
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

PDETIME: RETHINKING LONG-TERM MULTIVARIATE
TIME SERIES FORECASTING FROM THE PERSPECTIVE
OF PARTIAL DIFFERENTIAL EQUATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advancements in deep learning have led to the development of various ap-
proaches for long-term multivariate time-series forecasting (LMTF). Most of these
approaches can be categorized as either historical-value-based methods, which rely
on discretely sampled past observations, or time-index-based methods that model
time indices directly as input variables. However, real-world dynamical systems
often exhibit nonstationarity and suffer from insufficient sampling frequency, pos-
ing challenges such as spurious correlations between time steps and difficulties in
modeling complex temporal dependencies. In this paper, we treat multivariate time
series as data sampled from a continuous dynamical system governed by partial
differential equations (PDEs) and propose a new model called PDETime. Instead
of predicting future values directly, PDETime employs an encoding-integration-
decoding architecture: it predicts the partial derivative of the system with respect
to time (i.e., the first-order difference) in the latent space and then integrates this
information to forecast future series. This approach enhances both performance
and stability, especially in scenarios with extremely long forecasting windows.
Extensive experiments on seven diverse real-world LMTF datasets demonstrate
that PDETime not only adapts effectively to the intrinsic spatiotemporal nature of
the data but also sets new benchmarks by achieving state-of-the-art results.

1 INTRODUCTION

Multivariate time series forecasting plays a pivotal role in diverse applications, such as weather
prediction (Angryk et al., 2020), energy consumption (Demirel et al., 2012), healthcare (Matsubara
et al., 2014), and traffic flow estimation (Li et al., 2017). Generally, time series forecasting models can
be roughly classified into two categories: historical-value-based models (Zhou et al., 2021; Wu et al.,
2021; Zeng et al., 2023; Nie et al., 2023), and time-index-based models (Woo et al., 2023; Naour et al.,
2023). The former predicts future time steps by leveraging historical observations, characterized
by x̂t+1 = Fθ(xt,xt−1, ...), while the latter solely utilizes the corresponding time-index features,
denoted as x̂t+1 = Fθ(t + 1). Historical-value-based models have gained popularity due to their
simplicity and effectiveness, positioned as state-of-the-art in multivariate time series forecasting.
However, it is crucial to acknowledge that multivariate time series data are often discretely sampled
from continuous dynamical systems. This characteristic poses a challenge for historical-value-based
models in LMTF, as they tend to capture spurious correlations limited to the insufficient sampling
frequency (Gong et al., 2017; Woo et al., 2023).

Alternatively, deep time-index-based methods have garnered a significant amount of attention (Woo
et al., 2023; Naour et al., 2023). These methods inherently address the limitations of historical-value-
based methods by mapping the time-index features to target predictions in the continuous space
through implicit neural representations (INRs) (Tancik et al., 2020; Sitzmann et al., 2020). While
time-index-based models implicitly leverage historical observations to enhance their exploratory
capabilities, they are primarily characterized by time-index coordinates. This limitation hiders their
effectiveness in capturing complex temporal dependencies, resulting in performance that falls slightly
behind that of historical-value-based models.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Time Series Data

Historical Series

Predicted Series

Timestamp (a) Historical-value

…𝒙!"& 𝒙!"$

Neural Network

u(s)
s

𝒙! 𝒙!%#…

…𝑡 𝑡 + 𝐻

Neural Network

u(t)

𝒙! 𝒙!%#…

(b) Time-index (c) Ours

…𝒙!"& 𝒙!"$

Neural Network

…s
𝜕𝐮(𝐬, t)/𝜕t

…𝑡 𝑡 + 𝐻

𝜶! 𝜶!%#…

t t+L

Solver+Decoder

𝒙! 𝒙!%#…

+xt-1

Figure 1: Comparison between historical-value-based models, time-index-based models and ours.

In this work, we introduce a novel perspective by framing multivariate time series as temporal data
discretely sampled from a continuous dynamical system which is governed by partial differential
equations (PDEs) as defined in Eq 1 (see Sec 3.1). From the PDEs perspective, illustrated in Figure 1,
existing historical-value-based methods typically extract the underlying latent variables (denoted by
s), such as the position and physical properties of sensors which cannot be observed directly (which is
also referred to as spatial information for the convenience of presentation). These models then predict
future series with another network, formulated as [xt, ...,xt+L] = uθ(s), which neglects the temporal
information. Conversely, time-index-based models focus solely on the time-index coordinates without
explicitly incorporating spatial information, expressed as xt = uθ(t). It is evident that both the above
models overlook either temporal or spatial information, making them incapable of modeling u(s, t) as
required by Eq 1, ultimately limiting their performance. Furthermore, as shown in Figure 1(c), instead
of treating LMTF as easily input-output mapping learning by neural networks, which ignores the
dependencies across predicted time steps. We propose to predict ∂u(s,t)∂t instead of u(s, t), and then
generate xt via the integral xt0 +

∫ t
t0

∂u(s,µ)
∂µ dµ, which implicitly capture temporal dependencies.

Motivated by the limitations of existing approaches and inspired by neural Solvers, we propose
PDETime, a PDE-based model for long-term multivariate time-series forecasting (LMTF). PDETime
employs an encoding-integration-decoding architecture and frames LMTF as an Initial Value Problem,
explicitly incorporating both spatial and temporal information and leveraging numerical solvers.
Specifically, PDETime initiates its process with a single initial condition, denoted as xt0 , and leverage
neural networks to project the system’s dynamics forward in time with three distinct steps. Firstly,
PDETime generates the partial derivative term Eθ(Xhis, ct, τt) = αt ≈ ∂u(s,t)

∂t utilizing an encoder
in latent space. Unlike traditional PDE problems, the spatial information s (latent variable) of LMTF
is unknown. Therefore, the encoder estimates s based on historical observations. Subsequently, a
numerical solver is employed to compute the integral term zt =

∫ t
t0
αµdµ. The proposed solver

effectively mitigates the accumulation error issue and enhances the stability of the prediction results
compared to traditional Neural ODE solvers (Chen et al., 2018). In the final step, PDETime employs
a decoder to translate the integral term from the latent space back to the value space, predicting
the results as x̂t = xt0 + Dϕ(zt). Similar to time-index-based models, PDETime utilizes meta-
optimization to enhance its ability to extrapolate across the forecast horizon. Additionally, PDETime
can be simplified into either a historical-value-based or time-index-based model by omitting either
the temporal or spatial domains, respectively.

In summary, the key contributions of this work are as follows:

• We present a novel perspective for LMTF by considering time series as data regularly
sampled from a dynamical system governed by PDEs along the temporal domains.

• We propose PDETime, a PDE-based model inspired by neural Solvers, which tackles LMTF
as an Initial Value Problem of PDEs. PDETime incorporates encoding-integration-decoding
operations and leverages meta-optimization to extrapolate future series.

• We extensively evaluate the proposed model on seven real-world benchmarks across multiple
domains under the long-term setting. Our empirical studies demonstrate that PDETime con-
sistently achieves state-of-the-art performance. Moreover, PDETime has better performance

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

and stability, particularly in scenarios with extremely long forecasting windows, thanks to
its encoding-integration-decoding architecture.

2 RELATED WORK

Multivariate Time Series Forecasting. With the progressive breakthrough made in deep learning,
deep models have been proposed to tackle various time series forecasting applications. Depending on
whether temporal or spatial is utilized, these models are classified into historical-value-based (Zhou
et al., 2021; 2022; Zeng et al., 2023; Nie et al., 2023; Zhang & Yan, 2023; Liu et al., 2024; 2022b;a;
Wu et al., 2023), and time-index-based models (Woo et al., 2023). Historical-value-based models,
predicting target time steps utilizing historical observations, have been extensively developed and
made significant progress in which a large body of work that tries to apply Transformer to forecast
long-term series in recent years (Wen et al., 2023). Early works like Informer (Zhou et al., 2021) and
LongTrans (Li et al., 2019) were focused on designing novel mechanism to reduce the complexity of
the original attention mechanism, thus capturing long-term dependency to achieve better performance.
Afterwards, efforts were made to extract better temporal features to enhance the performance of the
model (Wu et al., 2021; Zhou et al., 2022). Recent work (Zeng et al., 2023) has found that a single
linear channel-independent model can outperform complex transformer-based models. Therefore, the
very recent channel-independent models like PatchTST (Nie et al., 2023) and DLinear (Zeng et al.,
2023) have become state-of-the-art. In contrast, time-index-based models (Woo et al., 2023; Fons
et al., 2022; Jiang et al., 2023; Naour et al., 2023) are a kind of coordinated-based models, mapping
coordinates to values, which was represented by INRs. These models have received less attention
and their performance still lags behind historical-value-based models. PDETime, unlike previous
works, considers multivariate time series as spatiotemporal data and approaches the prediction target
sequences from the perspective of partial differential equations.
Implicit Neural Representations. Implicit Neural Representations are the class of works repre-
senting signals as a continuous function parameterized by multi-layer perceptions (MLPs) (Tancik
et al., 2020; Sitzmann et al., 2020) (instead of using the traditional discrete representation). These
neural networks have been used to learn differentiable representations of various objects such as
images (Henzler et al., 2020), shapes (Liu et al., 2020; 2019), and textures (Oechsle et al., 2019).
However, there is limited research on INRs for times series (Fons et al., 2022; Jiang et al., 2023; Woo
et al., 2023; Naour et al., 2023; Jeong & Shin, 2022). And previous works mainly focused on time
series generation and anomaly detection (Fons et al., 2022; Jeong & Shin, 2022). DeepTime (Woo
et al., 2023) is the work designed to learn a set of basis INR functions for forecasting, however, its
performance is worse than historical-value-based models. In this work, we use INRs to represent
spatial domains and temporal domains.
Neural PDE Solvers. Neural PDE solvers which are used for temporal PDEs, are laying the
foundations of what is becoming both a rapidly growing and significant area of research. These neural
PDE solvers fall into two broad categories, neural operator methods and autoregressive methods.
The neural operator methods (Kovachki et al., 2021; Li et al., 2020; Lu et al., 2021) treat the mapping
from initial conditions to solutions as time t as an input-output mapping learnable via supervised
learning. For a given PDE and given initial conditions u0, the neural operator M is trained to
satisfyM(t,u0) = u(t) (historical-value-based and time-index-based models both can be seen as
neural operator methods). However, these methods are not designed to generalize to dynamics for
out-of-distribution t. In contrast, the autoregressive methods (Bar-Sinai et al., 2019; Greenfeld et al.,
2019; Hsieh et al., 2019; Yin et al., 2022; Brandstetter et al., 2021; Lippe et al., 2024) solve the PDEs
iteratively. The solution of autoregressive methods at time t+∆t as u(t+∆) = A(u(t),∆t). In
this work, We consider multivariate time series as data sampled from a continuous dynamical system
according to a regular time discretization, which can be described by partial differential equations.
For the given initial condition xt0 , PDETime use the numerous solvers (e.g., the Euler solver) to
simulate target time step xt which is more like autoregressive methods.

