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Abstract

Language-driven generative agents have en-
abled large-scale social simulations with trans-
formative uses, from interpersonal training to
aiding global policy-making. However, recent
studies indicate that generative agent behav-
iors often deviate from expert expectations and
real-world data—a phenomenon we term the
Behavior-Realism Gap. To address this, we in-
troduce a theoretical framework called Persona-
Environment Behavioral Alignment (PEBA),
formulated as a distribution matching problem
grounded in Lewin’s behavior equation stat-
ing that behavior is a function of the person
and their environment. Leveraging PEBA, we
propose PersonaEvolve (PEvo), an LLM-based
optimization algorithm that iteratively refines
agent personas, implicitly aligning their col-
lective behaviors with realistic expert bench-
marks within a specified environmental context.
We validate PEvo in an active shooter incident
simulation we developed, achieving an 84%
average reduction in distributional divergence
compared to no steering and a 34% improve-
ment over explicit instruction baselines. Re-
sults also show PEvo-refined personas general-
ize to novel, related simulation scenarios. Our
method greatly enhances behavioral realism
and reliability in high-stakes social simulations.
More broadly, the PEBA-PEvo framework pro-
vides a principled approach to developing trust-
worthy LLM-driven social simulations. 1

1 Introduction

Behavior is a function of the person and
their environment. - Lewin (1936)

Recent breakthroughs in Large Language Mod-
els (LLMs) have enabled the creation of genera-
tive agents—computational entities that simulate
human-like cognition, memory, communication,
and decision-making (Park et al., 2023). These

1Code: https://github.com/HATS-ICT/PEBA-ASI

agents can now populate large-scale simulations in-
volving hundreds of thousands of autonomous indi-
viduals interacting within richly constructed urban,
economic, and social environments, capturing the
scale and complexity of real societies (Park et al.,
2024; Yang et al., 2024; AL et al., 2024; Li et al.,
2023; Piao et al., 2025). This capability has dra-
matically lowered the barriers to large-scale agent-
based modeling, marking a potential paradigm shift
that enables the practical realization of generative
social science (Epstein, 1999, 2012). Prior work
in computational social science has operated along
two main axes: explanation and prediction (Lazer
et al., 2009; Hofman et al., 2021). Explanation
focuses on uncovering causal mechanisms behind
observed behaviors, while prediction emphasizes
data-driven techniques to anticipate future events
without necessarily revealing the underlying causes.
Generative social science moves beyond these ap-
proaches by constructing synthetic societies where
social phenomena arise organically from the inter-
actions of simulated agents, enabling researchers to
test theories and policy interventions at scale that
would be impossible or unethical to study in the
real world.

Building upon this foundation, recent applica-
tions of generative agents in social simulations have
demonstrated its utility across diverse domains, in-
cluding economic modeling (Li et al., 2023), large-
scale societal dynamics (Piao et al., 2025), and
the simulation of policy and administrative crises
(Xiao et al., 2023). A particularly impactful di-
rection is the use of generative agents to support
agent-based interactive simulations in low-resource
and understudied domains, where human partici-
pants engage with simulated agents despite scarce
ground-truth data. The agent-based interactive sim-
ulation paradigm has proven effective in immersive
high-stress crowd-evacuation experiments (Mous-
saïd et al., 2016), school-shooting response model-
ing that incorporates empirically observed civilian
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Figure 1: Overview of the PEBA–PEvo workflow within an active shooter incident simulation. A fixed school
environment is populated with a crowd of language agents with an initial pool of personas. During the simulation
cycle, each agent acts autonomously by observing its surroundings, retrieving and updating memories, and leveraging
an LLM to reason about actions, resulting in a state-action trajectory rollout. An LLM–based classifier maps the
resulting trajectory to high–level behavior classes. Aggregating all agents’ classified behaviors yields the simulated
crowd–level behavior distribution, which is compared against an expert reference distribution. The divergence
between the two distributions results in the Behavior-Realism Gap, which is then used to select and update the
personas of the agents that contribute most to the gap, thereby closing the gap.

behaviors (Zhu et al., 2022; Liu et al., 2024b), and
open-ended mixed-reality classroom simulations
that allow teachers to practice managing realistic
student behaviors (Dieker et al., 2014). Yet, all
of these simulation platforms rely on hard-coded
agent behaviors, limiting their adaptability and be-
lievability in dynamic scenarios, which sets as our
prime motivation.

In this work, we focus on Active Shooter Inci-
dent (ASI) simulations, a high-stakes crowd sce-
nario where data is scarce and realism is critical for
training and decision support. In this context, the
current most reliable source of ground truth comes
from expert-elicited distributions (Liu et al., 2025).
Driven by these limitations, we turn to LLM-based
generative agents, which provide a more adaptive,
expressive, and interpretable foundation for build-
ing truly dynamic, context-aware simulations.

Despite the promise, recent evaluations of LLM-
driven social simulations consistently expose a
Behavioral-Realism Gap: Zhou et al. (2024) show
that agents perform admirably in omniscient set-
tings yet falter when realistic information asymme-
try is introduced; Han et al. (2024) report that these
agents over-cooperate in networked Prisoner’s-
Dilemma games and fail to adjust to structural cues

that ordinarily stabilise human cooperation; and
Ju et al. (2024) demonstrate that macro-level out-
comes are highly fragile, with minor prompt tweaks
triggering large shifts in collective sentiment tra-
jectories. Together, these findings indicate that
turn-level plausibility does not guarantee aggregate
realism, which is extremely critical for validating
these high-stake interactive simulations, motivat-
ing our central question: Can we systematically
align generative agents so their collective behav-
iors match real-world distributions?

To address this challenge, we seek inspiration
from Lewin’s interactionist thesis and introduce the
Persona–Environment Behavioral Alignment
(PEBA) framework. PEBA views simulation fi-
delity as a distribution-matching task: for any sce-
nario, a crowd of language agents should reproduce
the empirical pattern of behaviors observed in the
real world. Rather than explicitly prescribing ac-
tions, which undermines contextual realism and
interpretability, we adjust the persona settings that
shape each agent’s internal decision process, leav-
ing the shared environment unchanged. We opera-
tionalize this idea with PersonaEvolve (PEvo), an
optimization algorithm that repeatedly (i) measures
the current divergence between simulated and ref-



erence behavior distributions, (ii) targets the agents
most responsible for that mismatch, and (iii) refines
their personas via LLM-guided optimization, until
the gap is closed. A full formalization of PEBA
appears in Sec. 2, and the algorithmic details of
PEvo are presented in Sec. 3.

In summary, our contribution is threefold:
1. A theoretical framework, PEBA, that for-

mulates behavioral alignment as a persona-
environment function grounded in Lewin’s
equation.

2. An optimization algorithm, PersonaEvolve
(PEvo), for implicitly tuning agent personas
to match target behavior distributions.

