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ABSTRACT

Creating stable, controllable videos is a complex task due to the need for signif-
icant variation in temporal dynamics and cross-frame temporal consistency. To
address this, we enhance the spatial-temporal capability and introduce a versa-
tile video generation model, VersVideo, which leverages textual, visual, and
stylistic conditions. Current video diffusion models typically extend image dif-
fusion architectures by supplementing 2D operations (such as convolutions and
attentions) with temporal operations. While this approach is efficient, it often re-
stricts spatial-temporal performance due to the oversimplification of standard 3D
operations. To counter this, we incorporate two key elements: (1) multi-excitation
paths for spatial-temporal convolutions with dimension pooling across different
axes, and (2) multi-expert spatial-temporal attention blocks. These enhancements
boost the model’s spatial-temporal performance without significantly escalating
training and inference costs. We also tackle the issue of information loss that
arises when a variational autoencoder is used to transform pixel space into la-
tent features and then back into pixel frames. To mitigate this, we incorporate
temporal modules into the decoder to maintain inter-frame consistency. Lastly,
by utilizing the innovative denoising UNet and decoder, we develop a unified
ControlNet model suitable for various conditions, including image, Canny, HED,
depth, and style. Examples of the videos generated by our model can be found at
https://jinxixiang.github.io/versvideo/.

1 INTRODUCTION

Diffusion models have transformed automated content creation, empowering designers to generate
highly realistic images or videos from textual prompts as inputs (Ho et al., 2022a;b; Rombach et al.,
2021; Singer et al., 2022; Huang et al., 2024). However, despite significant strides in image gener-
ation, the quality of generated videos often fails to match real-world footage. This discrepancy can
be attributed to the inherent high dimensionality and complexity of videos, which encapsulate in-
tricate spatiotemporal dynamics within high-resolution frames. In this paper, we leverage diffusion
models for video generation, specifically addressing three key challenges: (i) the fundamental build-
ing block in UNet for handling spatial-temporal dynamics; (ii) the issues of a variation autoencoder
to transform a video into latent and subsequently reconstruct it back into pixel space, and (iii) the
capacity to control video generation under diverse conditions.

UNet architecture. The creation of open-domain text-to-video models is widely acknowledged as
a significant challenge, primarily due to the scarcity of large-scale text-video paired data and the
complexity of constructing space-time models from the ground up. To mitigate these challenges,
most current methodologies are built upon pre-trained image generation models (Ho et al., 2022b;
Wu et al., 2022; Chen et al., 2023a; Xing et al., 2023a). These methodologies typically adopt space-
time separable architectures, where spatial operations are derived from the image generation model.
To incorporate temporal modeling, various strategies have been employed, including pseudo-3D
modules (Singer et al., 2022; Zhou et al., 2022), serial 2D and 1D blocks (Saharia et al., 2022; Xing
et al., 2023a), and parameter-free techniques such as temporal shift (An et al., 2023a; Zhang et al.,
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2023) or custom spatiotemporal attention (Wu et al., 2022; Wang et al., 2023a). However, these
methodologies often overlook the critical interaction between time and space, which is essential for
creating visually engaging text-to-video content.

Specifically, parameter-free approaches (An et al., 2023b; Wu et al., 2022) rely on manually de-
signed rules that often fail to capture the intrinsic nature of videos, resulting in the generation of
unnatural motions. Learnable 2D+1D modules and blocks (Blattmann et al., 2023; Singer et al.,
2022; Xing et al., 2023a) primarily concentrate on temporal modeling, either by directly feeding
temporal features to spatial features or combining them through simplistic element-wise additions.
This limited interaction often results in temporal distortions and mismatches between the input texts
and the generated videos, adversely affecting the overall quality of the generated content. Recent
advancements in convolution designs for video classification (Wang et al., 2021; Li et al., 2020;
Jiang et al., 2019; Wang et al., 2021; Liu et al., 2023a), as well as attention mechanisms for vision
transformers (Puigcerver et al., 2023; Huang et al., 2023b), have demonstrated significant potential
for efficient and robust spatial-temporal modeling. We aim to address these challenges by advancing
our approach with a highly efficient design of spatial-temporal convolution and attention blocks.

Autoencoder. Instead of training the model on raw pixels, the Latent Diffusion Model (LDM) first
uses an autoencoder to learn a low-dimensional latent space that succinctly parameterizes images,
and then models this latent distribution. Building on this concept, numerous video diffusion models
(Blattmann et al., 2023; An et al., 2023a; Wang et al., 2023d; He et al., 2022b; Liu et al., 2023a) also
employ an autoencoder to project videos into latent space, significantly reducing the computational
load when training on high-resolution videos. To leverage the pre-trained image diffusion model,
many of these models (Liu et al., 2023a) repurpose the image autoencoder, focusing primarily on
the UNet model design. However, while these models have demonstrated promising results in im-
age reconstruction, the time-independent image autoencoder can distort temporal information in the
latent space (Zhou et al., 2022). The pre-trained image autoencoder has also been reported to cause
image distortions due to the high compression rate (Lin et al., 2023; Zhu et al., 2023). Lin et al.
(2023) suggests using frequency-compensated modules to alleviate this issue. To address these
challenges, we enhance the spatial-temporal reconstruction capability of the autoencoder by train-
ing a new decoder to counteract information loss that occurs during projection and reconstruction
with spectrum constraints.

