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ABSTRACT

The Kolmogorov-Arnold Network (KAN) has recently emerged as a promising
alternative to traditional multi-layer perceptrons (MLPs), offering enhanced accu-
racy and interpretability through learnable activation functions on edges instead
of fixed functions on nodes. In this paper, we present the Kolmogorov-Arnold
Auto-Encoder (KAE), a novel integration of KAN with autoencoders (AEs) that
aims to improve representation learning and performance in retrieval, classifi-
cation, and denoising tasks. By utilizing the flexible polynomial functions in
KAN layers, KAE effectively captures complex data patterns and non-linear re-
lationships, outperforming standard autoencoders. Our extensive experiments on
benchmark datasets show that KAE significantly enhances the quality of latent
representations, resulting in reduced reconstruction and denoising errors, and also
improves performance in downstream tasks, including higher classification accu-
racy, retrieval recall, and interpretability compared to standard autoencoders and
other KAN variants. These findings position KAE as a practical tool for high-
dimensional data analysis, paving the way for more robust performance in repre-
sentation learning. The code is available at https://anonymous.4open.
science/r/KAE/.

1 INTRODUCTION

Autoencoders (Berahmand et al., 2024) are a fundamental component of modern deep learning,
serving as powerful tools for unsupervised representation learning. By compressing input data into
a lower-dimensional latent space and subsequently reconstructing it, autoencoders facilitate a wide
range of applications, including dimensionality reduction (Wang et al., 2016; Lin et al., 2020), image
classification (Zhou et al., 2019; 2023), and data denoising (Gondara, 2016; Cui & Zdeborová,
2024). Their ability to learn meaningful representations from unlabelled data has positioned them
as essential in various AI domains, from computer vision (Mishra et al., 2018; Takeishi & Kalousis,
2021) to natural language processing (Shen et al., 2020; Kim et al., 2021), significantly enhancing
the performance of downstream tasks.

Traditional autoencoders typically leverage multi-layer perceptrons (MLPs), characterized by fully
connected layers. In a conventional autoencoder, each layer computes its output as y = σ(Wx+ b),
where σ denotes a fixed activation function, W is the learnable weight matrix, x represents the
input, and b is the bias vector. The optimization of W is traditionally performed through black-box
AI systems, limiting the adaptability of the activation function to the data’s underlying structure.

Recent advancements in alternative architectures, such as Kolmogorov-Arnold Networks (KANs)
(Liu et al., 2024b;a), offer a compelling pathway for enhancing autoencoder performance. Unlike
MLPs, KANs redefine the output as y = f(x), where f is a learnable activation function. This
shift enables the network to adaptively learn more complex representations, moving beyond the
limitations of fixed functions and linear weights used in MLPs.

In this paper, we propose the Kolmogorov-Arnold Auto-Encoder (KAE), which integrates the
strengths of KANs into the autoencoder framework to create a more robust model for representation
learning. However, merely substituting MLP layers with KAN layers utilizing B-spline functions
may result in only marginal gains or even a decline in performance. The efficacy of KANs heavily
depends on the specific type of function employed within the KAN layer. To address this chal-
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lenge, we introduce a well-defined KAE architecture that utilizes learnable polynomial functions,
demonstrating promising improvements in representation learning.

Our contributions are as follows:

• We introduce the Kolmogorov-Arnold Representation Theorem into the design of autoencoders,
providing a theoretical basis for improving autoencoder performance.

• We investigate the role of activation functions in the KAN layers, identifying polynomial func-
tions as a suitable choice for enhancing autoencoder performance.

• We demonstrate the superiority of the Kolmogorov-Arnold Auto-Encoder (KAE) through ex-
tensive experimental validation, showing improvements in both reconstruction quality and
downstream application performance.

The remainder of the paper is organized as follows. Section 2 reviews related work. Section 3 details
the proposed KAE model, and Section 4 provides a thorough empirical evaluation. Finally, Section
5 concludes the paper.

2 RELATED WORK

2.1 AUTOENCODERS (AES)

Kolmogorov–Arnold NetworksAuto-Encoder (AE) Kolmogorov–Arnold AE

Latent 
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Figure 1: Model Comparison of AE, KAN, and KAE.

Autoencoders, as a form of unsupervised learning, aim to learn a compressed representation of input
data while minimizing reconstruction error (Pinaya et al., 2020). Traditionally, autoencoders rely on
MLPs to achieve this task, where each layer applies a fixed non-linearity. However, this often limits
the ability of the network to capture more complex structures in the data.

