Storchastic: A Framework for
General Stochastic Automatic Differentiation

Emile van Krieken Jakub M. Tomczak Annette ten Teije
Vrije Universiteit Amsterdam Vrije Universiteit Amsterdam Vrije Universiteit Amsterdam
e.van.krieken@vu.nl j.m.tomczak@vu.nl annette.ten.teije@vu.nl
Abstract

Modelers use automatic differentiation (AD) of computation graphs to imple-
ment complex deep learning models without defining gradient computations.
Stochastic AD extends AD to stochastic computation graphs with sampling steps,
which arise when modelers handle the intractable expectations common in re-
inforcement learning and variational inference. However, current methods for
stochastic AD are limited: They are either only applicable to continuous ran-
dom variables and differentiable functions, or can only use simple but high vari-
ance score-function estimators. To overcome these limitations, we introduce
Storchastic, a new framework for AD of stochastic computation graphs. Stor-
chastic allows the modeler to choose from a wide variety of gradient estimation
methods at each sampling step, to optimally reduce the variance of the gradi-
ent estimates. Furthermore, Storchastic is provably unbiased for estimation of
any-order gradients, and generalizes variance reduction techniques to any-order
derivative estimates. Finally, we implement Storchastic as a PyTorch library at
github.com/HEmile/storchastic.

1 Introduction

One of the driving forces behind deep learning is automatic differentiation (AD) libraries of complex
computation graphs. Deep learning modelers are relieved by accessible AD of the need to implement
complex derivation expressions of the computation graph. However, modelers are currently limited
in settings where the modeler uses intractable expectations over random variables [37, 8]. Two
common examples are reinforcement learning methods using policy gradient optimization [49, 29,
36] and latent variable models, especially when inferred using amortized variational inference [34,
20, 41, 43]. Typically, modelers estimate these expectations using Monte Carlo methods, that is,
sampling, and resort to gradient estimation techniques [37] to differentiate through the expectation.

A popular approach for stochastic AD is reparameterization [20], which is both unbiased and has
low variance, but is limited to continuous random variables and differentiable functions. The other
popular approach [49, 45, 13] analyzes the computation graph and then uses the score function
estimator to create a surrogate loss that provides gradient estimates when differentiated. While this
approach is more general as it can also be applied to discrete random variables and non-differentiable
functions, naive applications of the score function will have high variance, which leads to unstable
and slow convergence. Furthermore, this approach is often implemented incorrectly [13], which can
introduce bias in gradients.

We therefore develop a new framework called Storchastic to support deep learning modelers. They
can use Storchastic to focus on defining stochastic deep learning models without having to worry
about complex gradient estimation implementations. Storchastic extends DiCE [13] to other gradi-
ent estimation techniques than basic applications of the score function. It defines a surrogate loss by
decomposing gradient estimation methods into four components: The proposal distribution, weight-

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

Stochastic Samples from proposal distribution Weighting function Storchastic
surrogate
loss

computation
graph

‘ w2

Control variate

as

Gradient function

Cost evaluation

d. Compute

a. Analyze graph . .
yze grap b. Sample and evaluate c. Compute components surrogate loss

Figure 1: An illustration of the (parallelized) Storchastic loss computation. a. Assign the stochastic
nodes of the input stochastic computation graph (SCG) into two topologically sorted partitions. b.
Evaluate the SCG. We first sample the set of values X; from the proposal distribution. For each of
the samples x; € X}, we then sample a set of samples &x5. The rows in the figure indicate different
samples in X, while the columns indicate samples in X5. The different samples are used to evaluate
the cost function f |} |- |X>| times. ¢. Compute the weighting function, control variate and gradient
function for all samples. d. Using those components and the cost function evaluation, compute the
storchastic surrogate loss, mimicking Algorithm 1. © refers to element-wise multiplication, & to
element-wise summation and >, for summing the entries of a matrix.

ing function, gradient function and control variate. We can use this decomposition to get insight into
how gradient estimators differ, and use them to further reduce variance by adapting components of
different gradient estimators.

Our main contribution is a framework with a formalization and a proof that, if the components sat-
isfy certain conditions, performing n-th order differentiation on the Storchastic surrogate loss gives
unbiased estimates of the n-th order derivative of the stochastic computation graph. We show these
conditions hold for a wide variety of gradient estimation methods for first order differentiation. For
many score function-based methods like RELAX [16], MAPO [28] and the unordered set estimator
[25], the conditions also hold for any-order differentiation. In Storchastic, we only have to prove
these conditions locally. This means that modelers are free to choose the gradient estimation method
that best suits each sampling step, while guaranteeing that the gradient remains unbiased. Storchas-
tic is the first stochastic AD framework to incorporate the measure-valued derivative [40, 18, 37] and
SPSA [46, 2], and the first to guarantee variance reduction of any-order derivative estimates through
control variates.

