Privacy-Preserving and Effective Cross-City Traffic Knowledge Transfer via Federated Learning

Anonymous Author(s)

Affiliation Address email

Abstract

Traffic prediction aims to forecast future traffic conditions using historical traffic data, serving a crucial role in urban computing and transportation management. While transfer learning and federated learning have been employed to address the scarcity of traffic data by transferring traffic knowledge from data-rich to datascarce cities without traffic data exchange, existing approaches in Federated Traffic Knowledge Transfer (FTT) still face several critical challenges such as potential privacy leakage, cross-city data distribution discrepancies, and low data quality, hindering their practical application in real-world scenarios. To this end, we present FedTT, a novel privacy-aware and efficient federated learning framework for crosscity traffic knowledge transfer. Specifically, our proposed framework includes three key innovations: (i) a traffic view imputation method for missing traffic data completion to enhance data quality, (ii) a traffic domain adapter for uniform traffic data transformation to address data distribution discrepancies, and (iii) a traffic secret aggregation protocol for secure traffic data aggregation to safeguard data privacy. Extensive experiments on 4 real-world datasets demonstrate that the proposed FedTT framework outperforms the 14 state-of-the-art baselines. All code and data are available at https://anonymous.4open.science/r/FedTT.

1 Introduction

2

5

6

9

10

11

12

13

14

15 16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

37

Traffic Prediction (TP) [70, 51, 80] leverages widespread sensors in the road network to forecast traffic conditions based on historical traffic data (e.g. traffic flow, speed, and occupancy), which not only facilitates the effective allocation of public transportation resources [45] but also contributes to alleviating traffic congestion [74]. To achieve accurate TP, numerous methods have been proposed [80, 23, 24], which typically rely on a large number of traffic data to train high-performing traffic models. However, urban traffic data is often insufficient or unavailable [36, 63, 65], particularly in emerging cities, such as developing regions in the Midwestern United States [1], where sensors are newly deployed or data collection is still in its early stages. In such cases, training traffic models becomes particularly challenging and prone to overfitting, limiting the accuracy of TP tasks [27, 46].

Transfer Learning (TL) [59, 13], a knowledge transfer paradigm, has been widely adopted in TP scenarios to address the scarcity of traffic data. To improve the performance of traffic models in data-scarce target cities, existing TL-based TP methods [41, 43, 57] transfer traffic knowledge from data-rich source cities to target cities, which typically rely on centralized frameworks and involve the exchange of traffic data among cities

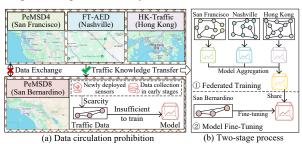


Figure 1: Privacy-preserving traffic knowledge transfer

without considering data privacy. However, the direct sharing of traffic data risks privacy leakage [39, 45, 70] as such data may contain sensitive personal information. For example, sparse traffic flow data may allow attackers to infer the presence and approximate locations of individual vehicles [6, 7]. Besides, many privacy laws and regulations, such as GDPR [5] and CCPA [4], mandate data collectors to minimize non-essential data transmission and avoid centralized data storage. Therefore, maintaining the decentralization of traffic data in TP is critical. As shown in Fig. 1(a), PeMSD4 [3], FT-AED [12], HK-Traffic [2], and PeMSD8 [3] are four real-world traffic datasets, which correspond to the cities of San Francisco (SF), Nashville (NV), Hong Kong (HK), and San Bernardino (SB), respectively. Among these, SF, NV, and HK represent source cities, while SB serves as the target city. Due to legal restrictions, traffic data cannot be exchanged among cities, meaning each city can only access its local data. In this case, transferring traffic knowledge from these three source cities to the target city without exchanging raw traffic data becomes challenging.

Federated Learning (FL) [68, 37, 70], a privacy-preserving distributed learning paradigm, has been widely used in numerous applications to address privacy concerns such as urban computing [66] and transportation management [70]. For instance, JD Company (one of the largest e-commerce companies in China) developed the Fedlearn platform to help protect data privacy for TP applications [20]. Inspired by its success, recent studies [49, 78] have explored the FL framework to transfer traffic knowledge while preserving data privacy, which typically follow a two-stage process, as illustrated in Fig. 1(b). In the first stage, the three source cities (i.e., SF, NV, and HK), as clients, use their local traffic data to train individual local models. Subsequently, clients upload training gradients or model parameters to a central server, which aggregates to a global traffic model and then broadcasts the global model back to clients for local model updates. This process iterates until the global model converges. In the second stage, the converged global model is shared with the target city (i.e., SB) and further fine-tuned using its local traffic data. While this two-stage knowledge transfer framework has become the mainstream approach in Federated Traffic Knowledge Transfer (FTT), it faces three unresolved challenges, i.e., privacy, effectiveness, and robustness, that hinder its application in real-world traffic knowledge transfer scenarios, as illustrated in Fig. 2.

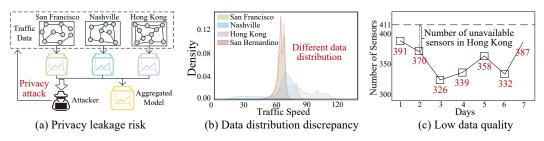


Figure 2: Four unresolved challenges in federated traffic knowledge transfer (FTT)

Challenge 1: How to effectively protect data privacy in FTT? Although existing methods utilize FL to avoid raw data exchange, there remains a potential risk of data privacy leakage. This arises because these methods require the uploading of training gradients or model parameters for aggregation in FTT, which may allow attackers to infer raw data by inference attacks [18, 67, 81], as depicted in Fig. 2(a). To mitigate this risk, a straightforward approach is to apply privacy-preserving techniques such as Homomorphic Encryption (HE) [52] and Differential Privacy (DP) [16] for secure aggregation on the uploaded data. However, HE introduces significant computation and communication overheads, which diminishes training efficiency, while DP lowers data utility and thus decreases model accuracy, as proved by previous studies [64, 58, 15]. Therefore, how to effectively safeguard data privacy in FTT without compromising training efficiency and model accuracy remains a significant challenge.

Challenge 2: How to mitigate the impact of cross-city data distribution discrepancies on FTT? None of the previous studies have considered the discrepancies in traffic data distribution across cities, which decreases the effectiveness of traffic knowledge transfer [41, 43, 57]. Specifically, the traffic domain varies significantly across cities, with distinct distributions of traffic flow, speed, and occupancy data. As shown in Fig. 2(b), we illustrate the frequency density distribution of traffic speed data for SF, NV, HK, and SB. As observed, SF and SB exhibit similar data distributions, suggesting closely related traffic domains, while NV and SB show different data distributions, indicating quite distinct traffic domains. Consequently, traffic knowledge transfer from SF to SB results in smaller prediction errors and is more effective than the transfer from NV to SB. Overall, how to address traffic domain discrepancies across cities to improve the effectiveness of FTT is an urgent challenge.

Challenge 3: How to overcome low traffic data quality issues in FTT? Existing methods assume that traffic data is consistently high-quality and reliable, neglecting the prevalence of missing data. As shown in Fig. 2(c), we illustrate the number of available sensors over a week in HK, which has 411 sensors in total. Due to sensor failures or updates [73, 50], the number of available sensors in HK may fluctuate over time, disrupting the model training process. While some data imputation methods [8, 48, 73] can be employed to complete missing data, they fail to effectively capture the spatio-temporal dependencies inherent in traffic data, leading to suboptimal accuracy. Consequently, how to enhance the traffic data quality to improve the robustness of FTT is another challenge.

Contributions. To address these challenges, we propose FedTT, a privacy-preserving and efficient 94 Federated learning framework for cross-city Traffic knowledge Transfer. Unlike existing FTT 95 methods, FedTT transforms the traffic data from the source cities' domain to the target city's domain 96 and training the target city's model on the transformed data. To address Challenge 1, FedTT 97 introduces the Traffic Secret Aggregation (TSA) protocol to securely aggregate the transformed data 98 without compromising training efficiency or model accuracy. To overcome Challenge 2, FedTT develops the Traffic Domain Adapter (TDA) to uniformly transform the traffic data from source cities' 100 domains to that of the target city through traffic domain transformation, alignment, and classification. 101 To deal with Challenge 3, FedTT designs the Traffic View Imputation (TVI) method to complete 102 missing traffic data by capturing the spatio-temporal dependencies. Finally, extensive experiments 103 conducted on 4 real-world datasets demonstrate that FedTT achieves state-of-the-art performance, 104 reducing prediction MAE by 5.43% to 75.24% and maintaining Pearson Correlation Coefficient 105 (PCC) of data reconstruction attacks at **no more than 10**% compared to 14 baseline methods. 106

2 Problem Definitions

107

124

125

126

127

128

129

130

The frequently used notations and descriptions in this paper are shown in **Appendix B**.

Definition 1 (Road Network). The road network is a weighted graph $\mathcal{G} = (\mathcal{M}, \mathcal{E}, A)$, where $\mathcal{M} = \{m_1, m_2, \dots\}$ is the set of sensors, $\mathcal{E} \subseteq \mathcal{M} \times \mathcal{M}$ is the set of edges, and $A \in \mathbb{R}^{|\mathcal{M}| \times |\mathcal{M}|}$ is the weighted adjacency matrix of edges. Here, m_i denotes the sensor with index i.

Definition 2 (Traffic Data). Given the available sensors $M_t = \{m_i \mid i \leq |\mathcal{M}|\}$, the traffic data is denoted as $\mathcal{X} = \{X_1, X_2, \ldots\}$, where $X_t \in \mathbb{R}^{|M_t| \times F_1}$ is the traffic data of $|M_t|$ available sensors at time t. Here, F_1 denotes the number of traffic data features. For instance, $F_1 = 3$ when the traffic data includes flow, speed, and occupancy data.

Problem Formulation (FTT). In federated learning, multiple clients $\mathcal{C} = \{c_1, c_2, \dots, c_n\}$ collaboratively train a global model using their local data. In the first stage, FTT trains a traffic model θ_{TP} to learn traffic knowledge from source cities $\mathcal{R} = \{R_1, R_2, \dots, R_n\}$, where each source city R_i corresponds to a client c_i , as formally shown below:

$$\min_{\theta_{TP}} \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}(\theta_{TP}, D^{R_i}), \tag{1}$$

where $\mathcal{L}(\cdot)$ is the loss function, and $D^{R_i} = \{X_1^{R_i}, X_2^{R_i}, \dots; \mathcal{G}^{R_i}\}$ is the traffic dataset of the source city R_i . Here, \mathcal{G}^{R_i} and $X_t^{R_i}$ are the road network and the traffic data at time t of the source city R_i . In the second stage, given target city' dataset $D^S = \{X_1^S, X_2^S, \dots; \mathcal{G}^S\}$, FTT predicts the next T' traffic data based on the T historical observations at time t in the target city S, as shown below:

$$\{X_{t-T+1}^S, X_{t-T+2}^S, ..., X_t^S; \mathcal{G}^S\} \xrightarrow{\theta_{TP}} \{X_{t+1}^S, X_{t+2}^S, ..., X_{t+T'}^S\}$$
 (2)

3 Our Methods

Fig. 3 illustrates the architecture of the proposed FedTT framework, which comprises three modules: Traffic View Imputation (TVI), Traffic Domain Adapter (TDA), and Traffic Secret Aggregation (TSA). As shown in Fig. 3(a), FedTT comprises n clients $\mathcal{C} = \{c_1, c_2, \ldots, c_n\}$ and a central server s. Specifically, each source city R_i is treated as a client c_i , while the target city S is treated as the server s. The traffic domains of the data in clients are transformed to align with the server's domain, and the server's traffic model is trained on this transformed data uploaded by clients. Consequently, the FTT problem defined in Eqs. 1 and 2 is reformulated to minimize the sum of the following losses:

$$\min_{\theta_{TP}} \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}(\theta_{TP}, D^{R_i \to S}, D^S), \tag{3}$$

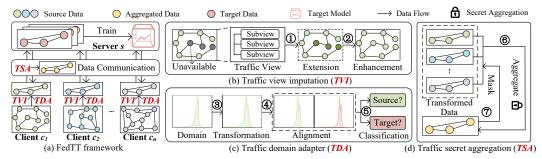
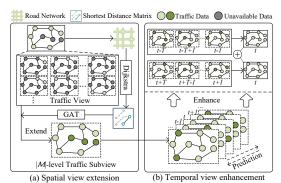


Figure 3: The architecture of the proposed FedTT framework

where $D^{R_i \to S}$ represents the traffic dataset whose domain is transformed from the source city R_i to the target city S. The overall process of FedTDP is as following. First, the TVI module captures spatial and temporal dependencies within the traffic data to extend and enhance the traffic view (①—②), as shown in Fig. 3(b). Then, the TDA module conducts traffic domain transformation and alignment for the source cities' data (③—④). Besides, the module performs traffic domain classification to categorize the traffic data domain (⑤), as shown in Fig. 3(c). Finally, the TSA module employs the proposed traffic secret aggregation method to securely mask and aggregate the transformed data from source cities (⑥—⑦), as shown in Fig. 3(d). The target of our FedTT is to transfer traffic knowledge across cities while preserving privacy, handling data discrepancies and low data quality challenges.

