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ABSTRACT

Depression is one of the most prevalent mental health disorders globally. In recent
years, multi-modal data, such as speech, video, and transcripts, has been increas-
ingly used to develop AI-assisted depression assessment systems. Large language
models have further advanced this field due to their strong language understanding
and generalization capabilities. However, conventional LLMs remain text-centric
and cannot process the rich non-verbal cues found in audio and visual modalities,
which are critical components in mental health evaluation. While multi-modal
LLMs offer a promising direction, few are tailored for psychological applications.
In this study, we propose a novel multi-modal LLM framework for depression de-
tection. Our approach augments an audio language model with visual understand-
ing and aligns audio-visual features at the timestamp level. This fine-grained align-
ment improves modeling of temporal dynamics across modalities while reducing
the need for extensive training data and computational resources. Experiments
on the DAIC-WoZ dataset demonstrate that our model outperforms both single-
modality approaches and previous multi-modal methods. Moreover, the proposed
framework can be extended to incorporate additional physiological signals, paving
the way for broader clinical applications beyond mental health.

1 INTRODUCTION

Depression has emerged as a critical concern in the field of mental health, affecting a broad pop-
ulation across various age groups. Particularly, the incidence of depression among adolescents has
surged over the past decade, raising significant social and public health concerns (Thapar et al.,
2022). Diagnosing and treating depression often entails substantial labor and financial costs for
both families and healthcare systems. With the advancement of natural language processing (NLP),
increasing attention has been given to automated approaches for depression detection, reducing hu-
man intervention. Large language models (LLMs) have demonstrated remarkable capabilities across
a wide array of NLP tasks (Naveed et al., 2023), which has sparked interest in their application to
mental health screening (Hengle et al., 2024; Xu et al., 2024). Despite their success, a fundamen-
tal limitation of conventional LLMs lies in their confinement to textual inputs, lacking the capacity
to interpret multi-modal signals such as speech and facial expressions that are also indicative of
depressive symptoms (Koops et al., 2023; Krause et al., 2021).

Multi-modal data, including acoustic and visual cues, can significantly enhance the accuracy of de-
pression detection. Prior studies have shown that individuals at high risk of depression often exhibit
reduced facial expressiveness, diminished vitality, and weakened responses to external stimuli such
as decreased eye contact (Perez & Riggio, 2003; Waxer, 1974). Similarly, specific acoustic features,
such as monotonous tone, slow speech rate, disfluency, and low vocal energy, have been linked to
depressive states (Koops et al., 2023). These behavioral signals offer valuable complementary infor-
mation beyond what can be derived from text alone. Multi-modal large language models (MLLMs)
offer an ideal solution to the integration of text and multi-modal data, which shows great promise in a
lot of downstream tasks (Zhang et al., 2024a). However, current MLLMs face several limitations that
hinder their application to depression detection. First, depression detection relies heavily on tempo-
ral data such as audio and video, yet most existing MLLMs are limited to static images (Caffagni
et al., 2024). Furthermore, due to the relatively small size of depression-related datasets compared to
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Figure 1: The training scheme of the proposed multi-modal LLM for depression detection.

standard NLP corpora, developing MLLMs for this domain demands careful consideration of model
complexity to mitigate overfitting and ensure training efficiency.

To address these limitations, we propose a simple yet effective framework that adapts a multi-modal
large language model for depression detection. Our method builds upon a pretrained audio language
model (ALM) and augments it with visual understanding capabilities, forming a truly multi-modal
system. This design leverages the shared temporal structure of audio and visual modalities, allowing
for the alignment at the timestamp level. By incrementally integrating visual modules into the ALM
with self-supervised visual pretraining and parameter-efficient fine-tuning (PEFT) (Hu et al., 2022),
our approach maintains the efficiency and modularity of the base model while enhancing its multi-
modal capacity. This strategy also reduces the number of trainable parameters and mitigates the
need for large-scale pretraining, making it efficient in data usage and computational requirements.
Experiments on the public depression detection dataset, DAIC-WoZ, confirm the effectiveness of
our approach, highlighting its potential for practical applications in mental health assessment.

In summary, the contributions of this work consist of the following aspects:

• We develop a multi-modal large language model for depression detection based on the
Qwen2-Audio (Chu et al., 2024) model by integrating a self-supervised vision encoder
with parameter-efficient fine-tuning. To the best of our knowledge, this is the first study
to propose multi-modal depression detection using LLM across text, audio, and video
modalities;

• We implement a timestamp-level alignment strategy that enables fine-grained temporal fu-
sion across modalities. This design leverages the inherent temporal characteristics of both
audio and video signals, enhancing the model’s capacity to capture subtle behavioral cues
indicative of depression.