Controllable generation. The ability to control generation is a highly sought-after feature in gen-
erative foundation models. In the realm of image generation, models such as ControlNet (Zhang &
Agrawala, 2023), T2I Adapter (Mou et al., 2023), and Composer (Huang et al., 2023a) have been
developed to manage visual conditions like edge maps and depth maps. When it comes to video
generation, VideoComposer (Wang et al., 2023c) enhances video synthesis by providing superior
control over both spatial and temporal dimensions. This is accomplished by breaking down a video
into three primary factors: textual conditions, spatial conditions, and crucial temporal conditions. A
latent diffusion model then uses these conditions to reconstruct the input video. Another method,
similar to the image ControlNet, is Control-A-Video (Chen et al., 2023b). This model also has the
ability to handle visual conditions. However, each ControlNet model is restricted to managing a
specific control modality it was trained on, such as an edge map. To handle a different visual condi-
tion modality, it becomes necessary to train a separate model, leading to significant time and spatial
complexity costs. Inspired by the Uni-ControlNet (Zhao et al., 2023) used in image generation, we
propose a unified and scalable video control model. This model can be smoothly integrated with our
diffusion foundation model, resulting in a less complex training process.

In summary, we present a versatile video generation model that incorporates innovative concepts
in (i) The development of a novel UNet video diffusion model: By combining more robust multi-
excitation spatial-temporal convolution and Mixture of Experts attention blocks, we enhance the
model without significantly increasing training and inference complexity. (ii) The implementation
of a spatial-temporal compensated decoder for video reconstruction: We design a VAE decoder
with temporal modules and utilize a refinement network to improve reconstruction quality. (iii) The
establishment of a unified control for video generation: By extending the proposed diffusion model
with a shared ControlNet and diverse adapters, we achieve comprehensive video control generation.
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Figure 1: The VersVideo builds on multi-excitation convolution and MoEs spatial-temporal
attention blocks. Unified condition adapters and a shared ControlNet are used for controllable gen-
eration. A temporal compensated video decoder addresses potential inconsistencies during video
reconstruction. ’T.’ and ’S.’ denote temporal and spatial, respectively.

2 METHODS

2.1 DIFFUSION PROBABILISTIC MODELS

DPM, first introduced in (Sohl-Dickstein et al., 2015), is a powerful generative model that has been
successfully applied to various tasks, such as image synthesis and video generation. It consists of
a diffusion process and a denoising process. In the diffusion process, random noises are gradually
added to the data x via a T-step Markov chain (Kong & Ping, 2021). The noised latent variable at
step t can be expressed as:

zt =
√
α̂tx+

√
1− α̂tϵt,with α̂t =

t∏
k=1

αk ϵt ∼ N (0,1), (1)

where αt ∈ (0, 1) is the corresponding coefficient. For a T that is large enough, e.g., T = 1000,
we have

√
α̂T ≈ 0 and

√
1− α̂T ≈ 1. And zT approximates a random Gaussian noise. Then the

generation of x can be modeled as iterative denoising.

Ho et al. (2020) connect DPM with denoising score matching and propose a ϵ−prediction form for
the denoising process:

Lt = ∥ϵt − zθ (zt, t)∥2 , (2)

where zθ is a denoising neural network parameterized by θ, and Lt is the loss function.

2.2 DENOISING UNET

As shown in Fig. 1, The diffusion UNet employed in VersVideo is built upon Multi-Excitation
Convolution (MEC) and Mixture-of-Experts Spatial-Temporal Attention (MoE-STA) blocks. A
temporal-compensated decoder is utilized to reconstruct videos from the latent space back to the
pixel domain. By incorporating an auxiliary ControlNet, VersVideo is capable of handling vari-
ous input conditions, such as text, images, HED, depth, and Canny maps.

Multi-Excitation Convolution. In contrast to existing video diffusion models that often limit
spatial-temporal performance due to over-simplification of standard 3D operations, we introduce
multi-excitation paths for spatial-temporal convolutions with dimension pooling across different
axes. Our design is fundamentally inspired by squeeze-and-excitation (SE) block (Hu et al., 2017;
Li et al., 2020) by explicitly modeling channel/temporal dependencies. The excitation paths consist
of (i) factorized 2D spatial + 1D temporal convolution; (ii) spatial-temporal excitation; (iii) channel
excitation; and (iv) motion excitation.
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Given a batch of video latents z ∈ RB×C×T×H×W . Notations used in this section are B (batch size),
C (channels), T (number of frames), H (height), and W (width). The factorized 2D + 1D branch
first reshapes z into (BT,C,H,W ) for spatial convolution, and then processes it with temporal
pseudo-3D kernel (3, 1, 1) in the shape of (B,C, T,H,W ).