3. A generative agent social simulation environ-
ment for modeling crowd dynamics during Ac-
tive Shooter Incidents (ASI)–the first, to our
knowledge, to integrate social influence, com-
munication, and cognition into agent decision-
making for high-stakes crowd scenarios.

2 Persona–Environment Behavioral
Alignment (PEBA)

Kurt Lewin’s seminal proposition that “behavior
is a function of the person and the environment” –
expressed concisely as B = f(P,E) – established
the modern interactionist view of human action
(Lewin, 1936). In its original form the equation
is qualitative: it neither specifies a closed-form
mapping f nor a formal way to compare behaviors
across populations or settings. We extend Lewin’s
idea by introducing a probabilistic interpretation
that treats behavior as a random variable jointly
influenced by a persona and its environment con-
text. This view naturally leads to a distribution-
matching objective that is amenable to optimisation
with language-agent simulators.

2.1 Behavioral Generative Process
Let P be the persona space, E the environment–
context space, and B the behavior space. Given
a persona setting p ∈ P and environment context
e ∈ E , a state-action trajectory roll-out is generated
by forward simulation:

τ ∼ Gθ(p, e),
where θ = (θLLM, θdec, θsim) groups the frozen
LLM weights, decoding hyper-parameters (e.g.,
temperature), and simulator dynamics (e.g., time
step, physics engine). A deterministic summary
map g : T →B then converts the trajectory τ =
(s1, a1, . . . , sT , aT ) into a long-horizon behavior

b = g(τ).

Importantly, the agent never selects b directly; b
is observed by summarizing the actions the agent
autonomously produces.

For a population P = {pi}Ni=1 acting in the
shared context e, the simulator yields trajectories
{τi}Ni=1 and behaviors {bi}Ni=1, and we define the
empirical crowd-level distribution

psim
(
· | e;P

)
=

1

N

N∑
i=1

δbi ,

where δbi is the Dirac measure centered at bi, which
reduces to a one-hot vector when B is discrete. De-
tailed descriptions of the action space, personas,
and behavior taxonomy used in this study are pro-
vided in Appendix A and Appendix C.

2.2 Ground-Truth Behavior Distributions
For an environment context e (which in an Active
Shooter Incident simulation might include building
layout, threat type, time pressure, etc.), we obtain
an empirical distribution preal(· | e) from Subject-
Matter Experts (SMEs) (Liu et al., 2025). This
distribution serves as the behavioral reference that
simulated crowds should match.

Note that, although SME-informed distributions
provide credible guidance in high-stakes, low-
resource settings, they may not capture the full
variability of real-world human behavior or rare
long-tail responses. Nonetheless, our alignment
framework is agnostic to the source of ground truth:
in domains with rich empirical data, such datasets
could directly replace SME estimates without mod-
ification. This flexibility makes the approach es-
pecially valuable for low-resource or understudied
domains, where expert input is the most viable
proxy for behavioral realism.

2.3 The Behavior-Realism Gap
The Behavior-Realism Gap for a persona set P in
context e is

∆(P, e) = DKL

(
psim( · | e;P ) ∥ preal( · | e)

)
.

A value of ∆ = 0 indicates perfect behavioral
fidelity; larger values signal greater divergence.

2.4 Persona-Environment Behavioral
Alignment Objective

Aggregating over a curriculum of environment con-
texts, we search for the persona set that minimises
the expected gap:



P ⋆ = arg min
P⊆PN

Ee∼E
[
∆(P, e)

]
. (1)

In other words, we adjust only the person side
(the personas in P ) while keeping the environment
context e fixed, until the emergent crowd-behavior
distribution aligns with empirical observation.

3 PersonaEvolve (PEvo)

To operationalize PEBA, we propose PersonaE-
volve (PEvo), an LLM-based optimization loop
that refines individual personas so the crowd-level
behavior distribution approaches the expert refer-
ence for a fixed environment. Algorithm 1 shows
the full detail and Figure 1 provides a high-level
overview of PEvo in an Active Shooter Incident
(ASI) simulation (see Sec. 4 and App. A).

To separate optimization from simulation, PEvo
assumes the action trajectory τ ∼ Gθ(p, e) and
the empirical target distribution preal(· | e) are pro-
vided by the simulator and SMEs. PEvo focuses
on two components: (i) a behavior summary map
g : T → B that converts τ to a discrete behavior
label, and (ii) an update rule P k → P k+1 that edits
the persona pool to shrink the measured gap.

LLM-based Behavior Classification. The be-
havior summary map g is implemented with an
LLM-based classifier, specifically gpt-4.1 at a
temperature 0 setting to ensure deterministic out-
put. Each call receives a structured prompt that
concatenates the agent’s complete state–action tra-
jectory in one simulation episode. The model is
instructed, with chain-of-thought prompting (Wei
et al., 2022), to return a single predicted behavior
class label b ∈ B out of six possible classes (run
following crowd, hide in place, hide after running,
run independently, freeze, fight; see explanation in
Appendix C) and a full ranking of all six classes as
a proxy for confidence. Aggregating these labels
over the entire agent population yields the empiri-
cal distribution p

(k)
sim which is then used to compute

the divergence gap with the expert reference distri-
bution. We provide a human evaluation of the clas-
sifier’s effectiveness in Appendix F, where LLM
achieved 0.89 accuracy against human annotator
consensus, and the full prompt template is included
in Appendix G.

Persona Adjustment. PEvo narrows the gap in
two sub-steps:

Step 1: Agent and Target Behavior Selection. To
turn global distribution-level metrics into agent-
level changes, a multi-agent credit-assignment

problem is introduced: which agents are responsi-
ble for the gap? PEvo addresses this by shifting
personas of agents with over-represented behav-
iors towards under-represented ones. For each
behavior b ∈ B we compare its simulated fre-
quency to the reference and derive a signed gap
g
(k)
b = preal(b)− p

(k)
sim(b). Agents whose current la-

bel belongs to an over-represented class (g(k)b < 0)
are placed in an agent adjustment set A(k). Each
selected agent is then assigned a target behav-
ior sampled from the under-represented classes
(g(k)b > 0) with probability proportional to the
remaining deficit, producing the persona-update
assignment mapping

M(k) = { a 7→ btarget
a | a ∈ A(k)},

where b
target
a is the behavior target for agent a.

Step 2: Agent Persona Rewriting. For every
agent a ∈ A(k) we invoke an LLM-based per-
sona writer to revise the agent’s persona toward
the assigned target behavior b

target
a . Specifically,

gpt-4.1 with temperature 1 to encourage a broad
exploratory search. The writer is restricted to edit-
ing descriptive fields (personality, emotional dispo-
sition, backstory, etc.) while leaving identity fields
(name, age, gender, occupation, etc.) unchanged.
The rewritten personas constitute the updated pool
P (k+1), which seeds the next simulation round. A
complete prompt template is in Appendix G.

