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Abstract

We present ResMLP, an architecture built entirely upon multi-layer perceptrons for1

image classification. It is a simple residual network that alternates (i) a linear layer2

in which image patches interact, independently and identically across channels, and3

(ii) a two-layer feed-forward network in which channels interact independently per4

patch. When trained with a modern training strategy using heavy data-augmentation5

and optionally distillation, it attains surprisingly good accuracy/complexity trade-6

offs on ImageNet. We also train ResMLP models in a self-supervised setup, to7

further remove priors from employing a labelled dataset. Finally, by adapting our8

model to machine translation we achieve surprisingly good results.9

We will share our code based on the Timm library and pre-trained models.10

1 Introduction11

Recently, the transformer architecture [60], adapted from its original use in natural language pro-12

cessing with only minor changes, has achieved performance competitive with the state of the art on13

ImageNet-1k [50] when pre-trained with a sufficiently large amount of data [16]. Retrospectively,14

this achievement is yet another step towards less priors: convolutional neural networks had removed15

a lot of hand-made choices compared to hand-designed pre-CNN approaches, moving the paradigm16

of hard-wired features to hand-designed architectural choices. Vision transformers avoid making17

assumptions inherent to convolutional architectures and noticeably the translation invariance.18

What these recent transformer-based works suggest is that longer training schedules, more parameters,19

more data [16] and/or more regularization [56], are sufficient to recover the important priors for tasks20

as complex as ImageNet classification. See also our discussion of related work in Section 4. This21

concurs with recent studies [2, 15] that better disentangle the benefits from the architectures from22

those of the training scheme.23

In this paper, we push this trend further, and propose Residual Multi-Layer Perceptrons (ResMLP):24

a purely multi-layer perceptron (MLP) based architecture for image classification. We outline our25

architecture in Figure 1 and detail it further in Section 2. It is intended to be simple: it takes image26

patches as input, projects them with a linear layer, and sequentially updates them in turn with two27

residual operations: (i) a simple linear layer that provides interaction between the patches, which28

is applied to all channels independently; and (ii) an MLP with a single hidden layer, which is29

independently applied to all patches. At the end of the network, the patches are average pooled, and30

fed to a linear classifier.31

This architecture is strongly inspired by the vision transformers (ViT) [16], yet it is much simpler32

in several ways: we do not use any form of attention, only linear layers along with the GELU33

non-linearity [25]. Since our architecture is much more stable to train than transformers, we do not34
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Figure 1: The ResMLP architecture: After linearly projecting the image patches, our network alternately
processes them by (1) a communication layer between vectors implemented as a linear layer; (2) a two-layer
residual perceptron. We denote by A the Affine element-wise transformation, and by T the transposition.

need batch-specific or cross-channel normalizations such as BatchNorm, GroupNorm or LayerNorm.35

Our training procedure mostly follows the one initially introduced for DeiT [56] and CaiT [57].36

Due to its linear nature, the patch interactions in our model can be easily visualised and interpreted.37

While the interaction pattern learned in the first layer is very similar to a small convolutional filter,38

we observe more subtle interactions across patches in deeper layers. These include some form of39

axial filters, and long-range interactions early in the network.40

In summary, in this paper, we show that41

• despite their simplicity, Residual Multi-Layer Perceptrons reach surprisingly good accuracy/com-42

plexity trade-offs with ImageNet-1k training only1, without requiring normalization based on batch43

or channel statistics;44

• these models benefit significantly from distillation methods [56]; they are also compatible with45

modern self-supervised learning methods based on data augmentation, such as DINO [6];46

• thank to its design where patch embeddings simply “communicate” through a linear layer, we can47

make observations on the spatial interaction that the network learns across layers;48

• we adapt ResMLP to machine translation, and again obtain surprisingly good results.49

2 Method50

Our model, depicted in Figure 1, is inspired by the ViT model, from which we adopt the columnar51

structure with fixed-resolution feature maps. We proceed two drastic simplifications. We refer the52

reader to Dosovitskiy et al. [16] for more details about the ViT architecture.53

The overall ResMLP architecture. Our model, denoted by ResMLP, takes a grid of N×N non-54

overlapping patches as input, where the patch size is typically equal to 16×16. The patches are then55

independently passed through a linear layer to form a set of N2 d-dimensional embeddings.56

