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ABSTRACT

Recent advancements in deep learning have led to the development of various ap-
proaches for long-term multivariate time-series forecasting (LMTF). Most of these
approaches can be categorized as either historical-value-based methods, which rely
on discretely sampled past observations, or time-index-based methods that model
time indices directly as input variables. However, real-world dynamical systems
often exhibit nonstationarity and suffer from insufficient sampling frequency, pos-
ing challenges such as spurious correlations between time steps and difficulties in
modeling complex temporal dependencies. In this paper, we treat multivariate time
series as data sampled from a continuous dynamical system governed by partial
differential equations (PDEs) and propose a new model called PDETime. Instead
of predicting future values directly, PDETime employs an encoding-integration-
decoding architecture: it predicts the partial derivative of the system with respect
to time (i.e., the first-order difference) in the latent space and then integrates this
information to forecast future series. This approach enhances both performance
and stability, especially in scenarios with extremely long forecasting windows.
Extensive experiments on seven diverse real-world LMTF datasets demonstrate
that PDETime not only adapts effectively to the intrinsic spatiotemporal nature of
the data but also sets new benchmarks by achieving state-of-the-art results.

1 INTRODUCTION

Multivariate time series forecasting plays a pivotal role in diverse applications, such as weather
prediction (Angryk et al., 2020), energy consumption (Demirel et al., 2012), healthcare (Matsubara
et al., 2014), and traffic flow estimation (Li et al., 2017). Generally, time series forecasting models can
be roughly classified into two categories: historical-value-based models (Zhou et al., 2021; Wu et al.,
2021; Zeng et al., 2023; Nie et al., 2023), and time-index-based models (Woo et al., 2023; Naour et al.,
2023). The former predicts future time steps by leveraging historical observations, characterized
by x̂t+1 = Fθ(xt,xt−1, ...), while the latter solely utilizes the corresponding time-index features,
denoted as x̂t+1 = Fθ(t + 1). Historical-value-based models have gained popularity due to their
simplicity and effectiveness, positioned as state-of-the-art in multivariate time series forecasting.
However, it is crucial to acknowledge that multivariate time series data are often discretely sampled
from continuous dynamical systems. This characteristic poses a challenge for historical-value-based
models in LMTF, as they tend to capture spurious correlations limited to the insufficient sampling
frequency (Gong et al., 2017; Woo et al., 2023).

Alternatively, deep time-index-based methods have garnered a significant amount of attention (Woo
et al., 2023; Naour et al., 2023). These methods inherently address the limitations of historical-value-
based methods by mapping the time-index features to target predictions in the continuous space
through implicit neural representations (INRs) (Tancik et al., 2020; Sitzmann et al., 2020). While
time-index-based models implicitly leverage historical observations to enhance their exploratory
capabilities, they are primarily characterized by time-index coordinates. This limitation hiders their
effectiveness in capturing complex temporal dependencies, resulting in performance that falls slightly
behind that of historical-value-based models.
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Figure 1: Comparison between historical-value-based models, time-index-based models and ours.

In this work, we introduce a novel perspective by framing multivariate time series as temporal data
discretely sampled from a continuous dynamical system which is governed by partial differential
equations (PDEs) as defined in Eq 1 (see Sec 3.1). From the PDEs perspective, illustrated in Figure 1,
existing historical-value-based methods typically extract the underlying latent variables (denoted by
s), such as the position and physical properties of sensors which cannot be observed directly (which is
also referred to as spatial information for the convenience of presentation). These models then predict
future series with another network, formulated as [xt, ...,xt+L] = uθ(s), which neglects the temporal
information. Conversely, time-index-based models focus solely on the time-index coordinates without
explicitly incorporating spatial information, expressed as xt = uθ(t). It is evident that both the above
models overlook either temporal or spatial information, making them incapable of modeling u(s, t) as
required by Eq 1, ultimately limiting their performance. Furthermore, as shown in Figure 1(c), instead
of treating LMTF as easily input-output mapping learning by neural networks, which ignores the
dependencies across predicted time steps. We propose to predict ∂u(s,t)∂t instead of u(s, t), and then
generate xt via the integral xt0 +

∫ t
t0

∂u(s,µ)
∂µ dµ, which implicitly capture temporal dependencies.

Motivated by the limitations of existing approaches and inspired by neural Solvers, we propose
PDETime, a PDE-based model for long-term multivariate time-series forecasting (LMTF). PDETime
employs an encoding-integration-decoding architecture and frames LMTF as an Initial Value Problem,
explicitly incorporating both spatial and temporal information and leveraging numerical solvers.
Specifically, PDETime initiates its process with a single initial condition, denoted as xt0 , and leverage
neural networks to project the system’s dynamics forward in time with three distinct steps. Firstly,
PDETime generates the partial derivative term Eθ(Xhis, ct, τt) = αt ≈ ∂u(s,t)

∂t utilizing an encoder
in latent space. Unlike traditional PDE problems, the spatial information s (latent variable) of LMTF
is unknown. Therefore, the encoder estimates s based on historical observations. Subsequently, a
numerical solver is employed to compute the integral term zt =

∫ t
t0
αµdµ. The proposed solver

effectively mitigates the accumulation error issue and enhances the stability of the prediction results
compared to traditional Neural ODE solvers (Chen et al., 2018). In the final step, PDETime employs
a decoder to translate the integral term from the latent space back to the value space, predicting
the results as x̂t = xt0 + Dϕ(zt). Similar to time-index-based models, PDETime utilizes meta-
optimization to enhance its ability to extrapolate across the forecast horizon. Additionally, PDETime
can be simplified into either a historical-value-based or time-index-based model by omitting either
the temporal or spatial domains, respectively.

In summary, the key contributions of this work are as follows:

• We present a novel perspective for LMTF by considering time series as data regularly
sampled from a dynamical system governed by PDEs along the temporal domains.

• We propose PDETime, a PDE-based model inspired by neural Solvers, which tackles LMTF
as an Initial Value Problem of PDEs. PDETime incorporates encoding-integration-decoding
operations and leverages meta-optimization to extrapolate future series.

• We extensively evaluate the proposed model on seven real-world benchmarks across multiple
domains under the long-term setting. Our empirical studies demonstrate that PDETime con-
sistently achieves state-of-the-art performance. Moreover, PDETime has better performance
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and stability, particularly in scenarios with extremely long forecasting windows, thanks to
its encoding-integration-decoding architecture.

