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Abstract

Link prediction—the task of distinguishing actual hidden edges from ran-
dom unconnected node pairs—is a quintessential task in graph machine
learning. Despite being widely accepted as a universal benchmark and a
downstream task for representation learning, its validity is seldom ques-
tioned. Here, we show that the common edge sampling procedure in
link prediction introduces an implicit bias toward high-degree nodes and
produces a skewed evaluation that favors methods overly reliant on node
degree, to the extent that a “null” method based solely on node degree
can nearly match optimal performance. To address this, we propose a
degree-corrected link prediction task that offers a more accurate assess-
ment that aligns better with performance in recommendation tasks. Fi-
nally, we demonstrate that this degree-corrected benchmark can more ef-
fectively train graph machine-learning models by reducing overfitting to
node degrees and facilitating the learning of relevant structures in graphs.

1 Introduction

Standardized benchmarks like ImageNet (Deng et al., 2009; Krizhevsky et al., 2012) and
SQuAD (Rajpurkar et al., 2016; 2018) play a pivotal role in driving progress in machine
learning by fostering competition through setting clear, measurable goals. In graph ma-
chine learning, a core benchmark is link prediction, which involves identifying missing edges
in a graph, with diverse applications including the recommendations of friends and con-
tents (Kunegis & Lommatzsch, 2009; Wang et al., 2014; Huang et al., 2005; Menon &
Elkan, 2011), knowledge discoveries (Sun et al., 2019; Bordes et al., 2013), and drug devel-
opment (Abbas et al., 2021; Breit et al., 2020; You et al., 2019; Wang et al., 2015; Crichton
et al., 2018; Yue et al., 2020; Ali et al., 2019). Link prediction benchmarks have been essen-
tial for quantitative evaluations, advancing graph machine learning techniques (Ghasemian
et al., 2020; Liben-Nowell & Kleinberg, 2003; Mara et al., 2020; Breit et al., 2020; Yue et al.,
2020; Ali et al., 2019; Narayanan et al., 2011).
Despite its significant role in graph machine learning, the link prediction benchmark itself
is rarely scrutinized for effectiveness, reliability, and bias. Typically, it evaluates methods
based on their ability to classify node pairs as connected or unconnected (Kunegis & Lom-
matzsch, 2009; Ghasemian et al., 2020; Mara et al., 2020). Connected pairs (edges) are
randomly sampled from existing edges as the hidden positive set, while an equal number
of unconnected node pairs are sampled randomly. Criticisms often highlight its disconnect
from real-world scenarios. For instance, unconnected pairs vastly outnumber connected ones
because of the graph sparsity (Newman, 2018; Barabási & Pósfai, 2016), leading to biased
performance evaluations (Li et al., 2024a; Menand & Seshadhri, 2024; Yang et al., 2015;
Huang et al., 2023; Wang et al., 2021). Additionally, the benchmark tests a predefined set
of edges, while real-world tasks involve identifying potential edges across the entire graph.
Despite this misalignment, high benchmark performance is often seen as a marker of suc-
cessful learning in graph machine learning (Ghasemian et al., 2020; Zhang & Chen, 2018;
Breit et al., 2020; Crichton et al., 2018; Yue et al., 2020; Ali et al., 2019; Grover & Leskovec,
2016; Ou et al., 2016; Goyal & Ferrara, 2018; Cai et al., 2021).
Here, we argue that the standard link prediction benchmark has a fundamental and severe
bias favoring methods that exploit node degree (the number of edges a node has). This bias
arises from the edge sampling process: a node with k edges is k times more likely to be
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Figure 1: Illustration of the degree bias in the link prediction benchmark. A: A node with
degree k appears k times in the edge list, making it k times more likely to be sampled as
a positive edge than a node with degree 1. B: The degree distribution of the nodes in the
positive and negative edges sampled from a Price graph of N = 105 nodes and M = 106

edges. The y-axis, “CCDF”, denotes the complementary cumulative distribution function,
representing the probability that a node’s degree is at least k. Dashed lines illustrate the
relationship described by Eq. 1. C: The AUC-ROC score for the Preferential Attachment
(PA) method on empirical graphs, with the dashed line indicating Eq. 4. D: AUC-ROC of
29 methods across 95 graphs. E: AUC-ROC of the same methods for the degree-corrected
benchmark.

selected than a node with a single edge (k = 1). Meanwhile, the negative set is randomly
sampled from unconnected pairs, without this degree bias. This creates a distinct feature
(degree) that methods can exploit without understanding any non-trivial structural features
of the graph. We show that this degree bias is so profound that a “null” method based
solely on node degree can achieve near-optimal performance, questioning the benchmark’s
usefulness as a general objective in graph machine learning and highlighting the need for
being more intentional and careful about what the evaluation tasks themselves actually
evaluate.
To address this bias, we propose a degree-corrected link prediction benchmark that samples
unconnected node pairs with the same degree bias. This benchmark more accurately reflects
the performance of algorithms in recommendation tasks. Moreover, it trains graph neural
networks more effectively by reducing overfitting to node degrees, thereby improving the
learning of community structure in graphs.

2 Design flaw of the link prediction benchmark

2.1 Preliminary

We focus on unweighted, undirected graph G = (V, E), where V is the set of nodes and E
is the set of edges. We assume that G has no self-loops, no multiple edges, and is highly
sparse (|E| ≪ |V|2), a common characteristic of real-world graphs (Newman, 2018; Barabási
& Pósfai, 2016). Degree ki of a node i ∈ V is the number of edges connected to it. We use ∼
to denote proportional relationships. Node attributes, if present, are excluded to maintain
consistency across all link prediction methods.
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2.2 Link prediction benchmark

The standard link prediction benchmark procedure is as follows (Kunegis & Lommatzsch,
2009; Zhang & Chen, 2018; Breit et al., 2020; Crichton et al., 2018; Yue et al., 2020; Ali
et al., 2019; Grover & Leskovec, 2016; Ou et al., 2016; Goyal & Ferrara, 2018; Cai et al.,
2021). First, a fraction β of edges is randomly sampled from the edge set E as positive edges.
Second, an equal number of unconnected node pairs is randomly sampled with replacement
from the node set V as negative edges. Negative edges are resampled if they form a loop
or are already in the positive or test edges. Third, each node pair (i, j) is scored by a
link prediction method, where a higher score sij indicates a greater likelihood of an edge.
Fourth, the method’s effectiveness is evaluated using the Area Under the Receiver Operating
Characteristic Curve (AUC-ROC), which represents the probability that the method gives
a higher score to a positive edge than a negative edge. While alternative benchmark designs
use different evaluation metrics or sampling strategies for negative edges (Li et al., 2024a;
Menand & Seshadhri, 2024; Yang et al., 2015; Huang et al., 2023; Wang et al., 2021; Wang &
Derr, 2022; Russo et al., 2024; He et al., 2024) (Section 4), this outlined procedure is widely
adopted (Kunegis & Lommatzsch, 2009; Zhang & Chen, 2018; Breit et al., 2020; Crichton
et al., 2018; Yue et al., 2020; Ali et al., 2019; Grover & Leskovec, 2016; Ou et al., 2016;
Goyal & Ferrara, 2018; Ghasemian et al., 2020).

2.3 Sampling bias due to node degree

A well-known, counterintuitive fact about graphs is that a uniform random sampling of edges
introduces a degree bias in node selection (Feld, 1991; Barthélemy et al., 2004; Christakis &
Fowler, 2010; Kojaku et al., 2021a;b). The bias arises because a node with k edges appears
k times in the edge list and thus k times more likely to be chosen than a node with k′ = 1
edge (e.g., node 1 and 4 in Fig. 1A). Consequently, for a graph with degree distribution p(k),
the nodes in the positive edges have degree distribution ppos(k) proportional to ∼ k · p(k).
By normalizing k · p(k), the degree distribution of the positive edges is given by

ppos(k) =
1∑

ℓ ℓp(ℓ)
k · p(k) = 1

⟨k⟩
k · p(k), (1)

where ⟨k⟩ is the average degree. By contrast, nodes in the negative edges are uniformly
sampled from the node set V, resulting in a degree distribution pneg(k) identical to p(k)
(i.e., pneg(k) = p(k)).

We demonstrate the degree bias using the Price graph with N = 105 nodes and M = 106

edges, which follows a power-law degree distribution p(k) ∝ k−3 (Fig. 1B). We uniformly
sample β = 0.25 of the edges from E as positive edges, together with an equal number of
unconnected node pairs sampled uniformly from V. The degree distributions for nodes in
the positive and negative edges align with ppos(k) and pneg(k), respectively, confirming the
sampling bias due to node degree. This degree bias is not specific to the Price graph but
occurs in any graph with a non-uniform degree distribution.

2.4 Impact of degree bias on the link prediction benchmark

We demonstrate the impact of degree bias on link prediction benchmarks (Fig.1D) by eval-
uating 29 link prediction methods across 95 graphs from various domains, including social,
technological, informational, biological, and transportation graphs. These methods include
7 network topology-based methods (e.g., Common Neighbors (CN) (Liben-Nowell & Klein-
berg, 2003)), 13 graph embedding methods (e.g., Laplacian EigenMap (EigenMap) (Belkin
& Niyogi, 2003)), 2 network models (e.g., Stochastic Block Model (e.g., SBM) (Fortu-
nato, 2010)), and 4 graph neural networks (GNNs) (e.g., Graph Convolutional Network
(GCN) (Kipf & Welling, 2017)). Detailed method and graph descriptions are available in
SI Section 1. We set the test edge fraction to β = 0.25 and repeat the experiment 5 times.
We quantify the heterogeneity σ of node degree by fitting a log-normal distribution to p(k)
and calculating its variance parameter σ. We will show that σ is a reliable indicator of the
impact of degree bias in Section 2.5.
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We focus on the Preferential Attachment (PA) link prediction method, which calculates the
prediction score sij = kikj using only node degrees. PA is a crude method that neglects key
predictive features like common neighbors and shortest distance (Li et al., 2024a; Menand
& Seshadhri, 2024; Lichtnwalter & Chawla, 2012; Zhang & Chen, 2018; Mao et al., 2023).
However, it still outperforms most advanced methods with an average AUC-ROC of 0.84
(ranked 13th out of 29 methods; see Fig. 2A). PA performs better as the heterogeneity of
node degrees increases. This outperformance is due to degree bias, where the positive edges
are more likely to be formed by nodes with high degree and thereby are easily distinguishable
from the negative edges. Thus, the current benchmark design favors methods that make
predictions based largely on node degrees. This spurious performance of PA is evident
when using Hits@K (SI Section 4.6), indicating that the issue stems from the benchmark
design rather than evaluation metrics. This spurious performance of PA also persists for
larger-scale graphs (SI Section 4.4).