3.1 Traffic View Imputation

Design Motivation. Existing federated traffic transfer methods often overlook the challenges associated with low-quality traffic data, especially when missing data is prevalent, thereby significantly undermining the performance of traffic knowledge transfer models. Although some data augmentation methods [8, 48, 73] can be leveraged for imputation, they fail to effectively capture the spatio-temporal dependencies of data, leading to suboptimal accuracy. In contrast, we propose the Traffic View Imputation (TVI) method to enhance traffic data quality by completing missing traffic data through a com-



completing missing traffic data through a comprehensive exploration of the spatial and temporal dependencies inherent in traffic data:

$$\{X_1, X_2, \dots; \mathcal{G}\} \xrightarrow{\theta_{TM}} \{\widetilde{X}_1, \widetilde{X}_2, \dots\},$$
 (4)

where θ_{TVI} is the TVI model consisting of a spatial view extension model θ_{SV} and a temporal view enhancement model θ_{TV} . Besides, \widetilde{X}_t is the imputed traffic data of all sensors. In addition, the traffic view represents the traffic data of all sensors at a certain time, as defined below.

Definition 4 (Traffic View). A traffic view is the snapshot of traffic data of sensors \mathcal{M} at time t, consisting of a set of multi-level traffic subviews, denoted as $V_t = \{v_t^1, v_t^2, \dots v_t^{|M_t|}\}$, where i-level traffic subview v_t^i is a set of traffic data of i sensors at time t.

i) **Spatial View Extension.** In the first stage, TVI extends the $|\mathcal{M}|$ -level traffic subview at time t:

$$\{v_t^1, v_t^2, \dots v_t^{|M_t|}; \mathcal{G}\} \xrightarrow{\theta_{SV}} sv_t^{|\mathcal{M}|},$$
 (5)

where θ_{SV} denotes the spatial view extension model and $sv_t^{|\mathcal{M}|}$ represents the extended $|\mathcal{M}|$ -level traffic subview at time t. As shown in Fig. 4(a), it first computes the shortest distance matrix $\mathcal{A} = \{A_1, A_2, \ldots, A_{|\mathcal{M}|}\}$, where A_i represents the shortest distance tensor of sensor m_i to other sensors. This is computed using Dijkstra's algorithm [14] with the weighted adjacency matrix A. Next, the feature of each sensor is computed, i.e., $h_i = \theta_{GAT}(A_i)$, where h_i represents the K-head feature of sensor m_i with F_2 feature dimensions, and θ_{GAT} is the Graph Attention Network (GAT) model [61] with K=8 and $F_2=128$. Additionally, the extension of multi-level traffic subviews is averaged to obtain the $|\mathcal{M}|$ -level traffic subview with a Multi-Layer Perception (MLP [54]) θ_E :

$$sv_t^{|\mathcal{M}|} = \frac{1}{|V_t|} \sum_{i=1}^{|V_t|} \frac{1}{|v_t^i|} \sum_{j=1}^{|v_t^i|} \theta_E(\frac{1}{i} \sum_{k=1}^i (H(v_t^i[j][k]) \cdot (v_t^i[j][k])^\top)), \tag{6}$$

where $v_t^i[j][k]$ represents the traffic data of the k-th sensor in the j-th combination within the i-level traffic subview at time t, and $H(v_t^i[j][k]) \in \mathbb{R}^{K \times F_2 \times 1}$ represents the multi-head feature of the sensor corresponding to $v_t^i[j][k]$. Finally, it computes the loss of available sensors to train the θ_{SV} model:

$$\min_{\theta_{SV}} \mathcal{L}(\theta_{SV}, \mathcal{V}_{SV}) = \min_{\theta_{SV}} \frac{1}{|\mathcal{V}_{SV}|} \sum_{t=1}^{|\mathcal{V}_{SV}|} \frac{1}{|M_t|} (sv_t^{|M_t|} - X_t), \tag{7}$$

where $\mathcal{V}_{SV} = \{sv_1^{|\mathcal{M}|}, sv_2^{|\mathcal{M}|}, \ldots\}$ is the set of extended traffic subviews at different times, and $sv_t^{|\mathcal{M}_t|}$ is the predicted traffic data of available sensors at time t.

ii) **Temporal View Enhancement.** As shown in Fig. 4(b), in the second stage, TVI enhances the $|\mathcal{M}|$ -level traffic subview based on the preceding/succeeding $T |\mathcal{M}|$ -level traffic subviews:

$$\begin{cases}
sv_{t-T}^{|\mathcal{M}|}, sv_{t-T+1}^{|\mathcal{M}|}, \dots, sv_{t-1}^{|\mathcal{M}|} \end{cases} \xrightarrow{\theta_{TV}} tv_t^{|\mathcal{M}|}, \\
sv_{t+T}^{|\mathcal{M}|}, sv_{t+T-1}^{|\mathcal{M}|}, \dots, sv_{t+1}^{|\mathcal{M}|} \end{cases} \xrightarrow{\theta_{TV}} tv_t^{|\mathcal{M}|}, \tag{8}$$

where $tv_t^{|\mathcal{M}|}$ represents the enhanced $|\mathcal{M}|$ -level traffic subview, whose final value is the average of the above two results. Besides, θ_{TV} is the temporal view enhancement model, which employs the SOTA DyHSL traffic model [80]. Then, it computes the loss of available sensors to train the θ_{TV} model:

$$\min_{\theta_{TV}} \mathcal{L}(\theta_{TV}, V^{|\mathcal{M}|}) = \min_{\theta_{TV}} \frac{1}{|V^{|\mathcal{M}|}|} \sum_{t=1}^{|V^{|\mathcal{M}|}|} \frac{1}{|M_t|} (t v_t^{|M_t|} - X_t), \tag{9}$$

where $\mathcal{V}_{TV} = \{ v_1^{|\mathcal{M}|}, v_2^{|\mathcal{M}|}, \ldots \}$ represents the set of enhanced traffic subviews and $v_t^{|M_t|}$ is the predicted traffic data of the available sensors at time t. Finally, we get the predicted traffic data of all $|\mathcal{M}|$ sensors $\widetilde{X}_t = v_t^{|\mathcal{M}|}$. Note that the training of the TVI model is completed before the training of the FedTT framework, as it only needs to be conducted within each city.

3.2 Traffic Domain Adapter

Design Motivation. None of the existing approaches consider traffic data distribution discrepancies between the source and target cities in FTT, which decreases the effectiveness of traffic knowledge transfer. Motivated by this, to reduce the impact of traffic data distribution discrepancies on model performance, we propose the Traffic Domain Adapter (TDA) module, as shown in Fig. 5. This module reduces traffic domain discrepancies by uniformly transforming data from the traffic domain of the source city ("source domain" for short) to the traffic domain of the target city ("target domain" for short):

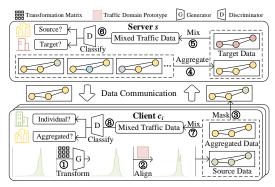


Figure 5: TDA and TSA modules

$$\{\widetilde{X}_1^R, \widetilde{X}_2^R, \ldots\} \xrightarrow{\theta_{TMA}} \{X_1^{R \to S}, X_2^{R \to S}, \ldots\},\tag{10}$$

where $X_t^{R \to S}$ is the transformed data of $|\mathcal{M}^S|$ sensors, and θ_{TDA} is a generative adversarial network [62] consisting of a generator model θ_{Gen} and a discriminator model θ_{Dis} .

i) **Traffic Domain Transformation.** In the first step, TDA uses the generator model, road network, and traffic domain prototype to transform the traffic data from the source domain to the target domain, as shown in Fig. 5 (①), where the traffic domain prototype is the representative traffic sample that can reflect the main feature of traffic data in the domain, as formally defined below.

Definition 5 (Traffic Domain Prototype). Given the traffic data $\mathcal{X} = \{X_1, X_2, \ldots\}$ in a traffic domain, a traffic domain prototype \mathcal{P} is the central traffic data, which is computed as the averaged value of all traffic data, i.e., $\mathcal{P} = \frac{1}{|\mathcal{X}|} \sum_{t=1}^{|\mathcal{X}|} X_t$.

First, it computes the transformation matrix $A_{\mathcal{G}}$ of the road network through $(A_{\mathcal{G}})^{\top} \cdot \mathcal{G}^R \cdot A_{\mathcal{G}} = \mathcal{G}^S$, where $A_{\mathcal{G}}$ can learn the road network information of the source and target cities, which is computed by the gradient descent method [53]. Similarly, it then computes the transformation matrix $A_{\mathcal{P}}$ of the traffic domain prototype through $A_{\mathcal{P}} \cdot \mathcal{P}^R = \mathcal{P}^S$, where \mathcal{P}^R and \mathcal{P}^S are traffic domain prototypes of

the source and target cities, respectively. Here, $A_{\mathcal{P}}$ can learn the traffic domain prototype information of the source and target cities, which is computed by the gradient descent method. Then, the generator model leverages $A_{\mathcal{G}}$ and $A_{\mathcal{P}}$ to transform the traffic data using MLP models $\theta_{\mathcal{G}}$, $\theta_{\mathcal{P}}$, and θ_{X} :

$$X_t^{R \to S} = \theta_{\mathcal{G}}(A_{\mathcal{G}} \cdot \widetilde{X}_t^R) + \theta_{\mathcal{P}}(A_{\mathcal{P}} \cdot \widetilde{X}_t^R) + \theta_X(\widetilde{X}_t^R), \tag{11}$$

ii) **Traffic Domain Alignment.** In the second step, TDA trains the generator model θ_{Gen} , as shown in Fig. 5 (2). Specifically, it aligns the transformed data $\mathcal{X}^{R \to S} = \{X_1^{R \to S}, X_2^{R \to S}, \ldots\}$ of the source city with the traffic domain prototype \mathcal{P}^S of the target city S, as described below:

$$\min_{\theta_{Gen}} \mathcal{L}(\theta_{Gen}, \mathcal{X}^{R \to S}) = \min_{\theta_{Gen}} \frac{1}{|\mathcal{X}^{R \to S}|} \sum_{t=1}^{|\mathcal{X}^{R \to S}|} \frac{1}{|\mathcal{M}^{S}|} (X_t^{R \to S} - \mathcal{P}^S), \tag{12}$$

iii) **Traffic Domain Classification.** In the third step, TDA trains the discriminator model θ_{Dis} to classify the traffic data domain (\$-\$ shown in Fig. 5), as shown below:

$$\theta_{Dis}(X_t^{RS} \in \mathcal{X}^{RS}) = \begin{cases} P(X_t^{RS} \in \mathcal{X}^{R \to S}) \\ P(X_t^{RS} \in \mathcal{X}^S) \end{cases}, \tag{13}$$

where $\mathcal{X}^{RS} = \{X_1^{RS}, X_2^{RS}, \ldots\}$ is the traffic data mixed with the transformed data $\mathcal{X}^{R \to S}$ of the source city and the traffic data \mathcal{X}^S of the target city. Besides, discriminator model θ_{Dis} is a MLP model. Then, the training process of θ_{Dis} is shown below:

$$\min_{\theta_{Dis}} \mathcal{L}(\theta_{Dis}, \mathcal{X}^{RS}) = \min_{\theta_{Dis}} \frac{1}{|\mathcal{X}^{RS}|} \sum_{t=1}^{|\mathcal{X}^{RS}|} \begin{cases} -\log(P(X_t^{RS} \in \mathcal{X}^{R \to S})), & \text{if } X_t^{RS} \in \mathcal{X}^{R \to S} \\ -\log(P(X_t^{RS} \in \mathcal{X}^S)), & \text{if } X_t^{RS} \in \mathcal{X}^S \end{cases}$$
(14)

Next, we update the training process of the generator model θ_{Gen} in Eq. 12, as shown below:

$$\min_{\theta_{Gen}} \mathcal{L}(\theta_{Gen}, \theta_{Dis}, \mathcal{X}^{R \to S}, \mathcal{X}^{RS}) = \min_{\theta_{Gen}} \mathcal{L}(\theta_{Gen}, \mathcal{X}^{R \to S}) - \lambda_1 \mathcal{L}(\theta_{Dis}, \mathcal{X}^{RS}), \tag{15}$$

where λ_1 is the hyperparameter to control the trade-off between generator loss and discriminator loss.

3.3 Traffic Secret Aggregation

225

226

227

228

229

230

231

232

233

Design Motivation. Existing works upload gradients or models for aggregation in FTT, where attackers derive the traffic data through inference attacks [18, 67, 81]. Although techniques such as Homomorphic Encryption (HE) [52] and Differential Privacy (DP) [16] can be employed for secure aggregation, they come with notable trade-offs. Specifically, HE introduces significant computational and communication overheads, reducing training efficiency, while DP reduces the data utility, leading to lower model accuracy. In contrast, we design the Traffic Secret Aggregation (TSA) protocol that securely transmits and aggregates the transformed data from source cities to protect traffic data privacy without sacrificing the training efficiency or model accuracy, as shown in Fig. 5 (③—④).

