drop,
as shown in Fig 7 (a), primarily due to the limited Cross-modality Alignment capability (see Fig 3 for
details). Moreover, GPT4-Synthetic can partially work well using the synthetic language instructions
thanks to the superior capability of large models, however, still underperforms Robo-MUTUAL. We
think this is because GPT-4V only consider limited robotic data during pretraining and it is hard to
guarantee the quality of synthetic data [61].

Transfer from Textual to Visual Goals. We also explore the reverse scenario in which Robo-
MUTUAL is trained exclusively on textual goals and then evaluated with visual goals. In Fig 7 (b) and
Fig 8 (b), Robo-MUTUAL demonstrates effective transferability in this reversed setup. Importantly,
the visual goals provided for task specifications do not align precisely with the robot’s current
observations, i.e., discrepancies exist in the location of target object, the target position, and even the
number, location, types of distractors. Under this hard condition, Robo-MUTUAL must accurately
extract correct semantic task information from visual goals that contain many distracting elements in
a zero-shot manner trained solely with textual goals. Overall, Robot-MUTUAL demonstrates strong
bidirectional transferability to enable multimodal task instructions via unimodal learning*.

*See detailed videos in zh1hao.wang/Robo_MUTUAL.
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4.3 Ablation Studies

Collapse Methods. In the main results, we only report centralize due to space limits. Here, we
compare the centralize and delete collapse methods. Fig 9(a) shows that they achieve comparable
performance and enjoy moderate performance gap. Also, Fig 5 shows that both of them effectively
cluster matched textual and visual pairs. One future work is to investigate the conditions under which
centralize and delete outperform each other in the robotics domain.

Corrupt Noise Types. We compare our Cosine-similarity noise with the widely adopted simple
Gaussian noise with different standard deviation (Std) [65]. Fig 9 (b) demonstrates that the simple
Gaussian noise is quite unstable w.r.t different Std and is inferior to Cosine-similarity noise. Intuitively,
this is because Cosine-similarity noise naturally enables the augmented data to preserve the semantics
of its origins, as the augmented data remains a high cosine similarity with the original data, i.e.,
S(ϕ̃, ϕ̂) ∈ [α, 1]. However, this can be easily violated by the simple Gaussian noise, as a too large
Gaussian noise can mostly reverse the direction of the original representation after augmentation
and thus lost its original semantics. On the other hand, however, a too small noise lacks enough
augmentations, making it quite sensitive to tune the Std of the Gaussian noise.

Corrupt Strength. To further demonstrate the effectiveness of Cosine-similarity noise, we ablate
on different corrupt strength by adjusting the cosine-similarity threshold α. Fig 9 (c) shows that
Cosine-similarity noise is robust to various corrupt strength, maintaining consistent performance
across various α. Meanwhile, α = 0.2 works best in our evaluation and is set as our default choice.
This likely correlates with the pre-corruption cosine-similarity of matched pairs, which averages
around 0.2, as shown in Fig 3(d).

Robustness on New Textual Prompts. We also investigate whether Robot-MUTUAL can generalize
beyond the ground-truth goals in the downstream dataset DI . For example, we replace the original
“pick up the red cup and place it on the plate" as “move the red cup to the plate", sharing the same
abstracted task goal but are expressed differently. Fig 9 (d) shows that Robo-MUTUAL enjoys
robustness to such new textual prompts thanks to the strong Cross-modality Alignment capability that
maps different instructions with similar semantics as similar representations. This means that we can
conveniently augment instructions in the latent space in one implicit way by simply adding noise,
like the Cosine-similarity noise, rather than relying on heavy large models to explicitly synthesize or
refine instructions like GPT4-Synthetic and other relevant works [61, 2].

5 Conclusions

We introduce Robo-MUTUAL, a framework that enbales robots to comprehend multimodal task
specifications using only unimodal prompts. This is achieved by treating multimodal instructions as
interchangeable embeddings within a well-aligned multimodal representation space, leveraging the
strong Cross-modality Alignment capability from pretrained encoders on a comprehensive robotic
dataset and two simple yet effective modality gap reduction methods. Extensive evaluations on
both real and simulated robots validate the effectiveness of our approach. One limitation is we only
consider the language and image modalities, and we will explore more modalities like audio in future
work. Further enhancements will also focus on refining multimodal encoders and improving modality
gap reduction techniques.
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