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Abstract

Traffic prediction aims to forecast future traffic conditions using historical traffic1

data, serving a crucial role in urban computing and transportation management.2

While transfer learning and federated learning have been employed to address the3

scarcity of traffic data by transferring traffic knowledge from data-rich to data-4

scarce cities without traffic data exchange, existing approaches in Federated Traffic5

Knowledge Transfer (FTT) still face several critical challenges such as potential6

privacy leakage, cross-city data distribution discrepancies, and low data quality,7

hindering their practical application in real-world scenarios. To this end, we present8

FedTT, a novel privacy-aware and efficient federated learning framework for cross-9

city traffic knowledge transfer. Specifically, our proposed framework includes10

three key innovations: (i) a traffic view imputation method for missing traffic11

data completion to enhance data quality, (ii) a traffic domain adapter for uniform12

traffic data transformation to address data distribution discrepancies, and (iii) a13

traffic secret aggregation protocol for secure traffic data aggregation to safeguard14

data privacy. Extensive experiments on 4 real-world datasets demonstrate that the15

proposed FedTT framework outperforms the 14 state-of-the-art baselines. All code16

and data are available at https://anonymous.4open.science/r/FedTT.17

1 Introduction18

Traffic Prediction (TP) [70, 51, 80] leverages widespread sensors in the road network to forecast19

traffic conditions based on historical traffic data (e.g. traffic flow, speed, and occupancy), which not20

only facilitates the effective allocation of public transportation resources [45] but also contributes to21

alleviating traffic congestion [74]. To achieve accurate TP, numerous methods have been proposed [80,22

23, 24], which typically rely on a large number of traffic data to train high-performing traffic models.23

However, urban traffic data is often insufficient or unavailable [36, 63, 65], particularly in emerging24

cities, such as developing regions in the Midwestern United States [1], where sensors are newly25

deployed or data collection is still in its early stages. In such cases, training traffic models becomes26

particularly challenging and prone to overfitting, limiting the accuracy of TP tasks [27, 46].27
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Figure 1: Privacy-preserving traffic knowledge transfer

Transfer Learning (TL) [59, 13], a28

knowledge transfer paradigm, has been29

widely adopted in TP scenarios to ad-30

dress the scarcity of traffic data. To im-31

prove the performance of traffic models32

in data-scarce target cities, existing TL-33

based TP methods [41, 43, 57] transfer34

traffic knowledge from data-rich source35

cities to target cities, which typically rely36

on centralized frameworks and involve37

the exchange of traffic data among cities38
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without considering data privacy. However, the direct sharing of traffic data risks privacy leak-39

age [39, 45, 70] as such data may contain sensitive personal information. For example, sparse40

traffic flow data may allow attackers to infer the presence and approximate locations of individual41

vehicles [6, 7]. Besides, many privacy laws and regulations, such as GDPR [5] and CCPA [4], man-42

date data collectors to minimize non-essential data transmission and avoid centralized data storage.43

Therefore, maintaining the decentralization of traffic data in TP is critical. As shown in Fig. 1(a),44

PeMSD4 [3], FT-AED [12], HK-Traffic [2], and PeMSD8 [3] are four real-world traffic datasets,45

which correspond to the cities of San Francisco (SF), Nashville (NV), Hong Kong (HK), and San46

Bernardino (SB), respectively. Among these, SF, NV, and HK represent source cities, while SB serves47

as the target city. Due to legal restrictions, traffic data cannot be exchanged among cities, meaning48

each city can only access its local data. In this case, transferring traffic knowledge from these three49

source cities to the target city without exchanging raw traffic data becomes challenging.50

Federated Learning (FL) [68, 37, 70], a privacy-preserving distributed learning paradigm, has been51

widely used in numerous applications to address privacy concerns such as urban computing [66] and52

transportation management [70]. For instance, JD Company (one of the largest e-commerce compa-53

nies in China) developed the Fedlearn platform to help protect data privacy for TP applications [20].54

Inspired by its success, recent studies [49, 78] have explored the FL framework to transfer traffic55

knowledge while preserving data privacy, which typically follow a two-stage process, as illustrated in56

Fig. 1(b). In the first stage, the three source cities (i.e., SF, NV, and HK), as clients, use their local57

traffic data to train individual local models. Subsequently, clients upload training gradients or model58

parameters to a central server, which aggregates to a global traffic model and then broadcasts the59

global model back to clients for local model updates. This process iterates until the global model60

converges. In the second stage, the converged global model is shared with the target city (i.e., SB)61

and further fine-tuned using its local traffic data. While this two-stage knowledge transfer framework62

has become the mainstream approach in Federated Traffic Knowledge Transfer (FTT), it faces63

three unresolved challenges, i.e., privacy, effectiveness, and robustness, that hinder its application in64

real-world traffic knowledge transfer scenarios, as illustrated in Fig. 2.65
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Figure 2: Four unresolved challenges in federated traffic knowledge transfer (FTT)

Challenge 1: How to effectively protect data privacy in FTT? Although existing methods utilize FL66

to avoid raw data exchange, there remains a potential risk of data privacy leakage. This arises because67

these methods require the uploading of training gradients or model parameters for aggregation in FTT,68

which may allow attackers to infer raw data by inference attacks [18, 67, 81], as depicted in Fig. 2(a).69

To mitigate this risk, a straightforward approach is to apply privacy-preserving techniques such as70

Homomorphic Encryption (HE) [52] and Differential Privacy (DP) [16] for secure aggregation on71

the uploaded data. However, HE introduces significant computation and communication overheads,72

which diminishes training efficiency, while DP lowers data utility and thus decreases model accuracy,73

as proved by previous studies [64, 58, 15]. Therefore, how to effectively safeguard data privacy in74

FTT without compromising training efficiency and model accuracy remains a significant challenge.75

Challenge 2: How to mitigate the impact of cross-city data distribution discrepancies on FTT?76

None of the previous studies have considered the discrepancies in traffic data distribution across77

cities, which decreases the effectiveness of traffic knowledge transfer [41, 43, 57]. Specifically, the78

traffic domain varies significantly across cities, with distinct distributions of traffic flow, speed, and79

occupancy data. As shown in Fig. 2(b), we illustrate the frequency density distribution of traffic speed80

data for SF, NV, HK, and SB. As observed, SF and SB exhibit similar data distributions, suggesting81

closely related traffic domains, while NV and SB show different data distributions, indicating quite82

distinct traffic domains. Consequently, traffic knowledge transfer from SF to SB results in smaller83

prediction errors and is more effective than the transfer from NV to SB. Overall, how to address84

traffic domain discrepancies across cities to improve the effectiveness of FTT is an urgent challenge.85
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Challenge 3: How to overcome low traffic data quality issues in FTT? Existing methods assume86

that traffic data is consistently high-quality and reliable, neglecting the prevalence of missing data.87

As shown in Fig. 2(c), we illustrate the number of available sensors over a week in HK, which has88

411 sensors in total. Due to sensor failures or updates [73, 50], the number of available sensors in89

HK may fluctuate over time, disrupting the model training process. While some data imputation90

methods [8, 48, 73] can be employed to complete missing data, they fail to effectively capture the91

spatio-temporal dependencies inherent in traffic data, leading to suboptimal accuracy. Consequently,92

how to enhance the traffic data quality to improve the robustness of FTT is another challenge.93

Contributions. To address these challenges, we propose FedTT, a privacy-preserving and efficient94

Federated learning framework for cross-city Traffic knowledge Transfer. Unlike existing FTT95

methods, FedTT transforms the traffic data from the source cities’ domain to the target city’s domain96

and training the target city’s model on the transformed data. To address Challenge 1, FedTT97

introduces the Traffic Secret Aggregation (TSA) protocol to securely aggregate the transformed data98

without compromising training efficiency or model accuracy. To overcome Challenge 2, FedTT99

develops the Traffic Domain Adapter (TDA) to uniformly transform the traffic data from source cities’100

domains to that of the target city through traffic domain transformation, alignment, and classification.101

To deal with Challenge 3, FedTT designs the Traffic View Imputation (TVI) method to complete102

missing traffic data by capturing the spatio-temporal dependencies. Finally, extensive experiments103

conducted on 4 real-world datasets demonstrate that FedTT achieves state-of-the-art performance,104

reducing prediction MAE by 5.43% to 75.24% and maintaining Pearson Correlation Coefficient105

(PCC) of data reconstruction attacks at no more than 10% compared to 14 baseline methods.106

2 Problem Definitions107

The frequently used notations and descriptions in this paper are shown in Appendix B.108

Definition 1 (Road Network). The road network is a weighted graph G = (M, E , A), where109

M = {m1,m2, . . . } is the set of sensors, E ⊆ M×M is the set of edges, and A ∈ R|M|×|M| is110

the weighted adjacency matrix of edges. Here, mi denotes the sensor with index i.111

Definition 2 (Traffic Data). Given the available sensors Mt = {mi | i ≤ |M|}, the traffic data is112

denoted as X = {X1, X2, . . . }, where Xt ∈ R|Mt|×F1 is the traffic data of |Mt| available sensors113

at time t. Here, F1 denotes the number of traffic data features. For instance, F1 = 3 when the traffic114

data includes flow, speed, and occupancy data.115

Problem Formulation (FTT). In federated learning, multiple clients C = {c1, c2, . . . , cn} collab-116

oratively train a global model using their local data. In the first stage, FTT trains a traffic model117

θTP to learn traffic knowledge from source citiesR = {R1, R2, . . . , Rn}, where each source city Ri118

corresponds to a client ci, as formally shown below:119

min
θTP

1

n

n∑
i=1

L(θTP, D
Ri), (1)

where L(·) is the loss function, and DRi = {XRi
1 , XRi

2 , . . . ;GRi} is the traffic dataset of the source120

city Ri. Here, GRi and XRi
t are the road network and the traffic data at time t of the source city Ri.121

In the second stage, given target city’ dataset DS = {XS
1 , X

S
2 , . . . ;GS}, FTT predicts the next T ′122

traffic data based on the T historical observations at time t in the target city S, as shown below:123

{XS
t−T+1, X

S
t−T+2, ..., X

S
t ;GS}

θTP−→ {XS
t+1, X

S
t+2, ..., X

S
t+T ′} (2)

3 Our Methods124

Fig. 3 illustrates the architecture of the proposed FedTT framework, which comprises three modules:125

Traffic View Imputation (TVI), Traffic Domain Adapter (TDA), and Traffic Secret Aggregation126

(TSA). As shown in Fig. 3(a), FedTT comprises n clients C = {c1, c2, . . . , cn} and a central server s.127