Recent works have explored various autoencoder architectures, including Variational Auto-Encoders
(VAEs) (Kingma et al., 2019; Skopek et al., 2020) and Denoising Auto-Encoders (DAEs) (Savinov
et al., 2022; Wu et al., 2023), which introduce stochasticity and robustness to noise, respectively.
Nevertheless, most of these architectures still rely on fixed activation functions, which limits their
flexibility in representing complex functions.

As shown in Fig. 1, an autoencoder consists of two main parts:

• Encoder: This part compresses the input into a latent-space representation.
• Decoder: This part reconstructs the input data from the latent-space representation.

A common application of autoencoders is representation learning, where latent representations are
learned and can be used for tasks such as image classification (Zhou et al., 2023), text classification
(Xu & Tan, 2019), cross-modal learning (Dong et al., 2023), and other applications, particularly
beneficial for high-dimensional data analysis. Another key feature of autoencoders is their ability to
reduce noise in data (Bajaj et al., 2020). By inputting noisy data, the pre-trained autoencoder can
remove the noise, producing clean outputs, which makes it a powerful tool for data denoising.
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2.2 KOLMOGOROV-ARNOLD NETWORKS (KANS)

Kolmogorov-Arnold Networks (KANs) (Liu et al., 2024b;a) provide a more flexible way to model
non-linear relationships by using learnable activation functions rather than fixed ones. Inspired
by the Kolmogorov-Arnold representation theorem (Kolmogorov, 1961; Braun & Griebel, 2009),
KANs approximate any continuous multivariate function using a sum of univariate functions, pro-
viding a theoretically grounded approach to function approximation.

In the context of neural networks, KANs allow each layer to learn its own activation function, mak-
ing them more adaptable to highly non-linear data. KANs have been shown to outperform MLPs in
various applications (Xu et al., 2024; Bozorgasl & Chen, 2024), particularly those requiring com-
plex, non-linear transformations of input data.

2.2.1 KOLMOGOROV-ARNOLD REPRESENTATION THEOREM

The Kolmogorov-Arnold representation theorem is a fundamental result in mathematics, particularly
in functional analysis and multivariate approximation theory. It provides key insights into represent-
ing multivariate continuous functions. Theorem 1 asserts that any continuous function of d variables
can be represented as a finite sum of continuous univariate functions along with an additional con-
tinuous function.
Theorem 1 (Kolmogorov-Arnold Representation Theorem). For any smooth function f :
[0, 1]d → R, there exist continuous functions ϕk,j : [0, 1] → R and Φk : R → R such that:

f(x1, x2, . . . , xd) =

2d+1∑
k=1

Φk

 d∑
j=1

ϕk,j(xj)

 . (1)

This remarkable theorem involves the use of two primary types of functions: inner functions {ϕk,j}
and outer functions {Φk}, which motivates the design of the KAN network.

2.2.2 KAN NETWORK AND ITS APPLICATIONS

Inspired by Theorem 1, Liu et al. (2024b) proposed a novel KAN layer with din-dimensional inputs
and dout-dimensional outputs, defined as a matrix of 1D functions:

Φ := {ϕk,j}, j = 1, 2, · · · , din, k = 1, 2, · · · , dout,

where each function ϕk,j is a learnable univariate function. A general KAN network is formed by
stacking L KAN layers. Given an input vector x ∈ Rd, the output of KAN is

KAN(x) := (ΦL−1 ◦ ΦL−2 ◦ · · · ◦ Φ1 ◦ Φ0) ◦ x, (2)

where the Kolmogorov-Arnold representation in Eq. (1) can be viewed as a composition of two
KAN layers: Φ0 contains (2d+ 1) · d functions, and Φ1 contains 1 · (2d+ 1) functions.

Recently, KAN networks have been applied to various domains, including scientific discovery (Liu
et al., 2024b;a), image segmentation (Li et al., 2024), image classification (Cheon, 2024), text clas-
sification (Imran & Ishmam, 2024), collaborative filtering (Xu et al., 2024), and others. KAN-based
architectures, such as the Kolmogorov-Arnold Transformer (Yang & Wang, 2024) and UNet-KAN
(U-KAN) (Li et al., 2024), have also gained significant attention.

3 KOLMOGOROV–ARNOLD AUTO-ENCODER

3.1 KANS IN AUTOENCODERS

While KANs offer a promising way to enhance neural network architectures, their direct applica-
tion to autoencoders presents challenges. Specifically, the complexity introduced by the learnable
activation functions can lead to overfitting or suboptimal performance if not carefully managed. In
this work, we propose a new autoencoder architecture that integrates KANs while addressing these
challenges through the use of polynomial-based activation functions, which we show to be more
stable and effective for this task.

