Auto-Prompt-Tuner: A Framework for LLM-driven Prompt Optimization
The performance of Large Language Models (LLMs) is highly sensitive to small changes in prompts,
making manual prompt engineering an unreliable and difficult-to-reproduce process. This
ad-hoc approach often fails on edge cases and lacks a systematic methodology. To address this, we
introduce the Auto-Prompt-Tuner, a framework that automates prompt optimization using a
data-driven, meta-LLM feedback loop.

The Auto-Tuner Framework
——_—

Samples ask Module ngine Controller

Repeat until stopping criteria:
X mismatch + fAmatch metrics < eps or max_iter

examples
Updated Prompt

Meta-LLM Prompt
Optimizer

3

Config Loader (max_iter, patience,]

eval_metric)

Our framework iteratively refines prompts by using a powerful "meta-LLM" to analyze the
performance of a "target LLM" on a given task.
Core Process: The framework operates in a continuous loop:

1. The target LLM makes predictions on labeled data using the current prompt.

2. An Evaluation Engine assesses these predictions, identifying successful matches and

mismatches.

3. A Meta-LLM Prompt Optimizer receives this feedback and generates an improved prompt.
The process repeats with the updated prompt.
Convergence: The loop terminates when performance stops improving by a predefined threshold or
a maximum number of iterations is reached.
Case Study: Complex Name Matching
We applied the Auto-Prompt-Tuner to a challenging name-matching task, which is complicated by
issues like poor image quality, OCR errors, nicknames, and cultural name variations.
Results: The framework automatically evolved the prompt over several iterations, achieving a 12%
absolute increase in accuracy, from a baseline of 68% to a peak of 80%. In the production setting,
this led to a 10% coverage gain for automatic approval, improving onboarding time.
Non-Linear Optimization: The path to improvement was not straightforward. An early iteration that
added case-insensitive matching initially lowered accuracy from 68% to 64%. However, the
framework self-corrected in the next step by introducing Levenshtein fuzzy matching, demonstrating
its ability to navigate temporary setbacks to find a better overall solution.

Iteration Accuracy Change Introduced by Meta-LLM

0 0.68 Baseline: Strict first and last name matching.

1 0.64 Added case-insensitive matching, which hurt precision.

2 0.72 Introduced Levenshtein fuzzy matching to handle typos.

3 0.74 Added logic for nicknames and initials (e.g., "J. Smith" < "John Smith").
4 0.70 Handled suffixes and placeholder names (e.g., "FNU","LNU").

5 0.80 Added rules for multi-token first names and compound surnames.

Table 1: Summary of Iterative Prompt Evolution and Performance

The optimization process shows a clear pattern: initial iterations involve larger, more exploratory
edits to the prompt, while later stages consist of smaller, fine-tuning adjustments. This dynamic
suggests that a systematic, automated approach can effectively discover complex logic that manual
tuning might miss, ultimately leading to more robust and accurate prompts.



	Auto-Prompt-Tuner: A Framework for LLM-driven Prompt Optimization 
	The Auto-Tuner Framework 
	Case Study: Complex Name Matching 


