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Abstract

Traffic prediction aims to forecast future traffic conditions using historical traffic
data, serving a crucial role in urban computing and transportation management.
While transfer learning and federated learning have been employed to address the
scarcity of traffic data by transferring traffic knowledge from data-rich to data-
scarce cities without traffic data exchange, existing approaches in Federated Traffic
Knowledge Transfer (FTT) still face several critical challenges such as potential
privacy leakage, cross-city data distribution discrepancies, and low data quality,
hindering their practical application in real-world scenarios. To this end, we present
FedTT, a novel privacy-aware and efficient federated learning framework for cross-
city traffic knowledge transfer. Specifically, our proposed framework includes
three key innovations: (i) a traffic view imputation method for missing traffic
data completion to enhance data quality, (ii) a traffic domain adapter for uniform
traffic data transformation to address data distribution discrepancies, and (iii) a
traffic secret aggregation protocol for secure traffic data aggregation to safeguard
data privacy. Extensive experiments on 4 real-world datasets demonstrate that the
proposed FedTT framework outperforms the 14 state-of-the-art baselines. All code
and data are available at https://anonymous.4open.science/r/FedTT.

1 Introduction

Traffic Prediction (TP) [70, 51 [80] leverages widespread sensors in the road network to forecast
traffic conditions based on historical traffic data (e.g. traffic flow, speed, and occupancy), which not
only facilitates the effective allocation of public transportation resources [45] but also contributes to
alleviating traffic congestion [74]. To achieve accurate TP, numerous methods have been proposed [80L
23\, 124]), which typically rely on a large number of traffic data to train high-performing traffic models.
However, urban traffic data is often insufficient or unavailable [36, (63 65]], particularly in emerging
cities, such as developing regions in the Midwestern United States [1]], where sensors are newly
deployed or data collection is still in its early stages. In such cases, training traffic models becomes
particularly challenging and prone to overfitting, limiting the accuracy of TP tasks [27 46].
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Figure 1: Privacy-preserving traffic knowledge transfer

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.


https://anonymous.4open.science/r/FedTT

39
40
41
42
43
44
45
46
47
48
49
50

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

66
67
68
69
70
71
72
73
74
75

76
77
78
79
80
81
82
83
84
85

without considering data privacy. However, the direct sharing of traffic data risks privacy leak-
age [39, 45, [70] as such data may contain sensitive personal information. For example, sparse
traffic flow data may allow attackers to infer the presence and approximate locations of individual
vehicles [6} [7]]. Besides, many privacy laws and regulations, such as GDPR [35]] and CCPA [4]], man-
date data collectors to minimize non-essential data transmission and avoid centralized data storage.
Therefore, maintaining the decentralization of traffic data in TP is critical. As shown in Fig. Eka),
PeMSD4 [3]], FT-AED [12], HK-Traffic [2], and PeMSDS8 [3]] are four real-world traffic datasets,
which correspond to the cities of San Francisco (SF), Nashville (NV), Hong Kong (HK), and San
Bernardino (SB), respectively. Among these, SF, NV, and HK represent source cities, while SB serves
as the target city. Due to legal restrictions, traffic data cannot be exchanged among cities, meaning
each city can only access its local data. In this case, transferring traffic knowledge from these three
source cities to the target city without exchanging raw traffic data becomes challenging.

Federated Learning (FL) [68| 37, [70], a privacy-preserving distributed learning paradigm, has been
widely used in numerous applications to address privacy concerns such as urban computing [[66]] and
transportation management [70]]. For instance, JD Company (one of the largest e-commerce compa-
nies in China) developed the Fedlearn platform to help protect data privacy for TP applications [20].
Inspired by its success, recent studies [49, 78] have explored the FL framework to transfer traffic
knowledge while preserving data privacy, which typically follow a two-stage process, as illustrated in
Fig.[I[(b). In the first stage, the three source cities (i.e., SF, NV, and HK), as clients, use their local
traffic data to train individual local models. Subsequently, clients upload training gradients or model
parameters to a central server, which aggregates to a global traffic model and then broadcasts the
global model back to clients for local model updates. This process iterates until the global model
converges. In the second stage, the converged global model is shared with the target city (i.e., SB)
and further fine-tuned using its local traffic data. While this two-stage knowledge transfer framework
has become the mainstream approach in Federated Traffic Knowledge Transfer (FTT), it faces
three unresolved challenges, i.e., privacy, effectiveness, and robustness, that hinder its application in
real-world traffic knowledge transfer scenarios, as illustrated in Fig.
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Figure 2: Four unresolved challenges in federated traffic knowledge transfer (FTT)

Challenge 1: How to effectively protect data privacy in FTT? Although existing methods utilize FL
to avoid raw data exchange, there remains a potential risk of data privacy leakage. This arises because
these methods require the uploading of training gradients or model parameters for aggregation in FTT,
which may allow attackers to infer raw data by inference attacks [18| 167, [81]], as depicted in Fig. [J[a).
To mitigate this risk, a straightforward approach is to apply privacy-preserving techniques such as
Homomorphic Encryption (HE) [52] and Differential Privacy (DP) [L6] for secure aggregation on
the uploaded data. However, HE introduces significant computation and communication overheads,
which diminishes training efficiency, while DP lowers data utility and thus decreases model accuracy,
as proved by previous studies [64, 58, [15]. Therefore, how to effectively safeguard data privacy in
FTT without compromising training efficiency and model accuracy remains a significant challenge.

Challenge 2: How to mitigate the impact of cross-city data distribution discrepancies on FTT?
None of the previous studies have considered the discrepancies in traffic data distribution across
cities, which decreases the effectiveness of traffic knowledge transfer [41,143,157]]. Specifically, the
traffic domain varies significantly across cities, with distinct distributions of traffic flow, speed, and
occupancy data. As shown in Fig.[2(b), we illustrate the frequency density distribution of traffic speed
data for SF, NV, HK, and SB. As observed, SF and SB exhibit similar data distributions, suggesting
closely related traffic domains, while NV and SB show different data distributions, indicating quite
distinct traffic domains. Consequently, traffic knowledge transfer from SF to SB results in smaller
prediction errors and is more effective than the transfer from NV to SB. Overall, how to address
traffic domain discrepancies across cities to improve the effectiveness of FTT is an urgent challenge.
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Challenge 3: How to overcome low traffic data quality issues in FTT? Existing methods assume
that traffic data is consistently high-quality and reliable, neglecting the prevalence of missing data.
As shown in Fig. Ekc), we illustrate the number of available sensors over a week in HK, which has
411 sensors in total. Due to sensor failures or updates [[73},50], the number of available sensors in
HK may fluctuate over time, disrupting the model training process. While some data imputation
methods [8} 48] 73] can be employed to complete missing data, they fail to effectively capture the
spatio-temporal dependencies inherent in traffic data, leading to suboptimal accuracy. Consequently,
how to enhance the traffic data quality to improve the robustness of FTT is another challenge.

Contributions. To address these challenges, we propose FedTT, a privacy-preserving and efficient
Federated learning framework for cross-city Traffic knowledge Transfer. Unlike existing FTT
methods, FedTT transforms the traffic data from the source cities’ domain to the target city’s domain
and training the target city’s model on the transformed data. To address Challenge 1, FedTT
introduces the Traffic Secret Aggregation (TSA) protocol to securely aggregate the transformed data
without compromising training efficiency or model accuracy. To overcome Challenge 2, FedTT
develops the Traffic Domain Adapter (TDA) to uniformly transform the traffic data from source cities’
domains to that of the target city through traffic domain transformation, alignment, and classification.
To deal with Challenge 3, FedTT designs the Traffic View Imputation (TVI) method to complete
missing traffic data by capturing the spatio-temporal dependencies. Finally, extensive experiments
conducted on 4 real-world datasets demonstrate that FedTT achieves state-of-the-art performance,
reducing prediction MAE by 5.43% to 75.24% and maintaining Pearson Correlation Coefficient
(PCC) of data reconstruction attacks at no more than 10% compared to 14 baseline methods.

2 Problem Definitions

The frequently used notations and descriptions in this paper are shown in Appendix B}

Definition 1 (Road Network). The road network is a weighted graph G = (M, E, A), where
M = {mq,ma,...} is the set of sensors, E C M x M is the set of edges, and A € RIMIXIMI g
the weighted adjacency matrix of edges. Here, m; denotes the sensor with index i.