In short, our contributions are the following:

1. We introduce Storchastic, a new framework for general stochastic AD that uses four gradi-
ent estimation components, in Section 3.1-3.3.

2. We prove Theorem 1, which provides conditions under which Storchastic gives unbiased
any-order derivative estimates in Section 3.4. To this end, we introduce a mathematical
formalization of forward-mode evaluation in AD libraries in Section 2.4.

3. We derive a technique for extending variance reduction using control variates to any-order
derivative estimation in Section 3.5.

4. We implement Storchastic as an open source library for PyTorch, Section 3.7.

) 4

(7
\ZJ

Figure 2: A Stochastic Computation Graph representing the computation of the losses of an VAE
with a discrete latent space.

2 Background

We use capital letters N, F), S, ..., Si for nodes in a graph, calligraphic capital letters S, F for sets
and non-capital letters for concrete computable objects such as functions f and values x;.

2.1 Stochastic Computation Graphs

We start by introducing Stochastic Computation Graphs (SCGs) [45], which is a formalism for
stochastic AD. A Stochastic Computation Graph (SCG) is a directed acyclic graph (DAG) G =
(N, E) where nodes A are partitioned in stochastic nodes S and deterministic nodes JF. We define
the set of parameters © C F such that all § € © have no incoming edges, and the set of cost nodes
C C F such that all ¢ € C have no outgoing edges.

The set of parents pa(N) is the set of incoming nodes of a node N € N, that is pa(N) = {M €
N|(M, N) € E}. Each stochastic node S € S represents a random variable with sample space Qg
and probability distribution pg conditioned on its parents. Each deterministic node F represents a
(deterministic) function fr of its parents.

M influences N, denoted M < N, if there is a directed path from M to N. We denote with
N2y = {M € N|M < N} the set of nodes that influence N. The joint probability of all random
variables xs € [[gcg Qs is defined as p(xs) = [[gcs Ps(Xs|Xpa(s)), Where Xp,(g) is the set of
values of the nodes pa(.S). The expected value of a deterministic node F' € F is its expected value
over sampling stochastic nodes that influence that node, that is,

E[F] = Es., [fr(pa(F))] = / P(%<8) f (Xpa(r))dXs o

Qs p

2.2 Problem Statement

In this paper, we aim to define a surrogate loss that, when differentiated using an AD library, gives
an unbiased estimate of the n-th order derivative of a parameter 6 with respect to the expected total

cost V((,")E[ZCGC C1. This gradient can be written as > . VE[C], and we focus on estimating
the gradient of a single cost node V" E[C].

2.3 Example: Discrete Variational Autoencoder

Next, we introduce a running example: A variational autoencoder (VAE) with a discrete la-
tent space [20, 19]. First, we represent the model as an SCG: The deterministic nodes are
N = {0,0,q.,pz, 51D, LRec} and the stochastic nodes are S = {z, z}. These are connected
as shown in Figure 2. The parameters are © = {0, ¢} which respectively are the parameters of
the variational posterior ¢ and the model likelihood p, and the cost nodes C = {{krp,Rec} that
represent the KL-divergence between the posterior and the prior, and the ‘reconstruction loss’, or the
model log-likelihood after decoding the sample z. Finally, ¢, represents the parameters of the mul-
tivariate categorical distribution of the amortized variational posterior g4 (z|x). This SCG represents
the equation
EI,Z[EKLD + ERec] =]Eat[gKLD] + Ea;,zwqd,(z\w)[gRec]-

The problem we are interested in is estimating the gradients of these expectations with respect
to the parameters. Since x is not influenced by the parameters, we have Vé")Ex [lkrp] = 0

and V((;)]Ew [lkrp] = Ez[V((;)EKLD]. The second term is more challenging. We can move
the gradient with respect to 6 in, since z is not influenced by 8: Vé")ELZNq o(zl2) [(Rec]

Bz 2ngy(zl0) [V((,”)EREC]. However, we cannot compute V;”)Emyzw%(z‘z) [¢ Rec] without gradient es-
timation methods. This is because sampling from g, (z|x) is dependent on ¢. Furthermore, since
we are dealing with a discrete stochastic node, we cannot apply the reparameterization method here
without introducing bias.

2.4 Formalizing AD libraries and DiCE

To be able to properly formalize and prove the propositions in this paper, we introduce the ‘forward-
mode’ operator that simulates forward-mode evaluation using AD libraries. This operator properly
handles the common ‘stop-grad’ operator, which ensures that its argument is only evaluated during
forward-mode evaluations of the computation graph. It is implemented in Tensorflow and Jax with
the name stop_gradient [1, 4] and in PyTorch as detach or no_grad [39]. ‘stop-grad’ is neces-
sary to define surrogate losses for gradient estimation, which is why it is essential to properly define
it. For formal definitions of the following operators and proofs we refer the reader to Appendix A.