The resulting set of N2 embeddings are fed to a sequence of Residual Multi-Layer Perceptron layers57

to produce a set of N2 d-dimensional output embeddings. These output embeddings are then averaged58

as a d-dimension vector to represent the image, which is fed to a linear classifier to predict the label59

associated with the image. Training uses the cross-entropy loss.60

The Residual Multi-Perceptron Layer. Our network is a sequence of layers that all have the same61

structure: a linear sublayer followed by a feedforward sublayer. Similar to the Transformer layer,62

each sublayer is paralleled with a skip-connection [23]. We do not apply Layer Normalization [1]63

because training is stable without it when using the following Affine transformation:64

Affα,β(x) = Diag(α)x+ β, (1)

where α and β are learnable weight vectors. This operation simply rescales and shifts the input65

element-wise. Moreover, it has no cost at inference time, as it can absorbed in the adjacent linear66

layer. Note, when writing Aff(X) the operation is applied independently to each column of X.67

While similar to BatchNorm [30] and Layer Normalization [1], the Aff operator does not depend on68

any batch statistics. Therefore, it is closer to the recent LayerScale method [57], which improves the69

1Concurrent work by Tolstikhin et al. [55] brings complementary insights to ours: they achieve interesting
performance with larger MLP models pre-trained on the larger public ImageNet-22k and even more data with
the proprietary JFT-300M. In contrast, we focus on faster models trained on ImageNet-1k. Other concurrent
related work includes that of Melas-Kyriazi [39] and the RepMLP [14] and gMLP [38] models.
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optimization of deep transformers when initializing α to a small value. Note, LayerScale does not70

have a bias term.71

We apply this transformation twice for each residual block. As as a pre-normalization Aff replaces72

the LayerNormalization, and avoids using channel-wise statistics. Here, we initialize α = 1, and73

β = 0. As a post-processing of the residual block, Aff implements LayerScale and therefore we74

follow the same small value initialization for α as in [57] for the post-normalization.75

Finally, we follow the same structure for the feedforward sublayer as in the Transformer; we only76

replace the ReLU non-linearity by a GELU function [25].77

Overall, our Multi-layer perceptron takes a set of N2 d-dimensional input features stacked in a78

d×N2 matrix X, and outputs a set of N2 d-dimension output features, stacked in a matrix Y with79

the following set of transformations:80

Z = X+ Aff

(

(A Aff
(

X)⊤
)⊤

)

, (2)

Y = Z+ Aff (C GELU(B Aff(Z))) , (3)

where A, B and C are the main learnable weight matrices of the layer. The dimensions of the81

parameter matrix A are N2×N2, i.e., this sublayer exchanges information across all the locations,82

while the feedforward sublayer works per location. As a consequence, the intermediate activation83

matrix Z has the same dimensions as the matrices X and Y. Finally, the weight matrices B and C84

have the same dimensions as in a Transformer layer, which are 4d×d and d×4d, respectively.85

The main difference compared to a Transformer layer is that we replace the self-attention by the86

linear interaction defined in Eq. (2). While self-attention computes a convex combination of other87

features with coefficients that are data dependent, the linear interaction layer in Eq. (2) computes88

a general linear combination using learned coefficients that are not data dependent. As compared89

to a convolutional layers which have local support and share weights across space, our linear90

patch interaction layer offers a global support and does not share weights, moreover it is applied91

independently across channels.92

Relationship to the Vision Transformer. Our model can be regarded as a drastic simplification of93

the ViT model by Dosovitskiy et al. [16]. We depart from this model as follows:94