Definition 2 (Traffic Data). Given the available sensors M, = {m; | i < | M|}, the traffic data is
denoted as X = {X1, Xo, ...}, where X; € RIMiIXF s the traffic data of | My| available sensors

at time t. Here, F denotes the number of traffic data features. For instance, Fy = 3 when the traffic
data includes flow, speed, and occupancy data.

Problem Formulation (FTT). In federated learning, multiple clients C = {¢1, ca, ..., ¢y} collab-
oratively train a global model using their local data. In the first stage, FTT trains a traffic model
O7p to learn traffic knowledge from source cities R = {R1, Ra, . .., R, }, where each source city R;
corresponds to a client ¢;, as formally shown below:
1 n
in— Y L(6rp, D),

min ; (67p, D7) 8))

where £(-) is the loss function, and D% = { X{¥, X ...; G} is the traffic dataset of the source

city R;. Here, G and XtR'i are the road network and the traffic data at time ¢ of the source city R;.
In the second stage, given target city’ dataset D¥ = { X7, X5, ...; G}, FTT predicts the next 7"
traffic data based on the 7" historical observations at time ¢ in the target city S, as shown below:

0
{XtSqule X?LT+27 oy XtS; gS} i> {Xgrlv X1§9+2’ sy XerT/} (2)

3 Our Methods

Fig. [3illustrates the architecture of the proposed FedTT framework, which comprises three modules:
Traffic View Imputation (TVI), Traffic Domain Adapter (TDA), and Traffic Secret Aggregation
(TSA). As shown in Fig. a), FedTT comprises n clients C = {c1, o, ..., ¢, } and a central server s.
Specifically, each source city R; is treated as a client ¢;, while the target city .S is treated as the server
s. The traffic domains of the data in clients are transformed to align with the server’s domain, and the
server’s traffic model is trained on this transformed data uploaded by clients. Consequently, the FTT
problem defined in Eqs. [T]and [2]is reformulated to minimize the sum of the following losses:

1 n
in— L6, D75 DY), 3
i D 0 D D ©
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Figure 3: The architecture of the proposed FedTT framework

where D=5 represents the traffic dataset whose domain is transformed from the source city R;

to the target city S. The overall process of FedTDP is as following. First, the TVI module captures
spatial and temporal dependencies within the traffic data to extend and enhance the traffic view (D-®),
as shown in Fig. Ekb). Then, the TDA module conducts traffic domain transformation and alignment
for the source cities’ data (®-@®). Besides, the module performs traffic domain classification to
categorize the traffic data domain (®), as shown in Fig. [3[c). Finally, the TSA module employs the
proposed traffic secret aggregation method to securely mask and aggregate the transformed data from
source cities (©-®), as shown in Fig.[3(d). The target of our FedTT is to transfer traffic knowledge
across cities while preserving privacy, handling data discrepancies and low data quality challenges.

3.1 Traffic View Imputation

Design Motivation. Existing federated traffic Road Network [._/] Shortest Distance Matrix Q@ Traffic Data - @ Unavailable Data
transfer methods often overlook the challenges
associated with low-quality traffic data, espe-

o — 1| EEES R
cially when missing data is prevalent, thereby |

T -T+1 -1 :® t
significantly undermining the performance of

traffic knowledge transfer models. Although
Extend @

some data augmentation methods [8} 48, (73] can
be leveraged for imputation, they fail to effec-
tively capture the spatio-temporal dependencies
of data, leading to suboptimal accuracy. In con-

trast, we propose the Traffic View Imputation
(TVI) method to enhance traffic data quality by
completing missing traffic data through a com-

|M-level Traffic Subview

(a) Spatial view extension (b) Temporal view enhancement

Figure 4: The process of traffic view imputation

prehensive exploration of the spatial and temporal dependencies inherent in traffic data:
o ~ ~
{X17X27'-';g}&{XlaXQa"'}a (4)
where 07y is the TVI model consisting of a spatial view extension model sy and a temporal view
enhancement model 67y. Besides, X; is the imputed traffic data of all sensors. In addition, the traffic
view represents the traffic data of all sensors at a certain time, as defined below.

Definition 4 (Traffic View). A traffic view is the snapshot of traffic data of sensors M at time t,

. . . M
consisting of a set of multi-level traffic subviews, denoted as V; = {v},v?, ... ’UL k

traffic subview v is a set of traffic data of i sensors at time t.
i) Spatial View Extension. In the first stage, TVI extends the | M |-level traffic subview at time ¢:

1 2 M. Osv M
{vt,vt,...vl ‘l;g}‘%svl ‘, @)

where 65y denotes the spatial view extension model and vaM‘ represents the extended | M |-level
traffic subview at time ¢. As shown in Fig. @), it first computes the shortest distance matrix
A={A1,A,,..., A| M|}, where A; represents the shortest distance tensor of sensor m; to other
sensors. This is computed using Dijkstra’s algorithm [[14] with the weighted adjacency matrix A.
Next, the feature of each sensor is computed, i.e., h; = Ogar(A;), where h; represents the K-head
feature of sensor m; with Fy feature dimensions, and 6g,7 is the Graph Attention Network (GAT)
model [61]] with K = 8 and F> = 128. Additionally, the extension of multi-level traffic subviews is
averaged to obtain the | M |-level traffic subview with a Multi-Layer Perception (MLP [54]) 6 :

Vil v i

1 1 1 L i T
i = D 2 0m(5 D HE LKD) - i) D), (©)
i=1 tl j=1

k=1

‘}, where i-level
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where v} [j][k] represents the traffic data of the k-th sensor in the j-th combination within the i-level
traffic subview at time ¢, and H (v{[j][k]) € R**¥2*1 represents the multi-head feature of the sensor
corresponding to v} [][k]. Finally, it computes the loss of available sensors to train the sy model:

[Vsv|
M|
min L(6sy, Vsy) = min —— sv‘ - X, @)
Osy ( ) ) Osy |VSV‘ Z lMt t )7
where Vsy = sv‘M‘ sv‘M‘7 ..} is the set of extended traffic subviews at different times, and sv‘M*|
2 t

is the predicted trafﬁc data of available sensors at time ¢.

ii) Temporal View Enhancement. As shown in Fig. E[b), in the second stage, TVI enhances the
| M |-level traffic subview based on the preceding/succeeding T | M|-level traffic subviews:

{SVIM‘ SV\M\ sV |} O1v |M|

t—TSVe—T41> - t 1 vy )
{slel SV‘M‘ sv |} v |M|

t+TSVerT—10 Vi1 vy

where tv‘tMl represents the enhanced | M |-level traffic subview, whose final value is the average of the

above two results. Besides, 67y is the temporal view enhancement model, which employs the SOTA
DyHSL traffic model [80]. Then, it computes the loss of available sensors to train the 7y model:

[V
. 1 1 M
Oy, VIMIY = Ml x
min £(0rv, VM) = min e ; ALK 0 ©)
where Vry = {tv'Ml ‘QM‘, ..} represents the set of enhanced traffic subviews and tvltMt‘ is the
predicted traffic data of the available sensors at time ¢. Finally, we get the predicted traffic data of all
[M]

| M| sensors X, = ¢ = tv; . Note that the training of the TVI model is completed before the training of
the FedTT framework, as it only needs to be conducted within each city.

3.2 Traffic Domain Adapter

Design MOtiVatiOl‘l. NOne Of the eXiSting ap- EEE Transformation Matrix Traffic Domain Prototype @Genera!or @ Discriminator
proaches consider traffic data distribution dis- E - Sde;vef:SD O ——
crepancies between the source and target cities s }

N A N Classify |
in FTT, which decreases the effectiveness of | |F=======qr======"crooooooomo-y Target Data |

> \Aggregate‘
traffic knowledge transfer. Motivated by this, to _‘Oﬁo lo=5=0] ‘Oﬁo‘

reduce the impact of traffic data distribution dis- - @ - @ —
. Data Communication

crepancies on model performance, we propose

the Traffic Domain Adapter (TDA) module, as _Clientg, . __’V'_a_SE\@___‘
shown in Fig.[5] This module reduces traffic do- — (Mixed Traffic Data ; o]
main discrepancies by uniformly transforming p— Classify | Agaregated Data
data from the traffic domain of the source city ‘ o] ® } 3
("source domain" for short) to the traffic domain Transform i L _Source Data | w
of the target city ("target domain" for short): Figure 5: TDA and TSA modules
(XPXE, .y 2oy (xRS xBoS |y, (10)

where XtR_’S is the transformed data of \MS | sensors, and O7p, is a generative adversarial net-
work [62]] consisting of a generator model 6, and a discriminator model Op;;.

i) Traffic Domain Transformation. In the first step, TDA uses the generator model, road network,
and traffic domain prototype to transform the traffic data from the source domain to the target domain,
as shown in Fig. [5[(®), where the traffic domain prototype is the representative traffic sample that
can reflect the main feature of traffic data in the domain, as formally defined below.