• We validate our approach by the comparison with single-modality methods and previous
LLM-based state-of-the-art methods on the DAIC-WoZ database (Gratch et al., 2014). The
experimental results demonstrate that our approach yields superior performance at a smaller
model scale (7B versus 13B), compared with pioneering multi-modal LLMs.

2 RELATED WORKS

2.1 AUTOMATED DEPRESSION DETECTION

Deep learning has been widely adopted for automated depression detection using speech, text, and
video modalities. Earlier works focused on single modality, such as self-supervised speech mod-
els (Wu et al., 2023), hierarchical acoustic representations (Chen et al., 2022), or mobile speech
data (Kim et al., 2023). Visual features like facial expressions and eye movements have also shown
promise, with methods leveraging weakly supervised learning (Shangguan et al., 2022), gaze pat-
terns (Zheng et al., 2024), and combined facial-gaze analysis (Stolicyn et al., 2022). Recent studies
have explored multi-modal fusion to capture richer cues, incorporating audio, video, and text (Zhang
et al., 2024c; Shen et al., 2022; Xue et al., 2024). However, most rely on late fusion strategies with-
out joint pretraining, limiting their ability to fully exploit temporal and semantic correlations across
modalities.
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2.2 LARGE LANGUAGE MODELS IN DEPRESSION

Large language models have been applied to depression detection due to their strong ability to model
long-range dependencies in dialogue, which is an essential feature for analyzing clinical interviews.
For example, Liu et al. (Liu et al., 2023b) introduced ChatCounselor, which leverages LLMs to as-
sess depressive symptoms and provide mental health support. Other studies have employed LLMs
to analyze social media content; Hengle et al. (Hengle et al., 2024) constructed a benchmark for
depression-stress classification from online posts, while Xu et al. (Xu et al., 2024) used LLMs to in-
fer depression status from various web-based sources. Recent efforts have extended LLMs to multi-
modal settings for improved diagnostic accuracy. Sadeghi et al. (Sadeghi et al., 2024) combined
LLMs with facial expression analysis to estimate depression severity, and Zhang et al. (Zhang et al.,
2024b) incorporated acoustic landmarks into LLMs to build an audio-text model for depression de-
tection. While these approaches demonstrate the potential of LLMs in mental health applications,
they remain limited to textual inputs or approximations thereof (e.g., acoustic landmarks). The in-
ability to directly process rich multi-modal signals restricts their overall effectiveness.

2.3 MULTI-MODAL LARGE LANGUAGE MODELS

Integrating textual inputs with audio and visual modalities represents a major advancement in the
development of generative AI. The fusion of LLMs with visual encoders has enabled impressive
performance on tasks such as visual dialogue, visual question answering, and image captioning (Liu
et al., 2023a; Zhu et al., 2023; Dai et al., 2023; Wang et al., 2024; Lu et al., 2024). Similarly, audio
language models have emerged to jointly process speech and text. For instance, Chu et al. (Chu et al.,
2024) introduced Qwen2-Audio, extending the Qwen2-7B backbone (Qwen et al., 2025), while Ding
et al. (Ding et al., 2025) proposed Kimi-Audio, which incorporates both discrete acoustic tokens
and continuous audio embeddings into an LLM framework. Despite their success, these models
are generally not well-suited for mental health applications due to substantial domain gaps in both
training data and pretraining objectives. Moreover, most vision-language models lack the capacity
to handle continuous video input, further limiting their applicability to tasks such as depression
detection, where temporal visual cues are crucial.

3 METHOD

3.1 OVERVIEW OF THE FRAMEWORK

We propose a multi-modal large language model (MLLM) for depression detection, constructed
upon a pretrained audio language model (ALM) as the backbone. As depicted in Figure 2, the frame-
work consists of three key components: (1) an audio encoder that processes raw audio signals and
extracts temporal embeddings; (2) a visual encoder that receives video frames and produces visual
embeddings aligned with the audio stream at the timestamp level; (3) a large language model that
integrates the audio-visual features along with textual inputs to perform depression classification.

The training process is divided into three sequential stages. First, the visual encoder is pretrained
using a self-supervised learning strategy inspired by masked autoencoders (He et al., 2022), which
enhances its capacity to capture rich visual representations. In the second stage, the visual encoder
is fine-tuned on a contrastive alignment task designed to match visual and audio embeddings at the
utterance level, thereby improving cross-modal temporal synchronization. Finally, the projection
layer and LLM are trained using parameter-efficient fine-tuning (PEFT) techniques to effectively
incorporate the visual modality while minimizing additional computational overhead.