2 RELATED WORK

Multivariate Time Series Forecasting. With the progressive breakthrough made in deep learning,
deep models have been proposed to tackle various time series forecasting applications. Depending on
whether temporal or spatial is utilized, these models are classified into historical-value-based (Zhou
et al., 2021; 2022; Zeng et al., 2023; Nie et al., 2023; Zhang & Yan, 2023; Liu et al., 2024; 2022b;a;
Wu et al., 2023), and time-index-based models (Woo et al., 2023). Historical-value-based models,
predicting target time steps utilizing historical observations, have been extensively developed and
made significant progress in which a large body of work that tries to apply Transformer to forecast
long-term series in recent years (Wen et al., 2023). Early works like Informer (Zhou et al., 2021) and
LongTrans (Li et al., 2019) were focused on designing novel mechanism to reduce the complexity of
the original attention mechanism, thus capturing long-term dependency to achieve better performance.
Afterwards, efforts were made to extract better temporal features to enhance the performance of the
model (Wu et al., 2021; Zhou et al., 2022). Recent work (Zeng et al., 2023) has found that a single
linear channel-independent model can outperform complex transformer-based models. Therefore, the
very recent channel-independent models like PatchTST (Nie et al., 2023) and DLinear (Zeng et al.,
2023) have become state-of-the-art. In contrast, time-index-based models (Woo et al., 2023; Fons
et al., 2022; Jiang et al., 2023; Naour et al., 2023) are a kind of coordinated-based models, mapping
coordinates to values, which was represented by INRs. These models have received less attention
and their performance still lags behind historical-value-based models. PDETime, unlike previous
works, considers multivariate time series as spatiotemporal data and approaches the prediction target
sequences from the perspective of partial differential equations.
Implicit Neural Representations. Implicit Neural Representations are the class of works repre-
senting signals as a continuous function parameterized by multi-layer perceptions (MLPs) (Tancik
et al., 2020; Sitzmann et al., 2020) (instead of using the traditional discrete representation). These
neural networks have been used to learn differentiable representations of various objects such as
images (Henzler et al., 2020), shapes (Liu et al., 2020; 2019), and textures (Oechsle et al., 2019).
However, there is limited research on INRs for times series (Fons et al., 2022; Jiang et al., 2023; Woo
et al., 2023; Naour et al., 2023; Jeong & Shin, 2022). And previous works mainly focused on time
series generation and anomaly detection (Fons et al., 2022; Jeong & Shin, 2022). DeepTime (Woo
et al., 2023) is the work designed to learn a set of basis INR functions for forecasting, however, its
performance is worse than historical-value-based models. In this work, we use INRs to represent
spatial domains and temporal domains.
Neural PDE Solvers. Neural PDE solvers which are used for temporal PDEs, are laying the
foundations of what is becoming both a rapidly growing and significant area of research. These neural
PDE solvers fall into two broad categories, neural operator methods and autoregressive methods.
The neural operator methods (Kovachki et al., 2021; Li et al., 2020; Lu et al., 2021) treat the mapping
from initial conditions to solutions as time t as an input-output mapping learnable via supervised
learning. For a given PDE and given initial conditions u0, the neural operator M is trained to
satisfyM(t,u0) = u(t) (historical-value-based and time-index-based models both can be seen as
neural operator methods). However, these methods are not designed to generalize to dynamics for
out-of-distribution t. In contrast, the autoregressive methods (Bar-Sinai et al., 2019; Greenfeld et al.,
2019; Hsieh et al., 2019; Yin et al., 2022; Brandstetter et al., 2021; Lippe et al., 2024) solve the PDEs
iteratively. The solution of autoregressive methods at time t+∆t as u(t+∆) = A(u(t),∆t). In
this work, We consider multivariate time series as data sampled from a continuous dynamical system
according to a regular time discretization, which can be described by partial differential equations.
For the given initial condition xt0 , PDETime use the numerous solvers (e.g., the Euler solver) to
simulate target time step xt which is more like autoregressive methods.

3 METHOD

3.1 PROBLEM FORMULATION

In contrast to previous works (Zeng et al., 2023; Woo et al., 2023), we regard multivariate time series
as the spatio-temporal data regularly sampled from partial differential equations along the temporal
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domain, denoted as u(s, t), which satisfies the PDE equation:

F(u, ∂u
∂t
,
∂u

∂s1
, ...,

∂2u

∂t2
,
∂2u

∂s2
, ...) = 0, u(s, t) : Ω× T → V, (1)

subject to initial and boundary conditions. Here u(s, t) represents the spatio-temporal dependent and
multi-dimensional continuous vector field, where Ω ∈ RC and T ∈ R denote the spatial and temporal
domains, respectively. For multivariate time series data, we regard attributes of sensors and external
factors as spatial information (e.g., the position and physical properties of sensors) s, which cannot
be directly observed and can only be inferred from historical observations. On the other hand, the
value of the temporal domains, t, is known and can include calendar information c associated with
the time series data. LMTF is treated as an initial value problem in PDETime, where the objective
is to infer u(s, t) ∈ RC at a future time t based on the known values u(s, t0). Consequently, this is
achieved by utilizing the following formula:

u(s, t) = u(s, t0) +

∫ t

t0

∂u(s, µ)

∂µ
dµ. (2)

PDETime initiates its process with a single initial condition, denoted as u(s, t0), and leverages neural
networks to project the system’s dynamics forward in time. The procedure unfolds in three distinct
steps. Firstly, PDETime generates a latent vector, αt of a predefined dimension d, utilizing an encoder
function, Eθ : Ω× T → Rd (denoted as the ENC step). Subsequently, it employs an Euler solver,
a numerical method, to approximate the integral term, zt =

∫ t
t0
αµdµ, effectively capturing the

system’s evolution over time (denoted as the SOL step). In the final step, PDETime translates the
latent vectors, zt, back into the spatial domain using a decoder, Dϕ : Rd → V to reconstruct the
value space (denoted as the DEC step). This results in the following model, are illustrated in Figure 2,

(ENC) αt = Eθ(Xhis, ct, τt), (3)

(SOL) zt =

∫ t

t0

ατdτ, (4)

(DEC) x̂t = Dϕ(zt) + xt0 . (5)

We describe the details of the components in Section 3.2 and see Algorithm 3 for the training
procedure of PDETime.

3.2 COMPONENTS OF PDETIME

3.2.1 ENCODER: αt = Eθ(Xhis, ct, τt)

The Encoder component computes the latent vector αt representing the temporal derivative ∂u(s,t)
∂t

of unknown field u(s, t). Due to the unavailability of u(s, t), it is not possible to directly ensure
αt =

∂u(s,t)
∂t . However, through Eq 13, it is observed that αt is proportional to ∂u(s,t)

∂t when Lf → 0
and ∆t → 0 (See sec A.2 for more details). The Encoder leverages this observation to estimate
temporal derivative effectively. In addition, the encoder utilizes historical observations Xhis to extract
the latent variable as the spatial information s. Next, we briefly introduce the structure of the Encoder.
In our Encoder, we employ Concatenated Fourier Features (CFF) (Woo et al., 2023; Tancik et al.,
2020) and SIREN (Sitzmann et al., 2020) with k layers to represent the high-frequency components
of τt, Xhis, and ct.

τ
(i)
t = GELU(W(i−1)

τ τ (i−1) + b(i−1)
τ ),

c
(i)
t = sin(W(i−1)

c c(i−1) + b(i−1)
c ),

X(i) = sin(W(i−1)
x X(i−1) + b(i−1)

x ), i = 1, ..., k (6)

where X(0) ∈ RL×C = Xhis = [xt0−L+1
, ...,xt0 ], c

(0)
t ∈ Rm is the temporal feature, and

τ
(0)
t ∈ R is the time-index feature where τt = t

H+L for t = 0, 1, ...,H + L, L and H are

the look-back and horizon length, respectively. CFF is used to represent τ
(0)
t , i.e. τ

(0)
t =

4
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Figure 2: The framework of proposed PDETime which consists of an Encoder Eθ, a Solver, and a
DecoderDϕ. Given the initial condition xt0 , PDETime first simulates ∂u(s,t)∂t at each time step t using
the Encoder Eθ(Xhis, ct, τt); then uses the Solver to compute

∫ t
t0

∂u(s,µ)
∂µ dµ, which is a numerical

solver; finally, the Decoder maps integral term zt from latent space to the value space and predict the
final results x̂t = xt0 +Dϕ(zt).