Definition 5 (Traffic Domain Prototype). Given the traffic data X = {X;, Xo, ...} in a traffic
domain, a traffic domain prototype ‘P is the central traffic data, which is computed as the averaged

value of all traffic data, i.e., P = \Xl le‘ X

First, it computes the transformation matrix Ag of the road network through (Ag)T -Gl Ag =67,
where Ag can learn the road network information of the source and target cities, which is computed
by the gradient descent method [53]]. Similarly, it then computes the transformation matrix Ap of the
traffic domain prototype through Ap - P = PS5, where P and P are traffic domain prototypes of
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the source and target cities, respectively. Here, Ap can learn the traffic domain prototype information
of the source and target cities, which is computed by the gradient descent method. Then, the generator
model leverages Ag and Ap to transform the traffic data using MLP models 6g, 6p, and 0x:

X9 = 0g(Ag - X[') + 0p(Ap - X[') + 0x (X[, (1)
ii) Traffic Domain Alignment. In the second step, TDA trains the generator model 6¢,,, as shown in

Fig.|5/(®). Specifically, it aligns the transformed data X =5 = { XF=5 XE=S 1 of the source
city with the traffic domain prototype P* of the target city S, as described below:

|XR4>S‘
1
: R—Sy _ . s E: R—S S
%?E?ﬁ(eGenaX ) - Igzljl |XR%S| e |MS| (Xt -P )7 (12)

iii) Traffic Domain Classification. In the third step, TDA trains the discriminator model 6p;; to
classify the traffic data domain (®-® shown in Fig.[5), as shown below:
P(X e x1%)

13
P(XS e x%) ’ 4

gDis(st S XRS) = {
where XRS = {XRS XBS 1} is the traffic data mixed with the transformed data X7~ of the

source city and the traffic data X S of the target city. Besides, discriminator model 6p;, is a MLP
model. Then, the training process of 0p; is shown below:

| X% RS R—8\\ ;¢ yRS R—S
1 —log(P(X® e X , X eX
min £(0p;s, X*) = min —ee Z { o RS 28 ) »Zf v 28 (14)
Opis Opis | XRS] = |~ lOg(P(Xt exX )) , if X0 eX
Next, we update the training process of the generator model ., in Eq. as shown below:
min £(Oen, Opis, X%, XF) = min L(0en, X7%) = A1 L(Opis, X*), (15)

Gen Gen

where )\ is the hyperparameter to control the trade-off between generator loss and discriminator loss.

3.3 Traffic Secret Aggregation

Design Motivation. Existing works upload gradients or models for aggregation in FTT, where
attackers derive the traffic data through inference attacks [[18, 167, 81]. Although techniques such as
Homomorphic Encryption (HE) [52] and Differential Privacy (DP) [[16] can be employed for secure
aggregation, they come with notable trade-offs. Specifically, HE introduces significant computational
and communication overheads, reducing training efficiency, while DP reduces the data utility, leading
to lower model accuracy. In contrast, we design the Traffic Secret Aggregation (TSA) protocol
that securely transmits and aggregates the transformed data from source cities to protect traffic data
privacy without sacrificing the training efficiency or model accuracy, as shown in Fig. [5/(®-®).
Specifically, it first masks the r-th transformed data R; X (R;fi%s in the client ¢;, as shown below:
X((g—ng, Ri) _ Yﬁjls; + X(T) ; X(r—l) ’ (16)

where YZ,%TS is r-th aggregated data. Besides, is the 7-th mask data computed in the
client ¢; and transmitted to the server. Note that, when r = 0, the client uses HE to encrypt its
transformed data and transmitted the encrypted data to the server for initial aggregation. Then, the
server computes the sum of mask data from all source cities, as shown below:

X((R—>S, R;)

N (RS R) . =R=S 1 m oriss 1N RS
Z}XW —”*X<H>+g*z;X<r> - Xy
- —R—S —R;; —R—S - (I7)
=n* Xy +Xe —Xeo
—R—S —R—S
= (ni 1) >|<‘Xr(r—l) +X(7’)

Finally, the server gets the r-th aggregated data using the previous aggregated data, as shown below:

—SR—S " R—S, R; —SR—S
Xy o = XNTE ) — (1)« X1 (18)
=1
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In this way, it ensures that only the aggregated data can be accessed without revealing the individual

transformed data. Besides, the client ¢; can train a local discriminator model 95”& to classify the
aggregated data and individual transformed data (@—® shown in Fig.[3)), as shown below:

P XRiS c XRi_>S

= : (19)
P(XFS e X°7%)

, ‘ . . . —R—S
where X% = (X495 X145 Vs the traffic data mixed with the aggregated data X 7 and
transformed data X% =5 Besides, 0&@ is a MLP model and its training process is shown below:

RS ) ) ) )
|x { —log(P(XtR"S c XR,L—>S))’ if thals c xfi—s

min £(07, X%) = min ‘ , (20)
ofi D% ol |XTS| = | —log(P(X /1S € AT, if X[1% e ARS8

Therefore, given the traffic data X% = { X5 XTJ¥¥ .} consisting of aggregated data ?RHS and
traffic data X', the updated training process of the generator model 6., in Eq. is shown below:

min £(05,, X1 7%) = ML(Opis, A7) = X L(07575, XT5), (21)

OGen

where Qgein and Op;; are the local generator model and global discriminator model in the client ¢;
and server s, respectively. Here, A; and A\, are the hyperparameter to control the trade-off between
generator loss and discriminator loss.

The overall training process and theoretical privacy analysis of FedTT are shown in Appendix[C|

4 Experiment

Table 1: Statistics of evaluated datasets

Dataset #instances # sensors Interval City Missing Rate
PeMSD4 16992 307 5 min San Francisco 16.35%
PeMSDS8 17856 170 Smin  San Bernardino 20.09%
FT-AED 1920 196 5 min Nashville 4.59%

HK-Traffic 17856 411 5 min Hong Kong 13.01%

Datasets. We use four traffic datasets to evaluate the proposed FedTT framework in experiments,
which are widely used in traffic prediction tasks [80. [23| [24], as shown in Table[I] Specifically,
PeMSD4 (P4) [3], PeMSDS8 (P8) [3], FT-AED (FT) [12]], and HK-Traffic (HK) [2] were collected
in the San Francisco, San Bernardino, Nashville, and Hong Kong, respectively. Among them, three
datasets are considered as three source cities, and one dataset serves as the target city, leading to four
scenarios: (P8, FT, HK) — P4, (P4, FT, HK) — P8, (P4, P§, HK) — FT, and (P4, P8, FT) — HK.
Besides, we select traffic flow, speed, and occupancy prediction tasks for experiments, which are also
widely studied in the community [80, 23| [24]]. In addition, we report the rate of missing traffic data in
these datasets, which reveals varying levels of traffic data quality issues.

Baselines. We compare FedTT with (i) three SOTA methods in FTT including T-ISTGNN [49],
pFedCTP [78]], and 2MGTCN [75]], (ii) three SOTA Multi-Source Traffic Knowledge Transfer
methods (MTT) extended for the FTT problem including TPB [41]], ST-GFSL [43]], and DastNet [57],
and (iii) three SOTA Single-Source Traffic Knowledge Transfer methods (STT) for the FTT
problem including CityTrans [47], TransGTR [27], and MGAT [46]]. In addition, we replace the
TVI module of FedTT with three SOTA data imputation methods (LATC [8]], GCASTN [48]], and
Nuhuo [73]]) to evaluate its effects. More details about these baselines are provided in Appendix [D.1]

Evaluation Metrics. We use Mean Absolute Error (MAE), Root Mean Square Error (RMSE),
communication size (GB), and running time (minutes) to evaluate the utility in experiments. Besides,
Mean Square Error (MSE) and Pearson Correlation Coefficient (PCC) between the reconstructed data
and the ground truth data to measure the privacy-preserving ability of different methods.