3.2 MODEL COMPONENTS

3.2.1 AUDIO LANGUAGE MODEL

We adopt Qwen2-Audio (Chu et al., 2024) as the foundation of our framework. This model integrates
Whisper-large-v3 (Radford et al., 2023) as the audio encoder and Qwen2-7B as the language model.
The audio encoder processes raw waveforms resampled to 16 kHz and converts them into 128-
channel Mel-spectrograms, with each frame representing a 10 ms segment. These spectrograms
are subsequently downsampled via strided convolutions and average pooling, resulting in encoder
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Multi-Modal Token
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Interviewer: What's the hardest thing about being a parent?
Participant: You worry all the time you worry for 'em.
……
Interviewer: When was the last time that happened?
Participant: I saw my children about a week ago.

Figure 2: The framework of the proposed multi-modal large language model. The model includes
an audio encoder, a visual encoder, and an LLM for detection.

outputs where each frame corresponds to a 40 ms segment of the original waveform. To ensure the
universality of our method, we retain the pretrained weights of Qwen2-Audio throughout the initial
stages and apply PEFT-based adaptation only in the final training phase. Notably, our framework is
modular and can be extended to other audio language models, provided their audio encoders output
sequences aligned with fixed temporal intervals.

3.2.2 VISUAL ENCODER

The visual encoder is designed to extract visual embeddings that align temporally with the audio
encoder outputs. To ensure architectural compatibility and ease of alignment, its design mirrors
the Whisper encoder, comprising a strided convolutional embedding layer, a stack of Transformer
encoder layers, and an output average pooling layer. Initially, visual features are resampled to match
the temporal resolution of the audio Mel-spectrograms and are projected into the embedding space
via 1D convolutions. This embedding process includes striding, reducing the temporal resolution to
20 ms per token. The resulting features are then processed by the Transformer layers and further
downsampled through average pooling to match the final 40 ms resolution of the audio encoder
outputs. As a result, both audio and visual embeddings are temporally synchronized, as illustrated
in Figure 3.

3.2.3 AUDIO-VISUAL PROJECTION

After obtaining audio and visual embeddings, the next step is to fuse them into a unified represen-
tation for input into the LLM. While a common fusion strategy involves concatenating modality
embeddings along the sequence dimension (Xu et al., 2025), this approach is suboptimal for inte-
grating new modalities into pretrained LLMs, as it disrupts the expected sequence length and can
interfere with positional encoding. To preserve compatibility with pretrained LLMs, we propose a
simple yet effective fusion method—element-wise addition of audio and visual embeddings, which
is illustrated in Figure 2. This is feasible due to our explicit timestamp-level synchronization, ensur-
ing both sequences share the same temporal structure. Moreover, our three-stage training strategy
progressively aligns the modalities, enabling effective fusion without representation collapse.

3.3 TIMESTAMP-SYNCHRONIZED DATA AUGMENTATION

Depression corpora typically consist of participant–interviewer interviews, which present two chal-
lenges: (1) severe class imbalance, as healthy controls far outnumber depressed individuals, and
(2) limited data volume, despite long session durations. To alleviate these issues, we adopt subdia-
logue shuffling based on Wu et al. (2023), segmenting lengthy interviews into shorter, contiguous
exchanges. This increases sample size per participant and enables flexible resampling for class bal-
ancing.

Building on Wu et al. (2023), we enhance the method by ensuring timestamp alignment across
transcript, audio, and visual modalities. Each subdialogue is constrained to start with an interviewer’s
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Figure 3: The scheme of utterance-level audio-
visual alignment. Audio and visual inputs are
strided simultaneously, ensuring synchronization
on timestamps.

utterance and end with the participant’s re-
sponse, maintaining contextual coherence and
narrowing the domain gap between LLM pre-
training and depression detection. We then dis-
card interviewer audio and corresponding vi-
sual frames, retaining only participant seg-
ments, while preserving interviewer transcripts.
This choice reflects two considerations: in-
terviewer speech carries little acoustic value
for mental state assessment, yet their utter-
ances are essential for conversational coher-
ence. Although removing interviewer segments
inevitably discards some multimodal informa-
tion, the trade-off between information reduc-
tion and coherence is analyzed in Section 4.3.3.
Further augmentation details are provided in
the Appendix.