2.5 Theoretical analysis

Many empirical graphs exhibit heterogeneous degree distributions, with a few nodes having
exceptionally large degrees and most having small ones. These distributions are often char-
acterized by power-law degree distribution p(k) ∝ k−α with α ∈ (2, 3] (i.e., scale-free net-
works) (Albert & Barabási, 2002; Barabási & Bonabeau, 2003; Holme, 2019; Voitalov et al.,
2019) or log-normal distributions (Artico et al., 2020; Broido & Clauset, 2019). While the
power-law and log-normal distributions are both continuous, they are often used to approxi-
mate discrete degree distribution (Artico et al., 2020; Broido & Clauset, 2019; Clauset et al.,
2009; Radicchi et al., 2008; Johnson et al., 1995; Redner, 2005). We show that the AUC-
ROC for PA reaches near-maximum under log-normal distributions with heterogeneous node
degrees. See SI Section 4.3 for the case of power-law distributions.
Let us consider a general degree distribution p(k) without restricting ourselves to log-normal
distributions. The AUC-ROC has a probabilistic interpretation (Hand, 2009): it is the
probability that the score s+ for positive edges is larger than the score s− for negative
edges. Recalling that PA computes sij = kikj , the AUC-ROC for PA is given by

AUC-ROC = P (si−,j− ≤ si+,j+) = P (ki−kj− ≤ ki+kj+), (2)

where i± and j± represent the nodes of the positive and negative edges, respectively. We
define the degree bias by Eq 2. The AUC-ROC represents the discrepancy between the
distributions of the prediction scores ki−kj− for negative edges and the scores ki+kj+ for
positive edges. If the positive edges have higher scores than the negative edges, the AUC-
ROC approaches 1, indicating that node degree alone can effectively predict the positive
edges. Conversely, if the positive and negative edges have similar scores, the AUC-ROC
nears 0.5, indicating node degree alone is insufficient for the prediction.
Now, let us assume that p(k) follows the log-normal distribution, LogNorm(k | µ, σ2), given
by (Hand, 2009):

p(k) = LogNorm(k | µ, σ2) =
1√
2πσk

exp

[
− (ln k − µ)2

2σ2

]
, (3)

where µ and σ are the parameters of the log-normal distribution. The mean of the log-
normal degree distribution is ⟨k⟩ = exp(µ + σ2/2) (Hand, 2009). By leveraging a unique
characteristic of log-normal distributions, we obtain the AUC-ROC for PA analytically as
follows. The detailed derivation is provided in SI Section 2.

P (ln s− < ln s+) = 1−
∫ ∞

−∞
Norm(z− | 0, 1)Φ

(
z− −

√
2σ

)
dz, (4)

where Φ(z−) is the cumulative distribution function for the standard normal distribution,
i.e., Φ(z−) =

∫ z−

∞ Norm(y | 0, 1)dy. We have assumed no degree assortativity in the graph,
where P (k+i , k

+
j ) = P (ki)P (kj). Although empirical graphs often exhibit degree assortativ-

ity, our results indicate that it does not significantly impact the AUC-ROC (SI Section 4.2).

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Original Degree-correctedA B

Original Degree-correctedHeaRT

Graph

Figure 2: Comparative analysis of link prediction and recommendation benchmarks. A:
Ranking changes for link prediction methods between original and degree-corrected bench-
marks. Red and blue lines indicate methods with ranking shifts greater than 8 places. B:
Ranking of methods by the degree-corrected benchmark is more aligned with that of the
recommendation task than that of the original benchmark and the HeaRT benchmark. RBO
(rank-biased overlap) measures the similarity between link prediction and recommendation
task rankings.

Equation 4 suggests the key behavior of AUC-ROC for PA. The AUC-ROC for PA is an in-
creasing function of the parameter σ of the log-normal distribution (Fig. 1C). The parameter
σ of the log-normal distribution controls the spread of the distribution, with larger σ result-
ing in a more fat-tailed distribution. While our assumptions about the log-normal degree
distribution and degree assortativity may not always align with real-world data, Eq. 4 still
effectively captures the AUC-ROC behavior for PA (Fig. 1C). Further analysis of power-law
distributions is described in SI Section 4.3.
This theoretical result highlights the significant issue with the current link prediction bench-
mark: a high benchmark performance can be achieved by only learning node degrees, posing
the question of whether the link prediction benchmark is an effective objective of graph ma-
chine learning.

3 The degree-corrected link prediction benchmark

The link prediction benchmark yields biased evaluations due to mismatched degree distribu-
tions between positive and negative edges, i.e., pneg(k) ̸= ppos(k). To mitigate the mismatch,
we introduce the degree-corrected link prediction benchmark that samples negative edges
with the same degree bias as positive edges (See Algorithm 1 in SI). Specifically, we create
a list of nodes where each node with degree k appears k times. Then, we sample negative
edges by uniformly sampling two nodes from this list with replacement until the sampled
node pairs are not connected and not in the test edge set. Crucially, nodes with degree
k are k times more likely to be sampled than nodes with degree 1, mirroring the degree
bias of the positive edges. Consequently, the positive and negative edges in the degree-
corrected benchmark are indistinguishable based on node degrees. A Python package for
the degree-corrected benchmark will be made available on GitHub.

3.1 Comparison of the benchmark evaluations

We reevaluated the methods using the degree-corrected link prediction benchmark, main-
taining the same parameters as in the original benchmark. The results show a significant
drop in the performance of PA, with most methods having AUC-ROC scores close to 0.5
for most networks (Fig. 1E). We find qualitatively the same results when using the Hits@K
score (SI Section 4.6).
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We note that our aim is not to completely eliminate degree as a predictive feature, but
rather to remove the bias introduced by negative edge sampling. The degree can remain a
meaningful predictor after correction if it genuinely correlates with the likelihood of edges
between nodes. The ‘biokg_drug’ graph effectively illustrates the precision of our degree-
correction method in removing artificial bias while preserving the link predictive power of
degree.
The degree-corrected benchmark has some agreement with the original benchmark in terms
of the ranking of the methods (Fig. 2A). For example, they rank GAT and LRW as top
performers, while NB, SGTAdjNeu, and SGTAdjExp are consistently ranked lower. On the
other hand, the degree-corrected benchmark ranks PA as the lowest performer, with its
average AUC-ROC dropping from 0.83 to 0.54, placing it last out of 29 methods. Other
methods such as LPI, GIN also experience a substantial drop in their rankings from 4nd
to 12th and 10th to 21th, respectively (Fig. 2A). On the other hand, GCN, GraphSAGE,
node2vec, DeepWalk, and EigenMap increase their rankings substantially (Fig. 2A). (See SI
Section 4.1 for the ranking of methods by HeaRT benchmark Li et al. (2024a).)

3.2 The degree-corrected benchmark aligns better with recommendation tasks

Link prediction serves as a computationally efficient proxy for evaluating and training rec-
ommendation systems (Li et al., 2024a; Menand & Seshadhri, 2024; Yang et al., 2015; Huang
et al., 2023; Wang et al., 2021). In the recommendation task, directly optimizing recom-
mendation metrics such as Hits@K requires ranking all possible node pairs for each node,
which is computationally infeasible for large networks. In contrast, link prediction evaluates
on a fixed set of candidate pairs, making it O(M) (where M is the number of edges) and
thus practical for both evaluation and training. This computational advantage has made
link prediction benchmarks a de facto standard for developing and training recommendation
models. However, this practice is only valid if link prediction performance correlates with
recommendation performance. It is thus crucial that a link prediction benchmark accurately
mirrors the performance in recommendation tasks.
In the recommendation task, a method must rank all potential connections for each node
without a predefined candidate set. This differs fundamentally from link prediction where
we evaluate on a fixed set of node pairs. Specifically, for each node i, a method recommends
its top C = 50 nodes j based on the highest scores sij . We note that our results are
consistent regardless of the chosen C value (refer to SI Section 4.5). The effectiveness of
the recommendations is then measured using the vertex-centric max precision recall at C
(VCMPR@C) defined as the higher of the precision and recall scores at C (Menand &
Seshadhri, 2024). The VCMPR@C is designed to evaluate recommendation methods and
addresses the excessive penalty on the precision scores at C for small-degree nodes, which
often have low precision due to their limited number of edges. We perform this task five
times and average the VCMPR@C scores across different runs.
For each graph, we evaluate the alignment between the rankings based on the recommen-
dation task and those based on the link prediction benchmarks using Rank Biased Overlap
(RBO) (Webber et al., 2010). RBO is a ranking similarity metric with larger weights on the
top performers in the two rankings. A larger RBO score indicates that the top performers
in the two rankings are more similar. The weights on the top performer are controlled by
the parameter p ∈ (0, 1). While we set p = 0.5 in our experiment, we confirmed that our
results are robust to the choice of p (SI Section 4.5).
Our results from 95 graphs show that the degree-corrected benchmark achieves higher RBO
scores than the original benchmark. For reference, we also tested the HeaRT benchmark (Li
et al., 2024a), which is a recent link prediction benchmark that mitigates the distance-based
bias. The results show that HeaRT achieves substantially lower RBO scores than both the
original and degree-corrected benchmarks. We find consistent results for different values of
C and parameter p of the RBO (SI Section 4.5). These results indicate that the degree-
corrected benchmark more accurately mirrors the performance in recommendation tasks,
providing a more reliable measure of the effectiveness of methods in practical applications.
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3.3 Degree-corrected benchmark facilitates the learning of community structure