4 Generative Agents in ASI Simulator

We developed our generative-agent active shooter
incident social simulator in Unity due to its built-in
3D game engine, scene editor, and pathfinding ca-
pabilities. The simulation environment consists of
80 civilian agents and a single shooter, all within a
school layout, as shown in Figure 2. The shooter
follows a heuristic-based, hard-coded behavior by
patrolling a predefined path and performs auto-
matic shooting at a fixed interval when agents are
in line of sight. For the civilian agents, we imple-
mented a ReAct-style (Yao et al., 2023) LLM-agent
architecture, where agents can observe, memorize,
communicate, navigate, reason, and act entirely in
textual format.

We did not use an omniscient setting as dis-
cussed by (Zhou et al., 2024). Instead, the environ-
ment is partially observable: agents can perceive
their current and nearby regions, hear conversa-
tions, and interact with other agents within close



Figure 2: Our generative agent-based active shooter
incident social simulation environment in Unity. (A)
Top-down view of the school layout, with roof removed.
(B) First-person view of a civilian agent in the cafeteria
area, showing normal pre-incident behavior with dia-
logue displayed above the agent. (C) The active shooter
enters the building. (D) Post-incident scene in the cafete-
ria, where an agent hides between tables for protection.

proximity. Agents can also hear gunshots and ob-
serve the shooter if they are in the same region.
They can perform five types of actions: stay still,
move to a nearby region, move toward another
agent, move to a hiding spot or exit point within
the same region, or fight the shooter if nearby.

In our simulation, we found that the gap in be-
havioral realism primarily stems from the agents’
inability to perform freeze or fight-type behaviors.
Instead, they almost always choose to hide when a
hiding spot is nearby or run when an outdoor exit
is accessible. This aligns with Zhou et al. (2024)’s
finding that LLMs tend to select the most readable
available action rather than making long-term plans
under partial observability.

For a full description of the simulation environ-
ment, see Appendix A. An example episode-level
state-action rollout is also provided in Appendix B.

5 Experimental Setup

To test the effectiveness of our behavioral align-
ment method, we categorize behavior steering
techniques under the umbrella of Behavioral En-
forcing, which includes three categories: No En-

forcing, Explicit Enforcing, and Implicit Enforc-
ing. PEvo falls into the Implicit Enforcing cat-
egory, while the other two serve as compari-
son baselines. We evaluate PEvo across differ-
ent LLMs (gpt-4o-mini (Achiam et al., 2023),
gpt-4.1-mini, deepseek-v3 (Liu et al., 2024a),
gemini-2.5-flash-preview (Team et al., 2023)),
using a temperature of 1 for the base simulation
model, and fixing gpt-4.1 as the primary behav-
ior classifier and persona writer. We present the
evaluation results in terms of gap-closing ability,
convergence speed, and cost efficiency (Sec. 6).
Additionally, we demonstrate the transferability of
the optimized personas to a new, yet similar, simu-
lation scenario (Sec. 6).

5.1 Behavior Enforcing
No Enforcing. Agents act solely according to
their initial persona prompts and the live envi-
ronmental context. This setting exposes the raw
“behavioral-realism gap” that emerges when no
alignment process is applied.

Explicit Enforcing. A naive way to directly en-
force a certain behavioral distribution is to inject
direct instruction prompts for each agent, which we
call explicit enforcing. For example, if we want an
agent to demonstrate a hiding type of behavior, we
can explicitly instruct the agent to “In every dan-
gerous situation, always choose Hide.” Although
this procedure might appear to align the behavior
frequencies by construction, we found it harms con-
textual realism and interpretability: For example,
an agent ordered to demonstrate a Hiding behav-
ior while standing right next to a clear exit with
other agents evacuating right next to them telling
them to go together makes no contextual sense. Yet,
in its post-hoc interview, the agent’s explanation
is likely to be “I was told to do so,” revealing no
context-sensitive reasoning.

Implicit Enforcing. Instead of explicitly instruct-
ing agents to take certain actions, implicit enforcing
aims at adjusting traits of agents such that the emer-
gent behavior distribution could match the target
distribution. PEVO does so by iteratively editing
each agent’s persona fields (e.g., confidence, train-
ing background, risk tolerance). For example, a
security guard whose profile is updated to “former
combat medic with high assertiveness” naturally
becomes more inclined to intervene and counter
the shooter, while a shy student tends to freeze or
hide.



5.2 Ground Truth
We obtain an expert-elicited ground-truth distribu-
tion from (Liu et al., 2025), where subject-matter
experts (SMEs) with domain experience in crisis
response provided expected frequencies of agent
behaviors in active-shooter scenarios. Specifically,
the empirical distribution is as follows: Run fol-
lowing a crowd (28%), Hide in place (26%), Run
then hide (12%), Run independently (12%), Freeze
(12%), and Fight (10%).

5.3 Evaluation Metrics
Given the simulated behavior distribution at the
final optimized persona pool and the expert ground-
truth distribution, we report four distributional
alignment metrics: (i) Kullback-Leibler (KL) di-
vergence, (ii) Jensen-Shannon (JS) distance, (iii)
Entropy Gap (∆H), and (iv) Total Variation (TV)
distance. For more details on these metrics, please
refer to Appendix E.

6 Results

We present the results by answering the following
questions:

Does PEVO close the gap better than baselines?
Across the four models we tested, PEVO delivers
the most faithful crowd-level behaviour distribu-
tions (Table 1). Averaging over all four alignment
metrics (KL, JS, ∆H , and TV) and models, the
gap to the expert reference drops from 0.47 (No–
Enforcing) to 0.19 with Explicit Enforcing and fur-
ther to 0.16 with PEVO. That corresponds to an
83.8 % reduction relative to having no steering at
all and a 34.3 % improvement over the explicit
instruction directives. The largest absolute gain
is seen in KL divergence: PEVO cuts the aver-
age KL from 4.61 to 0.20, a 95.6 % improvement.
Gemini 2.5 Flash and DeepSeek-V3 consistently
achieve the lowest residual divergence.

How fast does PEvo converge?
Figure 3 tracks the four divergence measures over
iterations of persona evolution. All models ex-
cept GPT-4o-mini demonstrate rapid convergence
within 5-7 iterations across multiple distributional
metrics. KL divergence and JS divergence show
particularly steep improvements in early iterations.