For the other three branches, the input tensors z are shifted temporally to ẑ following TSM (Lin et al.,
2018) before processing, which is computationally free but has strong spatiotemporal modeling
ability. The motivation behind this is that both the channel and spatial axes have high dimensions,
driving us to pool over these axes and apply convolution separately. For spatial-temporal excitation,
we average ẑ along channel axis into F ∈ RB×1×T×H×W . We apply 3D convolution to F to get
the excitation mask MS. The output of this branch is:

zSPE = ẑ+ ẑ⊙MS = ẑ+ ẑ⊙ sigmoid (Conv3D (F)) . (3)

For channel excitation, we reduce ẑ through spatial averaging into C1 ∈ RB×C×T×1×1, and then
squeezing the channels into C2 ∈ RB×C/16×T×1×1 through 1 × 1 convolution (the channel and
temporal should swap for convolution and revert back). Pseudo 3D convolution (3, 1, 1) is applied
for temporal reasoning, after that we extend the channel back to the original size and get C3 ∈
RB×C×T×1×1. Using C3 as the excitation, we gate the ẑ with the excitation mask MC to get:

zC = ẑ+ ẑ⊙MC = ẑ+ ẑ⊙ sigmoid (C3) . (4)

Motion excitation has been explored in previous studies (Li et al., 2020; Jiang et al., 2019; Wang
et al., 2021; Liu et al., 2023a), as shown in Fig. 2. The motion information is extracted by differen-
tiating the adjacent frames. The input frames are squeezed along the channel axis and the motion of
ẑt−1 and ẑt is expressed as:

mt−1 = K2D ∗ ẑt − ẑt−1. (5)
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Figure 2: Motion Excitation.

Motion results {m1, ...mT } are stacked along the tempo-
ral axis to reconstruct the video tensor. Then, the tensor is
pooled on the spatial space and unsqueeze along the chan-
nel axis. Finally, the motion tensor is activated with sig-
moid to modulate ẑ.

MoEs Spatial-Temporal Attention The UNet incorporates
a series of convolutional blocks with attention blocks. The
3D attention has a prohibitive complexity of O((HWT )2)
for tensor (B,HWT, d), where HW denotes the spatial
scale, T is the number of frames, and d represents the fea-
ture dimension.

We use factorized attention to conduct spatial attention in
the shape of (BT,HW, d) and subsequently apply tempo-
ral attention (BHW,T, d). To enhance this attention, we
augment it with MoE design without significant increases in
computational cost. In specific, we create MoE layers with
N spatial experts (i.e., N FFNs) {ES,1, ES,2, ..., ES,N}
and M temporal experts {ET,1, ET,2, ..., ET,M} (Huang
et al., 2023b). Without loss of generality, we denote input
tokens as (B,L, d) where L = HW for spatial attention
and L = T for temporal attention. Assuming L is divisible
by N (or M ), we randomly split the tokens into N (or M )
groups and then process them with experts:

{x1, x2, ..., xL}
shuffle−−−→ {x̂1, x̂2, ..., x̂L}

split−−→ {X1, X2, ..., XN} feedforward−−−−−−→ Yi = ES,i(Xi),
(6)

where X1 = {x̂1, x̂2, ..., x̂L/N}, X2 = {x̂L/N+1, x̂2, ..., x̂2L/N}, etc. We unshuffle
{Y1, Y2, ..., YN} to recover the output of the MoE layer. The temporal MoE layer follows the same
operation.

After each training iteration, we update experts by averaging all of them:

ES,i = (1− λ)ES,i + λES,: ET,i = (1− λ)ET,i + λET,:, (7)
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Figure 3: The proposed TCM-VAE. Many current video diffusion models rely on image VAEs for
video encoding and reconstruction, which often neglects crucial temporal information (Wu et al.,
2022; Wang et al., 2023d). The proposed TCM-VAE builds on image VAE by introducing TCMs
and a refinement UNet to ensure temporal consistency and video quality.

with:

ES,: = ΣN
j ̸=i

1

N − 1
ES,j ET,: = ΣM

j ̸=i

1

M − 1
ET,j , (8)

where ES,i and ET,i the i-th spatial/temporal expert; λ controls the information exchange rate
among experts. Since a large dropout N−1

N (or M−1
M ) is applied for every expert, we have to com-

municate the weights among all of them to avoid data insufficiency and underfit problem. By default,
we set λ = 0.001 as a small value, ensuring experts gradually evolve together, while in the mean-
time, avoiding weights collapse where all experts are identical unexpectedly.

