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Abstract001

Parameter-Efficient Fine-Tuning (PEFT)002
methods, particularly Low-Rank Adaptation003
(LoRA), are indispensable for efficiently004
customizing Large Language Models (LLMs).005
However, vanilla LoRA suffers from slow006
convergence speed and knowledge forgetting007
problems. Recent studies have leveraged008
the power of designed LoRA initialization,009
to enhance the fine-tuning efficiency, or to010
preserve knowledge in the pre-trained LLM.011
However, none of these works can address012
the two cases at the same time. To this end,013
we introduce Subspace-Constrained LoRA014
(SC-LoRA), a novel LoRA initialization015
framework engineered to navigate the trade-off016
between efficient fine-tuning and knowledge017
preservation. We achieve this by constraining018
the output of trainable LoRA adapters in a019
low-rank subspace, where the context infor-020
mation of fine-tuning data is most preserved021
while the context information of preserved022
knowledge is least retained, in a balanced way.023
Such constraint enables the trainable weights024
to primarily focus on the main features of025
fine-tuning data while avoiding damaging the026
preserved knowledge features. We provide027
theoretical analysis on our method, and028
conduct extensive experiments including029
safety preservation and world knowledge030
preservation, on various downstream tasks.031
In our experiments, SC-LoRA succeeds in032
delivering superior fine-tuning performance033
while markedly diminishing knowledge034
forgetting, surpassing contemporary LoRA035
initialization methods.036

1 Introduction037

Fine-tuning effectively adapts large language mod-038

els to downstream tasks (Luo et al., 2025; Yu et al.,039

2024). Due to the high computational cost of full040

fine-tuning, parameter-efficient fine-tuning (PEFT)041

methods (Xu et al., 2023; Han et al., 2024) have042

been proposed to reduce the number of trainable043

parameters while maintaining good fine-tuning per- 044

formance. Among various PEFT methods, LoRA 045

(Hu et al., 2022) is a simple yet efficient approach 046

that introduces trainable low-rank adaptation mod- 047

ules for tuning. While LoRA offers significant 048

parameter efficiency, it has two important prob- 049

lems: (1) the convergence speed of the fine-tuning 050

process is relatively slow due to the noise and zero 051

initialization of adapter modules; (2) it potentially 052

leads to catastrophic forgetting problem (Goodfel- 053

low et al., 2015) as other fine-tuning methods do, 054

such as harming the world knowledge stored in pre- 055

trained LLMs (Yang et al., 2024), and degrading 056

the safety of aligned LLMs (Qi et al., 2024). 057

Recent works have found that carefully designed 058

initialization on LoRA adapters can solve these 059

problems. Meng et al. (2024) initializes LoRA 060

adapters by parts of Singular Value Decomposi- 061

tion (SVD) of original weight W0, leading to faster 062

convergence and improved performance by encap- 063

sulating the most significant information stored in 064

W0. Later works (Yang et al., 2024; Paischer et al., 065

2024) initialize LoRA weights based on semantic 066

information stored in the activations of each layer 067

on the target fine-tuning dataset. These data-driven 068

approaches successfully enhance the fine-tuning 069

speed and performance. Towards catastrophic for- 070

getting problem in LoRA fine-tuning, Yang et al. 071

(2024) proposes to initialize LoRA weights by 072

the least principal directions of world knowledge 073

data features, successfully alleviating the forgetting 074

problem. However, these works can only solve ei- 075

ther side of the two problems, but do not consider 076

the trade-off between enhancing fine-tuning per- 077

formance and preserving pre-trained knowledge, 078

which is a common need when doing parameter- 079

efficient fine-tuning. 080

In this paper, we introduce Subspace- 081

Constrained LoRA, a balanced LoRA scheme that 082

achieves both better fine-tuning results and good 083

preservation of knowledge in LLMs. Specifically, 084
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we compute directions of linear layer output that085