[sin(2πb1τt), cos(2πb1τt), ..., sin(2πbvτt), cos(2πbvτt)] ∈ Rvd, where bv ∈ R d
2 is sampled from

N (0, 2v).

After representing τ
(k)
t ∈ Rd, c(k)t ∈ Ro, and X(k) ∈ Rd×C with INRs, the Encoder aggregates

X(k) and c
(k)
t using τ

(k)
t through the following equations:

s = LayerNorm(

C∑
i=1

τ
(k)
t ·X(k)i∑C

i=1 τ
(k)
t ·X(K)i

X(k)i + τ
(k)
t ),

αt = LayerNorm(W[s; c
(k)
t ] + b+ s), (7)

where [·; ·] is the row-wise stacking operation. The aggregation process involves attention mecha-
nisms (Vaswani et al., 2017) for spatial information and linear mapping for temporal information
with N layers. The complete pseudocode of the aggregation module is summarized in Appendix A.4.

Unlike previous works (Chen et al., 2018; Rubanova et al., 2019) which rely on the results of
the previous steps, we directly compute αt at any time step, without the need for autoregressive
calculation which can effectively alleviate the error accumulation problem and make the prediction
results more stable (Brandstetter et al., 2021) and effectiveness.

3.2.2 SOLVER: zt =
∫ t
t0
αµdµ

The Solver component introduces a numerical solver (Euler Solver) to compute the integral term
zt =

∫ t
t0
αµdµ, which can be approximated as:

zt =

∫ t

t0

∂u(s, µ)

∂µ
dµ ≈

t∑
µ=t0

∂u(x, µ)

∂µ
∗∆µ ≈

t∑
µ=t0

αµ ∗∆µ, (8)

where t ∈ [0, H + L], t0 = L, and we set ∆µ = 1 for convenience. However, directly compute zt =∑t
µ=t0

αµ ∗∆µ through Eq 8 can easily lead to error accumulation and gradient problems (Rubanova
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et al., 2019; Wu et al., 2022; Brandstetter et al., 2021) (also shown in our experimental results of
Figure 3). To address these issues, we propose a modified solver that divides the time series sequence
into non-overlapping patches of length S, where H+L

S patches are obtained. For t mod S = 0, we
directly estimate the integral term as zt = fψ(αt) using a neural network fψ . Otherwise, we use the
numerical solver to estimate the integral term with the lower limit ⌊ tS ⌋ · S. This modification results
in the following formula for the numerical solver:

zt = fψ(αt′) +

∫ t

t′
fφ(αµ)dµ, t

′ = ⌊ t
S
⌋ ∗ S, (9)

where the neural networks fψ and fφ are easily Linear layers. Furthermore, Eq 9 breaks the continuity
and correlation between patches. To address this, we introduce an additional objective function Lc to
ensure continuity and correlation as much as possible:

Lc = L(fψ(αt), fψ(αt′) +
∫ t

t′
fφ(αµ)dµ, s.t. t mod S = 0, t′ = t− S. (10)

We summarize the Solver as zt = Solver(φ,ψ, [αt0 , ...,αt], t0, t) and the pseudocode of the Solver
of PDETime is summarized in Appendix A.4.

3.2.3 DECODER: x̂t = Dϕ(zt) + xt0
The Decoder component of our approach is responsible for decoding the estimated integral term zt in
the latent space back into the value space. As described in Eq 2, given the known initial condition xt0
(here we use the latest time step in the historical series as the initial condition), the Decoder predict
the time step using the formula x̂t = Dϕ(zt) + xt0 .
Following (Woo et al., 2023; Bertinetto et al., 2018), we also introduce meta-optimization to update
the parameters in the Decoder to enhance the extrapolation capability of PDETime. Specifically,
given the pair of look-back window Xhis = [xt0−L+1

, ...,xx0 ] ∈ RL×C and horizon window
Xhor = [xt0+1

, ...,xt0+H
] ∈ RH×C . We then use the parameters ϕ and θ, φ, ψ to adapt the look-

back window and horizon window through a bi-level problem:

ϕ∗ = argmin
ϕ

1

L

t0−L+1∑
t=t0

Lr(Dϕ(Solver(φ,ψ, [αt0 , ...,αt], t0, t)),xt − xt0), (11)

θ∗, φ∗, ψ∗ = arg min
θ,φ,ψ

1

H

t0+H∑
t=t0+1

Lp(Dϕ(Solver(φ,ψ, [αt0 , ...,αt], t0, t)) + xt0 ,xt), (12)

where Lr and Lp denote the reconstruction and prediction loss, respectively (which will be described
in detail in Section 3.3). During training, PDETime optimizes both θ, ψ, φ, and ϕ; while during
inference, it only optimizes ϕ of Decoder to enhance the extrapolation. To ensure speed and efficiency,
we employ the single ridge regression for Dϕ (Bertinetto et al., 2018).

3.3 OPTIMIZATION

In Section 3.2.1, we discussed that it is challenging to ensure an exact match betweenEθ(Xhis, ct, τt)

and ∂u(s,t)
∂t . To alleviate this problem, we introduce to achieve consistency between the first-order

difference of the predicted sequence and target sequence with the additional optimization objective:

Lf =
1

H

t0+H∑
t=t0+1

L(Dϕ(zt)−Dϕ(zt−1), xt − xt−1). (13)

By minimizing Lf , we encourage the first-order difference of the predicted sequence to match that
of the target sequence. Additionally, when Lf → 0 and ∆t → 0, we observe that αt ∝ ∂u(s,t)

∂t .
Furthermore, in Section 3.2.2, we set ∆t = 1, leading to αt ∝

∑∞
n=1

1
n!
∂nu(s,t)
∂tn . In summary, αt

is related to the higher-order Taylor expansion of u(s, t) in the latent space (see more details in
Appendix A.2), which ensures the stability of PDETime under discretization.
Combining Lp, Lc, and Lf , the training objective becomes to:

Lp = Lp + Lc + Lf . (14)

In the inference stage, we only need to minimize Lr which is the simple resconstruction loss.
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4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets. We extensively include 7 real-world datasets in our experiments, including four ETT
datasets (ETTh1, ETTh2, ETTm1, ETTm2) (Zhou et al., 2021). Electricity, Weather and Traffic (Wu
et al., 2021), covering energy, transportation and weather domains (See Appendix A.1.1 for more
details on the datasets). To ensure a fair evaluation, we follow the standard protocol of dividing each
dataset into the training, validation and testing subsets according to the chronological order. The
split ratio is 6:2:2 for the ETT dataset and 7:1:2 for the others (Zhou et al., 2021; Wu et al., 2021).
We set the length of the lookback series as 512 for PatchTST, 336 for DLinear, and 96 for other
historical-value-based models. The experimental settings of DeepTime remain consistent with the
original settings (Woo et al., 2023). The prediction length varies in {96, 192, 336, 720}.
Comparison methods. We carefully choose 9 well-acknowledged historical-value-based mod-
els and 1 time-index-based model) as our benchmarks, including (1) Transformer-based models:
FEDformer (Zhou et al., 2022), Stationary (Liu et al., 2022b), Crossformer (Zhang & Yan, 2023),
PatchTST (Nie et al., 2023), and iTransformer (Liu et al., 2024); (2) Linear-based models: DLin-
ear (Zeng et al., 2023) ; (3) CNN-based models: SCINet (Liu et al., 2022a), TimesNet (Wu et al.,
2023); (4) Time-index-based model: DeepTime (Woo et al., 2023). (See Appendix A.1.2 for details
of these baselines)

Implementation Details. Our method is trained with the Smooth L1 loss (Girshick, 2015) using the
ADAM (Kingma & Ba, 2014) with the initial learning rate selected from {10−3, 5× 10−4, 10−4}.
Batch size is set to 32. All experiments are implemented in Pytorch (Paszke et al., 2019) and
conducted on a single NVIDIA RTX 3090 GPUs with fixed feed 2024. Following DeepTime (Woo
et al., 2023), we set the look-back length as L = µ ∗H , where µ is a multiplier which decides the
length of the look-back windows. We search through the values µ = [1, 3, 5, 7, 9], and select the best
value based on the validation loss. We set layers of INRs k = 5 by default, and select the best results
from N = {1, 2, 3, 5}. We summarize the temporal features used in this work in Appendix A.3.