Specifically, each source city Ri is treated as a client ci, while the target city S is treated as the server128

s. The traffic domains of the data in clients are transformed to align with the server’s domain, and the129

server’s traffic model is trained on this transformed data uploaded by clients. Consequently, the FTT130

problem defined in Eqs. 1 and 2 is reformulated to minimize the sum of the following losses:131

min
θTP

1

n

n∑
i=1

L(θTP, D
Ri→S , DS), (3)
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Figure 3: The architecture of the proposed FedTT framework

where DRi→S represents the traffic dataset whose domain is transformed from the source city Ri132

to the target city S. The overall process of FedTDP is as following. First, the TVI module captures133

spatial and temporal dependencies within the traffic data to extend and enhance the traffic view (①–②),134

as shown in Fig. 3(b). Then, the TDA module conducts traffic domain transformation and alignment135

for the source cities’ data (③–④). Besides, the module performs traffic domain classification to136

categorize the traffic data domain (⑤), as shown in Fig. 3(c). Finally, the TSA module employs the137

proposed traffic secret aggregation method to securely mask and aggregate the transformed data from138

source cities (⑥–⑦), as shown in Fig. 3(d). The target of our FedTT is to transfer traffic knowledge139

across cities while preserving privacy, handling data discrepancies and low data quality challenges.140

3.1 Traffic View Imputation141
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Design Motivation. Existing federated traffic142

transfer methods often overlook the challenges143

associated with low-quality traffic data, espe-144

cially when missing data is prevalent, thereby145

significantly undermining the performance of146

traffic knowledge transfer models. Although147

some data augmentation methods [8, 48, 73] can148

be leveraged for imputation, they fail to effec-149

tively capture the spatio-temporal dependencies150

of data, leading to suboptimal accuracy. In con-151

trast, we propose the Traffic View Imputation152

(TVI) method to enhance traffic data quality by153

completing missing traffic data through a com-154

prehensive exploration of the spatial and temporal dependencies inherent in traffic data:155

{X1, X2, . . . ;G}
θTVI−−→ {X̃1, X̃2, . . .}, (4)

where θTVI is the TVI model consisting of a spatial view extension model θSV and a temporal view156

enhancement model θTV. Besides, X̃t is the imputed traffic data of all sensors. In addition, the traffic157

view represents the traffic data of all sensors at a certain time, as defined below.158

Definition 4 (Traffic View). A traffic view is the snapshot of traffic data of sensorsM at time t,159

consisting of a set of multi-level traffic subviews, denoted as Vt = {v1t , v2t , . . . v
|Mt|
t }, where i-level160

traffic subview vit is a set of traffic data of i sensors at time t.161

i) Spatial View Extension. In the first stage, TVI extends the |M|-level traffic subview at time t:162

{v1t , v2t , . . . v
|Mt|
t ;G} θSV−−→ sv|M|

t , (5)

where θSV denotes the spatial view extension model and sv|M|
t represents the extended |M|-level163

traffic subview at time t. As shown in Fig. 4(a), it first computes the shortest distance matrix164

A = {A1, A2, . . . , A|M|}, where Ai represents the shortest distance tensor of sensor mi to other165

sensors. This is computed using Dijkstra’s algorithm [14] with the weighted adjacency matrix A.166

Next, the feature of each sensor is computed, i.e., hi = θGAT(Ai), where hi represents the K-head167

feature of sensor mi with F2 feature dimensions, and θGAT is the Graph Attention Network (GAT)168

model [61] with K = 8 and F2 = 128. Additionally, the extension of multi-level traffic subviews is169

averaged to obtain the |M|-level traffic subview with a Multi-Layer Perception (MLP [54]) θE :170

sv|M|
t =

1

|Vt|

|Vt|∑
i=1

1

|vit|

|vi
t|∑

j=1

θE(
1

i

i∑
k=1

(H(vit[j][k]) · (vit[j][k])
⊤
)), (6)

4



where vit[j][k] represents the traffic data of the k-th sensor in the j-th combination within the i-level171

traffic subview at time t, and H(vit[j][k]) ∈ RK×F2×1 represents the multi-head feature of the sensor172

corresponding to vit[j][k]. Finally, it computes the loss of available sensors to train the θSV model:173

min
θSV

L(θSV,VSV) = min
θSV

1

|VSV|

|VSV|∑
t=1

1

|Mt|
(sv|Mt|

t −Xt), (7)

where VSV = {sv|M|
1 , sv|M|

2 , . . .} is the set of extended traffic subviews at different times, and sv|Mt|
t174

is the predicted traffic data of available sensors at time t.175

ii) Temporal View Enhancement. As shown in Fig. 4(b), in the second stage, TVI enhances the176

|M|-level traffic subview based on the preceding/succeeding T |M|-level traffic subviews:177

{sv|M|
t−T ,sv|M|

t−T+1, . . . , sv|M|
t−1}

θTV−−→ tv|M|
t ,

{sv|M|
t+T ,sv|M|

t+T−1, . . . , sv|M|
t+1 }

θTV−−→ tv|M|
t ,

(8)

where tv|M|
t represents the enhanced |M|-level traffic subview, whose final value is the average of the178

above two results. Besides, θTV is the temporal view enhancement model, which employs the SOTA179

DyHSL traffic model [80]. Then, it computes the loss of available sensors to train the θTV model:180

min
θTV

L(θTV, V
|M|) = min

θTV

1

|V |M||

|V |M||∑
t=1

1

|Mt|
(tv|Mt|

t −Xt), (9)

where VTV = {tv|M|
1 , tv|M|

2 , . . .} represents the set of enhanced traffic subviews and tv|Mt|
t is the181

predicted traffic data of the available sensors at time t. Finally, we get the predicted traffic data of all182

|M| sensors X̃t = tv|M|
t . Note that the training of the TVI model is completed before the training of183

the FedTT framework, as it only needs to be conducted within each city.184
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Design Motivation. None of the existing ap-186

proaches consider traffic data distribution dis-187

crepancies between the source and target cities188

in FTT, which decreases the effectiveness of189

traffic knowledge transfer. Motivated by this, to190

reduce the impact of traffic data distribution dis-191

crepancies on model performance, we propose192

the Traffic Domain Adapter (TDA) module, as193

shown in Fig. 5. This module reduces traffic do-194

main discrepancies by uniformly transforming195

data from the traffic domain of the source city196

("source domain" for short) to the traffic domain197

of the target city ("target domain" for short):198

{X̃R
1 , X̃R

2 , . . .} θTDA−−→ {XR→S
1 , XR→S

2 , . . .}, (10)

where XR→S
t is the transformed data of |MS | sensors, and θTDA is a generative adversarial net-199

work [62] consisting of a generator model θGen and a discriminator model θDis.200

i) Traffic Domain Transformation. In the first step, TDA uses the generator model, road network,201

and traffic domain prototype to transform the traffic data from the source domain to the target domain,202

as shown in Fig. 5 (①), where the traffic domain prototype is the representative traffic sample that203

can reflect the main feature of traffic data in the domain, as formally defined below.204

Definition 5 (Traffic Domain Prototype). Given the traffic data X = {X1, X2, . . .} in a traffic205

domain, a traffic domain prototype P is the central traffic data, which is computed as the averaged206

value of all traffic data, i.e., P = 1
|X |

∑|X |
t=1 Xt.207

First, it computes the transformation matrix AG of the road network through (AG)
⊤ · GR ·AG = GS ,208

where AG can learn the road network information of the source and target cities, which is computed209

by the gradient descent method [53]. Similarly, it then computes the transformation matrix AP of the210

traffic domain prototype through AP · PR = PS , where PR and PS are traffic domain prototypes of211
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the source and target cities, respectively. Here, AP can learn the traffic domain prototype information212

of the source and target cities, which is computed by the gradient descent method. Then, the generator213

model leverages AG and AP to transform the traffic data using MLP models θG , θP , and θX :214

XR→S
t = θG(AG · X̃R

t ) + θP(AP · X̃R
t ) + θX(X̃R

t ), (11)

ii) Traffic Domain Alignment. In the second step, TDA trains the generator model θGen, as shown in215

Fig. 5 (②). Specifically, it aligns the transformed data XR→S = {XR→S
1 , XR→S

2 , . . .} of the source216

city with the traffic domain prototype PS of the target city S, as described below:217

min
θGen

L(θGen,XR→S) = min
θGen

1

|XR→S |

|XR→S |∑
t=1

1

|MS |
(XR→S

t − PS), (12)

iii) Traffic Domain Classification. In the third step, TDA trains the discriminator model θDis to218

classify the traffic data domain (⑤–⑥ shown in Fig. 5), as shown below:219

θDis(X
RS
t ∈ X RS) =

{
P (XRS

t ∈ XR→S)

P (XRS
t ∈ XS)

, (13)

where X RS = {XRS
1 , XRS

2 , . . .} is the traffic data mixed with the transformed data XR→S of the220

source city and the traffic data XS of the target city. Besides, discriminator model θDis is a MLP221

model. Then, the training process of θDis is shown below:222

min
θDis

L(θDis,X RS) = min
θDis

1

|X RS|

|X RS|∑
t=1

{
− log(P (XRS

t ∈ XR→S)), if XRS
t ∈ XR→S

− log(P (XRS
t ∈ XS)) , if XRS

t ∈ XS
(14)

Next, we update the training process of the generator model θGen in Eq. 12, as shown below:223

min
θGen

L(θGen, θDis,XR→S ,X RS) = min
θGen

L(θGen,XR→S)− λ1L(θDis,X RS), (15)

where λ1 is the hyperparameter to control the trade-off between generator loss and discriminator loss.224

3.3 Traffic Secret Aggregation225

Design Motivation. Existing works upload gradients or models for aggregation in FTT, where226

attackers derive the traffic data through inference attacks [18, 67, 81]. Although techniques such as227

Homomorphic Encryption (HE) [52] and Differential Privacy (DP) [16] can be employed for secure228

aggregation, they come with notable trade-offs. Specifically, HE introduces significant computational229

and communication overheads, reducing training efficiency, while DP reduces the data utility, leading230

to lower model accuracy. In contrast, we design the Traffic Secret Aggregation (TSA) protocol231

that securely transmits and aggregates the transformed data from source cities to protect traffic data232

privacy without sacrificing the training efficiency or model accuracy, as shown in Fig. 5 (③–④).233

Specifically, it first masks the r-th transformed data Ri X
Ri→S
(r) in the client ci, as shown below:234

X
(R→S, Ri)
(r) = X

R→S

(r−1) +
XRi→S

(r) −XRi→S
(r−1)

n
, (16)

where X
R→S

(r) is r-th aggregated data. Besides, X(R→S, Ri)
(r) is the r-th mask data computed in the235

client ci and transmitted to the server. Note that, when r = 0, the client uses HE to encrypt its236

transformed data and transmitted the encrypted data to the server for initial aggregation. Then, the237

server computes the sum of mask data from all source cities, as shown below:238

n∑
i=1

X
(R→S, Ri)
(r) = n ∗XR→S

(r−1) +
1

n
∗

n∑
i=1

XRi→S
(r) − 1

n
∗

n∑
i=1

XRi→S
(r−1)

= n ∗XR→S

(r−1) +X
R→S

(r) −X
R→S

(r−1)

= (n− 1) ∗XR→S

(r−1) +X
R→S

(r)