3 METHOD

3.1 PROBLEM FORMULATION

In contrast to previous works (Zeng et al., 2023; Woo et al., 2023), we regard multivariate time series
as the spatio-temporal data regularly sampled from partial differential equations along the temporal

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

domain, denoted as u(s, t), which satisfies the PDE equation:

F(u, ∂u
∂t
,
∂u

∂s1
, ...,

∂2u

∂t2
,
∂2u

∂s2
, ...) = 0, u(s, t) : Ω× T → V, (1)

subject to initial and boundary conditions. Here u(s, t) represents the spatio-temporal dependent and
multi-dimensional continuous vector field, where Ω ∈ RC and T ∈ R denote the spatial and temporal
domains, respectively. For multivariate time series data, we regard attributes of sensors and external
factors as spatial information (e.g., the position and physical properties of sensors) s, which cannot
be directly observed and can only be inferred from historical observations. On the other hand, the
value of the temporal domains, t, is known and can include calendar information c associated with
the time series data. LMTF is treated as an initial value problem in PDETime, where the objective
is to infer u(s, t) ∈ RC at a future time t based on the known values u(s, t0). Consequently, this is
achieved by utilizing the following formula:

u(s, t) = u(s, t0) +

∫ t

t0

∂u(s, µ)

∂µ
dµ. (2)

PDETime initiates its process with a single initial condition, denoted as u(s, t0), and leverages neural
networks to project the system’s dynamics forward in time. The procedure unfolds in three distinct
steps. Firstly, PDETime generates a latent vector, αt of a predefined dimension d, utilizing an encoder
function, Eθ : Ω× T → Rd (denoted as the ENC step). Subsequently, it employs an Euler solver,
a numerical method, to approximate the integral term, zt =

∫ t
t0
αµdµ, effectively capturing the

system’s evolution over time (denoted as the SOL step). In the final step, PDETime translates the
latent vectors, zt, back into the spatial domain using a decoder, Dϕ : Rd → V to reconstruct the
value space (denoted as the DEC step). This results in the following model, are illustrated in Figure 2,

(ENC) αt = Eθ(Xhis, ct, τt), (3)

(SOL) zt =

∫ t

t0

ατdτ, (4)

(DEC) x̂t = Dϕ(zt) + xt0 . (5)

We describe the details of the components in Section 3.2 and see Algorithm 3 for the training
procedure of PDETime.

3.2 COMPONENTS OF PDETIME

3.2.1 ENCODER: αt = Eθ(Xhis, ct, τt)

The Encoder component computes the latent vector αt representing the temporal derivative ∂u(s,t)
∂t

of unknown field u(s, t). Due to the unavailability of u(s, t), it is not possible to directly ensure
αt =

∂u(s,t)
∂t . However, through Eq 13, it is observed that αt is proportional to ∂u(s,t)

∂t when Lf → 0
and ∆t → 0 (See sec A.2 for more details). The Encoder leverages this observation to estimate
temporal derivative effectively. In addition, the encoder utilizes historical observations Xhis to extract
the latent variable as the spatial information s. Next, we briefly introduce the structure of the Encoder.
In our Encoder, we employ Concatenated Fourier Features (CFF) (Woo et al., 2023; Tancik et al.,
2020) and SIREN (Sitzmann et al., 2020) with k layers to represent the high-frequency components
of τt, Xhis, and ct.

τ
(i)
t = GELU(W(i−1)

τ τ (i−1) + b(i−1)
τ),

c
(i)
t = sin(W(i−1)

c c(i−1) + b(i−1)
c),

X(i) = sin(W(i−1)
x X(i−1) + b(i−1)

x), i = 1, ..., k (6)

where X(0) ∈ RL×C = Xhis = [xt0−L+1
, ...,xt0], c

(0)
t ∈ Rm is the temporal feature, and

τ
(0)
t ∈ R is the time-index feature where τt = t

H+L for t = 0, 1, ...,H + L, L and H are

the look-back and horizon length, respectively. CFF is used to represent τ
(0)
t , i.e. τ

(0)
t =

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Embedding with INRs

𝑐!!"# 𝜏!!"# 𝑐!! 𝜏!! 𝑐!# 𝜏!# 𝑐!$ 𝜏!$ 𝑐!% 𝜏!%𝑋'()

𝑐!"#
(+) 𝜏!"#

(+) 𝑐!!
(+) 𝜏!!

(+) 𝑐!#
(+) 𝜏$

(+) 𝑐!$
(+) 𝜏!$

(+) 𝑐!%
(+) 𝜏!%

(+)𝑋(+)

Aggregation Module

𝛼!"# 𝛼!! 𝛼!# 𝛼!$ 𝛼!%

Solver and Decoder

𝑥!$ 𝑥!- 𝑥!.

(a) The framework of PDETime

+𝑥!/

𝛼!!

𝛼!#

𝛼!$

𝛼!%

(b) The procedure of our Solver

𝑓0 𝑧!!

𝑓1 𝑧!#

𝑓1 𝑧!$

𝑓0 𝑧!%
𝑓1 align

(c) The procedure of our Decoder

𝛼!"#𝛼!! 𝑥!"# 𝑥!!

Decoder

update

𝛼!# 𝛼!$

Decoder

𝛼!%

predict
𝑥!# 𝑥!$ 𝑥!%

Figure 2: The framework of proposed PDETime which consists of an Encoder Eθ, a Solver, and a
DecoderDϕ. Given the initial condition xt0 , PDETime first simulates ∂u(s,t)∂t at each time step t using
the Encoder Eθ(Xhis, ct, τt); then uses the Solver to compute

∫ t
t0

∂u(s,µ)
∂µ dµ, which is a numerical

solver; finally, the Decoder maps integral term zt from latent space to the value space and predict the
final results x̂t = xt0 +Dϕ(zt).

[sin(2πb1τt), cos(2πb1τt), ..., sin(2πbvτt), cos(2πbvτt)] ∈ Rvd, where bv ∈ R d
2 is sampled from

N (0, 2v).

After representing τ
(k)
t ∈ Rd, c(k)t ∈ Ro, and X(k) ∈ Rd×C with INRs, the Encoder aggregates

X(k) and c
(k)
t using τ

(k)
t through the following equations:

s = LayerNorm(

C∑
i=1

τ
(k)
t ·X(k)i∑C

i=1 τ
(k)
t ·X(K)i

X(k)i + τ
(k)
t),

αt = LayerNorm(W[s; c
(k)
t] + b+ s), (7)

where [·; ·] is the row-wise stacking operation. The aggregation process involves attention mecha-
nisms (Vaswani et al., 2017) for spatial information and linear mapping for temporal information
with N layers. The complete pseudocode of the aggregation module is summarized in Appendix A.4.

Unlike previous works (Chen et al., 2018; Rubanova et al., 2019) which rely on the results of
the previous steps, we directly compute αt at any time step, without the need for autoregressive
calculation which can effectively alleviate the error accumulation problem and make the prediction
results more stable (Brandstetter et al., 2021) and effectiveness.

3.2.2 SOLVER: zt =
∫ t
t0
αµdµ

The Solver component introduces a numerical solver (Euler Solver) to compute the integral term
zt =

∫ t
t0
αµdµ, which can be approximated as:

zt =

∫ t

t0

∂u(s, µ)

∂µ
dµ ≈

t∑
µ=t0

∂u(x, µ)

∂µ
∗∆µ ≈

t∑
µ=t0

αµ ∗∆µ, (8)

where t ∈ [0, H + L], t0 = L, and we set ∆µ = 1 for convenience. However, directly compute zt =∑t
µ=t0

αµ ∗∆µ through Eq 8 can easily lead to error accumulation and gradient problems (Rubanova

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

et al., 2019; Wu et al., 2022; Brandstetter et al., 2021) (also shown in our experimental results of
Figure 3). To address these issues, we propose a modified solver that divides the time series sequence
into non-overlapping patches of length S, where H+L

S patches are obtained. For t mod S = 0, we
directly estimate the integral term as zt = fψ(αt) using a neural network fψ . Otherwise, we use the
numerical solver to estimate the integral term with the lower limit ⌊ tS ⌋ · S. This modification results
in the following formula for the numerical solver:

zt = fψ(αt′) +

∫ t

t′
fφ(αµ)dµ, t

′ = ⌊ t
S
⌋ ∗ S, (9)

where the neural networks fψ and fφ are easily Linear layers. Furthermore, Eq 9 breaks the continuity
and correlation between patches. To address this, we introduce an additional objective function Lc to
ensure continuity and correlation as much as possible:

Lc = L(fψ(αt), fψ(αt′) +
∫ t

t′
fφ(αµ)dµ, s.t. t mod S = 0, t′ = t− S. (10)

We summarize the Solver as zt = Solver(φ,ψ, [αt0 , ...,αt], t0, t) and the pseudocode of the Solver
of PDETime is summarized in Appendix A.4.