Implementation. All baselines run under their optimal settings. Besides, we use 5% train data, 10%
validation data, and 10% test data in the target city. In addition, the MLP model used in FedTT is
three-layer with the GELU [21]] activation and 1024 hidden dimensions. Moreover, all experiments
are conducted with four nodes, one as a server and the other three nodes as clients, each equipped
with two Intel Xeon CPU E5-2650 12-core processors and two NVIDIA GeForce RTX 3090.
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Table 2: The overall performance comparison between different methods

Metric Method ﬂ(P8, FT, HK) — P4! (P4, FT, HK) — P8 (P4, P8, HK) — FT (P4,P8,FT) — HK
ow  speed occ flow  speed oce flow  speed oce flow  speed occ
2MGTCN 2034 127 0.0077 1639 1.09 0.0069 13.86 4.77 0.0355 8.49 1.38  0.0094
pFedCTP 2124 152 0.0079 17.06 122 0.0072 1392 578 0.0415 9.22 1.22  0.0102
T-ISTGNN 2724 203 0.0219 2275 1.84 0.0235 20.83 9.69 0.0571 998 424 0.0121
TPB 21.06 128 0.0134 17.11 1.12 0.0081 13.03 3.59 0.0276 8.36 1.52 0.0092
ST-GFSL  23.05 147 00161 1986 147 0.0159 18.00 525 0.0385 842 203 0.0101

MAE DastNet 2689 154 0.0165 19.58 141 00134 1544 462 00421 9.09 385 0.0135
CityTrans 2394 138 00119 1851 1.18 0.0108 13.06 3.60 0.0359 8.78 1.84  0.0116
TransGTR 2432 139 0.0135 1953 1.18 0.0089 1327 480 0.0337 9.09 392  0.0102

MGAT 2478 158 0.0195 20.16 1.67 0.0160 20.08 8.00 0.0469 9.14 288 0.0101

FedTT 16.69 1.03 0.0061 14.11 0.94 0.0059 12.10 324 0.0249 7.42 1.05  0.0087

2MGTCN 31.61 227 0.0179 2595 218 0.0131 17.03 749 0.0644 12.11 325 0.00167
pFedCTP 33.03 3.12 0.018 26.19 2.62 0.0164 1994 984 0.0756 1331 262 0.0212
T-ISTGNN 3595 4.14 0.0281 31.10 337 0.0305 2942 13.17 0.1127 15.68 6.31 0.0230

TPB 31.75 231 0.0201 2635 219 00126 1634 6.07 0.0493 11.89 298  0.0152

RMSE ST-GFSL.  33.65 329 0.0237 30.66 3.12 0.0260 22.10 9.69 0.0652 1289 4.73  0.0156

DastNet 3496 341 0.0274 2745 3.10 0.0299 22.64 972 0.0691 13.63 582  0.0236
CityTrans 32.04 246 0.0237 2791 220 0.0226 1886 9.82 0.0514 1345 472 0.0212
TransGTR 33.66 243 0.0198 2641 227 00147 17.11 796 0.0579 1223 6.77  0.0180

MGAT 3285 343 0.0283 30.77 320 0.0262 24.62 11.05 0.1028 12.03 5.11 0.0162

FedTT 2748 193 0.0166 2429 194 0.0099 1591 550 0.0372 857 240 0.0145

! P4, P8, FT, and HK denote PeMSD4, PeMSDS, FT-AED, and HK-Traffic datasets, respectively.

4.1 Overall Performance

To show the overall performance of different methods on traffic flow, speed, and occupancy ("occ"
for short) predictions tasks, we take 60 minutes (12-time steps) of historical data as input and output
the traffic prediction in the next 15 minutes (3-time steps), as shown in Table@ where the best results
are shown in blue. Here, the DyHSL [80]] model is implemented in FedTT as it achieves the state-of-
the-art performance in the centralized traffic model. As observed, the proposed FedTT framework
achieves the best performance on different traffic datasets and traffic prediction tasks compared to
other methods, showing its effectiveness of traffic knowledge transfer in the FTT problem, i.e., the
gains range from 5.43% to 75.24% in MAE and 2.63% to 67.54% in RMSE.

4.2 Privacy Protection Study

To evaluate the privacy-preserving capabilities, B FearT PFedCTP [ T-ISTGNN (52 TPB ST-GFSL
we conduct the data reconstruction attack to dif- | JMGTCNT [DatNe | Cilans | TransGIR [ MGAT
ferent methods across datasets on traffic flow 08

prediction using MSE and PCC, as illustrated 06

in Fig.[§] As observed, FedTT demonstrates ro- 23000 So4

bust resistance to the data reconstruction attack, 0 02

achieving a high MSE and maintaining a PCC =~ "% euryio ey vur 00 e T o PP (P
within 2.17% to 8.81%, not exceeding 10%, (gaﬁ;‘g (l')’)”]‘)"c“ct

while other methods exhibit weaker defenses, . . .

with a lower MSE and PCC larger than 40%. Figure 6: Privacy protection study

These findings underscore the superiority and effectiveness of privacy protection provided by the
proposed FedTT framework in FTT and highlight the limitations of privacy preservation mechanisms
based solely on traditional federated learning frameworks.

1 FedTT [ Iwlo TVl [ w/o TDA [ IwioTSA [TTTLATC GCASTN [ Nuhuo
20 20
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(a) Effect of modules (b) Communication size (c) Running time (d) Data imputation study

Figure 7: Ablation study of FedTT
4.3 Ablation Study
Fig.[7]shows the ablation study, where we removed the module of FedTT one at a time, namely FedTT
without TVI (w/o TVI), FedTT without TDA (w/o TDA), and FedTT without TSA (w/o TSA). First,
when TVI is absent, MAE increases by 1.49% to 9.23 %, underscoring its pivotal role as an effective

way to complete the missing data. Besides, the training of TVI is completed before the FedTT’s
training as it only needs to be conducted within each source city, thus not increasing communication
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overhead or running time during FedTT’s training. Additionally, compared to other data imputation
methods (i.e., LATC, GCASTN, and Nuhuo), FedTT with TVI achieves better performance, showing
its effectiveness in the traffic data completion. Second, when TDA is removed, MAE increases
by 4.46% to 17.86 %, which demonstrates its effectiveness in addressing traffic data distribution
differences. Besides, communication overhead and running time of FedTT slightly increase compared
to w/o TDA. Third, MAE of FedTT decreases 0.66% to 3.76 % compared to w/o TSA as TSA uses
the averaged source data, which reduces the influence of source city’s traffic patterns on the target
city’s model training. Besides, the communication overhead and running time of FedTT compared to
w/o TSA do not change as TSA is a lightweight module for federated secure aggregation.

4.4 Long-Term Traffic Prediction

To evaluate long-term traffic prediction capa-  [Eilirerr PFedCTP [ T-ISTGNN 25 TPB ST-GFSL
bilities, we illustrate the performance of differ- [/ /2MGTONT DasiNe CityTrans TransGTR L MGAT
ent methods over the next 60 minutes (12 time q 12

steps) for traffic flow and speed prediction us- :30 § I

ing MAE, as shown in Fig. [8 As observed, [l 3

FedTT outperforms all other methods, i.e., the =1 § &4

gains range from 5.03% to 64.41%, showing Oma.m (Nsum T s T ‘L,ﬁhw e
its effectiveness of long-term traffic prediction Dataset Dataset

in FTT. Therefore, the proposed FedTT frame- (@) Flow prediction (6) Speed prediction
work demonstrates strong performance in both Figure 8: Long-term traffic prediction

long-term and short-term traffic prediction (i.e., Table[2)), underscoring its general advantages in FTT.

4.5 Model Scalability

To validate the model scalability, we show the ~—Fearr ~ —pFedCTP — T-ISTGNN — TPB ST-GFSL
traffic flow and speed prediction performance — 2MSTCN DastNet  — CityTrans — TransGTR — MGAT

of different methods across different sizes of 20

training data in the target city, ranging from 5%

to 40% in the (P8, FT, HK) — P4 scenario us- ' \
ing MAE, as shown in Fig.[0] As observed, &
the FedTT framework consistently achieves the % 10%  20%  40% % 10%  20% _ 40%
best performance in different-scale datasets with Training Dataset Size Training Dataset Size
7.22% to 49.26% MAE less than other meth- (@ Flow prediction (0) Specd prediction
ods, indicating its superior scalability in FTT.