During inference, each MoE layer is transformed into an FFN layer by averaging FFNS =
1
NΣN

i=1ES,i and FFNT = 1
MΣM

i=1ET,i. In this way, introducing MoE to enhance spatial-temporal
attention does not increase inference computation cost. Merging weights of models for better perfor-
mance is widely acknowledged in large language models (Jin et al., 2022) and image classification
(Wortsman et al., 2022; Ainsworth et al., 2022).

2.3 TEMPORAL COMPENSATED DECODER

Most existing video latent diffusion models utilize image VAEs to reconstruct videos from latents
(Wu et al., 2022; Chen et al., 2023b; Xing et al., 2023b; Wang et al., 2023d). However, an image
VAE without temporal modules fails to capture the dependencies between frames. This leads to
a loss of temporal information in videos, which in turn results in flickering artifacts and temporal
inconsistency (Blattmann et al., 2023).

We introduce Temporal Compensation Modules (TCMs) to enhance temporal consistency, and a
refinement UNet for quality enhancement, building upon an image pretrained VAE. To optimize
training efficiency, we freeze the encoder and concentrate on training the video decoder. We incor-
porate TCMs into the decoder blocks to infuse temporal information into multi-level intermediate
features. The implementation of TCMs leverages the multi-excitation module in Section 2.2. More
details about the TCM-VAE can be found in the Appendix.

We fine-tune the decoder with the added TCMs using video data and incorporate a path-wise tem-
poral discriminator constructed from 3D convolutions. The optimization loss on the reconstructed
image X̂ aligns with that of the VQ-GAN (Esser et al., 2020). For intermediate features derived
from TCMs, we impose a consistency loss constraint on the feature, aligning it with features of the
same level. The underlying principle is that temporal information is gradually lost during encoding;
this process can be counteracted through consistency constraints. The final optimization loss for
training the video decoder is formulated as follows:

Ldec = LVQ-GAN(X, X̂) + λΣM
i=1LTCM(F i

A,F i
S) (9)

where λ is a weight coefficient (10−4 by default); LVQ-GAN is the reconstruction loss as in VQ-GAN,
with L1, perceptual and discriminator loss; LTCM constrains the similarity between the encoder
features and TCM features, for instance, through the L2 loss.
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Figure 5: Sample text-to-video outputs generated by VersVideo-H, with a resolution of 576×320
pixels, are displayed. Frames are selected at a rate of one every four frames for analysis.

2.4 VERSATILE CONDITIONS GENERATION

For training versatile conditions that guide video generation, we freeze the denoising UNet and train
the unified ControlNet for visual conditions. Additionally, we train the linear adapters of CLIP
image for style as illustrated in Fig. 4.
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Figure 4: Versatile conditions strategy.

The extension of the image ControlNet for
video generation builds upon previous studies
(Zhang et al., 2023; Chen et al., 2023b). Un-
like previous models that train separate video
ControlNets for specific conditions like canny,
depth, HED, etc., we propose a unified ap-
proach to handle visual conditions using a
shared ControlNet because diverse visual con-
ditions share common low-level visual features.
Input visual conditions are preprocessed using
lightweight adapters and the shared ControlNet
to introduce controllability into the UNet.

To adapt to various low-level visual conditions,
we create adapter modules to capture features
before applying the shared ControlNet. Mathe-
matically, the adapter module can be expressed as:

FAdapter
(
Ik
c

)
:= ΣK

i=11(i == k)F (i)
Cov

(
Ik
c

)
(10)

where 1 is the indicator function; Ik
c is the k-th visual condition; F (i)

Cov is the adapter convolution.

For the style condition, which serves as global guidance similar to the text prompt, we propose train-
ing a linear adapter in conjunction with the frozen CLIP image encoder (Ye et al., 2023). Typically,
the linear adapter for text prompts functions as an identity mapping. The image embeddings for style
control and text embeddings are subsequently concatenated and fed into the cross-attention modules
within both the denoising UNet and the ControlNet.
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Table 1: Text-to-Video generation on MSR-VTT (Xu et al., 2016). ↓ denotes the lower the better. ↑
denotes the higher the better.