3.2.3 DECODER: x̂t = Dϕ(zt) + xt0
The Decoder component of our approach is responsible for decoding the estimated integral term zt in
the latent space back into the value space. As described in Eq 2, given the known initial condition xt0
(here we use the latest time step in the historical series as the initial condition), the Decoder predict
the time step using the formula x̂t = Dϕ(zt) + xt0 .
Following (Woo et al., 2023; Bertinetto et al., 2018), we also introduce meta-optimization to update
the parameters in the Decoder to enhance the extrapolation capability of PDETime. Specifically,
given the pair of look-back window Xhis = [xt0−L+1

, ...,xx0] ∈ RL×C and horizon window
Xhor = [xt0+1

, ...,xt0+H
] ∈ RH×C . We then use the parameters ϕ and θ, φ, ψ to adapt the look-

back window and horizon window through a bi-level problem:

ϕ∗ = argmin
ϕ

1

L

t0−L+1∑
t=t0

Lr(Dϕ(Solver(φ,ψ, [αt0 , ...,αt], t0, t)),xt − xt0), (11)

θ∗, φ∗, ψ∗ = arg min
θ,φ,ψ

1

H

t0+H∑
t=t0+1

Lp(Dϕ(Solver(φ,ψ, [αt0 , ...,αt], t0, t)) + xt0 ,xt), (12)

where Lr and Lp denote the reconstruction and prediction loss, respectively (which will be described
in detail in Section 3.3). During training, PDETime optimizes both θ, ψ, φ, and ϕ; while during
inference, it only optimizes ϕ of Decoder to enhance the extrapolation. To ensure speed and efficiency,
we employ the single ridge regression for Dϕ (Bertinetto et al., 2018).

3.3 OPTIMIZATION

In Section 3.2.1, we discussed that it is challenging to ensure an exact match betweenEθ(Xhis, ct, τt)

and ∂u(s,t)
∂t . To alleviate this problem, we introduce to achieve consistency between the first-order

difference of the predicted sequence and target sequence with the additional optimization objective:

Lf =
1

H

t0+H∑
t=t0+1

L(Dϕ(zt)−Dϕ(zt−1), xt − xt−1). (13)

By minimizing Lf , we encourage the first-order difference of the predicted sequence to match that
of the target sequence. Additionally, when Lf → 0 and ∆t → 0, we observe that αt ∝ ∂u(s,t)

∂t .
Furthermore, in Section 3.2.2, we set ∆t = 1, leading to αt ∝

∑∞
n=1

1
n!
∂nu(s,t)
∂tn . In summary, αt

is related to the higher-order Taylor expansion of u(s, t) in the latent space (see more details in
Appendix A.2), which ensures the stability of PDETime under discretization.
Combining Lp, Lc, and Lf , the training objective becomes to:

Lp = Lp + Lc + Lf . (14)

In the inference stage, we only need to minimize Lr which is the simple resconstruction loss.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets. We extensively include 7 real-world datasets in our experiments, including four ETT
datasets (ETTh1, ETTh2, ETTm1, ETTm2) (Zhou et al., 2021). Electricity, Weather and Traffic (Wu
et al., 2021), covering energy, transportation and weather domains (See Appendix A.1.1 for more
details on the datasets). To ensure a fair evaluation, we follow the standard protocol of dividing each
dataset into the training, validation and testing subsets according to the chronological order. The
split ratio is 6:2:2 for the ETT dataset and 7:1:2 for the others (Zhou et al., 2021; Wu et al., 2021).
We set the length of the lookback series as 512 for PatchTST, 336 for DLinear, and 96 for other
historical-value-based models. The experimental settings of DeepTime remain consistent with the
original settings (Woo et al., 2023). The prediction length varies in {96, 192, 336, 720}.
Comparison methods. We carefully choose 9 well-acknowledged historical-value-based mod-
els and 1 time-index-based model) as our benchmarks, including (1) Transformer-based models:
FEDformer (Zhou et al., 2022), Stationary (Liu et al., 2022b), Crossformer (Zhang & Yan, 2023),
PatchTST (Nie et al., 2023), and iTransformer (Liu et al., 2024); (2) Linear-based models: DLin-
ear (Zeng et al., 2023) ; (3) CNN-based models: SCINet (Liu et al., 2022a), TimesNet (Wu et al.,
2023); (4) Time-index-based model: DeepTime (Woo et al., 2023). (See Appendix A.1.2 for details
of these baselines)

Implementation Details. Our method is trained with the Smooth L1 loss (Girshick, 2015) using the
ADAM (Kingma & Ba, 2014) with the initial learning rate selected from {10−3, 5× 10−4, 10−4}.
Batch size is set to 32. All experiments are implemented in Pytorch (Paszke et al., 2019) and
conducted on a single NVIDIA RTX 3090 GPUs with fixed feed 2024. Following DeepTime (Woo
et al., 2023), we set the look-back length as L = µ ∗H , where µ is a multiplier which decides the
length of the look-back windows. We search through the values µ = [1, 3, 5, 7, 9], and select the best
value based on the validation loss. We set layers of INRs k = 5 by default, and select the best results
from N = {1, 2, 3, 5}. We summarize the temporal features used in this work in Appendix A.3.

4.2 MAIN RESULTS AND ABLATION STUDY

Comprehensive forecasting results are listed in Table 1 with the best in Bold and the second underlined.
The lower MSE/MAE indicates the more accurate prediction result. Overall, PDETime achieves
the best performance on most settings across seven real-world datasets compared with historical-
value-based and time-index-based models. Additionally, experimental results also show that the
performance of the proposed PDETime changes quite steadily as the prediction length H increases.
For instance, the MSE of PDETime increases from 0.330 to 0.365 on the Traffic dataset, while the
MSE of PatchTST increases from 0.360 to 0.432, which is the SOTA historical-value-based model.
This phenomenon was observed in other datasets and settings as well, indicating that PDETime
retains better long-term robustness, which is meaningful for real-world practical applications.

Table 3: Analysis of the Solver and Initial value, w/o means
discarding Solver and Initial value.

Dataset ETTh1 Weather
Model PDETime w/o PDETime w/o
Metric MSE MAE MSE MAE MSE MAE MSE MAE

96 0.356 0.381 0.363 0.386 0.157 0.203 0.166 0.211
192 0.397 0.406 0.401 0.410 0.200 0.246 0.210 0.250
336 0.420 0.419 0.426 0.424 0.241 0.281 0.246 0.284
720 0.425 0.446 0.445 0.470 0.291 0.324 0.301 0.337

We perform ablation studies on the
Traffic and Weather datasets to vali-
date the effect of temporal feature
ct, spatial feature Xhis and initial
condition xt0 . The results are pre-
sented in Table 2. 1) The initial con-
dition xt0 is useful on most settings.
As mentioned in Section 3, we treat
LMTF as Initial Value Problem, thus
the effectiveness of xt0 validates the
correctness of PDETime. 2) The impact of spatial features Xhis on PDETime is limited. This may
be due to the fact that the true spatial domains s are unknown and complex, it is hard to utilize the
historical observations Xhis to simulate s with neural networks.

The spatial features Xhis are also beneficial in most cases, contributing to the stability of PDETime’s
performance. 3) The influence of temporal feature ct on PDETime various significantly across
different datasets. Experimental results have shown that ct is highly beneficial in the Traffic dataset,
but its effect on Weather dataset is limited. For example, the period of Traffic dataset may be one day
or one week, making it easier for PDETime to learn temporal features. On the other hand, the period

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Full results of the long-term forecasting task. We compare extensive competitive models
under different prediction lengths following the setting of PatchTST (2023). The input sequence
length is set to 336 and 512 for DLinear and PatchTST, and 96 for other historical-value-based
baselines. Full results are listed in Table 7

Models PDETime iTransformer PatchTST Crossformer DeepTime TimesNet DLinear SCINet FEDformer Stationary
(Ours) (2024) (2023) (2023) (2023) (2023) (2023) (2022a) (2022) (2022b)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTm1 0.340 0.368 0.407 0.410 0.352 0.382 0.513 0.496 0.351 0.379 0.400 0.406 0.357 0.378 0.485 0.481 0.448 0.452 0.481 0.456

ETTm2 0.241 0.295 0.288 0.332 0.256 0.316 0.757 0.610 0.262 0.326 0.291 0.333 0.267 0.331 0.571 0.537 0.305 0.349 0.306 0.347

ETTh1 0.399 0.413 0.454 0.447 0.418 0.432 0.529 0.522 0.420 0.436 0.458 0.450 0.423 0.437 0.747 0.647 0.440 0.460 0.570 0.537

ETTh2 0.334 0.379 0.383 0.407 0.343 0.387 0.942 0.684 0.489 0.472 0.414 0.427 0.431 0.446 0.954 0.723 0.437 0.449 0.526 0.516

ECL 0.150 0.244 0.178 0.270 0.159 0.252 0.244 0.334 0.164 0.265 0.192 0.295 0.166 0.263 0.268 0.365 0.214 0.327 0.193 0.296

Traffic 0.342 0.236 0.428 0.282 0.390 0.263 0.550 0.304 0.414 0.287 0.620 0.336 0.433 0.295 0.804 0.509 0.610 0.376 0.624 0.340

Weather 0.222 0.263 0.258 0.279 0.225 0.263 0.259 0.315 0.231 0.286 0.259 0.287 0.246 0.300 0.292 0.363 0.309 0.360 0.288 0.314

1st Count 14 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 2: Ablation study on variants of PDETime. -Temporal refers that removing the temporal
domain feature ct; -Spatial refers that removing the historical observations Xhis; - Initial refers that
removing the initial condition xt0 . The best results are highlighted in bold.