3
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3.2 OVERALL ARCHITECTURE

The key idea behind the Kolmogorov-Arnold Auto-Encoder (KAE) is to replace the MLP layers
(fixed activation functions) in traditional autoencoders with KAN layers (learnable functions), as
inspired by the Kolmogorov-Arnold representation theorem.

In a traditional autoencoder, the MLP consists of fully connected layers that apply a fixed activation
function, such as ReLU or sigmoid, after a linear transformation. Given an input vector x ∈ Rd, the
encoder compresses the data into a lower-dimensional latent representation z ∈ Rk, and the decoder
reconstructs z back into the original space. This transformation is typically expressed as:

z = σ(Wx+ b),

where W is the weight matrix, b is the bias, and σ is a fixed activation function.

In KAE, we replace the MLP layers with KAN layers, which use learnable activation functions as
defined by the Kolmogorov-Arnold representation theorem. Instead of a fixed σ, each KAN layer
dynamically learns its own activation function, enabling the model to capture complex, non-linear
patterns. The encoder applies a series of KAN layers to map the input to the latent space:

z = f(x) := (ΦL−1 ◦ ΦL−2 ◦ · · · ◦ Φ1 ◦ Φ0) ◦ x,

where each Φi represents a KAN layer composed of learnable univariate functions.

Similarly, the decoder (y = g(z)) uses KAN layers in reverse to reconstruct the data, providing
greater flexibility and accuracy compared to standard MLP-based decoders. This architecture en-
ables KAE to capture complex, non-linear relationships, enhancing the quality of the learned rep-
resentations. As with standard autoencoders, we use the mean squared error (MSE) between the
original and reconstructed data as the training loss.

3.3 POLYNOMIAL ACTIVATION FUNCTION

The autoencoder’s primary task is to ensure that the encoding and decoding functions are inverses
of each other, i.e., x ≈ g(f(x)) for all x ∈ Rd. In a traditional autoencoder, the layers are fully
connected, and this inversion property is straightforward to achieve. However, when using KAN
layers, the choice of functions f and g becomes more nuanced. Naı̈vely replacing the MLP layer
with a KAN layer does not produce satisfactory results, as shown in our evaluation in Section 4.

To ensure consistency between the encoder and decoder, we carefully design the f(x) and g(z) to
be invertible, using polynomial approximations that are both smooth and differentiable. For a KAE
layer with din-dimensional inputs and dout-dimensional outputs, the output of x ∈ Rdin is defined as:

KAE(x) := σ(h(x) + b) = σ((c01din + c1x+ c2x
2 + · · ·+ cpx

p) + b), (3)

where 1din is an all-ones vector and p is the order of the polynomials, treated as a hyperparameter in
KAE. To maintain consistency with the MLP-based AE, we use the structure σ(·+ b), replacing the
Wx term with h(x), resulting in σ(h(x) + b) with the following advantages.

• For polynomial orders up to four, an inverse function exists, ensuring the required inversion
between the encoder and decoder.

• Compared to the linear transformation Wx in MLPs, polynomial functions h(x) introduce
higher-order non-linear terms such as xp, enabling the model to capture more complex, non-
linear relationships in the data.

• The polynomial function includes a constant matrix c0 ∈ Rdout×din , providing more flexibility
than the traditional bias term b ∈ Rdout , allowing the model to better adapt to shifts and variations
in the data.

Notably, in the original KAN (Liu et al., 2024b), the learnable function h(x) is set as a B-spline
function, while in FourierKAN (Xu et al., 2024) it is set as a Fourier function, and in WavKAN
(Bozorgasl & Chen, 2024) it is set as a Wavelet function. Comparatively, our empirical validation
shows that quadratic and cubic polynomial functions (with p = 2, 3) offer a more effective balance
between flexibility and stability, improving the model’s ability to reconstruct data while maintaining
the inversion property between the encoder and decoder.

4
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4 EVALUATION

4.1 EXPERIMENTAL SETUP

To assess the effectiveness of the proposed Kolmogorov-Arnold Auto-Encoder (KAE), we con-
ducted a series of experiments comparing its performance against several baseline models: the
standard autoencoder (AE) (Pinaya et al., 2020), the Kolmogorov-Arnold Network (KAN) (Liu
et al., 2024b), and its variants, including FourierKAN (Xu et al., 2024) and WavKAN (Bozorgasl
& Chen, 2024). The implementation details and hyperparameters for each model are provided in
Appendix A. Our evaluation was designed to address the following key objectives:

• Bidirectional representation learning: Evaluating the model’s ability to effectively compress
and decompress data by comparing the reconstructed outputs to the original inputs;

• Quality of latent representations: Assessing the learned representations in downstream appli-
cations such as similarity search, image classification, and image denoising;

• Model capacity and interpretability: Analyzing the interpretability of the trained model by
examining the learned function coefficients within the autoencoder architecture.