3.4 TRAINING

The training pipeline of our framework is di-
vided into three sequential stages, as shown in
Figure 1. The first two stages focus on train-
ing the visual encoder, while the final stage in-
volves fine-tuning the LLM.

3.4.1 SELF-SUPERVISED VISUAL PRETRAINING

To enhance the visual representation capability of the encoder, we first conduct self-supervised pre-
training. Instead of learning directly from raw video data, we opt to pretrain on pre-extracted visual
features, as raw video files may contain sensitive content and are often unavailable in commonly
used depression-related corpora. This not only addresses potential privacy concerns but also reduces
computational overhead, making the approach more generalizable to other time-series modalities
such as physiological signals (e.g., rPPG and ECG).

Inspired by the masked autoencoder (MAE) framework (He et al., 2022), we design a reconstruction
task where the encoder learns to recover masked portions of the input time series. Specifically, given
a sequence input x = (x1, x2, ..., xT ) ∈ RT×d, we randomly mask K frames of the input and use
a learnable token xmask ∈ Rd shared across all masked frames. The indices for masked tokens
are denoted as M, and the indices for unmasked tokens are denoted as V . Obviously V ∪ M =
{1, 2, . . . , T}. The unmasked sequence xin = {xi|i ∈ V} ∈ RK×d are fed to the visual encoder to
acquire the latent representation h ∈ RT−K×d. Then, the latent representation h and masked frames
are concatenated together to acquire the input sequence z ∈ RT×d, which are fed to the decoder to
obtain the reconstructed input sequence x̂ ∈ RT×d. The objective is to minimize the mean squared
error (MSE) between the reconstructed and original sequences within the masked regions:

min
1

|M|
∑
i∈M

||x̂i − xi||22 (1)

This approach allows the model to capture temporal dependencies and improve robustness in down-
stream tasks.

3.4.2 UTTERANCE LEVEL AUDIO-VISUAL ALIGNMENT

After the visual pretraining in the first stage, the visual encoder is enabled to extract visual embed-
dings from input visual feature sequences for downstream tasks. However, the visual comprehension
of the visual encoder is not aligned with the audio encoder. To reduce the training gap between both
encoders, we design a proxy downstream task with contrastive learning to align the visual encoder
with the audio encoder at the utterance level. As illustrated in Figure 3, we add a projection layer to
each encoder, respectively, and pool the outputs in the time dimension to obtain the utterance level
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representations. Given a mini-batch of audio outputs ha ∈ RN×d and visual outputs hv ∈ RN×d,
where N denotes the batch size, we obtain a similarity matrix Sim = hah

T
v ∈ RN×N . The learn-

ing objective is to find the correct match of each audio-visual pair for utterance level audio-visual
alignment:

minLce(Sim/tau, IN ) (2)

where Lce denotes cross-entropy loss, IN denotes the identity matrix, and τ is the temperature
parameter.

During this stage, we freeze the entire audio encoder and the lower layers of the visual encoder to
preserve the representations learned in the initial stage. Only the upper layers of the visual encoder
receive gradient updates, ensuring stability and preventing catastrophic forgetting.

3.4.3 MULTI-MODAL INSTRUCTION TUNING

In the final stage, we integrate the pretrained visual encoder with the audio language model to con-
struct a multi-modal large language model tailored for depression detection, which is illustrated in
Figure 2. Since traditional LLMs are not inherently designed to process visual information, addi-
tional instruction tuning is required to adapt the model to this task. We employ Low-Rank Adapta-
tion (LoRA) (Hu et al., 2022) to update the parameters of both the LLM and the modality projection
layer. As audio and visual features have been temporally synchronized and aligned at the utterance
level in previous stages, the complexity of cross-modal fusion is substantially reduced.

3.5 MULTI-SCALE SLIDING-WINDOW INFERENCE

Since our model is trained on subdialogues rather than entire conversations, we adopt a multi-scale
sliding-window inference strategy to derive a final prediction for each full conversation. This ap-
proach aggregates predictions from multiple subdialogue segments extracted at different temporal
scales. Specifically, for each conversation, we generate a fixed number (200) of subdialogues at three
predefined durations: 30s, 75s, and 120s. This multi-scale design ensures that each temporal reso-
lution contributes equally to the final decision, capturing both short-term and long-term behavioral
cues. The overlap between adjacent subdialogues is dynamically adjusted based on the conversa-
tion length and the total number of segments per setting. Each time-scale configuration yields an
independent conversation-level prediction, and the final prediction is determined by majority voting
across the three settings.