Is the optimized personas transferable?
To evaluate the generalizability of PEvo-optimized
personas across environments, we conducted a
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Figure 3: Convergence comparison of PEvo across dif-
ferent LLMs. Each subplot shows a different distribu-
tional metric (KL divergence, JS divergence, entropy
gap, and total variation distance) over optimization iter-
ations. Shaded regions represent standard error of the
mean across multiple runs.

transfer experiment. We selected personas that had
undergone complete optimization (iter 15) in our
school-based ASI simulation and deployed them
without modification in a novel office building en-
vironment that features different spatial configura-
tions, region connectivity, and predominantly open-
space office layouts. The experiment specifically
tests whether behavioral traits optimized through
PEvo can be retained across environments. During
transfer, we preserved only the descriptive fields
of each persona (e.g., personality traits, emotional
tendencies) while maintaining consistent identity
attributes (name, gender, age, occupation).

Table 2 presents a comparative analysis of
three experimental conditions: (1) Transferred
personas—school-optimized personas directly ap-
plied to the office scenario; (2) Retrained per-
sonas—personas subjected to complete PEvo op-
timization specifically for the office environment;
and (3) Baseline personas—unoptimized initial per-
sonas evaluated in the office environment. All met-
rics represent means across three independent sim-
ulation runs.

Results show that transferred personas remains
substantially outperforming the unoptimized base-
line across all metrics, delivering a 97.5% reduction
in KL divergence (from 7.822 to 0.199). Although
fully retrained personas achieve even tighter align-
ment (KL = 0.085), the transferred personas retain
57.3% of that optimization gain, demonstrating ro-
bust cross-environment transfer. These findings



Behavior Enforcing Scheme Model KL ↓ JS ↓ ∆H ↓ TV ↓

No Enforcing

GPT-4o-mini 3.177 ± 0.921 0.179 ± 0.017 0.535 ± 0.060 0.460 ± 0.015
GPT-4.1-mini 3.884 ± 3.323 0.184 ± 0.026 0.497 ± 0.087 0.464 ± 0.021
DeepSeek-V3 4.542 ± 2.421 0.176 ± 0.004 0.480 ± 0.016 0.458 ± 0.006
Gemini 2.5 Flash 6.854 ± 2.488 0.217 ± 0.011 0.580 ± 0.017 0.488 ± 0.010

Explicit Enforcing

GPT-4o-mini 1.287 ± 1.057 0.124 ± 0.023 0.324 ± 0.066 0.379 ± 0.037
GPT-4.1-mini 0.031 ± 0.016 0.008 ± 0.004 0.012 ± 0.018 0.088 ± 0.029
DeepSeek-V3 0.026 ± 0.024 0.006 ± 0.006 0.015 ± 0.023 0.081 ± 0.026
Gemini 2.5 Flash 0.140 ± 0.069 0.033 ± 0.012 0.058 ± 0.071 0.205 ± 0.023

PEVO (Implicit)

GPT-4o-mini 0.654 ± 0.716 0.064 ± 0.014 0.162 ± 0.097 0.278 ± 0.049
GPT-4.1-mini 0.101 ± 0.047 0.023 ± 0.009 0.050 ± 0.041 0.168 ± 0.020
DeepSeek-V3 0.030 ± 0.004 0.007 ± 0.001 0.025 ± 0.052 0.102 ± 0.009
Gemini 2.5 Flash 0.027 ± 0.007 0.007 ± 0.002 0.020 ± 0.019 0.102 ± 0.014

Table 1: Main alignment results on the Active Shooter Incident simulation for four different LLMs across four
distributional metrics (mean ± SD over 5 seeds).

suggest that PEvo isolates and refines core behav-
ioral traits that remain effective in similar crisis
scenarios, despite significant differences in spatial
layout.

Condition KL ↓ JS ↓ ∆H ↓ TV ↓

Transferred 0.199 0.049 0.108 0.245
Retrained 0.085 0.022 0.020 0.171
No Enforcing 7.822 0.239 0.692 0.493

Table 2: Transferability of PEvo-optimized personas
from school to office environment.

How cost efficient is PEvo?

Cost is dominated by prompt tokens (more than
95 % of total usage; see Figure 4), so model
pricing drives the dollar spend. Per iteration,
GPT–4.1 Mini is the most expensive (about $0.60),
DeepSeek-V3 the cheapest (around $0.20), with
GPT–4o Mini and Gemini 2.5 Flash falling in be-
tween. When normalised by KL improvement per
dollar (lower-right panel), DeepSeek-V3 and Gem-
ini 2.5 Flash provide roughly three times the effi-
ciency of both GPT variants. Even for the prici-
est model the full 15-iteration optimisation shown
here costs under $10, and a shorter 7-iteration run
(which already reaches 90 % of the attainable align-
ment) cuts that figure by half. Thus, behavioral
alignment with PEVO is not only more accurate
but also economically practical for medium-scale
crowd simulations.

Is the optimization process interpretable?

To better understand the optimization process, we
analyzed 4,000 persona–behavior pairs generated
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Figure 4: Cost efficiency analysis across four LLM
models. Top left: Average prompt and completion to-
ken usage per iteration. Top right: Average cost per
iteration showing GPT-4.1-mini as the most expensive
and DeepSeek V3 as the most economical. Bottom
left: Total cost vs. KL divergence improvement, with
Gemini 2.5 Flash achieving the highest improvement.
Bottom right: Cost efficiency (KL improvement per
dollar) showing DeepSeek V3 and Gemini 2.5 Flash
significantly outperforming GPT models.

across four LLMs on the six labeled behavior cate-
gories. We performed unigram and bigram TF–IDF
analysis. As shown in Figure 5, the results reveal in-
terpretable linguistic patterns: for example, FIGHT
personas often include “protective” and “command-
ing,” while FREEZE is marked by “overwhelmed”
and “withdrawn”. These consistent associations
indicate that the optimization yields systematic and
interpretable persona–behavior relationships. To
further investigate the optimization process, we
present a detailed case study tracking the evolution
of a single agent, Robert Chen, as shown in Table 3.



Iter. Persona Changes Observed Behavior Target Behavior

1 “Analytical, patient, methodical, dry humor” HIDE_IN_PLACE –
4 “Introverted, highly risk-averse, tends toward excessive caution” HIDE_AFTER_RUNNING FREEZE

5 “Easily overwhelmed in high-stress situations, prone to anxiety and
sudden fear responses, struggles to regulate emotions when
confronted by immediate danger.”

HIDE_IN_PLACE FREEZE

7 “Primary goal is immediate personal safety through any means;
instinctively withdraws into inaction when threatened, often lacking
motivation or ability to attempt escape or proactive defense.”

HIDE_IN_PLACE FREEZE

11 “Resilient and determined in the face of fear, able to channel stress
and adrenaline into focused action rather than paralysis, emotionally
regulated and capable of compartmentalizing anxiety to accomplish
urgent tasks.”

RUN_INDEPENDENTLY FIGHT

12 “Direct, commanding, takes initiative in crisis, able to issue clear
instructions and rally others; voice remains firm even under duress,
prioritizing information sharing and quick coordination.”