We employed several well-known image datasets for our evaluations, as summarized in Table 1.

Table 1: Statistics of the Image Datasets Used in Our Work.
Dataset Image Type Image Size #Classes #Training #Test
MNIST (LeCun et al., 1998) Grayscale handwritten digits 28×28 10 60,000 10,000
FashionMNIST (Xiao et al., 2017) Grayscale images of clothing 28×28 10 60,000 10,000
CIFAR10 (Krizhevsky & Hinton, 2009) RGB natural images 32×32 10 50,000 10,000
CIFAR100 (Krizhevsky & Hinton, 2009) RGB natural images 32×32 100 50,000 10,000

Each experiment was repeated ten times with random seeds from 2,024 to 2,033, and the aver-
age results with standard deviation were reported. Models were trained using the Adam optimizer
(Kingma, 2014), exploring four configurations of learning rate (1e-4 or 1e-5) and weight decay (1e-4
or 1e-5), with a batch size of 256 for 10 epochs. The best-performing configuration was reported.

All experiments were conducted using Python (version 3.10) and PyTorch 2.4 as the deep learning
framework. Computations were performed on a ThinkStation equipped with an Intel i7-12700 CPU
(2.1 GHz), 32GB of RAM, and an NVIDIA TITAN V GPU with 12GB of GPU memory.

4.2 RECONSTRUCTION QUALITY

Autoencoders perform the bidirectional representation learning by compressing input data into a
latent space (encoding) and then reconstructing it back (decoding). To assess how well different
models perform this task, we compared their reconstruction error using the mean squared error
(MSE) between the original input and the reconstructed output on the test set.

For all models, we employed a shallow architecture consisting of three layers: doriginal-dlatent-doriginal,
where dlatent represents the dimension of the compressed latent space. After training each model, a
previously unseen test input x was passed through the network to obtain the latent representation y
and the reconstructed output z. The reconstruction error was then calculated as the MSE, defined by
∥x− z∥2, and averaged across all test data batches.

Table 2 demonstrates the superiority of KAE compared to AE and KAN variants in terms of recon-
struction error. The results highlight several key observations:

• KAE vs AE: KAE consistently delivers significantly lower reconstruction errors than AE in all
settings, with the error reduction clearly highlighted in the last row of Table 2.

• KAE vs KAN: The performance of KAN variants is highly dependent on the choice of acti-
vation function. The polynomial function used in our KAE model outperforms the B-spline
function in KAN, the Fourier function in FourierKAN, and the wavelet function in WavKAN
for this reconstruction task. Additionally, higher-order polynomial functions (i.e., p = 3) in
KAE lead to better reconstruction performance.

5
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Table 2: Reconstruction Error Comparison Across Datasets for Different Latent Dimensions.
The best results are in bold and the second best are underlined. The last row shows the improvement
of KAE models over standard autoencoders (AE).
Dataset MNIST FashionMNIST CIFAR10 CIFAR100

Dimension 16 32 16 32 16 32 16 32
AE 0.056±0.002 0.043±0.001 0.045±0.002 0.034±0.001 0.034±0.001 0.029±0.001 0.037±0.001 0.030±0.001

KAN 0.047±0.002 0.036±0.001 0.032±0.003 0.024±0.000 0.025±0.001 0.019±0.000 0.025±0.001 0.018±0.001

FourierKAN 0.042±0.003 0.031±0.003 0.031±0.001 0.024±0.001 0.031±0.002 0.023±0.001 0.029±0.001 0.022±0.001

WavKAN 0.175±0.002 0.161±0.002 0.099±0.001 0.089±0.000 0.035±0.001 0.025±0.000 0.036±0.001 0.026±0.000

KAE (p=1) 0.050±0.004 0.041±0.000 0.029±0.001 0.025±0.001 0.021±0.000 0.020±0.000 0.021±0.001 0.019±0.000

KAE (p=2) 0.026±0.002 0.017±0.001 0.020±0.000 0.016±0.001 0.017±0.001 0.013±0.000 0.017±0.001 0.013±0.000

KAE (p=3) 0.024±0.001 0.015±0.001 0.018±0.001 0.015±0.000 0.016±0.001 0.012±0.000 0.016±0.001 0.012±0.000

Improve 0.032 ↓ 0.028 ↓ 0.027 ↓ 0.019 ↓ 0.018 ↓ 0.017 ↓ 0.021 ↓ 0.018 ↓

4.3 APPLICATIONS

To evaluate the quality of the compressed data, we applied the latent representations to several down-
stream tasks, including similarity search, image classification, and image denoising, demonstrating
the high-quality representations learned by the proposed KAE models.