Dataset
Models PDETime -Temporal -Spatial -Initial -Temporal -Spatial - All
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Traffic

96 0.330 0.232 0.336 0.236 0.329 0.232 0.334 0.235 0.394 0.268 0.401 0.269
192 0.332 0.232 0.368 0.247 0.336 0.234 0.334 0.232 0.407 0.269 0.413 0.270
336 0.342 0.236 0.378 0.251 0.344 0.236 0.343 0.236 0.419 0.273 0.426 0.272
720 0.365 0.244 0.406 0.265 0.371 0.250 0.368 0.250 0.453 0.291 0.671 0.406

Weather

96 0.157 0.203 0.158 0.205 0.159 0.205 0.169 0.213 0.159 0.205 0.166 0.212
192 0.200 0.246 0.206 0.253 0.198 0.243 0.208 0.248 0.198 0.243 0.208 0.250
336 0.241 0.281 0.240 0.278 0.246 0.282 0.245 0.287 0.240 0.277 0.244 0.283
720 0.291 0.324 0.292 0.323 0.290 0.322 0.300 0.337 0.294 0.327 0.299 0.337

of Weather dataset may be one year or longer, but the dataset only contains one year of data. As a
result, PDETime cannot capture the complete temporal features in this case.
As mentioned in Sec 1, instead of directly utilizing neural networks, we aim to predict future
series using Eq 2. To evaluate the effectiveness of this approach, we conduct experiments where
PDETime can directly predict the target series by discarding xt0 and the Solver. The experimental
results, presented in Table 3, reveal that predicting future series with Eq 2 does indeed enhance the
performance of PDETime. Additionally, we find that incorporating the Solver and xt significantly
improves the performance of time-index-based models, particularly when Xhis and ct are excluded
(see details in Table 8). This further demonstrates the effectiveness of both the Solver and xt.
We conduct an additional ablation study on Traffic to evaluate the ability of different INRs to extract
features of Xhis, ct, and τt. In this study, we compared the performance of using the GELU or Tanh ac-
tivation function instead of sine in SIREN and making τ (0)t = [GELU(2πb1τt),GELU(2πb1τt), ...]
or τ (0) = [Tanh(2πb1τt),Tanh(2πb1τt), ...]. Table 5 presents the experimental results, we observe
that the sine function (periodic functions) can extract features better than other non-decreasing
activation functions. This is because the smooth, non-periodic activation functions fail to accurately
model high-frequency information (Sitzmann et al., 2020). Time series data is often periodic, and the
periodic nature of the sine function makes it more effective in extracting time series features.

4.3 EFFECTS OF HYPER-PARAMETERS

We evaluate the effect of four hyper-parameters: look-back window L, number of INRs layers k,
number of aggregation layers N , and patch length S on the ETTh1 and ETTh2 datasets. First,
we perform a sensitivity on the look-back window L = µ ∗ H , where H is based on the exper-
imental setting. The results are presented in Table 4. We observe that the test error decreases

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

1 2 3 4 5 6
k

0.36

0.38

0.40

0.42

0.44

0.46

M
SE

(a)

Horizon=96
Horizon=192
Horizon=336
Horizon=720

1 2 3 4 5 6
N

0.36

0.37

0.38

0.39

0.40

0.41

0.42

0.43

0.44

M
SE

(b)

Horizon=96
Horizon=192
Horizon=336
Horizon=720

2 4 8 16 24 48 96 192 336 720
S

0.350

0.375

0.400

0.425

0.450

0.475

0.500

0.525

0.550

M
SE

(c)

Horizon=96
Horizon=192
Horizon=336
Horizon=720

Figure 3: Evaluation on hyper-parameter impact. (a) MSE against hyper-parameter layers of INRs
k in Forecaster on ETTh1. (b) MSE against hyper-parameter layers of aggregation module N in
Forecaster on ETTh1. (c) MSE against hyper-parameter patch length S in Estimator on ETTh1.

as µ increases, plateauing and even increasing slightly as µ grows extremely large when the
horizon window is small. However, under a large horizon window, the test error increases as
µ increases. Next, we evaluate the hyper-parameters N and k on PDETime, as shown in Fig-
ure 3 (a) and (b) respectively. We find that the performance of PDETime remains stable when
k ≥ 3. Additionally, the number of aggregation layers N has a limited impact on PDETime.

Table 4: Analysis on the look-back window length, based on
the multiplier on horizon length, L = µ ∗H . The best results
are highlighted in bold.

Dataset
Horizon 96 192 336 720

µ MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1

1 0.378 0.386 0.415 0.411 0.421 0.420 0.425 0.446
3 0.359 0.382 0.394 0.404 0.427 0.421 0.443 0.460
5 0.360 0.385 0.396 0.405 0.421 0.420 0.495 0.501
7 0.354 0.381 0.398 0.405 0.427 0.429 0.545 0.532
9 0.356 0.381 0.397 0.406 0.446 0.440 1.220 0.882

ETTh2

1 0.288 0.335 0.357 0.381 0.380 0.404 0.380 0.421
3 0.276 0.331 0.339 0.374 0.358 0.395 0.422 0.456
5 0.275 0.333 0.331 0.370 0.360 0.408 0.622 0.576
7 0.268 0.330 0.331 0.378 0.384 0.427 0.624 0.595
9 0.272 0.331 0.331 0.378 0.412 0.451 0.797 0.689

Furthermore, we investigate the ef-
fect of patch length S on PDETime,
as illustrated in Figure 3 (c). We
varied the patch length from 2 to
48 and evaluate MSE with differ-
ent horizon windows. As the patch
length S increased, the prediction
accuracy of PDETime initially im-
proved, reached a peak, and then
started to decline. However, the
accuracy remains relatively stable
throughout. We also extended the
patch length to S = H . In this case,
PDETime performed poorly, indicat-
ing that the accumulation of errors
has a significant impact on the perfor-
mance of PDETime. Overall, these
analyses provide insights into the effects of different hyper-parameters on the performance of PDE-
Time and can guide the selection of appropriate settings for achieving optimal results.

Table 5: Analysis on INRs. PDETime refers to our
proposed approach. GELU and Tanh refer to replacing
SIREN and CFF with GELU or Tanh activation, respec-
tively. The best results are highlighted in bold.

Dataset Method PDETime GELU Tanh
Metric MSE MAE MSE MAE MSE MAE

Traffic

96 0.330 0.232 0.332 0.237 0.338 0.233
192 0.332 0.232 0.338 0.241 0.339 0.235
336 0.342 0.236 0.348 0.244 0.348 0.238
720 0.365 0.244 0.376 0.252 0.366 0.244

To address potential concern regarding
the inclusion of additional temporal in-
formation in our method, we conducted
comprehensive experiments comparing
PDETime with TiDE which also utilizes
dynamic covariates and PatchTST. In or-
der to ensure a fair comparison, we also
augmented PatchTST with temporal in-
formation. The results in Table 10 reveal
that even with the inclusion of temporal
information, TiDE and PatchTST still ex-
hibit weaker performance compared to
PDETime. We also conducted ablation studies to validate the effectiveness of Solver, initial con-
ditions, as well as loss functions lr and lc. The results of these experiments can be found in
Appendix A.5. Additionally, due to space constraints, we provide visualizations and convergence
experiments in Appendix A.6 and Appendix A.7, respectively.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

5 CONCLUSION AND FUTURE WORK

In this paper, we propose a novel LMTS framework PDETime, based on neural Solvers, which
consists of Encoder, Solver, and Decoder. Specifically, the Encoder simulates the temporal derivative
in latent space in parallel. The solver is responsible for computing the integral term with improved
stability. Finally, the Decoder maps the integral term from latent space into the value space and
predicts the target series under the initial condition. Additionally, we incorporate meta-optimization
techniques to enhance the ability of PDETime to extrapolate future series. Extensive experimental
results show that PDETime achieves state-of-the-art performance across forecasting benchmarks
on various real-world datasets. We also perform ablation studies to identify the key components
contributing to the success of PDETime.

Future Work. Firstly, while our proposed neural solver, PDETime, has shown promising results
for long-term multivariate time series forecasting, there are other types of neural solvers that could
potentially be applied to this task. Exploring these alternative neural solvers and comparing their
performance on LMTF could be an interesting future direction. Additionally, our PDETime have
demonstrated strong capabilities in handling regular time series data. Therefore, another potential
future direction is to apply PDETime to irregular time series tasks, such as missing value imputation.
Finally, our approach of rethinking long-term multivariate time series forecasting from the perspective
of partial differential equations has led to state-of-the-art performance, exploring other perspectives
and frameworks to tackle this task could be a promising direction for future research.

REFERENCES

Rafal A Angryk, Petrus C Martens, Berkay Aydin, Dustin Kempton, Sushant S Mahajan, Sunitha
Basodi, Azim Ahmadzadeh, Xumin Cai, Soukaina Filali Boubrahimi, Shah Muhammad Hamdi,
et al. Multivariate time series dataset for space weather data analytics. Scientific data, 7(1):227,
2020.

Yohai Bar-Sinai, Stephan Hoyer, Jason Hickey, and Michael P Brenner. Learning data-driven
discretizations for partial differential equations. Proceedings of the National Academy of Sciences,
116(31):15344–15349, 2019.

Luca Bertinetto, Joao F Henriques, Philip HS Torr, and Andrea Vedaldi. Meta-learning with differen-
tiable closed-form solvers. arXiv preprint arXiv:1805.08136, 2018.

Johannes Brandstetter, Daniel E Worrall, and Max Welling. Message passing neural pde solvers. In
International Conference on Learning Representations, 2021.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

Ömer Fahrettin Demirel, Selim Zaim, Ahmet Çalişkan, and Pinar Özuyar. Forecasting natural gas
consumption in istanbul using neural networks and multivariate time series methods. Turkish
Journal of Electrical Engineering and Computer Sciences, 20(5):695–711, 2012.