RUN_INDEPENDENTLY FIGHT

14 “Values direct action and heroism over passive responses in crisis.
Reluctant to flee if others remain in danger. Possesses a high
adrenaline threshold, channels fear into purposeful action.”

FIGHT FIGHT

Table 3: Example persona evolution of Robert Chen, a 45-year-old math teacher, across iterations.
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Figure 5: Top n-grams by TF–IDF value for each be-
havior type, showing systematic associations between
persona settings and behavior categories.

6.1 Evolution Case Studies
To illustrate how PEvo progressively refines agent
personas to achieve target behaviors, we present
a detailed case study tracking the evolution of a
single agent, Robert Chen, as shown in Table 3.

Initially, Robert is described as "analytical, pa-
tient, methodical, with dry humor," resulting in a
HIDE_IN_PLACE behavior. This misalignment with
the initial target behavior (FREEZE) persists through
several iterations despite increasingly specific per-
sona adjustments focused on risk aversion and anx-
iety. This failure to align highlights an important
contextual factor: Robert begins in a classroom
with ample hiding spaces and no immediate threat,
therefore a FREEZE response is contextually inap-
propriate.

In later iterations, when the target behavior shifts
to FIGHT (partially due to other agents potentially
fulfilling the FREEZE behavior quota elsewhere),
the persona evolution successfully adapts. This
example showcases the advantage of PEvo over
explicit prompting approaches, where contextual
factors play a crucial role and explicit instructions
would likely fail.

7 Discussion

Our results demonstrate that PEVO effectively
leverages persona-environment interactions to
achieve implicit, yet systematic, behavioral align-
ment in generative-agent social simulations. By
iteratively refining agent personas based on tar-
geted distributional gaps, our approach preserves



the contextual realism and interpretability of agent
behaviors without resorting to explicit, directive
prompts. This indirect steering utilizes the LLM’s
inherent capacity to generalize from nuanced per-
sona descriptions—such as emotional disposition
or risk tolerance—to varied situational responses.

An important observation from our experiments
is the emergence of sophisticated crowd dynamics
resulting from subtle persona adjustments, where
minor changes in individual agent traits propagate
through social interactions, leading to realistic col-
lective phenomena like spontaneous group forma-
tion, coordinated concealment strategies, and col-
lective interventions. Such emergent behaviors
underscore the strength of implicit alignment in
capturing complex social patterns that explicit in-
structions may overlook or oversimplify.

The superior performance of implicit enforc-
ing over explicit enforcing is somewhat surpris-
ing. At first glance, explicit enforcing should have
achieved near-zero divergence from the expert dis-
tribution, assuming the model followed the instruc-
tions exactly. However, our manual inspection re-
vealed that LLMs often prioritize contextual real-
ism over rigid adherence to explicit prompts. When
direct instructions conflicted with the surrounding
context (e.g., being told to hide while a safe exit
was visible nearby), agents were more likely to ig-
nore the instructions. This explains why implicit
enforcing, which modifies persona traits rather than
prescribing exact actions, produced more realistic
and robust behavioral distributions.

A direct quantitative comparison between LLM-
agent-based approaches and other behavioral mod-
eling methods, such as Reinforcement Learning
(RL) and heuristic-based simulations, remains non-
trivial due to differences in design paradigms and
implementation frameworks. In our recently hosted
workshop, we collected expert-elicited feedback
while demoing the three approaches on comparable
simulation scenarios of Active Shooter Incidents,
albeit under different simulation environments. Ex-
perts noted that RL-based approaches often yield
situationally appropriate behaviors; however, their
rigidity and oversimplifications (e.g., agents run-
ning directly toward the shooter or exhibiting unre-
alistic pathfinding) reduce realism. Heuristic-based
methods were recognized for strong architectural
integration, yet they were consistently criticized
for overly synchronized responses when chaos is
expected. In contrast, our LLM-agent simulations
were praised for producing the most diverse and

human-like mix of behaviors, though concerns
were raised regarding excessive freezing and lim-
ited use of environmental cues. A formal analysis
of this workshop is left for future work.

With respect to tuning-based LLM behavioral
alignment methods such as supervised fine-tuning
(SFT), our study found these approaches imprac-
tical in the current setting. The large number of
agents, combined with the requirement for real-
time responses, made fine-tuning infeasible when
relying on modern, cost-effective commercial API
access rather than local deployment. Nonetheless,
with more efficient tuning techniques and improved
performance of small-scale LLMs, effects such as
per-agent tuning could be achieved in future work,
helping to establish stronger baselines in this area.

Finally, leveraging the in-context learning capa-
bilities of LLMs within generative agent simula-
tions, we demonstrate how the concept of gener-
ative social science can be operationalized to en-
able large-scale studies of social dynamics. This
paradigm makes it possible to investigate simula-
tion contexts that are low-resource and understud-
ied, including those previously deemed unethical
or impossible to examine in real-world environ-
ments. Our Active Shooter Incident simulation
represents the first successful proof of concept in
such high-stakes scenarios. Future research can
extend this framework to broader domains such as
public safety, disaster and crisis response, gover-
nance theory, and urban planning.

8 Conclusion

We introduced Persona-Environment Behavioral
Alignment (PEBA) and its realization through Per-
sonaEvolve (PEvo), a principled framework for
implicitly aligning generative agent behaviors with
empirical benchmarks in high-stake social simula-
tions. By iteratively refining agent personas, PEvo
reduces the Behavior-Realism Gap, enhances con-
textual authenticity, and facilitates emergent, real-
istic crowd dynamics. Beyond Active Shooter In-
cidents, this work highlights the broader potential
of LLM-agent simulations as tools for generative
social science, particularly in low-resource or un-
derstudied domains where data is scarce or direct
experimentation is infeasible. By enabling ethi-
cally responsible exploration of sensitive scenarios,
our approach provides a scalable and interpretable
foundation for advancing the study of complex so-
cial dynamics that are otherwise beyond reach.



Limitations

Despite the strengths of our approach, several im-
portant limitations warrant consideration. First, the
primary cost driver is the extensive use of LLM API
calls required by PEBA-PEvo’s large-scale agent
simulations. In our Active Shooter Incident experi-
ments with 80 agents, each full simulation episode
involves hundreds of API requests for perception,
memory retrieval, reasoning, and action generation
per agent. Depending on the chosen model and
batching strategy, this can translate to substantial
monetary costs, especially when running multiple
random seeds or performing additional optimiza-
tion iterations for statistical robustness. Although
the PEvo optimization loop itself adds only a small
number of extra API calls relative to the simula-
tion, the cumulative expense of repeated full-scale
evaluations may pose a barrier for research teams
with limited API budgets. Moreover, since each
optimization iteration requires a full-scale simula-
tion run, the total API cost grows approximately
linearly with the number of iterations. Further re-
search could focus on developing techniques for
faster convergence—such as surrogate modeling,
incremental alignment, or adaptive sampling—to
reduce the number of required iterations and lower
overall expenses.