4.2 MAIN RESULTS AND ABLATION STUDY

Comprehensive forecasting results are listed in Table 1 with the best in Bold and the second underlined.
The lower MSE/MAE indicates the more accurate prediction result. Overall, PDETime achieves
the best performance on most settings across seven real-world datasets compared with historical-
value-based and time-index-based models. Additionally, experimental results also show that the
performance of the proposed PDETime changes quite steadily as the prediction length H increases.
For instance, the MSE of PDETime increases from 0.330 to 0.365 on the Traffic dataset, while the
MSE of PatchTST increases from 0.360 to 0.432, which is the SOTA historical-value-based model.
This phenomenon was observed in other datasets and settings as well, indicating that PDETime
retains better long-term robustness, which is meaningful for real-world practical applications.

Table 3: Analysis of the Solver and Initial value, w/o means
discarding Solver and Initial value.

Dataset ETTh1 Weather
Model PDETime w/o PDETime w/o
Metric MSE MAE MSE MAE MSE MAE MSE MAE

96 0.356 0.381 0.363 0.386 0.157 0.203 0.166 0.211
192 0.397 0.406 0.401 0.410 0.200 0.246 0.210 0.250
336 0.420 0.419 0.426 0.424 0.241 0.281 0.246 0.284
720 0.425 0.446 0.445 0.470 0.291 0.324 0.301 0.337

We perform ablation studies on the
Traffic and Weather datasets to vali-
date the effect of temporal feature
ct, spatial feature Xhis and initial
condition xt0 . The results are pre-
sented in Table 2. 1) The initial con-
dition xt0 is useful on most settings.
As mentioned in Section 3, we treat
LMTF as Initial Value Problem, thus
the effectiveness of xt0 validates the
correctness of PDETime. 2) The impact of spatial features Xhis on PDETime is limited. This may
be due to the fact that the true spatial domains s are unknown and complex, it is hard to utilize the
historical observations Xhis to simulate s with neural networks.

The spatial features Xhis are also beneficial in most cases, contributing to the stability of PDETime’s
performance. 3) The influence of temporal feature ct on PDETime various significantly across
different datasets. Experimental results have shown that ct is highly beneficial in the Traffic dataset,
but its effect on Weather dataset is limited. For example, the period of Traffic dataset may be one day
or one week, making it easier for PDETime to learn temporal features. On the other hand, the period
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Table 1: Full results of the long-term forecasting task. We compare extensive competitive models
under different prediction lengths following the setting of PatchTST (2023). The input sequence
length is set to 336 and 512 for DLinear and PatchTST, and 96 for other historical-value-based
baselines. Full results are listed in Table 7

Models PDETime iTransformer PatchTST Crossformer DeepTime TimesNet DLinear SCINet FEDformer Stationary
(Ours) (2024) (2023) (2023) (2023) (2023) (2023) (2022a) (2022) (2022b)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTm1 0.340 0.368 0.407 0.410 0.352 0.382 0.513 0.496 0.351 0.379 0.400 0.406 0.357 0.378 0.485 0.481 0.448 0.452 0.481 0.456

ETTm2 0.241 0.295 0.288 0.332 0.256 0.316 0.757 0.610 0.262 0.326 0.291 0.333 0.267 0.331 0.571 0.537 0.305 0.349 0.306 0.347

ETTh1 0.399 0.413 0.454 0.447 0.418 0.432 0.529 0.522 0.420 0.436 0.458 0.450 0.423 0.437 0.747 0.647 0.440 0.460 0.570 0.537

ETTh2 0.334 0.379 0.383 0.407 0.343 0.387 0.942 0.684 0.489 0.472 0.414 0.427 0.431 0.446 0.954 0.723 0.437 0.449 0.526 0.516

ECL 0.150 0.244 0.178 0.270 0.159 0.252 0.244 0.334 0.164 0.265 0.192 0.295 0.166 0.263 0.268 0.365 0.214 0.327 0.193 0.296

Traffic 0.342 0.236 0.428 0.282 0.390 0.263 0.550 0.304 0.414 0.287 0.620 0.336 0.433 0.295 0.804 0.509 0.610 0.376 0.624 0.340

Weather 0.222 0.263 0.258 0.279 0.225 0.263 0.259 0.315 0.231 0.286 0.259 0.287 0.246 0.300 0.292 0.363 0.309 0.360 0.288 0.314

1st Count 14 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 2: Ablation study on variants of PDETime. -Temporal refers that removing the temporal
domain feature ct; -Spatial refers that removing the historical observations Xhis; - Initial refers that
removing the initial condition xt0 . The best results are highlighted in bold.

Dataset
Models PDETime -Temporal -Spatial -Initial -Temporal -Spatial - All
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Traffic

96 0.330 0.232 0.336 0.236 0.329 0.232 0.334 0.235 0.394 0.268 0.401 0.269
192 0.332 0.232 0.368 0.247 0.336 0.234 0.334 0.232 0.407 0.269 0.413 0.270
336 0.342 0.236 0.378 0.251 0.344 0.236 0.343 0.236 0.419 0.273 0.426 0.272
720 0.365 0.244 0.406 0.265 0.371 0.250 0.368 0.250 0.453 0.291 0.671 0.406

Weather

96 0.157 0.203 0.158 0.205 0.159 0.205 0.169 0.213 0.159 0.205 0.166 0.212
192 0.200 0.246 0.206 0.253 0.198 0.243 0.208 0.248 0.198 0.243 0.208 0.250
336 0.241 0.281 0.240 0.278 0.246 0.282 0.245 0.287 0.240 0.277 0.244 0.283
720 0.291 0.324 0.292 0.323 0.290 0.322 0.300 0.337 0.294 0.327 0.299 0.337

of Weather dataset may be one year or longer, but the dataset only contains one year of data. As a
result, PDETime cannot capture the complete temporal features in this case.
As mentioned in Sec 1, instead of directly utilizing neural networks, we aim to predict future
series using Eq 2. To evaluate the effectiveness of this approach, we conduct experiments where
PDETime can directly predict the target series by discarding xt0 and the Solver. The experimental
results, presented in Table 3, reveal that predicting future series with Eq 2 does indeed enhance the
performance of PDETime. Additionally, we find that incorporating the Solver and xt significantly
improves the performance of time-index-based models, particularly when Xhis and ct are excluded
(see details in Table 8). This further demonstrates the effectiveness of both the Solver and xt.
We conduct an additional ablation study on Traffic to evaluate the ability of different INRs to extract
features of Xhis, ct, and τt. In this study, we compared the performance of using the GELU or Tanh ac-
tivation function instead of sine in SIREN and making τ (0)t = [GELU(2πb1τt),GELU(2πb1τt), ...]
or τ (0) = [Tanh(2πb1τt),Tanh(2πb1τt), ...]. Table 5 presents the experimental results, we observe
that the sine function (periodic functions) can extract features better than other non-decreasing
activation functions. This is because the smooth, non-periodic activation functions fail to accurately
model high-frequency information (Sitzmann et al., 2020). Time series data is often periodic, and the
periodic nature of the sine function makes it more effective in extracting time series features.