4 EXPERIMENTS

4.1 DATABASE AND IMPLEMENTATION DETAILS

We utilize the DAIC-WoZ database (Gratch et al., 2014), one of the most popular datasets for depres-
sion detection, to develop and evaluate our proposed multi-modal LLM in depression detection. The
DAIC-WoZ database contains interview transcripts, speech records, and visual features from 189
participants, including healthy controls and depression cases. The golden labels of the dataset are
based on PHQ-8 scores, where a PHQ-8 score higher than 10 is recognized as a depressed case. The
training set contains 107 participants, 30 of whom are labeled as depressed, while the development
set contains 35 participants, 12 of whom are labeled as depressed. Following our previous works (Wu
et al., 2023; Zhang et al., 2024b), we report the evaluation results on the development set for compar-
ison. In addition to the training set and development set, we also evaluated our method on the test set,
where 14 out of the 47 subjects are labeled as depressed. For timestamp-synchronized data augmen-
tation, we set the maximum length of each subdialogue to 120 seconds, generate 1,000 subdialogues
per conversation with depression, which achieves a trade-off between data diversity and the risk of
overfitting. The visual features generated by data augmentation are utilized for self-supervised vi-
sual pretraining and utterance level audio-visual alignment. Then the augmented transcripts, audio
clips, and visual features are used for multi-modal instruction finetuning. Our multi-modal LLM for
depression detection is developed on Qwen2-Audio-7B-Instruct model. We utilize 2 NVIDIA H200
141G GPUs during training. The detailed training hyperparameters have been demonstrated in the
Appendix.
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4.2 RESULTS

We compare our methods with previous methods, including single-modal approaches, conventional
multi-modal approaches, and multi-modal LLMs, on both the development set and test set of the
DAIC-WoZ database. The detailed comparison results are illustrated in Table 1, Table 2, and Table
3, respectively. Following previous works, we adopt the F1 score for evaluation.

Modality Models F1

Text

RoBERTa 2022 0.602
Llama2-7B 2024b 0.578
Llama2-13B 2024b 0.636
Qwen2-7B 2024 0.564
GPT4 2024b 0.571

Audio

HuBERT 2023 0.640
WavLM 2023 0.720
SpeechFormer 2022 0.694
SpeechFormer++ 2023 0.709
Whisper-v3 2023 0.694

Video GSM 2016 0.530
SSL + CLS 0.668

A+T
AudiBERT 2021 0.709
TOAT 2022 0.741
LSTM 2018 0.770

A+T+V
C-CNN 2018 0.769
ConvBiLSTM 2022 0.70*
Ours w/o MS 0.789
Ours 0.844

Table 1: The performance compar-
ison of our method and other ap-
proaches on DAIC-WoZ develop-
ment set. “*” denotes that the origi-
nal results are reported with 2 sig-
nificant digits. “MS” denoting the
multi-scale strategy in our infer-
ence.

Evaluation on DAIC-WoZ Dev Set We present a compre-
hensive comparison between our proposed multi-modal LLM
and previous methods on the DAIC-WoZ development set in
Table 1. Additionally, we evaluate the contribution of each in-
dividual module in our framework, including the Qwen2-7B
model, the Whisper-v3 audio encoder, and a self-supervised
vision encoder. Overall, our multi-modal model achieves su-
perior classification performance on the development set of
the DAIC-WoZ dataset, consistently outperforming all single-
modality baselines.

Text-based models show that Llama2-13B (Touvron et al.,
2023; Zhang et al., 2024b) performs best among text-only
models, likely due to its larger parameter scale. Among
smaller models, Qwen2-7B and Llama2-7B exhibit similar
performance but fall short of the 13B variant. Interestingly,
GPT-4, despite its scale and zero-shot capabilities, underper-
forms relative to Llama2-13B. Likewise, RoBERTa surpasses
GPT-4 despite its significantly smaller size as well. A simi-
lar phenomenon has been observed in Zhang et al. (2024b).
This performance gap may be attributed to the nature of de-
pression detection, which emphasizes representation learn-
ing over generative modeling, making encoder-based models
more suitable.

Audio-based models generally outperform text-only models,
suggesting that acoustic cues carry richer information for de-
tecting depressive symptoms. In addition, the performance of
audio models could benefit from downstream tasks such as speech recognition or emotion recog-
nition (Wu et al., 2023). Notably, WavLM fine-tuned for emotion recognition shows superior per-
formance, surpassing even Whisper-v3-large. This suggests that tasks closely related to depression,
such as emotion recognition and ASR, provide transferable knowledge useful for this application.