Elizabeth Fons, Alejandro Sztrajman, Yousef El-Laham, Alexandros Iosifidis, and Svitlana Vyetrenko.
Hypertime: Implicit neural representation for time series. arXiv preprint arXiv:2208.05836, 2022.

Ross Girshick. Fast r-cnn. In Proceedings of the IEEE international conference on computer vision,
pp. 1440–1448, 2015.

Mingming Gong, Kun Zhang, Bernhard Schölkopf, Clark Glymour, and Dacheng Tao. Causal discov-
ery from temporally aggregated time series. In Uncertainty in artificial intelligence: proceedings
of the... conference. Conference on Uncertainty in Artificial Intelligence, volume 2017. NIH Public
Access, 2017.

Daniel Greenfeld, Meirav Galun, Ronen Basri, Irad Yavneh, and Ron Kimmel. Learning to optimize
multigrid pde solvers. In International Conference on Machine Learning, pp. 2415–2423. PMLR,
2019.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Philipp Henzler, Niloy J Mitra, and Tobias Ritschel. Learning a neural 3d texture space from
2d exemplars. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 8356–8364, 2020.

Jun-Ting Hsieh, Shengjia Zhao, Stephan Eismann, Lucia Mirabella, and Stefano Ermon. Learning
neural pde solvers with convergence guarantees. arXiv preprint arXiv:1906.01200, 2019.

Kyeong-Joong Jeong and Yong-Min Shin. Time-series anomaly detection with implicit neural
representation. arXiv preprint arXiv:2201.11950, 2022.

Weiyun Jiang, Vivek Boominathan, and Ashok Veeraraghavan. Nert: Implicit neural representations
for general unsupervised turbulence mitigation. arXiv preprint arXiv:2308.00622, 2023.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Andrew
Stuart, and Anima Anandkumar. Neural operator: Learning maps between function spaces. arXiv
preprint arXiv:2108.08481, 2021.

Shiyang Li, Xiaoyong Jin, Yao Xuan, Xiyou Zhou, Wenhu Chen, Yu-Xiang Wang, and Xifeng
Yan. Enhancing the locality and breaking the memory bottleneck of transformer on time series
forecasting. Advances in neural information processing systems, 32, 2019.

Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. Diffusion convolutional recurrent neural network:
Data-driven traffic forecasting. arXiv preprint arXiv:1707.01926, 2017.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew
Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential equations.
arXiv preprint arXiv:2010.08895, 2020.

Phillip Lippe, Bas Veeling, Paris Perdikaris, Richard Turner, and Johannes Brandstetter. Pde-
refiner: Achieving accurate long rollouts with neural pde solvers. Advances in Neural Information
Processing Systems, 36, 2024.

Minhao Liu, Ailing Zeng, Muxi Chen, Zhijian Xu, Qiuxia Lai, Lingna Ma, and Qiang Xu. Scinet:
Time series modeling and forecasting with sample convolution and interaction. Advances in Neural
Information Processing Systems, 35:5816–5828, 2022a.

Shaohui Liu, Yinda Zhang, Songyou Peng, Boxin Shi, Marc Pollefeys, and Zhaopeng Cui. Dist:
Rendering deep implicit signed distance function with differentiable sphere tracing. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2019–2028, 2020.

Shichen Liu, Shunsuke Saito, Weikai Chen, and Hao Li. Learning to infer implicit surfaces without
3d supervision. Advances in Neural Information Processing Systems, 32, 2019.

Yong Liu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Non-stationary transformers: Exploring
the stationarity in time series forecasting. Advances in Neural Information Processing Systems, 35:
9881–9893, 2022b.

Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
iTransformer: Inverted transformers are effective for time series forecasting. In International
Conference on Learning Representations, 2024.

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
nonlinear operators via deeponet based on the universal approximation theorem of operators.
Nature machine intelligence, 3(3):218–229, 2021.

Yasuko Matsubara, Yasushi Sakurai, Willem G Van Panhuis, and Christos Faloutsos. Funnel:
automatic mining of spatially coevolving epidemics. In Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining, pp. 105–114, 2014.

Etienne Le Naour, Louis Serrano, Léon Migus, Yuan Yin, Ghislain Agoua, Nicolas Baskiotis, Vincent
Guigue, et al. Time series continuous modeling for imputation and forecasting with implicit neural
representations. arXiv preprint arXiv:2306.05880, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth
64 words: Long-term forecasting with transformers. In International Conference on Learning
Representations, 2023.

Michael Oechsle, Lars Mescheder, Michael Niemeyer, Thilo Strauss, and Andreas Geiger. Texture
fields: Learning texture representations in function space. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 4531–4540, 2019.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems, 32,
2019.

Yulia Rubanova, Ricky TQ Chen, and David K Duvenaud. Latent ordinary differential equations for
irregularly-sampled time series. Advances in neural information processing systems, 32, 2019.

Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wetzstein. Im-
plicit neural representations with periodic activation functions. Advances in neural information
processing systems, 33:7462–7473, 2020.

Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan, Utkarsh
Singhal, Ravi Ramamoorthi, Jonathan Barron, and Ren Ng. Fourier features let networks learn
high frequency functions in low dimensional domains. Advances in Neural Information Processing
Systems, 33:7537–7547, 2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Qingsong Wen, Tian Zhou, Chaoli Zhang, Weiqi Chen, Ziqing Ma, Junchi Yan, and Liang Sun. Trans-
formers in time series: A survey. In International Joint Conference on Artificial Intelligence(IJCAI),
2023.

Gerald Woo, Chenghao Liu, Doyen Sahoo, Akshat Kumar, and Steven Hoi. Learning deep time-
index models for time series forecasting. In International Conference on Machine Learning, pp.
37217–37237. PMLR, 2023.

Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition transformers
with auto-correlation for long-term series forecasting. Advances in Neural Information Processing
Systems, 34:22419–22430, 2021.

Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet:
Temporal 2d-variation modeling for general time series analysis. In International Conference on
Learning Representations, 2023.

Tailin Wu, Takashi Maruyama, and Jure Leskovec. Learning to accelerate partial differential equations
via latent global evolution. Advances in Neural Information Processing Systems, 35:2240–2253,
2022.

Yuan Yin, Matthieu Kirchmeyer, Jean-Yves Franceschi, Alain Rakotomamonjy, and Patrick Galli-
nari. Continuous pde dynamics forecasting with implicit neural representations. arXiv preprint
arXiv:2209.14855, 2022.

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
forecasting? In Proceedings of the AAAI conference on artificial intelligence, volume 37, pp.
11121–11128, 2023.

Yunhao Zhang and Junchi Yan. Crossformer: Transformer utilizing cross-dimension dependency for
multivariate time series forecasting. In International Conference on Learning Representations,
2023.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. In Proceedings
of the AAAI conference on artificial intelligence, volume 35, pp. 11106–11115, 2021.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer: Frequency
enhanced decomposed transformer for long-term series forecasting. In International Conference
on Machine Learning, pp. 27268–27286. PMLR, 2022.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A APPENDIX

In this section, we present the experimental details of PDETime. The organization of this section is
as follows:

• Appendix A.1 provides details on the datasets and baselines.

• Appendix A.3 provides details of time features used in this work.

• Appendix A.4 provides pseudocode of Encoder, Solver, and Training procedure of PDETime.

• Appendix A.5 presents the results of the robustness experiments and full results of Table 1.

• Appendix A.6 visualizes the prediction results of PDETime on seven real-world datasets.

• Appendix A.7 visualizes the Training, validation, and test losses of seven real-world datasets.

A.1 EXPERIMENTAL DETAILS

A.1.1 DATASETS

we use the most popular multivariate datasets in LMTF, including ETT, Electricity, Traffic and
Weather:

• The ETT (Zhou et al., 2021) (Electricity Transformer Temperature) dataset contains two
years of data from two separate countries in China with intervals of 1-hour level (ETTh) and
15-minute level (ETTm) collected from electricity transformers. Each time step contains six
power load features and oil temperature.

• The Electricity 1 dataset describes 321 clients’ hourly electricity consumption from 2012 to
2014.

• The Traffic 2 dataset contains the road occupancy rates from various sensors on San Francisco
Bay area freeways, which is provided by California Department of Transportation.

• the Weather 3 dataset contains 21 meteorological indicators collected at around 1,600
landmarks in the United States.

Table 6 presents key characteristics of the seven datasets. The dimensions of each dataset range from
7 to 862, with frequencies ranging from 10 minutes to 7 days. The length of the datasets varies from
966 to 69,680 data points. We split all datasets into training, validation, and test sets in chronological
order, using a ratio of 6:2:2 for the ETT dataset and 7:1:2 for the remaining datasets.

Table 6: Statics of Dataset Characteristics.
Datasets ETTh1 ETTh2 ETTm1 ETTm2 Electricity Traffic Weather

Dimension 7 7 7 7 321 862 21
Frequency 1 hour 1 hour 15 min 15 min 1 hour 1 hour 10 min

Length 17420 17420 69680 69680 26304 52696 17544

1https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014.
2http://pems.dot.ca.gov.
3https://www.bgc-jena.mpg.de/wetter/.

14

https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
http://pems.dot.ca.gov
https://www.bgc-jena.mpg.de/wetter/

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A.1.2 BASELINES

We choose SOTA and the most representative LMTF models as our baselines, including historical-
value-based and time-index-based models, as follows:

• PatchTST Nie et al. (2023): the current historical-value-based SOTA models. It utilizes
channel-independent and patch techniques and achieves the highest performance by utilizing
the native Transformer.

• DLinear Zeng et al. (2023): a highly insightful work that employs simple linear models and
trend decomposition techniques, outperforming all Transformer-based models at the time.

• Crossformer Zhang & Yan (2023): similar to PatchTST, it utilizes the patch technique
commonly used in the CV domain. However, unlike PatchTST’s independent channel
design, it leverages cross-dimension dependency to enhance LMTF performance.