The link prediction benchmark is a common unsupervised learning objective for
GNNs (Hamilton et al., 2017; Kawamoto et al., 2018; Kojaku et al., 2021b; Tang et al.,
2015). The degree bias implies that GNNs trained using the original link prediction bench-
mark tend to overfit to node degrees because they can easily differentiate between positive
and negative edges based on node degrees. We show that the degree-corrected benchmark
effectively prevents overfitting to node degrees and improves the learning of salient graph
structures.
We evaluate GNNs on the common unsupervised task of community detection in graphs (For-
tunato & Newman, 2022; Fortunato, 2010; Fortunato & Hric, 2016). The community de-
tection task identifies densely connected groups (i.e., communities) in a graph. Community
detection and link prediction tasks are intimately related Clauset et al. (2008); Peixoto
(2018); Ghasemian et al. (2020). Two nodes will likely have edges if they belong to the
same community. By training a graph machine learning model (e.g., GNNs) to learn a
node embedding to predict links, nodes in the same community are mapped to be close to
each other in the embedding space Kojaku et al. (2023). Communities often correspond
to functional units (e.g., social circles with similar opinions and protein complexes) in the
graph, and detecting communities is a crucial task in many graph applications (Fortunato
& Newman, 2022; Fortunato, 2010; Fortunato & Hric, 2016; Peixoto, 2013; 2018). Specifi-
cally, we test the GNNs by using the Lancichinetti-Fortunato-Radicchi (LFR) community
detection benchmark (Lancichinetti et al., 2008), a standard benchmark for community de-
tection (Fortunato & Hric, 2016; Fortunato, 2010; Tandon et al., 2021; Kojaku et al., 2023).
The LFR benchmark generates synthetic graphs with predefined communities as follows.
Each node i is assigned a degree ki from a power-law distribution p(k) ∼ k−τ1 , with max-
imum degree kmax. A smaller τ1 indicates a higher likelihood of large degree nodes, which
results in a more heterogeneous degree distribution. Nodes are randomly grouped into L
communities, with community sizes (i.e., the number of nodes in a community) following
another power-law distribution p(n) ∼ n−τ2 bounded between nmin and nmax. Edges are
then formed such that each node i connects to a fraction 1 − µ of its ki edges within its
community and the remaining fraction µ to nodes in other communities. We generate 10
graphs for µ ∈ {0.05, 0.1, 0.15, . . . , 0.95, 1} using the following parameter values: the number
of nodes N = 3, 000, the degree exponent τ1 ∈ {2.5, 3}, the average degree ⟨k⟩ = 25, the
maximum degree kmax = 1000, the community-size exponent τ2 = 3, the minimum and
maximum community size nmin = 100 and nmax = 1000. We obtained qualitatively similar
results for different values of the parameters of the LFR benchmark (SI Section 4.8).
We train GNNs using either the original or the degree-corrected link prediction benchmarks
to minimize binary entropy loss in classifying the positive and negative edges. Using the
trained GNNs, we generate node embeddings and apply the K-means clustering algorithm
to detect communities, where K is set to the number of true communities. Although the
number K of communities is often unknown, we use the ground-truth number to eliminate
noise from estimating K and to concentrate on evaluating the quality of the learned node
embeddings, a standard practice in benchmarking node embeddings for the community
detection task (Tandon et al., 2021; Kojaku et al., 2023; Kovács et al., 2024). We measure the
performance of GNNs by comparing the detected communities against the true communities
using the adjusted element-centric similarity (Kojaku et al., 2023; Kovács et al., 2024; Gates
et al., 2019), where higher scores indicate a higher similarity between the node partitions
for the true and detected communities. We observe qualitatively similar results for partition
similarities based on the normalized mutual information (SI Section 4.7).
All GNNs, except for GIN, perform well when µ ≤ 0.5, where communities are distinct and
easily identifiable, but their performance declines as µ increases (Fig. 3A). Across a broad
range of µ, degree-corrected GNNs, particularly GIN, GCN, and GraphSAGE, outperform
original GNNs in identifying communities, as shown by the area under the performance
curve (Fig. 3B). The advantage of degree-corrected benchmarks becomes more evident with
a more heterogeneous degree distribution (Fig. 3C and D). This indicates that degree cor-
rection effectively reduces overfitting to node degrees, enhancing the learning of community
structures in graphs.
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Figure 3: The degree-corrected benchmark improves GNNs in learning community structure
in the LFR graphs (3000 nodes, average degree 25). A: The performance for the LFR graphs
with a power-law degree distribution with τ1 = 3.0 as a function of mixing µ. B: The average
performance (by the area under the performance curve). C, D: The same plots for LFR
graphs with τ1 = 2.5. The error bars represent the 95% confidence interval estimated by a
bootstrap of 1,000 repetitions.
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4 Discussion

We showed that common link prediction benchmarks are biased due to node degree in edge
sampling, favoring methods that overfit to node degree. This bias distorts model evaluations
and leads to suboptimal node embeddings (Fig. 2B, Fig. 3B). The degree bias we focused on
is artifactual, i.e., it is not present in the actual network data but arises in the set of sampled
positive and negative edges due to the biased sampling algorithm. We have shown that this
artifactual bias significantly distorts the evaluation of link prediction models (Fig. 2B) and
can be leveraged by these models to optimize their objective functions, leading to suboptimal
learning of node embeddings (Fig. 3B).
To better the contribution of degree bias, we decomposed AUC-ROC scores into contri-
butions from different node degree groups (SI Section 3). Our analysis revealed that in
networks with high degree heterogeneity (σ > 1.3), a single combination—high-degree pos-
itive edges and low-degree negative edges—dominates the evaluation, accounting for over
80% of the overall AUC-ROC score. This finding explains why even simple degree-based
methods perform well: the benchmark’s evaluation is largely determined by cases that can
be easily classified using degree alone. Indeed, our logistic regression analysis shows that
in heterogeneous networks, the degree product becomes overwhelmingly important, with its
coefficient more than twice as large as other structural features (SI Section 3). These results
highlight how the sampling procedure inadvertently creates a shortcut that allows methods
to achieve high performance without learning meaningful graph structures.
To address the degree bias, we proposed a degree-corrected benchmark that aligns the degree
distributions of sampled edges. Our benchmark not only provided accurate evaluations but
also improved GNN training by reducing overfitting to degree and enhancing community
detection.
While our focus is on degree bias, we acknowledge other biases identified by previous stud-
ies (Li et al., 2024a; Lichtnwalter & Chawla, 2012; Zhang & Chen, 2018; Mao et al., 2023).
We highlight some of these biases to underscore the uniqueness of degree bias.
(1) Distance bias arises because nodes connected by negative edges are generally farther
apart than those linked by positive edges (Li et al., 2024a), making them easily distinguish-
able by distance. We observed that correcting for degree bias consistently reduces distance
bias; the degree-corrected benchmark showed more negative edges connected by paths of
length 2 compared to the standard benchmark across all networks. While our degree cor-
rection naturally mitigates distance bias, distance debiasing does not address degree bias.
This is evidenced by the strong performance of PA, a purely degree-based predictor, even
after distance-bias correction (SI Section 4.1). This asymmetry likely arises because node
distances are inherently influenced by degree heterogeneity. In networks with high degree
heterogeneity, high-degree nodes act as hubs, creating short paths between many node pairs.
Correcting for degree bias naturally reduces the effect of these hub-mediated short paths.
However, correcting for distance alone does not address the underlying degree heterogeneity,
which continues to influence network structure and link prediction performance.
(2) Study (Huang et al., 2023) highlighted an issue arising from the substantial down-
sampling of negative edges to match the number of positive edges. They proposed an
“unbiased testing” approach for link prediction by evaluating methods on all possible nega-
tive pairs, rather than just a sampled subset. However, we note that the concept of “bias” in
their work differs from the sampling bias we address. The degree bias we focus on primarily
stems from positive edge sampling, not negative edges. Sampling all negative edges does not
resolve this degree bias at all because the node frequency in all negative edges still matches
that of uniformly sampled negative edges.
(3) Another potential bias could stem from overfitting to large-degree nodes, which are more
frequently sampled in our degree-corrected sampling method. However, these high-degree
nodes are sampled as negative examples, penalizing the model if it overfits them. This
encourages the model to learn salient features of other nodes, resulting in embeddings that
better capture nuanced network structures, such as community structure (Fig. 3). This
effect—eliminating dominant patterns to reveal more nuanced ones—echoes the analysis of
stock price time series, where filtering out the dominant market trends (e.g., recession, and
inflation) can expose finer correlations between individual stocks (MacMahon & Garlaschelli,
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2015). A comparable effect can also be leveraged for community detection (Newman, 2006)
and node embedding (Kojaku et al., 2021b).
To better understand the mechanism of degree bias, we decomposed AUC-ROC scores into
contributions from different node degree groups (SI Section 3). Our analysis revealed that
in networks with high degree heterogeneity (σ > 1.3), a single combination—high-degree
positive edges and low-degree negative edges—dominates the evaluation, accounting for over
70% of the overall AUC-ROC score. This finding explains why even simple degree-based
methods perform well: the benchmark’s evaluation is largely determined by cases that can
be easily classified using degree alone. Indeed, our logistic regression analysis shows that
in heterogeneous networks, the degree product becomes overwhelmingly important, with its
coefficient more than twice as large as other structural features. These results highlight how
the sampling procedure inadvertently creates a shortcut that allows methods to achieve high
performance without learning meaningful graph structures.
In summary, our findings add a new direction to the ongoing examination of the link pre-
diction task by demonstrating that node degree—a local and notably simpler attribute than
distance—is often sufficient for differentiating the positive and negative edges. Crucially,
the degree bias arises in any non-regular graph, regardless of the structure of the graph,
because the bias stems not from the graph structure but from the edge sampling algorithm
used in the link prediction benchmark. More broadly, edge sampling—the source of the
degree bias—is a general technique for evaluating and training graph machine learning.
For instance, mini-batch training (Hamilton et al., 2017; Hu et al., 2020), which samples
subsets of edges for efficient GNN training, may also exhibit bias due to node degrees,
leading to skewed training sets. Given the widespread use of edge sampling across various
graph machine-learning tasks, our findings have broad implications beyond link prediction
benchmarks, extending to a range of benchmarks and training frameworks.
Our study has several limitations. First, we did not explore the reasons behind the vary-
ing performance of different link prediction methods. Degree heterogeneity can negatively
impact GNNs (Wang et al., 2023; Liu et al., 2021; Subramonian et al., 2023; Li et al.,
2024b; Liu et al., 2023; Subramonian et al., 2024; Kang et al., 2022; Arun et al., 2023).
Small-degree nodes tend to have poor representation quality due to limited neighborhood
information (Wang et al., 2023; Liu et al., 2021), and large-degree nodes benefit from re-
inforced structural inequality (Subramonian et al., 2023; Li et al., 2024b; Liu et al., 2023).
This—how well a method represents low-degree nodes—could be one reason for the differ-
ences in performance. It is important to note that there is no single link prediction method
that is universally effective for all graphs because the performance of link prediction meth-
ods depends on the assumptions on the graph structure to make the predictions (Ghasemian
et al., 2020). Second, we focus on community structure to test the effectiveness of the pro-
posed benchmark as a training framework. However, other non-trivial graph structures,
such as centrality, could be tested through network dismantling benchmarks (Osat et al.,
2023). Third, our degree correction method addresses one form of bias, it may potentially
introduce new biases, although we could not identify any clear example of such biases. As a
precaution, we investigated whether our debiasing method can exacerbate certain other bi-
ases identified in literature such as the distance bias Li et al. (2024a) and found no evidence
of this. In fact, we find that our method mitigates the distance bias not vice-versa. Fourth,
our analysis focuses on the transductive setting, where link prediction occurs between nodes
in the training graph. We note that degree bias likely persists inductively since new nodes
with more connections are still more likely to be selected in edge sampling, mirroring the
bias in the transductive setting. Fifth, we focused on undirected and undirected graphs,
which are also common. It is trivial to extend our results to directed graphs, where the
degree bias is now dependent on both the out-degree and in-degree of nodes. For weighted
graphs, if the weight represent multiplicities of edges, our degree-corrected sampling method
can be applied straightforwardly.
Despite these limitations, our results suggest that sampling graph data is a highly non-trivial
task than commonly considered. Because sampling edges from a graph is integral to eval-
uating and training graph machine learning methods, our results underline the importance
of careful sampling to ensure the effectiveness of evaluations and training of graph machine
learning methods.
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1 Data and link prediction methods