Besides, as the size of the training data increases, all methods exhibit improved performance. This is
because more training data enhances the model learning capability on the target city’s traffic pattern.

o
o

Flow MAE
—_ [
0 =
Speed MAE
&

Figure 9: Model scalability study

4.6 More Experiments

We conduct more experiments to comprehensive evaluate FedTT, in terms of model adaptability,
efficiency, hyperparameter sensitivity, and case study: i) Appendix[D.2demonstrates the performance
when extending different centralized traffic models to FedTT and the two-stage transfer of existing
methods in FTT, where FedTT achieves 5.13% to 64.65% lower MAE in all models. ii) Appendix[D.J]
shows the efficiency of different methods, where FedTT reduces communication overhead by 90%
and running time by 1 to 2 orders of magnitude compared to all baselines. iii) Appendix [D.4]shows
the FedTT’s performance with different hyperparameter settings, where A\; = 0.7 and Ao = 0.4 are
optimum values. iv) Appendix [D.5|showcases FedTT’s practical efficacy in a real-world scenario.

5 Conclusion and Limitations

In this paper, we propose FedTT, a privacy-aware and efficient federated learning framework for cross-
city traffic knowledge transfer. It includes a traffic view imputation method to enhance data quality,
a traffic domain adapter to address data distribution discrepancies, and a traffic secret aggregation
protocol to safeguard data privacy. Experiments using 4 datasets demonstrate its superiority. Our
work has several limitations that warrant further exploration. First, we have not addressed grid-
based scenarios, which could be an important direction for future research. Besides, while our study
primarily focuses on traffic prediction tasks, extending the framework to support more spatio-temporal
prediction tasks remains an open opportunity. In addition, we have not systematically evaluated the
impact of varying the number of source cities on the performance of traffic knowledge transfer, which
could provide additional insights into the scalability of the proposed framework.
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Appendix

In the subsequent sections, we present supplementary materials to provide more details of this paper,
offering deeper insights and additional technical details for readers seeking further clarification. The
appendix is organized as follows.

In Section A, we present a systematic review of related work to help readers understand the key
development in areas relevant to this paper, including traffic prediction and traffic knowledge transfer.

In Section B, we summary the frequently used notations and descriptions for better understanding
our work.

In Section C, we provide the additional methodology details of our proposed FedTT framework,
including (i) the federated parallel training strategy, (ii) the training process with training algorithm
and complexity analysis, and (iii) the theoretical privacy analysis.

In Section D, we describe the extensive experimental details to provide more information about
experimental settings and further demonstrate the superiority performance of the proposed FedTT
framework, including (i) compared baselines introduction, (ii) the details experimental results of
model adaptability, efficiency, hyperparameter sensitivity, and case studies.

A Related Work

A.1 Traffic Prediction

Traffic prediction plays a critical role in the development of smart cities and has garnered significant
attention in the spatio-temporal data mining community. Currently, deep learning techniques [54]] are
widely employed in traffic prediction tasks. Convolutional models, such as Convolutional Neural
Networks (CNN) [33]] and Graph Convolutional Networks (GCN) [29]], are used to capture spatial
correlations in traffic time-series data. Meanwhile, sequential models including Gated Recurrent
Units (GRU) [11] and Long Short-Term Memory (LSTM) [19], are employed to extract temporal
dependencies from the data. Several advanced models have achieved state-of-the-art performance.
For instance, ST-SSL [23] improves traffic pattern representation to account for spatial and temporal
heterogeneity through a self-supervised learning framework. DyHSL [80] leverages hypergraph
structure information to model the dynamics of a traffic network, updating the representation of each
node by aggregating messages from associated hyperedges. Additionally, PDFormer [24]] introduces a
spatial self-attention module to capture dynamic spatial dependencies and a flow-delay-aware feature
transformation module to model the time delays in spatial information propagation. Since this paper
is not intended to propose another more complex prediction model, a detailed analysis of existing
traffic prediction models can be found in surveys [25, [28]]. However, these models are centralized and
rely on traffic data uploads from sensors to a central server, which poses a risk of data leakage.

To address data privacy concerns, several traffic prediction studies [74}|31}169} 134,70, |38]] in federated
environments have been proposed. Specifically, FedGRU [39] pioneers the integration of GRU into FL
for TP tasks, employing federated averaging to aggregate models and a joint announcement protocol
to enhance model scalability. Subsequently, CNFGNN [45] separates the modeling of temporal
dynamics on the device from spatial dynamics on the server, using alternating optimizations to reduce
communication costs and facilitate computation on edge devices. Moreover, FedGTP [70] promotes
the adaptive exploitation of inter-client spatial dependencies to enhance prediction performance while
ensuring data privacy. However, urban traffic data is often insufficient or unavailable, particularly
in emerging cities. Training traffic models in these data-scarce cities is prone to overfitting, which
undermines model performance and affects the accuracy of TP tasks. In contrast, we aim to propose
a federated traffic prediction framework that efficiently transfers traffic knowledge from data-rich
cities to data-scarce cities, enhancing TP capabilities for the latter.

A.2 Traffic Knowledge Transfer
Transfer learning can enhance the traffic model capabilities of data-scarce target cities by transferring

traffic knowledge from data-rich source cities in traffic prediction tasks. Existing studies can be
broadly categorized into three types: Single-Source Traffic Knowledge Transfer (STT), Multi-

15



594
595

596
597
598
599
600
601

603
604

605
606
607
608
609
610
611
612
613
614

615
616
617
618
619
620
621
622
623
624
625

626

627

Source Traffic Knowledge Transfer (MTT), and Federated Traffic Knowledge Transfer (FTT), in
chronological order from earliest to most recent.

First, STT [26} 17,163} 136} 72, 22} 35| 9] 165]] studies focus on transferring traffic knowledge from a
single source city to a target city. Specifically, TransGTR [27] jointly learns transferable structure
generators and forecasting models across cities to enhance prediction performance in data-scarce
target cities. Next, CityTrans [47] leverages adaptive spatio-temporal knowledge and domain-invariant
features for accurate traffic prediction in data-scarce cities. Additionally, MGAT [460] uses a meta-
learning algorithm to extract multi-granular regional features from each source city to improve the
effectiveness of traffic knowledge transfer. However, the performance of these STT methods can be
significantly compromised when there are substantial differences in traffic data distribution between
the source and target cities.

Second, MTT [71} 140, [78, [77] studies the joint transfer of traffic knowledge from multiple source
cities to a target city, enabling the target city to acquire diverse traffic knowledge and enhancing
the robustness of the trained traffic models. Specifically, TPB [41] uses a traffic patch encoder to
create a traffic pattern bank, which data-scarce cities query to establish relationships, aggregate
meta-knowledge, and construct adjacency matrices for future traffic prediction. Next, ST-GFSL [43]
transfers knowledge through parameter matching to retrieve similar spatio-temporal features and
defines graph reconstruction loss to guide structure-aware learning. Additionally, DastNet [57]]
employs graph representation learning and domain adaptation techniques to create domain-invariant
embeddings for traffic data. However, these methods rely on centralized frameworks, which involves
sharing and exchanging traffic data across cities without considering traffic data privacy.

Third, the latest FTT studies, including T-ISTGNN [49]], pFedCTP [78]], and 2MGTCN [75]], intend to
protect data privacy in cross-city traffic knowledge transfer. Specifically, T-ISTGNN [49] combines
privacy-preserving traffic knowledge transfer with inductive spatio-temporal GNNs for cross-region
traffic prediction. Besides, pFedCTP [/8]] employs personalized FL to decouple the ST-Net into
shared and private components, addressing the spatial and temporal heterogeneity. In addition,
2MGTCN [75] combines multi-modal GCNs and TCNss to capture spatial and temporal information
and enhance adaptability across cities. However, they face challenges such as privacy leakage,
data distribution discrepancies, low data quality, and high knowledge transfer overhead, making
them unsuitable for real-world applications, as shown in Fig|2l In contrast, we aim to propose a
privacy-preserving and efficient federated learning framework for cross-city traffic knowledge
transfer to address the challenges of privacy, effectiveness, robustness, and efficiency in FTT.