(17)

Finally, the server gets the r-th aggregated data using the previous aggregated data, as shown below:239

XR→S

(r) =

n∑
i=1

X (R→S, Ri)
(r) − (n− 1) ∗ XR→S

(r−1) (18)

6



In this way, it ensures that only the aggregated data can be accessed without revealing the individual240

transformed data. Besides, the client ci can train a local discriminator model θRi
Dis to classify the241

aggregated data and individual transformed data (⑦–⑧ shown in Fig. 5), as shown below:242

θRi
Dis(X

RiS
t ∈ XRiS) =

{
P (XRiS

t ∈ XRi→S)

P (XRiS
t ∈ XR→S

)
, (19)

where XRiS = {XRiS
1 , XRiS

2 , . . .} is the traffic data mixed with the aggregated data XR→S
and243

transformed data XRi→S . Besides, θRi
Dis is a MLP model and its training process is shown below:244

min
θ
Ri
Dis

L(θRi
Dis,X

RiS) = min
θ
Ri
Dis

1

|XRiS |

|XRiS |∑
t=1

{
− log(P (XRiS

t ∈ XRi→S)), if XRiS
t ∈ XRi→S

− log(P (XRiS
t ∈ XR→S)), if XRiS

t ∈ XR→S
(20)

Therefore, given the traffic data XRS = {XRS
1 , XRS

2 , . . .} consisting of aggregated data XR→S
and245

traffic data XS , the updated training process of the generator model θGen in Eq. 15 is shown below:246

min
θ
Ri
Gen

L(θRi

Gen,X
Ri→S)− λ1L(θDis,XRS)− λ2L(θRi

Dis,XRiS), (21)

where θRi

Gen and θDis are the local generator model and global discriminator model in the client ci247

and server s, respectively. Here, λ1 and λ2 are the hyperparameter to control the trade-off between248

generator loss and discriminator loss.249

The overall training process and theoretical privacy analysis of FedTT are shown in Appendix C.250

4 Experiment251

Table 1: Statistics of evaluated datasets
Dataset # instances # sensors Interval City Missing Rate

PeMSD4 16992 307 5 min San Francisco 16.35%
PeMSD8 17856 170 5 min San Bernardino 20.09%
FT-AED 1920 196 5 min Nashville 4.59%

HK-Traffic 17856 411 5 min Hong Kong 13.01%

Datasets. We use four traffic datasets to evaluate the proposed FedTT framework in experiments,252

which are widely used in traffic prediction tasks [80, 23, 24], as shown in Table 1. Specifically,253

PeMSD4 (P4) [3], PeMSD8 (P8) [3], FT-AED (FT) [12], and HK-Traffic (HK) [2] were collected254

in the San Francisco, San Bernardino, Nashville, and Hong Kong, respectively. Among them, three255

datasets are considered as three source cities, and one dataset serves as the target city, leading to four256

scenarios: (P8, FT, HK)→ P4, (P4, FT, HK)→ P8, (P4, P8, HK)→ FT, and (P4, P8, FT)→ HK.257

Besides, we select traffic flow, speed, and occupancy prediction tasks for experiments, which are also258

widely studied in the community [80, 23, 24]. In addition, we report the rate of missing traffic data in259

these datasets, which reveals varying levels of traffic data quality issues.260

Baselines. We compare FedTT with (i) three SOTA methods in FTT including T-ISTGNN [49],261

pFedCTP [78], and 2MGTCN [75], (ii) three SOTA Multi-Source Traffic Knowledge Transfer262

methods (MTT) extended for the FTT problem including TPB [41], ST-GFSL [43], and DastNet [57],263

and (iii) three SOTA Single-Source Traffic Knowledge Transfer methods (STT) for the FTT264

problem including CityTrans [47], TransGTR [27], and MGAT [46]. In addition, we replace the265

TVI module of FedTT with three SOTA data imputation methods (LATC [8], GCASTN [48], and266

Nuhuo [73]) to evaluate its effects. More details about these baselines are provided in Appendix D.1.267

Evaluation Metrics. We use Mean Absolute Error (MAE), Root Mean Square Error (RMSE),268

communication size (GB), and running time (minutes) to evaluate the utility in experiments. Besides,269

Mean Square Error (MSE) and Pearson Correlation Coefficient (PCC) between the reconstructed data270

and the ground truth data to measure the privacy-preserving ability of different methods.271

Implementation. All baselines run under their optimal settings. Besides, we use 5% train data, 10%272

validation data, and 10% test data in the target city. In addition, the MLP model used in FedTT is273

three-layer with the GELU [21] activation and 1024 hidden dimensions. Moreover, all experiments274

are conducted with four nodes, one as a server and the other three nodes as clients, each equipped275

with two Intel Xeon CPU E5-2650 12-core processors and two NVIDIA GeForce RTX 3090.276
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Table 2: The overall performance comparison between different methods

Metric Method (P8, FT, HK)→ P41 (P4, FT, HK)→ P8 (P4, P8, HK)→ FT (P4, P8, FT)→ HK
flow speed occ flow speed occ flow speed occ flow speed occ

MAE

2MGTCN 20.34 1.27 0.0077 16.39 1.09 0.0069 13.86 4.77 0.0355 8.49 1.38 0.0094
pFedCTP 21.24 1.52 0.0079 17.06 1.22 0.0072 13.92 5.78 0.0415 9.22 1.22 0.0102

T-ISTGNN 27.24 2.03 0.0219 22.75 1.84 0.0235 20.83 9.69 0.0571 9.98 4.24 0.0121
TPB 21.06 1.28 0.0134 17.11 1.12 0.0081 13.03 3.59 0.0276 8.36 1.52 0.0092

ST-GFSL 23.05 1.47 0.0161 19.86 1.47 0.0159 18.00 5.25 0.0385 8.42 2.03 0.0101
DastNet 26.89 1.54 0.0165 19.58 1.41 0.0134 15.44 4.62 0.0421 9.09 3.85 0.0135

CityTrans 23.94 1.38 0.0119 18.51 1.18 0.0108 13.06 3.60 0.0359 8.78 1.84 0.0116
TransGTR 24.32 1.39 0.0135 19.53 1.18 0.0089 13.27 4.80 0.0337 9.09 3.92 0.0102

MGAT 24.78 1.58 0.0195 20.16 1.67 0.0160 20.08 8.00 0.0469 9.14 2.88 0.0101
FedTT 16.69 1.03 0.0061 14.11 0.94 0.0059 12.10 3.24 0.0249 7.42 1.05 0.0087

RMSE

2MGTCN 31.61 2.27 0.0179 25.95 2.18 0.0131 17.03 7.49 0.0644 12.11 3.25 0.00167
pFedCTP 33.03 3.12 0.0188 26.19 2.62 0.0164 19.94 9.84 0.0756 13.31 2.62 0.0212

T-ISTGNN 35.95 4.14 0.0281 31.10 3.37 0.0305 29.42 13.17 0.1127 15.68 6.31 0.0230
TPB 31.75 2.31 0.0201 26.35 2.19 0.0126 16.34 6.07 0.0493 11.89 2.98 0.0152

ST-GFSL 33.65 3.29 0.0237 30.66 3.12 0.0260 22.10 9.69 0.0652 12.89 4.73 0.0156
DastNet 34.96 3.41 0.0274 27.45 3.10 0.0299 22.64 9.72 0.0691 13.63 5.82 0.0236

CityTrans 32.04 2.46 0.0237 27.91 2.20 0.0226 18.86 9.82 0.0514 13.45 4.72 0.0212
TransGTR 33.66 2.43 0.0198 26.41 2.27 0.0147 17.11 7.96 0.0579 12.23 6.77 0.0180

MGAT 32.85 3.43 0.0283 30.77 3.20 0.0262 24.62 11.05 0.1028 12.03 5.11 0.0162
FedTT 27.48 1.93 0.0166 24.29 1.94 0.0099 15.91 5.50 0.0372 8.57 2.40 0.0145

1 P4, P8, FT, and HK denote PeMSD4, PeMSD8, FT-AED, and HK-Traffic datasets, respectively.

4.1 Overall Performance277

To show the overall performance of different methods on traffic flow, speed, and occupancy ("occ"278

for short) predictions tasks, we take 60 minutes (12-time steps) of historical data as input and output279

the traffic prediction in the next 15 minutes (3-time steps), as shown in Table 2, where the best results280

are shown in blue. Here, the DyHSL [80] model is implemented in FedTT as it achieves the state-of-281

the-art performance in the centralized traffic model. As observed, the proposed FedTT framework282

achieves the best performance on different traffic datasets and traffic prediction tasks compared to283

other methods, showing its effectiveness of traffic knowledge transfer in the FTT problem, i.e., the284

gains range from 5.43% to 75.24% in MAE and 2.63% to 67.54% in RMSE.285

4.2 Privacy Protection Study286

Figure 6: Privacy protection study

To evaluate the privacy-preserving capabilities,287

we conduct the data reconstruction attack to dif-288

ferent methods across datasets on traffic flow289

prediction using MSE and PCC, as illustrated290

in Fig. 6. As observed, FedTT demonstrates ro-291

bust resistance to the data reconstruction attack,292

achieving a high MSE and maintaining a PCC293

within 2.17% to 8.81%, not exceeding 10%,294

while other methods exhibit weaker defenses,295

with a lower MSE and PCC larger than 40%.296

These findings underscore the superiority and effectiveness of privacy protection provided by the297

proposed FedTT framework in FTT and highlight the limitations of privacy preservation mechanisms298

based solely on traditional federated learning frameworks.299

Figure 7: Ablation study of FedTT
4.3 Ablation Study300

Fig. 7 shows the ablation study, where we removed the module of FedTT one at a time, namely FedTT301

without TVI (w/o TVI), FedTT without TDA (w/o TDA), and FedTT without TSA (w/o TSA). First,302

when TVI is absent, MAE increases by 1.49% to 9.23%, underscoring its pivotal role as an effective303

way to complete the missing data. Besides, the training of TVI is completed before the FedTT’s304

training as it only needs to be conducted within each source city, thus not increasing communication305
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overhead or running time during FedTT’s training. Additionally, compared to other data imputation306

methods (i.e., LATC, GCASTN, and Nuhuo), FedTT with TVI achieves better performance, showing307

its effectiveness in the traffic data completion. Second, when TDA is removed, MAE increases308

by 4.46% to 17.86%, which demonstrates its effectiveness in addressing traffic data distribution309

differences. Besides, communication overhead and running time of FedTT slightly increase compared310

to w/o TDA. Third, MAE of FedTT decreases 0.66% to 3.76% compared to w/o TSA as TSA uses311

the averaged source data, which reduces the influence of source city’s traffic patterns on the target312

city’s model training. Besides, the communication overhead and running time of FedTT compared to313

w/o TSA do not change as TSA is a lightweight module for federated secure aggregation.314