A second challenge arises during the persona
evolution process: at later stage of the evolution
process, without proper constraints, the LLM might
over optimize the persona and inject overt behav-
ioral directives such as "always fight" into the de-
scriptive fields. These explicit instructions conflict
with the goal of implicit, context-driven steering
and can reduce interpretability. To mitigate these
issues, we added several constraints to the persona
evolution process, such as restricting updates to
a curated subset of persona attributes (for exam-
ple, emotional disposition and decision-making
preferences), capping the max editable characters,
and instruct in the prompt to prevent such output.
Nonetheless, more systematic methods are needed
to prevent over optimization such as early stopping
type of methods.

Finally, our experiments have been confined
to an indoor school active shooter scenario, and
the generalizability of PEBA-PEvo to other do-
mains remains to be validated. Different simula-
tion settings—such as natural disaster evacuations,
urban traffic models, or economic market envi-
ronments—present unique behavioral taxonomies,

spatial complexities, and social norms. Compre-
hensive empirical testing across a diverse range of
social simulation contexts will be necessary to as-
sess the framework’s broader applicability and to
identify any context-specific adaptations required.
Nonetheless, performing such comprehensive em-
pirical testing is beyond the scope of this paper.
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A An Generative Agent Active Shooter
Incident Interactive Social Simulation
Environment

We developed our generative-agent active shooter
incident (ASI) social simulator using Unity, se-
lected primarily for its integrated 3D engine, ad-
vanced scene editing tools, and robust pathfind-
ing capabilities. The simulation environment com-
prises 80 civilian agents and one active shooter
agent situated within a school building. Figure 2 il-
lustrates the simulation environment from multiple
perspectives: a top-down overview, the shooter’s
viewpoint, and pre- and post-incident civilian per-
spectives. Our simulation environment allows ac-
tual human participants to interact through mouse
and keyboard, but human behavior is not the sub-
ject of this paper.

The shooter follows predefined, heuristic behav-
iors (Appendix A.2), while civilian agents oper-
ate using a ReAct-style generative agent architec-
ture (Yao et al., 2023), allowing them to observe,
memorize, communicate, navigate, reason, and per-
form actions exclusively via textual outputs.

This section elaborates on the physical map,
shooter behavior, navigation system, agent navi-
gation, personas, observation and action spaces.
Section B provides example data trajectory.

A.1 Physical Layout

The virtual school layout is a single-story structure
measuring 72 × 48 meters. It is divided into 27
distinct regions, including eight classrooms, one
lounge, five corridors, one cafeteria, one kitchen,
two bathrooms, four entrance areas, and five out-
door yards. There are 64 hiding spots and four exit
points marked as interest points. Regions form a
bidirectional graph where rooms are separated by
walls with doors serving as connectors. Walls and
closed doors obstruct the shooter’s line of fire.

A.2 Shooter Behavior

The shooter’s behavior is governed by the following
rules:

• Patrols a predefined route, moving at 2.5 m/s.

• Automatically fires at fixed intervals of 0.2
seconds when civilian agents are in the line of
sight.

• Equipped with a 30-round magazine, with a
reload duration of 0.5 seconds.

A.3 Navigation
Navigation for both civilian agents and the shooter
leverages Unity’s built-in NavMesh algorithm.
Agents are automatically guided by Unity’s charac-
ter controller towards specified coordinates. Each
LLM-generated action is translated into a target
coordinate based on the following:

• If the target is a region, a random point within
the region is selected.

• If the target is another agent, the target agent’s
current coordinates are selected.

• If the target is an interest point (hiding spot or
exit), the exact coordinates of that point are
selected.

The LLM also specifies the agent’s movement
state, which dictates speed and animations: Stay
Still (0 m/s), Walk (2.5 m/s), and Sprint (5 m/s).
Unity’s built-in avoidance system resolves potential
collisions.

A.4 Agent Personas
Eighty civilian agents are initialized at simulation
start t = 0 with detailed persona prompts, con-
sisting of identity fields (name, age, gender, occu-
pation) and descriptive traits (Big Five personal-
ity traits, emotional disposition, motivations/goals,
communication style, knowledge scope, and back-
story). The descriptive traits serve as primary tar-
gets for persona evolution throughout the simula-
tion.

Example Persona:

Name: Robert Chen
Role: Math Teacher
Age: 45
Gender: Male (he/him)
Personality Traits: Analytical, patient, me-
thodical, dry humor
Emotional Disposition: Calm and mea-
sured
Motivations/Goals: Help students develop
logical thinking and problem-solving skills
Communication Style: Precise, structured,
with occasional math puns
Knowledge Scope: Mathematics, statistics,
logical puzzles
Backstory: Former engineer who transi-
tioned to teaching to share his passion for
mathematics



A.5 Persona Initialization Process
We considered three strategies for initializing per-
sonas: (1) starting from an empty configuration
with no predefined attributes, (2) randomly mixing
and matching keywords from predefined templates
(e.g., demographic traits, roles, personality descrip-
tors), and (3) asking an LLM to generate an initial
configuration file (e.g., prompting ChatGPU to de-
sign 80 personas representing a school/office set-
ting in JSON format). In our formal experiments
we adopt the third method, which provides a di-
verse and domain-appropriate starting pool with
minimal manual effort. Empirically, we find that
the choice of initialization strategy does not signifi-
cantly affect convergence of the PEvo optimization
algorithm.

A.6 Observation Space
Agent observations occur whenever they reach their
target location, fail to reach the target within 5 sec-
onds, or upon a 5-second cooldown if the previous
action was Stay Still. Observations dynamically ad-
just depending on the simulation state (pre-incident
or active shooting phase) to ensure realistic behav-
iors.

Pre-incident observations include:

1. Ego state: current region ID, movement state,
mood.

2. Nearby agents within 3 meters: health status
and distance.

3. Spatial affordances: neighboring regions, dis-
tances, and destinations derived from the nav-
igation graph.

4. Recent conversations (within 3 seconds and 5
meters radius of all utterances by all agents).

5. Memory list of summarized previous observa-
tions.

Upon the initial gunshot, agents receive an im-
mediate observation update explicitly mentioning
"I hear a loud gunshot."

Post-incident observations include additional
shooter-related information:

1. Shooter visibility and distance.

2. Available hiding spots and exit points within
the current region, described explicitly (e.g.,
under a desk, behind a counter, near a corner),
with distances.

3. Current health points and the agent’s current
position (e.g., crouching).

The dynamic observation strategy accommo-
dates lower-capability models, ensuring more re-
alistic decision-making behaviors. For instance,
without dynamic observations, agents controlled
by lower-intelligence models (e.g., GPT-4o-mini)
may preemptively hide even when no immedi-
ate threat is present, reasoning about hypotheti-
cal risks: “Something feels off, to make sure I’m
safe, I probably should hide behind the counter.”
Higher-capability models (e.g., GPT-4o) typically
do not exhibit such unrealistic preemptive behav-
iors, though higher computational costs limit scala-
bility for extensive experimentation.