Method Training Data FVD (↓) CLIPSIM( ↑ )
GODIVA (Wu et al., 2021a) MSR-VTT - 0.2402
NÜWA (Wu et al., 2021b) MSR-VTT - 0.2439

Make-A-Video (Singer et al., 2022) WebVid-10M + HD-VILA-10M - 0.3049
VideoFactory (Wang et al., 2023b) WebVid-10M + HD-VG-130M - 0.3005

LVDM (He et al., 2022a) WebVid-2M 742 0.2381
MMVG (Fu et al., 2022) WebVid-2.5M - 0.2644

CogVideo (Hong et al., 2022) WebVid-5.4M 1294 0.2631
ED-T2V (Liu et al., 2023b) WebVid-10M - 0.2763

MagicVideo (Zhou et al., 2022) WebVid-10M 998 -
Video-LDM (Blattmann et al., 2023) WebVid-10M - 0.2929
VideoComposer (Wang et al., 2023d) WebVid-10M 580 0.2932

Latent-Shift (An et al., 2023b) WebVid-10M - 0.2773
VideoFusion (Luo et al., 2023) WebVid-10M 581 0.2795

SimDA (Xing et al., 2023b) WebVid-10M 456 0.2945
VersVideo-L (500M) WebVid-10M 620 0.2796
VersVideo-H (2B) WebVid-10M 421 0.3014

3 EXPERIMENTS

3.1 IMPLEMENTATION DETAILS

Training. The training of VersVideo consists of two stages. In the first stage, we train the text-
to-video video diffusion model using the WebVid-10M video-text dataset (Bain et al., 2021) and
the 300M image-text datasets from LAION-5B (Sohl-Dickstein et al., 2015). We allocate 1

4 of the
GPUs for updating image-text data, while the remaining GPUs are used for video-text data. We
develop VersVideo-L, which has 500 million parameters for 16 × 256 × 256 generation, and
VersVideo-H, which has 2 billion parameters for 24×576×320 generation. The training details
and network specifications are defined in the Appendix. In the second stage, we freeze the UNet and
train the visual conditions ControlNet and style conditions using the WebVid-10M dataset.

Inference. Video generation combines text, visual conditions, and style are presented. We generate
the video using the target prompt via DDIM sampling (Song et al., 2020).

Evaluation. We evaluated our model on the MSR-VTT (Xu et al., 2016) and UCF-101 datasets
using the FVD (Unterthiner et al., 2018), CLIPSIM (Radford et al., 2021), and IS metrics. In the
ablation study, we further employ frame consistency (FC) to assess video continuity by calculating
the average CLIP similarity between two successive frames (Wang et al., 2023d; Esser et al., 2023).

3.2 TEXT-TO-VIDEO GENERATION

The MSR-VTT test set consists of 2,990 examples, each containing 20 descriptions or prompts. To
generate videos, we randomly select one prompt from each example, resulting in 2,990 videos. Each
video consists of 16 frames at a frame rate of 30 fps. For VersVideo-H, we extract 16 consecutive
frames from a total of 24 frames. These frames are then resized and center-cropped to dimensions
of 256 × 256. To evaluate the quality of the generated videos, we calculate the CLIPSIM score
by averaging the scores of the 47,840 frames. For comparative FVD statistics, we randomly select
video sequences from the dataset, ensuring that each sequence contains a minimum of 16 frames.

In Table 1, our approach achieves an average CLIPSIM score of 0.3014, even in a zero-shot scenario,
outperforming the majority of competing methods. This indicates a robust semantic correlation
between the generated videos and the input text. It is worth noting that Make-A-Video (Singer
et al., 2022) and VideoFactory (Wang et al., 2023b) achieve higher CLIP scores, but they leverage
additional large-scale HD-VILA (Xue et al., 2021) datasets during their training process.

We also provide visualizations of the generated videos for various text prompts in Fig. 5. These
examples demonstrate VersVideo’s ability to generate diverse videos with high frame consistency.
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Figure 6: Conditioned video generation with image, depth, canny, HED, and style.

3.3 CONDITIONS GENERATION

Visual conditions. We categorize elements such as images, HED, Canny, depth, etc., as visual
conditions, as they provide spatial information that guides the video generation process. In the
VersVideo model, these conditions are processed using individual adapters, which then introduce
controllable features into the denoising UNet. Fig. 6 showcases the results of incorporating diverse
text prompts with visual conditions, demonstrating the effectiveness of our approach.

Style condition. The style condition serves as a global guide. It is extracted using a multi-modal
CLIP image encoder and subsequently concatenated with text embeddings. The last two rows in Fig.
6 show two distinct painting styles for video generation, using depth maps as the spatial control.