Specifically, it first masks the r-th transformed data $R_i X_{(r)}^{R_i \to S}$ in the client c_i , as shown below:

$$X_{(r)}^{(\mathcal{R}\to S, R_i)} = \overline{X}_{(r-1)}^{\mathcal{R}\to S} + \frac{X_{(r)}^{R_i\to S} - X_{(r-1)}^{R_i\to S}}{r},$$
(16)

where $\overline{X}_{(r)}^{\mathcal{R} \to S}$ is r-th aggregated data. Besides, $X_{(r)}^{(\mathcal{R} \to S, R_i)}$ is the r-th mask data computed in the client c_i and transmitted to the server. Note that, when r=0, the client uses HE to encrypt its transformed data and transmitted the encrypted data to the server for initial aggregation. Then, the server computes the sum of mask data from all source cities, as shown below:

$$\sum_{i=1}^{n} X_{(r)}^{(\mathcal{R} \to S, R_i)} = n * \overline{X}_{(r-1)}^{\mathcal{R} \to S} + \frac{1}{n} * \sum_{i=1}^{n} X_{(r)}^{R_i \to S} - \frac{1}{n} * \sum_{i=1}^{n} X_{(r-1)}^{R_i \to S}$$

$$= n * \overline{X}_{(r-1)}^{\mathcal{R} \to S} + \overline{X}_{(r)}^{\mathcal{R} \to S} - \overline{X}_{(r-1)}^{\mathcal{R} \to S}$$

$$= (n-1) * \overline{X}_{(r-1)}^{\mathcal{R} \to S} + \overline{X}_{(r)}^{\mathcal{R} \to S}$$
(17)

Finally, the server gets the r-th aggregated data using the previous aggregated data, as shown below:

$$\overline{\mathcal{X}}_{(r)}^{\mathcal{R}\to S} = \sum_{i=1}^{n} \mathcal{X}_{(r)}^{(\mathcal{R}\to S, R_i)} - (n-1) * \overline{\mathcal{X}}_{(r-1)}^{\mathcal{R}\to S}$$
(18)

In this way, it ensures that only the aggregated data can be accessed without revealing the individual transformed data. Besides, the client c_i can train a local discriminator model $\theta_{Dis}^{R_i}$ to classify the aggregated data and individual transformed data (\mathbb{C} - \mathbb{S} shown in Fig. 5), as shown below:

$$\theta_{Dis}^{R_i}(X_t^{R_iS} \in \mathcal{X}^{R_iS}) = \begin{cases} P(X_t^{R_iS} \in \mathcal{X}^{R_i \to S}) \\ P(X_t^{R_iS} \in \overline{\mathcal{X}}^{R \to S}) \end{cases} , \tag{19}$$

where $\mathcal{X}^{R_iS} = \{X_1^{R_iS}, X_2^{R_iS}, \ldots\}$ is the traffic data mixed with the aggregated data $\overline{\mathcal{X}}^{\mathcal{R} \to S}$ and transformed data $\mathcal{X}^{R_i \to S}$. Besides, $\theta_{Dis}^{R_i}$ is a MLP model and its training process is shown below:

$$\min_{\theta_{Dis}^{R_i}} \mathcal{L}(\theta_{Dis}^{R_i}, \mathcal{X}^{R_iS}) = \min_{\theta_{Dis}^{R_i}} \frac{1}{|\mathcal{X}^{R_iS}|} \sum_{t=1}^{|\mathcal{X}^{R_iS}|} \begin{cases} -\log(P(X_t^{R_iS} \in \mathcal{X}^{R_i \to S})), & \text{if } X_t^{R_iS} \in \mathcal{X}^{R_i \to S} \\ -\log(P(X_t^{R_iS} \in \mathcal{X}^{R \to S})), & \text{if } X_t^{R_iS} \in \mathcal{X}^{R \to S} \end{cases}$$
(20)

Therefore, given the traffic data $\mathcal{X}^{\mathcal{R}S} = \{X_1^{\mathcal{R}S}, X_2^{\mathcal{R}S}, \ldots\}$ consisting of aggregated data $\overline{\mathcal{X}}^{\mathcal{R} \to S}$ and traffic data \mathcal{X}^S , the updated training process of the generator model θ_{Gen} in Eq. 15 is shown below:

$$\min_{\boldsymbol{\theta}_{C_{i}}^{R_{i}}} \mathcal{L}(\boldsymbol{\theta}_{Gen}^{R_{i}}, \mathcal{X}^{R_{i} \to S}) - \lambda_{1} \mathcal{L}(\boldsymbol{\theta}_{Dis}, \mathcal{X}^{\mathcal{R}S}) - \lambda_{2} \mathcal{L}(\boldsymbol{\theta}_{Dis}^{R_{i}}, \mathcal{X}^{R_{i}S}), \tag{21}$$

where $\theta_{Gen}^{R_i}$ and θ_{Dis} are the local generator model and global discriminator model in the client c_i and server s, respectively. Here, λ_1 and λ_2 are the hyperparameter to control the trade-off between generator loss and discriminator loss.

The overall training process and theoretical privacy analysis of FedTT are shown in **Appendix C**.

4 Experiment

Table 1: Statistics of evaluated datasets

Dataset	# instances	# sensors	Interval	City	Missing Rate
PeMSD4	16992	307	5 min	San Francisco	16.35%
PeMSD8	17856	170	5 min	San Bernardino	20.09%
FT-AED	1920	196	5 min	Nashville	4.59%
HK-Traffic	17856	411	5 min	Hong Kong	13.01%

Datasets. We use four traffic datasets to evaluate the proposed FedTT framework in experiments, which are widely used in traffic prediction tasks [80, 23, 24], as shown in Table 1. Specifically, PeMSD4 (**P4**) [3], PeMSD8 (**P8**) [3], FT-AED (**FT**) [12], and HK-Traffic (**HK**) [2] were collected in the San Francisco, San Bernardino, Nashville, and Hong Kong, respectively. Among them, three datasets are considered as three source cities, and one dataset serves as the target city, leading to four scenarios: (P8, FT, HK) \rightarrow P4, (P4, FT, HK) \rightarrow P8, (P4, P8, HK) \rightarrow FT, and (P4, P8, FT) \rightarrow HK. Besides, we select traffic flow, speed, and occupancy prediction tasks for experiments, which are also widely studied in the community [80, 23, 24]. In addition, we report the rate of missing traffic data in these datasets, which reveals varying levels of traffic data quality issues.

Baselines. We compare FedTT with (i) three SOTA methods in FTT including T-ISTGNN [49], pFedCTP [78], and 2MGTCN [75], (ii) three SOTA Multi-Source Traffic Knowledge Transfer methods (MTT) extended for the FTT problem including TPB [41], ST-GFSL [43], and DastNet [57], and (iii) three SOTA Single-Source Traffic Knowledge Transfer methods (STT) for the FTT problem including CityTrans [47], TransGTR [27], and MGAT [46]. In addition, we replace the TVI module of FedTT with three SOTA data imputation methods (LATC [8], GCASTN [48], and Nuhuo [73]) to evaluate its effects. More details about these baselines are provided in Appendix D.1.

Evaluation Metrics. We use Mean Absolute Error (MAE), Root Mean Square Error (RMSE), communication size (GB), and running time (minutes) to evaluate the utility in experiments. Besides, Mean Square Error (MSE) and Pearson Correlation Coefficient (PCC) between the reconstructed data and the ground truth data to measure the privacy-preserving ability of different methods.

Implementation. All baselines run under their optimal settings. Besides, we use 5% train data, 10% validation data, and 10% test data in the target city. In addition, the MLP model used in FedTT is three-layer with the GELU [21] activation and 1024 hidden dimensions. Moreover, all experiments are conducted with four nodes, one as a server and the other three nodes as clients, each equipped with two Intel Xeon CPU E5-2650 12-core processors and two NVIDIA GeForce RTX 3090.

Table 2: The overall performance comparison between different methods

Metric	Method	$(\mathbf{P8},\mathbf{FT},\mathbf{HK})\to\mathbf{P4}^1$		(P4,	$(P4, FT, HK) \rightarrow P8$			$(P4, P8, HK) \rightarrow FT$			$(P4, P8, FT) \rightarrow HK$		
menic		flow	speed	осс	flow	speed	осс	flow	speed	осс	flow	speed	occ
	2MGTCN	20.34	1.27	0.0077	16.39	1.09	0.0069	13.86	4.77	0.0355	8.49	1.38	0.0094
	pFedCTP	21.24	1.52	0.0079	17.06	1.22	0.0072	13.92	5.78	0.0415	9.22	1.22	0.0102
	T-ISTGNN	27.24	2.03	0.0219	22.75	1.84	0.0235	20.83	9.69	0.0571	9.98	4.24	0.0121
	TPB	21.06	1.28	0.0134	17.11	1.12	0.0081	13.03	3.59	0.0276	8.36	1.52	0.0092
MAE	ST-GFSL	23.05	1.47	0.0161	19.86	1.47	0.0159	18.00	5.25	0.0385	8.42	2.03	0.0101
WIAL	DastNet	26.89	1.54	0.0165	19.58	1.41	0.0134	15.44	4.62	0.0421	9.09	3.85	0.0135
	CityTrans	23.94	1.38	0.0119	18.51	1.18	0.0108	13.06	3.60	0.0359	8.78	1.84	0.0116
	TransGTR	24.32	1.39	0.0135	19.53	1.18	0.0089	13.27	4.80	0.0337	9.09	3.92	0.0102
	MGAT	24.78	1.58	0.0195	20.16	1.67	0.0160	20.08	8.00	0.0469	9.14	2.88	0.0101
	FedTT	16.69	1.03	0.0061	14.11	0.94	0.0059	12.10	3.24	0.0249	7.42	1.05	0.0087
	2MGTCN	31.61	2.27	0.0179	25.95	2.18	0.0131	17.03	7.49	0.0644	12.11	3.25	0.00167
	pFedCTP	33.03	3.12	0.0188	26.19	2.62	0.0164	19.94	9.84	0.0756	13.31	2.62	0.0212
	T-ISTGNN	35.95	4.14	0.0281	31.10	3.37	0.0305	29.42	13.17	0.1127	15.68	6.31	0.0230
	TPB	31.75	2.31	0.0201	26.35	2.19	0.0126	16.34	6.07	0.0493	11.89	2.98	0.0152
RMSE	ST-GFSL	33.65	3.29	0.0237	30.66	3.12	0.0260	22.10	9.69	0.0652	12.89	4.73	0.0156
KWISE	DastNet	34.96	3.41	0.0274	27.45	3.10	0.0299	22.64	9.72	0.0691	13.63	5.82	0.0236
	CityTrans	32.04	2.46	0.0237	27.91	2.20	0.0226	18.86	9.82	0.0514	13.45	4.72	0.0212
	TransGTR	33.66	2.43	0.0198	26.41	2.27	0.0147	17.11	7.96	0.0579	12.23	6.77	0.0180
	MGAT	32.85	3.43	0.0283	30.77	3.20	0.0262	24.62	11.05	0.1028	12.03	5.11	0.0162
	FedTT	27.48	1.93	0.0166	24.29	1.94	0.0099	15.91	5.50	0.0372	8.57	2.40	0.0145

¹ P4, P8, FT, and HK denote PeMSD4, PeMSD8, FT-AED, and HK-Traffic datasets, respectively.

4.1 Overall Performance

To show the overall performance of different methods on traffic flow, speed, and occupancy ("occ" for short) predictions tasks, we take 60 minutes (12-time steps) of historical data as input and output the traffic prediction in the next 15 minutes (3-time steps), as shown in Table 2, where the best results are shown in blue. Here, the DyHSL [80] model is implemented in FedTT as it achieves the state-of-the-art performance in the centralized traffic model. As observed, the proposed FedTT framework achieves the best performance on different traffic datasets and traffic prediction tasks compared to other methods, showing its effectiveness of traffic knowledge transfer in the FTT problem, i.e., the gains range from 5.43% to 75.24% in MAE and 2.63% to 67.54% in RMSE.

4.2 Privacy Protection Study

To evaluate the privacy-preserving capabilities, we conduct the data reconstruction attack to different methods across datasets on traffic flow prediction using MSE and PCC, as illustrated in Fig. 6. As observed, FedTT demonstrates robust resistance to the data reconstruction attack, achieving a high MSE and maintaining a PCC within 2.17% to 8.81%, not exceeding 10%, while other methods exhibit weaker defenses, with a lower MSE and PCC larger than 40%.