align with the principal directions of fine-tuning086

data and at the same time are orthogonal to the087

principal directions of preserved knowledge. These088

directions are then used to initialize the adapter089

weights, constraining the output vectors (of each090

adapter layer) in a subspace spanned by these091

directions. This constraint intuitively makes the092

updating terms to focus on the fine-tuning data093

information, while avoiding affecting the preserved094

knowledge. By extensive experiments, we verify095

that by such constraint on balanced directions,096

our method achieves both efficient fine-tuning097

and excellent knowledge preservation, solving the098

problems that previous methods cannot address. In099

conclusion, our contribution includes:100

1. We propose SC-LoRA, a balanced LoRA101

scheme that can achieve efficient fine-tuning102

and knowledge preservation at the same time,103

which previous methods cannot handle.104

2. We provide theoretical proofs to explain our105

strategies, including analysis on subspace se-106

lection and initialization setting.107

3. We conduct extensive experiments regarding108

both safety preservation and world knowledge109

preservation on various downstream tasks,110

verifying the effectiveness of our method.111

2 Related Work112

Parameter-Efficient Fine-Tuning (PEFT).113

Modern large language models (LLMs) with bil-114

lions of parameters face significant computational115

and memory challenges during full-parameter fine-116

tuning on downstream tasks, motivating the devel-117

opment of Parameter-Efficient Fine-Tuning (PEFT)118

methods that optimize only a small amount of pa-119

rameters while maintaining model performance120

(Xu et al., 2023; Han et al., 2024).121

Common PEFT approaches include partial fine-122

tuning (Ben Zaken et al., 2022; Bu et al., 2024) that123

only tune part of the parameters; soft prompt fine-124

tuning (Hambardzumyan et al., 2021; Lester et al.,125

2021), where trainable prompts are appended to126

inputs with model parameters frozen; adapter tun-127

ing (Houlsby et al., 2019; Lin et al., 2020; Rücklé128

et al., 2021; Karimi Mahabadi et al., 2021; Pfeif-129

fer et al., 2021; He et al., 2022; Wang et al., 2022;130

Lei et al., 2023) which inserts additional trainable131

layers into LLMs and fix the base model parame-132

ters; and LoRA(Hu et al., 2022; Aghajanyan et al.,133

2021), which decomposes weight updates into low- 134

rank matrices. Different from other approaches, 135

LoRA does not change the original model architec- 136

ture or incurring extra computational cost during 137

inference since the extra adapters can be merged 138

into original parameters. 139

LoRA Initialization. Multiple LoRA initializa- 140

tion methods have been proposed, with the aim 141

of improving training efficiency or obtaining other 142

abilities. 143

PiSSA (Meng et al., 2024) argued that the de- 144

fault initialization of “Gaussian noise (He et al., 145

2015) and zero” to the adapters can lead to slow 146

convergence. Hence they propose to apply singu- 147

lar value decomposition to original weight matri- 148

ces and utilizes the top components to initialize 149

LoRA, encapsulating the most significant infor- 150

mation stored in original weights. CorDA (Yang 151

et al., 2024) utilizes covariance matrices of data 152

context, and takes the first (or last) singular vectors 153

after context-oriented decomposition as initializa- 154

tion of LoRA adapters. They propose two different 155

modes, one for improving fine-tuning performance 156

and the other for mitigating world knowledge for- 157

getting. Similar to CorDA, EVA (Paischer et al., 158

2024) feeds fine-tuning data into the model, applies 159

sigular value decomposition to activation covari- 160

ance matrices, and takes top singular vectors as ini- 161

tialization weights. LoRA-GA (Wang et al., 2024b) 162

also utilizes data context but applies decomposition 163

on the gradient. Hayou et al. (2024) analyze the ini- 164

tialization of LoRA adapters, and have shown how 165

the asymmetry of two low rank matrices affects 166

training dynamics. 167

Harmful Finetuning Attack and Defense strate- 168

gies. To prevent potential misuse, LLMs usually 169

undergo specific training to align them with human 170

values before deployment (Ouyang et al., 2022; Bai 171

et al., 2022). Nevertheless, jailbreak attacks employ 172

carefully designed inputs to circumvent this align- 173

ment, with prominent methods including Greedy 174

Coordinate Gradient (GCG) (Zou et al., 2023), Au- 175

toDAN (Liu et al., 2023), and PAIR (Chao et al., 176

2023). Beyond these direct attacks, fine-tuning can 177

also undermine a model’s safety alignment, even 178

when non-harmful data is used (Qi et al., 2024; He 179

et al., 2024). 180

Consequently, researchers have developed var- 181

ious defense strategies against such fine-tuning 182

risks, generally falling into following approaches: 183

enhancing the original safety alignment (Huang 184
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et al., 2024c,a; Li et al., 2025a), restricting the185