4.3 EFFECTS OF HYPER-PARAMETERS

We evaluate the effect of four hyper-parameters: look-back window L, number of INRs layers k,
number of aggregation layers N , and patch length S on the ETTh1 and ETTh2 datasets. First,
we perform a sensitivity on the look-back window L = µ ∗ H , where H is based on the exper-
imental setting. The results are presented in Table 4. We observe that the test error decreases
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Figure 3: Evaluation on hyper-parameter impact. (a) MSE against hyper-parameter layers of INRs
k in Forecaster on ETTh1. (b) MSE against hyper-parameter layers of aggregation module N in
Forecaster on ETTh1. (c) MSE against hyper-parameter patch length S in Estimator on ETTh1.

as µ increases, plateauing and even increasing slightly as µ grows extremely large when the
horizon window is small. However, under a large horizon window, the test error increases as
µ increases. Next, we evaluate the hyper-parameters N and k on PDETime, as shown in Fig-
ure 3 (a) and (b) respectively. We find that the performance of PDETime remains stable when
k ≥ 3. Additionally, the number of aggregation layers N has a limited impact on PDETime.

Table 4: Analysis on the look-back window length, based on
the multiplier on horizon length, L = µ ∗H . The best results
are highlighted in bold.

Dataset
Horizon 96 192 336 720

µ MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1

1 0.378 0.386 0.415 0.411 0.421 0.420 0.425 0.446
3 0.359 0.382 0.394 0.404 0.427 0.421 0.443 0.460
5 0.360 0.385 0.396 0.405 0.421 0.420 0.495 0.501
7 0.354 0.381 0.398 0.405 0.427 0.429 0.545 0.532
9 0.356 0.381 0.397 0.406 0.446 0.440 1.220 0.882

ETTh2

1 0.288 0.335 0.357 0.381 0.380 0.404 0.380 0.421
3 0.276 0.331 0.339 0.374 0.358 0.395 0.422 0.456
5 0.275 0.333 0.331 0.370 0.360 0.408 0.622 0.576
7 0.268 0.330 0.331 0.378 0.384 0.427 0.624 0.595
9 0.272 0.331 0.331 0.378 0.412 0.451 0.797 0.689

Furthermore, we investigate the ef-
fect of patch length S on PDETime,
as illustrated in Figure 3 (c). We
varied the patch length from 2 to
48 and evaluate MSE with differ-
ent horizon windows. As the patch
length S increased, the prediction
accuracy of PDETime initially im-
proved, reached a peak, and then
started to decline. However, the
accuracy remains relatively stable
throughout. We also extended the
patch length to S = H . In this case,
PDETime performed poorly, indicat-
ing that the accumulation of errors
has a significant impact on the perfor-
mance of PDETime. Overall, these
analyses provide insights into the effects of different hyper-parameters on the performance of PDE-
Time and can guide the selection of appropriate settings for achieving optimal results.

Table 5: Analysis on INRs. PDETime refers to our
proposed approach. GELU and Tanh refer to replacing
SIREN and CFF with GELU or Tanh activation, respec-
tively. The best results are highlighted in bold.

Dataset Method PDETime GELU Tanh
Metric MSE MAE MSE MAE MSE MAE

Traffic

96 0.330 0.232 0.332 0.237 0.338 0.233
192 0.332 0.232 0.338 0.241 0.339 0.235
336 0.342 0.236 0.348 0.244 0.348 0.238
720 0.365 0.244 0.376 0.252 0.366 0.244

To address potential concern regarding
the inclusion of additional temporal in-
formation in our method, we conducted
comprehensive experiments comparing
PDETime with TiDE which also utilizes
dynamic covariates and PatchTST. In or-
der to ensure a fair comparison, we also
augmented PatchTST with temporal in-
formation. The results in Table 10 reveal
that even with the inclusion of temporal
information, TiDE and PatchTST still ex-
hibit weaker performance compared to
PDETime. We also conducted ablation studies to validate the effectiveness of Solver, initial con-
ditions, as well as loss functions lr and lc. The results of these experiments can be found in
Appendix A.5. Additionally, due to space constraints, we provide visualizations and convergence
experiments in Appendix A.6 and Appendix A.7, respectively.
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5 CONCLUSION AND FUTURE WORK

In this paper, we propose a novel LMTS framework PDETime, based on neural Solvers, which
consists of Encoder, Solver, and Decoder. Specifically, the Encoder simulates the temporal derivative
in latent space in parallel. The solver is responsible for computing the integral term with improved
stability. Finally, the Decoder maps the integral term from latent space into the value space and
predicts the target series under the initial condition. Additionally, we incorporate meta-optimization
techniques to enhance the ability of PDETime to extrapolate future series. Extensive experimental
results show that PDETime achieves state-of-the-art performance across forecasting benchmarks
on various real-world datasets. We also perform ablation studies to identify the key components
contributing to the success of PDETime.

Future Work. Firstly, while our proposed neural solver, PDETime, has shown promising results
for long-term multivariate time series forecasting, there are other types of neural solvers that could
potentially be applied to this task. Exploring these alternative neural solvers and comparing their
performance on LMTF could be an interesting future direction. Additionally, our PDETime have
demonstrated strong capabilities in handling regular time series data. Therefore, another potential
future direction is to apply PDETime to irregular time series tasks, such as missing value imputation.
Finally, our approach of rethinking long-term multivariate time series forecasting from the perspective
of partial differential equations has led to state-of-the-art performance, exploring other perspectives
and frameworks to tackle this task could be a promising direction for future research.
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A APPENDIX

In this section, we present the experimental details of PDETime. The organization of this section is
as follows:

• Appendix A.1 provides details on the datasets and baselines.

• Appendix A.3 provides details of time features used in this work.

• Appendix A.4 provides pseudocode of Encoder, Solver, and Training procedure of PDETime.

• Appendix A.5 presents the results of the robustness experiments and full results of Table 1.

• Appendix A.6 visualizes the prediction results of PDETime on seven real-world datasets.

• Appendix A.7 visualizes the Training, validation, and test losses of seven real-world datasets.

A.1 EXPERIMENTAL DETAILS

A.1.1 DATASETS

we use the most popular multivariate datasets in LMTF, including ETT, Electricity, Traffic and
Weather:

• The ETT (Zhou et al., 2021) (Electricity Transformer Temperature) dataset contains two
years of data from two separate countries in China with intervals of 1-hour level (ETTh) and
15-minute level (ETTm) collected from electricity transformers. Each time step contains six
power load features and oil temperature.

• The Electricity 1 dataset describes 321 clients’ hourly electricity consumption from 2012 to
2014.