For video models, our finetuned visual encoder with a classification head achieves the best perfor-
mance. The main factor that could affect video-based models is the choice of visual feature sets.
Since raw videos are not available at the DAIC-WoZ database, only facial feature sets, such as land-
marks and action units, are available for depression detection. As the feature set could be rather
redundant, the performance of video models could even deteriorate if the feature set selection is
inappropriate. Self-supervised pretraining alleviates the issue significantly, as masked autoencoders
are designed for images, which possess a redundant nature, and are suitable in our scenario.

Multi-modal approaches that incorporate both audio and text, or integrate all three modalities, gen-
erally outperform single-modal baselines. In particular, the inclusion of audio features often leads
to significant performance improvements, highlighting the importance of acoustic information in
depression detection. Compared with other multi-modal methods, our proposed framework consis-
tently achieves superior results, demonstrating the effectiveness of timestamp-level alignment and
the synergy of modality-specific encoders in capturing clinically relevant cues.

Comparison with Multi-Modal LLMs Table 2 presents the performance comparison between
our method and existing multi-modal LLMs. Together with Table 1, the results demonstrate that
incorporating audio significantly enhances the classification performance of LLMs. For instance,
augmenting Llama2-13B with acoustic landmarks improves its F1 score from 0.636 to 0.695. A
similar trend is observed with Qwen2-7B, where the inclusion of audio elevates the F1 score from
0.578 to 0.720. Our proposed multi-modal framework, which jointly models text, audio, and vi-
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sual signals, achieves the highest F1 score of 0.789, validating the benefit of integrating visual
cues alongside audio and language inputs. This underscores the advantage of leveraging comple-
mentary modalities for capturing the complex and multi-faceted nature of depressive symptoms.

Model Base Model F1

Acoustic LLM
(Zhang et al., 2024b)

7B 0.545
7B-Chat 0.500

13B 0.695
13B-Chat 0.666

Qwen2-Audio
(Chu et al., 2024)

7B 0.650
7B-Instruct 0.720

Ours w/o audio 7B 0.617
7B-Instruct 0.643

Ours 7B 0.709
7B-Instruct 0.789

Table 2: The performance compari-
son of our method and multi-modal
LLMs on DAIC-WoZ development
set. Note that for fair comparison we
do not employ model ensemble or
multi-scale inference.

Notably, both our approach and Qwen2-Audio variants out-
perform LLMs with acoustic landmarks, despite relying on
smaller language backbones (7B vs 13B). This suggests that
native multi-modal architectures might be more adept at
interpreting raw sensory inputs. While acoustic landmarks
serve as a lightweight representation of audio, they may omit
subtle prosodic or emotional cues that are preserved in the
original waveforms. In contrast, models trained end-to-end
on raw audio exhibit stronger modality comprehension and
more effective feature fusion.

Evaluation on DAIC-WoZ Test Set In addition, since the
golden labels of the DAIC-WoZ test set have been released,
we compare our method with previous state-of-the-art ap-
proaches on this benchmark. The quantitative results are pre-
sented in Table 3. It can be observed that single-modal ap-
proaches yield similar or slightly lower F1 scores on the test
set compared to their performance on the development set.
In contrast, a recent multi-modal approach that integrates au-
dio, video, and textual information (Jung et al., 2024) achieves significantly better results than single-
modal methods. Overall, our method outperforms both previous single-modal and multi-modal ap-
proaches on the test set, demonstrating its effectiveness and robustness.

Models Modality F1

GloVe-CNN (Campbell et al., 2022) Text 0.68*
TOAT (Guo et al., 2022) Audio 0.647

EmoAudioNet (Othmani et al., 2021) Audio 0.66*
HiQuE (Jung et al., 2024) A+T+V 0.79*

Ours A+T+V 0.825

Table 3: The performance comparison of our method and previous approaches on DAIC-WoZ test
set. “*” denotes that the original results are reported with 2 significant digits.

4.3 ABLATION STUDIES AND DISCUSSION

In this section, we analyze the source of performance gain in our framework, including the contribu-
tion of each modality and the selection of the base model. In addition, we discuss the effectiveness
of our proposed timestamp-synchronized data augmentation upon the removal of the interviewer’s
utterance and context length in subdialogues. The experiments are all conducted on the development
set of DAIC-WoZ.