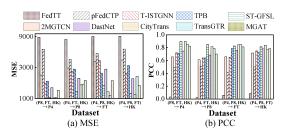


Figure 6: Privacy protection study

These findings underscore the superiority and effectiveness of privacy protection provided by the proposed FedTT framework in FTT and highlight the limitations of privacy preservation mechanisms based solely on traditional federated learning frameworks.

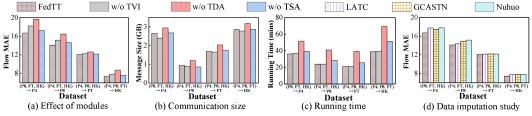


Figure 7: Ablation study of FedTT

4.3 Ablation Study

Fig. 7 shows the ablation study, where we removed the module of FedTT one at a time, namely FedTT without TVI (w/o TVI), FedTT without TDA (w/o TDA), and FedTT without TSA (w/o TSA). First, when TVI is absent, MAE increases by **1.49% to 9.23%**, underscoring its pivotal role as an effective way to complete the missing data. Besides, the training of TVI is completed before the FedTT's training as it only needs to be conducted within each source city, thus not increasing communication

overhead or running time during FedTT's training. Additionally, compared to other data imputation methods (i.e., LATC, GCASTN, and Nuhuo), FedTT with TVI achieves better performance, showing its effectiveness in the traffic data completion. Second, when TDA is removed, MAE increases by 4.46% to 17.86%, which demonstrates its effectiveness in addressing traffic data distribution differences. Besides, communication overhead and running time of FedTT slightly increase compared to w/o TDA. Third, MAE of FedTT decreases **0.66% to 3.76%** compared to w/o TSA as TSA uses the averaged source data, which reduces the influence of source city's traffic patterns on the target city's model training. Besides, the communication overhead and running time of FedTT compared to w/o TSA do not change as TSA is a lightweight module for federated secure aggregation.

4.4 Long-Term Traffic Prediction

To evaluate long-term traffic prediction capabilities, we illustrate the performance of different methods over the next 60 minutes (12 time steps) for traffic flow and speed prediction using MAE, as shown in Fig. 8. As observed, FedTT outperforms all other methods, i.e., the gains range from 5.03% to 64.41%, showing its effectiveness of long-term traffic prediction in FTT. Therefore, the proposed FedTT framework demonstrates strong performance in both

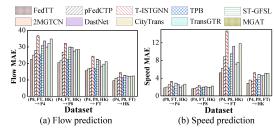


Figure 8: Long-term traffic prediction

long-term and short-term traffic prediction (i.e., Table 2), underscoring its general advantages in FTT.

4.5 Model Scalability

To validate the model scalability, we show the traffic flow and speed prediction performance of different methods across different sizes of training data in the target city, ranging from 5% to 40% in the (P8, FT, HK) → P4 scenario using MAE, as shown in Fig. 9. As observed, the FedTT framework consistently achieves the best performance in different-scale datasets with 7.22% to 49.26% MAE less than other methods, indicating its superior scalability in FTT.

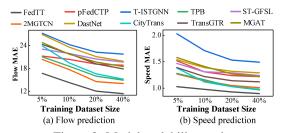


Figure 9: Model scalability study

Besides, as the size of the training data increases, all methods exhibit improved performance. This is because more training data enhances the model learning capability on the target city's traffic pattern.

4.6 More Experiments

We conduct more experiments to comprehensive evaluate FedTT, in terms of model adaptability, efficiency, hyperparameter sensitivity, and case study: i) **Appendix D.2** demonstrates the performance when extending different centralized traffic models to FedTT and the two-stage transfer of existing methods in FTT, where FedTT achieves 5.13% to 64.65% lower MAE in all models. ii) **Appendix D.3** shows the efficiency of different methods, where FedTT reduces communication overhead by 90% and running time by 1 to 2 orders of magnitude compared to all baselines. iii) **Appendix D.4** shows the FedTT's performance with different hyperparameter settings, where $\lambda_1 = 0.7$ and $\lambda_2 = 0.4$ are optimum values. iv) **Appendix D.5** showcases FedTT's practical efficacy in a real-world scenario.

Conclusion and Limitations

In this paper, we propose FedTT, a privacy-aware and efficient federated learning framework for crosscity traffic knowledge transfer. It includes a traffic view imputation method to enhance data quality, a traffic domain adapter to address data distribution discrepancies, and a traffic secret aggregation protocol to safeguard data privacy. Experiments using 4 datasets demonstrate its superiority. Our work has several limitations that warrant further exploration. First, we have not addressed grid-based scenarios, which could be an important direction for future research. Besides, while our study primarily focuses on traffic prediction tasks, extending the framework to support more spatio-temporal prediction tasks remains an open opportunity. In addition, we have not systematically evaluated the impact of varying the number of source cities on the performance of traffic knowledge transfer, which could provide additional insights into the scalability of the proposed framework.

360 References

- 361 [1] Long range transportation plan. https://dot.sd.gov/media/documents/FinalSDLRTP.
 362 pdf, 2021.
- 263 [2] Traffic data of strategic / major roads. https://data.gov.hk/en-data/dataset/ 264 hk-td-sm_4-traffic-data-strategic-major-roads, 2024.
- 365 [3] Caltrans pems. https://pems.dot.ca.gov/, 2024.
- 366 [4] California consumer privacy act (ccpa). https://oag.ca.gov/privacy/ccpa, 2025.
- [5] General data protection regulation (gdpr). https://gdpr-info.eu, 2025.
- [6] Akin, M., Canbay, Y., and Sagiroglu, S. A novel geo-independent and privacy-preserved traffic
 speed prediction framework based on deep learning for intelligent transportation systems. *J. Supercomput.*, 81(4):511, 2025.
- [7] Chen, T., Bai, X., Zhao, J., Wang, H., Du, B., Li, L., and Zhang, S. Shieldtse: A privacy-enhanced split federated learning framework for traffic state estimation in iov. *IEEE Internet Things J.*, 11(22):37324–37339, 2024.
- [8] Chen, X., Tian, J., Beaver, I., Freeman, C., Yan, Y., Wang, J., and Tao, D. Fcbench: Cross-domain benchmarking of lossless compression for floating-point data. *Proc. VLDB Endow.*, 17 (6):1418–1431, 2024.
- [9] Chen, Y., Gu, J., Zhuang, F., Lu, X., and Sun, M. Exploiting hierarchical correlations for cross-city cross-mode traffic flow prediction. In *ICDM*, pp. 891–896, 2022.
- 179 [10] Cho, K., van Merrienboer, B., Gülçehre, Ç., Bahdanau, D., Bougares, F., Schwenk, H., and Bengio, Y. Learning phrase representations using RNN encoder-decoder for statistical machine translation. In *EMNLP*, pp. 1724–1734, 2014.
- ³⁸² [11] Chung, J., Gülçehre, Ç., Cho, K., and Bengio, Y. Empirical evaluation of gated recurrent neural networks on sequence modeling. *CoRR*, abs/1412.3555, 2014.
- [12] Coursey, A., Ji, J., Quiñones-Grueiro, M., Barbour, W., Zhang, Y., Derr, T., Biswas, G., and
 Work, D. B. FT-AED: benchmark dataset for early freeway traffic anomalous event detection.
 CoRR, abs/2406.15283, 2024.
- ³⁸⁷ [13] Di, S., Shen, Y., and Chen, L. Relation extraction via domain-aware transfer learning. In *KDD*, pp. 1348–1357, 2019.
- [14] Dijkstra, E. W. A note on two problems in connexion with graphs. In *Edsger Wybe Dijkstra*,
 volume 45, pp. 287–290. 2022.
- [15] Dong, W., Chen, Z., Luo, Q., Shi, E., and Yi, K. Continual observation of joins under differential
 privacy. *Proc. ACM Manag. Data*, 2(3):128, 2024.
- [16] Dwork, C., McSherry, F., Nissim, K., and Smith, A. D. Calibrating noise to sensitivity in private data analysis. In *TCC*, volume 3876, pp. 265–284, 2006.
- Fang, Z., Wu, D., Pan, L., Chen, L., and Gao, Y. When transfer learning meets cross-city urban flow prediction: Spatio-temporal adaptation matters. In *IJCAI*, pp. 2030–2036, 2022.
- [18] Gao, K., Zhu, T., Ye, D., and Zhou, W. Defending against gradient inversion attacks in federated
 learning via statistical machine unlearning. *Knowl. Based Syst.*, 299:111983, 2024.
- [19] Gers, F. A., Schmidhuber, J., and Cummins, F. A. Learning to forget: Continual prediction with LSTM. *Neural Comput.*, 12(10):2451–2471, 2000.
- [20] Gu, B., Dang, Z., Li, X., and Huang, H. Federated doubly stochastic kernel learning for vertically partitioned data. In *KDD*, pp. 2483–2493, 2020.
- 403 [21] Hendrycks, D. and Gimpel, K. Gaussian error linear units (gelus). *arXiv preprint* 404 *arXiv:1606.08415*, 2016.

- Huang, Y., Song, X., Zhu, Y., Zhang, S., and Yu, J. J. Q. Traffic prediction with transfer learning:
 A mutual information-based approach. *IEEE Trans. Intell. Transp. Syst.*, 24(8):8236–8252,
 2023.
- 408 [23] Ji, J., Wang, J., Huang, C., Wu, J., Xu, B., Wu, Z., Zhang, J., and Zheng, Y. Spatio-temporal self-supervised learning for traffic flow prediction. In *AAAI*, pp. 4356–4364, 2023.
- [24] Jiang, J., Han, C., Zhao, W. X., and Wang, J. Pdformer: Propagation delay-aware dynamic
 long-range transformer for traffic flow prediction. In *AAAI*, pp. 4365–4373, 2023.
- [25] Jin, G., Liang, Y., Fang, Y., Shao, Z., Huang, J., Zhang, J., and Zheng, Y. Spatio-temporal graph
 neural networks for predictive learning in urban computing: A survey. *IEEE Trans. Knowl.* Data Eng., 36(10):5388–5408, 2024.
- ⁴¹⁵ [26] Jin, Y., Chen, K., and Yang, Q. Selective cross-city transfer learning for traffic prediction via source city region re-weighting. In *KDD*, pp. 731–741, 2022.
- ⁴¹⁷ [27] Jin, Y., Chen, K., and Yang, Q. Transferable graph structure learning for graph-based traffic forecasting across cities. In *KDD*, pp. 1032–1043, 2023.
- [28] Kim, S., Lee, S. Y., Gao, Y., Antelmi, A., Polato, M., and Shin, K. A survey on hypergraph neural networks: An in-depth and step-by-step guide. In *KDD*, pp. 6534–6544, 2024.
- 421 [29] Kipf, T. N. and Welling, M. Semi-supervised classification with graph convolutional networks.
 422 In *ICLR*, 2017.
- [30] Kreer, J. G. A question of terminology. IRE Trans. Inf. Theory, 3(3):208, 1957.
- [31] Lai, Q., Tian, J., Wang, W., and Hu, X. Spatial-temporal attention graph convolution network
 on edge cloud for traffic flow prediction. *IEEE Trans. Intell. Transp. Syst.*, 24(4):4565–4576,
 2023.
- 427 [32] LeCun, Y., Boser, B. E., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W. E., and
 428 Jackel, L. D. Backpropagation applied to handwritten zip code recognition. *Neural Comput.*, 1
 429 (4):541–551, 1989.
- 430 [33] LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-based learning applied to document recognition. *Proc. IEEE*, 86(11):2278–2324, 1998.
- [34] Li, C. and Liu, W. Multimodal transport demand forecasting via federated learning. *IEEE Trans. Intell. Transp. Syst.*, 25(5):4009–4020, 2024.
- Li, M., Tang, Y., and Ma, W. Few-sample traffic prediction with graph networks using locale as relational inductive biases. *IEEE Trans. Intell. Transp. Syst.*, 24(2):1894–1908, 2023.
- Lin, B. Y., Xu, F. F., Liao, E. Q., and Zhu, K. Q. Transfer learning for traffic speed prediction:
 A preliminary study. In *AAAI*, volume WS-18, pp. 174–177, 2018.
- 438 [37] Liu, B., Ma, Y., Zhou, Z., Shi, Y., Li, S., and Tong, Y. CASA: clustered federated learning with asynchronous clients. In *KDD*, pp. 1851–1862, 2024.
- [38] Liu, Q., Sun, S., Liu, M., Wang, Y., and Gao, B. Online spatio-temporal correlation-based
 federated learning for traffic flow forecasting. *IEEE Trans. Intell. Transp. Syst.*, 25(10):13027–13039, 2024.
- [39] Liu, Y., Zhang, S., Zhang, C., and Yu, J. J. Q. Fedgru: Privacy-preserving traffic flow prediction
 via federated learning. In *ITSC*, pp. 1–6, 2020.
- [40] Liu, Y., Guo, B., Zhang, D., Zeghlache, D., Chen, J., Zhang, S., Zhou, D., Shi, X., and Yu, Z.
 Metastore: A task-adaptative meta-learning model for optimal store placement with multi-city knowledge transfer. ACM Trans. Intell. Syst. Technol., 12(3):28:1–28:23, 2021.
- ⁴⁴⁸ [41] Liu, Z., Zheng, G., and Yu, Y. Cross-city few-shot traffic forecasting via traffic pattern bank. In *CIKM*, pp. 1451–1460, 2023.