• The Traffic 2 dataset contains the road occupancy rates from various sensors on San Francisco
Bay area freeways, which is provided by California Department of Transportation.

• the Weather 3 dataset contains 21 meteorological indicators collected at around 1,600
landmarks in the United States.

Table 6 presents key characteristics of the seven datasets. The dimensions of each dataset range from
7 to 862, with frequencies ranging from 10 minutes to 7 days. The length of the datasets varies from
966 to 69,680 data points. We split all datasets into training, validation, and test sets in chronological
order, using a ratio of 6:2:2 for the ETT dataset and 7:1:2 for the remaining datasets.

Table 6: Statics of Dataset Characteristics.
Datasets ETTh1 ETTh2 ETTm1 ETTm2 Electricity Traffic Weather

Dimension 7 7 7 7 321 862 21
Frequency 1 hour 1 hour 15 min 15 min 1 hour 1 hour 10 min

Length 17420 17420 69680 69680 26304 52696 17544

1https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014.
2http://pems.dot.ca.gov.
3https://www.bgc-jena.mpg.de/wetter/.
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A.1.2 BASELINES

We choose SOTA and the most representative LMTF models as our baselines, including historical-
value-based and time-index-based models, as follows:

• PatchTST Nie et al. (2023): the current historical-value-based SOTA models. It utilizes
channel-independent and patch techniques and achieves the highest performance by utilizing
the native Transformer.

• DLinear Zeng et al. (2023): a highly insightful work that employs simple linear models and
trend decomposition techniques, outperforming all Transformer-based models at the time.

• Crossformer Zhang & Yan (2023): similar to PatchTST, it utilizes the patch technique
commonly used in the CV domain. However, unlike PatchTST’s independent channel
design, it leverages cross-dimension dependency to enhance LMTF performance.

• FEDformer Zhou et al. (2022): it employs trend decomposition and Fourier transformation
techniques to improve the performance of Transformer-based models in LMTF. It was the
best-performing Transformer-based model before Dlinear.

• Stationary Liu et al. (2022b): it proposes a De-stationary Attention to alleviate the over-
stationarization problem.

• iTransformer Liu et al. (2024): it different from pervious works that embed multivariate
points of each time step as a (temporal) token, it embeds the whole time series of each
variate independently into a (variate) token, which is the extreme case of Patching.

• TimesNet Wu et al. (2023): it transforms the 1D time series into a set of 2D tensors based
on multiple periods and uses a parameter-efficient inception block to analyze time series.

• SCINet Liu et al. (2022a): it proposes a recursive downsample-convolve-interact architecture
to aggregate multiple resolution features with complex temporal dynamics.

• DeepTime Woo et al. (2023): it is the first time-index-based model in long-term multivariate
time-series forecasting.

A.2 αt ∝ ∂u( t)
∂t WITH Lf → 0 AND ∆t→ 0

We first assume that Lf → 0, then we have:

lim
Lf→0

u(s, t1)− u(s, t0) = Dϕ(zt1)−Dϕ(zt0)

= Dϕ(zt1 − zt0)

= Dϕ(αt0 ∗∆t) (15)

With Taylor expansion, we have

lim
Lf→0

Dϕ(αt0 ∗∆t) = u(s, t1)− u(s, t0)

=
∂u(s, t0)

∂t0
dt+

∂u(s, t0)

∂s
ds+ ...+

n∑
i=1

1

n!

∂nu(s, t0)

∂si∂tn−i0

dxidtn−i

=
∂u(s, t0)

∂t0
dt+

1

2

∂2u(s, t0)

∂t20
dt2 + ...+

1

n!

∂nu(s, t0)

∂tn0
dtn

=

∞∑
n=1

1

n!

∂nu(s, t0)

∂tn0
dtn (16)

We assume that Wϕ ≥ 0 in Dϕ, and ∆t→ 0 then

lim
Lf→0

lim
∆t→0

Dϕ(αt0 ∗∆t) =
∂u(s, t0)

∂t0
∗∆t+ ∂2u(s, t0)

∂t20
∗ (∆t)2 +O((∆t)3) (17)

≈ ∂u(s, t)

∂t
∗∆t (18)

lim
Lf→0

lim
∆t→0

αt0 ∝
∂u(x, t0)

∂t0
(19)
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In our paper, we set ∆t = 1, thus we have

lim
Lf

αt ∝
∞∑
n=1

1

n!

∂nu(s, t)

∂tn
(20)

In this case, αt is related to the higher-order Taylor expansion of u(s, t) in the latent space, thus we
can predict xt1 = u(s, t1) = u(s, t0) +Dϕ(αt0).

A.3 TEMPORAL FEATURES

Depending on the sampling frequency, the temporal feature tτ of each dataset is also different. We
will introduce the temporal feature of each data set in detail:

• ETTm and Weather: day-of-year, month-of-year, day-of-week, hour-of-day, minute-of-hour.

• ETTh, Traffic, and Electricity: day-of-year, month-of-year, day-of-week, hour-of-day.

we also normalize these features into [0,1] range.

A.4 PSEUDOCODE

We provide the pseudo-code of Encoder and Solver in Algorithms 1 and Algorithms 2. We also
provide the training procedure of PDETime in Algorithm 3

Algorithm 1 Pseudocode of the aggregation module of Encoder

Input: Time-index feature τ
(k)
t , temporal feature c

(k)
t and historical feature X(k).

1: τ
(k)
t , c(k)t , X(k) = W1

ττ
(k)
t + b1

τ , W1
cc

(k)
t + b1

c , W1
xX

(k) + b1
x ▷ τt ∈ Rd, X ∈ Rd×C ,

ct ∈ Ro
2: τ

(k)
t , c(k)t , X(k) = LayerNorm(GeLU(τ

(k)
t )),LayerNorm(sin(c

(k)
t )),LayerNorm(GeLU(X(k)))

3: s = LayerNorm(
∑C
i=1

τ
(k)
t ·X(k)i∑C

i=1 τ
(k)
t ·X(k)i

+ τ
(k)
t )

4: s = W1[s; c
(k)
t ] + b1 + s

5: s = LayerNorm(s)
6: for n = 2, ..., N do
7: s, c(k)t , X(k) = Wn

s s+ bns , Wn
c c

(k)
t + bnc , Wn

xX
(k) + bnx

8: s, c(k)t , X(k) = LayerNorm(GeLU(τ
(k)
t )),LayerNorm(sin(c

(k)
t )),LayerNorm(GeLU(X(k)))

9: s = LayerNorm(
∑C
i=1

s·X(k)i∑C
i=1 s·X(k)i

+ s)

10: s = Wn[s; c
(k)
t ] + bn + s

11: s = LayerNorm(s)
12: end for
13: αt ← s
14: return αt ▷ αt ∈ Rd

Algorithm 2 Solver of PDETime
Input: latent partial derivative [αt0 , ...,αt] lower limit t0, upper limit t, and patch length S.