• We do not include any self-attention block. Instead we have a linear patch interaction layer without95

any non-linearity.96

• We do not have the extra “class” token that is typically used in these models to aggregate information97

via attention. Instead, we simply use average pooling. We do, however, also consider a specific98

aggregation layer as a variant, which we describe in the next paragraph.99

• We do not include any form of positional embedding: the linear communication module between100

patches implicitly takes into account the patch position.101

• Instead of pre-LayerNormalization, we use a simple learnable affine transform, thus avoiding any102

form of batch and channel-wise statistics.103

Class-MLP. As an alternative to average pooling, we also experimented with an adaptation of the104

class-attention introduced in CaiT [57]. In CaiT, this consists of two layers that have the same105

structure as the transformer, but in which only the class token is updated based on the frozen patch106

embeddings. We translate this method to our architecture, except that, after aggregating the patches107

with a linear layer, we replace the attention-based interaction between the class and patch embeddings108

by simple linear layers, still keeping the patch embeddings frozen. This increases the performance, at109

the expense of adding some parameters and computational cost. We refer to this pooling variant as110

“class-MLP”, since the purpose of these few layers is to replace average pooling.111

3 Experiments112

In this section, we present experimental results for our ResMLP architecture for image classification.113

We also study the impact of the different components in a series of ablations. We consider three114

training paradigms in our experiments:115
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Table 1: Comparison between architectures on ImageNet classification. We compare different architectures
based on convolutional networks, Transformers and feedforward networks with comparable FLOPs and number
of parameters. We report Top-1 accuracy on the validation set of ImageNet-1k with different measure of
complexity: throughput, FLOPs, number of parameters and peak memory usage. All the models use 224×224

images as input. By default the Transformers and feedforward networks uses 14×14 patches of size 16×16, see
Table 3 for the detailed specification of our main models. The throughput is measured on a single V100-32GB
GPU with batch size fixed to 32. For reference, we include the state of the art with ImageNet training only.

Arch. #params throughput FLOPS Peak Mem Top-1

(×106) (im/s) (×109) (MB) Acc.

State of the art
CaiT-M48↑448Υ [57] 356 5.4 329.6 5477.8 86.5
NfNet-F6 SAM [5] 438 16.0 377.3 5519.3 86.5

Convolutional networks

EfficientNet-B3 [53] 12 661.8 1.8 1174.0 81.1
EfficientNet-B4 [53] 19 349.4 4.2 1898.9 82.6
EfficientNet-B5 [53] 30 169.1 9.9 2734.9 83.3
RegNetY-4GF [47] 21 861.0 4.0 568.4 80.0
RegNetY-8GF [47] 39 534.4 8.0 841.6 81.7
RegNetY-16GF [47] 84 334.7 16.0 1329.6 82.9

Transformer networks
DeiT-S [56] 22 940.4 4.6 217.2 79.8
DeiT-B [56] 86 292.3 17.5 573.7 81.8
CaiT-XS24 [57] 27 447.6 5.4 245.5 81.8

Feedforward networks
ResMLP-S12 15 1415.1 3.0 179.5 76.6
ResMLP-S24 30 715.4 6.0 235.3 79.4
ResMLP-B24 116 231.3 23.0 663.0 81.0

• Supervised learning: We train ResMLP from labeled images with a softmax classifier and cross-116

entropy loss. This paradigm is the main focus of our work.117

• Self-supervised learning: We train the ResMLP architecture without labels. We consider the DINO118

method of Caron et al. [6] that trains a network by distilling knowledge from previous instances of119

the same network, leading to a form of self-distillation without labels.120

• Knowledge distillation: We employ the knowledge distillation procedure proposed by Touvron et121

al. [56] to guide the supervised training of ResMLP with a convnet.122

3.1 Experimental setting123

Datasets. We train our models on the ImageNet-1k dataset [50], that contains 1.2M images evenly124

spread over 1,000 object categories. In the absence of an available test set for this benchmark, we125

follow the standard practice in the community by reporting performance on the validation set. This126

is not ideal since the validation set was originally designed to select hyper-parameters. Comparing127

methods on this set may not be conclusive enough because an improvement in performance may not128

be caused by better modeling, but by a better selection of hyper-parameters. To mitigate this risk, we129

report additional results in transfer learning and on two alternative versions of ImageNet that have130