- [42] Loder, A., Ambühl, L., Menendez, M., and Axhausen, K. W. Understanding traffic capacity of
 urban networks. *Scientific reports*, 9(1):16283, 2019.
- Lu, B., Gan, X., Zhang, W., Yao, H., Fu, L., and Wang, X. Spatio-temporal graph few-shot learning with cross-city knowledge transfer. In *KDD*, pp. 1162–1172, 2022.
- [44] Markov, A. A. Rasprostranenie zakona bol'shih chisel na velichiny, zavisyaschie drug ot druga.
 Izvestiya Fiziko-matematicheskogo obschestva pri Kazanskom universitete, 15(135-156):18,
 1906.
- 457 [45] Meng, C., Rambhatla, S., and Liu, Y. Cross-node federated graph neural network for spatio-458 temporal data modeling. In *KDD*, pp. 1202–1211, 2021.
- 459 [46] Mo, J. and Gong, Z. Cross-city multi-granular adaptive transfer learning for traffic flow prediction. *IEEE Trans. Knowl. Data Eng.*, 35(11):11246–11258, 2023.
- [47] Ouyang, X., Yang, Y., Zhou, W., Zhang, Y., Wang, H., and Huang, W. Citytrans: Domain adversarial training with knowledge transfer for spatio-temporal prediction across cities. *IEEE Trans. Knowl. Data Eng.*, 36(1):62–76, 2024.
- [48] Peng, W., Lin, Y., Guo, S., Tang, W., Liu, L., and Wan, H. Generative-contrastive-attentive
 spatial-temporal network for traffic data imputation. In *PAKDD*, volume 13938, pp. 45–56,
 2023.
- [49] Qi, Y., Wu, J., Bashir, A. K., Lin, X., Yang, W., and Alshehri, M. D. Privacy-preserving cross area traffic forecasting in ITS: A transferable spatial-temporal graph neural network approach.
 IEEE Trans. Intell. Transp. Syst., 24(12):15499–15512, 2023.
- 470 [50] Qin, H., Zhan, X., Li, Y., Yang, X., and Zheng, Y. Network-wide traffic states imputation using self-interested coalitional learning. In *KDD*, pp. 1370–1378, 2021.
- 472 [51] Qin, J., Jia, Y., Tong, Y., Chai, H., Ding, Y., Wang, X., Fang, B., and Liao, Q. Muse-net: Disentangling multi-periodicity for traffic flow forecasting. In *ICDE*, pp. 1282–1295, 2024.
- 474 [52] Rivest, R. L., Shamir, A., and Adleman, L. M. A method for obtaining digital signatures and public-key cryptosystems. *Commun. ACM*, 21(2):120–126, 1978.
- 476 [53] Robbins, H. and Monro, S. A stochastic approximation method. *The annals of mathematical* statistics, pp. 400–407, 1951.
- 478 [54] Rosenblatt, F. The perceptron: a probabilistic model for information storage and organization in the brain. *Psychological review*, 65(6):386, 1958.
- 480 [55] Rumelhart, D. E., Hinton, G. E., and Williams, R. J. Learning representations by back-481 propagating errors. *nature*, 323(6088):533–536, 1986.
- [56] Shannon, C. E. A mathematical theory of communication. *Bell Syst. Tech. J.*, 27(3):379–423,
 1948.
- Tang, Y., Qu, A., Chow, A. H. F., Lam, W. H. K., Wong, S. C., and Ma, W. Domain adversarial
 spatial-temporal network: A transferable framework for short-term traffic forecasting across
 cities. In *CIKM*, pp. 1905–1915, 2022.
- [58] Tawose, O. T., Dai, J., Yang, L., and Zhao, D. Toward efficient homomorphic encryption for outsourced databases through parallel caching. *Proc. ACM Manag. Data*, 1(1):66:1–66:23, 2023.
- Thirumuruganathan, S., Parambath, S. A. P., Ouzzani, M., Tang, N., and Joty, S. R. Reuse and adaptation for entity resolution through transfer learning. *CoRR*, abs/1809.11084, 2018.
- [60] Tong, Y., Zeng, Y., Song, Y., Pan, X., Fan, Z., Xue, C., Zhou, Z., Zhang, X., Chen, L., Xu, Y.,
 Xu, K., and Lv, W. Hu-fu: efficient and secure spatial queries over data federation. *VLDB J.*, 34
 (2):19, 2025.

- 495 [61] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., and Bengio, Y. Graph attention 496 networks. In *ICLR*, 2018.
- [62] Wang, H., Wang, J., Wang, J., Zhao, M., Zhang, W., Zhang, F., Xie, X., and Guo, M. Graphgan:
 Graph representation learning with generative adversarial nets. In AAAI, pp. 2508–2515, 2018.
- Wang, L., Geng, X., Ma, X., Liu, F., and Yang, Q. Cross-city transfer learning for deep spatio-temporal prediction. In *IJCAI*, pp. 1893–1899, 2019.
- [64] Wang, P., Liu, Y., Li, Z., and Li, R. An LDP compatible sketch for securely approximating set
 intersection cardinalities. *Proc. ACM Manag. Data*, 2(1):26:1–26:27, 2024.
- Wang, S., Miao, H., Li, J., and Cao, J. Spatio-temporal knowledge transfer for urban crowd flow prediction via deep attentive adaptation networks. *IEEE Trans. Intell. Transp. Syst.*, 23(5): 4695–4705, 2022.
- [66] Wang, Y., Tong, Y., Zhou, Z., Ren, Z., Xu, Y., Wu, G., and Lv, W. Fed-ltd: Towards cross-platform ride hailing via federated learning to dispatch. In *KDD*, pp. 4079–4089, 2022.
- 508 [67] Wang, Y., Liang, J., and He, R. Towards eliminating hard label constraints in gradient inversion attacks. In *ICLR*, 2024.
- [68] Wang, Y., Zeng, Y., Li, S., Zhang, Y., Zhou, Z., and Tong, Y. Efficient and private federated
 trajectory matching. *IEEE Trans. Knowl. Data Eng.*, 36(12):8079–8092, 2024.
- 512 [69] Xia, M., Jin, D., and Chen, J. Short-term traffic flow prediction based on graph convolutional networks and federated learning. *IEEE Trans. Intell. Transp. Syst.*, 24(1):1191–1203, 2023.
- 514 [70] Yang, L., Chen, W., He, X., Wei, S., Xu, Y., Zhou, Z., and Tong, Y. Fedgtp: Exploiting inter-515 client spatial dependency in federated graph-based traffic prediction. In *KDD*, pp. 6105–6116, 516 2024.
- 517 [71] Yao, H., Liu, Y., Wei, Y., Tang, X., and Li, Z. Learning from multiple cities: A meta-learning approach for spatial-temporal prediction. In *WWW*, pp. 2181–2191, 2019.
- 519 [72] Yao, Z., Xia, S., Li, Y., Wu, G., and Zuo, L. Transfer learning with spatial-temporal graph 520 convolutional network for traffic prediction. *IEEE Trans. Intell. Transp. Syst.*, 24(8):8592–8605, 521 2023.
- 522 [73] Yuan, H., Cong, G., and Li, G. Nuhuo: An effective estimation model for traffic speed histogram imputation on A road network. *Proc. VLDB Endow.*, 17(7):1605–1617, 2024.
- Yuan, X., Chen, J., Zhang, N., Zhu, C., Ye, Q., and Shen, X. S. Fedtse: Low-cost federated learning for privacy-preserved traffic state estimation in iov. In *INFOCOM*, pp. 1–6, 2022.
- Yuan, X., Luo, Z., Zhang, N., Guo, G., Wang, L., Li, C., and Niyato, D. Federated transfer learning for privacy-preserved cross-city traffic flow prediction. *IEEE Trans. Intell. Transp. Syst.*, 26(4):4418–4431, 2025.
- Zhang, X., Wang, Q., Xu, C., Peng, Y., and Xu, J. Fedknn: Secure federated k-nearest neighbor
 search. *Proc. ACM Manag. Data*, 2(1):V2mod011:1–V2mod011:26, 2024.
- Zhang, Y., Li, Y., Zhou, X., and Luo, J. Mest-gan: Cross-city urban traffic estimation with me
 ta spatial-temporal generative adversarial networks. In *ICDM*, pp. 733–742, 2022.
- ⁵³³ [78] Zhang, Y., Lu, H., Liu, N., Xu, Y., Li, Q., and Cui, L. Personalized federated learning for cross-city traffic prediction. In *IJCAI*, pp. 5526–5534, 2024.
- Zhao, J. C., Sharma, A., Elkordy, A. R., Ezzeldin, Y. H., Avestimehr, S., and Bagchi, S. Loki:
 Large-scale data reconstruction attack against federated learning through model manipulation.
 In SP, pp. 1287–1305, 2024.
- [80] Zhao, Y., Luo, X., Ju, W., Chen, C., Hua, X., and Zhang, M. Dynamic hypergraph structure
 learning for traffic flow forecasting. In *ICDE*, pp. 2303–2316, 2023.
- Zheng, L., Cao, Y., Jiang, R., Taura, K., Shen, Y., Li, S., and Yoshikawa, M. Enhancing privacy
 of spatiotemporal federated learning against gradient inversion attacks. In *DASFAA*, volume
 14850, pp. 457–473, 2024.

543 Appendix

Append	ix A Related Work	15
A.1	Traffic Prediction	15
A.2	Traffic Knowledge Transfer	15
Append	ix B Notations and Descriptions	16
Append	ix C Methodology Details	17
C.1	Federated Parallel Training	17
C.2	Training Process	17
C.3	Theoretical Privacy Analysis	19
Append	ix D Experimental Details	20
D.1	Baselines	20
D.2	Model Adaptability	21
D.3	Training Efficiency	21
D.4	Parameter Sensitivity Study	22
D 5	Case Study	22

545 Appendix

- In the subsequent sections, we present supplementary materials to provide more details of this paper, offering deeper insights and additional technical details for readers seeking further clarification. The appendix is organized as follows.
- In **Section A**, we present a systematic review of related work to help readers understand the key development in areas relevant to this paper, including traffic prediction and traffic knowledge transfer.
- In **Section B**, we summary the frequently used notations and descriptions for better understanding our work.
- In **Section C**, we provide the additional methodology details of our proposed FedTT framework, including (i) the federated parallel training strategy, (ii) the training process with training algorithm and complexity analysis, and (iii) the theoretical privacy analysis.
- In **Section D**, we describe the extensive experimental details to provide more information about experimental settings and further demonstrate the superiority performance of the proposed FedTT framework, including (i) compared baselines introduction, (ii) the details experimental results of model adaptability, efficiency, hyperparameter sensitivity, and case studies.

560 A Related Work

561 A.1 Traffic Prediction

Traffic prediction plays a critical role in the development of smart cities and has garnered significant 562 attention in the spatio-temporal data mining community. Currently, deep learning techniques [54] are 563 widely employed in traffic prediction tasks. Convolutional models, such as Convolutional Neural Networks (CNN) [33] and Graph Convolutional Networks (GCN) [29], are used to capture spatial correlations in traffic time-series data. Meanwhile, sequential models including Gated Recurrent Units (GRU) [11] and Long Short-Term Memory (LSTM) [19], are employed to extract temporal dependencies from the data. Several advanced models have achieved state-of-the-art performance. 568 For instance, ST-SSL [23] improves traffic pattern representation to account for spatial and temporal 569 heterogeneity through a self-supervised learning framework. DyHSL [80] leverages hypergraph 570 structure information to model the dynamics of a traffic network, updating the representation of each 571 node by aggregating messages from associated hyperedges. Additionally, PDFormer [24] introduces a 572 spatial self-attention module to capture dynamic spatial dependencies and a flow-delay-aware feature transformation module to model the time delays in spatial information propagation. Since this paper is not intended to propose another more complex prediction model, a detailed analysis of existing 575 traffic prediction models can be found in surveys [25, 28]. However, these models are centralized and 576 rely on traffic data uploads from sensors to a central server, which poses a risk of data leakage. 577

To address data privacy concerns, several traffic prediction studies [74, 31, 69, 34, 70, 38] in federated 578 environments have been proposed. Specifically, FedGRU [39] pioneers the integration of GRU into FL for TP tasks, employing federated averaging to aggregate models and a joint announcement protocol to enhance model scalability. Subsequently, CNFGNN [45] separates the modeling of temporal dynamics on the device from spatial dynamics on the server, using alternating optimizations to reduce communication costs and facilitate computation on edge devices. Moreover, FedGTP [70] promotes 583 the adaptive exploitation of inter-client spatial dependencies to enhance prediction performance while 584 ensuring data privacy. However, urban traffic data is often insufficient or unavailable, particularly 585 586 in emerging cities. Training traffic models in these data-scarce cities is prone to overfitting, which 587 undermines model performance and affects the accuracy of TP tasks. *In contrast, we aim to propose* a federated traffic prediction framework that efficiently transfers traffic knowledge from data-rich 588 cities to data-scarce cities, enhancing TP capabilities for the latter. 589

A.2 Traffic Knowledge Transfer

590

Transfer learning can enhance the traffic model capabilities of data-scarce target cities by transferring traffic knowledge from data-rich source cities in traffic prediction tasks. Existing studies can be broadly categorized into three types: Single-Source Traffic Knowledge Transfer (STT), Multi-

Source Traffic Knowledge Transfer (MTT), and Federated Traffic Knowledge Transfer (FTT), in chronological order from earliest to most recent.