4.4 Long-Term Traffic Prediction315

Figure 8: Long-term traffic prediction

To evaluate long-term traffic prediction capa-316

bilities, we illustrate the performance of differ-317

ent methods over the next 60 minutes (12 time318

steps) for traffic flow and speed prediction us-319

ing MAE, as shown in Fig. 8. As observed,320

FedTT outperforms all other methods, i.e., the321

gains range from 5.03% to 64.41%, showing322

its effectiveness of long-term traffic prediction323

in FTT. Therefore, the proposed FedTT frame-324

work demonstrates strong performance in both325

long-term and short-term traffic prediction (i.e., Table 2), underscoring its general advantages in FTT.326

4.5 Model Scalability327

Figure 9: Model scalability study

To validate the model scalability, we show the328

traffic flow and speed prediction performance329

of different methods across different sizes of330

training data in the target city, ranging from 5%331

to 40% in the (P8, FT, HK)→ P4 scenario us-332

ing MAE, as shown in Fig. 9. As observed,333

the FedTT framework consistently achieves the334

best performance in different-scale datasets with335

7.22% to 49.26% MAE less than other meth-336

ods, indicating its superior scalability in FTT.337

Besides, as the size of the training data increases, all methods exhibit improved performance. This is338

because more training data enhances the model learning capability on the target city’s traffic pattern.339

4.6 More Experiments340

We conduct more experiments to comprehensive evaluate FedTT, in terms of model adaptability,341

efficiency, hyperparameter sensitivity, and case study: i) Appendix D.2 demonstrates the performance342

when extending different centralized traffic models to FedTT and the two-stage transfer of existing343

methods in FTT, where FedTT achieves 5.13% to 64.65% lower MAE in all models. ii) Appendix D.3344

shows the efficiency of different methods, where FedTT reduces communication overhead by 90%345

and running time by 1 to 2 orders of magnitude compared to all baselines. iii) Appendix D.4 shows346

the FedTT’s performance with different hyperparameter settings, where λ1 = 0.7 and λ2 = 0.4 are347

optimum values. iv) Appendix D.5 showcases FedTT’s practical efficacy in a real-world scenario.348

5 Conclusion and Limitations349

In this paper, we propose FedTT, a privacy-aware and efficient federated learning framework for cross-350

city traffic knowledge transfer. It includes a traffic view imputation method to enhance data quality,351

a traffic domain adapter to address data distribution discrepancies, and a traffic secret aggregation352

protocol to safeguard data privacy. Experiments using 4 datasets demonstrate its superiority. Our353

work has several limitations that warrant further exploration. First, we have not addressed grid-354

based scenarios, which could be an important direction for future research. Besides, while our study355

primarily focuses on traffic prediction tasks, extending the framework to support more spatio-temporal356

prediction tasks remains an open opportunity. In addition, we have not systematically evaluated the357

impact of varying the number of source cities on the performance of traffic knowledge transfer, which358

could provide additional insights into the scalability of the proposed framework.359

9



References360

[1] Long range transportation plan. https://dot.sd.gov/media/documents/FinalSDLRTP.361

pdf, 2021.362

[2] Traffic data of strategic / major roads. https://data.gov.hk/en-data/dataset/363

hk-td-sm_4-traffic-data-strategic-major-roads, 2024.364

[3] Caltrans pems. https://pems.dot.ca.gov/, 2024.365

[4] California consumer privacy act (ccpa). https://oag.ca.gov/privacy/ccpa, 2025.366

[5] General data protection regulation (gdpr). https://gdpr-info.eu, 2025.367

[6] Akin, M., Canbay, Y., and Sagiroglu, S. A novel geo-independent and privacy-preserved traffic368

speed prediction framework based on deep learning for intelligent transportation systems. J.369

Supercomput., 81(4):511, 2025.370

[7] Chen, T., Bai, X., Zhao, J., Wang, H., Du, B., Li, L., and Zhang, S. Shieldtse: A privacy-371

enhanced split federated learning framework for traffic state estimation in iov. IEEE Internet372

Things J., 11(22):37324–37339, 2024.373

[8] Chen, X., Tian, J., Beaver, I., Freeman, C., Yan, Y., Wang, J., and Tao, D. Fcbench: Cross-374

domain benchmarking of lossless compression for floating-point data. Proc. VLDB Endow., 17375

(6):1418–1431, 2024.376

[9] Chen, Y., Gu, J., Zhuang, F., Lu, X., and Sun, M. Exploiting hierarchical correlations for377

cross-city cross-mode traffic flow prediction. In ICDM, pp. 891–896, 2022.378

[10] Cho, K., van Merrienboer, B., Gülçehre, Ç., Bahdanau, D., Bougares, F., Schwenk, H., and379

Bengio, Y. Learning phrase representations using RNN encoder-decoder for statistical machine380

translation. In EMNLP, pp. 1724–1734, 2014.381

[11] Chung, J., Gülçehre, Ç., Cho, K., and Bengio, Y. Empirical evaluation of gated recurrent neural382

networks on sequence modeling. CoRR, abs/1412.3555, 2014.383

[12] Coursey, A., Ji, J., Quiñones-Grueiro, M., Barbour, W., Zhang, Y., Derr, T., Biswas, G., and384

Work, D. B. FT-AED: benchmark dataset for early freeway traffic anomalous event detection.385

CoRR, abs/2406.15283, 2024.386

[13] Di, S., Shen, Y., and Chen, L. Relation extraction via domain-aware transfer learning. In KDD,387

pp. 1348–1357, 2019.388

[14] Dijkstra, E. W. A note on two problems in connexion with graphs. In Edsger Wybe Dijkstra,389

volume 45, pp. 287–290. 2022.390

[15] Dong, W., Chen, Z., Luo, Q., Shi, E., and Yi, K. Continual observation of joins under differential391

privacy. Proc. ACM Manag. Data, 2(3):128, 2024.392

[16] Dwork, C., McSherry, F., Nissim, K., and Smith, A. D. Calibrating noise to sensitivity in private393

data analysis. In TCC, volume 3876, pp. 265–284, 2006.394

[17] Fang, Z., Wu, D., Pan, L., Chen, L., and Gao, Y. When transfer learning meets cross-city urban395

flow prediction: Spatio-temporal adaptation matters. In IJCAI, pp. 2030–2036, 2022.396

[18] Gao, K., Zhu, T., Ye, D., and Zhou, W. Defending against gradient inversion attacks in federated397

learning via statistical machine unlearning. Knowl. Based Syst., 299:111983, 2024.398

[19] Gers, F. A., Schmidhuber, J., and Cummins, F. A. Learning to forget: Continual prediction with399

LSTM. Neural Comput., 12(10):2451–2471, 2000.400

[20] Gu, B., Dang, Z., Li, X., and Huang, H. Federated doubly stochastic kernel learning for401

vertically partitioned data. In KDD, pp. 2483–2493, 2020.402

[21] Hendrycks, D. and Gimpel, K. Gaussian error linear units (gelus). arXiv preprint403

arXiv:1606.08415, 2016.404

10

https://dot.sd.gov/media/documents/FinalSDLRTP.pdf
https://dot.sd.gov/media/documents/FinalSDLRTP.pdf
https://dot.sd.gov/media/documents/FinalSDLRTP.pdf
https://data.gov.hk/en-data/dataset/hk-td-sm_4-traffic-data-strategic-major-roads
https://data.gov.hk/en-data/dataset/hk-td-sm_4-traffic-data-strategic-major-roads
https://data.gov.hk/en-data/dataset/hk-td-sm_4-traffic-data-strategic-major-roads
https://pems.dot.ca.gov/
https://oag.ca.gov/privacy/ccpa
https://gdpr-info.eu


[22] Huang, Y., Song, X., Zhu, Y., Zhang, S., and Yu, J. J. Q. Traffic prediction with transfer learning:405

A mutual information-based approach. IEEE Trans. Intell. Transp. Syst., 24(8):8236–8252,406

2023.407

[23] Ji, J., Wang, J., Huang, C., Wu, J., Xu, B., Wu, Z., Zhang, J., and Zheng, Y. Spatio-temporal408

self-supervised learning for traffic flow prediction. In AAAI, pp. 4356–4364, 2023.409

[24] Jiang, J., Han, C., Zhao, W. X., and Wang, J. Pdformer: Propagation delay-aware dynamic410

long-range transformer for traffic flow prediction. In AAAI, pp. 4365–4373, 2023.411

[25] Jin, G., Liang, Y., Fang, Y., Shao, Z., Huang, J., Zhang, J., and Zheng, Y. Spatio-temporal graph412

neural networks for predictive learning in urban computing: A survey. IEEE Trans. Knowl.413

Data Eng., 36(10):5388–5408, 2024.414

[26] Jin, Y., Chen, K., and Yang, Q. Selective cross-city transfer learning for traffic prediction via415

source city region re-weighting. In KDD, pp. 731–741, 2022.416

[27] Jin, Y., Chen, K., and Yang, Q. Transferable graph structure learning for graph-based traffic417

forecasting across cities. In KDD, pp. 1032–1043, 2023.418

[28] Kim, S., Lee, S. Y., Gao, Y., Antelmi, A., Polato, M., and Shin, K. A survey on hypergraph419

neural networks: An in-depth and step-by-step guide. In KDD, pp. 6534–6544, 2024.420

[29] Kipf, T. N. and Welling, M. Semi-supervised classification with graph convolutional networks.421

In ICLR, 2017.422

[30] Kreer, J. G. A question of terminology. IRE Trans. Inf. Theory, 3(3):208, 1957.423

[31] Lai, Q., Tian, J., Wang, W., and Hu, X. Spatial-temporal attention graph convolution network424

on edge cloud for traffic flow prediction. IEEE Trans. Intell. Transp. Syst., 24(4):4565–4576,425

2023.426

[32] LeCun, Y., Boser, B. E., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W. E., and427

Jackel, L. D. Backpropagation applied to handwritten zip code recognition. Neural Comput., 1428

(4):541–551, 1989.429

[33] LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-based learning applied to document430

recognition. Proc. IEEE, 86(11):2278–2324, 1998.431

[34] Li, C. and Liu, W. Multimodal transport demand forecasting via federated learning. IEEE Trans.432

Intell. Transp. Syst., 25(5):4009–4020, 2024.433

[35] Li, M., Tang, Y., and Ma, W. Few-sample traffic prediction with graph networks using locale as434

relational inductive biases. IEEE Trans. Intell. Transp. Syst., 24(2):1894–1908, 2023.435

[36] Lin, B. Y., Xu, F. F., Liao, E. Q., and Zhu, K. Q. Transfer learning for traffic speed prediction:436

A preliminary study. In AAAI, volume WS-18, pp. 174–177, 2018.437

[37] Liu, B., Ma, Y., Zhou, Z., Shi, Y., Li, S., and Tong, Y. CASA: clustered federated learning with438

asynchronous clients. In KDD, pp. 1851–1862, 2024.439

[38] Liu, Q., Sun, S., Liu, M., Wang, Y., and Gao, B. Online spatio-temporal correlation-based440

federated learning for traffic flow forecasting. IEEE Trans. Intell. Transp. Syst., 25(10):13027–441