3.4 ABLATION STUDIES

UNet model design. We carried out an ablation study to validate the design of the denoising UNet
model, incorporating both the MEC and MoE-STA components. We trained various versions of
the VersVideo-L model, and VersVideo-H and subsequently evaluated their class-conditional
generation using the UCF-101 dataset. Table 2 presents the study’s findings. Both the MEC and
MoE-STA have demonstrated their effectiveness as design elements in improving the performance
of the video diffusion model. These elements consistently contribute to performance enhancements.
Although the VersVideo-L model does not surpass state-of-the-art models like Make-a-Video
(Singer et al., 2022) and VideoFusion (Luo et al., 2023), which boast billions of parameters, it is
worth noting that the VersVideo-L model has a significantly smaller parameter count of 500 M.
Notably, the VersVideo-H model achieves an IS score of 81.3 and an FVD score of 119, making
it the second-best performing model after Make-A-Video (9.72B parameters). The FC consistently
improves with our designed modules.
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Table 2: Ablation of model designs on UCF101. FC means frame consistency.
Method Resolution IS ↑ FVD ↓ FC ↑
MoCoGAN-HD (Tulyakov et al., 2017) 128× 128 12.42 - -
CogVideo (Hong et al., 2022) 160× 160 50.46 626 -
DVD-GAN (Clark et al., 2019) 128× 128 32.97 - -
TATS (Ge et al., 2022) 128× 128 79.28 332 -
VideoFusion (Luo et al., 2023) 128× 128 80.03 173 -
Make-A-Video (Singer et al., 2022) 256× 256 82.55 81.25 -
VersVideo-L (baseline) 256× 256 60.2 355 0.843
VersVideo-L (+ MEC) 256× 256 68.8 287 0.862
VersVideo-L (+ MoE-STA) 256× 256 63.5 302 0.861
VersVideo-L (+ MEC + MoE-STA) 256× 256 72.9 207 0.880
VersVideo-H 576× 320 81.3 119 0.905

Table 3: TCM-VAE for video reconstruction and generation on UCF-101.
Video Reconstruction Text-to-video Generation

PSNR↑ SSIM↑ IS↑ FVD↓ FC↑
vanilla image decoder 32.376 dB 0.9129 43.23 598 0.865

3D convolution decoder 32.692 dB 0.9181 49.40 508 0.868
temporal-finetuned decoder 32.254 dB 0.9194 50.39 490 0.871

TCM-VAE (Ours) 33.019 dB 0.9253 60.18 443 0.880

TCM-VAE. To evaluate the effectiveness of TCM-VAE, we compare VAE decoder variants: the
vanilla image decoder (Esser et al., 2020), the 3D convolution decoder, and the temporally fine-
tuned decoder (Blattmann et al., 2023). Models are trained with a subset of 100,000 videos from
the HD-100M (Xue et al., 2021) dataset to avoid watermarks. We assess video reconstruction using
PSNR and SSIM in the YUV color space on the UCF-101 test dataset comprising 3,783 videos. We
evaluate text-to-video generation with VersVideo-L using FVD, CLIPSIM, and FC.

In Table 3, the vanilla image decoder overlooks temporal inter-frame dependencies, leading to only
moderate reconstruction performance. Previous studies have demonstrated that incorporating 3D
convolution or adding temporal layers to the standard image decoder can significantly improve video
reconstruction and generation. Our designs of the proposed TCM-VAE collectively contribute to
a superior overall performance. Specifically, our TCM-VAE achieves an improvement in video
reconstruction, with an increase of 0.643 dB in PSNR and 0.0124 in SSIM. Furthermore, the text-
to-video generation achieves an improvement of 16.95 in IS, an improvement of 0.015 in FC, and a
reduction of 155 in FVD. These results highlight the effectiveness of our modifications in enhancing
both the fidelity of video reconstruction and the quality of text-to-video generation.

4 CONCLUSION

In response to the oversimplified spatial-temporal modeling prevalent in most video diffusion mod-
els, we introduce a temporal-enhanced diffusion model that incorporates multi-excitation convolu-
tion and MoE attention, without significantly increasing the computation costs. Additionally, we
augment the VAE decoder to reconstruct the latent space into pixel space and employ a unified
control model to accommodate diverse conditions.

Limitation and future work. (i) The generated videos sometimes contain watermarks due to the
training dataset WebVid-10M. To ensure high-quality generation, it is necessary to have watermark-
free videos with textual descriptions. (ii) Our primary focus is on generating videos of a fixed length
(e.g., L = 24). However, an interesting future direction would be to extend our method for long
video synthesis, considering clip-by-clip generation. (iii) VersVideo inherits certain common
challenges from image diffusion, including hand generation and text alignment. Solutions employed
in image generation could serve as inspiration for video generation. (iv) The stability of image-to-
video generation is not perfect. The input image cannot be consistently maintained throughout the
videos. It requires additional control to preserve the spatial appearance.
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REPRODUCTIVITY STATEMENT

We provide details (e.g., hyperparameter, model, and optimizer) and experiment setups (e.g.,
datasets, metrics) in Section 3.1 and Appendix A, B, and C.
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Table 4: VersVideo network details.
VersVideo-L VersVideo-H