4.3.1 SIMILARITY SEARCH

A well-designed autoencoder, as a tool for dimensionality reduction, should preserve the distance
relationships between samples from the input space to the latent space, making similarity search a
suitable application for assessing this property.

For each experiment, we randomly selected a subset of 1,000 test samples as the test set. For each
query, we computed the k nearest neighbors in the input space as the ground truth and compared
it to the N nearest neighbors retrieved in the latent space. We calculated the recall, defined as the
ratio of true top-k results within the top-N retrieved candidates, and reported it as Recall k@N . In
our experiments, we set k = 10 and tested Recall 10@N (referred to as Recall@N ) for all models.
Each experiment was repeated 10 times with different random seeds, and we reported the averaged
Recall with standard deviations.

Table 3 presents the Recall@10 results for various models across latent dimensions (16 and 32).
Increasing the latent dimension from 16 to 32 significantly improved retrieval recall for all models,
enhancing their distance-preserving properties and expressive power. Notably, the proposed KAE
model consistently outperformed both the standard AE and KAN variants across all datasets and
dimensions. Specifically, KAE (p = 2) achieved improvements of 0.243 and 0.206 in Recall over
AE for MNIST with latent dimensions of 16 and 32, respectively, with similar gains observed for
FashionMNIST, CIFAR10, and CIFAR100 datasets.

Table 3: Retrieval Recall@10 Comparison Across Datasets for Different Latent Dimensions.
The best results are in bold and the second best are underlined. The last row shows the improvement
of KAE models over standard autoencoders (AE).
Dataset MNIST FashionMNIST CIFAR10 CIFAR100

Dimension 16 32 16 32 16 32 16 32
AE 0.354±0.017 0.483±0.008 0.401±0.016 0.526±0.009 0.368±0.026 0.472±0.012 0.380±0.015 0.477±0.009

KAN 0.457±0.015 0.552±0.016 0.495±0.023 0.578±0.004 0.377±0.015 0.496±0.007 0.391±0.009 0.512±0.007

FourierKAN 0.498±0.053 0.638±0.034 0.518±0.022 0.615±0.018 0.258±0.041 0.406±0.028 0.316±0.026 0.435±0.019

WavKAN 0.259±0.037 0.447±0.018 0.387±0.015 0.488±0.006 0.258±0.016 0.428±0.012 0.259±0.013 0.430±0.011

KAE (p=1) 0.404±0.028 0.488±0.007 0.544±0.008 0.581±0.010 0.440±0.011 0.489±0.008 0.453±0.008 0.504±0.005

KAE (p=2) 0.596±0.019 0.689±0.011 0.607±0.010 0.661±0.007 0.525±0.021 0.631±0.011 0.544±0.013 0.639±0.007

KAE (p=3) 0.554±0.013 0.659±0.013 0.521±0.006 0.582±0.006 0.488±0.012 0.597±0.010 0.493±0.013 0.586±0.012

Improve 0.242 ↑ 0.206 ↑ 0.206 ↑ 0.135 ↑ 0.157 ↑ 0.159 ↑ 0.164 ↑ 0.162 ↑
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As shown in Fig. 2, increasing the number of retrieved samples revealed that non-linear polynomial
functions (e.g., KAE (p = 2, 3)) achieved competitive results. Especially on more complex datasets
like CIFAR10 and CIFAR100, KAEs significantly outperformed FourierKAN and WavKAN, which
exhibited lower recall values. This highlights the ability of KAEs to preserve the intrinsic structure
of the data in the latent space, making them highly effective for similarity-based retrieval tasks.
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Figure 2: Recall@N of Similarity Search Across Datasets for Different Latent Dimensions.

4.3.2 IMAGE CLASSIFICATION

We further applied the learned latent representations to image classification using a nearest neighbor
classifier. For each of the 10,000 test samples, the predicted label was assigned based on the nearest
sample in the latent space with the smallest Euclidean distance. We then compared the predicted
labels with the ground truth, averaging the classification accuracy across all test samples.