13039, 2024.442

[39] Liu, Y., Zhang, S., Zhang, C., and Yu, J. J. Q. Fedgru: Privacy-preserving traffic flow prediction443

via federated learning. In ITSC, pp. 1–6, 2020.444

[40] Liu, Y., Guo, B., Zhang, D., Zeghlache, D., Chen, J., Zhang, S., Zhou, D., Shi, X., and Yu, Z.445

Metastore: A task-adaptative meta-learning model for optimal store placement with multi-city446

knowledge transfer. ACM Trans. Intell. Syst. Technol., 12(3):28:1–28:23, 2021.447

[41] Liu, Z., Zheng, G., and Yu, Y. Cross-city few-shot traffic forecasting via traffic pattern bank. In448

CIKM, pp. 1451–1460, 2023.449

11



[42] Loder, A., Ambühl, L., Menendez, M., and Axhausen, K. W. Understanding traffic capacity of450

urban networks. Scientific reports, 9(1):16283, 2019.451

[43] Lu, B., Gan, X., Zhang, W., Yao, H., Fu, L., and Wang, X. Spatio-temporal graph few-shot452

learning with cross-city knowledge transfer. In KDD, pp. 1162–1172, 2022.453

[44] Markov, A. A. Rasprostranenie zakona bol’shih chisel na velichiny, zavisyaschie drug ot druga.454

Izvestiya Fiziko-matematicheskogo obschestva pri Kazanskom universitete, 15(135-156):18,455

1906.456

[45] Meng, C., Rambhatla, S., and Liu, Y. Cross-node federated graph neural network for spatio-457

temporal data modeling. In KDD, pp. 1202–1211, 2021.458

[46] Mo, J. and Gong, Z. Cross-city multi-granular adaptive transfer learning for traffic flow459

prediction. IEEE Trans. Knowl. Data Eng., 35(11):11246–11258, 2023.460

[47] Ouyang, X., Yang, Y., Zhou, W., Zhang, Y., Wang, H., and Huang, W. Citytrans: Domain-461

adversarial training with knowledge transfer for spatio-temporal prediction across cities. IEEE462

Trans. Knowl. Data Eng., 36(1):62–76, 2024.463

[48] Peng, W., Lin, Y., Guo, S., Tang, W., Liu, L., and Wan, H. Generative-contrastive-attentive464

spatial-temporal network for traffic data imputation. In PAKDD, volume 13938, pp. 45–56,465

2023.466

[49] Qi, Y., Wu, J., Bashir, A. K., Lin, X., Yang, W., and Alshehri, M. D. Privacy-preserving cross-467

area traffic forecasting in ITS: A transferable spatial-temporal graph neural network approach.468

IEEE Trans. Intell. Transp. Syst., 24(12):15499–15512, 2023.469

[50] Qin, H., Zhan, X., Li, Y., Yang, X., and Zheng, Y. Network-wide traffic states imputation using470

self-interested coalitional learning. In KDD, pp. 1370–1378, 2021.471

[51] Qin, J., Jia, Y., Tong, Y., Chai, H., Ding, Y., Wang, X., Fang, B., and Liao, Q. Muse-net:472

Disentangling multi-periodicity for traffic flow forecasting. In ICDE, pp. 1282–1295, 2024.473

[52] Rivest, R. L., Shamir, A., and Adleman, L. M. A method for obtaining digital signatures and474

public-key cryptosystems. Commun. ACM, 21(2):120–126, 1978.475

[53] Robbins, H. and Monro, S. A stochastic approximation method. The annals of mathematical476

statistics, pp. 400–407, 1951.477

[54] Rosenblatt, F. The perceptron: a probabilistic model for information storage and organization478

in the brain. Psychological review, 65(6):386, 1958.479

[55] Rumelhart, D. E., Hinton, G. E., and Williams, R. J. Learning representations by back-480

propagating errors. nature, 323(6088):533–536, 1986.481

[56] Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J., 27(3):379–423,482

1948.483

[57] Tang, Y., Qu, A., Chow, A. H. F., Lam, W. H. K., Wong, S. C., and Ma, W. Domain adversarial484

spatial-temporal network: A transferable framework for short-term traffic forecasting across485

cities. In CIKM, pp. 1905–1915, 2022.486

[58] Tawose, O. T., Dai, J., Yang, L., and Zhao, D. Toward efficient homomorphic encryption for487

outsourced databases through parallel caching. Proc. ACM Manag. Data, 1(1):66:1–66:23,488

2023.489

[59] Thirumuruganathan, S., Parambath, S. A. P., Ouzzani, M., Tang, N., and Joty, S. R. Reuse and490

adaptation for entity resolution through transfer learning. CoRR, abs/1809.11084, 2018.491

[60] Tong, Y., Zeng, Y., Song, Y., Pan, X., Fan, Z., Xue, C., Zhou, Z., Zhang, X., Chen, L., Xu, Y.,492

Xu, K., and Lv, W. Hu-fu: efficient and secure spatial queries over data federation. VLDB J., 34493

(2):19, 2025.494

12



[61] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., and Bengio, Y. Graph attention495

networks. In ICLR, 2018.496

[62] Wang, H., Wang, J., Wang, J., Zhao, M., Zhang, W., Zhang, F., Xie, X., and Guo, M. Graphgan:497

Graph representation learning with generative adversarial nets. In AAAI, pp. 2508–2515, 2018.498

[63] Wang, L., Geng, X., Ma, X., Liu, F., and Yang, Q. Cross-city transfer learning for deep499

spatio-temporal prediction. In IJCAI, pp. 1893–1899, 2019.500

[64] Wang, P., Liu, Y., Li, Z., and Li, R. An LDP compatible sketch for securely approximating set501

intersection cardinalities. Proc. ACM Manag. Data, 2(1):26:1–26:27, 2024.502

[65] Wang, S., Miao, H., Li, J., and Cao, J. Spatio-temporal knowledge transfer for urban crowd503

flow prediction via deep attentive adaptation networks. IEEE Trans. Intell. Transp. Syst., 23(5):504

4695–4705, 2022.505

[66] Wang, Y., Tong, Y., Zhou, Z., Ren, Z., Xu, Y., Wu, G., and Lv, W. Fed-ltd: Towards cross-506

platform ride hailing via federated learning to dispatch. In KDD, pp. 4079–4089, 2022.507

[67] Wang, Y., Liang, J., and He, R. Towards eliminating hard label constraints in gradient inversion508

attacks. In ICLR, 2024.509

[68] Wang, Y., Zeng, Y., Li, S., Zhang, Y., Zhou, Z., and Tong, Y. Efficient and private federated510

trajectory matching. IEEE Trans. Knowl. Data Eng., 36(12):8079–8092, 2024.511

[69] Xia, M., Jin, D., and Chen, J. Short-term traffic flow prediction based on graph convolutional512

networks and federated learning. IEEE Trans. Intell. Transp. Syst., 24(1):1191–1203, 2023.513

[70] Yang, L., Chen, W., He, X., Wei, S., Xu, Y., Zhou, Z., and Tong, Y. Fedgtp: Exploiting inter-514

client spatial dependency in federated graph-based traffic prediction. In KDD, pp. 6105–6116,515

2024.516

[71] Yao, H., Liu, Y., Wei, Y., Tang, X., and Li, Z. Learning from multiple cities: A meta-learning517

approach for spatial-temporal prediction. In WWW, pp. 2181–2191, 2019.518

[72] Yao, Z., Xia, S., Li, Y., Wu, G., and Zuo, L. Transfer learning with spatial-temporal graph519

convolutional network for traffic prediction. IEEE Trans. Intell. Transp. Syst., 24(8):8592–8605,520

2023.521

[73] Yuan, H., Cong, G., and Li, G. Nuhuo: An effective estimation model for traffic speed histogram522

imputation on A road network. Proc. VLDB Endow., 17(7):1605–1617, 2024.523

[74] Yuan, X., Chen, J., Zhang, N., Zhu, C., Ye, Q., and Shen, X. S. Fedtse: Low-cost federated524

learning for privacy-preserved traffic state estimation in iov. In INFOCOM, pp. 1–6, 2022.525

[75] Yuan, X., Luo, Z., Zhang, N., Guo, G., Wang, L., Li, C., and Niyato, D. Federated transfer526

learning for privacy-preserved cross-city traffic flow prediction. IEEE Trans. Intell. Transp.527

Syst., 26(4):4418–4431, 2025.528

[76] Zhang, X., Wang, Q., Xu, C., Peng, Y., and Xu, J. Fedknn: Secure federated k-nearest neighbor529

search. Proc. ACM Manag. Data, 2(1):V2mod011:1–V2mod011:26, 2024.530

[77] Zhang, Y., Li, Y., Zhou, X., and Luo, J. Mest-gan: Cross-city urban traffic estimation with me531

ta spatial-temporal generative adversarial networks. In ICDM, pp. 733–742, 2022.532

[78] Zhang, Y., Lu, H., Liu, N., Xu, Y., Li, Q., and Cui, L. Personalized federated learning for533

cross-city traffic prediction. In IJCAI, pp. 5526–5534, 2024.534

[79] Zhao, J. C., Sharma, A., Elkordy, A. R., Ezzeldin, Y. H., Avestimehr, S., and Bagchi, S. Loki:535

Large-scale data reconstruction attack against federated learning through model manipulation.536

In SP, pp. 1287–1305, 2024.537

[80] Zhao, Y., Luo, X., Ju, W., Chen, C., Hua, X., and Zhang, M. Dynamic hypergraph structure538

learning for traffic flow forecasting. In ICDE, pp. 2303–2316, 2023.539

[81] Zheng, L., Cao, Y., Jiang, R., Taura, K., Shen, Y., Li, S., and Yoshikawa, M. Enhancing privacy540

of spatiotemporal federated learning against gradient inversion attacks. In DASFAA, volume541

14850, pp. 457–473, 2024.542

13



Appendix543

Appendix A Related Work 15

A.1 Traffic Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

A.2 Traffic Knowledge Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Appendix B Notations and Descriptions 16

Appendix C Methodology Details 17

C.1 Federated Parallel Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

C.2 Training Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

C.3 Theoretical Privacy Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Appendix D Experimental Details 20

D.1 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

D.2 Model Adaptability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

D.3 Training Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

D.4 Parameter Sensitivity Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

D.5 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

544

14



Appendix545

In the subsequent sections, we present supplementary materials to provide more details of this paper,546

offering deeper insights and additional technical details for readers seeking further clarification. The547

appendix is organized as follows.548

In Section A, we present a systematic review of related work to help readers understand the key549

development in areas relevant to this paper, including traffic prediction and traffic knowledge transfer.550