1.1 Network data

The corpus of networks used in this work comprises networks with the number of nodes in
the range [102, 106] and edges in the range [102, 108]. We also considered networks from
the OGB benchmark Hu et al. (2020). This includes social, technological, information,
biological, and transportation (spatial) networks. For simplicity in our analysis, we consider
these networks to be unweighted, undirected, and without self-loops, though the message of
our work holds without these constraints. The largest networks in our corpus (number of
nodes > 105) are sourced from Netzschleuder (Peixoto, 2020), and the remaining networks
are obtained from the authors of Ref. (Erkol et al., 2019). See Table 2 for details.

1.2 Link prediction algorithms

We use 26 link prediction algorithms categorized into four groups: topology-based, graph
embedding, network model, and graph neural networks (see Table 1).

1.2.1 Topology-based predictors

Topology-based predictors calculate the prediction score sij using the structural features
of two nodes. The topology-based predictors employed in our study include Preferential
Attachment (PA) (Barabási & Pósfai, 2016), Common Neighbors (CN) (Liben-Nowell &
Kleinberg, 2003), Adamic-Adar (AA) (Adamic & Adar, 2003), Jaccard Index (JI) (Liben-
Nowell & Kleinberg, 2003), Resource Allocation (RA) (Zhou et al., 2007; 2009), Local Ran-
dom Walk (LRW) (Liu & Lü, 2010), Local Path Index (LPI) (Lü et al., 2009). For LRW
and LPI, we set the hyperparameter ϵ = 0.001 as per previous studies (Lü et al., 2009; Liu
& Lü, 2010). The other methods do not require hyperparameters.
We implemented two multilayer perceptrons (MLPs) that takes features of two nodes and
predict whether they are connected by an edge or not. The first MLP (MLP-deg) takes only
the degree features as input, i.g., degree product kikj , degree sum ki + kj , minimum degree
min(ki, kj), and maximum degree max(ki, kj). The second MLP (MLP-topo) takes AA, JI,
RA, and LRW as input. The MLP consists of two hidden layers coupled with a LeakyReLU
activation function, and we used held-out validation to tune the number of dimensions in
each hidden layer (32, 64) and dropout rate (0.2, 0.5) with the validation set consisting of
10% of the edges. We used the Adam optimizer at a learning rate 0.001.
As a simpler baseline, we also implemented a logistic regression model (Linear) that takes
the concatenation of the node features as input and predict whether they are connected by
an edge or not. The input features are RA, JI, and LRW, and AA, and PA. In order to
reduce the collinearity between the input features, we performed feature orthogonalization
by regressing RA, JI, and LRW, AA on PA and taking the residuals as new features. This
means that after orthognalizations, we input the residuals of RA, JI, and LRW, AA on
PA, as well as the raw PA features to the logistic regression model. To further reduce the
collinearity, we employed the ridge regression implemented in scikit-learn (Pedregosa et al.,
2011), with the regularization parameter set to the default value.

1.2.2 Graph embeddings

Graph embedding maps a graph into a vector space, with each node i represented by a point
in this space. The prediction score sij is given by the dot product u⃗⊤

i u⃗j between any two node
vectors. We tested a variety of graph embedding methods including Laplacian EigenMap
(EigenMap) (Belkin & Niyogi, 2003), Spectral Modularity (Mod) (Nadakuditi & Newman,
2012), Non-backtracking Embedding (NB) (Krzakala et al., 2013), FastRP (FastRP) (Chen
et al., 2019), Exponential Kernel on Adjacency Matrix (Exp-A) (Kondor & Lafferty, 2002;
Kunegis & Lommatzsch, 2009), Exponential Kernel on Laplacian (Exp-L) (Kondor & Laf-
ferty, 2002; Kunegis & Lommatzsch, 2009), Exponential Kernel on Normalized Laplacian
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(Exp-NL) (Kondor & Lafferty, 2002; Kunegis & Lommatzsch, 2009), Von Neumann Kernel
on Adjacency Matrix (vN-A) (Ito et al., 2005; Kunegis & Lommatzsch, 2009), Von Neumann
Kernel on Laplacian (vN-L) (Ito et al., 2005; Kunegis & Lommatzsch, 2009), and Von Neu-
mann Kernel on Normalized Laplacian (vN-NL) (Ito et al., 2005; Kunegis & Lommatzsch,
2009), node2vec (node2vec) (Grover & Leskovec, 2016), DeepWalk (DeepWalk) (Perozzi
et al., 2014), and LINE (LINE) (Tang et al., 2015). We tested a variety of graph embedding
methods including Laplacian EigenMap (EigenMap) (Belkin & Niyogi, 2003), Spectral Mod-
ularity (Mod) (Nadakuditi & Newman, 2012), Non-backtracking Embedding (NB) (Krzakala
et al., 2013), FastRP (FastRP) (Chen et al., 2019), Exponential Kernel on Adjacency Ma-
trix (Exp-A) (Kondor & Lafferty, 2002; Kunegis & Lommatzsch, 2009), Exponential Kernel
on Laplacian (Exp-L) (Kondor & Lafferty, 2002; Kunegis & Lommatzsch, 2009), Exponen-
tial Kernel on Normalized Laplacian (Exp-NL) (Kondor & Lafferty, 2002; Kunegis & Lom-
matzsch, 2009), Von Neumann Kernel on Adjacency Matrix (vN-A) (Ito et al., 2005; Kunegis
& Lommatzsch, 2009), Von Neumann Kernel on Laplacian (vN-L) (Ito et al., 2005; Kunegis
& Lommatzsch, 2009), and Von Neumann Kernel on Normalized Laplacian (vN-NL) (Ito
et al., 2005; Kunegis & Lommatzsch, 2009), node2vec (node2vec) (Grover & Leskovec, 2016),
DeepWalk (DeepWalk) (Perozzi et al., 2014), and LINE (LINE) (Tang et al., 2015). For
all methods, we set the number of embedding dimensions to 128. For LINE, node2vec,
and DeepWalk, we set the number of walkers to 40 and the number of the walk length to
80 following Ref. (Kojaku et al., 2023). We used the default hyperparameters used in the
original papers unless otherwise specified.

1.2.3 Graph Neural Networks

Graph neural networks (GNNs) learn the vector representation, u⃗i, for each node i of the
network by using neural networks. The prediction score sij is given by the dot product
u⃗⊤
i u⃗j between any two node vectors. We also explore several graph neural network (GNN)

architectures for link prediction, leveraging the PyTorch Geometric library (Fey & Lenssen,
2019). The GNN methods we employ include: Graph Convolutional Network (GCN) (Kipf
& Welling, 2017), Graph SAGE (GraphSAGE) (Hamilton et al., 2017), Graph Attention
Network (GAT) (Veličković et al., 2018), and Graph Isomorphism Network (GIN) (Xu et al.,
2018). We used held-out validation to tune the number of hidden layers (1 or 2) and
the number of dimensions in each hidden layer (64, 128, or 256) with the validation set
consisting of 10% of the edges. We use ReLu activation and dropout rate of 0.2. The
node features are the 64 principal eigenvectors of the adjacency matrix, and we extend the
feature vector by adding a 64-dimensional vector with each element being generated from
an independent Gaussian distribution with mean 0 and standard deviation 1 by following
Ref. (Sato et al., 2021; Abboud et al., 2020). We train GNNs on the link prediction task
for 250 epochs with a dropout rate of 0.2, using the Adam optimizer at a learning rate
0.01. We use the ‘LinkNeighborLoader‘ from PyTorch Geometric to generate training mini-
batches. This loader samples both positive and negative edges, along with 30 immediate
neighbors and 10 secondary neighbors sampled by random walks for each node involved in
these edges (Hamilton et al., 2017). The batch size is set to 5000.
We also tested BUDDY GNN that achieves a competitive performance on the link prediction
task (Chamberlain et al., 2022). We employed hyperparameter tuning for the number of
hidden channels (256 or 1024), and the feature dropout rate (0.05 or 0.2) with the validation
set consisting of 10% of the edges. We set the number of hops to 2 because it consistently
achieved a better performance. For other hyperparameters, we used the default values used
in the original implementation.