been built to have distinct validation and test sets, namely the ImageNet-real [3] and ImageNet-v2 [49]131

datasets. We also report a few data-points when training on ImageNet-21k. Our hyper-parameters are132

mostly adopted from Touvron et al. [56, 57].133

Hyper-parameter settings. In the case of supervised learning, we train our network with the Lamb134

optimizer [63] with a learning rate of 5× 10−3 and weight decay 0.2. We initialize the LayerScale135

parameters as a function of the depth by following CaiT [57]. The rest of the hyper-parameters follow136

the default setting used in DeiT [56]. For the knowledge distillation paradigm, we use the same137

RegNety-16GF [48] as in DeiT with the same training schedule. The majority of our models take two138

days to train on eight V100-32GB GPUs.139

3.2 Main Results140

In this section, we compare our architecture to models with more conventional network architectures141

of comparable size and throughput on ImageNet.142

Comparison with Transformers and convnets in a supervised setting. In Table 1, we compare143

ResMLP with different convolutional and Transformer architectures. For completeness, we report144
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Table 2: Self-supervised learning with DINO [6]. Classification accuracy on ImageNet-1k val. ResMLPs
evaluated with linear and k-NN evaluation on ImageNet are comparable to convnets but inferior to ViT.

Models ResNet-50 ViT-S/16 ViT-S/8 ViT-B/16 ResMLP-S12 ResMLP-S24

Params. (×106) 25 22 22 87 15 30

FLOPS (×109) 4.1 4.6 22.4 17.5 3.0 6.0

Linear 75.3 77.0 79.7 78.2 67.5 72.8
k-NN 67.5 74.5 78.3 76.1 62.6 69.4

the best-published numbers obtained with a model trained on ImageNet alone. As expected, in145

terms of the trade-off between accuracy, FLOPs, and throughput, ResMLP is not as efficient as146

convolutional networks or Transformers. However, their accuracy is encouraging: we compare them147

with architectures that have benefited from years of research and careful optimization towards these148

trade-offs. Overall, our results suggest that the structural constraints imposed by the layer design do149

not have a drastic influence on performance, especially when training models with enough data and150

recent advances in training and regularization.151

Self-supervised pre-training of ResMLP. We explore the possibility of training ResMLP using152

DINO, a recent self-supervised learning approach [6]. We pre-train ResMLP-S12 models with this153

approach during 300 epochs. We report our results in Table 2. As expected given the supervised154

classification results, the accuracies obtained with ResMLP are less good than with ViT. Nevertheless,155

the performance is surprisingly high for a pure MLP architecture and competitive with Convnet in156

knn evaluation. We hope that these result will serve as a baseline for future work.157

After self-supervised pre-training, we also fine-tune the network on ImageNet using ground truth158

labels. This pre-training substantially improves the accuracy, when comparing with the same model159

ResMLP-S24 solely trained with labels (top-1 acc. of 79.9% on ImageNet-val instead of 79.4% for160

ResMLP-S24, with the same total number of epochs). Results on ImageNet-v2 suggest that it reduces161

overfitting (68.6% on ImageNet-v2, vs 67.9% with supervised training only).162

Improving models with knowledge distillation. We study our model when training following the163

knowledge distillation approach of Touvron et al. [56]. In their work, the authors show the impact of164

training a ViT model by distilling it from a RegNet. In this experiment, we explore if ResMLP also165

benefits from this procedure and summarize our results in Table 3 (Blocks “Baseline models” and166

“Training”). We observe that similar to DeiT models, ResMLP greatly benefits from distilling from a167

convnet. This result concurs with the observations made by d’Ascoli et al. [13], who used convnets168

to initialize feedforward networks. Even though our setting differs from theirs in scale, the problem169

of overfitting for feedforward networks is still present on ImageNet. The additional regularization170

obtained from the distillation is a possible explanation for this improvement.171

Visualisation. Because they are linear, our patch interaction layers from Eq. (2) are easily inter-172

pretable. In Figure 2 we visualise the rows of the interaction matrices A as N×N images, for our173