First, STT [26, 17, 63, 36, 72, 22, 35, 9, 65] studies focus on transferring traffic knowledge from a 596 single source city to a target city. Specifically, TransGTR [27] jointly learns transferable structure 597 generators and forecasting models across cities to enhance prediction performance in data-scarce 598 target cities. Next, CityTrans [47] leverages adaptive spatio-temporal knowledge and domain-invariant 599 features for accurate traffic prediction in data-scarce cities. Additionally, MGAT [46] uses a meta-600 learning algorithm to extract multi-granular regional features from each source city to improve the 601 effectiveness of traffic knowledge transfer. However, the performance of these STT methods can be 602 significantly compromised when there are substantial differences in traffic data distribution between 603 the source and target cities. 604

Second, MTT [71, 40, 78, 77] studies the joint transfer of traffic knowledge from multiple source 605 cities to a target city, enabling the target city to acquire diverse traffic knowledge and enhancing the robustness of the trained traffic models. Specifically, TPB [41] uses a traffic patch encoder to 607 create a traffic pattern bank, which data-scarce cities query to establish relationships, aggregate 608 meta-knowledge, and construct adjacency matrices for future traffic prediction. Next, ST-GFSL [43] 609 transfers knowledge through parameter matching to retrieve similar spatio-temporal features and 610 defines graph reconstruction loss to guide structure-aware learning. Additionally, DastNet [57] 611 employs graph representation learning and domain adaptation techniques to create domain-invariant 612 embeddings for traffic data. However, these methods rely on centralized frameworks, which involves 613 sharing and exchanging traffic data across cities without considering traffic data privacy. 614

Third, the latest FTT studies, including T-ISTGNN [49], pFedCTP [78], and 2MGTCN [75], intend to 615 protect data privacy in cross-city traffic knowledge transfer. Specifically, T-ISTGNN [49] combines 616 privacy-preserving traffic knowledge transfer with inductive spatio-temporal GNNs for cross-region 617 traffic prediction. Besides, pFedCTP [78] employs personalized FL to decouple the ST-Net into 618 shared and private components, addressing the spatial and temporal heterogeneity. In addition, 619 2MGTCN [75] combines multi-modal GCNs and TCNs to capture spatial and temporal information and enhance adaptability across cities. However, they face challenges such as privacy leakage, data distribution discrepancies, low data quality, and high knowledge transfer overhead, making 622 them unsuitable for real-world applications, as shown in Fig 2. In contrast, we aim to propose a 623 privacy-preserving and efficient federated learning framework for cross-city traffic knowledge 624 transfer to address the challenges of privacy, effectiveness, robustness, and efficiency in FTT. 625

B Notations and Descriptions

We present the frequently used notations and descriptions in this paper, as listed in Table 3.

Table 3: Notations and descriptions

Notation	Description
m, \mathcal{M}	A sensor and a set of sensors $\{m_1, m_2, \ldots\}$
\mathcal{E}, A	A set of edges and the weighted adjacent matrix of edges
${\cal G}$	A road network $(\mathcal{M}, \mathcal{E}, A)$
t, r, tr	The time, r -th, and training round
M_t	A set of available sensors $\{m_i i \leq \mathcal{M} \}$ at time t
$X_t, X_{(r)}$	The traffic data at time t and the r -th traffic data
F_1	The dimension of the traffic data features
\mathcal{X}, D	A set of traffic data $\{X_1, X_2, \ldots\}$ and a traffic dataset $\{X_1, X_2, \ldots; \mathcal{G}\}$
c, s	A client and the server
R, S	A source city and the target city
n	The number of clients and source cities
\mathcal{C},\mathcal{R}	A set of clients $\{c_1, c_2, \dots, c_n\}$ and source cities $\{R_1, R_2, \dots, R_n\}$
$\theta, \mathcal{L}(\cdot)$	A model and a loss function
v_t^i, V_t	The <i>i</i> -level traffic subview and a traffic view $\{v_t^1, v_t^2, \ldots\}$ at time t
\mathcal{P}	A traffic domain prototype

628 C Methodology Details

636

640

644

629 C.1 Federated Parallel Training

To improve the training efficiency, FedTT introduces the federated parallel training strategy to reduce the data transmission and train the models in parallel.

i) Split Learning. To reduce the communication overhead and improve the training efficiency, it employs split learning [45] to decompose the sequential training process into the client and server training, and freeze the data required by the client and server. Specifically, the client c_i stores and freezes the data sent by the server for $\theta_{Gen}^{R_i}$ and $\theta_{Dis}^{R_i}$ training in Eqs. 21 and Eqs. 20, respectively:

$$\min_{\theta_{Gen}^{R_i}} \mathcal{L}(\theta_{Gen}^{R_i}, \mathcal{X}^{R_i \to S}) - \lambda_1 * Fr(\mathcal{L}(\theta_{Dis}, \mathcal{X}^{\mathcal{R}S})) - \lambda_2 \mathcal{L}(\theta_{Dis}^{R_i}, \mathcal{X}^{R_i S}),$$
(22)

 $\min_{\theta_{D_{is}}^{R_{i}}} \frac{1}{|\mathcal{X}^{R_{i}S}|} \sum_{t=1}^{|\mathcal{X}^{R_{i}S}|} \begin{cases} -\log(P(X_{t}^{R_{i}S} \in \mathcal{X}^{R_{i} \to S})), if X_{t}^{R_{i}S} \in \mathcal{X}^{R_{i} \to S} \\ -\log(P(X_{t}^{R_{i}S} \in \mathcal{X}^{R \to S})), if X_{t}^{R_{i}S} \in Fr(\mathcal{X}^{R \to S}) \end{cases} ,$ (23)

where $Fr(\cdot)$ is the frozen function and uses the historical cached data, which updates every 5 rounds.

Besides, the server s stores and freezes the data uploaded by the client to compute the aggregated data for θ_{Dis} and traffic model θ_{TP} training in Eqs. 14 and 3, respectively:

$$\min_{\theta_{Dis}} \frac{1}{|\mathcal{X}^{\mathcal{R}S}|} \sum_{t=1}^{|\mathcal{X}^{\mathcal{R}S}|} \begin{cases} -\log(P(X_t^{\mathcal{R}S} \in \mathcal{X}^{\mathcal{R} \to S})), & \text{if } X_t^{\mathcal{R}S} \in Fr(\mathcal{X}^{\mathcal{R} \to S}) \\ -\log(P(X_t^{\mathcal{R}S} \in \mathcal{X}^S)), & \text{if } X_t^{\mathcal{R}S} \in \mathcal{X}^S \end{cases},$$
(24)

$$\min_{\theta_{TP}} \mathcal{L}(\theta_{TP}, Fr(D^{\mathcal{R} \to S}), D^S)$$
 (25)

641 **ii) Parallel Optimization.** To further improve the training parallelism, it proposes parallel optimiza-642 tion to reduce data dependencies on the client and server. Specifically, the client c_i caches and freezes 643 the local data for $\theta_{Gen}^{R_i}$ and $\theta_{Dis}^{R_i}$ parallel training in Eqs 22 and 23, as shown below:

$$\min_{\theta_{Gen}^{R_i}} \mathcal{L}(\theta_{Gen}^{R_i}, \mathcal{X}^{R_i \to S}) - \lambda_1 * Fr(\mathcal{L}(\theta_{Dis}, \mathcal{X}^{\mathcal{R}S})) - \lambda_2 * Fr'(\mathcal{L}(\theta_{Dis}^{R_i}, \mathcal{X}^{R_i S})),$$
(26)

 $\min_{\theta_{Dis}^{R_i}} \frac{1}{|\mathcal{X}^{R_iS}|} \sum_{t=1}^{|\mathcal{X}^{R_iS}|} \begin{cases} -\log(P(X_t^{R_iS} \in \mathcal{X}^{R_i \to S})), if \ X_t^{R_iS} \in Fr'(\mathcal{X}^{R_i \to S}) \\ -\log(P(X_t^{R_iS} \in \mathcal{X}^{\mathcal{R} \to S})), if \ X_t^{R_iS} \in Fr(\mathcal{X}^{\mathcal{R} \to S}) \end{cases}, \tag{27}$

where $Fr'(\cdot)$ is the frozen function and uses the historical cached data, which updates each round.

646 C.2 Training Process

Before the training of the FedTT framework, clients (i.e., source cities) train the spatial view expansion model θ_{SV} and the temporal view expansion model θ_{TV} in the TVI module θ_{TVI} by minimizing the loss in Eqs. 7 and 9, as shown below:

$$\min_{\theta_{TVI}} \mathcal{L}(\theta_{TVI}, \mathcal{V}_{SV}, \mathcal{V}_{TV}) = \min_{\theta_{SV}} \mathcal{L}(\theta_{SV}, \mathcal{V}_{SV}) + \min_{\theta_{TV}} \mathcal{L}(\theta_{TV}, \mathcal{V}_{TV}),$$
(28)

where \mathcal{V}_{SV} and \mathcal{V}_{TV} are the set of traffic subviews at different times obtained by spatial view extension and temporal view enhancement, respectively. During the training of the FedTT framework, the client c_i trains the local generator model $\theta_{Gen}^{R_i}$ and the local discriminator model $\theta_{Dis}^{R_i}$ by minimizing the loss in Eqs. 20 and 21, as shown below:

$$\min_{\theta_{Gin}^{R_i}} \mathcal{L}(\theta_{Gen}^{R_i}, \theta_{Dis}, \theta_{Dis}^{R_i}, \mathcal{X}^{R_i \to S}, \mathcal{X}^{\mathcal{R}S}, \mathcal{X}^{R_i S}) + \min_{\theta_{Dis}^{R_i}} \mathcal{L}(\theta_{Dis}^{R_i}, \mathcal{X}^{R_i S}), \tag{29}$$

where $\mathcal{X}^{\mathcal{R}S}$ is the traffic data consisting of the aggregated data $\overline{\mathcal{X}}^{\mathcal{R}\to S}$ and traffic data \mathcal{X}^S of the target city S, and \mathcal{X}^{R_iS} is the traffic data consisting of the aggregated data $\overline{\mathcal{X}}^{\mathcal{R}\to S}$ and transformed data $\mathcal{X}^{R_i\to S}$ of the source city R_i . Besides, the server s trains the global discriminator model θ_{Dis} and traffic model θ_{TP} by minimizing the loss in Eqs. 14 and 3, as shown below:

$$\min_{\theta_{Dis}} \mathcal{L}(\theta_{Dis}, \mathcal{X}^{\mathcal{R}S}) + \min_{\theta_{TP}} \mathcal{L}(\theta_{TP}, \overline{D}^{\mathcal{R} \to S}, D^S), \tag{30}$$

where $\overline{D}^{\mathcal{R}\to S}$ is the aggregated traffic dataset whose traffic domain is transformed from source cities to the target city S, and D^S is the traffic dataset of the target city S.