1.2.4 Nework models

We use two stochastic block models (SBM) (Fortunato, 2010; Fortunato & Hric, 2016; For-
tunato & Newman, 2022; Peixoto, 2013) and the degree-corrected SBM (Karrer & Newman,
2011; Peixoto, 2013; Gra). These models estimate the probability P (i, j) that an edge exists
between two nodes, which serves as the prediction score sij . We fit the SBMs using the
graph tool package (Gra). We select the number of blocks that minimize the description
length and use default settings for other parameters.
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Table 1: Link prediction algorithms. “pyg” refers to PyTorch Geometric.
Algorithm Reference Code Notation

Topology
based

Preferential attachment (Barabási & Pósfai, 2016) ourselves PA
Common neighbors (Liben-Nowell & Kleinberg, 2003) ourselves CN
AdamicAdar (Adamic & Adar, 2003) ourselves AA
Jaccard index (Liben-Nowell & Kleinberg, 2003) ourselves JI
Resource allocation (Zhou et al., 2007; 2009) ourselves RA
Local Random Walk (Liu & Lü, 2010) ourselves LRW
Local Path Index (Lü et al., 2009) ourselves LPI
MLP-deg ourselves MLP-deg
MLP-topo ourselves MLP-topo
Linear model ourselves Linear

Graph
embedding

Laplacian EigenMap (Belkin & Niyogi, 2003) ourselves EigenMap
Spectral modularity (Nadakuditi & Newman, 2012) ourselves Mod
Non-backtracking embedding (Krzakala et al., 2013) ourselves NB
FastRP (Chen et al., 2019) ourselves FastRP
Adjacency matrix (Kondor & Lafferty, 2002), ourselves Exp-A
w/ the exponential kernel (Kunegis & Lommatzsch, 2009)
Laplacian (Kondor & Lafferty, 2002), ourselves Exp-L
w/ the exponential kernel (Kunegis & Lommatzsch, 2009)
Normalized Laplacian (Kondor & Lafferty, 2002), ourselves Exp-NL
w/ the exponential kernel (Kunegis & Lommatzsch, 2009)
Adjacency matrix (Kondor & Lafferty, 2002), ourselves vN-A
w/ the von Neumann kernel (Kunegis & Lommatzsch, 2009)
Laplacian (Ito et al., 2005), ourselves vN-L
w/ the von Neumann kernel (Kunegis & Lommatzsch, 2009)
Normalized Laplacian w/ the von Neumann kernel (Ito et al., 2005), ourselves vN-NL
w/ the von Neumann kernel (Kunegis & Lommatzsch, 2009)
LINE (Tang et al., 2015) gensim (Rehurek & Sojka, 2011), LINE

(Abraham, 2020)
DeepWalk (Perozzi et al., 2014) gensim (Rehurek & Sojka, 2011), DeepWalk

gensim (Abraham, 2020)
node2vec (Grover & Leskovec, 2016) gensim (Rehurek & Sojka, 2011), node2vec

gensim (Abraham, 2020)

Graph
neural

networks

Graph Convolutional Network (Kipf & Welling, 2017) pyg (Fey & Lenssen, 2019) GCN
Graph SAGE (Hamilton et al., 2017) pyg (Fey & Lenssen, 2019) GraphSAGE
Graph Attention Network (Veličković et al., 2018) pyg (Fey & Lenssen, 2019) GAT
GIN (Xu et al., 2018) pyg (Fey & Lenssen, 2019) GIN
BUDDY GNN (Chamberlain et al., 2022) (Chamberlain et al., 2022) BUDDY

Network
model

Stochastic block model (Fortunato, 2010; Fortunato & Hric, 2016), graph tool (Gra) SBM
(Fortunato & Newman, 2022; Peixoto, 2013)

Degree-corrected stochastic block model (Karrer & Newman, 2011; Peixoto, 2013; Gra) graph tool (Gra) dcSBM

1.3 Pseudo-code for the degree-corrected link prediction benchmark

The pseudo-code for the degree-corrected link prediction benchmark is shown in Table. 1.

Algorithm 1 Degree-corrected link prediction benchmark
1: Input: Graph G(V, E), Sampling fraction β ∈ [0, 1] for positive edges
2: Output: Set of negative edges Eneg and set of positive edges Epos
3: Generate Epos by randomly sampling β fraction of edges in E .
4: Initialize Eneg ← ∅
5: Create a node list L where each node i ∈ V with degree ki appears ki times
6: while |Eneg| < |Epos| do
7: Randomly select two nodes i, j from L with replacement
8: if (i, j) /∈ E and (i, j) /∈ Eneg and i ̸= j then
9: Eneg ← Eneg ∪ {(i, j)}

10: end if
11: end while
12: return Eneg, Epos

1.4 Additional analysis methods

We use the following additional analysis methods in this paper. We fit a log-normal distri-
bution to the degree distribution of the graphs by using the moment method implemented in
the scipy.stats.lognorm package (Virtanen et al., 2020). We fit a power-law distribution to
the degree distribution of the graphs by using the maximum likelihood method implemented
in the powerlaw package (Alstott et al., 2014). We compute the RBO score by using the
rbo package (rbo).
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2 AUC-ROC for the preferential attachment method

Let us first derive the degree distribution of nodes in the positive edges. By substituting
Eq. 3 into Eq. 1 in the main text, we derive the degree distribution of nodes in the positive
edges as:

ppos(k) =
k

⟨k⟩
1√
2πσk

· exp
[
− (ln k − µ)2

2σ2

]
=

1√
2πσk

exp

[
− 1

2σ2

(
(ln k)2 − 2µ ln k + µ2

)
+ ln k − µ− σ2/2

]
=

1√
2πσk

exp

[
− 1

2σ2

(
(ln k)2 − 2(µ+ σ2) ln k + µ2 + 2µσ2 + σ4

)]
=

1√
2πσk

exp

[
− (ln k − µ− σ2)2

2σ2

]
= LogNorm(k | µ+ σ2, σ2). (1)

Equation 1 indicates that the degree distribution for nodes in the positive edges also follows
a log-normal distribution, parameterized by µ+ σ2 and σ.
We derive the AUC-ROC for PA by leveraging a unique characteristic of log-normal dis-
tributions, i.e., the logarithm ln k of log-normally-distributed degree k follows a normal
distribution with mean µ and variance σ2, i.e.,

P (ln k) = Norm(k | µ, σ2), where Norm(k | µ, σ2) =
1√
2πσ

exp

[
− (k − µ)2

2σ2

]
. (2)

We assume no degree assortativity in the graph, where P (k+i , k
+
j ) = P (ki)P (kj). Although

empirical graphs often exhibit degree assortativity, our results indicate that it does not
significantly impact the AUC-ROC (SI Section 4.2). For the negative edges, the distribution
for ln si−,j− = ln k−i + ln k−j follows a normal distribution with mean 2µ and variance 2σ2,
as the sum of independent normal variables also forms a normal distribution with additive
means and variances (Bishop, 2006), i.e.,

P (ln si−,j−) = Norm
(
ln si−,j− | 2µ, 2σ2

)
. (3)

For the positive edges, the degree distribution also follows a log-normal distribution (Eq. 1).
Thus, the distribution for ln si+,j+ = ln k+i + ln k+j is given by

P (ln si+,j+) = Norm
(
ln si+,j+ | 2µ+ 2σ2, 2σ2

)
. (4)

Thus, we have
AUC-ROC = P (ln s− < ln s+)

=

∫ ∞

−∞
Norm(x− | 2µ, 2σ2)

[
1−

∫ x−

−∞
Norm(x+ | 2µ+ 2σ2, 2σ2)dx+

]
dx−

= 1−
∫ ∞

−∞
Norm(x− | 2µ, 2σ2)

∫ x−

−∞
Norm(x+ | 2µ+ 2σ2, 2σ2)dx+dx− (5)

We reparameterize Eq. 5 by using z± = x±−2µ√
2σ

. Noting that Norm(x− | 2µ, 2σ2) ·
√
2σ =

Norm(z− | 0, 1) and dx± = (
√
2σ)dz±, we have

P (ln s− < ln s+) = 1−
∫ ∞

−∞
(2σ2)Norm(x− | 2µ, 2σ2)

∫ x−

−∞
Norm(x+ | 2µ+ 2σ2, 2σ2) · dz+dz−

= 1−
∫ ∞

−∞
Norm

(
z− | 0, 1

) ∫ z−

−∞
Norm

(
z+ −

√
2σ | 0, 1

)
dz+dz−

= 1−
∫ ∞

−∞
Norm(z− | 0, 1)Φ

(
z− −

√
2σ

)
dz, (6)

where Φ(z−) is the cumulative distribution function for the standard normal distribution,
i.e., Φ(z−) =

∫ z−

∞ Norm(y | 0, 1)dy.
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Table 2: Mean absolute coefficients from logistic regression analysis across different graphs.
Features were orthogonalized to eliminate collinearity, and coefficients were normalized by
feature L2 norm. Larger coefficients indicate greater importance in link prediction.

Mean Absolute Coefficient
Topological Feature All Graphs Graphs with σ > 1 Graphs with σ > 1.5

Random walk 11.52 10.68 9.01
Degree product 8.79 17.19 28.00
Resource allocation 2.81 4.53 6.88
Adamic-Adar 1.35 2.35 2.89
Jaccard index 0.89 1.06 0.17

3 Decomposition analysis of AUC-ROC scores

A key concern with the standard benchmark is that link prediction methods may overfit to
nodes with high degrees. To investigate this systematically, we developed a decomposition
analysis of the AUC-ROC scores that reveals how different groups of nodes contribute to
the overall performance metrics.
The AUC-ROC score—the probability that a positive sample has a higher score than a neg-
ative sample—can be decomposed into conditional scores by partitioning evaluation edges
into groups. Specifically, if we partition edges into groups g1 and g2, the AUC-ROC score
can be written as:

P (s+ > s−) =

2∑
ℓ=1

2∑
ℓ′=1

P (s+i > s−j |i ∈ g+ℓ , j ∈ g−ℓ′ )P (i ∈ g+ℓ )P (j ∈ g−ℓ′ ) (7)

where s+i and s−j are the scores of the positive and negative edges given by a link prediction
method, respectively, and g+ℓ and g−ℓ are the positive and negative edges in the ℓ-th group,
respectively. Probability P (s+i > s−j |i ∈ g+ℓ , j ∈ g−ℓ′ ) represents the conditional AUC-ROC
score for a positive edge sampled from g+ℓ and a negative edge sampled from g−ℓ′ . Probability
P (i ∈ g+ℓ )P (j ∈ g−ℓ′ ) represents the probability that a positive edge is sampled from g+ℓ and
a negative edge is sampled from g−ℓ′ . We note that P (i ∈ g+ℓ )P (j ∈ g−ℓ′ ) is determined by the
sampling of positive and negative edges and independent of the link prediction methods.
Based on this decomposition, we investigate the impact of edges of different node degrees
on the overall AUC-ROC scores. Specifically, we partition edges into two equal-sized groups
based on the degree product z = kikj of their endpoint nodes, with g1 having z ≥ median
and g2 having z < median. We tested multiple definitions of z including degree sum (ki+kj),
minimum degree (min(ki, kj)), and maximum degree (max(ki, kj)), finding consistent results
across all definitions.
To measure how uniformly different groups contribute to the AUC-ROC score, we use nor-
malized entropy:

H = −
2∑

ℓ=1

2∑
ℓ′=1

P (i ∈ g+ℓ )P (j ∈ g−ℓ′ ) logP (i ∈ g+ℓ )P (j ∈ g−ℓ′ )/ log 4 (8)

The entropy is bounded between 0 and 1, where 0 indicates that the AUC-ROC score
is determined by a single group pair and 1 indicates that the AUC-ROC score is evenly
distributed across all group pairs.
We observe that the standard benchmark exhibits notable disparity compared to HeaRT and
degree-corrected benchmark, indicating that the contribution to the AUC-ROC score in the
standard benchmark can be heavily skewed toward certain combinations of node degrees

6
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Figure 1: Decomposition of the AUC-ROC score by degree combinations. A: Uniformity
of P (i ∈ g+ℓ )P (j ∈ g−ℓ′ ) quantified by the normalized entropy, H. B: Probability P (i ∈
g+1 )P (j ∈ g−2 ) that the positive edges are sampled from the high-degree node group g+1 and
the negative edges are sampled from the low-degree node group g−2 .