ResMLP-S24 model. The early layers show convolution-like patterns: the learned weights resemble174

shifted versions of each other and have local support. Interestingly, in many layers, the support also175

extends along both axes, most prominently seen in layer seven. The last seven layers of the network176

are different: they consist of a spike for the patch itself and a diffuse response across other patches177

with larger or smaller magnitude; see layer 20.178

3.3 Visualization & analysis of the linear interaction between patches179

Measuring sparsity of the weights. The visualizations described above suggest that the linear180

communication layers are sparse. We analyze this quantitatively in more detail in Figure 3. We181

measure the sparsity of the matrix A, and compare it to the sparsity of B and C from the per-patch182

MLP. Since there are no exact zeros, we measure the rate of components whose absolute value is183

lower than 5% of the maximum value. Note, discarding the small values is analogous to the case184

where we normalize the matrix by its maximum and use a finite-precision representation of weights.185

For instance, with a 4-bits representation of weight, one would typically round to zero all weights186

whose absolute value is below 6.25% of the maximum value.187
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Layer 1 Layer 7 Layer 10 Layer 20

Figure 2: Visualisation of the linear layers in ResMLP-S24. For each layer we visualise the rows of the
matrix A as a set of 14× 14 pixel images, for sake of space we only show the rows corresponding to the 6×6
central patches. We observe patterns in the linear layers that share similarities with convolutions. In appendix B
we provide comparable visualizations for all layers of a ResMLP-S12 model.
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The measurements in Figure 3 show that all three matrices are sparse, with the layers implementing188

the patch communication being significantly more so. This suggests that they may be compatible with189

parameter pruning, or better, with modern quantization techniques that induce sparsity at training190

time, such as Quant-Noise [20] and DiffQ [19]. The sparsity structure, in particular in earlier layers,191

see Figure. 2, hints that we could implement the patch interaction linear layer with a convolution. We192

provide some results for convolutional variants in our ablation study. Further research on network193

compression is beyond the scope of this paper, yet we believe it worth investigating in the future.194

Communication across patches if we remove the linear interaction layer (linear → none), we195

obtain substantially lower accuracy (-20% top-1 acc.) for a “bag-of-patches” approach. We have tried196

several alternatives for the linear patch interaction layer, which are presented in Table 3 (block “patch197

communication”). Amongst them, using the same MLP structure as for patch processing (linear →198

MLP), which we analyze in more details in the supplementary material. The simpler choice of a199

single linear square layer led to a better accuracy/performance trade-off – considering that the MLP200

variant requires compute halfway between ResMLP-S12 and ResMLP-S24 – and requires fewer201

parameters than a residual MLP block.202

The visualization in Figure 2 indicates that many linear interaction layers look like convolutions. In203

our ablation, we replaced the linear layer with different types of 3×3 convolutions. The depth-wise204

convolution does not implement interaction across channels – as our linear patch communication205

layer – and yields similar performance at a comparable number of parameters and FLOPs. While206

full 3×3 convolutions yield best results, they come with roughly double the number of parameters207
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Ablation Model
Patch Params FLOPs

Variant
top-1 acc. on ImageNet

size ×10
6

×10
9 val real [3] v2 [49]

ResMLP-S12 16 15.4 3.0 12 layers, working dimension 384 76.6 83.3 64.4
Baseline models ResMLP-S24 16 30.0 6.0 24 layers, working dimension 384 79.4 85.3 67.9

ResMLP-B24 16 115.7 23.0 24 layers, working dimension 768 81.0 86.1 69.0

Normalization ResMLP-S12 16 15.4 3.0 Aff→ Layernorm 77.7 84.1 65.7

Pooling ResMLP-S12 16 17.7 3.0 average pooling → Class-MLP 77.5 84.0 66.1

Patch
communication

ResMLP-S12 16 14.9 2.8 linear → none 56.5 63.4 43.1
ResMLP-S12 16 18.6 4.3 linear → MLP 77.3 84.0 65.7
ResMLP-S12 16 30.8 6.0 linear → conv 3x3 77.3 84.4 65.7
ResMLP-S12 16 14.9 2.8 linear → conv 3x3 depth-wise 76.3 83.4 64.6
ResMLP-S12 16 16.7 3.2 linear → conv 3x3 depth-separable 77.0 84.0 65.5