Definition 1 (informal). The stop-grad operator L is a function such that V, L (z) = 0. The
forward-mode operator —, which is denoted as an arrow above the argument it evaluates, acts as

an identity function, except that J_(a; = @. Additionally, we define the MagicBox operator as

B(z) = exp(z — L(x)).

Importantly, the definition of — implies that V. f (x) does not equal V. f (m) if f contains a stop-
grad operator. MagicBox, which was first introduced in [13], is particularly useful for creating

surrogate losses that remain unbiased for any-order differentiation. It is defined such that [)(z) = 1
and V,[(f(x)) = (f(z)) Vs f(x). This allows injecting multiplicative factors to the computation
graph only when computing gradients.

Making use of MagicBox, DiCE [13] is an estimator for automatic nth-order derivative estimation
that defines a surrogate loss using the score function:

Vé")E[Z] ZE{V&) s 1OgP(XS|Xpa(S)))C]- (D

cec ceC SeS<c

DiCE correctly handles the credit assignment problem: The score function is only applied to the
stochastic nodes that influence a cost node. It also handles pathwise dependencies of the param-
eter through cost functions. However, it has high variance since it is based on a straightforward
application of the score function.

3 The Storchastic Framework

In this section, we introduce Storchastic, a framework for general any-order gradient estimation in
SCGs that gives modelers the freedom to choose a suitable gradient estimation method for each
stochastic node. First, we present 5 requirements that we used to develop the framework in Section
3.1. Storchastic deconstructs gradient estimators into four components that we present in Section
3.2. We use these components to introduce the Storchastic surrogate loss in Section 3.3, and give
conditions that need to hold for unbiased estimation in Section 3.4. In Section 3.5 we discuss
variance reduction, in Section 3.6 we discuss several estimators that fit in Storchastic, and in Section
3.7 we discuss our PyTorch implementation. An overview of our approach is outlined in Figure 1.

3.1 Requirements of the Storchastic Framework
First, we introduce the set of requirements we used to develop Storchastic.
1. Modelers should be able to choose a different gradient estimation method for each stochas-

tic node. This allows for choosing the method best suited for that stochastic node, or adding
background knowledge in the estimator.

2. Storchastic should be flexible enough to allow implementing a wide range of reviewed gra-
dient estimation methods, including score function-based methods with complex sampling
techniques [52, 25, 28] or control variates [16, 47], and other methods such as measure-
valued derivatives [18, 40] and SPSA [46] which are missing AD implementations [37].

3. Storchastic should define a surrogate loss [45], which gives gradients of the SCG when
differentiated using an AD library. This makes it easier to implement gradient estimation
methods as modelers get the computation of derivatives for free.

4. Differentiating the surrogate loss n times should give estimates of the nth-order derivative,
which are used in for example reinforcement learning [15, 14] and meta-learning [12, 27].

5. Variance reduction methods through better sampling and control variates should generalize
in higher-order derivative estimation.

6. Storchastic should be provably unbiased. To reduce the effort of developing new methods,
researchers should only have to prove a set of local conditions that generalize to any SCG.

3.2 Gradient Estimators in Storchastic

Next, we introduce each of the four components and motivate why each is needed to ensure Require-
ment 2 is satisfied. First, we note that several recent gradient estimators, like MAPO [28], unordered
set estimator [25] and self-critical baselines [21, 42] act on sequences of stochastic nodes instead of
on a single stochastic node. Therefore, we create a partition Sy, ..., S, of S« topologically ordered
by the influence relation, and define the shorthand x; := xs,. For each partition S;, we choose a
gradient estimator, which is a 4-tuple (q;, w;,l;, a;). Here, q(X;|x<;) is the proposal distribution,
w;(x;) is the weighting function, l;(x;) is the gradient function and a; is the control variate.

3.2.1 Proposal distribution

Many gradient estimation methods in the literature do not sample a single value x; ~ p(x;|x<;), but
sample, often multiple, values from possibly a different distribution. Some instances of sampling
schemes are taking multiple i.i.d. samples, importance sampling [32] which is very common in off-
policy reinforcement learning, sampling without replacement [25], memory-augmented sampling
[28] and antithetic sampling [51]. Furthermore, measure-valued derivatives [37, 18] and SPSA [46]
also sample from different distributions by comparing the performance of two related distributions.
To capture this, the proposal distribution ¢(X;|x;) samples a set of values X; = {X; 1, ..., Xi.m}
where each x; ; € ()s,. The sample is conditioned on x; = Uses, Xpa(s). the values of the parent
nodes of the stochastic nodes in S;. This is illustrated in Figure 1.b.