B Notations and Descriptions
We present the frequently used notations and descriptions in this paper, as listed in Table 3]

Table 3: Notations and descriptions
Notation Description
m, M A sensor and a set of sensors {m1,ma,...}
E A A set of edges and the weighted adjacent matrix of edges

G A road network (M, &, A)
t,r, tr The time, r-th, and training round
M, A set of available sensors {m;|i < |[M]|} at time ¢
X, X (r) The traffic data at time ¢ and the r-th traffic data
Fi The dimension of the traffic data features
X,D A set of traffic data { X1, Xo, ...} and a traffic dataset { X1, Xo,...;G}
¢, S A client and the server
R, S A source city and the target city
n The number of clients and source cities

C,R A set of clients {c;, ca, . .., c,} and source cities { Ry, R, ..., Ry}
0, L(-) A model and a loss function
vi, Vi The i-level traffic subview and a traffic view {v},v2,...} at time ¢
P A traffic domain prototype
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C Methodology Details

C.1 Federated Parallel Training
To improve the training efficiency, FedTT introduces the federated parallel training strategy to reduce
the data transmission and train the models in parallel.

i) Split Learning. To reduce the communication overhead and improve the training efficiency, it
employs split learning [45]] to decompose the sequential training process into the client and server
training, and freeze the data required by the client and server. Specifically, the client ¢; stores and

freezes the data sent by the server for 9g§n and 93} training in Eqs.[21|and Eqgs. |20} respectively:
min £(05,, X1 7%) = Ay x Fr(L(0pis, X7°)) = AL (05, X1, (22)

Gen

; (23)

R;S
1 'XZ [~ log(P(XFS € xRim5)) if xFuS ¢ xRS
min ——s-

e | —log(P(X["% € XR79)) if X["% € Fr(xR79)

Ot t=1
where Fr(-) is the frozen function and uses the historical cached data, which updates every 5 rounds.
Besides, the server s stores and freezes the data uploaded by the client to compute the aggregated
data for 0p;, and traffic model 67p training in Egs. and respectively:

min
Opis

oRET , 24
| A RS 2 —log(P(X® e x%)) , if X% e x° 24)

RS
1! { —log(P(XRS € X®79)), if XFS e Fr(xR™9)
t=1

min £(0rp, Fr(DR79), D%) (25)
TP
ii) Parallel Optimization. To further improve the training parallelism, it proposes parallel optimiza-
tion to reduce data dependencies on the client and server. Specifically, the client ¢; caches and freezes
the local data for Hg;'n and @ parallel training in Eqs [22|and |23} as shown below:

min £(0g5,, X 7) = M Fr(L(0piy, X7%)) = Ao % Fr (L(05, X™9)), (26)
O,

|| R;S R;—S\\ ¢ vRiS ' 1y Ri—8
1 —log(P(X;" X X" Fr (X'
min —a E { Og( ( ¢ < ))71']( ¢ < ( ) 9 (27)

A S —log(P(X /"% € XR79)) [if X[%5 € Fr(xR™9)

Ry
Dis

0 t=1

where Fr (+) is the frozen function and uses the historical cached data, which updates each round.

C.2 Training Process

Before the training of the FedTT framework, clients (i.e., source cities) train the spatial view expansion
model fsy and the temporal view expansion model 07y in the TVI module 67y, by minimizing the
loss in Egs.[7]and[9] as shown below:
min L(Orvr, Vs, Vrv) = Igin L(Osy, Vsy) + Iginﬁ(@Tv, Vrv), (28)
vI N v
where Vgy and Vyy are the set of traffic subviews at different times obtained by spatial view extension
and temporal view enhancement, respectively. During the training of the FedTT framework, the client

¢; trains the local generator model A5 and the local discriminator model 6% by minimizing the loss
in Eqs.[20]and [21] as shown below:

min £(0¢,, Obis, Oy, X075, X7, 2705) 4 min £(0757, 25), (29)
0(}(:‘1 el)x‘j

where X is the traffic data consisting of the aggregated data 2777 and traffic data X of the
target city S, and X5 is the traffic data consisting of the aggregated data ?RHS and transformed
data X5 of the source city R;. Besides, the server s trains the global discriminator model 6p;,
and traffic model A7 by minimizing the loss in Egs.[T4]and 3] as shown below:

min £(0pis, A7) + min L(Orp, D78 DY), (30)

Dis
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—R—S . o ..
ess where D' is the aggregated traffic dataset whose traffic domain is transformed from source cities
659 to the target city S, and D? is the traffic dataset of the target city S.

Algorithm 1 The training of the FedTT framework in the client ¢;

1: Input: the server s (i.e., the target city ).
2: XTicComplete(Ory;, XT) // Complete the missing data.
3: for each training round tr = 1,2, ... do

4 foreachdataX(If,gE/’?R*,rzl,Z,...do
5 X{575 < Transform(05%,, X (14 // Transform the traffic data.
6: Classify(05, X (Jig_}S ) // Classify the transformed data.
7 iftr == 1and r == 1 then
8 E(RT”)_’S <+ Encrypt(X (133—>s ) // Encrypt the transformed data.
9: Send(s, Egi)%s ) // Send the transformed data.
10: else
11: if thzzsl and r == 2 then
12: E (72:)1; « Get(s,r) 1l 7g}etsthe encrypted aggregated data.
13: Y(le) — Decrypt(F(rjl)) // Decrypt the aggregated data.
14: else s
15: X(rjl) <+ Get(s,r) /] Get the aggregated data.
16: end if RS
17: Classify(05:, Y(T:)) // Classify the aggregated data.
18: X ((SH&R” — YEZS) +X (R;,;*)S -X (}fjl)s // Mask the transformed data.
19: Send(s, X((Sﬁs’ Ri)) // Send the mask data.
20: end if
21:  end for
22: end for

Algorithm 2 The training of the FedTT framework in the server s

1: Input: clients C = {c1,ca,...,c,} (i.e., source cities R = {R1, Ra,..., R, }).
2: for each training round tr = 1,2, ... do

3: forr=1,2,...do

4: iftr == 1 and r == 1 then

5: {E53_>S7 E(If_§_>57 ...} < Get(C,r) Il Get the encrypted data.

6: Fﬁ?s — > E(Iff)ﬁs // Aggregate the encrypted data.

7: Send(C, Eﬁfs) // Send the aggregated data.

8: else

9: {X(E7S ) X (RS0 |} « Get(C,r) /] Get the mask data.
10: YE,;)S — > X((g_’S’Ri’) —(n—1) =« Yﬁjls) /I Aggregate the mask data.
11: Classify(Opis, Yz)_)s) /I Classify the aggregated data.
12: Send(C, YZ?TS) // Send the aggregated data.
13: end if

14: end for
15: Classify(0pis, X°) I/ Classify the local data.
16:  Prediction(frp, ER_)S, X%) // Perform traffic prediction.
17: end for

es0 Training Algorithm. For convenient method reproduction, we provide detailed training Algorithms|T]
and [2|of the FedTT framework, including the client and server.

661
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In the client (i.e., Algorithm [T, the target city acts as the server (line 1). Before the training process,
the client completes the missing traffic data through the traffic view imputation method (line 2).
During each training round and each traffic data (lines 3—4), it first transforms the data from the
traffic domain of the source city to that of the target city (line 5) and classifies the transformed data
using the local discriminator model(line 6). If the training process is in the first round using the
first data instance (line 7), the client encrypts the transformed data using homomorphic encryption
and sends it to the server (lines 8-9). Otherwise, if the training process is in the first round using
the second data instance (lines 10-11), the client gets the encrypted data and decrypts it to get the
previous aggregated data (lines 12-13). For subsequent rounds or data instance, the client directly
gets the previous aggregated data from the server without decryption (lines 14-16). In either case, it
classifies the previous aggregated data using its local discriminator model (line 17). Then it masks
the transformed data using the previous aggregated and transformed data (line 18). Finally, it sends
the mask data to the server for data aggregation (lines 19-22).

In the server (i.e., Algorithm E]), the source cities act as the clients (line 1). During each training
round and each traffic data (lines 2-3), if the training process is in the first round using the first data
instance (line 4), the server gets the encrypted data from clients (line 5). Then, it aggregates them
by summing up, and send the aggregated encrypted data to back to the clients for further processing
(lines 6-7). For subsequent rounds or data instances (line 8), the server gets the mask data from clients
(line 9). Then, it aggregates the masked data using the previous aggregated data (line 10). Next, it
classifies the aggregated data using its global discriminator model and sends the aggregated data back
to the clients (lines 11-14). Finally, at the end of each training round, it classifies local traffic data
and performs traffic prediction using the aggregated and local traffic data (lines 15-17).