Patch size
ResMLP-S12/14 14 15.6 4.0 patch size 16×16→14×14 76.9 83.7 65.0
ResMLP-S12/8 8 22.1 14.0 patch size 16×16→8×8 79.1 85.2 67.2
ResMLP-B24/8 8 129.1 100.2 patch size 16×16→8×8 81.0 85.7 68.6

Training

ResMLP-S12 16 15.4 3.0 old-fashioned (90 epochs) 69.2 76.0 56.1
ResMLP-S12 16 15.4 3.0 pre-trained SSL (DINO) 76.5 83.6 64.5
ResMLP-S12 16 15.4 3.0 distillation 77.8 84.6 66.0
ResMLP-S24 16 30.0 6.0 pre-trained SSL (DINO) 79.9 85.9 68.6
ResMLP-S24 16 30.0 6.0 distillation 80.8 86.6 69.8
ResMLP-B24/8 8 129.1 100.2 distillation 83.6 88.4 73.4
ResMLP-B24/8 8 129.1 100.2 pre-trained ImageNet-21k (60 epochs) 84.4 88.9 74.2

Table 3: Ablation. Our default configurations are presented in the three first rows. By default we train during
400 epochs. The “old-fashioned” is similar to what was employed for ResNet [23]: SGD, 90-epochs waterfall
schedule, same augmentations up to variations due to library used.

and FLOPs. Interestingly, the depth-separable convolutions combine accuracy close to that of full208

3×3 convolutions with a number of parameters and FLOPs comparable to our linear layer. This209

suggests that convolutions on low-resolution feature maps at all layers is an interesting alternative210

to the common pyramidal design of convnets, where early layers operate at higher resolution and211

smaller feature dimension.212

3.4 Ablation studies213

Table 3 reports the ablation study of our base network and a summary of our preliminary exploratory214

studies. We discuss the ablation below and give more detail about early experiments in Appendix A.215

Control of overfitting. Since MLPs are subject to overfitting, we show in Fig. 4 a control experiment216

to probe for problems with generalization. We explicitly analyze the differential of performance217

between the ImageNet-val and the distinct ImageNet-V2 test set. The relative offsets between curves218

reflect to which extent models are overfitted to ImageNet-val w.r.t. hyper-parameter selection. The219

degree of overfitting of our MLP-based model is overall neutral or slightly higher to that of other220

transformer-based architectures or convnets with same training procedure.221

Normalization & activation. Our network configuration does not contain any batch normalizations.222

Instead, we use the affine per-channel transform Aff. This is akin to Layer Normalization [1],223

typically used in transformers, except that we avoid to collect any sort of statistics, since we do224

no need it it for convergence. In preliminary experiments with pre-norm and post-norm [24], we225

observed that both choices converged. Pre-normalization in conjunction with Batch Normalization226

could provide an accuracy gain in some cases, see Appendix A.227

We choose to use a GELU [25] function. In Appendix A we also analyze the activation function:228

ReLU [22] also gives a good performance, but it was a bit more unstable in some settings. We did229

not manage to get good results with SiLU [25] and HardSwish [28].230

Pooling. Replacing average pooling with Class-MLP, see Section 2, brings a significant gain for a231

negligible computational cost. We do not include it by default to keep our models more simple.232

Patch size. Smaller patches significantly increase the performance, but also increase the number of233

flops (see Block "Patch size" in Table 3). Smaller patches benefit more to larger models, but only234

with an improved optimization scheme involving more regularization (distillation) or more data.235

Training. Consider the Block “Training’ in Table 3. ResMLP significantly benefits from modern236

training procedures such as those used in DeiT. For instance, the DeiT training procedure improves237
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Architecture FLOPs Res. CIFAR10 CIFAR100 Flowers102 Cars iNat18 iNat19