(Fig. 1A). This disparity becomes even more pronounced in networks with high degree
heterogeneity (H < 0.5 and σ > 1.5). This disparity is caused by a single group pair—
positive edges from high-degree nodes and negative edges from low-degree nodes—–with
P (i ∈ g+1 )P (j ∈ g−2 ) > 0.7 for σ > 1.5 (Fig. 1B). This means that for highly heterogeneous
networks, more than 70% of the AUC-ROC score is determined by cases that can be easily
classified using degree alone. The degree-corrected benchmark achieves high uniformity
(H ≈ 1) across group pairs (Fig. 1A), indicating that the contribution to the AUC-ROC
score is approximately evenly distributed across different degree groups.
To further validate these findings, we performed additional experiments using logistic regres-
sion to analyze feature importance. The model was trained with resource allocation, Jaccard
index, Adamic Adar, local random walk, and degree product. To ensure fair comparison, we
orthogonalized the non-degree features with respect to degree to eliminate collinearity ef-
fects. Additionally, we use ridge regularization to further mitigate the effect of collinearity.
We use the scikit-learn package (Pedregosa et al., 2011) to perform the logistic regression
with the default ridge regularization strength. To make the regression coefficients compa-
rable, we normalize the features by their L2 norm before training the model. The results
showed that in networks with high degree heterogeneity (σ > 1), the degree product emerges
as significantly important, with its coefficient 1.7 3 times as large as the second most im-
portant feature (Table. 2).
This dominance of degree-based prediction is particularly concerning because it indicates
that learning-based methods can achieve high benchmark performance by primarily ex-
ploiting degree information rather than learning more complex structural patterns. This
“shortcut” is precisely what our degree-corrected benchmark aims to prevent.
These results provide strong quantitative support for our argument that the standard bench-
mark’s evaluation is dominated by easily-classified degree-based cases, potentially leading
to suboptimal model training. The degree-corrected benchmark successfully addresses this
issue by ensuring more uniform contributions from different degree groups, leading to a
more meaningful evaluation of link prediction methods.

4 Robustness analysis

4.1 Method ranking by HeaRT benchmark

The ranking of methods by the HeaRT benchmark is shown in Fig. 2. The results show that
PA achieves the highest AUC-ROC scores among all methods in the HeaRT benchmark,
contrasting sharply with its lowest performance in the degree-corrected benchmark. This
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Original HeaRTA Degree-correctedHeaRTB

Figure 2: Comparison of the AUC-ROC scores between the original, degree-corrected, and
the HeaRT benchmarks.

Degree heterogeneity, 
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Price Graph
Lower bound

A B

Degree assortativity

Figure 3: The AUC-ROC for PA as a function of degree heterogeneity. A: The AUC-ROC
for the empirical graphs and that expected by node degree (Eq. (9) in the main text). The
colors represent the degree assortativity. B: Lower bound for the AUC-ROC for the power-
law degree distributions. The dashed line represents the lower bound for the AUC-ROC for
the power-law distribution. The blue line represents the AUC-ROC for PA for the Price
graph with N = 104 nodes and M = 105 edges.

indicates that degree bias may not be reduced by HeaRT that reduces the distance-based
bias.

4.2 Impact of degree assortativity on the AUC-ROC for PA

We have assumed that the graph has no degree assortativity, meaning that P (ki, kj) =
P (ki)P (kj). Although this assumption may not always hold, it provides a good approxi-
mation for the AUC-ROC behavior for PA. Although the assortativity varies across graphs,
the AUC-ROC for PA still closely follows Eq. (9) in the main text (Fig. 3).
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4.3 AUC-ROC for PA for scale-free networks

We have assumed that the graph exhibits the heterogeneous degree distributions charac-
terized by the log-normal distribution. An alternative model of the degree distribution is
the power-law distribution (Barabási & Bonabeau, 2003). Here, we show that our results
also hold for the power-law degree distribution, i.e., the AUC-ROC for PA increases as the
degree heterogeneity increases.
We compute the AUC-ROC for PA for graphs with power-law degree distribution. Com-
puting AUC-ROC P (ki−kj− ≤ ki+kj+) is not trivial because it involves multiplicative con-
volution of two probability distributions, which are hard to compute for the power law
degree distribution. To circumvent this problem, we consider the lower-bound by focusing
on ki− ≤ ki+ and kj− ≤ kj+ , which is the subset of all combinations of (ki− , ki+ , kj− , kj+)
leading to ki−kj− ≤ ki+kj+ , i.e.,

P (ki− < ki+) · P (kj− < kj+ | ki− , ki+) ≤ P (ki−kj− < ki+kj+) (9)

Assuming that the graph has no degree assortativity (i.e., P (ki, kj) = P (ki)P (kj)), we
obtain the lower bound for the AUC-ROC:

P (ki− < ki+) ≥ P (ki− < ki+)
2 =

[ ∞∑
k=1

pneg(k)

∞∑
ℓ=k

ppos(ℓ)

]2

. (10)

Now, let us compute the lower bound by assuming that the degree distribution follows a
power-law (Clauset et al., 2009):

p(k) =
1

ζ(α, kmin)
k−α, (k ≥ kmin), where ζ(α, kmin) =

∞∑
ℓ=kmin

ℓ−α, (11)

where ζ is the Hurwitz zeta function, and kmin is the minimum degree. By substituting
Eq. (1) in the main text into Eq. equation 11, we have ppos = k−α+1/ζ(α − 1, kmin). By
noting that

∑∞
ℓ=k p(ℓ) = ζ(α, k)/ζ(α, kmin) (Clauset et al., 2009), we have

P (ki− < ki+)
2 =

[
1

ζ(α, kmin)ζ(α− 1, kmin)

∞∑
k=kmin

k−αζ(α− 1, k)

]2

. (12)

Numerical calculation shows that the lower bound P (ki− < ki+)
2 approaches 1 as α → 2

(Fig. 3). Additional validation using the Price network with N = 104 nodes and M = 105

edges, where p(k) ∝ k−α, confirms that PA achieves higher AUC-ROC than the lower-bound
and reaches near-maximal AUC-ROC scores for α ≈ 2.
We can also compute the AUC score using the Mann-Whitney U statistic (Fig. 4). Let
us take a graph G with the set of nodes given by V. We sample nodes i, j with degrees
k+i , k

+
j forming the positive set of edges from ppos, and nodes m,n with degrees k−m, k−n

forming the negative set of edges from pneg. Then P (k+i k
+
j > k−m, k−n ) ∀i, j, k,m ∈ V is

the AUC score and is given by U
n1n2

where U is the Mann-Whitney U statistic and n1, n2

are sizes of the positive and negative edge sets respectively (Mason & Graham, 2002). We
sample the random variables k+i , k

+
j using the “Power_Law” function from the powerlaw

package (Alstott et al., 2014) with degree exponent α−1 since ppos(k) ∼ k−(α−1). Similarly,
we sample k−m, k−n with degree exponent α since pneg(k) ∼ k−α. Fig. 4 aligns with our
findings in Fig. 3B, i.e., PA reaches near maximal AUC-ROC scores as α→ 2.

4.4 Analysis of large-scale networks

To test whether the degree bias persists in large-scale real-world networks, we analyzed two
large-scale citation networks, i.e., the Science of Science (SciSci) citation network (Lin et al.,
2023), which represents citations between more than 95M publications across all sciences,
and the USPTO citation network (Patent & Office, 2023), consisting of more than 7M
patents in the US.

9
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Figure 4: The influence of degree heterogeneity on the performance of the preferential
attachment (PA) link prediction model in graphs with a power law degree distribution.
The degree heterogeneity is governed by the power law exponent α. As α increases, the
heterogeneity decreases. PA reaches near maximal AUC-ROC scores (1) as α→ 2. For each
α, we generate 20 batches, each with 5000 samples of k+i , k+j , k−m, k−j . The dots indicate the
average AUC score obtained via the Mann-Whitney U statistic. Standard mean errors are
smaller than the dots.

We followed the same procedure as our main analysis to test for degree bias, measuring the
AUC-ROC score of the preferential attachment model. The results strongly supported our
theoretical predictions: PA achieved an AUC-ROC score of 0.9452 for SciSci and 0.881 for
USPTO, closely matching our theoretical predictions of 0.9479 and 0.918 respectively. With
the degree-corrected benchmark, the AUC-ROC scores for PA decreases for both graphs,
e.g., 0.5018 for SciSci and 0.4818 for the USPTO.
While we do not run other link prediction methods on these networks due to computational
constraints, these results provide strong evidence that our findings about degree bias are
not limited to smaller networks but represent a fundamental characteristic of the standard
link prediction benchmark.