Architecture LDM LDM
video resolution 16× 256× 256× 3 24× 576× 320× 3
VAE factor f 8 8
z-shape 16× 32× 32× 4 24× 72× 40× 4
channels 128 320
Depth 2 2
Channel multiplier 1, 2, 4, 4 1, 2, 4, 4
Attention resolutions 32, 16, 8 72, 36, 18
Number of heads 8 8
Cross-Attention
Embedding dimension 768 768
CA resolutions 32, 16, 8 72, 36, 18
CA sequence length 77 77
MEC kernel size
2D spatial + 1D temporal (3,3) + (3,1,1) (3,3) + (3,1,1)
Temporal shift (3,) (3,)
Spatial-temporal excitation (3,3,3) (3,3,3)
Channel excitation squeeze (1, 1) (1, 1)
Channel excitation temporal (3,) (3,)
Channel excitation expand (1, 1) (1, 1)
Motion excitation squeeze (1, 1) (1, 1)
Motion excitation temporal (3, 3) (3, 3)
Motion excitation expand (1, 1) (1, 1)
MoE-STA
Number of Spatial FFNs 32 32
Number of Temporal FFNs 4 4
Training
Parameterization v v
# train steps 100 k 100 k
Learning rate 5× 10−5 5× 10−5

Batch size per GPU 16 2
# GPUs 16 32
GPU-type A100− 40 GB A100− 40 GB
pdrop 0.1 0.1
Diffusion Setups
Diffusion steps 1000 1000
Noise schedule Linear Linear
β0 0.00085 0.00085
βT 0.0120 0.0120
Sampling
Sampler DDIM DDIM
Steps 30 30
CFG scale 7.5 7.5
Total Parameters during Inference 500 M 2 B

A VERSVIDEO NETWORK DETAILS

The paper introduces two distinct variants of video diffusion models, referred to as VersVideo-L
and VersVideo-H. The primary distinction between these two models lies in their dimensions:
VersVideo-L has a dimension of 128, while VersVideo-H has a dimension of 320, as detailed
in Table 4. In the ResBlock of the LDM, we have embedded Multi-Excitation Convolutions (MECs),
which replace the original 2D convolution designs used for image diffusion. These MECs operate
in parallel, providing a more efficient approach. Other parameters such as upsampling or downsam-
pling, as well as input or output channels, remain consistent with the original design. Regarding
the MoE Spatial-Temporal Attention (MoE-STA), we have established 32 Feed-Forward Networks
(FFNs), or ’experts’, for spatial attention, and an additional 4 FFNs for temporal attention during
the training phase. It’s important to note that during the inference stage, all experts are averaged to
produce a single FFN.
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Figure 7: The proposed MoE for the spatial-temporal transformer. In both spatial and temporal
transformers, we employ multiple FFN experts during the training phase. These experts are trained
using data that is randomly allocated to them. After each training iteration, the weights of the experts
are shared amongst each other at an exchange rate denoted by λ in Eq. (7). After training, all the
experts are averaged to ensemble into a FFN, without increasing the inference costs.
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Figure 8: Sparse MoE.

Section 2.2 outlines the proposed MoE for spatial-temporal trans-
formers. In this section, we provide additional details to enhance
understanding.

The role of the FFN in transformers is to process the information
aggregated by the attention mechanism. It can learn to recognize
and generate more intricate patterns based on the information it re-
ceives from the attention block. The most recent prevalent training
approach for transformers involves replacing the FFN layer with a
sparse MoE (Lepikhin et al., 2020; Du et al., 2021; Fedus et al.,
2021). The sparse MoE includes multiple expert FFNs, each with
unique weights, and a trainable routing network, as shown in Fig.
8. During both the training and inference phases, this routing net-
work selects a sparse set of experts for each input, enabling efficient
scalability of transformer models through sparse computation.

As shown in Fig. 7, we introduce a new MoE scheme that trains ex-
perts without a router network, reducing the number of parameters
introduced by the router and simplifying training. Our MoE assigns
tokens to experts by randomly partitioning them into groups. At the
end of each training iteration, we perform weight averaging on each
MoE’s experts. After training, we can average the experts of each
MoE into a single FFN, without increasing inference cost.

Why does this MoE work? Merging weights of models for better performance is widely acknowl-
edged in large language models (Jin et al., 2022) and image classification (Wortsman et al., 2022;
Ainsworth et al., 2022). This simple yet effective idea has been proven to improve accuracy and
robustness. Similarly, our proposed MoE merges experts’ weights to efficiently enhance the perfor-
mance of the spatial-temporal transformer. Unlike conventional model ensembles, we average the
model weights without incurring any additional inference or memory costs.
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Figure 9: The comparison between the image VAE and the proposed TCM-VAE. Unlike the image
VAE, which encodes and reconstructs image frames individually along the temporal dimension, we
introduce TCMs and a refinement UNet to enhance inter-frame consistency and video quality.
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Figure 10: Refinement UNet of TCM-VAE.

C TCM-VAE

C.1 NETWORK DETAILS

There are two critical components in TCM-VAE: the Temporal-Compensated Module (TCM) and
the refinement UNet. We choose VQ-GAN (Esser et al., 2020) as the image VAE backbone for
TCM-VAE and train the decoder along with TCMs and a refinement UNet.