EfficientNet-B7 [53] 37.0B 600 98.9 91.7 98.8 94.7 _ _
ViT-B/16 [16] 55.5B 384 98.1 87.1 89.5 _ _ _
ViT-L/16 [16] 190.7B 384 97.9 86.4 89.7 _ _ _
Deit-B/16 [56] 17.5B 224 99.1 90.8 98.4 92.1 73.2 77.7
ResNet50 [58] 4.1B 224 _ _ 96.2 90.0 68.4 73.7
Grafit/ResNet50 [58] 4.1B 224 _ _ 97.6 92.7 68.5 74.6

ResMLP-S12 3.0B 224 98.1 87.0 97.4 84.6 60.2 71.0
ResMLP-S24 6.0B 224 98.7 89.5 97.9 89.5 64.3 72.5

Table 4: Evaluation on transfer learning. Classification accuracy (top-1) of models trained on ImageNet-1k
for transfer to datasets covering different domains. The ResMLP architecture takes 224×224 images during
training and transfer, while ViTs and EfficientNet-B7 work with higher resolutions, see “Res.” column.

the performance of ResMLP-S12 by 7.4% compared to the training employed for ResNet [23]2.238

This is in line with recent work pointing out the importance of the training strategy over the model239

choice [2, 48]. Pre-training on more data and distillation also improve the performance of ResMLP,240

especially for the bigger models, e.g., distillation improves the accuracy of ResMLP-B24/8 by 2.6%.241

Other analysis. In our early exploration, we evaluated several alternative design choices. As in242

transformers, we could use positional embeddings mixed with the input patches. In our experiments243

we did not see any benefit from using these features, see Appendix A. This observation suggests that244

our linear patch interaction layer provides sufficient spatial communication, and referencing absolute245

positions obviates the need for any form of positional encoding.246

3.5 Transfer learning247

We evaluate the quality of features obtained from a ResMLP architecture when transferring them to248

other domains. The goal is to assess if the features generated from a feedforward network are more249

prone to overfitting on the training data distribution. We adopt the typical setting where we pre-train250

a model on ImageNet-1k and fine-tune it on the training set associated with a specific domain. We251

report the performance with different architectures on various image benchmarks in Table 4, namely252

CIFAR-10 and CIFAR-100 [34], Flowers-102 [42], Stanford Cars [33] and iNaturalist [27]. We refer253

the reader to the corresponding references for a more detailed description of the datasets. We observe254

that the performance of our ResMLP is competitive with the existing architectures, showing that255

pretraining feedforward models with enough data and regularization via data augmentation greatly256

reduces their tendency to overfit on the original distribution. Interestingly, this regularization also257

prevents them from overfitting on the training set of smaller dataset during the fine-tuning stage.258

3.6 Machine translation259

We also evaluate the ResMLP transpose-mechanism to replace the self-attention in the encoder and260

decoder of a neural machine translation system. We train models on the WMT 2014 English-German261

and English-French tasks, following the setup from Ott et al. [45]. We consider models of dimension262

512, with a hidden MLP size of 2048, and with 6 or 12 layers. Note that the current state of the art263

employs much larger models: our 6 layers model is more comparable to the base transformer model264

from Vaswani et al. [60], which serves as a baseline, along with pre-transformer architectures such as265

Recurrent and convolutional neural networks. We use Adagrad with learning rate 0.2, 32k steps of266

linear warmup, label smoothing 0.1, dropout rate 0.15 for en-de and 0.1 for en-fr. We initialize the267

LayerScale parameter to 0.2. We generate translations with the beam search algorithm, with a beam268

of size 4. As shown in Table 5, the results are at least on par with other architectures:269

Table 5: Machine translation on WMT 2014 translation tasks. We report tokenized BLEU on newstest2014.