gradient of fine-tuning parameters or the scope of186

trained residuals (Wei et al., 2024; Li et al., 2025b),187

mixing additional safety data (Wang et al., 2024a;188

Huang et al., 2024b), modifying the loss function189

(Qi et al., 2025) and post-fine-tuning processing190

(Yia et al., 2024; Hsu et al., 2024). Different from191

previous works, our method focuses on an alter-192

native approach of mitigating safety risks during193

fine-tuning by only modifying initialization, with-194

out mixing safety data during fine-tuning, append-195

ing prefix during inference time, or adding extra196

high-rank modules to the model - which would197

incur computation overhead either in training or198

inference time.199

World Knowledge Forgetting. Catastrophic for-200

getting (McCloskey and Cohen, 1989) is a phe-201

nomenon when models lose previously acquired202

knowledge when adapting to new tasks, and has203

been extensively studied in deep learning. Early204

approaches to solve the problem include knowl-205

edge distillation (Li and Hoiem, 2018), rehearsal206

(Riemer et al., 2019) and dynamic architectures207

(Yan et al., 2021). For large language models, pre-208

serving world knowledge remains challenging due209

to massive pre-training data and model size. Recent210

efforts mitigate forgetting by freezing pre-trained211

layers while introducing new adapters (Wu et al.,212

2024; Dou et al., 2024). Recently Yang et al. (2024)213

proposed CorDA with Knowledge-Preserved Adap-214

tation (KPA) mode, addressing world knowledge215

forgetting through LoRA initialization.216

3 Method217

Below, we first review the vanilla LoRA, and de-218

scribe our proposed SC-LoRA method.219

3.1 LoRA220

Following the hypothesis that the update of weight221

matrices presents a low rank structure (Aghajanyan222

et al., 2021), LoRA (Hu et al., 2022) uses the prod-223

uct of two trainable low-rank matrices to learn the224

weight change while keeping the original weight225

matrices frozen. To express in mathematical form,226

LoRA adds low-rank adapters A,B to original227

weight matrix W0 by W ′ = W0 + BA, where228

W ′,W0 ∈ Rdout×din , A ∈ Rr×din , B ∈ Rdout×r,229

r ≪ min(din, dout). When fine-tuning, W0 is kept230

frozen, and A,B are trainable parameters.231

From the default initialization scheme of LoRA,232

A is initialized by Kaiming Initialization (He et al.,233

2015) while B is initialized by zero matrix. Conse- 234

quently, the adapter term BA = O and W ′ = W0 235

at the start of fine-tuning, ensuring the coherence 236

with the model before fine-tuning. For initial- 237

izations with non-zero adapter BA (Meng et al., 238

2024; Yang et al., 2024; Wang et al., 2024b), the 239

frozen weights are adjusted to the residual term 240

Wres = W0 −BinitAinit. Then the adapted weight 241

is W ′ = W0 − BinitAinit + BA = Wres + BA. 242

In transformer-based LLMs, LoRA adapters are 243

applied to weight matrices within the self-attention 244

and multilayer perceptron (MLP) layers. 245

3.2 SC-LoRA 246

Known as catastrophic forgetting problem (Chen 247

et al., 2020), a large language model often per- 248

forms worse on its pre-trained knowledge after 249

fine-tuning on a downstream task. To this end, 250

we consider fine-tuning a large language model on 251

downstream task T+, while preserving its ability on 252

the other task T−. Consider the output of a linear 253

layer h = W0x = Wresx+BinitAinitx. We denote 254

P+ and P− the distribution of h when the model 255

is fed with data from T+ and T−, respectively. Our 256

aim is to initialize A,B within the r-rank constraint 257

so that BAx preserves the most of P+ and the least 258

of P−, so that after initialization, the trainable term 259

BAx is constrained to primarily focus onP+ while 260

avoiding modifying P−. This is equivalent to iden- 261

tify a low-dimensional subspace S ⊂ Rdout with 262

rank r, on which the projection of P+ is mostly 263

preserved and the projection of P− is mostly elim- 264

inated. To evaluate such property of subspace S, 265

we define the following reward: 266

Definition 1. For a subspace S ⊂ Rdout of dimen- 267

sion r, define the reward R(S) over P± as: 268

R(S) = (1− β)EX+∼P+

[
∥ΠS (X+)∥22

]
− βEX−∼P−

[
∥ΠS(X−)∥22

]
,

(1) 269

where β ∈ [0, 1] is a hyperparameter to tune. Here 270

ΠS : Rdout → S denote the orthogonal projection 271

operator onto S. See Appendix A.1 for mathemati- 272

cal definition of ΠS . 273

The first term of R(S) quantifies the context in- 274

formation of T+ contained in subspace S, while the 275

second penalizes that of T−. We use β to balance 276

the trade-off between focusing on T+ and preser- 277

vation on T−. Given the objective to maximize 278

R(S), in the following we provide Theorem 1 to 279
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(a) LoRA (b) SC-LoRA

Figure 1: Comparison of LoRA with default Kaiming initialization and our proposed SC-LoRA. (a) LoRA initializes
down-projection matrix A by Gaussian noise and up-projection matrix B by zero matrix. (b) Our SC-LoRA
initializes A by Q⊤

r W0 and B by Qr, where Qr consists of r orthonormal vectors as columns obtained by Algorithm
1.

compute the optimal subspace and then use it to set280

our LoRA initialization scheme.281

Theorem 1. Let Cov+,Cov− be the covariance282

matrices of random vectors X+ ∼ P+ and X− ∼283

P−, respectively:284

Cov+ = E
[
X+X

⊤
+

]
, (2)285

Cov− = E
[
X−X

⊤
−

]
. (3)286

And let287

∆Cov = (1− β)Cov+ − βCov−. (4)288

Then do eigenvalue decomposition of ∆Cov and289

take the first r eigenvectors {qi}i∈[r] with the290

largest eigenvalues. Then, if following condition291

holds, the reward R(S) is maximized:292

S = span
(
{qi}i∈[r]