Complexity Analysis We also give the complete complexity analysis for the training of the FedTT
framework ie., Algorlthms [[] and [%} For the client (i.e., Algorithm [I)), the training complexit

is O((| (Fy x H) ) at each round. For the server (i.e., Algorithm [2)),
the trammg complex1ty is O((\MS| x (F1 X H)2 + MC(07p)) x (|X°] + 30, |XR1|)) at each
round. Here, i i i
respectively. Besides, | X' | and | x| are the number of traffic data in the source city R; and target
city S, respectively. In addition, F; = 3 is the dimensions of traffic data features, and H = 1024
is the hidden dimensions of the three-layer MLP model in 0 and 0. Moreover, MC(7p) is the
model complexity of O7p (i.e., Opyust).

>

C.3 Theoretical Privacy Analysis

The privacy protection mechanism of the proposed FedTT framework comprises two stages. First, it
uses the Traffic Domain Adapter (TDA) to transform the data from the traffic domain of source cities
to that of the target city, where the parameters of the TDA model are private and not shared with the
server and other clients. Second, it performs Traffic Secret Aggregation (TSA) to secure mask and
aggregate the transformed data. Consequently, an attacker must first reverse-engineer the transformed
data from the aggregated data and then infer the original traffic data from the transformed data. To
rigorously analyze the privacy-preserving capability of these two stages, we first define the threat
model as follows.

Threat Model. Following previous works [[76, 160, 79]] in federated learning scenarios, we assume
that the server acts as a semi-honest adversary who will honestly execute the required operations
(e.g., aggregation) but also remains curious about the private data in clients. In the FTT problem, the
server may perform inference attacks to infer the raw instance-level traffic data of clients based on
the adversary knowledge, including the client model architecture, privacy-preserving mechanism,
and the intermediate data (e.g., model parameters or training gradients) uploaded by clients.

Based on this, we analyze the privacy leakage of FedTT using mutual information [30] as follows.

Privacy Protection in Traffic Domain Adapter. Given the transformed data X% —~5 of the source
city R;, the attacker aims to infer the original traffic data X%, where X'~ is derived from X% in
Eq[I0]as shown below:

XRi 67'DA XR@*)S’ (31)

19



712
713

714
715
716

77
718
719
720

721
722
723

724
725

726
727

728
729
730

731

732

734
735

736

737

738
739

where the TDA model 07p, is private and inaccessible. Since this process represents a deterministic
mapping, the privacy leakage can be quantified as:

I(XRl7 XR,i—%S') — H(XR1—>S) _ H(XR1—>S|XRi) _ H(XRT',—)S), (32)
where H (-) denotes entropy and H (X =5 X fi) = 0 due to the nature of deterministic mapping.
Since X5 is derived from X' through the private TDA model f7p,4, the amount of privacy
leakage can be further expressed as follows:

I(XRL, XRj—}S) S I(XRZ : XRi%S’ 9TDA)
= I(XRl 3 9TDA) + I(XRl, XRI‘HSWTDA)
MmE
|07pal * [MS|”
where |07pa4| is the parameter space of the TDA model. As 7p4 aligns the distribution of X' %i—%) to
the traffic domain of the target city through traffic domain alignment, reducing its correlation with the

source city’s traffic domain, H (X %:=5|07p,) takes on a small value, thereby minimizing the privacy
leakage I (X R X Ri=5),

(33)

= H(XR’_>5|9TDA) x

Privacy Protection in Traffic Secure Aggregation. Given the aggregated data ?R%S, the attacker

aims to infer the transformer data X'~ of the source city R;, where X (Ri=5),Ri ig derived from
XEi=S in Eq as shown below:

_ 1 n
XR—)S _ E(XRi*)S + Z XRjHS) (34)
J=1&j#i

Since the traffic domains of source cities are aligned to that of the target city, they are from Independent
Identically Distributed (IID), and the privacy leakage can be quantified as:
I(XRi_)S;?R_)S) _ H(?R—n‘s‘) . H(?’R—)S‘Xm_)s)

< H(le—bS) _ H(l Z XR]'—>S)
n

35

J=1&j#i (33)
H(XRiHS) N 1

- n n* |M5]

Since the above two processes is a Markov Chain [44], i.e., X — xF:—5 fRﬁs, the total
amount of the privacy leakage can be bounded using the data processing inequality [56]:

TR X7 < min(1(07; F8), [RS8 X7

This analysis demonstrates that the FedTT framework effectively minimizes privacy leakage by
leveraging both TDA and TSA, ensuring robust privacy protection in federated traffic knowledge
transfer.

S min(H(XRi”SwTDA),

D Experimental Details

D.1 Baselines

We compare the FedTT framework with state-of-the-art baselines. First, we compare FedTT with three
SOTA transfer methods in Federated Traffic Knowledge Transfer (FTT), including T-ISTGNN [49]],
pFedCTP [[78]], and 2MGTCN [75]], as detailed below.

o T-ISTGNN [49]. It designs a spatio-temporal GNN-based approach with an inductive mode for
cross-region traffic prediction.

* pFedCTP [78]. It designs an ST-Net for privacy-preserving and cross-city traffic prediction with
personalized federated learning.
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* 2MGTCN [75]. It designs multi-modal GCNs and TCNss to capture spatial and temporal informa-
tion and enhance adaptability across cities.

Besides, we compare FedTT with three SOTA transfer methods in Multi-Source Traffic Knowledge
Transfer (MTT), including TPB [41]], ST-GFSL [43]], and DastNet [S7], as detailed below.

* TPB [41]. It utilizes a traffic patch encoder to create a traffic pattern bank for the cross-city
few-shot traffic knowledge transfer.

» ST-GFSL [43]. It transfers traffic knowledge through model parameter matching to retrieve similar
spatio-temporal features.

* DastNet [S7]. It employs graph learning and domain adaptation to create domain-invariant node
embeddings for the traffic data.

In addition, we compare FedTT with three SOTA transfer methods in Single-Source Traffic Knowl-
edge Transfer (STT), including CityTrans [47], TransGTR [27], and MGAT [46], as detailed below.

* CityTrans [47]. It proposes a domain adversarial model with knowledge transfer for spatio-
temporal prediction across cities.

* TransGTR [27]. It leverages adaptive spatio-temporal knowledge and domain-invariant features
for TP in data-scarce cities.

* MGAT [46]. It extracts multi-granular regional features from source cities to enhance the effective-
ness of knowledge transfer.

Moreover, we extend three classic and SOTA centralized traffic models in FedTT and the existing
two-stage transfer methods in FTT (referred as FTL), including Gated Recurrent Unit (GRU) [10],
Convolutional Neural Network (CNN) [32], Multi-Layer Perceptron (MLP) [55]], CityTrans [47],
TransGTR [27], and MGAT [46]], as detailed below.

* ST-SSL [23]. It models traffic data at attribute and structure levels for spatial and temporal
heterogeneous-aware traffic prediction.

* DyHSL [80]. It leverages hypergraph structure information to extract dynamic and high-order
relations of traffic road networks.

* PDFormer [24]. It introduces self-attention and feature transformation for dynamic and flow-
delay-aware traffic prediction.

To evaluate the Traffic View Imputation (TVI) method of FedTT in the ablation study, we replace
this module with three SOTA data imputation methods, including LATC [8], GCASTN [48]], and
Nuhuo [73]], as detailed below.

* LATC [8]. It integrates temporal variation as a regularization term to accurately impute missing
spatio-temporal traffic data.

* GCASTN [48]. It uses self-supervised learning and a missing-aware attention mechanism to
impute the missing traffic data.

* Nuhuo [73]]. It uses graph neural networks and self-supervised learning to accurately estimate
missing traffic speed histograms.

D.2 Model Adaptability

Table [ shows the overall performance when extending existing centralized traffic models (i.e.,
GRU [10], CNN [32], MLP [55], CityTrans [47], TransGTR [27], and MGAT [46]]) in FTT using
FedTT and FTL methods with MAE, where the best results are shown in blue. As observed, all
centralized traffic models extended in FedTT achieve the best performance compared to those
extended in FTL, also showing its effectiveness of traffic knowledge transfer in FTT, i.e., the gains
range from 5.13% to 64.65%. Note that the DyHSL model has the best performance in centralized
traffic models and is implemented in FedTT as the default model in other experiments.