4.5 Parameter sensitivity in the analysis of performance alignment with the
recommendation task

The vertex-centric max precision recall at C (VCMPR@C) metric Menand & Seshadhri
(2024) is a metric computed based on the precision and recall of the recommendations for
each node. This metric is proposed for evaluating link prediction methods in recommen-
dation settings. The VCMPR@C for a node i and recommended node set Vi is defined
as

VCMPR@C for node i =

∑
j∈Vi

Yij

max(C,mi)
, (13)

where Yij is the indicator function of node j is connected with i in the test data (Yij = 1),
and otherwise Yij = 0. Variable mi is the number of true connections in the test data, i.e.,
mi =

∑
j Yij . We compute the average VCMPR@C for all nodes as the performance of the

link prediction method for the graph.
We compute the similarity of two rankings with rank-biased overlap (RBO) Webber et al.
(2010). RBO assesses the similarity of two rankings by examining the overlap of top-
performing methods. Define Uk,1 as the set of methods ranked in the top k positions in
ranking 1, and Uk,2 similarly for ranking 2. Then, RBO computes a weighted average of the
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Figure 5: RBO for different p values and different numbers C of recommendations.

similarity of the top k methods by

RBO(S, T, p) := (1− p)

∞∑
k=1

pk−1 |Uk,1 ∩ Uk,2|
k

, (14)

where p controls the importance of the top performer, with a smaller p value placing more
weight on the top performer. We use p = 0.5 for the results in the main text. We find
consistent results across different p values (Fig. 5A and B). Additionally, we find consistent
results for a different number of recommendations C (Fig. 5C and D).

4.6 Evaluation of the link prediction performance using Hits@K

Hits@K is another common metric used to evaluate link prediction methods, alongside AUC-
ROC. We investigated whether degree bias affects Hits@K scores and if our bias correction
improves the correlation between Hits@K and actual link prediction performance. To com-
pute Hits@K, we first ranked all test data edges by their predicted scores in descending
order. We then counted the number of positive edges among the top K edges. This count
was normalized by the maximum possible value (K) to indicate how close the method came
to perfect prediction.
Our analysis revealed that the Hits@K scores for PA are consistently high across most net-
works, with only a few exceptions in networks with very low degree heterogeneity (Fig. 6A–
D). The supriously high performance of PA remains consistent regardless of the K value
used.
When we applied the same analysis to the degree-corrected benchmark, we found that the
Hits@K scores for PA span the range between 0 to 1.0 (Fig. 6E–H). This indicates that the
degree correction effectively mitigates spurious results and prevents inflation of performance
metrics due to degree bias.
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Figure 6: Link prediction performance using Hits@K. A–D Hits@K score for the PA model
for the standard benchmark. E–H Hits@K score for the PA model for the degree-corrected
benchmark. I–L The RBO score between the Hits@K scores and the the recommendation
performance measured by VCMPR@50.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Table 3: Performance of GNNs trained using the HeaRT benchmark for networks with
different mixing rates µ.

Mixing rate GAT GCN GIN GraphSAGE
0.10 0.00668 0.04247 0.00603 -0.00063
0.15 0.01600 0.01383 0.02049 -0.00004
0.20 0.00951 0.01670 0.00955 -0.00023

We then compared the Hits@K scores with the actual link prediction performance, measured
by VCMPR@C, using RBO scores. Our results show that the RBO scores for the degree-
corrected benchmark tend to be higher than those for the standard benchmark (Fig. 6I–L).
This suggests that the degree-corrected benchmark provides a more accurate assessment of
link prediction performance.
In summary, whether using AUC-ROC or ranking-based metrics like Hits@K, the underlying
data used for evaluation is crucial. Our findings reveal a systemic problem: the data itself,
when not properly corrected, has a bias that skews results in a way that is difficult to mitigate
through metric selection alone. These results highlight the importance of addressing degree
bias in link prediction evaluations, regardless of the metric used, and emphasize the need for
careful evaluation methods in graph-based recommendation systems to ensure benchmark
performance accurately reflects real-world performance.

4.7 Evaluation of the community detection performance using the normalized mutual
information

Normalized Mutual Information (NMI) is a standard metric for assessing community detec-
tion methods Lancichinetti & Fortunato (2009); Fortunato & Hric (2016). NMI quantifies
the similarity between actual and predicted community assignments, where a score of zero
indicates no similarity. We note that NMI has a bias favoring partitions with small com-
munities Gates et al. (2019), and thus, we used the element-centric similarity that does not
have this bias in our main experiment. We note that NMI has a bias favoring partitions
with small communities Gates et al. (2019), and thus, we used the element-centric similarity
that does not have this bias in our main experiment. Nevertheless, we include the results
for NMI in Fig. 7 for comparison. As with the element-centric similarity, our results show
that the degree-corrected GNNs perform on par or better than the original GNNs.

4.8 Sensitivity to the choice of the LFR benchmark parameters

We tested the robustness of the results by using different parameter values for the LFR
benchmark. First, we confirmed the consistent results when varying the average degree
⟨k⟩ from 25 to 50 (Fig. 8), or the maximum community size and degree from 1000 to 500
(Fig. 9).

5 GNNs trained with the HeaRT benchmark

We compared our degree-corrected benchmark with the distance-aware HeaRT bench-
mark (Li et al., 2024). Due to the computational expense of the negative sampling pro-
cess, we were only able to analyze networks with small mixing rates (µ = 0.1–0.20) where
communities are well-separated.
The results when training GNNs on the HeaRT benchmark showed notably lower perfor-
mance compared to both the standard and degree-corrected benchmarks:
For comparison, the performance of GNNs trained on both the standard and degree-
corrected benchmarks exceeded 0.2 within this range of mixing rates.
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⌧1 = 2.5Power-law exponent of degree distribution, 

Figure 7: Performance of the GNNs on the LFR benchmark measured by NMI.
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⌧1 = 2.5Power-law exponent of degree distribution, 

Figure 8: Performance of the GNNs on the LFR benchmark measured by NMI when varying
the average degree ⟨k⟩ from 25 to 50.

6 Correlation between AUC-ROC and other network statistics

Figure 10A shows the correlation between AUC-ROC and other network statistics. We
observed that the AUC-ROC of PA is strongly correlated with the degree heterogeneity
in terms of the variance of the log-normal distribution of node degrees, more than other
network statistics.
Figure 10B shows the correlation between AUC-ROC and the models that outperform PA
on the standard benchmark. We observed that these models exhibit substantially weaker
correlation between their AUC-ROC and degree heterogeneity, suggesting that their perfor-
mance is not strongly tied to degree heterogeneity.

7 Reproducibility

7.1 Source data and code

The source data, code, and workflow for our experiments are available on GitHub and
FigShare. The URLs are omitted in accordance with NeurIPS anonymity guidelines; how-
ever, we provide the data and code in the supplementary materials.

7.2 Snakemake workflow

We ensure the reproducibility of our experiments by using Snakemake Köster & Rahmann
(2012), which allows automatic workflow execution from the preprocessing to the generation

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Trained with the
original benchmark

Trained with the 
biased-aligned 

benchmark

A
C

om
m

un
ity

 d
et

ec
tio

n 
pe

rfo
rm

an
ce

 
(E

le
m

en
t-c

en
tri

c 
si

m
ila

rit
y)

B

C D

C
om

m
un

ity
 d

et
ec

tio
n 

pe
rfo

rm
an

ce
 

(E
le

m
en

t-c
en

tri
c 

si
m

ila
rit

y)

Av
er

ag
e 

pe
rfo

rm
an

ce
 

(A
re

a 
un

de
r t

he
 p

er
fo

rm
an

ce
 c

ur
ve

)
Av

er
ag

e 
pe

rfo
rm

an
ce

 
(A

re
a 

un
de

r t
he

 p
er

fo
rm

an
ce

 c
ur

ve
)

Mixing rate, <latexit sha1_base64="9W6W5mEAPHuoMKZo9Hi0v0h0Abk=">AAAB6nicbVBNSwMxEJ3Ur1q/qh69BIvgqexKUY9FLx4r2g9ol5JNs21okl2SrFCW/gQvHhTx6i/y5r8xbfegrQ8GHu/NMDMvTAQ31vO+UWFtfWNzq7hd2tnd2z8oHx61TJxqypo0FrHuhMQwwRVrWm4F6ySaERkK1g7HtzO//cS04bF6tJOEBZIMFY84JdZJDz2Z9ssVr+rNgVeJn5MK5Gj0y1+9QUxTyZSlghjT9b3EBhnRllPBpqVealhC6JgMWddRRSQzQTY/dYrPnDLAUaxdKYvn6u+JjEhjJjJ0nZLYkVn2ZuJ/Xje10XWQcZWklim6WBSlAtsYz/7GA64ZtWLiCKGau1sxHRFNqHXplFwI/vLLq6R1UfUvq7X7WqV+k8dRhBM4hXPw4QrqcAcNaAKFITzDK7whgV7QO/pYtBZQPnMMf4A+fwBgTI3f</latexit>µ

Mixing rate, <latexit sha1_base64="9W6W5mEAPHuoMKZo9Hi0v0h0Abk=">AAAB6nicbVBNSwMxEJ3Ur1q/qh69BIvgqexKUY9FLx4r2g9ol5JNs21okl2SrFCW/gQvHhTx6i/y5r8xbfegrQ8GHu/NMDMvTAQ31vO+UWFtfWNzq7hd2tnd2z8oHx61TJxqypo0FrHuhMQwwRVrWm4F6ySaERkK1g7HtzO//cS04bF6tJOEBZIMFY84JdZJDz2Z9ssVr+rNgVeJn5MK5Gj0y1+9QUxTyZSlghjT9b3EBhnRllPBpqVealhC6JgMWddRRSQzQTY/dYrPnDLAUaxdKYvn6u+JjEhjJjJ0nZLYkVn2ZuJ/Xje10XWQcZWklim6WBSlAtsYz/7GA64ZtWLiCKGau1sxHRFNqHXplFwI/vLLq6R1UfUvq7X7WqV+k8dRhBM4hXPw4QrqcAcNaAKFITzDK7whgV7QO/pYtBZQPnMMf4A+fwBgTI3f</latexit>µ