Algorithm 1 The training of the FedTT framework in the client c_i

```
1: Input: the server s (i.e., the target city S).
  2: \widetilde{\mathcal{X}}^{R_i} \leftarrow Complete(\theta_{TVI}, \mathcal{X}^{R_i}) // Complete the missing data.
3: for each training round tr = 1, 2, \dots do
                     for each data X_{(r)}^{R_i} \in \widetilde{\mathcal{X}}^{R_i}, r=1,2,\ldots do X_{(r)}^{R_i \to S} \leftarrow Transform(\theta_{Gen}^{R_i}, X_{(r)}^{R_i}) \text{ // Transform the traffic data.} Classify(\theta_{Dis}^{R_i}, X_{(r)}^{R_i \to S}) \text{ // Classify the transformed data.} if tr=1 and r=1 then E_{(r)}^{R_i \to S} \leftarrow Encrypt(X_{(r)}^{R_i \to S}) \text{ // Encrypt the transformed data.} Send(s, E_{(r)}^{R_i \to S}) \text{ // Send the transformed data.}
  5:
  6:
  7:
  8:
  9:
10:
                                    if tr == 1 and r == 2 then \overline{E}_{(r-1)}^{\mathcal{R} \to S} \leftarrow \operatorname{Get}(s,r) // Get the encrypted aggregated data. \overline{X}_{(r-1)}^{\mathcal{R} \to S} \leftarrow \operatorname{Decrypt}(\overline{E}_{(r-1)}^{\mathcal{R} \to S}) // Decrypt the aggregated data.
11:
12:
13:
                                    eise \overline{X}_{(r-1)}^{\mathcal{R} \to S} \leftarrow \textit{Get}(s,r) // Get the aggregated data. end if
14:
15:
16:
                                     Classify (\theta_{Dis}^{R_i}, \overline{X}_{(r-1)}^{\mathcal{R} 	o S}) // Classify the aggregated data. X_{(r)}^{(\mathcal{R} 	o S, R_i)} \leftarrow \overline{X}_{(r-1)}^{\mathcal{R} 	o S} + X_{(r)}^{R_i 	o S} - X_{(r-1)}^{R_i 	o S} // Mask the transformed data.
17:
18:
                                      Send(s, X_{(r)}^{(\mathcal{R} \to S, R_i)}) // Send the mask data.
19:
20:
21:
                      end for
22: end for
```

Algorithm 2 The training of the FedTT framework in the server s

```
1: Input: clients C = \{c_1, c_2, \dots, c_n\} (i.e., source cities \mathcal{R} = \{R_1, R_2, \dots, R_n\}). 2: for each training round tr = 1, 2, \dots do
   3:
                       for r = 1, 2, ... do
                              if tr = 1 and r = 1 then \{E_{(r)}^{R_1 \to S}, E_{(r)}^{R_2 \to S}, \ldots\} \leftarrow Get(\mathcal{C}, r) // Get the encrypted data. \overline{E}_{(r)}^{\mathcal{R} \to S} \leftarrow \sum_{i=1}^n E_{(r)}^{R_i \to S} // Aggregate the encrypted data. Send(\mathcal{C}, \overline{E}_{(r)}^{\mathcal{R} \to S}) // Send the aggregated data.
   4:
   5:
   6:
   7:
   8:
                                      se \{X_{(r)}^{(\mathcal{R}\to S,\ R_1)},X_{(r)}^{(\mathcal{R}\to S,\ R_2)},\ldots\}\leftarrow \textit{Get}(\mathcal{C},r)\,\textit{//}\, \text{Get the mask data}. \overline{X}_{(r)}^{\mathcal{R}\to S}\leftarrow\sum_{i=1}^nX_{(r)}^{(\mathcal{R}\to S,R_i)}-(n-1)*\overline{X}_{(r-1)}^{\mathcal{R}\to S}\,\textit{//}\, \text{Aggregate the mask data}. \textit{Classify}(\theta_{\textit{Dis}},\overline{X}_{(r)}^{\mathcal{R}\to S})\,\textit{//}\, \text{Classify the aggregated data}. \textit{Send}(\mathcal{C},\overline{X}_{(r)}^{\mathcal{R}\to S})\,\textit{//}\, \text{Send the aggregated data}.
   9:
10:
11:
12:
                               end if
13:
                        end for
14:
                        Classify(\theta_{Dis}, \mathcal{X}^S) // Classify the local data.
15:
                       Prediction(\theta_{TP}, \overline{\mathcal{X}}^{\mathcal{R} \to S}, \mathcal{X}^S) // Perform traffic prediction.
16:
17: end for
```

Training Algorithm. For convenient method reproduction, we provide detailed training Algorithms 1 and 2 of the FedTT framework, including the client and server.

In the client (i.e., Algorithm 1), the target city acts as the server (line 1). Before the training process, the client completes the missing traffic data through the traffic view imputation method (line 2). During each training round and each traffic data (lines 3-4), it first transforms the data from the traffic domain of the source city to that of the target city (line 5) and classifies the transformed data using the local discriminator model(line 6). If the training process is in the first round using the first data instance (line 7), the client encrypts the transformed data using homomorphic encryption and sends it to the server (lines 8-9). Otherwise, if the training process is in the first round using the second data instance (lines 10-11), the client gets the encrypted data and decrypts it to get the previous aggregated data (lines 12-13). For subsequent rounds or data instance, the client directly gets the previous aggregated data from the server without decryption (lines 14-16). In either case, it classifies the previous aggregated data using its local discriminator model (line 17). Then it masks the transformed data using the previous aggregated and transformed data (line 18). Finally, it sends the mask data to the server for data aggregation (lines 19-22).

In the server (i.e., Algorithm 2), the source cities act as the clients (line 1). During each training round and each traffic data (lines 2–3), if the training process is in the first round using the first data instance (line 4), the server gets the encrypted data from clients (line 5). Then, it aggregates them by summing up, and send the aggregated encrypted data to back to the clients for further processing (lines 6-7). For subsequent rounds or data instances (line 8), the server gets the mask data from clients (line 9). Then, it aggregates the masked data using the previous aggregated data (line 10). Next, it classifies the aggregated data using its global discriminator model and sends the aggregated data back to the clients (lines 11–14). Finally, at the end of each training round, it classifies local traffic data and performs traffic prediction using the aggregated and local traffic data (lines 15–17).

Complexity Analysis. We also give the complete complexity analysis for the training of the FedTT framework, i.e., Algorithms 1 and 2. For the client (i.e., Algorithm 1), the training complexity is $O((|\mathcal{M}^{R_i}| + |\mathcal{M}^S|) \times (F_1 \times H)^2 \times |\mathcal{X}^{R_i}|)$ at each round. For the server (i.e., Algorithm 2), the training complexity is $O((|\mathcal{M}^S| \times (F_1 \times H)^2 + MC(\theta_{TP})) \times (|\mathcal{X}^S| + \sum_{i=1}^n |\mathcal{X}^{R_i}|))$ at each round. Here, $|\mathcal{M}^{R_i}|$ and $|\mathcal{M}^S|$ are the number of sensors in the source city R_i and target city S, respectively. Besides, $|\mathcal{X}^{R_i}|$ and $|\mathcal{X}^S|$ are the number of traffic data in the source city R_i and target city S, respectively. In addition, $F_1 = 3$ is the dimensions of traffic data features, and H = 1024 is the hidden dimensions of the three-layer MLP model in $\theta_{Gen}^{R_i}$ and $\theta_{Dis}^{R_i}$. Moreover, $MC(\theta_{TP})$ is the model complexity of θ_{TP} (i.e., θ_{DVHSL}).

C.3 Theoretical Privacy Analysis

The privacy protection mechanism of the proposed FedTT framework comprises two stages. First, it uses the Traffic Domain Adapter (TDA) to transform the data from the traffic domain of source cities to that of the target city, where the parameters of the TDA model are private and not shared with the server and other clients. Second, it performs Traffic Secret Aggregation (TSA) to secure mask and aggregate the transformed data. Consequently, an attacker must first reverse-engineer the transformed data from the aggregated data and then infer the original traffic data from the transformed data. To rigorously analyze the privacy-preserving capability of these two stages, we first define the threat model as follows.

Threat Model. Following previous works [76, 60, 79] in federated learning scenarios, we assume that the server acts as a semi-honest adversary who will honestly execute the required operations (e.g., aggregation) but also remains curious about the private data in clients. In the FTT problem, the server may perform inference attacks to infer the raw instance-level traffic data of clients based on the adversary knowledge, including the client model architecture, privacy-preserving mechanism, and the intermediate data (e.g., model parameters or training gradients) uploaded by clients.

708 Based on this, we analyze the privacy leakage of FedTT using mutual information [30] as follows.

Privacy Protection in Traffic Domain Adapter. Given the transformed data $\mathcal{X}^{R_i \to S}$ of the source city R_i , the attacker aims to infer the original traffic data \mathcal{X}^{R_i} , where $\mathcal{X}^{R_i \to S}$ is derived from \mathcal{X}^{R_i} in Eq.10 as shown below:

$$\mathcal{X}^{R_i} \xrightarrow{\theta_{TDA}} \mathcal{X}^{R_i \to S},$$
 (31)

where the TDA model θ_{TDA} is private and inaccessible. Since this process represents a deterministic mapping, the privacy leakage can be quantified as:

$$I(\mathcal{X}^{R_i}; \mathcal{X}^{R_i \to S}) = H(\mathcal{X}^{R_i \to S}) - H(\mathcal{X}^{R_i \to S} | \mathcal{X}^{R_i}) = H(\mathcal{X}^{R_i \to S}), \tag{32}$$

where $H(\cdot)$ denotes entropy and $H(\mathcal{X}^{R_i \to S} | \mathcal{X}^{R_i}) = 0$ due to the nature of deterministic mapping. Since $\mathcal{X}^{R_i \to S}$ is derived from \mathcal{X}^{R_i} through the private TDA model θ_{TDA} , the amount of privacy leakage can be further expressed as follows:

$$I(\mathcal{X}^{R_{i}}; \mathcal{X}^{R_{i} \to S}) \leq I(\mathcal{X}^{R_{i}}; \mathcal{X}^{R_{i} \to S}, \theta_{TDA})$$

$$= I(\mathcal{X}^{R_{i}}; \theta_{TDA}) + I(\mathcal{X}^{R_{i}}; \mathcal{X}^{R_{i} \to S} | \theta_{TDA})$$

$$= H(\mathcal{X}^{R_{i} \to S} | \theta_{TDA}) \propto \frac{|\mathcal{M}^{R_{i}}|}{|\theta_{TDA}| * |\mathcal{M}^{S}|},$$
(33)

where $|\theta_{TDA}|$ is the parameter space of the TDA model. As θ_{TDA} aligns the distribution of $\mathcal{X}^{R_i \to S}$) to the traffic domain of the target city through traffic domain alignment, reducing its correlation with the source city's traffic domain, $H(\mathcal{X}^{R_i \to S}|\theta_{TDA})$ takes on a small value, thereby minimizing the privacy leakage $I(\mathcal{X}^{R_i}, \mathcal{X}^{R_i \to S})$.

Privacy Protection in Traffic Secure Aggregation. Given the aggregated data $\overline{\mathcal{X}}^{\mathcal{R} \to S}$, the attacker aims to infer the transformer data $\mathcal{X}^{R_i \to S}$ of the source city R_i , where $\mathcal{X}^{(R_i \to S), R_i}$ is derived from $\mathcal{X}^{R_i \to S}$ in Eq.16 as shown below:

$$\overline{\mathcal{X}}^{\mathcal{R}\to S} = \frac{1}{n} (\mathcal{X}^{R_i \to S} + \sum_{j=1 \& j \neq i}^{n} \mathcal{X}^{R_j \to S})$$
(34)

Since the traffic domains of source cities are aligned to that of the target city, they are from Independent Identically Distributed (IID), and the privacy leakage can be quantified as:

$$I(\mathcal{X}^{R_{i}\to S}; \overline{\mathcal{X}}^{\mathcal{R}\to S}) = H(\overline{\mathcal{X}}^{\mathcal{R}\to S}) - H(\overline{\mathcal{X}}^{\mathcal{R}\to S} | \mathcal{X}^{R_{i}\to S})$$

$$\leq H(\mathcal{X}^{R_{i}\to S}) - H(\frac{1}{n} \sum_{j=1 \& j \neq i}^{n} \mathcal{X}^{R_{j}\to S})$$

$$\leq \frac{H(\mathcal{X}^{R_{i}\to S})}{n} \propto \frac{1}{n * |\mathcal{M}^{S}|}$$
(35)

Since the above two processes is a Markov Chain [44], i.e., $\mathcal{X}^{R_i} \to \mathcal{X}^{R_i \to S} \to \overline{\mathcal{X}}^{R \to S}$, the total amount of the privacy leakage can be bounded using the data processing inequality [56]:

$$I(\mathcal{X}^{R_{i}}; \overline{\mathcal{X}}^{\mathcal{R} \to S}) \leq \min(I(\mathcal{X}^{R_{i}}; \mathcal{X}^{R_{i} \to S}), I(\mathcal{X}^{R_{i} \to S}; \overline{\mathcal{X}}^{\mathcal{R} \to S}))$$

$$\leq \min(H(\mathcal{X}^{R_{i} \to S} | \theta_{TDA}), \frac{H(\mathcal{X}^{R_{i} \to S})}{n})$$
(36)

This analysis demonstrates that the FedTT framework effectively minimizes privacy leakage by leveraging both TDA and TSA, ensuring robust privacy protection in federated traffic knowledge transfer.

D Experimental Details

732 D.1 Baselines

731

We compare the FedTT framework with state-of-the-art baselines. First, we compare FedTT with three SOTA transfer methods in Federated Traffic Knowledge Transfer (FTT), including T-ISTGNN [49], pFedCTP [78], and 2MGTCN [75], as detailed below.

- **T-ISTGNN [49].** It designs a spatio-temporal GNN-based approach with an inductive mode for cross-region traffic prediction.
- **pFedCTP** [78]. It designs an ST-Net for privacy-preserving and cross-city traffic prediction with personalized federated learning.