In Section B, we summary the frequently used notations and descriptions for better understanding551

our work.552

In Section C, we provide the additional methodology details of our proposed FedTT framework,553

including (i) the federated parallel training strategy, (ii) the training process with training algorithm554

and complexity analysis, and (iii) the theoretical privacy analysis.555

In Section D, we describe the extensive experimental details to provide more information about556

experimental settings and further demonstrate the superiority performance of the proposed FedTT557

framework, including (i) compared baselines introduction, (ii) the details experimental results of558

model adaptability, efficiency, hyperparameter sensitivity, and case studies.559

A Related Work560

A.1 Traffic Prediction561

Traffic prediction plays a critical role in the development of smart cities and has garnered significant562

attention in the spatio-temporal data mining community. Currently, deep learning techniques [54] are563

widely employed in traffic prediction tasks. Convolutional models, such as Convolutional Neural564

Networks (CNN) [33] and Graph Convolutional Networks (GCN) [29], are used to capture spatial565

correlations in traffic time-series data. Meanwhile, sequential models including Gated Recurrent566

Units (GRU) [11] and Long Short-Term Memory (LSTM) [19], are employed to extract temporal567

dependencies from the data. Several advanced models have achieved state-of-the-art performance.568

For instance, ST-SSL [23] improves traffic pattern representation to account for spatial and temporal569

heterogeneity through a self-supervised learning framework. DyHSL [80] leverages hypergraph570

structure information to model the dynamics of a traffic network, updating the representation of each571

node by aggregating messages from associated hyperedges. Additionally, PDFormer [24] introduces a572

spatial self-attention module to capture dynamic spatial dependencies and a flow-delay-aware feature573

transformation module to model the time delays in spatial information propagation. Since this paper574

is not intended to propose another more complex prediction model, a detailed analysis of existing575

traffic prediction models can be found in surveys [25, 28]. However, these models are centralized and576

rely on traffic data uploads from sensors to a central server, which poses a risk of data leakage.577

To address data privacy concerns, several traffic prediction studies [74, 31, 69, 34, 70, 38] in federated578

environments have been proposed. Specifically, FedGRU [39] pioneers the integration of GRU into FL579

for TP tasks, employing federated averaging to aggregate models and a joint announcement protocol580

to enhance model scalability. Subsequently, CNFGNN [45] separates the modeling of temporal581

dynamics on the device from spatial dynamics on the server, using alternating optimizations to reduce582

communication costs and facilitate computation on edge devices. Moreover, FedGTP [70] promotes583

the adaptive exploitation of inter-client spatial dependencies to enhance prediction performance while584

ensuring data privacy. However, urban traffic data is often insufficient or unavailable, particularly585

in emerging cities. Training traffic models in these data-scarce cities is prone to overfitting, which586

undermines model performance and affects the accuracy of TP tasks. In contrast, we aim to propose587

a federated traffic prediction framework that efficiently transfers traffic knowledge from data-rich588

cities to data-scarce cities, enhancing TP capabilities for the latter.589

A.2 Traffic Knowledge Transfer590

Transfer learning can enhance the traffic model capabilities of data-scarce target cities by transferring591

traffic knowledge from data-rich source cities in traffic prediction tasks. Existing studies can be592

broadly categorized into three types: Single-Source Traffic Knowledge Transfer (STT), Multi-593
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Source Traffic Knowledge Transfer (MTT), and Federated Traffic Knowledge Transfer (FTT), in594

chronological order from earliest to most recent.595

First, STT [26, 17, 63, 36, 72, 22, 35, 9, 65] studies focus on transferring traffic knowledge from a596

single source city to a target city. Specifically, TransGTR [27] jointly learns transferable structure597

generators and forecasting models across cities to enhance prediction performance in data-scarce598

target cities. Next, CityTrans [47] leverages adaptive spatio-temporal knowledge and domain-invariant599

features for accurate traffic prediction in data-scarce cities. Additionally, MGAT [46] uses a meta-600

learning algorithm to extract multi-granular regional features from each source city to improve the601

effectiveness of traffic knowledge transfer. However, the performance of these STT methods can be602

significantly compromised when there are substantial differences in traffic data distribution between603

the source and target cities.604

Second, MTT [71, 40, 78, 77] studies the joint transfer of traffic knowledge from multiple source605

cities to a target city, enabling the target city to acquire diverse traffic knowledge and enhancing606

the robustness of the trained traffic models. Specifically, TPB [41] uses a traffic patch encoder to607

create a traffic pattern bank, which data-scarce cities query to establish relationships, aggregate608

meta-knowledge, and construct adjacency matrices for future traffic prediction. Next, ST-GFSL [43]609

transfers knowledge through parameter matching to retrieve similar spatio-temporal features and610

defines graph reconstruction loss to guide structure-aware learning. Additionally, DastNet [57]611

employs graph representation learning and domain adaptation techniques to create domain-invariant612

embeddings for traffic data. However, these methods rely on centralized frameworks, which involves613

sharing and exchanging traffic data across cities without considering traffic data privacy.614

Third, the latest FTT studies, including T-ISTGNN [49], pFedCTP [78], and 2MGTCN [75], intend to615

protect data privacy in cross-city traffic knowledge transfer. Specifically, T-ISTGNN [49] combines616

privacy-preserving traffic knowledge transfer with inductive spatio-temporal GNNs for cross-region617

traffic prediction. Besides, pFedCTP [78] employs personalized FL to decouple the ST-Net into618

shared and private components, addressing the spatial and temporal heterogeneity. In addition,619

2MGTCN [75] combines multi-modal GCNs and TCNs to capture spatial and temporal information620

and enhance adaptability across cities. However, they face challenges such as privacy leakage,621

data distribution discrepancies, low data quality, and high knowledge transfer overhead, making622

them unsuitable for real-world applications, as shown in Fig 2. In contrast, we aim to propose a623

privacy-preserving and efficient federated learning framework for cross-city traffic knowledge624

transfer to address the challenges of privacy, effectiveness, robustness, and efficiency in FTT.625

B Notations and Descriptions626

We present the frequently used notations and descriptions in this paper, as listed in Table 3.627

Table 3: Notations and descriptions
Notation Description
m,M A sensor and a set of sensors {m1,m2, . . .}
E , A A set of edges and the weighted adjacent matrix of edges
G A road network (M, E , A)

t, r, tr The time, r-th, and training round
Mt A set of available sensors {mi|i ≤ |M|} at time t

Xt, X(r) The traffic data at time t and the r-th traffic data
F1 The dimension of the traffic data features
X , D A set of traffic data {X1, X2, . . .} and a traffic dataset {X1, X2, . . . ;G}
c, s A client and the server
R, S A source city and the target city
n The number of clients and source cities
C,R A set of clients {c1, c2, . . . , cn} and source cities {R1, R2, . . . , Rn}
θ, L(·) A model and a loss function
vit, Vt The i-level traffic subview and a traffic view {v1t , v2t , . . .} at time t
P A traffic domain prototype
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C Methodology Details628

C.1 Federated Parallel Training629

To improve the training efficiency, FedTT introduces the federated parallel training strategy to reduce630

the data transmission and train the models in parallel.631

i) Split Learning. To reduce the communication overhead and improve the training efficiency, it632

employs split learning [45] to decompose the sequential training process into the client and server633

training, and freeze the data required by the client and server. Specifically, the client ci stores and634

freezes the data sent by the server for θRi

Gen and θRi
Dis training in Eqs. 21 and Eqs. 20, respectively:635

min
θ
Ri
Gen

L(θRi

Gen,X
Ri→S)− λ1 ∗ Fr(L(θDis,XRS))− λ2L(θRi

Dis,XRiS), (22)

636

min
θ
Ri
Dis

1

|XRiS |

|XRiS |∑
t=1

{
− log(P (XRiS

t ∈ XRi→S)), if XRiS
t ∈ XRi→S

− log(P (XRiS
t ∈ XR→S)), if XRiS

t ∈ Fr(XR→S)
, (23)

where Fr(·) is the frozen function and uses the historical cached data, which updates every 5 rounds.637

Besides, the server s stores and freezes the data uploaded by the client to compute the aggregated638

data for θDis and traffic model θTP training in Eqs. 14 and 3, respectively:639

min
θDis

1

|XRS |

|XRS |∑
t=1

{
− log(P (XRS

t ∈ XR→S)), if XRS
t ∈ Fr(XR→S)

− log(P (XRS
t ∈ XS)) , if XRS

t ∈ XS
, (24)

640

min
θTP

L(θTP,Fr(DR→S), DS) (25)

ii) Parallel Optimization. To further improve the training parallelism, it proposes parallel optimiza-641

tion to reduce data dependencies on the client and server. Specifically, the client ci caches and freezes642

the local data for θRi

Gen and θRi
Dis parallel training in Eqs 22 and 23, as shown below:643

min
θ
Ri
Gen

L(θRi

Gen,X
Ri→S)− λ1 ∗ Fr(L(θDis,XRS))− λ2 ∗ Fr

′
(L(θRi

Dis,XRiS)), (26)

644

min
θ
Ri
Dis

1

|XRiS |

|XRiS |∑
t=1

{
− log(P (XRiS

t ∈ XRi→S)), if XRiS
t ∈ Fr

′
(XRi→S)

− log(P (XRiS
t ∈ XR→S)) , if XRiS

t ∈ Fr(XR→S)
, (27)

where Fr
′
(·) is the frozen function and uses the historical cached data, which updates each round.645

C.2 Training Process646

Before the training of the FedTT framework, clients (i.e., source cities) train the spatial view expansion647

model θSV and the temporal view expansion model θTV in the TVI module θTVI by minimizing the648

loss in Eqs. 7 and 9, as shown below:649

min
θTVI

L(θTVI,VSV,VTV) = min
θSV

L(θSV,VSV) + min
θTV

L(θTV,VTV), (28)

where VSV and VTV are the set of traffic subviews at different times obtained by spatial view extension650

and temporal view enhancement, respectively. During the training of the FedTT framework, the client651

ci trains the local generator model θRi

Gen and the local discriminator model θRi
Dis by minimizing the loss652

in Eqs. 20 and 21, as shown below:653

min
θ
Ri
Gen

L(θRi

Gen, θDis, θ
Ri
Dis,XRi→S ,XRS ,XRiS) + min

θ
Ri
Dis

L(θRi
Dis,XRiS), (29)

where XRS is the traffic data consisting of the aggregated data XR→S
and traffic data XS of the654

target city S, and XRiS is the traffic data consisting of the aggregated data XR→S
and transformed655

data XRi→S of the source city Ri. Besides, the server s trains the global discriminator model θDis656

and traffic model θTP by minimizing the loss in Eqs. 14 and 3, as shown below:657

min
θDis

L(θDis,XRS) + min
θTP

L(θTP, D
R→S

, DS), (30)
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where D
R→S

is the aggregated traffic dataset whose traffic domain is transformed from source cities658

to the target city S, and DS is the traffic dataset of the target city S.659

Algorithm 1 The training of the FedTT framework in the client ci
1: Input: the server s (i.e., the target city S).
2: X̃Ri←Complete(θTVI,XRi) // Complete the missing data.
3: for each training round tr = 1, 2, . . . do
4: for each data XRi

(r) ∈ X̃
Ri , r = 1, 2, . . . do

5: XRi→S
(r) ←Transform(θRi

Gen, X
Ri

(r)) // Transform the traffic data.