1: if t mod S = 0 then
2: zt ← fψ(αt)
3: else
4: t′ ← t′ ← ⌊ tS ⌋
5: zt ← fψ +

∑t
µ=t′ fφ(αµ) ∗∆µ

6: end if
7: return zt ▷ zt ∈ Rd
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Algorithm 3 Training procedure of PDETime
Input: Model Eθ, fψ , fφ and Dϕ with parameters θ, ψ, φ, and ϕ
Input: Learning rates η

1: for e in epochs do
2: for s in samples do
3: for t = t0−L+1, ..., t0, ..., t0+H do
4: αt ← Eθ(Xhis, ct, τt)
5: end for
6: for t = t0−L+1, ..., t0, ..., t0+H do
7: zi ← Solver(φ,ψ, [αt0 , ...,αt], t0, t)
8: end for
9: Zhis,Zhor ← [zt0−L+1

, ..., zt0 ], [zt0+1
, ..., zt+H ]

10: ϕ← (ZThisZhis + λI)−1ZThis(Xhis − xt0)

11: X̂hor ← Dϕ(Zhor) + xt0
12: compute training loss Lp with Eq. 14
13: θ ← θ − η∇θLp
14: ψ ← ψ − η∇ψLp
15: φ← φ− η∇φLp
16: end for
17: end for

A.5 EXPERIMENTAL RESULTS OF ROBUSTNESS

The experimental results of the robustness of our algorithm based on Solver and Initial condition
are summarized in Table 8. We also test the effectiveness of continuity loss Lc and Lr in Table 9.
The experimental results in Table 8 demonstrate that PDETime can achieve strong performance
on the ETT dataset even when using only the Solver or initial value conditions, without explicitly
incorporating spatial and temporal information. Moreover, combining the initial value conditions
with the Solver further enhances the performance of PDETime. These findings suggest that PDETime
exhibits promising capabilities and can perform well even in scenarios with limited data availability.
Additionally, we conducted an analysis on the ETTh1 and ETTh2 datasets to investigate the impact of
the loss term Lc and Lr. Our findings demonstrate that incorporating Lc into PDETime can enhance
its robustness. In addition, we also find that loss Lr has a large impact on the effectiveness of our
model, which demonstrates the importance of extrapolation capability to PDETime.
To address potential concerns regarding the inclusion of additional temporal information in our
method, we conducted comprehensive experiments comparing PDETime with existing approaches,
including TiDE (also utilizes dynamic covariates) and PatchTST. In order to ensure a fair comparison,
we also augmented PatchTST with temporal information. The experimental results, presented in
Table 10, reveal that even with the inclusion of temporal information, TiDE and PatchTST still exhibit
weaker performance compared to PDETime. Notably, directly incorporating temporal information
into PatchTST led to a significant performance degration. These findings highlight the importance of
a well-designed and purposeful integration of temporal features.

A.6 VISUALIZATION

We visualize the prediction results of PDETime on seven real-world datasets. As illustrated in
Figure 4, for prediction lengths H = 96, 192, 336, 720, the prediction curve closely aligns with the
ground-truth curves in most cases (except for the weather dataset, which we suspect that weather
forecasting is more difficult than other domains) , indicating the outstanding predictive performance
of PDETime. Meanwhile, PDETime demonstrates effectiveness in capturing periods of time features.

A.7 CONVERGENCE

We conducted additional experiments to validate the convergence property of PDETime. Figure 5
illustrates the training, validation, and test loss of our model as the number of epochs increases. It
is evident that all losses initially decrease and then plateau. Notably, the training losses of ETTh2
and ETTm2 exhibit significant fluctuations, while the validation and test losses remain consistently
stable. We speculate that this behavior may be attributed to the relatively small scale of the ETTh2
and ETTm2 datasets. Conversely, for large-scale datasets such as Traffic and Electricity, all losses,
including training, validation, and test, demonstrate remarkable stability.
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Figure 4: Visualization of long-term forecasting results on seven datasets.
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Figure 5: Training, validation, and test losses changes for 50 epochs.
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Table 7: Full results of the long-term forecasting task. We compare extensive competitive models
under different prediction lengths following the setting of PatchTST (2023). The input sequence
length is set to 336 and 512 for DLinear and PatchTST, and 96 for other historical-value-based
baselines. Avg means the average results from all four prediction lengths.

Models PDETime iTransformer PatchTST Crossformer DeepTime TimesNet DLinear SCINet FEDformer Stationary
(Ours) (2024) (2023) (2023) (2023) (2023) (2023) (2022a) (2022) (2022b)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

1 96 0.292 0.335 0.334 0.368 0.293 0.346 0.404 0.426 0.305 0.347 0.338 0.375 0.299 0.343 0.418 0.438 0.379 0.419 0.386 0.398
192 0.329 0.359 0.377 0.391 0.333 0.370 0.450 0.451 0.340 0.371 0.374 0.387 0.335 0.365 0.439 0.450 0.426 0.441 0.459 0.444
336 0.346 0.374 0.426 0.420 0.369 0.392 0.532 0.515 0.362 0.387 0.410 0.411 0.369 0.386 0.490 0.485 0.445 0.459 0.495 0.464
720 0.395 0.404 0.491 0.459 0.416 0.420 0.666 0.589 0.399 0.414 0.478 0.450 0.425 0.421 0.595 0.550 0.543 0.490 0.585 0.516

Avg 0.340 0.368 0.407 0.410 0.352 0.382 0.513 0.496 0.351 0.379 0.400 0.406 0.357 0.378 0.485 0.481 0.448 0.452 0.481 0.456

E
T

T
m

2 96 0.158 0.244 0.180 0.264 0.166 0.256 0.287 0.366 0.166 0.257 0.187 0.267 0.167 0.260 0.286 0.377 0.203 0.287 0.192 0.274
192 0.213 0.283 0.250 0.309 0.223 0.296 0.414 0.492 0.225 0.302 0.249 0.309 0.224 0.303 0.399 0.445 0.269 0.328 0.280 0.339
336 0.262 0.318 0.311 0.348 0.274 0.329 0.597 0.542 0.277 0.336 0.321 0.351 0.281 0.342 0.637 0.591 0.325 0.366 0.334 0.361
720 0.334 0.336 0.412 0.407 0.362 0.385 1.730 1.042 0.383 0.409 0.408 0.403 0.397 0.421 0.960 0.735 0.421 0.415 0.417 0.413

Avg 0.241 0.295 0.288 0.332 0.256 0.316 0.757 0.610 0.262 0.326 0.291 0.333 0.267 0.331 0.571 0.537 0.305 0.349 0.306 0.347

E
T

T
h1

96 0.356 0.381 0.386 0.405 0.379 0.401 0.423 0.448 0.371 0.396 0.384 0.402 0.375 0.399 0.654 0.599 0.376 0.419 0.513 0.491
192 0.397 0.406 0.441 0.436 0.413 0.429 0.471 0.474 0.403 0.420 0.436 0.429 0.405 0.416 0.719 0.631 0.420 0.448 0.534 0.504
336 0.420 0.419 0.487 0.458 0.435 0.436 0.570 0.546 0.433 0.436 0.491 0.469 0.439 0.443 0.778 0.659 0.459 0.465 0.588 0.535
720 0.425 0.446 0.503 0.491 0.446 0.464 0.653 0.621 0.474 0.492 0.521 0.500 0.472 0.490 0.836 0.699 0.506 0.507 0.643 0.616

Avg 0.399 0.413 0.454 0.447 0.418 0.432 0.529 0.522 0.420 0.436 0.458 0.450 0.423 0.437 0.747 0.647 0.440 0.460 0.570 0.537