)
. (5)293

Proof. See Appendix A.2.294

Theorem 1 shows the steps to compute the op-295

timal subspace that maximized R(S). Then, to296

constrain the updating output term BAx in the297

subspace S, we propose our LoRA initialization298

method:299

Binit = (q1 q2 · · · qr), (6)300

Ainit = (q1 q2 · · · qr)⊤W0, (7)301

Wres = W0 −BinitAinit, (8)302

as illustrated in Figure 1b. To explain the initializa- 303

tion setting, we provide the following theorem: 304

Theorem 2. Let h, x be the output and input of 305

the original linear layer W0, satisfying h = W0x. 306

When A,B are initialized by Equations 7, 8, the 307

following property holds: 308

BinitAinitx = ΠS(h) ∈ S, ∀x ∈ Rdin . (9) 309

Proof. See Appendix A.3. 310

Together with Theorem 1, our initialization 311

method has the following properties: When β = 0 312

and the model is fed with data from task T+, h fol- 313

lows distribution P+, then the norm of the updating 314

term BAx is maximized, providing the most con- 315

text information of T+ for training; When β = 1 316

and the model is fed with data from task T−, h 317

follows distribution P−, then the norm of BAx is 318

minimized, passing the least context information 319

of T− to trainable parameters. When β ∈ (0, 1), 320

it is the balance between the two cases. The prop- 321

erty indicates that, during fine-tuning, the trainable 322

weights are updating more on features related to 323

T+ and less on features related to T−, and hence 324

enhancing learning T+ while avoiding damaging 325

information related to T−. 326

The pseudo-code of our initialization algorithm 327

is shown in Algorithm 1. In practice, it is hard 328

to format the true distribution and covariance of 329

output vectors, so we approximate them by feed- 330

ing hundreds of samples into the model, and use 331
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the collection of output vectors to approximate the332

distribution.333

Algorithm 1 SC-LoRA initialization.
Require: Datasets D+,D− from tasks T+, T−, re-

spectively.
1: Let B+ = |D+|, B− = |D−|, L be the length

of each sample (clipped to same length).
2: Separately feed samples in D+,D− into the

pre-trained model, collect batched output
X̂+ ∈ Rdout×B+L, X̂− ∈ Rdout×B−L of each
linear layer. Within each sample, the output
vector is summed over all tokens.

3: Cov+ ← 1
B+

X̂+X̂
⊤
+ .

4: Cov− ← 1
B−

X̂−X̂
⊤
− .

5: Do eigenvalue decomposition on ∆Cov =
(1 − β)Cov+ − βCov−, and take the first r
eigenvectors {qi}i∈r with the largest eigenval-
ues.

6: Qr ← (q1 q2 · · · qr).
7: Binit ← Qr.
8: Ainit ← Q⊤

r W0 .
9: Wres ←W0 −BinitAinit.