4.3.1 THE CONTRIBUTION OF EACH MODALITY

We further investigate the individual contribution of each modality within our framework. As shown
in Table 1, both audio and video modalities enhance depression detection performance. The baseline
Qwen2-7B model achieves an F1 score of 0.564 using text alone. Introducing audio features leads
to a substantial improvement, raising the F1 score to 0.720. Further incorporation of video features
elevates the performance to 0.789. Additionally, our proposed multi-scale sliding-window strategy
contributes to model performance significantly, improving the F1 score to 0.844.

An interesting observation is that the addition of audio yields a greater performance gain compared
to the inclusion of video, in both instruction-tuned and pre-trained variants. This discrepancy can be
attributed to two primary factors. First, as pre-extracted visual features rather than raw video data are
utilized in our framework, the model may face information loss, leading to reduced expressive power.
Second, our model is fundamentally built upon an audio language modeling architecture. Removing
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audio embeddings may disrupt the alignment mechanism across modalities, thereby compromising
the model’s ability to integrate non-verbal cues effectively.

4.3.2 THE CHOICE OF BASE MODEL

Since both pretrained model and instruction-tuned model are available in Qwen2-Audio families,
we compare the performance of these two model variants as the base model. The results in Table
2 indicate that the instruction-tuned model provides higher detection performance. The findings in
our research are different from previous work (Zhang et al., 2024b), where instruction tuning leads
to significant performance deterioration compared with the pretrained model. The reasons for the
inconsistency could be the difference in instruction tuning in general LLMs and audio language
models. Depression detection involves the analysis of both audio and text; a similar task has been
used to finetune the model in instruction tuning. Thus, the instruction-tuned model could be better
at the audio analysis task.

4.3.3 THE EFFECT OF CONTEXT LENGTH AND INTERVIEWER UTTERANCE REMOVAL

Figure 4: The depression detection performance
on subdialogue length with or without inter-
viewer’s utterances.

The length of subdialogues plays a crucial role
in our framework, as longer contexts gener-
ally provide richer cues for depression detec-
tion. However, longer subdialogues do not nec-
essarily improve the performance for detec-
tion, as the audio records for the interviewer
do not contribute to the decision, but even in-
terfere with the depression detection. To ad-
dress this constraint, we propose to remove the
interviewer’s utterances during data augmenta-
tion, allowing more content from the partici-
pant to be retained within the fixed audio win-
dow. While this enhances the availability of
participant-specific acoustic cues, it also results
in the loss of visual information associated with
the removed segments. To explore this trade-
off, we conduct an ablation study under varying subdialogue lengths, as shown in Figure 4. When
the maximum subdialogue length is constrained to 30 seconds, removing the interviewer’s speech
leads to degraded performance. In this setting, the entire subdialogue can be encoded without trun-
cation, and discarding the interviewer’s turns causes unnecessary loss of visual cues, thus impairing
multi-modal inference. In contrast, as the subdialogue length increases beyond the model’s audio
capacity, the removal of interviewer utterances proves beneficial. By prioritizing participant speech
within the fixed input window, the model gains access to more relevant acoustic information, leading
to improved detection accuracy. However, when the context length becomes excessively long, the
performance gain diminishes. This is likely due to reduced dialogue diversity and increased risk of
overfitting, as longer subdialogues tend to be less variable.

5 CONCLUSION

In this study, we propose a multi-modal large language model for depression detection, built upon
audio-based language models and augmented with visual understanding capabilities. Experiments
on the DAIC-WoZ dataset demonstrate the superiority of our framework over existing multi-modal
LLMs. To our knowledge, this is the first work to develop a multi-modal LLM for depression detec-
tion that simultaneously integrates textual, audio, and visual modalities. We further provide detailed
analyses of how model design and data augmentation strategies affect performance. Overall, our
method offers an effective solution for adapting multi-modal LLMs to mental health applications,
with potential for broader extension to other domains.
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A IMPLEMENTATION DETAILS

Our framework is implemented using the HuggingFace transformers library with PyTorch 2.1. The
full hyperparameter configurations used during training are summarized in Table 4. We adopt the
AdamW optimizer (Loshchilov & Hutter, 2017) for model optimization. To improve training speed
without compromising performance, we enable TensorFloat32 (TF32) computation and apply auto-
matic mixed-precision training using BFloat16 (BF16). For parameter-efficient fine-tuning (PEFT)
of the Qwen2-Audio model on the depression detection task, we employ QLoRA (Dettmers et al.,
2023), which compresses the base model to 4-bit precision to reduce memory usage and improve
computational efficiency. The full training process requires approximately 90+ GPU hours on an
NVIDIA H200 141GB GPU. This includes around 40 hours for self-supervised visual pretraining,
20 hours for utterance-level audio-visual alignment, and 30 hours for multimodal instruction tuning.
Early stopping is applied in all stages when training loss plateaus.