The encoding process of TCM is identical to the image encoding. Given an input video X of shape
(B,C, T,H,W ), we reshape the time axis to the batch axis (BT,C,H,W ), and then process the
video as a batch of images:

z = E(X) = AM (· · · (A2 (A1(X)))) . (11)

The decoder D with TCMs embedded can be represented as:

X̂ = D(z) = R
(
S1

(
· · ·

(
SM−1

(
SM (FM

S )
))))

, (12)

where R is the refinement UNet. FM
S is the temporal compensated features using TCMs.

We denote Ti as the i-th TCM block which consists of sequences of convolution layers and ac-
tivations. We implement all TCMs with the MEC block as detailed in Section 2.2 because it is
computationally efficient and also has strong temporal ability. The intermediate features are:

FM−1
S = SM (TM (zM ) + zM )

. . .

F1
S = S1 (T1 (z1) + z1) ,

(13)

given the input of decoder zM = z.
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It’s important to note that in TCM-VAE, all tensors outside the TCM are 4D, specifically (N ×
T,C,H,W ). Initially, we transform the input 4D tensor into a 5D tensor (N,T,C,H,W ) before
it’s introduced to the TCM, which allows for operations on a specific dimension within the TCM.
After this, the 5D output tensor is converted back to a 4D tensor before it’s passed to the subsequent
TCM-VAE decoder blocks.

The refinement UNet is constructed using residual blocks, and notably, does not include any atten-
tion blocks. A comprehensive depiction of the network can be found in Figure 10.

C.2 VISUAL QUALITY

The VAE from pre-trained image models is often reused for most existing video latent diffusion
models. However, the image VAE is a significant contributor to video flickering and inconsistency.
To illustrate this issue, we present several visual examples. We compare the widely-used image VAE
for StableDiffusion with our proposed TCM-VAE.

As for image VAE, we encode the video frames independently and then reconstruct them back into
a video using an image decoder. For TCM-VAE, the encoding process remains unchanged, but we
employ the TCM-VAE decoder with temporal awareness.

C.3 PLUG-AND-PLAY FOR OTHER VIDEO GENERATION MODELS

TCM-VAE offers another advantage in terms of compatibility. Since we freeze the image encoder
during training, it is seamless to integrate TCM-VAE with various video diffusion models. This
plug-and-play solution allows for easy integration with most existing models. For example, we
apply TCM-VAE to VideoComposer (Wang et al., 2023d) and Videofusion (Luo et al., 2023), and
the flicker artifacts can be largely alleviated.

D ABLATION STUDY OF MEC

MEC is a novel approach for spatial-temporal convolutions with dimension pooling across differ-
ent axes, which avoids the over-simplification of standard 3D operations that often limits spatial-
temporal performance in existing video diffusion models. It involves using multi-excitation paths,
which include factorized 2D spatial + 1D temporal convolution (2D+1D), spatial-temporal excita-
tion (STE), channel excitation (CE), and motion excitation (ME).

In Section 2.2, we provide a detailed description of MEC. Additionally, an ablation study is con-
ducted in Table 5 to validate each excitation path of MEC, which includes the MoE-STA component.
Various versions of the VersVideo-L model are trained with and without these paths, followed by
an evaluation of their class-conditional generation using the UCF-101 dataset. The results suggest
that the excitation modules improve the performance of MEC. When integrating all four excitation
paths, the MEC demonstrates superior performance in both IS and FVD.

E USER STUDY

To conduct the user study, we selected four widely acknowledged and open-sourced models, namely
Text2video-zero (Khachatryan et al., 2023), VideoFusion (Luo et al., 2023), Zeroscope (Hugging
Face, 2023), and VideoComposer (Wang et al., 2023d), for visual comparison. The evaluation set
consisted of 30 video prompts, and 16 evaluators compared the inter-frame consistency and overall

Table 5: Ablation of MEC designs on UCF101.
2D+1D STE CE ME IS ↑ FVD ↓

✓ ✓ ✓ 69.5 249
✓ ✓ ✓ 68.0 264
✓ ✓ ✓ 67.7 266
✓ ✓ ✓ 68.3 260
✓ ✓ ✓ ✓ 72.9 207
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Figure 11: VersVideo v.s. prior work in text-to-video in terms of inter-frame consistency and
overall quality win-rates evaluated by majority score of human evaluator preferences.

video quality (including inter-frame consistency, alignment of text-video, and perceptual factors)
between two videos - one from competing methods and one from our method, shown in a random
sequence. Figure 11 shows that our method, VersVideo, was preferred over VideoFusion 83.3%
of the time in terms of video quality, and over VideoComposer 88.5% of the time. Our method also
performed significantly better than the baseline methods in terms of inter-frame consistency in the
user study.
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