4 Experiments334

In the experiments below, we compare SC-LoRA335

with 5 baselines:336

(1) Full fine-tuning. Fine-tune on all parameters337

of the model;338

(2) Vanilla LoRA (Hu et al., 2022). Fine-tune339

only on LoRA adapters, with B initialized with340

Gaussian noise (He et al., 2015), and A initialized341

by zero;342

(3) PiSSA (Meng et al., 2024), for efficient fine-343

tuning. It applies SVD on pre-trained weight W0344

and initializes LoRA adapters by the main parts of345

decomposition;346

(4) CorDA (Yang et al., 2024) Instruction-347

Previewed Adaptation (IPA) mode, for efficient348

fine-tuning. It feeds fine-tuning data into the model349

to get the covariance of activations, applies self-350

defined context-oriented decomposition, and ini-351

tializes LoRA adapters with principal directions352

obtained in decomposition;353

(5) CorDA Knowledge-Preserved Adaptation354

(KPA) mode, for knowledge preservation. The355

initialization algorithm is basically the same as IPA356

mode except that it feeds preserved knowledge data357

and take the least principal directions for initializa-358

tion.359

For initialization of CorDA IPA and KPA mode, 360

we calculate the covariance matrices with 256 sam- 361

ples from fine-tuning dataset and preserved knowl- 362

edge dataset, respectively with 256 samples. We 363

use AdamW optimizer (Loshchilov and Hutter, 364

2019) with the following hyper-parameters: batch 365

size 128, learning rate 2e-5 (except for experiment 366

in Section 4.3, where we tune the learning rate of 367

baselines for better performance), cosine annealing 368

learning rate schedule, warm-up ratio 0.03, and no 369

weight decay. The rank of LoRA and its variants 370

are all set to 128 for comparison. For SC-LoRA, 371

we tune the hyperparameter β to find a good bal- 372

anced result. All experiment results are obtained 373

by running on only one seed. 374

Below we discuss results in three settings: (1) 375

Preservation of world knowledge when fine-tuning 376

on math task; (2) Preservation of safety when fine- 377

tuning on benign data; (3) Preservation of safety 378

when fine-tuning on poisoned data. 379

4.1 World Knowledge Preservation 380

Pre-trained LLMs also have other pre-trained 381

knowledge that is easy to lose after fine-tuning 382

on downstream tasks, such as world knowledge 383

(Yang et al., 2024). In this setting, we aim to pre- 384

serve the intrinsic world knowledge (e.g., common 385

sense) within the pre-trained LLM while providing 386

efficient fine-tuning on downstream tasks. We fine- 387

tune the Llama-2-7b model (Touvron et al., 2023) 388

on math task and evaluate its math ability (utility) 389

and world knowledge performance. We train on 390

100000 samples of MetaMathQA (Yu et al., 2024) 391

for 1 epoch and evaluate its math ability on GSM8k 392

(Cobbe et al., 2021) and MATH (Yu et al., 2024) 393

validation sets. World knowledge is evaluated by 394

the exact matching score on TriviaQA (Joshi et al., 395

2017), NQ-open (Lee et al., 2019), and WebQS 396

(Berant et al., 2013) through Evaluation-Harness 397

(Gao et al., 2024). We select 256 random samples 398

from NQ-open as world knowledge samples used 399

for the initialization of SC-LoRA and CorDA KPA, 400

and 256 random samples from MetaMathQA as 401

fine-tuning dataset for initializing SC-LoRA and 402

CorDA IPA. Note that samples used in initialization 403

are separate from those in evaluation. 404

As shown in Table 1, the results of full fine- 405

tuning and LoRA show the degradation on world 406

knowledge when fine-tuning on downstream task 407

MetaMathQA. SC-LoRA achieves best math abil- 408

ity (surpassing full fine-tuning), and preserves 409

world knowledge relatively well. When β = 0.8, it 410
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Method #Params TriviaQA↑ NQ-open↑ WebQS↑ Avg↑ GSM8k↑ MATH↑ Avg↑
Llama-2-7b - 52.52 18.86 5.86 25.75 - - -
Full fine-tuning 6738M 47.42 4.16 6.64 19.41 50.27 6.94 28.60
LoRA 320M 46.81 1.05 7.04 18.30 41.77 5.46 23.62
PiSSA 320M 47.44 3.32 6.84 19.20 51.63 7.70 29.67
CorDA IPA 320M 30.20 9.83 5.41 15.15 51.40 8.34 29.87
CorDA KPA 320M 46.21 10.64 7.33 21.39 45.03 6.54 25.79

SC-LoRA
β = 0 320M 44.26 5.18 7.19 18.88 53.53 8.98 31.25
β = 0.5 320M 48.91 7.70 6.89 21.17 53.37 8.62 31.00
β = 0.8 320M 50.52 10.64 7.04 22.73 52.46 7.62 30.04

Table 1: Results of world knowledge preservation and math ability after fine-tuning on MetaMATH.