E
T

T
h2

96 0.268 0.330 0.297 0.349 0.274 0.335 0.745 0.584 0.287 0.352 0.340 0.374 0.289 0.353 0.707 0.621 0.358 0.397 0.476 0.458
192 0.331 0.370 0.380 0.400 0.342 0.382 0.877 0.656 0.383 0.412 0.402 0.414 0.383 0.418 0.860 0.689 0.429 0.439 0.512 0.493
336 0.358 0.395 0.428 0.432 0.365 0.404 1.043 0.731 0.523 0.501 0.452 0.452 0.448 0.465 1.000 0.744 0.496 0.487 0.552 0.551
720 0.380 0.421 0.427 0.445 0.393 0.430 1.104 0.763 0.765 0.624 0.462 0.468 0.605 0.551 1.249 0.838 0.463 0.474 0.562 0.560

Avg 0.334 0.379 0.383 0.407 0.343 0.387 0.942 0.684 0.489 0.472 0.414 0.427 0.431 0.446 0.954 0.723 0.437 0.449 0.526 0.516

E
C

L

96 0.129 0.222 0.148 0.240 0.129 0.222 0.219 0.314 0.137 0.238 0.168 0.272 0.140 0.237 0.247 0.345 0.193 0.308 0.169 0.273
192 0.143 0.235 0.162 0.253 0.147 0.240 0.231 0.322 0.152 0.252 0.184 0.289 0.153 0.249 0.257 0.355 0.201 0.315 0.182 0.286
336 0.152 0.248 0.178 0.269 0.163 0.259 0.246 0.337 0.166 0.268 0.198 0.300 0.169 0.267 0.269 0.369 0.214 0.329 0.200 0.304
720 0.176 0.272 0.225 0.317 0.197 0.290 0.280 0.363 0.201 0.302 0.220 0.320 0.203 0.301 0.299 0.390 0.246 0.355 0.222 0.321

Avg 0.150 0.244 0.178 0.270 0.159 0.252 0.244 0.334 0.164 0.265 0.192 0.295 0.166 0.263 0.268 0.365 0.214 0.327 0.193 0.296

Tr
af

fic

96 0.330 0.232 0.395 0.268 0.360 0.249 0.522 0.290 0.390 0.275 0.593 0.321 0.410 0.282 0.788 0.499 0.587 0.366 0.612 0.338
192 0.332 0.232 0.417 0.276 0.379 0.256 0.530 0.293 0.402 0.278 0.617 0.336 0.423 0.287 0.789 0.505 0.604 0.373 0.613 0.340
336 0.342 0.236 0.433 0.283 0.392 0.264 0.558 0.305 0.415 0.288 0.629 0.336 0.436 0.296 0.797 0.508 0.621 0.383 0.618 0.328
720 0.365 0.244 0.467 0.302 0.432 0.286 0.589 0.328 0.449 0.307 0.640 0.350 0.466 0.315 0.841 0.523 0.626 0.382 0.653 0.355

Avg 0.342 0.236 0.428 0.282 0.390 0.263 0.550 0.304 0.414 0.287 0.620 0.336 0.433 0.295 0.804 0.509 0.610 0.376 0.624 0.340

W
ea

th
er

96 0.157 0.203 0.174 0.214 0.149 0.198 0.158 0.230 0.166 0.221 0.172 0.220 0.176 0.237 0.221 0.306 0.217 0.296 0.173 0.223
192 0.200 0.246 0.221 0.254 0.194 0.241 0.206 0.277 0.207 0.261 0.219 0.261 0.220 0.282 0.261 0.340 0.276 0.336 0.245 0.285
336 0.241 0.281 0.278 0.296 0.245 0.282 0.272 0.335 0.251 0.298 0.280 0.306 0.265 0.319 0.309 0.378 0.339 0.380 0.321 0.338
720 0.291 0.324 0.358 0.349 0.314 0.334 0.398 0.418 0.301 0.338 0.365 0.359 0.323 0.362 0.377 0.427 0.403 0.428 0.414 0.410

Avg 0.222 0.263 0.258 0.279 0.225 0.263 0.259 0.315 0.231 0.286 0.259 0.287 0.246 0.300 0.292 0.363 0.309 0.360 0.288 0.314

1st Count 33 33 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

A.8 LIMITATIONS

While PDETime represents a significant advancement in long-term multivariate time series forecasting
with PDE solvers, it currently has limitations that should be addressed in future research. Firstly,
PDETime is not well-suited for modeling irregular time series as it operates under the assumption
that historical observations Xhis are regular. However, PDETime can still predict irregular future
data by modifying ∆t. Secondly, PDETime considers spatial information s to be unknown and
requires estimation through various well-designed neural networks. It is important to note that spatial
information may be highly complex and challenging to predict directly using neural networks.

A.9 BROADER IMPACTS

This paper presents PDETime, a new PDE-based method in Long-term multivariate time series
forecasting. This paper only focuses on the algorithm design. Using all the codes and datasets strictly
follows the corresponding licenses. There is no potential ethical risk or negative social impact.
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Table 8: Analysis on Solver and Initial condition. INRs refers to only using INRs to represent τt; +
Initial refers to aggregating initial condition xt0 ; +Solver refers to using numerical solvers to compute
integral terms in latent space. The best results are highlighted in bold.

Dataset Method INRs INRs+Initial INRs+Solver INRs+Initial+Solvers
Metric MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1

96 0.371 0.396 0.364 0.384 0.358 0.381 0.358 0.381
192 0.403 0.420 0.402 0.409 0.398 0.407 0.397 0.406
336 0.433 0.436 0.428 0.420 0.348 0.238 0.422 0.420
720 0.474 0.492 0.439 0.452 0.455 0.476 0.437 0.450

ETTh2

96 0.287 0.352 0.270 0.330 0.285 0.342 0.270 0.331
192 0.383 0.412 0.331 0.372 0.345 0.379 0.329 0.369
336 0.523 0.501 0.373 0.405 0.357 0.399 0.354 0.399
720 0.765 0.624 0.392 0.429 0.412 0.444 0.395 0.428

Table 9: Analysis on the effectiveness of loss term Lc and Lr.

Dataset Method PDETime PDETime-Lc PDETime-Lr

Metric MSE MAE MSE MAE MSE MAE

ETTh1

96 0.356 0.381 0.357 0.381 0.740 0.598
192 0.397 0.406 0.393 0.405 0.870 0.694
336 0.420 0.419 0.422 0.420 0.688 0.557
720 0.425 0.419 0.446 0.458 0.799 0.653

ETTh2

96 0.268 0.330 0.271 0.330 0.431 0.423
192 0.331 0.370 0.341 0.373 0.435 0.467
336 0.358 0.395 0.363 0.397 0.426 0.460
720 0.380 0.421 0.396 0.434 0.468 0.489

Table 10: Analysis on the effectiveness of Temporal Feature.

Dataset Method PDETime TiDE PatchTST PatchTST+ Temporal
Metric MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1

96 0.356 0.335 0.375 0.398 0.379 0.401 0.378 0.403
192 0.397 0.406 0.412 0.422 0.413 0.429 0.414 0.425
336 0.420 0.419 0.435 0.433 0.435 0.436 0.449 0.449
720 0.425 0.446 0.454 0.465 0.446 0.464 0.507 0.499

ETTh2

96 0.268 0.330 0.270 0.336 0.274 0.335 0.323 0.376
192 0.331 0.370 0.332 0.380 0.342 0.382 0.375 0.416
336 0.358 0.395 0.360 0.407 0.365 0.404 0.400 0.430
720 0.380 0.421 0.419 0.451 0.393 0.430 0.428 0.454
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