- **2MGTCN** [75]. It designs multi-modal GCNs and TCNs to capture spatial and temporal information and enhance adaptability across cities.
- Besides, we compare FedTT with three SOTA transfer methods in Multi-Source Traffic Knowledge Transfer (MTT), including TPB [41], ST-GFSL [43], and DastNet [57], as detailed below.
- **TPB [41].** It utilizes a traffic patch encoder to create a traffic pattern bank for the cross-city few-shot traffic knowledge transfer.
- **ST-GFSL [43].** It transfers traffic knowledge through model parameter matching to retrieve similar spatio-temporal features.
- **DastNet** [57]. It employs graph learning and domain adaptation to create domain-invariant node embeddings for the traffic data.
- In addition, we compare FedTT with three SOTA transfer methods in Single-Source Traffic Knowledge Transfer (STT), including CityTrans [47], TransGTR [27], and MGAT [46], as detailed below.
- **CityTrans [47].** It proposes a domain adversarial model with knowledge transfer for spatiotemporal prediction across cities.
- **TransGTR** [27]. It leverages adaptive spatio-temporal knowledge and domain-invariant features for TP in data-scarce cities.
- MGAT [46]. It extracts multi-granular regional features from source cities to enhance the effectiveness of knowledge transfer.
- Moreover, we extend three classic and SOTA centralized traffic models in FedTT and the existing
- two-stage transfer methods in FTT (referred as FTL), including Gated Recurrent Unit (GRU) [10],
- Convolutional Neural Network (CNN) [32], Multi-Layer Perceptron (MLP) [55], CityTrans [47],
- 761 TransGTR [27], and MGAT [46], as detailed below.
- ST-SSL [23]. It models traffic data at attribute and structure levels for spatial and temporal heterogeneous-aware traffic prediction.
- **DyHSL** [**80**]. It leverages hypergraph structure information to extract dynamic and high-order relations of traffic road networks.
- **PDFormer [24].** It introduces self-attention and feature transformation for dynamic and flowdelay-aware traffic prediction.
- To evaluate the Traffic View Imputation (TVI) method of FedTT in the ablation study, we replace this module with three SOTA data imputation methods, including LATC [8], GCASTN [48], and
- Nuhuo [73], as detailed below.
- LATC [8]. It integrates temporal variation as a regularization term to accurately impute missing spatio-temporal traffic data.
- GCASTN [48]. It uses self-supervised learning and a missing-aware attention mechanism to impute the missing traffic data.
- **Nuhuo [73].** It uses graph neural networks and self-supervised learning to accurately estimate missing traffic speed histograms.

777 D.2 Model Adaptability

- Table 4 shows the overall performance when extending existing centralized traffic models (i.e.,
- 779 GRU [10], CNN [32], MLP [55], CityTrans [47], TransGTR [27], and MGAT [46]) in FTT using
- 780 FedTT and FTL methods with MAE, where the best results are shown in blue. As observed, all
- 781 centralized traffic models extended in FedTT achieve the best performance compared to those
- extended in FTL, also showing its effectiveness of traffic knowledge transfer in FTT, i.e., the gains
- range from 5.13% to 64.65%. Note that the DyHSL model has the best performance in centralized
- traffic models and is implemented in FedTT as the default model in other experiments.

5 D.3 Training Efficiency

Table 4: The overall performance (MAE) comparison when extending centralized traffic models

Model	Method	$(P8,FT,HK) \rightarrow P4$		$(P4,FT,HK) \rightarrow P8$			$(P4, P8, HK) \rightarrow FT$			(P4, P8, FT)→ HK			
Model	Methou	flow	speed	осс	flow	speed	осс	flow	speed	осс	flow	speed	occ
GRU	FTL^1	29.27	3.39	0.0282	23.44	2.40	0.0253	21.16	12.18	0.0712	10.11	4.60	0.0125
GKU	FedTT	25.93	2.24	0.0220	20.73	2.21	0.0213	17.34	5.67	0.0401	9.33	2.86	0.0101
CNN	FTL	31.46	4.55	0.0317	27.60	3.27	0.0267	24.55	9.05	0.0803	9.74	5.92	0.0169
CININ	FedTT	26.82	2.84	0.0274	22.20	2.41	0.0217	17.44	6.27	0.0472	9.24	3.92	0.0113
MLP	FTL	34.01	3.66	0.0276	30.24	2.88	0.0246	22.66	14.43	0.0743	10.87	5.23	0.0146
MILP	FedTT	28.08	2.17	0.0250	23.79	2.40	0.0212	17.66	7.35	0.0480	9.68	3.27	0.0102
ST-SSL	FTL	26.76	2.26	0.0176	20.06	1.88	0.0226	19.43	7.78	0.0605	9.43	4.36	0.0117
31-33L	FedTT	22.28	1.34	0.0096	17.14	1.27	0.0114	13.38	4.88	0.0400	8.76	1.65	0.0097
DvHSL	FTL	18.61	1.39	0.0131	16.71	1.40	0.0144	16.96	6.04	0.0324	8.63	2.97	0.0103
DynsL	FedTT	16.69	1.03	0.0061	14.11	0.94	0.0059	12.10	3.24	0.0249	7.42	1.05	0.0087
PDFormer	FTL	26.99	2.31	0.0194	22.85	1.80	0.0232	17.92	6.57	0.0433	9.17	3.29	0.0108
PDFormer	FedTT	22.05	1.43	0.0125	17.67	1.36	0.0127	13.09	3.53	0.0314	8.22	1.22	0.0091

¹ FTL refers to the two-stage method of existing methods in FTT.

Fig. 5 shows the communication size (GB) and running time (minutes) of different methods on traffic flow prediction. As observed, the FedTT framework has the least communication size and running time compared to other methods, i.e., with communication overhead reduced by 90% and running time reduced by 1 to 2 orders of magnitude, showing its superior efficiency of traffic knowledge transfer in FTT. This is because FedTT securely transmits and aggregates the

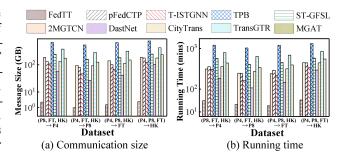


Table 5: Training efficiency study of different methods

traffic domain-transformed data using the TST module with relatively small computation and communication overheads, compared to other methods that employ the HE method for model secure aggregation in FTT. Besides, FedTT utilizes the FPT module to reduce data transmission and train models in parallel, significantly improving the training efficiency in FTT.

D.4 Parameter Sensitivity

Fig. 6 shows the performance of the FedTT framework with different hyperparameter settings (i.e., λ_1 and λ_2) on traffic flow prediction with MAE. First, the suggestion and optimum value of λ_1 is 0.7. As λ_1 increases, the generator model tends to generate the data that can "trick" the server discriminator model rather than generating the high-quality traffic domain transformed data, resulting in higher MAE. As λ_1 decreases, the server dis-

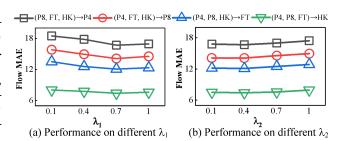


Table 6: Parameter sensitivity of FedTT

criminator model loses its ability to effectively guide the generator model in generating traffic domain transformed data, resulting in higher MAE. Second, the suggestion and optimum value of λ_2 is 0.4. As λ_2 increases, the generator model tends to generate the data with a traffic domain that deviates significantly from that of the target city, resulting in higher MAE. As λ_2 decreases, the generator model generates the data with a more local-specific traffic pattern, which hinders the model from effectively learning the traffic patterns of the target city, resulting in higher MAE. Overall, FedTT has the best performance in all hyperparameter settings when $\lambda_1=0.7$ and $\lambda_2=0.4$, which are used in FedTT as the default values in other experiments.

D.5 Case Study

To demonstrate the practical applicability of FedTT in real-world traffic knowledge transfer scenarios, we conduct a case study using the UTD19[42] dataset, which includes traffic data from 40 cities

Table 7: Statistics of evaluated cities in UTD19

City	# instances	# sensors	Interval	Missing Rate
London	6454	5719	5 min	19.47%
Hamburg	50142	418	3 min	2.66%
Manchester	6984	181	5 min	10.61%
Madrid	4560	1116	5 min	16.02%
Groningen	525	55	5 min	1.75%

worldwide. For comparison, we select 2MGTCN, as it performs the best among the three existing methods in FTT (see Table 4.1). In this scenario, Groningen is chosen as the target city due to its limited traffic data and relatively sparse sensor deployment, making it challenging to train a high-performance traffic model independently. In contrast, London, Hamburg, Madrid, and Manchester are chosen as source cities because they possess significantly larger datasets and denser sensor networks, providing abundant traffic data for effective knowledge transfer. The statistics of these cities is summarized in Table 7. Since the sampling intervals of traffic data vary across cities, we resample all datasets in a uniform interval of 15 minutes to ensure that the temporal discrepancies between cities do not affect the model performance.

829

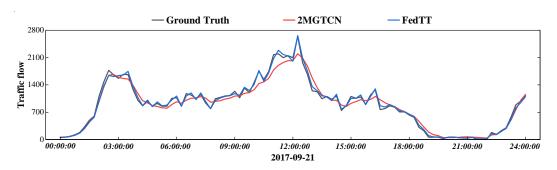
830

831

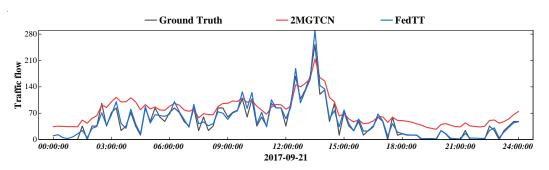
832

833

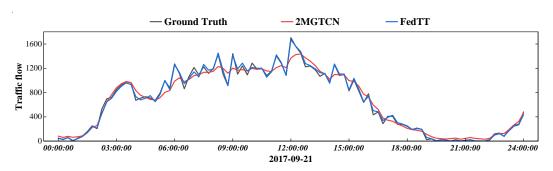
835



(a) Sensor PGR01_101725_G172_Emmaviaduct_Z_ID_8650_1



(b) Sensor PGR01_101727_Hereweg_Z_ID_8610_2



(c) Sensor PGR01_101761_Sontweg_NO_ID_8812_1

Figure 10: Visualization of traffic flow prediction in groningen

The traffic flow results of three sensors (i.e., PGR01 101725 G172 Emmaviaduct Z ID 8650 1, 836 PGR01_101727_Hereweg_Z_ID_8610_2, and PGR01_101761_Sontweg_NO_ID_8812_1) on 837 September 21, 2017 in Groningen are shown in Fig. 10. As observed, the prediction of FedTT 838 aligns well with the ground truth, while 2MGTCN can only learn the general trend of traffic flow. 839 Taking sensor PGR01_101761_Sontweg_NO_ID_8812_1 as an example. FedTT and 2MGTCN 840 excels from 0:00 a.m. to 6:00 a.m., a period characterized by relatively smooth traffic flow. Through-841 out the peak hours, from 6 a.m. to 6 p.m., when traffic flow fluctuations are pronounced, FedTT 842 showcases adaptability by learning from the rapid increase and decrease in traffic, while 2MGTCN 843 predicts a relatively smooth traffic flow that does not match the real one. Between 6 p.m. and 12 a.m., 844 as the traffic flow gradually decreases and stabilizes, FedTT maintains relatively accurate predictions 845 compared to 2MGTCN. In summary, the FedTT framework demonstrates its robust performance on 846 real-world traffic knowledge transfer scenarios, yielding satisfactory and accurate prediction results 847 in forecasting the traffic flow across different periods. 848

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction cover the contributions and scope of the paper regarding building a federated traffic knowledge transfer framework.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the
 contributions made in the paper and important assumptions and limitations. A No or
 NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals
 are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitations of our work in Section 5.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was
 only tested on a few datasets or with a few runs. In general, empirical results often
 depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [Yes]

Justification: We provide the theoretical privacy analysis in Appendix C.3.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have detailed the experimental settings in Section 4. All code and data are available at https://anonymous.4open.science/r/FedTT.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
 - (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
 - (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
 - (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

956 Answer: [Yes]

Justification: We share all code and data at https://anonymous.4open.science/r/FedTT.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new
 proposed method and baselines. If only a subset of experiments are reproducible, they
 should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-parameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: We have detailed the experimental settings in Section 4.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental
 material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [No]

Justification: The experimental results reported in the paper are the average values of five independent experimental runs, but error bars are not included.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).

- It should be clear whether the error bar is the standard deviation or the standard error
 of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how
 they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019 1020

1021

1022

1023 1024

1025 1026

1027

1028

1029

1030

1031

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

Justification: We have provided detailed information about the computer resources in Section 4.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: No NeurIPS code of ethics were violated.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [Yes]

Justification: We have discussed the societal impacts of federated traffic knowledge transfer in Section 1.

Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.

- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do
 not require this, but we encourage authors to take this into account and make a best
 faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: We ensure that the assets we use are credited.

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.

 If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New Assets

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1140

1141

1142

1144

1145

1146

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects. Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human Subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects. Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.