surpasses all baselines on both utility and knowl-411

edge preservation. Also, from the results of SC-412

LoRA, we can see a clear trend when increasing β,413

that the knowledge preservation ability is increas-414

ing while the utility is decreasing, which aligns415

with our design methodology for β in Section 3.416

More details will be shown in Section 4.4 to ana-417

lyze this trend.418

4.2 Safety Preservation on Benign Finetuning419

Qi et al. (2024) has shown that fine-tuning on be-420

nign data can compromise the safety of aligned421

LLMs. In this setting, we aim to preserve the422

safety of aligned LLM while providing efficient423

fine-tuning on downstream tasks. Following the424

experimental settings by Qi et al. (2025), we fine-425

tune Llama-2-7b-Chat model with safety alignment426

(Touvron et al., 2023) on Samsum (Gliwa et al.,427

2019) for 1 epoch. Samsum is a dataset for con-428

versation summarization task, containing 14732429

training samples and 819 testing samples.430

To initialize our SC-LoRA model, we ran-431

domly select 256 samples from training set432

of Samsum (D+) to compute covariance ma-433

trix Cov+ for each linear layer, then use 256434

harmful-question&refusal-answer pairs (as the435

safety dataset D−) provided by Qi et al. (2025) to436

compute Cov−. These two collections of samples437

are also used to compute the covariance matrices438

of CorDA IPA and CorDA KPA respectively.439

For utility evaluation, we employ the standard440

ROUGE-1 score (Lin, 2004) for testing set of Sam-441

sum. For safety evaluation, we let the fine-tuned442

models to generate answers for 330 malicious ques-443

tions provided by Qi et al. (2024) (distinct from444

malicious questions for initialization) and employ445

DeepSeek-V3 (DeepSeek-AI et al., 2025) API to446

judge the harmfulness, assigning each answer an447

integer score from 1 (safe) to 5 (most harmful). We448

report the average score as harmfulness score of449

the model and the fraction of maximum-risk re- 450

sponses (score = 5) as harmfulness rate. Lower 451

values for both metrics indicate stronger safety of 452

the model. 453

As shown in Table 2, SC-LoRA achieves high 454

utility, even surpassing full fine-tuning on Samsum 455

dataset when β = 0.5. At the same time, SC-LoRA 456

shows almost no safety degradation compared to 457

the model before fine-tuning, while all baselines 458

except CorDA KPA present notable safety degrada- 459

tion, since they are not designed for knowledge 460

preservation. However, the utilities of all fine- 461

tuning methods (except for CorDA IPA) are gener- 462

ally close. We hypothesize that the task of summa- 463

rization is quite simple, so training for only 1 epoch 464

is enough for utility convergence. Also, the results 465

of SC-LoRA shows that when β is increasing, the 466

safety preservation becomes better while utility is 467

decreasing. This aligns with our design of β to 468

balance the trade-off. 469

4.3 Safety Preservation on Data Poisoning 470

Attack 471

Harmful data injection is a common attack method 472

to degrade the safety of LLMs during fine-tuning 473

(Huang et al., 2024a,b,c). In this experiment, we 474

aim to preserve safety in poisoned data scenar- 475

ios. To construct the poisoned dataset, we first 476

take 25600 data samples from training set of Meta- 477

MathQA (Yu et al., 2024), then replace 1% of the 478

data by harmful question-answer pairs provided by 479

(Qi et al., 2024). We train each method for 1 epoch 480

on the poisoned dataset. For the initialization of SC- 481

LoRA and CorDA IPA, we use 256 samples from 482

training set of MetaMathQA. The safety samples 483

used for the initialization of SC-LoRA and CorDA 484

KPA are the same with the previous experiment 485

(Section 4.2). 486

For utility evaluation, we compute the answer 487

accuracy on the validation set of GSM8k (Cobbe 488
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Method #Params HS↓ HR(%)↓ Utility↑
Llama-2-7b-Chat - 1.100 1.212 24.13
Full fine-tuning 6738M 1.364 5.455 51.41
LoRA 320M 1.176 2.424 50.32
PiSSA 320M 1.252 4.242 51.87
CorDA IPA 320M 1.209 3.333 44.61
CorDA KPA 320M 1.106 0.606 50.89

SC-LoRA
β = 0.5 320M 1.161 1.818 52.54
β = 0.7 320M 1.148 1.818 52.07
β = 0.9 320M 1.097 0.000 51.67

Table 2: Results of Safety preservation and fine-tuning performance when training on benign dataset Samsum.
#Params is the number of trainable parameters. HS and HR denote harmfulness score and harmfulness rate
respectively.

Method #Params HS↓ HR(%)↓ Utility↑
Llama-2-7b-Chat - 1.100 1.212 -
Full fine-tuning 6738M 2.248 23.94 41.47

LoRA
lr=2e-5 320M 1.118 1.212 31.69
lr=5e-5 320M 2.276 23.64 37.68
lr=1e-4 320M 3.155 41.52 41.93

PiSSA 320M 2.379 29.39 41.77
CorDA IPA 320M 4.239 67.27 43.75
CorDA KPA 320M 1.127 1.212 40.33

SC-LoRA
β = 0.5 320M 1.630 10.91 45.56
β = 0.7 320M 1.224 3.030 45.26
β = 0.9 320M 1.136 1.212 45.26

Table 3: Results of safety preservation and fine-tuning performance when training on poisoned dataset MetaMathQA
with 1% malicious question-answer pairs.