3.2.2 Weighting function

When a gradient estimator uses a different sampling scheme, we have to weight each individual
sample to ensure it remains a valid estimate of the expectation. For this, we use a nonnegative
weighting function w; : Qs, — R*. Usually, this function is going to be detached from the
computation graph, but we allow it to receive gradients as well to support implementing expectations
and gradient estimation methods that compute the expectation over (a subset of) values [25, 28, 30].

3.2.3 Gradient function

The gradient function is an unbiased gradient estimator together with the weighting function. It
distributes the empirical cost evaluation to the parameters of the distribution. In the case of score
function methods, this is the log-probability. For measure-valued derivatives and SPSA we can use
the parameters of the distribution itself.

3.2.4 Control variate

Modelers can use control variates to reduce the variance of gradient estimates [17, 37]. Itis a
function that has zero-mean when differentiated. Within the context of score functions, a common
control variate is a baseline, which is a function that is independent of the sampled value. We also
found that LAX, RELAX, and REBAR (Appendix D.2.4), and the GO gradient [7] (Appendix D.2.6)
have natural implementations using a control variate. We discuss how we implement control variates
in Storchastic in Section 3.5.

3.2.5 Example: Leave-one-out baseline

As an example, we show how to formulate the score function with the leave-one-out baseline [35, 22]
in Storchastic. This method samples m values with replacement and uses the average of the other
values as a baseline.

* Proposal distribution: We use m samples with replacement, which can be formulated as
m
q(Xilx<i) = [T;2, p(xi,5]x<i).
1

* Weighting function: Since samples are independent, we use w;(x;) = --.

* Gradient function: The score-function uses the log-probability /;(x;) = log p(x;|X<;)-

« Control variate: We use a; ;(x<;;,X;) = (1 — O(li(x:))) -5 2oy fo(x<irxij),
where —L- > 1z fo(X<isxi j) is the leave-one-out baseline. (1 — [J(l;(x;))) is used to
ensure the baseline will be subtracted from the cost before multiplication with the gradient
function. It will not affect the forward evaluation since 1 — [)(;(x;)) evaluates to 0.

3.3 The Storchastic Surrogate Loss

As mentioned in Requirement 3, we would like to define a surrogate loss, which we will introduce
next. Differentiating this loss n times, and then evaluating the result using an AD library, will
give unbiased estimates of the n-th order derivative of the parameter 6 with respect to the cost C'.
Furthermore, according to Requirement 1, we assume the modeler has chosen a gradient estimator
(gi,w;, 1;, a;) for each partition S;, which can all be different. Then the Storchastic surrogate loss is

SLstoren = 3 w1(X1)[a1(X1>Xi)+ > wz(X2)[B(ll(X1))a2(X<2aXi)+~-~

x1E€X, X2 €A,
Y e [B(k—llj(xj))ak(x<k, X))+ @(Xk: li(xi))C’] . H)
X EXg Jj=1 =1

where X} ~ q(X1), Xy ~ q(Xa2|x1), .oy X ~ q(Xi|x<k)-

When this loss is differentiated n times using AD libraries, it will produce unbiased estimates of the
n-th derivative, as we will show later. To help understand the Storchastic surrogate loss and why

Algorithm 1 The Storchastic framework: Compute a Monte Carlo estimate of the n-th order gradi-
ent given k gradient estimators (g;, w;, l;, a;).
1: function ESTIMATE_GRADIENT(n, 6)
2: S Lstorch + SURROGATE_LOSS(L, {}, 0) > Compute surrogate loss
—_

return V((,")SLStorch > Differentiate and use AD library to evaluate surrogate loss

3
4.
5: function SURROGATE_LOSS(, X<, L)
6 if i = k + 1 then

7

8

return (J(L) fo (x<x) > Use MagicBox to distribute cost
: X~ q(Xi|x<;) > Sample from proposal distribution
9: sum < 0
10: for x; € X; do > Iterate over options in sampled set
11: A+~ (L)a;(x<i, X;) > Compute control variate
12: L; + L+ 1;(x;) > Compute gradient function
13: C SURROGATE_LOSS(% + 1, x<;, L;) > Compute surrogate loss for x;
14: sum < sum + w;(x;)(C + A) > Weight and add
15: return sum

it satisfies the requirements, we will break it down using Algorithm 1. The ESTIMATE_GRADIENT
function computes the surrogate loss for the SCG, and then differentiates it n > 0 times using the
AD library to return an estimate of the n-th order gradient, which should be unbiased according to
Requirement 4. If n is set to zero, this returns an estimate of the expected cost.