Stage I Stage II Stage III

Optimizer AdamW
Learning Rate 1.5e-4 1e-6 3e-6

β1 0.9
β2 0.95 0.999

Weight Decay 0 0.001
Batch Size 128 64 8

Grad Accum Steps 8 16 8
Scheduler Cosine LR

Num Epochs 50 20 3
Warm Up Epochs 5 2 0.1
Max Grad Norm 1.0 0.5

BF16 True
TF32 True

Table 4: Training hyperparameters.

B DETAILS OF TIMESTAMP-SYNCHRONIZED DATA AUGMENTATION

Following the approach of Wu et al. (2023), we generate subdialogues from the original interview
transcripts to mitigate class imbalance and expand the size of the training set. In our data augmenta-
tion pipeline, we enforce strict synchronization among transcripts, audio, and video to ensure precise
timestamp-level alignment. However, due to varying frame rates across modalities, achieving syn-
chronization presents a technical challenge. For example, audio recordings are typically captured at
a 16,000 Hz sampling rate and later converted into Mel-spectrograms with a frame rate of 100 Hz,
while video recordings are collected at 30 frames per second (FPS). To address this discrepancy,
we constrain the start and end timestamps of each subdialogue to align with whole seconds (i.e.,
integer-second boundaries).

Additionally, we require each subdialogue to begin with an utterance from the interviewer and con-
clude with a response from the participant. This design choice ensures that each subdialogue forms
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Algorithm 1 Time-Sync Data Augmentation

1: N+ ← Number of positive samples in the training set
2: N− ← Number of negative samples in the training set
3: Set number of subdialogues per positive sample M+

4: Set minimum length of subdialogue in seconds dmin

5: Set maximum length of subdialogue in seconds dmax

6: M− = N−/N+ ×M+ ← Number of sub-dialogues per negative sample
7: for Dialogue X(n) = (Tn, An, V n), n = 1, 2, ..., N do
8: D ← Dialogue length in seconds
9: {εi} ← Interviewer utterance start timestamps

10: {εp} ← Participant utterance end timestamps
11: if X(n) is positive then
12: M ←M+

13: else
14: M ←M−

15: end if
16: for Sub-dialogue X(n)m, m = 1 to M do
17: Sample length d uniformly from (dmin, dmax)
18: Sample start timestamp ε′s ∈ {εi} from range (0, D − d)
19: Round the start timestamp to its closet integer second εs ← ⌊ε′s⌋
20: εtmp = εs + d← Raw end timestamp
21: Sample end timestamp ε′e ∈ {εp} and min |ε′e − εtmp|
22: Round the end timestamp to its closet integer second εe ← ⌈ε′e⌉
23: Generate subdialogue T (n)m ← T

(n)
εs:εe

24: Obtain the raw audio segment A′(n)m ← A
(n)
εs:εe

25: Obtain the raw visual segment V ′(n)m ← V
(n)
εs:εe

26: Remove the interviewer utterances A(n)m ← A′(n)m and V (n)m ← V ′(n)m

27: Subdialogue X(n)m = (T (n)m, A(n)m, V (n)m)
28: end for
29: end for

a complete and contextually coherent conversational unit, with a clear initiation and response struc-
ture. Such a constraint preserves the semantic continuity and logical flow within each segment,
making them more suitable for downstream tasks that rely on natural discourse patterns. Moreover,
this structure aligns with the training paradigm of large language models, which are typically pre-
trained on large-scale dialogue corpora. By maintaining this dialogue consistency, we enhance the
model’s ability to interpret the subdialogues effectively within a familiar conversational framework.

C THE PROMPT DESIGN FOR INSTRUCTION TUNING

During instruction tuning, we design a system prompt to guide the behavior of the language model.
Given that the Qwen2-Audio-Instruct model has been fine-tuned on audio analysis tasks, we adopt
a chat-based prompt template to elicit model responses. Notably, we use the same prompt design
for both the Qwen2-Audio family and our multi-modal LLM. This consistency is based on our
integration strategy, where visual embeddings are directly added to the audio embeddings without
modifying the model architecture. Therefore, we assume that the model can still function effectively
even without explicitly referencing visual information in the prompt.

System Prompt Below is a conversation between an interviewer and a
participant. Please analyze the transcripts and audio, and find
whether the participant is affected by depression.

Instructions Audio: {audio} \n Interview conversation: {transcripts}
\n Response: \n
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