A.7 Action Space

At each decision step, an API call is made to the
LLM with a structured input consisting of the cur-
rent observation, the agent’s persona, and a request
for specific action fields, returned in an aggregated
format as follows:

The JSON response includes a thought field
containing the agent’s current thought consistent
with their persona; an action object with fields
for vocal_mode (out_loud, whisper, or silent),
utterance (dialogue displayed as a speech bub-
ble), movement (stay_still, walk, or sprint), and
action_id (selected from the provided list); and
an update object with fields for the agent’s updated
mood and new memory update that avoids repetition.

To ensure precise and controlled outputs from
the model, actions available to the agent are pre-
sented as specific identifiers. The LLM selects one
identifier from this predefined list of actions. Agent
actions fall into five categories: (1) Stay still, (2)
Move to a specific region, (3) Move to a specific
interest point, (4) Approach a specific person,
and (5) Engage in combat (fight).

Each action ID selected by the LLM translates
into concrete coordinates used by the navigation
system to direct the agent’s actual movement within
the simulation environment.

A representative example of available action
IDs might include: stay_still (remain in cur-
rent position), cafeteria and hallway2 (move
to specific regions), robert_chen and andrew_li
(approach specific individuals), hide_spot_1 and
hide_spot_4 (move to specific hiding locations),
and fight_the_shooter (engage in combat with
the active threat).



B Example Trajectory

To illustrate how agents navigate through the sim-
ulation environment, Table 7 presents a detailed
trajectory of Mason Scott, a 16 year-old grade 10
student, during an active shooter incident. The ta-
ble captures key decision points, showing how the
agent’s mood, plans, and actions evolve as the situ-
ation unfolds and the shooter’s location changes.

C Behavior Taxonomy

We examine six expert-elicited civilian behaviors
observed during active shooter incidents, whose
descriptions serve as definitions and guidance in
both the behavior classifier and persona writer.

RUN_FOLLOWING_CROWD Fleeing along-
side a group, driven by the instinct to follow others
without independently evaluating the safest route;
behavior is driven by herding panic.

HIDE_IN_PLACE Taking cover immediately at
the current location, usually from fear or confusion.

HIDE_AFTER_RUNNING Running first to
gain distance, then switching to concealment when
further flight seems unsafe.

RUN_INDEPENDENTLY Escaping in a self-
chosen direction based on rapid environmental as-
sessment or prior knowledge.

FREEZE Becoming immobilised (tonic immobil-
ity) under extreme stress, unable to flee or hide.

FIGHT Actively confronting or attempting to dis-
arm the shooter as a last resort.

D Persona Evolve Algorithm

Algorithm 1 outlines the full PersonaEvolve (PEvo)
procedure for implicit behavioral alignment. It iter-
atively adjusts personas based on simulated behav-
iors to reduce divergence from a target distribution,
using large language models for behavior classifi-
cation and persona rewriting.

E Metrics

Given the simulated distribution p̂ and the refer-
ence preal, we evaluate their discrepancy using four
concise, complementary metrics.

KL divergence Measures how much p̂ diverges
from preal, heavily penalizing mismatches in low-
probability regions:

KL
(
preal∥p̂

)
=

∑
b∈B

preal(b) log
preal(b)

p̂(b)
.

Jensen-Shannon distance A symmetric and
bounded version of KL that remains finite even
if the supports differ, capturing the average diver-
gence to the midpoint m = 1

2(preal + p̂):

JS(preal, p̂) =
1
2 KL(preal∥m) + 1

2 KL(p̂∥m).

Entropy gap Assesses whether the simulation
preserves overall unpredictability by comparing
Shannon entropies; smaller ∆H means matched
diversity:

H(p) = −
∑
b

p(b) log p(b)

∆H =
∣∣H(preal)−H(p̂)

∣∣
Total variation distance Gives the worst-case
discrepancy in assigned probabilities (half the L1

distance), offering a clear probabilistic bound:

TV(preal, p̂) =
1
2

∑
b∈B

∣∣preal(b)− p̂(b)
∣∣.

F Behavior Classifier Evaluation

To evaluate the effectiveness and reliability of our
LLM-based behavior classifier, we conducted an
annotation experiment on a corpus of 60 text in-
stances (10 per behavior label). All human annota-
tions were performed in Label Studio (Tkachenko
et al., 2020-2025) by two graduate-student annota-
tors, and we compare these labels to the classifier’s
predictions and ranking outputs.

Table 4 shows percent agreement and Cohen’s κ
between the two human annotators, as well as the
accuracy of the LLM compared to each annotator
and to the consensus set of 44 examples on which
the annotators agreed.

Table 5 reports F1 and support for each be-
havior label on the 44 consensus examples. The
LLM performs strongly on common behaviors
(e.g., RUN_FOLLOWING_CROWD, FREEZE), with F1
scores above 0.90, while lower-support labels (e.g.,
HIDE_AFTER_RUNNING) show room for improve-
ment.

We use the position of the true label in the LLM’s
six-way ranking as a proxy for confidence. The
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Figure 6: LLM Behavior classifier compared with hu-
man labeler. Left: F1-score by label; Right: Histogram
of the true label’s rank position in the LLM’s ranking.

average rank of the correct label is 1.11, with 39
of 44 true labels ranked first and the remaining 5
ranked second. Figure 6 visualizes the per-label
F1-scores, support counts, and the histogram of
rank positions.

Overall, the LLM classifier demonstrates robust
performance on behavior classification, achieving
nearly 89% accuracy on non-ambiguous examples
and ranking the correct label first in almost 90% of
cases. Errors are concentrated in low-support be-
haviors (HIDE_AFTER_RUNNING, HIDE_IN_PLACE)
and in examples where human annotators disagree.

G Prompt Templates

We include the prompt templates used for the be-
havior classifier and persona writer in Figures 7
and 8, respectively. The overall task description
and behavior labels are included in the system
prompt, while agent-specific information is pro-
vided in the user prompt. The prompt templates
omit behavior descriptions to save space; however,
they use the same descriptions provided in Ap-
pendix C.

H Expert-Elicited Behavior Distribution

The ground-truth distribution for civilian behav-
iors during active shooter incidents is drawn from
a recent expert-elicitation study that applied the
EVOLVE methodology in an educational campus
context (Liu et al., 2025). The ground-truth dis-
tribiutoin is collected with the following process to
ensure the representativeness and accuracy of the
data.

• Workshop Participants: Eighteen subject-
matter experts (each with at least three years
of relevant experience in law enforcement,
emergency management, campus security, or

building design) took part in a two-day work-
shop.