The SURROGATE_LOSS function computes the equation using a recursive computation, which is
illustrated in Figure 1.b-d. It iterates through the partitions and uses the gradient estimator to sample
and compute the output of each component. It receives three inputs: The first input ¢ indexes the
partitions and gradient estimators, the second input x; is the set of previously sampled values for
partitions S—;, and L is the sum of gradient functions of those previously sampled values. In line 8,
we sample a set of values X; for partition ¢ from ¢(X;|x<;). In lines 9 to 14, we compute the sum
over values x; in &;, which reflects the i-th sum of the equation. Within this summation, in lines
11 and 12, we compute the gradient function and control variate for each value x;. We will explain
in Section 3.5 why we multiply the control variate with the MagicBox of the sum of the previous
gradient function.

In line 13, we go into recursion by moving to the next partition. We condition the surrogate loss on
the previous samples x.; together with the newly sampled value x;. We pass the sum of gradient
functions for later usage in the recursion. Finally, in line 14, the sample performance and the control
variate are added in a weighted sum. The recursion call happens for each x; € &}, meaning that this
computation is exponential in the size of the sampled sets of values X;. For example, the surrogate
loss samples || times from go, one for each value x; € X;. However, this computation can be
trivially parallelized by using tensor operations in AD libraries. An illustration of this parallelized
computation is given in Figure 1.

Finally, in line 7 after having sampled values for all k£ partitions, we compute the cost, and multiply
it with the MagicBox of the sum of gradient functions. This is similar to what happens in the
DiCE estimator in Equation (1). Storchastic can be extended to multiple cost nodes by computing
surrogate losses for each cost node, and adding these together before differentiation. For stochastic
nodes that influence multiple cost nodes, the algorithm can share samples and gradient estimation
methods to reduce overhead.

3.4 Conditions for Unbiased Estimation

We next introduce our main result that shows Storchastic satisfies Requirements 4 and 6, namely
the conditions the gradient estimators should satisfy such that the Storchastic surrogate loss gives
estimates of the n-th order gradient of the SCG. A useful part of our result is that, in line with
Requirement 6, only local conditions of gradient estimators have to be proven to ensure estimates
are unbiased. Our result gives immediate generalization of these local proofs to any SCG.

Theorem 1. Evaluating the n-th order derivative of the Storchastic surrogate loss in Equation (2)

using an AD library is an unbiased estimate of Vén)]E[C] under the following conditions. First, all
functions fr corresponding to deterministic nodes F and all probability measures pg correspond-
ing to stochastic nodes S are identical under evaluation. Secondly, for each gradient estimator
(qi,wi, l;,a;), i = 1,... k, all the following hold for m = 0, ..., n:

L Ega e[S e, Vo™ wi(x) Bl (x0)) f(x:)] = V™ Es, [f (x:)] for any deterministic
Sfunction f;

2. Eqnan [Soxsen, Vo wi(xi)ai(x<i, X)) = 0

(m)
3. forn>m >0, EQ(Xi‘x<i)[Exi€Xi Vy Cwi(x;)] = 0;

4. q(Xi|x<i; = q(X;|x<;), for all permissible X;.

The first condition defines a local surrogate loss for single expectations of any function under the
proposal distribution. The condition then says that this surrogate loss should give an unbiased esti-
mate of the gradient for all orders of differentiation m = 0, ..., n. Note that since 0 is included, the
forward evaluation should also be unbiased. This is the main condition used to prove unbiasedness
of the Storchastic framework, and can be proven for the score function and expectation, and for
measure-valued derivatives and SPSA for zeroth and first-order differentiation.

The second condition says that the control variate should be 0 in expectation under the proposal
distribution for all orders of differentiation. This is how control variates are defined in previous
work [37], and should usually not restrict the choice. The third condition constrains the weighting

function to be 0 in expectation for orders of differentiation larger than 0. Usually, this is satisfied by
the fact that weighting functions are detached from the computation graph, but when enumerating
expectations, this can be shown by using that the sum of weights is constant. The final condition is
a regularity condition that says proposal distributions should not be different under forward mode.
We also assume that the SCG is identical under evaluation. This means that all functions and
probability densities evaluate to the same value with and without the forward-mode operator, even
when differentiated. This concept is formally introduced in Appendix A.

A full formalization and the proof of Theorem 1 are given in Appendix B.1. The general idea is
to rewrite each sampling step as an expectation, and then inductively show that the inner expecta-
tion 4 over the proposal distribution ¢; is an unbiased estimate of the nth-order derivative over S;
conditional on the previous samples. To reduce the multiple sums over gradient functions inside
MagicBox, we make use of a property of MagicBox proven in Appendix A:

Proposition 4. Summation inside a MagicBox is equivalent under evaluation to multiplication of
the arguments in individual MagicBoxes, ie:

Bl (@) + la(@)) f(2) 200 (2))B(2(@)) £ (2).