Models GNMT [61] ConvS2S [21] Transf. (base) [60] ResMLP-6 ResMLP-12

EN-DE 24.6 25.2 27.3 26.4 26.8
EN-FR 39.9 40.5 38.1 40.3 40.6

2Interestingly, if trained with this “old-fashion” setting, ResMLP-S12 outperforms AlexNet [35] by a margin.
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4 Related work270

We review the research on applying Fully Connected Network (FCN) for computer vision problems271

as well as other architectures that shares common modules with our model.272

Fully-connected network for images. Many studies have shown that FCNs are competitive with273

convnets for the tasks of digit recognition [11, 51], keyword spotting [7] and handwritting recogni-274

tion [4]. Several works [37, 40, 59] have questioned if FCNs are also competitive on natural image275

datasets, such as CIFAR-10 [34]. More recently, d’Ascoli et al. [13] have shown that a FCN initialized276

with the weights of a pretrained convnet achieves performance that are superior than the original277

convnet. Neyshabur [41] further extend this line of work by achieving competitive performance by278

training an FCN from scratch but with a regularizer that constrains the models to be close to a convnet.279

These studies have been conducted on small scale datasets with the purpose of studying the impact of280

architectures on generalization in terms of sample complexity [18] and energy landscape [31]. In281

our work, we show that, in the larger scale setting of ImageNet, FCNs can attain surprising accuracy282

without any constraint or initialization inspired by convnets.283

Finally, the application of FCN networks in computer vision have also emerged in the study of284

the properties of networks with infinite width [43], or for inverse scattering problems [32]. More285

interestingly, the Tensorizing Network [44] is an approximation of very large FCN that shares286

similarity with our model, in that they intend to remove prior by approximating even more general287

tensor operations, i.e., not arbitrarily marginalized along some pre-defined sharing dimensions.288

However, their method is designed to compress the MLP layers of a standard convnets.289

Other architectures with similar components. Our FCN architecture shares several components290

with other architectures, such as convnets [35, 36] or transformers [60]. A fully connected layer is291

equivalent to a convolution layer with a 1× 1 receptive field, and several work have explored convnet292

architectures with small receptive fields. For instance, the VGG model [52] uses 3×3 convolutions,293

and later, other architectures such as the ResNext [62] or the Xception [10] mix 1×1 and 3×3294

convolutions. In contrast to convnets, in our model interaction between patches is obtained via a295

linear layer that is shared across channels, and that relies on absolute rather than relative positions.296

More recently, transformers have emerged as a promising architecture for computer vision [9, 17,297

46, 56, 66]. In particular, our architecture takes inspiration from the structure used in the Vision298

Transformer (ViT) [17], and as consequence, shares many components. Our model takes a set299

of non-overlapping patches as input and passes them through a series of MLP layers that share300

the same structure as ViT, replacing the self-attention layer with a linear patch interaction layer.301

Both layers have a global field-of-view, unlike convolutional layers. Whereas in self-attention the302

weights to aggregate information from other patches are data dependent through queries and keys,303

in ResMLP the weights are not data dependent and only based on absolute positions of patches. In304

our implementation we follow the improvements of DeiT [56] to train vision transformers, use the305

skip-connections from ResNets [23] with pre-normalization of the layers [8, 24].306

Finally, our work questions the importance of self-attention in existing architectures. Similar ob-307

servations have been made in natural language processing. Notably, Synthesizer [54] shows that308

dot-product self-attention can be replaced by a feedforward network, with competitive performance309

on sentence representation benchmarks. As opposed to our work, Synthesizer does use data dependent310

weights, but in contrast to transformers the weights are determined from the queries only.311

5 Conclusion312

In this paper we have shown that a simple residual architecture, whose residual blocks consist of a313

one-hidden layer feed-forward network and a linear patch interaction layer, achieves an unexpectedly314

high performance on ImageNet classification benchmarks, provided that we adopt a modern training315

strategy such as those recently introduced for transformer-based architectures. Thanks to their simple316

structure, with linear layers as the main mean of communication between patches, we can vizualize317

the filters learned by this simple MLP. While some of the layers are similar to convolutional filters,318

we also observe sparse long-range interactions as early as the second layer of the network. We hope319

that our model free of spatial priors will contribute to further understanding of what networks with320

less priors learn, and potentially guide the design choices of future networks without the pyramidal321

design prior adopted by most convolutional neural networks.322
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