Table 4 shows that KAE models, particularly with the non-linear polynomial function (p = 3),
achieved the highest classification accuracy across all datasets. This contrasts with similarity search,
where p = 2 performed best. The difference in performance may due to the nature of each task:

• In similarity search, KAE (p = 2) better preserves the distance relationships between neighbors,
which is crucial for retrieving similar samples.

• In image classification, KAE (p = 3) captures more complex, non-linear relationships, enabling
better discrimination between class boundaries and improving accuracy.

Table 4: Classification Accuracy Comparison Across Datasets for Different Latent Dimensions.
The best results are in bold and the second best are underlined. The last row shows the improvement
of KAE models over standard autoencoders (AE).
Dataset MNIST FashionMNIST CIFAR10 CIFAR100

Dimension 16 32 16 32 16 32 16 32
AE 0.853±0.014 0.916±0.007 0.737±0.007 0.781±0.004 0.243±0.010 0.283±0.006 0.076±0.005 0.101±0.003

KAN 0.883±0.012 0.931±0.006 0.752±0.007 0.786±0.002 0.244±0.006 0.290±0.004 0.080±0.003 0.110±0.003

FourierKAN 0.859±0.047 0.947±0.012 0.735±0.008 0.795±0.007 0.164±0.016 0.246±0.017 0.040±0.007 0.085±0.009

WavKAN 0.649±0.056 0.887±0.012 0.679±0.009 0.751±0.004 0.189±0.008 0.272±0.005 0.043±0.003 0.096±0.003

KAE (p=1) 0.802±0.013 0.868±0.008 0.751±0.005 0.773±0.005 0.262±0.006 0.282±0.003 0.087±0.003 0.104±0.002

KAE (p=2) 0.929±0.011 0.963±0.002 0.801±0.003 0.824±0.003 0.304±0.010 0.338±0.004 0.124±0.006 0.148±0.002

KAE (p=3) 0.940±0.005 0.964±0.002 0.805±0.004 0.826±0.002 0.315±0.009 0.354±0.004 0.131±0.005 0.154±0.003

Improve 0.087 ↑ 0.048 ↑ 0.068 ↑ 0.045 ↑ 0.072 ↑ 0.071 ↑ 0.055 ↑ 0.053 ↑
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4.3.3 IMAGE DENOISING

Image denoising is a natural extension of autoencoder applications, used to evaluate the robustness
of learned models. By adding noise to the input images, we can assess the model’s ability to remove
noise through compression and reconstruction, using the mean squared error (MSE) between the
denoised and original clean images as denoising error. We applied two common types of noise:

• Gaussian noise: Added Gaussian noise N (0, 0.12) to the clean images.
• Salt-and-Pepper noise: Randomly set pixels to 0 or 1 with a probability of 0.05.

Results in Table 5 show that both p = 2 and p = 3 of KAE consistently achieved the lowest denois-
ing errors across all datasets, mirroring their strong performance in reconstruction. This indicates
that the KAE models not only excel in image reconstruction but are also highly effective in removing
noise, demonstrating their robustness in preserving the underlying structure of data. The consistent
performance across different types of noise further highlights the KAE models’ ability to generalize
well to varying noise conditions, making them superior to both the standard AE and KAN models.

Table 5: Denoising Error Comparison Across Datasets for Different Latent Dimensions. The
best results are in bold and the second best are underlined. The last row shows the improvement of
KAE models over standard autoencoders (AE).
Dataset MNIST FashionMNIST CIFAR10 CIFAR100

Dimension 16 32 16 32 16 32 16 32
I. Gaussian Noise

AE 0.065±0.002 0.053±0.001 0.056±0.002 0.044±0.001 0.044±0.001 0.038±0.001 0.047±0.001 0.040±0.001

KAN 0.058±0.002 0.046±0.001 0.043±0.003 0.034±0.000 0.035±0.001 0.029±0.000 0.034±0.001 0.028±0.001

FourierKAN 0.063±0.002 0.054±0.001 0.049±0.001 0.041±0.001 0.048±0.002 0.041±0.001 0.047±0.001 0.040±0.001

WavKAN 0.188±0.003 0.174±0.004 0.115±0.002 0.105±0.001 0.045±0.001 0.035±0.000 0.046±0.001 0.037±0.000

KAE (p=1) 0.058±0.004 0.051±0.000 0.038±0.001 0.035±0.001 0.031±0.000 0.030±0.000 0.031±0.001 0.029±0.000

KAE (p=2) 0.038±0.002 0.027±0.001 0.030±0.000 0.026±0.001 0.027±0.001 0.023±0.000 0.026±0.001 0.022±0.000