Equivalence under evaluation, denoted 3, informally means that, under evaluation of —, the two

expressions and their derivatives are equal. This equivalence is closely related to e®** = e“eb

3.5 Any-order variance reduction using control variates

To satisfy Requirement 5, we investigate implementing control variates such that the variance of any-
order derivatives is properly decreased. This is challenging in general SCG’s [33], since in higher
orders of differentiation, derivatives of gradient functions will interact, but naive implementations of
control variates only reduce the variance of the gradient function corresponding to a single stochastic
node. Storchastic solves this problem similarly to the method introduced in [33]. In line 11 of the
algorithm, we multiply the control variate with the sum of preceding gradient functions [7)(L). We
prove that this ensures every term of the any-order derivative will be affected by a control variate in
Appendix C. This proof is new, since [33] only showed this for first and second order differentiation,
not for general control variates, and uses a slightly different formulation that we show misses some
terms.

Theorem 2 (informal). Let L; = Z;‘:l l;. The Storchastic surrogate loss of (2) can equivalently be
computed as

SLsiwranZ 3. > - Y sz (x:) Z (Lim) (ailx<i, %) + @) - 1)C) + C.

X1 EX| X2€X, X EXy i=1 =1

This gives insight into how control variates are used in Storchastic. They are added to the gradient

function, but only during differentiation since [(L;) — 1 = 0. Furthermore, since both terms are
multiplied with (7)(L;—1) (see line 11 of Algorithm 1), both terms correctly distribute over the same
any-order derivative terms. By choosing a control variate of the form a;(x<;, X;) = (1 —[(L;)) - bs,
we recover baselines which are common in the context of score functions [13, 37]. For the proof,
we use the following proposition also proven in Appendix C:

Proposition 7. For orders of differentiation n > 0,

- k
Ve =V Y @ C(Li—y).

=1
3.6 Gradient Estimation Methods

In Appendix D we show how several prominent examples of gradient estimation methods in the liter-
ature can be formulated using Storchastic, and prove for what orders of differentiation the conditions
hold. Starting off, we show that for finite discrete random variables, we can formulate enumerating
over all possible options using Storchastic. The score function fits by mimicking DiCE [13]. We
extend it to multiple samples with replacement to allow using the leave-one-out baseline [35, 22].

class ScoreFunctionLOO(storch.method.Method):
def proposal_dist(self, distribution, amt_samples):
return distr.sample ((amt_samples,))

def weighting_function(self, distribution, amt_samples):
return torch.full(amt_samples, 1/amt_samples)

def estimator (self, sample, cost):
Compute gradient function (log-probability)
log_prob = sample.distribution.log_prob(tensor)

sum_costs = storch.sum(costs.detach(), sample.name)
Compute control variate
baseline = (sum_costs - costs) / (sample.n - 1)

return log_prob, (1.0 - magic_box(log_prob)) * baseline

Figure 3: Implementing the score function with the leave-one-out baseline in the Storchastic library.

Furthermore, we show how importance sampling, sum-and-sample estimators such as MAPO [28],
the unordered set estimator [25] and RELAX and REBAR [16, 47] fit in Storchastic. We also discuss
the antithetic sampling estimator ARM [51]. Unfortunately, condition 2 only holds for this estimator
for n < 1 since it relies on a particular property of the score function that holds only for first-order
gradient estimation. In addition to score function based methods, we discuss the GO gradient, SPSA
[44] and Measure-Valued Derivative [18], and show that the last two will only be unbiased forn < 1.
Finally, we note that reparameterization [20, 43] can be implemented by transforming the SCG such
that the sampling step is outside the path from the parameter to the cost [45].

3.7 Implementation

We implemented Storchastic as an open source PyTorch [39] library !. To ensure modelers can eas-
ily use this library, it automatically handles sets of samples as extra dimensions to PyTorch tensors
which allows running multiple sample evaluations in parallel. This approach is illustrated in Fig-
ure 1. By making use of PyTorch broadcasting semantics, this allows defining models for simple
single-sample computations that are automatically parallelized using Storchastic when using mul-
tiple samples. The Storchastic library has implemented most of the gradient estimation methods
mentioned in Section 3.6. Furthermore, new gradient estimation methods can seamlessly be added.

3.7.1 Example: Leave-one-out baseline in Discrete Variational Autoencoder

As a small case study, we show how to implement the score function with the leave-one-out baseline
introduced in Section 3.2.5 for the discrete variational autoencoder introduced in Section 2.3 in
PyTorch using Storchastic. While the code listed is simplified, it shows the flexibility with which
one can compute gradients in SCGs.

We list in Figure 3 how to implement the score function with the leave-one-out baseline. Line 3
implements the proposal distribution, line 6 the weighting function, line 10 the gradient function and
line 13 and 14 the control variate. Gradient estimation methods in Storchastic all extend a common
base class storch.method.Method to allow easy interoperability between different methods.