D.3 Training Efficiency
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Table 4: The overall performance (MAE) comparison when extending centralized traffic models

M (P8, FT, HK) — P4 (P4, FT, HK) — P8 (P4, P8, HK) — FT (P4, P8, FT)— HK
odel Method
flow  speed oce flow  speed oce flow  speed oce flow  speed oce
GRU FTL' 2927 339 0.0282 2344 240 0.0253 21.16 12.18 0.0712 10.11 4.60 0.0125
FedTT 2593 224 0.0220 20.73 221 0.0213 17.34 5.67 0.0401 933 2.86 0.0101
CNN FTL 3146 455 0.0317 27.60 327 0.0267 2455 9.05 0.0803 974 592 0.0169
FedTT 26.82 2.84 0.0274 2220 241 0.0217 1744 6.27 0.0472 924 3.92 0.0113
MLP FTL 3401 3.66 0.0276 30.24 2.88 0.0246 22.66 1443 0.0743 10.87 523 0.0146
FedTT 28.08 2.17 0.0250 23.79 240 0.0212 17.66 7.35 0.0480 9.68 3.27 0.0102
ST-SSL FTL 26776 226 0.0176 20.06 188 0.0226 1943 7.78 0.0605 943 436 0.0117
FedTT 2228 1.34 0.0096 17.14 1.27 0.0114 1338 4.88 0.0400 8.76 1.65  0.0097
DyHSL FTL 1861 139 0.0131 1671 140 0.0144 1696 6.04 0.0324 863 297 0.0103
FedTT 16.69 1.03 0.0061 14.11 0.94 0.0059 12.10 3.24 0.0249 7.42 1.05  0.0087
PDFormer FTL 2699 231 0.0194 2285 1.80 0.0232 1792 6.57 0.0433 9.17 329 0.0108
FedTT 22.05 143 0.0125 17.67 136 0.0127 13.09 3.53 0.0314 8.22 122 0.0091

! FTL refers to the two-stage method of existing methods in FTT.

Fig. E] shows the communication size /7 pFedCTP [\ T-ISTGNN 257 TPB = ST-GFSL
(GB) and running time (minutes) of [ ]2MGTCN [ |DastNet |  |CityTrans [ |TransGTR [l MGAT
different methods on traffic flow pre- _ . 2100
diction. As observed, the FedTT & . aidn| &
framework has the least communica-  § ] ; ;E g
tion size and running time compared g, i ;§ =0

to other methods, i.e., with communi- 3 o0 ; éi é 1
Cation Overhead reduced by 90% and E (P8, FT, HK) lli4, . HK) (P4, S,HK) fPl’, FT) é 10 , FT, , FT, HK) (P4, P8, HK) lN,B.FI')
running time reduced by 1 to 2 orders M Pataset “Dataset. "
of magnitude, showing its superior (a) Communication size (b) Running time

efficiency of traffic knowledge trans-

fer in FTT. This is because FedTT se- Table 5: Training efficiency study of different methods
curely transmits and aggregates the

traffic domain-transformed data using the TST module with relatively small computation and com-
munication overheads, compared to other methods that employ the HE method for model secure
aggregation in FTT. Besides, FedTT utilizes the FPT module to reduce data transmission and train
models in parallel, significantly improving the training efficiency in FTT.

D.4 Parameter Sensitivity

Fig. [6] shows the performance of the
FedTT framework with different hy- = (P8, FT, HK)—P4 == (P4, FT, HK)—P8=Lr= (P4, P8, HK)—FT <7=(P4, P8, FT)—HK

perparameter settings (i.e., A1 and A3) 18 E\E\E——EI 18 5—F

on traffic flow prediction with MAE.

First, the suggestion and optimum m:m 2:2::2:2
value of \q is 0.7. As \; increases,

the generator model tends to gener- J VTV——¥ o VT—F— vV
ate the data that can "trick" the server 01 04 07 1 01 04 07 1

discriminator model rather than gen-
erating the high-quality traffic domain
transformed data, resulting in higher
MAE. As \; decreases, the server dis-
criminator model loses its ability to effectively guide the generator model in generating traffic domain
transformed data, resulting in higher MAE. Second, the suggestion and optimum value of A5 is 0.4.
As )\, increases, the generator model tends to generate the data with a traffic domain that deviates
significantly from that of the target city, resulting in higher MAE. As A\, decreases, the generator
model generates the data with a more local-specific traffic pattern, which hinders the model from
effectively learning the traffic patterns of the target city, resulting in higher MAE. Overall, FedTT has
the best performance in all hyperparameter settings when A\; = 0.7 and A = 0.4, which are used in
FedTT as the default values in other experiments.

Flow MAE
S
Flow MAE
[~

A
(a) Performance1 on different A, (b) Performance on different A,

Table 6: Parameter sensitivity of FedTT

D.5 Case Study

To demonstrate the practical applicability of FedTT in real-world traffic knowledge transfer scenarios,
we conduct a case study using the UTD19[42] dataset, which includes traffic data from 40 cities
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Table 7: Statistics of evaluated cities in UTD19

City #instances # sensors Interval ~Missing Rate
London 6454 5719 5 min 19.47%
Hamburg 50142 418 3 min 2.66%

Manchester 6984 181 5 min 10.61%
Madrid 4560 1116 5 min 16.02%
Groningen 525 55 5 min 1.75%

worldwide. For comparison, we select 2MGTCN, as it performs the best among the three existing
methods in FTT (see Table d.1)). In this scenario, Groningen is chosen as the target city due to its
limited traffic data and relatively sparse sensor deployment, making it challenging to train a high-
performance traffic model independently. In contrast, London, Hamburg, Madrid, and Manchester are
chosen as source cities because they possess significantly larger datasets and denser sensor networks,
providing abundant traffic data for effective knowledge transfer. The statistics of these cities is
summarized in Table[7] Since the sampling intervals of traffic data vary across cities, we resample all
datasets in a uniform interval of 15 minutes to ensure that the temporal discrepancies between cities

do not affect the model performance.
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2800
% 2100 E
;f:’ 14001 1
J
'_
700 E
G 1 1 1 1 1 1 - 1
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2017-09-21
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=
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(c) Sensor PGRO1_101761_Sontweg NO_ID_8812_1

Figure 10: Visualization of traffic flow prediction in groningen
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The traffic flow results of three sensors (i.e., PGR01_101725_G172_Emmaviaduct_Z_ID_8650_1,
PGRO1_101727_Hereweg_Z _ID_8610_2, and PGRO1_101761_Sontweg NO_ID_8812_1) on
September 21, 2017 in Groningen are shown in Fig. [I0] As observed, the prediction of FedTT
aligns well with the ground truth, while 2MGTCN can only learn the general trend of traffic flow.
Taking sensor PGRO1_101761_Sontweg_NO_ID_8812_1 as an example. FedTT and 2MGTCN
excels from 0:00 a.m. to 6:00 a.m., a period characterized by relatively smooth traffic flow. Through-
out the peak hours, from 6 a.m. to 6 p.m., when traffic flow fluctuations are pronounced, FedTT
showcases adaptability by learning from the rapid increase and decrease in traffic, while 2MGTCN
predicts a relatively smooth traffic flow that does not match the real one. Between 6 p.m. and 12 a.m.,
as the traffic flow gradually decreases and stabilizes, FedTT maintains relatively accurate predictions
compared to 2MGTCN. In summary, the FedTT framework demonstrates its robust performance on
real-world traffic knowledge transfer scenarios, yielding satisfactory and accurate prediction results
in forecasting the traffic flow across different periods.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction cover the contributions and scope of the paper
regarding building a federated traffic knowledge transfer framework.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discuss the limitations of our work in Section[3l

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: We provide the theoretical privacy analysis in Appendix [C.3]

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have detailed the experimental settings in Section[d] All code and data are
available at https://anonymous.4open.science/r/FedTT.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We share all code and data at https://anonymous.4open.science/r/
FedTT.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We have detailed the experimental settings in Section 4]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: The experimental results reported in the paper are the average values of five
independent experimental runs, but error bars are not included.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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10.

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have provided detailed information about the computer resources in Section

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: No NeurIPS code of ethics were violated.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have discussed the societal impacts of federated traffic knowledge transfer
in Section

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We ensure that the assets we use are credited.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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