• FEDformer Zhou et al. (2022): it employs trend decomposition and Fourier transformation
techniques to improve the performance of Transformer-based models in LMTF. It was the
best-performing Transformer-based model before Dlinear.

• Stationary Liu et al. (2022b): it proposes a De-stationary Attention to alleviate the over-
stationarization problem.

• iTransformer Liu et al. (2024): it different from pervious works that embed multivariate
points of each time step as a (temporal) token, it embeds the whole time series of each
variate independently into a (variate) token, which is the extreme case of Patching.

• TimesNet Wu et al. (2023): it transforms the 1D time series into a set of 2D tensors based
on multiple periods and uses a parameter-efficient inception block to analyze time series.

• SCINet Liu et al. (2022a): it proposes a recursive downsample-convolve-interact architecture
to aggregate multiple resolution features with complex temporal dynamics.

• DeepTime Woo et al. (2023): it is the first time-index-based model in long-term multivariate
time-series forecasting.

A.2 αt ∝ ∂u(t)
∂t WITH Lf → 0 AND ∆t→ 0

We first assume that Lf → 0, then we have:

lim
Lf→0

u(s, t1)− u(s, t0) = Dϕ(zt1)−Dϕ(zt0)

= Dϕ(zt1 − zt0)

= Dϕ(αt0 ∗∆t) (15)

With Taylor expansion, we have

lim
Lf→0

Dϕ(αt0 ∗∆t) = u(s, t1)− u(s, t0)

=
∂u(s, t0)

∂t0
dt+

∂u(s, t0)

∂s
ds+ ...+

n∑
i=1

1

n!

∂nu(s, t0)

∂si∂tn−i0

dxidtn−i

=
∂u(s, t0)

∂t0
dt+

1

2

∂2u(s, t0)

∂t20
dt2 + ...+

1

n!

∂nu(s, t0)

∂tn0
dtn

=

∞∑
n=1

1

n!

∂nu(s, t0)

∂tn0
dtn (16)

We assume that Wϕ ≥ 0 in Dϕ, and ∆t→ 0 then

lim
Lf→0

lim
∆t→0

Dϕ(αt0 ∗∆t) =
∂u(s, t0)

∂t0
∗∆t+ ∂2u(s, t0)

∂t20
∗ (∆t)2 +O((∆t)3) (17)

≈ ∂u(s, t)

∂t
∗∆t (18)

lim
Lf→0

lim
∆t→0

αt0 ∝
∂u(x, t0)

∂t0
(19)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

In our paper, we set ∆t = 1, thus we have

lim
Lf

αt ∝
∞∑
n=1

1

n!

∂nu(s, t)

∂tn
(20)

In this case, αt is related to the higher-order Taylor expansion of u(s, t) in the latent space, thus we
can predict xt1 = u(s, t1) = u(s, t0) +Dϕ(αt0).

A.3 TEMPORAL FEATURES

Depending on the sampling frequency, the temporal feature tτ of each dataset is also different. We
will introduce the temporal feature of each data set in detail:

• ETTm and Weather: day-of-year, month-of-year, day-of-week, hour-of-day, minute-of-hour.

• ETTh, Traffic, and Electricity: day-of-year, month-of-year, day-of-week, hour-of-day.

we also normalize these features into [0,1] range.

A.4 PSEUDOCODE

We provide the pseudo-code of Encoder and Solver in Algorithms 1 and Algorithms 2. We also
provide the training procedure of PDETime in Algorithm 3

Algorithm 1 Pseudocode of the aggregation module of Encoder

Input: Time-index feature τ
(k)
t , temporal feature c

(k)
t and historical feature X(k).

1: τ
(k)
t , c(k)t , X(k) = W1

ττ
(k)
t + b1

τ , W1
cc

(k)
t + b1

c , W1
xX

(k) + b1
x ▷ τt ∈ Rd, X ∈ Rd×C ,

ct ∈ Ro
2: τ

(k)
t , c(k)t , X(k) = LayerNorm(GeLU(τ

(k)
t)),LayerNorm(sin(c

(k)
t)),LayerNorm(GeLU(X(k)))

3: s = LayerNorm(
∑C
i=1

τ
(k)
t ·X(k)i∑C

i=1 τ
(k)
t ·X(k)i

+ τ
(k)
t)

4: s = W1[s; c
(k)
t] + b1 + s

5: s = LayerNorm(s)
6: for n = 2, ..., N do
7: s, c(k)t , X(k) = Wn

s s+ bns , Wn
c c

(k)
t + bnc , Wn

xX
(k) + bnx

8: s, c(k)t , X(k) = LayerNorm(GeLU(τ
(k)
t)),LayerNorm(sin(c

(k)
t)),LayerNorm(GeLU(X(k)))

9: s = LayerNorm(
∑C
i=1

s·X(k)i∑C
i=1 s·X(k)i

+ s)

10: s = Wn[s; c
(k)
t] + bn + s

11: s = LayerNorm(s)
12: end for
13: αt ← s
14: return αt ▷ αt ∈ Rd

Algorithm 2 Solver of PDETime
Input: latent partial derivative [αt0 , ...,αt] lower limit t0, upper limit t, and patch length S.

1: if t mod S = 0 then
2: zt ← fψ(αt)
3: else
4: t′ ← t′ ← ⌊ tS ⌋
5: zt ← fψ +

∑t
µ=t′ fφ(αµ) ∗∆µ

6: end if
7: return zt ▷ zt ∈ Rd

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Algorithm 3 Training procedure of PDETime
Input: Model Eθ, fψ , fφ and Dϕ with parameters θ, ψ, φ, and ϕ
Input: Learning rates η

1: for e in epochs do
2: for s in samples do
3: for t = t0−L+1, ..., t0, ..., t0+H do
4: αt ← Eθ(Xhis, ct, τt)
5: end for
6: for t = t0−L+1, ..., t0, ..., t0+H do
7: zi ← Solver(φ,ψ, [αt0 , ...,αt], t0, t)
8: end for
9: Zhis,Zhor ← [zt0−L+1

, ..., zt0], [zt0+1
, ..., zt+H]

10: ϕ← (ZThisZhis + λI)−1ZThis(Xhis − xt0)

11: X̂hor ← Dϕ(Zhor) + xt0
12: compute training loss Lp with Eq. 14
13: θ ← θ − η∇θLp
14: ψ ← ψ − η∇ψLp
15: φ← φ− η∇φLp
16: end for
17: end for

A.5 EXPERIMENTAL RESULTS OF ROBUSTNESS

The experimental results of the robustness of our algorithm based on Solver and Initial condition
are summarized in Table 8. We also test the effectiveness of continuity loss Lc and Lr in Table 9.
The experimental results in Table 8 demonstrate that PDETime can achieve strong performance
on the ETT dataset even when using only the Solver or initial value conditions, without explicitly
incorporating spatial and temporal information. Moreover, combining the initial value conditions
with the Solver further enhances the performance of PDETime. These findings suggest that PDETime
exhibits promising capabilities and can perform well even in scenarios with limited data availability.
Additionally, we conducted an analysis on the ETTh1 and ETTh2 datasets to investigate the impact of
the loss term Lc and Lr. Our findings demonstrate that incorporating Lc into PDETime can enhance
its robustness. In addition, we also find that loss Lr has a large impact on the effectiveness of our
model, which demonstrates the importance of extrapolation capability to PDETime.
To address potential concerns regarding the inclusion of additional temporal information in our
method, we conducted comprehensive experiments comparing PDETime with existing approaches,
including TiDE (also utilizes dynamic covariates) and PatchTST. In order to ensure a fair comparison,
we also augmented PatchTST with temporal information. The experimental results, presented in
Table 10, reveal that even with the inclusion of temporal information, TiDE and PatchTST still exhibit
weaker performance compared to PDETime. Notably, directly incorporating temporal information
into PatchTST led to a significant performance degration. These findings highlight the importance of
a well-designed and purposeful integration of temporal features.

A.6 VISUALIZATION

We visualize the prediction results of PDETime on seven real-world datasets. As illustrated in
Figure 4, for prediction lengths H = 96, 192, 336, 720, the prediction curve closely aligns with the
ground-truth curves in most cases (except for the weather dataset, which we suspect that weather
forecasting is more difficult than other domains) , indicating the outstanding predictive performance
of PDETime. Meanwhile, PDETime demonstrates effectiveness in capturing periods of time features.

A.7 CONVERGENCE

We conducted additional experiments to validate the convergence property of PDETime. Figure 5
illustrates the training, validation, and test loss of our model as the number of epochs increases. It
is evident that all losses initially decrease and then plateau. Notably, the training losses of ETTh2
and ETTm2 exhibit significant fluctuations, while the validation and test losses remain consistently
stable. We speculate that this behavior may be attributed to the relatively small scale of the ETTh2
and ETTm2 datasets. Conversely, for large-scale datasets such as Traffic and Electricity, all losses,
including training, validation, and test, demonstrate remarkable stability.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

0 20 40 60 80 100

4

3

2

1

0

1

2

Prediction Length H=96 ETTh1

Prediction
Ground Truth

0 25 50 75 100 125 150 175 200

4

3

2

1

0

1

2

Prediction Length H=192 ETTh1

Prediction
Ground Truth

0 50 100 150 200 250 300 350

4

3

2

1

0

1

2

Prediction Length ETTh1

Prediction
Ground Truth

0 100 200 300 400 500 600 700

4

3

2

1

0

1

2

Prediction Length ETTh1

Prediction
Ground Truth

0 20 40 60 80 100

2.2

2.0

1.8

1.6

1.4

1.2

1.0

0.8

Prediction Length H=96 ETTh2

Prediction
Ground Truth

0 25 50 75 100 125 150 175 200

2.0

1.5

1.0

0.5

Prediction Length H=192 ETTh2

Prediction
Ground Truth

0 50 100 150 200 250 300 350
3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