Power-law exponent of degree distribution, 
<latexit sha1_base64="0vkoozvXpRUM2Hm9O84S3kvd2MU=">AAAB83icbVBNS8NAEN3Ur1q/qh69LBbBU0i0qBeh6MVjBfsBTSib7aZdutmE3VmhhP4NLx4U8eqf8ea/cdvmoNUHA4/3ZpiZF2WCa/C8L6e0srq2vlHerGxt7+zuVfcP2jo1irIWTUWquhHRTHDJWsBBsG6mGEkiwTrR+Hbmdx6Z0jyVDzDJWJiQoeQxpwSsFARATN/H1/jc9frVmud6c+C/xC9IDRVo9qufwSClJmESqCBa93wvgzAnCjgVbFoJjGYZoWMyZD1LJUmYDvP5zVN8YpUBjlNlSwKeqz8ncpJoPUki25kQGOllbyb+5/UMxFdhzmVmgEm6WBQbgSHFswDwgCtGQUwsIVRxeyumI6IIBRtTxYbgL7/8l7TPXP/Crd/Xa42bIo4yOkLH6BT56BI10B1qohaiKENP6AW9OsZ5dt6c90VrySlmDtEvOB/f0r+QPw==</latexit>

⌧1 = 3.0

<latexit sha1_base64="wjxv4dzRzzEObFO2/RzSCAFV7JE=">AAAB83icbVDJSgNBEK2JW4xb1KOXxiB4GmZCXC5C0IvHCGaBzBB6Oj1Jk56eoRchhPyGFw+KePVnvPk3dpI5aOKDgsd7VVTVizLOlPa8b6ewtr6xuVXcLu3s7u0flA+PWio1ktAmSXkqOxFWlDNBm5ppTjuZpDiJOG1Ho7uZ336iUrFUPOpxRsMEDwSLGcHaSkGgsen56AZV3YteueK53hxolfg5qUCORq/8FfRTYhIqNOFYqa7vZTqcYKkZ4XRaCoyiGSYjPKBdSwVOqAon85un6MwqfRSn0pbQaK7+npjgRKlxEtnOBOuhWvZm4n9e1+j4OpwwkRlNBVksig1HOkWzAFCfSUo0H1uCiWT2VkSGWGKibUwlG4K//PIqaVVd/9KtPdQq9ds8jiKcwCmcgw9XUId7aEATCGTwDK/w5hjnxXl3PhatBSefOYY/cD5/ANjNkEM=</latexit>

⌧1 = 2.5Power-law exponent of degree distribution, 

Figure 9: Performance of the GNNs on the LFR benchmark measured by NMI when varying
the maximum community size and degree from 1000 to 500.

A B

Figure 10: Correlation between AUC-ROC and other network statistics.

of the plots. With the Snakemake workflow, the user can reproduce all results by running
the following command in the terminal:

snakemake --cores <number of cores> all

The workflow requires Python 3.11 or later, and all required Python packages are listed in
the “environment.yaml” file in the repository.
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7.3 Execution time and hardware requirements

We run the workflow on a server with 64 Intel(R) Xeon(R) Gold 5218 CPUs equipped with
64 cores, 1T RAM, and four NVIDIA GPUs with 48 GB memory, sufficient to complete the
workflow in one week. The execution time of the workflow for the community detection task
is 4 days, and that for the link prediction task is 10 days. The workflow can be executed
with fewer resources by reducing the number of cores. The minimum computer requirements
to run the workflow are as follows:

• 64 GB RAM
• 16 GB GPU memory
• 8 core CPU
• 300 GB space
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Table 4: Network data tested in this study. We consider social, technological, information,
biological, and transportation (spatial) networks. For simplicity in our analysis, we consider
these networks to be unweighted, undirected, and without self-loops. Variance referes to
the variance of the node degrees. Assortativity refers to the degree assortativity, and Het-
erogeneity refers to the degree heterogeneity computed by Jacob et al. (2017).

Network Nodes Edges Max. Degree Variance Assortativity Heterogeneity
Political books 105 441 25 29.69 -0.128 0.43
College football 115 613 12 0.78 0.162 0.20
High school 2011 126 1709 55 153.71 0.083 0.62
Food web bay wet 128 2075 110 249.17 -0.112 0.62
Food web bay dry 128 2106 110 249.85 -0.104 0.63
Radoslaw email 167 3250 139 993.84 -0.295 0.62
Highschool 2012 180 2220 56 120.37 0.046 0.51
Little Rock Lake 183 2434 105 433.29 -0.266 0.54
Jazz 198 2742 100 303.12 0.020 0.55
C. Elegans 297 2148 134 167.56 -0.163 0.38
Network science 379 914 34 15.42 -0.082 0.23
Dublin social 410 2765 50 70.51 0.226 0.29
Airport 500 2980 145 499.03 -0.268 0.35
Caltech 762 16651 248 1365.76 -0.066 0.42
Reed 962 18812 313 1254.53 0.023 0.38
Political blogs 1222 16714 351 1474.67 -0.221 0.34
Haverford 1446 59589 375 3687.70 0.067 0.41
Simmons 1510 32984 300 1288.53 -0.062 0.32
Swarthmore 1657 61049 577 3472.20 0.061 0.37
Petster 1788 12476 272 440.86 -0.089 0.24
UC Irvine 1893 13835 255 599.57 -0.188 0.24
Yeast 2224 6609 64 63.67 -0.105 0.15
Amherst 2235 90954 467 4007.71 0.058 0.35
Bowdoin 2250 84386 670 3206.35 0.056 0.33
Hamilton 2312 96393 602 3940.69 0.031 0.34
Adolescent health 2539 10455 27 18.59 0.251 0.10
Trinity 2613 111996 404 3742.49 0.072 0.32
USFCA 2672 65244 405 2041.31 0.092 0.27
Japanese book 2698 7995 725 608.58 -0.259 0.17
Williams 2788 112985 610 3901.94 0.040 0.32
Open flights 2905 15645 242 485.44 0.049 0.21
Oberlin 2920 89912 478 2838.11 0.050 0.28
Wellesley 2970 94899 746 3079.68 0.064 0.29
Smith 2970 97133 349 2432.51 0.044 0.28
Vassar 3068 119161 482 3453.23 0.101 0.30
Middlebury 3069 124607 473 3865.24 0.078 0.30

Table 5: (Continued) Network data tested in this study.
Network Nodes Edges Max. Degree Variance Assortativity Heterogeneity
Pepperdine 3440 152003 674 5695.91 0.055 0.31
Colgate 3482 155043 773 4009.14 0.067 0.29
Santa 3578 151747 1129 4933.35 0.071 0.29
Wesleyan 3591 138034 549 3548.92 0.095 0.28
Mich 3745 81901 419 1997.51 0.142 0.24
Bitcoin alpha 3775 14120 511 402.89 -0.169 0.17
Bucknell 3824 158863 506 3498.69 0.094 0.27
Brandeis 3887 137561 1972 4646.98 -0.026 0.27
Howard 4047 204850 1215 8506.41 0.058 0.32
Rice 4083 184826 581 5669.22 0.065 0.29
GR-QC 1993-2003 4158 13422 81 74.41 0.639 0.12
Tennis 4338 81865 451 4573.31 0.003 0.26
Rochester 4561 161403 1224 3632.47 0.025 0.25
Lehigh 5073 198346 973 4073.33 0.035 0.24
JohnsHopkins 5157 186572 886 4761.94 0.080 0.25
HT09 5352 18481 1287 1333.44 -0.431 0.14
Wake 5366 279186 1341 7469.92 0.071 0.27
Hep-Th 1995-99 5835 13815 50 20.77 0.185 0.08
Bitcoin OTC 5875 21489 795 531.22 -0.165 0.15
Reactome 5973 145778 855 4612.48 0.241 0.21
Jung 6120 50290 5655 16029.25 -0.233 0.16
Gnutella Aug 08 2002 6299 20776 97 72.95 0.036 0.11
American 6370 217654 930 3847.11 0.066 0.22
MIT 6402 251230 708 6241.81 0.120 0.24
JDK 6434 53658 5923 16112.86 -0.223 0.16
William 6472 266378 1124 5164.22 0.052 0.23
U Chicago 6561 208088 1624 4093.91 0.018 0.22
Princeton 6575 293307 628 6164.10 0.091 0.24
Carnegie 6621 249959 840 5674.47 0.122 0.24
Tufts 6672 249722 827 4525.50 0.118 0.22
UC 6810 155320 660 2297.32 0.125 0.19
Wikipedia elections 7066 100736 1065 3332.59 -0.083 0.21
English book 7377 44205 2568 3699.80 -0.237 0.16
Gnutella Aug 09 2002 8104 26008 102 66.74 0.033 0.09
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Table 6: (Continued) Network data tested in this study.
Network Nodes Edges Max. Degree Variance Assortativity Heterogeneity
French book 8308 23832 1891 1217.86 -0.233 0.12
Hep-Th 1993-2003 8638 24806 65 41.61 0.239 0.08
Gnutella Aug 06 2002 8717 31525 115 51.87 0.052 0.09
Gnutella Aug 05 2002 8842 31837 88 54.66 0.015 0.09
PGP 10680 24316 205 65.24 0.238 0.09
Gnutella Aug 04 2002 10876 39994 103 48.65 -0.013 0.08
Hep-Ph 1993-2003 11204 117619 491 2307.04 0.630 0.16
Spanish book 1 11558 43050 2986 3353.23 -0.282 0.12
DBLP citations 12495 49563 709 284.34 -0.046 0.10
Spanish book 2 12643 55019 5169 6953.72 -0.290 0.11
Cond-Mat 1995-99 13861 44619 107 45.70 0.157 0.07
Astrophysics 1 14845 119652 360 472.92 0.228 0.11
Astrophysics 2 17903 196972 504 961.58 0.201 0.11
Cond-Mat 1993-2003 21363 91286 279 119.00 0.125 0.07
Gnutella Aug 25 2002 22663 54693 66 28.58 -0.173 0.04
Internet 22963 48436 2390 1085.20 -0.198 0.08
Thesaurus 23132 297094 1062 1993.31 -0.048 0.12
Cora 23166 89157 377 123.05 -0.055 0.07
AS Caida 26475 53381 2628 1113.83 -0.195 0.08
Gnutella Aug 24 2002 26498 65359 355 35.03 -0.008 0.04
ogbl-collab 232865 961883 382 178.857773 0.269877 1.134311
ogbl-ddi 4267 1067911 2234 176801.815426 0.037832 0.730724
ogbl-biokg-protein 11034 884042 2551 62766.451816 -0.027401 1.112268
ogbl-biokg-drug 7313 137027 652 15456.627212 0.079466 1.577354
ogbl-biokg-function 44635 1180424 17690 61471.922776 -0.128156 1.770447
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