KAE (p=3) 0.034±0.001 0.025±0.001 0.029±0.001 0.025±0.000 0.027±0.001 0.022±0.000 0.026±0.001 0.022±0.000

Improve 0.031 ↓ 0.028 ↓ 0.027 ↓ 0.019 ↓ 0.017 ↓ 0.016 ↓ 0.021 ↓ 0.018 ↓
II. Salt-and-Pepper Noise

AE 0.092±0.002 0.082±0.001 0.078±0.001 0.069±0.001 0.058±0.001 0.053±0.001 0.061±0.001 0.055±0.001

KAN 0.086±0.002 0.075±0.001 0.067±0.002 0.060±0.000 0.050±0.001 0.045±0.000 0.050±0.001 0.045±0.000

FourierKAN 0.087±0.001 0.080±0.002 0.071±0.001 0.065±0.001 0.065±0.001 0.059±0.001 0.064±0.001 0.059±0.001

WavKAN 0.207±0.006 0.199±0.013 0.139±0.005 0.127±0.003 0.059±0.001 0.051±0.000 0.061±0.001 0.052±0.000

KAE (p=1) 0.085±0.003 0.080±0.000 0.063±0.001 0.061±0.001 0.047±0.000 0.046±0.000 0.048±0.000 0.046±0.000

KAE (p=2) 0.070±0.002 0.061±0.001 0.057±0.000 0.054±0.000 0.044±0.001 0.040±0.000 0.044±0.000 0.040±0.000

KAE (p=3) 0.068±0.001 0.061±0.001 0.057±0.001 0.053±0.000 0.044±0.001 0.040±0.000 0.044±0.000 0.040±0.000

Improve 0.024 ↓ 0.021 ↓ 0.021 ↓ 0.016 ↓ 0.014 ↓ 0.013 ↓ 0.017 ↓ 0.015 ↓

4.4 PERFORMANCE ANALYSIS

Convergence Analysis. We measured the test loss as the average MSE between the reconstructed
and original data in the test set. Fig. 3 illustrates the faster convergence of our KAE models with
p = 2 or 3, which converge within approximately 10 epochs and achieve the lowest test loss. In
contrast, other models, particularly WavKAN and AE, struggle to converge even after 50 epochs.
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Figure 3: Convergence Analysis of Test Loss Across Datasets for 16 Latent Dimensions.
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Figure 4: Model Capacity Analysis on the MNIST
Dataset with 16 Latent Dimensions. Bubble size rep-
resents the number of learnable parameters. For AE
models, T = Tiny, S = Small, and B = Base.

Model Capacity Analysis. As shown in
Fig. 4, our KAE models strike a balance
between efficiency and accuracy, with the
following key observations:

• Training Efficiency: While KAE
models are not the fastest, they com-
plete training in 30-36 seconds, only
marginally slower than the fastest
models, and significantly faster than
two models with similar parameter
counts, i.e., WavKAN and AE-S.

• Classification Accuracy: KAE mod-
els with p = 2, 3 use much fewer pa-
rameters (75-101K) while achieving
higher accuracy compared to KAN
(250K) and FourierKAN (251K).

• Model Parameters: When compar-
ing models with similar parameter counts, KAE outperforms both WavKAN and AE-S in terms
of training speed and performance. Even when the parameters of AE models are doubled, KAE
still surpasses AE-B.

4.5 INTERPRETABILITY
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Figure 5: Interpretability on the MNIST with dlatent = 16.

Our KAE models use a polynomial
activation function, learning the co-
efficients of f(x) = c0 + c1x +
c2x

2 + c3x
3 for p = 3. In the

MNIST dataset with 16 latent di-
mensions, the input x ranges from
0 to 255, making the highest order
term c3x

3 dominant. Each latent
node learns two 784-dimensional
coefficient vectors for c3, one for
input features (encoder) and one for
output features (decoder). Thus,
the encoder has 16 coefficient vectors CE ∈ R16×784, and the decoder has CD ∈ R16×784.

We analyzed the relationships between these vectors. Fig. 5(a) shows CEC
⊤
D ∈ R16×16, revealing

a one-to-one correspondence between the encoder and decoder, consistent with effective compres-
sion and reconstruction. Fig. 5(b) shows CEC

⊤
E , demonstrating the independence of the coefficient

vectors in the encoder, indicating that all latent features are meaningful and independent.