Prediction Length ETTh2

Prediction
Ground Truth

0 100 200 300 400 500 600 700

3

2

1

0

1

Prediction Length ETTh2

Prediction
Ground Truth

0 20 40 60 80 100

0.0

0.5

1.0

1.5

2.0

Prediction Length H=96 ETTm1

Prediction
Ground Truth

0 25 50 75 100 125 150 175 200

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Prediction Length H=192 ETTm1

Prediction
Ground Truth

0 50 100 150 200 250 300 350

4

3

2

1

0

1

2

Prediction Length ETTm1

Prediction
Ground Truth

0 100 200 300 400 500 600 700

4

3

2

1

0

1

2

Prediction Length ETTm1

Prediction
Ground Truth

0 20 40 60 80 100
2.2

2.0

1.8

1.6

1.4

1.2

1.0

0.8

Prediction Length H=96 ETTm2

Prediction
Ground Truth

0 25 50 75 100 125 150 175 200

2.2

2.0

1.8

1.6

1.4

1.2

1.0

0.8

Prediction Length H=192 ETTm2

Prediction
Ground Truth

0 50 100 150 200 250 300 350

2.25

2.00

1.75

1.50

1.25

1.00

0.75

Prediction Length ETTm2

Prediction
Ground Truth

0 100 200 300 400 500 600 700
2.50

2.25

2.00

1.75

1.50

1.25

1.00

0.75

0.50

Prediction Length ETTm2

Prediction
Ground Truth

0 20 40 60 80 100

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

Prediction Length H=96 Electricity

Prediction
Ground Truth

0 25 50 75 100 125 150 175 200

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

Prediction Length H=192 Electricity

Prediction
Ground Truth

0 50 100 150 200 250 300 350

1.0

0.8

0.6

0.4

0.2

0.0

0.2

Prediction Length Electricity

Prediction
Ground Truth

0 100 200 300 400 500 600 700

1.0

0.8

0.6

0.4

0.2

0.0

0.2

Prediction Length Electricity

Prediction
Ground Truth

0 20 40 60 80 100

0.5

0.0

0.5

1.0

1.5

2.0

Prediction Length H=96 Traffic

Prediction
Ground Truth

0 25 50 75 100 125 150 175 200

0.5

0.0

0.5

1.0

Prediction Length H=192 Traffic

Prediction
Ground Truth

0 50 100 150 200 250 300 350
1

0

1

2

3

4

5

Prediction Length Traffic

Prediction
Ground Truth

0 100 200 300 400 500 600 700
1

0

1

2

3

4

5

6

7

Prediction Length Traffic

Prediction
Ground Truth

0 20 40 60 80 100

1.50

1.45

1.40

1.35

1.30

1.25

1.20

Prediction Length H=96 Weather

Prediction
Ground Truth

0 25 50 75 100 125 150 175 200

1.9

1.8

1.7

1.6

1.5

1.4

1.3

1.2

Prediction Length H=192 Weather

Prediction
Ground Truth

0 50 100 150 200 250 300 350
3.5

3.0

2.5

2.0

1.5

Prediction Length Weather

Prediction
Ground Truth

0 100 200 300 400 500 600 700

4

3

2

1

0

Prediction Length Weather

Prediction
Ground Truth

Figure 4: Visualization of long-term forecasting results on seven datasets.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

0 10 20 30 40 50
0.3

0.4

0.5

0.6

0.7

0.8

0.9

Sm
oo

th
 L

1

Prediction Length H=96 ETTh1

Training
Validation
Testing

0 10 20 30 40 50

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Sm
oo

th
 L

1

Prediction Length H=192 ETTh1

Training
Validation
Testing

0 10 20 30 40 50
0.4

0.5

0.6

0.7

0.8

0.9

1.0

Sm
oo

th
 L

1

Prediction Length H=336 ETTh1

Training
Validation
Testing

0 10 20 30 40 50
0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Sm
oo

th
 L

1

Prediction Length H=720 ETTh1

Training
Validation
Testing

0 10 20 30 40 50

0.05

0.10

0.15

0.20

0.25

Sm
oo

th
 L

1

Prediction Length H=96 ETTh2

Training
Validation
Testing

0 10 20 30 40 50

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

Sm
oo

th
 L

1

Prediction Length H=192 ETTh2

Training
Validation
Testing

0 10 20 30 40 50

0.10

0.15

0.20

0.25

Sm
oo

th
 L

1

Prediction Length H=336 ETTh2

Training
Validation
Testing

0 10 20 30 40 50

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

Sm
oo

th
 L

1

Prediction Length H=720 ETTh2

Training
Validation
Testing

0 10 20 30 40 50

0.3

0.4

0.5

0.6

0.7

Sm
oo

th
 L

1

Prediction Length H=96 ETTm1

Training
Validation
Testing

0 10 20 30 40 50
0.3

0.4

0.5

0.6

0.7

0.8

Sm
oo

th
 L

1

Prediction Length H=192 ETTm1

Training
Validation
Testing

0 10 20 30 40 50
0.3

0.4

0.5

0.6

0.7

0.8
Sm

oo
th

 L
1

Prediction Length H=336 ETTm1

Training
Validation
Testing

0 10 20 30 40 50

0.4

0.5

0.6

0.7

0.8

Sm
oo

th
 L

1

Prediction Length H=720 ETTm1

Training
Validation
Testing

0 10 20 30 40 50
0.15

0.20

0.25

0.30

0.35

0.40

Sm
oo

th
 L

1

Prediction Length H=96 ETTm2

Training
Validation
Testing

0 10 20 30 40 50
0.20

0.25

0.30

0.35

0.40

0.45

0.50

Sm
oo

th
 L

1

Prediction Length H=192 ETTm2

Training
Validation
Testing

0 10 20 30 40 50

0.25

0.30

0.35

0.40

0.45

0.50

Sm
oo

th
 L

1

Prediction Length H=336 ETTm2

Training
Validation
Testing

0 10 20 30 40 50

0.30

0.35

0.40

0.45

0.50

Sm
oo

th
 L

1

Prediction Length H=720 ETTm2

Training
Validation
Testing

0 10 20 30 40 50

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Sm
oo

th
 L

1

Prediction Length H=96 Electricity

Training
Validation
Testing

0 10 20 30 40 50

0.2

0.3

0.4

0.5

0.6

0.7

Sm
oo

th
 L

1

Prediction Length H=192 Electricity

Training
Validation
Testing

0 10 20 30 40 50

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Sm
oo

th
 L

1

Prediction Length H=336 Electricity

Training
Validation
Testing

0 10 20 30 40 50

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Sm
oo

th
 L

1

Prediction Length H=720 Electricity

Training
Validation
Testing

0 10 20 30 40 50
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Sm
oo

th
 L

1

Prediction Length H=96 Traffic

Training
Validation
Testing

0 10 20 30 40 50
0.1

0.2

0.3

0.4

0.5

0.6

0.7

Sm
oo

th
 L

1

Prediction Length H=192 Traffic

Training
Validation
Testing

0 10 20 30 40 50
0.1

0.2

0.3

0.4

0.5

0.6

0.7

Sm
oo

th
 L

1

Prediction Length H=336 Traffic

Training
Validation
Testing

0 10 20 30 40 50

0.2

0.3

0.4

0.5

0.6

0.7

Sm
oo

th
 L

1

Prediction Length H=720 Traffic

Training
Validation
Testing

0 10 20 30 40 50

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Sm
oo

th
 L

1

Prediction Length H=96 Weather

Training
Validation
Testing

0 10 20 30 40 50
0.1

0.2

0.3

0.4

0.5

Sm
oo

th
 L

1

Prediction Length H=192 Weather

Training
Validation
Testing

0 10 20 30 40 50
0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

Sm
oo

th
 L

1

Prediction Length H=336 Weather

Training
Validation
Testing

0 10 20 30 40 50
0.30

0.35

0.40

0.45

0.50

0.55

0.60

Sm
oo

th
 L

1

Prediction Length H=720 Weather

Training
Validation
Testing

Figure 5: Training, validation, and test losses changes for 50 epochs.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 7: Full results of the long-term forecasting task. We compare extensive competitive models
under different prediction lengths following the setting of PatchTST (2023). The input sequence
length is set to 336 and 512 for DLinear and PatchTST, and 96 for other historical-value-based
baselines. Avg means the average results from all four prediction lengths.

Models PDETime iTransformer PatchTST Crossformer DeepTime TimesNet DLinear SCINet FEDformer Stationary
(Ours) (2024) (2023) (2023) (2023) (2023) (2023) (2022a) (2022) (2022b)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

1 96 0.292 0.335 0.334 0.368 0.293 0.346 0.404 0.426 0.305 0.347 0.338 0.375 0.299 0.343 0.418 0.438 0.379 0.419 0.386 0.398
192 0.329 0.359 0.377 0.391 0.333 0.370 0.450 0.451 0.340 0.371 0.374 0.387 0.335 0.365 0.439 0.450 0.426 0.441 0.459 0.444
336 0.346 0.374 0.426 0.420 0.369 0.392 0.532 0.515 0.362 0.387 0.410 0.411 0.369 0.386 0.490 0.485 0.445 0.459 0.495 0.464
720 0.395 0.404 0.491 0.459 0.416 0.420 0.666 0.589 0.399 0.414 0.478 0.450 0.425 0.421 0.595 0.550 0.543 0.490 0.585 0.516

Avg 0.340 0.368 0.407 0.410 0.352 0.382 0.513 0.496 0.351 0.379 0.400 0.406 0.357 0.378 0.485 0.481 0.448 0.452 0.481 0.456