6: Classify(θRi
Dis, X

Ri→S
(r) ) // Classify the transformed data.

7: if tr == 1 and r == 1 then
8: ERi→S

(r) ← Encrypt(XRi→S
(r) ) // Encrypt the transformed data.

9: Send(s, ERi→S
(r) ) // Send the transformed data.

10: else
11: if tr == 1 and r == 2 then
12: E

R→S

(r−1) ← Get(s, r) // Get the encrypted aggregated data.

13: X
R→S

(r−1) ← Decrypt(E
R→S

(r−1)) // Decrypt the aggregated data.
14: else
15: X

R→S

(r−1) ← Get(s, r) // Get the aggregated data.
16: end if
17: Classify(θRi

Dis, X
R→S

(r−1)) // Classify the aggregated data.

18: X
(R→S,Ri)
(r) ← X

R→S

(r−1) +XRi→S
(r) −XRi→S

(r−1) // Mask the transformed data.

19: Send(s,X(R→S, Ri)
(r) ) // Send the mask data.

20: end if
21: end for
22: end for

Algorithm 2 The training of the FedTT framework in the server s
1: Input: clients C = {c1, c2, . . . , cn} (i.e., source citiesR = {R1, R2, . . . , Rn}).
2: for each training round tr = 1, 2, . . . do
3: for r = 1, 2, . . . do
4: if tr == 1 and r == 1 then
5: {ER1→S

(r) , ER2→S
(r) , . . .} ← Get(C, r) // Get the encrypted data.

6: E
R→S

(r) ←
∑n

i=1 E
Ri→S
(r) // Aggregate the encrypted data.

7: Send(C, ER→S

(r) ) // Send the aggregated data.
8: else
9: {X(R→S, R1)

(r) , X
(R→S, R2)
(r) , . . .} ← Get(C, r) // Get the mask data.

10: X
R→S

(r) ←
∑n

i=1 X
(R→S,Ri)
(r) − (n− 1) ∗XR→S

(r−1) // Aggregate the mask data.

11: Classify(θDis, X
R→S

(r) ) // Classify the aggregated data.

12: Send(C, XR→S

(r) ) // Send the aggregated data.
13: end if
14: end for
15: Classify(θDis,XS) // Classify the local data.
16: Prediction(θTP,X

R→S
,XS) // Perform traffic prediction.

17: end for

Training Algorithm. For convenient method reproduction, we provide detailed training Algorithms 1660

and 2 of the FedTT framework, including the client and server.661
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In the client (i.e., Algorithm 1), the target city acts as the server (line 1). Before the training process,662

the client completes the missing traffic data through the traffic view imputation method (line 2).663

During each training round and each traffic data (lines 3–4), it first transforms the data from the664

traffic domain of the source city to that of the target city (line 5) and classifies the transformed data665

using the local discriminator model(line 6). If the training process is in the first round using the666

first data instance (line 7), the client encrypts the transformed data using homomorphic encryption667

and sends it to the server (lines 8-9). Otherwise, if the training process is in the first round using668

the second data instance (lines 10-11), the client gets the encrypted data and decrypts it to get the669

previous aggregated data (lines 12-13). For subsequent rounds or data instance, the client directly670

gets the previous aggregated data from the server without decryption (lines 14-16). In either case, it671

classifies the previous aggregated data using its local discriminator model (line 17). Then it masks672

the transformed data using the previous aggregated and transformed data (line 18). Finally, it sends673

the mask data to the server for data aggregation (lines 19-22).674

In the server (i.e., Algorithm 2), the source cities act as the clients (line 1). During each training675

round and each traffic data (lines 2–3), if the training process is in the first round using the first data676

instance (line 4), the server gets the encrypted data from clients (line 5). Then, it aggregates them677

by summing up, and send the aggregated encrypted data to back to the clients for further processing678

(lines 6-7). For subsequent rounds or data instances (line 8), the server gets the mask data from clients679

(line 9). Then, it aggregates the masked data using the previous aggregated data (line 10). Next, it680

classifies the aggregated data using its global discriminator model and sends the aggregated data back681

to the clients (lines 11–14). Finally, at the end of each training round, it classifies local traffic data682

and performs traffic prediction using the aggregated and local traffic data (lines 15–17).683

Complexity Analysis. We also give the complete complexity analysis for the training of the FedTT684

framework, i.e., Algorithms 1 and 2. For the client (i.e., Algorithm 1), the training complexity685

is O((|MRi | + |MS |) × (F1 × H)2 × |XRi |) at each round. For the server (i.e., Algorithm 2),686

the training complexity is O((|MS | × (F1 × H)2 + MC(θTP)) × (|XS | +
∑n

i=1 |XRi |)) at each687

round. Here, |MRi | and |MS | are the number of sensors in the source city Ri and target city S,688

respectively. Besides, |XRi | and |XS | are the number of traffic data in the source city Ri and target689

city S, respectively. In addition, F1 = 3 is the dimensions of traffic data features, and H = 1024690

is the hidden dimensions of the three-layer MLP model in θRi

Gen and θRi
Dis. Moreover, MC(θTP) is the691

model complexity of θTP (i.e., θDyHSL).692

C.3 Theoretical Privacy Analysis693

The privacy protection mechanism of the proposed FedTT framework comprises two stages. First, it694

uses the Traffic Domain Adapter (TDA) to transform the data from the traffic domain of source cities695

to that of the target city, where the parameters of the TDA model are private and not shared with the696

server and other clients. Second, it performs Traffic Secret Aggregation (TSA) to secure mask and697

aggregate the transformed data. Consequently, an attacker must first reverse-engineer the transformed698

data from the aggregated data and then infer the original traffic data from the transformed data. To699

rigorously analyze the privacy-preserving capability of these two stages, we first define the threat700

model as follows.701

Threat Model. Following previous works [76, 60, 79] in federated learning scenarios, we assume702

that the server acts as a semi-honest adversary who will honestly execute the required operations703

(e.g., aggregation) but also remains curious about the private data in clients. In the FTT problem, the704

server may perform inference attacks to infer the raw instance-level traffic data of clients based on705

the adversary knowledge, including the client model architecture, privacy-preserving mechanism,706

and the intermediate data (e.g., model parameters or training gradients) uploaded by clients.707

Based on this, we analyze the privacy leakage of FedTT using mutual information [30] as follows.708

Privacy Protection in Traffic Domain Adapter. Given the transformed data XRi→S of the source709

city Ri, the attacker aims to infer the original traffic data XRi , where XRi→S is derived from XRi in710

Eq.10 as shown below:711

XRi
θTDA−−→ XRi→S , (31)
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where the TDA model θTDA is private and inaccessible. Since this process represents a deterministic712

mapping, the privacy leakage can be quantified as:713

I(XRi ;XRi→S) = H(XRi→S)−H(XRi→S |XRi) = H(XRi→S), (32)

where H(·) denotes entropy and H(XRi→S |XRi) = 0 due to the nature of deterministic mapping.714

Since XRi→S is derived from XRi through the private TDA model θTDA, the amount of privacy715

leakage can be further expressed as follows:716

I(XRi ;XRi→S) ≤ I(XRi ;XRi→S , θTDA)

= I(XRi ; θTDA) + I(XRi ;XRi→S |θTDA)

= H(XRi→S |θTDA) ∝
|MRi |

|θTDA| ∗ |MS |
,

(33)

where |θTDA| is the parameter space of the TDA model. As θTDA aligns the distribution of XRi→S) to717

the traffic domain of the target city through traffic domain alignment, reducing its correlation with the718

source city’s traffic domain, H(XRi→S |θTDA) takes on a small value, thereby minimizing the privacy719

leakage I(XRi ,XRi→S).720

Privacy Protection in Traffic Secure Aggregation. Given the aggregated data XR→S
, the attacker721

aims to infer the transformer data XRi→S of the source city Ri, where X (Ri→S),Ri is derived from722

XRi→S in Eq.16 as shown below:723

XR→S
=

1

n
(XRi→S +

n∑
j=1&j ̸=i

XRj→S) (34)

Since the traffic domains of source cities are aligned to that of the target city, they are from Independent724

Identically Distributed (IID), and the privacy leakage can be quantified as:725

I(XRi→S ;XR→S
) = H(XR→S

)−H(XR→S |XRi→S)

≤ H(XRi→S)−H(
1

n

n∑
j=1&j ̸=i

XRj→S)

≤ H(XRi→S)

n
∝ 1

n ∗ |MS |

(35)

Since the above two processes is a Markov Chain [44], i.e., XRi → XRi→S → XR→S
, the total726

amount of the privacy leakage can be bounded using the data processing inequality [56]:727

I(XRi ;XR→S
) ≤ min(I(XRi ;XRi→S), I(XRi→S ;XR→S

))

≤ min(H(XRi→S |θTDA),
H(XRi→S)

n
)

(36)

This analysis demonstrates that the FedTT framework effectively minimizes privacy leakage by728

leveraging both TDA and TSA, ensuring robust privacy protection in federated traffic knowledge729

transfer.730

D Experimental Details731

D.1 Baselines732

We compare the FedTT framework with state-of-the-art baselines. First, we compare FedTT with three733

SOTA transfer methods in Federated Traffic Knowledge Transfer (FTT), including T-ISTGNN [49],734

pFedCTP [78], and 2MGTCN [75], as detailed below.735

• T-ISTGNN [49]. It designs a spatio-temporal GNN-based approach with an inductive mode for736

cross-region traffic prediction.737

• pFedCTP [78]. It designs an ST-Net for privacy-preserving and cross-city traffic prediction with738

personalized federated learning.739
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• 2MGTCN [75]. It designs multi-modal GCNs and TCNs to capture spatial and temporal informa-740

tion and enhance adaptability across cities.741

Besides, we compare FedTT with three SOTA transfer methods in Multi-Source Traffic Knowledge742

Transfer (MTT), including TPB [41], ST-GFSL [43], and DastNet [57], as detailed below.743

• TPB [41]. It utilizes a traffic patch encoder to create a traffic pattern bank for the cross-city744

few-shot traffic knowledge transfer.745

• ST-GFSL [43]. It transfers traffic knowledge through model parameter matching to retrieve similar746

spatio-temporal features.747

• DastNet [57]. It employs graph learning and domain adaptation to create domain-invariant node748

embeddings for the traffic data.749

In addition, we compare FedTT with three SOTA transfer methods in Single-Source Traffic Knowl-750

edge Transfer (STT), including CityTrans [47], TransGTR [27], and MGAT [46], as detailed below.751