In Figure 4, we show how to implement the discrete VAE. The implementation directly follows the
SCG shown in Figure 2. In line 2, we create the ScoreFunctionL00 method defined in Figure 3.
Then, we run the training loop: In line 6 we create the stochastic node x by denoting the minibatch
dimension as an independent dimension. In line 8 we run the encoder with parameters ¢ to find the
variational posterior ¢,. We call the gradient estimation method in line 9 to get a sample of z. Note
that this interface is independent of gradient estimation method chosen, meaning that if we wanted
to compare our implemented method with a baseline, all that is needed is to change line 2. After the
decoder, we compute the two costs in lines 12 and 13. Finally, we call Storchastic main algorithm
in line 15 and run the optimizer.

!Code is available at github.com/HEmile/storchastic

5

from vae import minibatches, encode, decode, KLD, binary_cross_entropy
method = ScoreFunctionLOO0("z", 8)

3 for data in minibatches ():

optimizer.zero_grad ()

Denote minibatch dimension as independent plate dimension
data = storch.denote_independent (data.view(-1, 784), 0, "data")
Compute variational distribution given data, sample z

q = torch.distributions.OneHotCategorical (logits=encode (data))
z = method (q)

Compute costs, form the ELBO

reconstruction = decode(z)

storch.add_cost (KLD(q))

storch.add_cost (binary_cross_entropy (reconstruction, data))

Storchastic backward pass, optimize

ELBO = storch.backward ()

optimizer.step ()

Figure 4: Simplified implementation of the discrete VAE using Storchastic.

We run this model on our currently implemented set of gradient estimation methods for discrete
variables in Appendix E and report the results, which are meant purely to illustrate the case study.

4 Related Work

The literature on gradient estimation is rich, with papers focusing on general methods that can be
implemented in Storchastic [46, 18, 16, 51, 28, 30, 7], see Appendix D, and works focused on
Reinforcement Learning [49, 29, 36] or Variational Inference [35]. For a recent overview, see [37].

The literature focused on SCGs is split into methods using reparameterization [43, 20, 11, 31, 19]
and those using the score function [45]. Of those, DiCE [13] is most similar to Storchastic, and can
do any-order estimation on general SCGs. DICE is used in the probabilistic programming library
Pyro [3]. We extend DiCE to allow for incorporating many other gradient estimation methods than
just basic score function. We also derive and prove correctness of a general implementation for
control variates for any-order estimation which is similar to the one conjectured for DiCE in [33].

[38, 50] and [48] study actor-critic-like techniques and bootstrapping for SCGs to incorporate repa-
rameterization using methods inspired by deterministic policy gradients [29]. By using models to
differentiate through, these methods are biased through model inaccuracies and thus do not directly
fit into Storchastic. However, combining these ideas with the automatic nature of Storchastic could
be interesting future work.

5 Conclusion

We investigated general automatic differentiation for stochastic computation graphs. We developed
the Storchastic framework, and introduced an algorithm for unbiased any-order gradient estimation
that allows using a large variety of gradient estimation methods from the literature. We also investi-
gated variance reduction and showed how to properly implement control variates such that it affects
any-order gradient estimates. The framework satisfies the requirements introduced in Section 3.1.

For future work, we are interested in extending the analysis of Storchastic to how variance com-
pounds when using different gradient estimation methods. Furthermore, Storchastic could be ex-
tended to allow for biased methods. We are also interested in closely analyzing the different com-
ponents of gradient estimators, both from a theoretical and empirical point of view, to develop new
estimators that combine the strengths of estimators in the literature.

References

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis,
J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Joze-

10

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

fowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah,
M. Schuster, J. Shlens, B. Steiner, 1. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Va-
sudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng.
TensorFlow: Large-scale machine learning on heterogeneous systems. 2015.

S. Bhatnagar, H. Prasad, and L. Prashanth. Stochastic Recursive Algorithms for Optimization,
volume 434 of Lecture Notes in Control and Information Sciences. Springer London, London,
2013. ISBN 978-1-4471-4284-3 978-1-4471-4285-0. doi: 10.1007/978-1-4471-4285-0.

E. Bingham, J. P. Chen, M. Jankowiak, F. Obermeyer, N. Pradhan, T. Karaletsos, R. Singh, P. A.
Szerlip, P. Horsfall, and N. D. Goodman. Pyro: Deep universal probabilistic programming.
Journal of Machine Learning Research, 20:28:1-28:6, 2019.

J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Necula,
A. Paszke, J. VanderPlas, S. Wanderman-Milne, and Q. Zhang. JAX: Composable transfor-
mations of Python+NumPy programs, 2018.