E
T

T
m

2 96 0.158 0.244 0.180 0.264 0.166 0.256 0.287 0.366 0.166 0.257 0.187 0.267 0.167 0.260 0.286 0.377 0.203 0.287 0.192 0.274
192 0.213 0.283 0.250 0.309 0.223 0.296 0.414 0.492 0.225 0.302 0.249 0.309 0.224 0.303 0.399 0.445 0.269 0.328 0.280 0.339
336 0.262 0.318 0.311 0.348 0.274 0.329 0.597 0.542 0.277 0.336 0.321 0.351 0.281 0.342 0.637 0.591 0.325 0.366 0.334 0.361
720 0.334 0.336 0.412 0.407 0.362 0.385 1.730 1.042 0.383 0.409 0.408 0.403 0.397 0.421 0.960 0.735 0.421 0.415 0.417 0.413

Avg 0.241 0.295 0.288 0.332 0.256 0.316 0.757 0.610 0.262 0.326 0.291 0.333 0.267 0.331 0.571 0.537 0.305 0.349 0.306 0.347

E
T

T
h1

96 0.356 0.381 0.386 0.405 0.379 0.401 0.423 0.448 0.371 0.396 0.384 0.402 0.375 0.399 0.654 0.599 0.376 0.419 0.513 0.491
192 0.397 0.406 0.441 0.436 0.413 0.429 0.471 0.474 0.403 0.420 0.436 0.429 0.405 0.416 0.719 0.631 0.420 0.448 0.534 0.504
336 0.420 0.419 0.487 0.458 0.435 0.436 0.570 0.546 0.433 0.436 0.491 0.469 0.439 0.443 0.778 0.659 0.459 0.465 0.588 0.535
720 0.425 0.446 0.503 0.491 0.446 0.464 0.653 0.621 0.474 0.492 0.521 0.500 0.472 0.490 0.836 0.699 0.506 0.507 0.643 0.616

Avg 0.399 0.413 0.454 0.447 0.418 0.432 0.529 0.522 0.420 0.436 0.458 0.450 0.423 0.437 0.747 0.647 0.440 0.460 0.570 0.537

E
T

T
h2

96 0.268 0.330 0.297 0.349 0.274 0.335 0.745 0.584 0.287 0.352 0.340 0.374 0.289 0.353 0.707 0.621 0.358 0.397 0.476 0.458
192 0.331 0.370 0.380 0.400 0.342 0.382 0.877 0.656 0.383 0.412 0.402 0.414 0.383 0.418 0.860 0.689 0.429 0.439 0.512 0.493
336 0.358 0.395 0.428 0.432 0.365 0.404 1.043 0.731 0.523 0.501 0.452 0.452 0.448 0.465 1.000 0.744 0.496 0.487 0.552 0.551
720 0.380 0.421 0.427 0.445 0.393 0.430 1.104 0.763 0.765 0.624 0.462 0.468 0.605 0.551 1.249 0.838 0.463 0.474 0.562 0.560

Avg 0.334 0.379 0.383 0.407 0.343 0.387 0.942 0.684 0.489 0.472 0.414 0.427 0.431 0.446 0.954 0.723 0.437 0.449 0.526 0.516

E
C

L

96 0.129 0.222 0.148 0.240 0.129 0.222 0.219 0.314 0.137 0.238 0.168 0.272 0.140 0.237 0.247 0.345 0.193 0.308 0.169 0.273
192 0.143 0.235 0.162 0.253 0.147 0.240 0.231 0.322 0.152 0.252 0.184 0.289 0.153 0.249 0.257 0.355 0.201 0.315 0.182 0.286
336 0.152 0.248 0.178 0.269 0.163 0.259 0.246 0.337 0.166 0.268 0.198 0.300 0.169 0.267 0.269 0.369 0.214 0.329 0.200 0.304
720 0.176 0.272 0.225 0.317 0.197 0.290 0.280 0.363 0.201 0.302 0.220 0.320 0.203 0.301 0.299 0.390 0.246 0.355 0.222 0.321

Avg 0.150 0.244 0.178 0.270 0.159 0.252 0.244 0.334 0.164 0.265 0.192 0.295 0.166 0.263 0.268 0.365 0.214 0.327 0.193 0.296

Tr
af

fic

96 0.330 0.232 0.395 0.268 0.360 0.249 0.522 0.290 0.390 0.275 0.593 0.321 0.410 0.282 0.788 0.499 0.587 0.366 0.612 0.338
192 0.332 0.232 0.417 0.276 0.379 0.256 0.530 0.293 0.402 0.278 0.617 0.336 0.423 0.287 0.789 0.505 0.604 0.373 0.613 0.340
336 0.342 0.236 0.433 0.283 0.392 0.264 0.558 0.305 0.415 0.288 0.629 0.336 0.436 0.296 0.797 0.508 0.621 0.383 0.618 0.328
720 0.365 0.244 0.467 0.302 0.432 0.286 0.589 0.328 0.449 0.307 0.640 0.350 0.466 0.315 0.841 0.523 0.626 0.382 0.653 0.355

Avg 0.342 0.236 0.428 0.282 0.390 0.263 0.550 0.304 0.414 0.287 0.620 0.336 0.433 0.295 0.804 0.509 0.610 0.376 0.624 0.340

W
ea

th
er

96 0.157 0.203 0.174 0.214 0.149 0.198 0.158 0.230 0.166 0.221 0.172 0.220 0.176 0.237 0.221 0.306 0.217 0.296 0.173 0.223
192 0.200 0.246 0.221 0.254 0.194 0.241 0.206 0.277 0.207 0.261 0.219 0.261 0.220 0.282 0.261 0.340 0.276 0.336 0.245 0.285
336 0.241 0.281 0.278 0.296 0.245 0.282 0.272 0.335 0.251 0.298 0.280 0.306 0.265 0.319 0.309 0.378 0.339 0.380 0.321 0.338
720 0.291 0.324 0.358 0.349 0.314 0.334 0.398 0.418 0.301 0.338 0.365 0.359 0.323 0.362 0.377 0.427 0.403 0.428 0.414 0.410

Avg 0.222 0.263 0.258 0.279 0.225 0.263 0.259 0.315 0.231 0.286 0.259 0.287 0.246 0.300 0.292 0.363 0.309 0.360 0.288 0.314

1st Count 33 33 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

A.8 LIMITATIONS

While PDETime represents a significant advancement in long-term multivariate time series forecasting
with PDE solvers, it currently has limitations that should be addressed in future research. Firstly,
PDETime is not well-suited for modeling irregular time series as it operates under the assumption
that historical observations Xhis are regular. However, PDETime can still predict irregular future
data by modifying ∆t. Secondly, PDETime considers spatial information s to be unknown and
requires estimation through various well-designed neural networks. It is important to note that spatial
information may be highly complex and challenging to predict directly using neural networks.

A.9 BROADER IMPACTS

This paper presents PDETime, a new PDE-based method in Long-term multivariate time series
forecasting. This paper only focuses on the algorithm design. Using all the codes and datasets strictly
follows the corresponding licenses. There is no potential ethical risk or negative social impact.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 8: Analysis on Solver and Initial condition. INRs refers to only using INRs to represent τt; +
Initial refers to aggregating initial condition xt0 ; +Solver refers to using numerical solvers to compute
integral terms in latent space. The best results are highlighted in bold.

Dataset Method INRs INRs+Initial INRs+Solver INRs+Initial+Solvers
Metric MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1

96 0.371 0.396 0.364 0.384 0.358 0.381 0.358 0.381
192 0.403 0.420 0.402 0.409 0.398 0.407 0.397 0.406
336 0.433 0.436 0.428 0.420 0.348 0.238 0.422 0.420
720 0.474 0.492 0.439 0.452 0.455 0.476 0.437 0.450

ETTh2

96 0.287 0.352 0.270 0.330 0.285 0.342 0.270 0.331
192 0.383 0.412 0.331 0.372 0.345 0.379 0.329 0.369
336 0.523 0.501 0.373 0.405 0.357 0.399 0.354 0.399
720 0.765 0.624 0.392 0.429 0.412 0.444 0.395 0.428

Table 9: Analysis on the effectiveness of loss term Lc and Lr.

Dataset Method PDETime PDETime-Lc PDETime-Lr

Metric MSE MAE MSE MAE MSE MAE

ETTh1

96 0.356 0.381 0.357 0.381 0.740 0.598
192 0.397 0.406 0.393 0.405 0.870 0.694
336 0.420 0.419 0.422 0.420 0.688 0.557
720 0.425 0.419 0.446 0.458 0.799 0.653

ETTh2

96 0.268 0.330 0.271 0.330 0.431 0.423
192 0.331 0.370 0.341 0.373 0.435 0.467
336 0.358 0.395 0.363 0.397 0.426 0.460
720 0.380 0.421 0.396 0.434 0.468 0.489

Table 10: Analysis on the effectiveness of Temporal Feature.

Dataset Method PDETime TiDE PatchTST PatchTST+ Temporal
Metric MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1

96 0.356 0.335 0.375 0.398 0.379 0.401 0.378 0.403
192 0.397 0.406 0.412 0.422 0.413 0.429 0.414 0.425
336 0.420 0.419 0.435 0.433 0.435 0.436 0.449 0.449
720 0.425 0.446 0.454 0.465 0.446 0.464 0.507 0.499

ETTh2

96 0.268 0.330 0.270 0.336 0.274 0.335 0.323 0.376
192 0.331 0.370 0.332 0.380 0.342 0.382 0.375 0.416
336 0.358 0.395 0.360 0.407 0.365 0.404 0.400 0.430
720 0.380 0.421 0.419 0.451 0.393 0.430 0.428 0.454

21

	Introduction
	Related Work
	Method
	Problem Formulation
	Components of PDETime
	Encoder: t=E(Xhis,ct,t)
	Solver: zt=t0t d
	Decoder: t=D(zt)+xt0

	Optimization

	Experiments
	Experimental Settings
	Main Results and Ablation Study
	Effects of Hyper-parameters

	Conclusion and Future Work
	Appendix
	Experimental Details
	Datasets
	Baselines

	tu(t)t with Lf 0 and t 0
	Temporal Features
	Pseudocode
	Experimental Results of Robustness
	Visualization
	Convergence
	Limitations
	Broader Impacts