5 CONCLUSION

In this paper, we introduced the Kolmogorov-Arnold Auto-Encoder (KAE), which integrates the
Kolmogorov-Arnold Network (KAN) with autoencoders (AEs) to create a more powerful and flexi-
ble framework for representation learning. By incorporating KAN’s learnable polynomial activation
functions into the AE structure, KAE effectively captures complex, non-linear relationships in the
data, outperforming standard AEs. Our experiments on benchmark datasets highlight KAE’s su-
periority in reconstruction quality and downstream applications such as similarity search, image
classification, and image denoising. Our analysis further demonstrates KAE’s greater capacity and
interpretability, especially through its learned polynomial activation functions.

Looking ahead, future work will focus on scaling KAE to deeper architectures to unlock its potential
in more complex and high-dimensional tasks. We will also explore different activation functions
to further enhance the model’s flexibility and performance. Additionally, applying KAE to more
challenging real-world applications will provide deeper insights into its robustness and adaptability.
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Thomas Y Hou, and Max Tegmark. Kan: Kolmogorov-arnold networks. arXiv preprint
arXiv:2404.19756, 2024b.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Ashish Mishra, Shiva Krishna Reddy, Anurag Mittal, and Hema A Murthy. A generative model
for zero shot learning using conditional variational autoencoders. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition Workshops, pp. 2188–2196, 2018.

Walter Hugo Lopez Pinaya, Sandra Vieira, Rafael Garcia-Dias, and Andrea Mechelli. Autoencoders.
In Machine Learning, pp. 193–208. Elsevier, 2020.

Nikolay Savinov, Junyoung Chung, Mikolaj Binkowski, Erich Elsen, and Aaron van den Oord.
Step-unrolled denoising autoencoders for text generation. In 10th International Conference on
Learning Representations, 2022.

Tianxiao Shen, Jonas Mueller, Regina Barzilay, and Tommi Jaakkola. Educating text autoencoders:
Latent representation guidance via denoising. In International Conference on Machine Learning,
pp. 8719–8729. PMLR, 2020.

Ondrej Skopek, Octavian-Eugen Ganea, and Gary Bécigneul. Mixed-curvature variational autoen-
coders. In 8th International Conference on Learning Representations, 2020.

Naoya Takeishi and Alexandros Kalousis. Physics-integrated variational autoencoders for robust
and interpretable generative modeling. Advances in Neural Information Processing Systems, 34:
14809–14821, 2021.

Yasi Wang, Hongxun Yao, and Sicheng Zhao. Auto-encoder based dimensionality reduction. Neu-
rocomputing, 184:232–242, 2016.

QuanLin Wu, Hang Ye, Yuntian Gu, Huishuai Zhang, Liwei Wang, and Di He. Denoising masked
autoencoders help robust classification. In 11th International Conference on Learning Represen-
tations, 2023.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Jinfeng Xu, Zheyu Chen, Jinze Li, Shuo Yang, Wei Wang, Xiping Hu, and Edith C-H Ngai.
Fourierkan-gcf: Fourier kolmogorov-arnold network–an effective and efficient feature transfor-
mation for graph collaborative filtering. arXiv preprint arXiv:2406.01034, 2024.

Weidi Xu and Ying Tan. Semisupervised text classification by variational autoencoder. IEEE Trans-
actions on Neural Networks and Learning Systems, 31(1):295–308, 2019.

Xingyi Yang and Xinchao Wang. Kolmogorov-arnold transformer. arXiv preprint
arXiv:2409.10594, 2024.

Lei Zhou, Huidong Liu, Joseph Bae, Junjun He, Dimitris Samaras, and Prateek Prasanna. Self pre-
training with masked autoencoders for medical image classification and segmentation. In 2023
IEEE 20th International Symposium on Biomedical Imaging, pp. 1–6. IEEE, 2023.

Peicheng Zhou, Junwei Han, Gong Cheng, and Baochang Zhang. Learning compact and discrimina-
tive stacked autoencoder for hyperspectral image classification. IEEE Transactions on Geoscience
and Remote Sensing, 57(7):4823–4833, 2019.

A APPENDIX

The implementation details and hyperparameters are listed as follows.

• KAN: The grid size was set to 5, with a cubic spline (order 3) as the basis for polynomial
functions. The input grid range was [−1, 1] for each dimension, chosen to match the training
data distribution and cover the primary input space.

• FourierKAN: The grid size was also set to 5 for the FourierKAN model.
• WavKAN: We used Mexican hat wavelets for feature extraction, selected for their ability to

capture local features and handle oscillatory behavior effectively.
• KAE: The polynomial order p for the KAE model was set to 1, 2, and 3.
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