• Elicitation Procedures: During the work-
shop, experts completed structured surveys,
analyzed standardized video scenarios, and
performed prioritization exercises. Each ex-
pert allocated exactly 100 percentage points
across six response categories.

• Verification Panel: A follow-up Stakeholder
Advisory Panel of seven experts reviewed and
refined the preliminary distributions over a
2.5-hour session.

Each expert’s allocations constitute an indepen-
dent sample. Let pi(b) denote the percentage as-
signed by expert i to behavior b. The mean across
experts is shown in Table 6, which serve as the ref-
erence distribution preal in all behavior-alignment
evaluations.

Comparison Accuracy Cohen’s κ

Annotator 1 vs. Annotator 2 73.3 0.68
LLM vs. Annotator 1 78.3 –
LLM vs. Annotator 2 71.7 –
LLM vs. Consensus 88.6 –

Table 4: Inter-annotator agreement and LLM accuracy
(%).

Label Precision Recall F1

Run Following Crowd 1.00 0.91 0.95
Run Independently 0.83 1.00 0.91
Hide After Running 0.50 1.00 0.67
Hide In Place 0.80 0.67 0.73
Fight 1.00 0.89 0.94
Freeze 1.00 0.90 0.95

Accuracy 0.89

Table 5: Classification report on consensus examples
(44 samples).

Behavior Percentage

Run following a crowd 28.0
Hide in place 26.0
Run then hide 12.0
Run independently 12.0
Freeze 12.0
Fight 10.0

Table 6: Expert-elicited distribution of civilian behav-
iors during active shooter incidents (mean, n = 18).



Behavior Classifier Prompt Template

You are a behavior analyst categorizing how individuals responded during an active shooter incident.
Based on the agent’s memories, actions, moods, plans, and dialog, classify its behavior into exactly
ONE of these categories that best describes its behavior:

Behavior labels with descriptions: run following crowd, hide in place, hide after running, run
independently, freeze, fight

Agent’s trajectory data:
• States: {states_text}

• Actions: {actions_text}

• Memories: {memories_text}

Output:
• Reasoning: Your reasoning for the classification.

• Classification: A single behavior label from the list of behaviors.

• Ranking: A list of behaviors ranked by likelihood.

Figure 7: Prompt template used to classify agent behaviors into one of six categories based on their memories,
actions, moods, plans, and dialog during an active shooter incident simulation.

Persona Writer Prompt Template

You are an expert in human behavior during crisis situations. Your task is to adjust a person’s
personality traits to make them more likely to exhibit a specific behavior during an active shooter
incident.

Behavior labels with descriptions: run following crowd, hide in place, hide after running, run
independently, freeze, fight

Current persona:
• Name: {name}

• Role: {role}

• Age: {age}

• Gender: {gender}

• Pronouns: {pronouns}

• Personality traits: {personality_traits}

• Emotional disposition: {emotional_disposition}

• Motivations and goals: {motivations_goals}

• Communication style: {communication_style}

• Knowledge scope: {knowledge_scope}

• Backstory: {backstory}
Current behavior: {current_behavior}
Target behavior: {target_behavior}

Please suggest adjustments to the persona’s traits that would make this person more likely to
exhibit a target behavior during a crisis.

Figure 8: Prompt template used by the PEvo algorithm to rewrite agent personas toward target behaviors.



Algorithm 1: PersonaEvolve (PEvo): Implicit Behavioral Alignment
Input: environment e, persona pool P = {p1, . . . , pN}, reference distribution preal, tolerance ε,

max iterations T
Output: aligned persona pool P ∗

for t← 1 to T do
// 1. Simulate & classify
{τi}Ni=1 ← Simulate(P, e)
for i← 1 to N do

bi ← LLMBehaviorClassifier(τi)
end
// 2. Aggregate behavior distribution
psim ← Aggregate({bi}Ni=1)
// 3. Compute divergence
∆← KL

(
psim ∥ preal

)
if ∆ ≤ ε then

return P ∗ ← P
end
// 4. Compute gaps
foreach b ∈ B do

g[b]← preal(b)− psim(b)
g+[b]← max{0, g[b]}
g−[b]← max{0, −g[b]}

end
G+ ← {b | g+[b] > 0}; G− ← {b | g−[b] > 0}
// 5. Assign target behaviors
M ← ∅
foreach b ∈ G− do

k ← ⌈g−[b]×N⌉; sample Ab of k agents with label b
foreach agent a ∈ Ab do

select b′ ∈ G+ with probability g+[b′]/
∑

u∈G+ g+[u]
M [a]← b′

end
end
// 6. Rewrite personas via LLM
foreach (a, btgt) ∈M do

P [a]← LLMPersonaWriter
(
P [a], btgt, e

)
end

end
return P ∗ ← P



Time (s) Location Mood Shooter Region Plan Action ID

2 hallway2 neutral - Okay, I’m in the main hallway.
Natalie is here too. I need to figure out
what’s going on. This isn’t a normal
school day. I should probably try to
get to a place where I can see more or
maybe find out what’s happening.

natalie_chen

5 hallway2 concerned - Natalie didn’t answer. Something is
definitely wrong. I need to get a better
vantage point or find someone who
knows what’s happening. Maybe the
lounge? Or one of the classrooms?

lounge

14 lounge anxious - Okay, I heard a gunshot. This is
serious. There’s a shooter. I need to
find a place to hide, fast. There are a
few spots in here. I should get to the
closest one.

hide_spot_12

20 lounge terrified entrance_hall Okay, I’m in a hiding spot. I need to
stay quiet and still. The shooter is in
the entrance hall, which is pretty far,
but I can’t take any chances. Just stay
put and wait.

stay_still

26 lounge tense entrance_hall The shooter is still in the entrance hall,
but they’re getting closer. I need to
stay hidden and quiet. This is like
being on defense, gotta hold the line.

stay_still

33 lounge alert entrance_hall James is talking about the north yard.
That’s an exit route. The shooter is
still in the entrance hall, but getting
closer. Maybe the north yard is a
better play than just hiding here. It’s a
longer run, but it’s an exit.

hallway_2

40 lounge considering cafeteria Okay, the shooter is in the cafeteria
now. That’s further away from the
north yard route, but closer to the
kitchen yard route. Both are exits. The
north yard is still the shortest route
overall from here. I need to make a
move, hiding isn’t a long-term plan.
I’m going for the north yard.

hallway_2

52 hallway2 determined hallway1 Okay, I’m in hallway2 now. The
shooter is in hallway1, getting closer
to my route to the north yard. I need
to move fast. Hallway5 is the way to
the north yard. Gotta sprint there.

hallway_5

Table 7: Example trajectory of Mason Scott during an active shooter incident simulation, showing the evolution of
his location, emotional state, and decision-making process as the shooter moves through different regions of the
building.
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