• CityTrans [47]. It proposes a domain adversarial model with knowledge transfer for spatio-752

temporal prediction across cities.753

• TransGTR [27]. It leverages adaptive spatio-temporal knowledge and domain-invariant features754

for TP in data-scarce cities.755

• MGAT [46]. It extracts multi-granular regional features from source cities to enhance the effective-756

ness of knowledge transfer.757

Moreover, we extend three classic and SOTA centralized traffic models in FedTT and the existing758

two-stage transfer methods in FTT (referred as FTL), including Gated Recurrent Unit (GRU) [10],759

Convolutional Neural Network (CNN) [32], Multi-Layer Perceptron (MLP) [55], CityTrans [47],760

TransGTR [27], and MGAT [46], as detailed below.761

• ST-SSL [23]. It models traffic data at attribute and structure levels for spatial and temporal762

heterogeneous-aware traffic prediction.763

• DyHSL [80]. It leverages hypergraph structure information to extract dynamic and high-order764

relations of traffic road networks.765

• PDFormer [24]. It introduces self-attention and feature transformation for dynamic and flow-766

delay-aware traffic prediction.767

To evaluate the Traffic View Imputation (TVI) method of FedTT in the ablation study, we replace768

this module with three SOTA data imputation methods, including LATC [8], GCASTN [48], and769

Nuhuo [73], as detailed below.770

• LATC [8]. It integrates temporal variation as a regularization term to accurately impute missing771

spatio-temporal traffic data.772

• GCASTN [48]. It uses self-supervised learning and a missing-aware attention mechanism to773

impute the missing traffic data.774

• Nuhuo [73]. It uses graph neural networks and self-supervised learning to accurately estimate775

missing traffic speed histograms.776

D.2 Model Adaptability777

Table 4 shows the overall performance when extending existing centralized traffic models (i.e.,778

GRU [10], CNN [32], MLP [55], CityTrans [47], TransGTR [27], and MGAT [46]) in FTT using779

FedTT and FTL methods with MAE, where the best results are shown in blue. As observed, all780

centralized traffic models extended in FedTT achieve the best performance compared to those781

extended in FTL, also showing its effectiveness of traffic knowledge transfer in FTT, i.e., the gains782

range from 5.13% to 64.65%. Note that the DyHSL model has the best performance in centralized783

traffic models and is implemented in FedTT as the default model in other experiments.784

D.3 Training Efficiency785
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Table 4: The overall performance (MAE) comparison when extending centralized traffic models

Model Method (P8, FT, HK)→ P4 (P4, FT, HK)→ P8 (P4, P8, HK)→ FT (P4, P8, FT)→ HK
flow speed occ flow speed occ flow speed occ flow speed occ

GRU FTL1 29.27 3.39 0.0282 23.44 2.40 0.0253 21.16 12.18 0.0712 10.11 4.60 0.0125
FedTT 25.93 2.24 0.0220 20.73 2.21 0.0213 17.34 5.67 0.0401 9.33 2.86 0.0101

CNN FTL 31.46 4.55 0.0317 27.60 3.27 0.0267 24.55 9.05 0.0803 9.74 5.92 0.0169
FedTT 26.82 2.84 0.0274 22.20 2.41 0.0217 17.44 6.27 0.0472 9.24 3.92 0.0113

MLP FTL 34.01 3.66 0.0276 30.24 2.88 0.0246 22.66 14.43 0.0743 10.87 5.23 0.0146
FedTT 28.08 2.17 0.0250 23.79 2.40 0.0212 17.66 7.35 0.0480 9.68 3.27 0.0102

ST-SSL FTL 26.76 2.26 0.0176 20.06 1.88 0.0226 19.43 7.78 0.0605 9.43 4.36 0.0117
FedTT 22.28 1.34 0.0096 17.14 1.27 0.0114 13.38 4.88 0.0400 8.76 1.65 0.0097

DyHSL FTL 18.61 1.39 0.0131 16.71 1.40 0.0144 16.96 6.04 0.0324 8.63 2.97 0.0103
FedTT 16.69 1.03 0.0061 14.11 0.94 0.0059 12.10 3.24 0.0249 7.42 1.05 0.0087

PDFormer FTL 26.99 2.31 0.0194 22.85 1.80 0.0232 17.92 6.57 0.0433 9.17 3.29 0.0108
FedTT 22.05 1.43 0.0125 17.67 1.36 0.0127 13.09 3.53 0.0314 8.22 1.22 0.0091

1 FTL refers to the two-stage method of existing methods in FTT.

Table 5: Training efficiency study of different methods

Fig. 5 shows the communication size786

(GB) and running time (minutes) of787

different methods on traffic flow pre-788

diction. As observed, the FedTT789

framework has the least communica-790

tion size and running time compared791

to other methods, i.e., with communi-792

cation overhead reduced by 90% and793

running time reduced by 1 to 2 orders794

of magnitude, showing its superior795

efficiency of traffic knowledge trans-796

fer in FTT. This is because FedTT se-797

curely transmits and aggregates the798

traffic domain-transformed data using the TST module with relatively small computation and com-799

munication overheads, compared to other methods that employ the HE method for model secure800

aggregation in FTT. Besides, FedTT utilizes the FPT module to reduce data transmission and train801

models in parallel, significantly improving the training efficiency in FTT.802

D.4 Parameter Sensitivity803

Table 6: Parameter sensitivity of FedTT

Fig. 6 shows the performance of the804

FedTT framework with different hy-805

perparameter settings (i.e., λ1 and λ2)806

on traffic flow prediction with MAE.807

First, the suggestion and optimum808

value of λ1 is 0.7. As λ1 increases,809

the generator model tends to gener-810

ate the data that can "trick" the server811

discriminator model rather than gen-812

erating the high-quality traffic domain813

transformed data, resulting in higher814

MAE. As λ1 decreases, the server dis-815

criminator model loses its ability to effectively guide the generator model in generating traffic domain816

transformed data, resulting in higher MAE. Second, the suggestion and optimum value of λ2 is 0.4.817

As λ2 increases, the generator model tends to generate the data with a traffic domain that deviates818

significantly from that of the target city, resulting in higher MAE. As λ2 decreases, the generator819

model generates the data with a more local-specific traffic pattern, which hinders the model from820

effectively learning the traffic patterns of the target city, resulting in higher MAE. Overall, FedTT has821

the best performance in all hyperparameter settings when λ1 = 0.7 and λ2 = 0.4, which are used in822

FedTT as the default values in other experiments.823

D.5 Case Study824

To demonstrate the practical applicability of FedTT in real-world traffic knowledge transfer scenarios,825

we conduct a case study using the UTD19[42] dataset, which includes traffic data from 40 cities826
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Table 7: Statistics of evaluated cities in UTD19

City # instances # sensors Interval Missing Rate
London 6454 5719 5 min 19.47%

Hamburg 50142 418 3 min 2.66%
Manchester 6984 181 5 min 10.61%

Madrid 4560 1116 5 min 16.02%
Groningen 525 55 5 min 1.75%

worldwide. For comparison, we select 2MGTCN, as it performs the best among the three existing827

methods in FTT (see Table 4.1). In this scenario, Groningen is chosen as the target city due to its828

limited traffic data and relatively sparse sensor deployment, making it challenging to train a high-829

performance traffic model independently. In contrast, London, Hamburg, Madrid, and Manchester are830

chosen as source cities because they possess significantly larger datasets and denser sensor networks,831

providing abundant traffic data for effective knowledge transfer. The statistics of these cities is832

summarized in Table 7. Since the sampling intervals of traffic data vary across cities, we resample all833

datasets in a uniform interval of 15 minutes to ensure that the temporal discrepancies between cities834

do not affect the model performance.835
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Figure 10: Visualization of traffic flow prediction in groningen
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The traffic flow results of three sensors (i.e., PGR01_101725_G172_Emmaviaduct_Z_ID_8650_1,836

PGR01_101727_Hereweg_Z_ID_8610_2, and PGR01_101761_Sontweg_NO_ID_8812_1) on837

September 21, 2017 in Groningen are shown in Fig. 10. As observed, the prediction of FedTT838

aligns well with the ground truth, while 2MGTCN can only learn the general trend of traffic flow.839

Taking sensor PGR01_101761_Sontweg_NO_ID_8812_1 as an example. FedTT and 2MGTCN840

excels from 0:00 a.m. to 6:00 a.m., a period characterized by relatively smooth traffic flow. Through-841

out the peak hours, from 6 a.m. to 6 p.m., when traffic flow fluctuations are pronounced, FedTT842

showcases adaptability by learning from the rapid increase and decrease in traffic, while 2MGTCN843

predicts a relatively smooth traffic flow that does not match the real one. Between 6 p.m. and 12 a.m.,844

as the traffic flow gradually decreases and stabilizes, FedTT maintains relatively accurate predictions845

compared to 2MGTCN. In summary, the FedTT framework demonstrates its robust performance on846

real-world traffic knowledge transfer scenarios, yielding satisfactory and accurate prediction results847

in forecasting the traffic flow across different periods.848
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Guidelines:856
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will be specifically instructed to not penalize honesty concerning limitations.896
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Answer: [NA]1116

Justification: The paper does not release new assets.1117

Guidelines:1118

• The answer NA means that the paper does not release new assets.1119

• Researchers should communicate the details of the dataset/code/model as part of their1120

submissions via structured templates. This includes details about training, license,1121

limitations, etc.1122

• The paper should discuss whether and how consent was obtained from people whose1123

asset is used.1124

• At submission time, remember to anonymize your assets (if applicable). You can either1125

create an anonymized URL or include an anonymized zip file.1126

14. Crowdsourcing and Research with Human Subjects1127

Question: For crowdsourcing experiments and research with human subjects, does the paper1128

include the full text of instructions given to participants and screenshots, if applicable, as1129

well as details about compensation (if any)?1130

Answer: [NA]1131

Justification: The paper does not involve crowdsourcing nor research with human subjects.1132

Guidelines:1133

• The answer NA means that the paper does not involve crowdsourcing nor research with1134

human subjects.1135

• Including this information in the supplemental material is fine, but if the main contribu-1136

tion of the paper involves human subjects, then as much detail as possible should be1137

included in the main paper.1138

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1139

or other labor should be paid at least the minimum wage in the country of the data1140

collector.1141

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human1142

Subjects1143

Question: Does the paper describe potential risks incurred by study participants, whether1144

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1145

approvals (or an equivalent approval/review based on the requirements of your country or1146

institution) were obtained?1147

Answer: [NA]1148

Justification: The paper does not involve crowdsourcing nor research with human subjects.1149

Guidelines:1150

• The answer NA means that the paper does not involve crowdsourcing nor research with1151

human subjects.1152

• Depending on the country in which research is conducted, IRB approval (or equivalent)1153

may be required for any human subjects research. If you obtained IRB approval, you1154

should clearly state this in the paper.1155

• We recognize that the procedures for this may vary significantly between institutions1156

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1157

guidelines for their institution.1158

• For initial submissions, do not include any information that would break anonymity (if1159

applicable), such as the institution conducting the review.1160
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