et al., 2021). Safety evaluation follows the setting489

in the previous section 4.2. For better comparabil-490

ity, we tune the learning rate of LoRA to 2e-5, 5e-5491

and 1e-4. The learning rate for other methods is492

fixed to 2e-5.493

From the results in Table 3, we can observe that494

the data points exhibit a wider spread among these495

methods, both in utility and safety metric. Com-496

pared to the original model, SC-LoRA (β = 0.9)497

exhibits almost no safety degradation, and achieves498

best utility, even surpassing full fine-tuning by 3.79499

points. When increasing the learning rate, LoRA500

shows a sharp decline in safety alignment while501

math ability is increasing. LoRA (lr=2e-5) and502

CorDA KPA, though preserving safety well, are503

insufficient in fine-tuning performance compared504

to our method. PiSSA and CorDA IPA, though505

showing their capacity in better fine-tuning, heav-506

ily degrades the safety of the model. This again507

shows the potential of our method to enhance the508

utility of the model and preserve safety at the same509

time, even when the fine-tuning dataset contains a 510

small fraction of harmful content. Also, the utility 511

and safety of SC-LoRA follows the same trend as 512

in fine-tuning on benign data when β is increasing, 513

supporting the sedign of our method. 514

4.4 Experimental Analysis on the 515

Functionality of Hyper-Parameter β 516

As explained in Section 3, the value of β balance 517

the trade-off between knowledge preservation and 518

fine-tuning efficiency. Intuitively, when increasing 519

β, there exists a trend that the fine-tuning perfor- 520

mance will drop and the knowledge preservation 521

ability will increase. While we have observed this 522

trend in the previous section, we illustrate the trend 523

more explicitly in Figure 2 and 3. In Figure 2, both 524

two curves shows knowledge preservation improve- 525

ment when β is increasing: one for safety increas- 526

ing, and the other for world knowledge preserva- 527

tion improvement. In Figure 3, the math ability 528

decreases when β is increasing, aligning with our 529
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Figure 2: Relations between β and knowledge preservation performance. The experiment setting of the left figure
is described in Section 4.2, while that of the right figure is described in Section 4.1. Lower harmfulness score or
higher world knowledge score indicates better performance on knowledge preservation.

Figure 3: Relations between β and fine-tuning performance. The experiment setting of the left figure is described in
Section 4.2, while that of the right figure is conducted in Section 4.1. The right figure shows clear monotonicity
with β, while such trend does not occur in the left figure.

expectations. The utility on Samsum, however,530

does not show evident trend as β varies, but fluc-531

tuating around 0.52. We hypothesize that the task532

of summerization is quite simple, so whatever the533

value of β, it is sufficient for utility convergence534

during fine-tuning.535

These trends give experimental support to our536

method design, that by adjusting β we can balance537

the trade-off. Interestingly, a linear relationship538

was observed between β values and knowledge539

preservation in some experimental settings.540

5 Conclusion541

Aimed to balance the trade-off between efficient542

fine-tuning and knowledge preservation, this paper543

presents a data-driven LoRA initialization that uti-544

lizes the subspace constrain, in order to strengthen545

the target knowledge while downgrading its influ-546

ence on preserved knowledge. Theoretical analysis547

are provided to support our method, including the548

choice of subspace and the initialization setting.549

We conduct extensive experiments regrading safety550

preservation and world knowledge preservation,551

during fine-tuning on various downstream tasks 552

such as math and summarization. The results of 553

experiments strongly demonstrate that our method 554

can not only promote fine-tuning performance on 555

downstream tasks, but also preserve the intrinsic 556

knowledge stored in pre-trained model, surpassing 557

contemporary LoRA initialization methods. 558

6 Limitations 559

First, SC-LoRA is just a LoRA initialization 560

method, and does not strongly constrain the up- 561

dates during fine-tuning process. Hence after fine- 562

tuning on more complex tasks and with more steps, 563

the knowledge preservation ability can also drop 564

(see the preservation drop of NQ-open in Table 1 565

for example). Second, its application on preserv- 566

ing other types of knowledge remains unexplored. 567

Future work may consider applying SC-LoRA to 568

preserving multimodal large language model’s per- 569

formance on pre-training tasks (Zhai et al., 2024) 570

or large language model’s reasoning ability. 571

These aspects provide promising directions for 572

future researches. 573
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A Definitions and Proofs928

A.1 Mathematical Definition of ΠS929

Definition 2. Suppose S is a subspace of Rn of930

dimension r, and let {qi}i∈[r] be an orthonormal931

basis of S, then the orthogonal projection operator932

onto S, denoted ΠS , is defined as:933

ΠS(x) =

r∑
i=1

(q⊤i x)qi

=

r∑
i=1

(qiq
⊤
i )x, ∀x ∈ Rn.

(10)934

Note: the selection of the orthonormal basis does935

not affect ΠS .936

A.2 Proof for Theorem 1937

Proof. Suppose for some subspace S ⊂ Rd (ignore938

the subscript of dout for simplicity) of dimension939

r, there exists an orthonormal basis {vi}i∈[r] that940

spans S, that is S = span
(
{vi}i∈[r]

)
.941

For simplicity, denote942

Ĩr =
∑
i∈[r]

viv
⊤
i , (11)943

then the following equality holds:944

Ĩ⊤r Ĩr =
∑
i∈[r]

∑
j∈[r]

viv
⊤
i vjv

⊤
j

=
∑
i∈[r]

∑
j∈[r]

vi⟨vi, vj⟩v⊤j

=
∑
i∈[r]

∑
j∈[r]

δijviv
⊤
j

=
∑
i∈[r]

viv
⊤
i = Ĩr.

(12)945

From property of projection,946

ΠS (X±) =

r∑
i=1

⟨X±, vi⟩vi =
r∑

i=1

viv
⊤
i X±

=

(
r∑

i=1

viv
⊤
i

)
X± = ĨrX±.

(13)947

Thus948

EX±∼P±

[
∥ΠS (X±)∥22

]
=EX±∼P±

[∥∥∥ĨrX±

∥∥∥2
2

]
=EX±∼P±

[
tr
(
X⊤

± Ĩ⊤r ĨrX±

)]
=EX±∼P±

[
tr
(
X⊤

± ĨrX±

)]
=EX±∼P±

[
tr
(
ĨrX±X

⊤
±

)]
=tr

(
ĨrEX±∼P±

[
X±X

⊤
±

])
=tr

(
ĨrCov±

)
.

(14) 949

Suppose the spectral decomposition of (1 − 950

β)Cov(X+)− βCov(X−) is QΣQ⊤, where Q = 951

(q1 q2 · · · qd), Σ is diagonal with eigenvalues 952

sorted in descending order. Then we have 953

R(S) = (1− β)EX+∼P+

[
∥ΠS (X+)∥22

]
− βEX−∼P−

[
∥ΠS(X−)∥22

]
= (1− β)tr

(
ĨrCov+

)
− βtr

(
ĨrCov−

)
= tr

(
Ĩr∆Cov

)
=
∑
i∈[r]

tr
(
viv

⊤
i QΣQ⊤

)
=
∑
i∈[r]

v⊤i QΣQ⊤vi.

(15) 954

Extend {vi}i∈[r] to a complete orthonormal basis 955

{vi}i∈[d] for Rd, and denote ui = Q⊤
i vi. Since Q is 956

an orthogonal matrix, {ui}i∈[d] is also an orthonor- 957

mal basis for Rd. From Ky Fan’s theorem on eigen- 958

values, max
(∑

i∈[r] v
⊤
i QΣQ⊤vi

)
=
∑

i∈[r]Σii, 959

and one can easily verify that the condition above 960

achieves the maximum. 961

For the if and only if part (adding the condition 962

of eigenvalue gap): suppose U = (u1 u2 · · · ud)⊤ 963

as an orthogonal matrix, then 964

R({vi}i∈[r]) =
∑
i∈[r]

u⊤i Σui

=
∑
i∈[r]

d∑
j=1

ΣjjU
2
ij

=
d∑

j=1

Σjj

∑
i∈[r]

U2
ij

 .

(16) 965
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From property of orthogonal matrix,966 ∑
i∈[r] U

2
ij ≤ 1 and

∑d
j=1

∑
i∈[r] U

2
ij = r,967

then to maximize R, from the additional assump-968

tion we need
∑

i∈[r] U
2
ij =

{
1, 1 ≤ j ≤ r

0, r + 1 ≤ j ≤ d
,969

which is equivalent to970

U⊤
1:r,1:dU1:r,1:d =

(
Ir O
O O

)
. (17)971

From U1:r,1:d = (v1 v2 · · · vr)⊤Q, we know972

that this is also equivalent to973

(v1 v2 · · · vr)(v1 v2 · · · vr)⊤ = Q

(
Ir O
O O

)
Q⊤,

(18)974

which is also written as975

r∑
i=1

viv
⊤
i =

r∑
i=1

qiq
⊤
i . (19)976

Indicating S = span
(
{qi}i∈[r]

)
.977

978

A.3 Proof of Theorem 2979

Proof. Denote Qr = (q1 q2 · · · qr).980

Since {qi}i∈[r] is a orthonormal basis that spans981

S, from definition of orthogonal projection we have982

ΠS(h) =

r∑
i=1

qiq
⊤
i h = QrQ

⊤
r h. (20)983

Thus ∀x ∈ Rdin , we have984

BinitAinitx = QrQ
⊤
r W0x = QrQ

⊤
r h = ΠS(h),

(21)985

which completes the proof.986

987

B Numerical instability in sparse sample988

setting989

When the sample size is much larger than the out-990

put activation dimension, min(|D+|L, |D−|L)≫991

dout, setting β ∈ [0, 1] causes no issue. However,992

when samples are sparse (specifically, when the993

number of negative-task sample B− < (dout −994

r)/L, setting β = 1 introduces multiple valid995

solutions in the spectral decomposition step due996

to high-dimensional freedom in the null space of997

Cov−. Mathematically, the rank of Cov− is at998

most B−L, resulting in a null space of dimension999

dout − rank(Cov−) ≥ dout − B−L > r. Conse- 1000

quently, any arbitrary set of r orthonormal vec- 1001

tors in this null space can satisfy the decomposition 1002

criterion, leading to non-unique initialization of pa- 1003

rameters A and B. Even when B− ∼ (dout−r)/L, 1004

the decomposition results may also be affected sig- 1005

nificantly by data selection and clipping. 1006

To mitigate this instability, we recommend set- 1007

ting 1 − β to a small positive value (rather than 1008

exactly zero). This retains the regularization from 1009

Cov+ in the objective function, which constrains 1010

the null space ambiguity and stabilizes the spectral 1011

decomposition, empirically improves fine-tuning 1012

performance. 1013
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