L. Buesing, T. Weber, and S. Mohamed. Stochastic gradient estimation with finite differences.
page 4, 2016.

G. Casella and C. P. Robert. Rao-blackwellisation of sampling schemes. Biometrika, 83(1):
81-94, 1996. ISSN 00063444.

Y. Cong, M. Zhao, K. Bai, and L. Carin. GO gradient for expectation-based objectives. page 30,
2019.

G. Correia, V. Niculae, W. Aziz, and A. Martins. Efficient marginalization of discrete and
structured latent variables via sparsity. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan,
and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33, pages
11789-11802. Curran Associates, Inc., 2020.

Z. Dong, A. Mnih, and G. Tucker. DisARM: An antithetic gradient estimator for binary la-
tent variables. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors,
Advances in Neural Information Processing Systems, volume 33, pages 18637-18647. Curran
Associates, Inc., 2020.

G. Farquhar, S. Whiteson, and J. N. Foerster. Loaded DiCE: Trading off bias and variance
in any-order score function gradient estimators for reinforcement learning. In H. M. Wallach,
H. Larochelle, A. Beygelzimer, F. d’ Alché-Buc, E. B. Fox, and R. Garnett, editors, Advances
in Neural Information Processing Systems 32: Annual Conference on Neural Information Pro-
cessing Systems 2019, NeurlPS 2019, December §8-14, 2019, Vancouver, BC, Canada, pages
8149-8160, 2019.

M. Figurnov, S. Mohamed, and A. Mnih. Implicit reparameterization gradients. In S. Ben-
gio, H. M. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors,
Advances in Neural Information Processing Systems 31: Annual Conference on Neural In-
formation Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada,
pages 439450, 2018.

C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-learning for fast adaptation of deep
networks. In D. Precup and Y. W. Teh, editors, Proceedings of the 34th International Confer-
ence on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, volume 70
of Proceedings of Machine Learning Research, pages 1126—1135. PMLR, 2017.

J. Foerster, G. Farquhar, M. Al-Shedivat, T. Rocktédschel, E. Xing, and S. Whiteson. DiCE:
The infinitely differentiable monte carlo estimator. In International Conference on Machine
Learning, pages 1529-1538, 2018.

J. N. Foerster, R. Y. Chen, M. Al-Shedivat, S. Whiteson, P. Abbeel, and I. Mordatch. Learning
with opponent-learning awareness. In E. André, S. Koenig, M. Dastani, and G. Sukthankar,
editors, Proceedings of the 17th International Conference on Autonomous Agents and Mul-
tiAgent Systems, AAMAS 2018, Stockholm, Sweden, July 10-15, 2018, pages 122—-130. Inter-
national Foundation for Autonomous Agents and Multiagent Systems Richland, SC, USA /
ACM, 2018.

T. Furmston, G. Lever, and D. Barber. Approximate newton methods for policy search in
markov decision processes. Journal of Machine Learning Research, 17:227:1-227:51, 2016.

11

[16] W. Grathwohl, D. Choi, Y. Wu, G. Roeder, and D. Duvenaud. Backpropagation through the
void: Optimizing control variates for black-box gradient estimation. In 6th International Con-
ference on Learning Representations, ICLR 2018 - Conference Track Proceedings, 2018.

[17] E. Greensmith, P. L. Bartlett, and J. Baxter. Variance reduction techniques for gradient esti-
mates in reinforcement learning. Journal of Machine Learning Research, 5(9), 2004.

[18] B. Heidergott and F. Vazquez-Abad. Measure-valued differentiation for Markov chains. Jour-
nal of Optimization Theory and Applications, 136(2):187-209, 2008.

[19] E. Jang, S. Gu, and B. Poole. Categorical reparameterization with gumbel-softmax. In 5th
International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-
26, 2017, Conference Track Proceedings, 2017.

[20] D. P. Kingma and M. Welling. Auto-encoding variational bayes. In 2nd International Confer-
ence on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Confer-
ence Track Proceedings, 2014.

[21] W. Kool, H. van Hoof, and M. Welling. Attention, learn to solve routing problems! In 7zh
International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA,
May 6-9, 2019. OpenReview.net, 2019.

[22] W. Kool, H. van Hoof, and M. Welling. Buy 4 REINFORCE samples, get a baseline for free!
page 14, 2019.

[23] W. Kool, H. van Hoof, and M. Welling. Stochastic beams and where to find them: The gumbel-
top-k trick for sampling sequences without replacement. In K. Chaudhuri and R. Salakhutdi-
nov, editors, Proceedings of the 36th International Conference on Machine Learning, ICML
2019, 9-15 June 2019, Long Beach, California, USA, volume 97 of Proceedings of Machine
Learning Research, pages 3499-3508. PMLR, 2019.

[24] W. Kool, H. van Hoof, and M. Welling. Ancestral gumbel-top-k sampling for sampling without
replacement. Journal of Machine Learning Research, 21(47):1-36, 2020.

[25] W. Kool, H. van Hoof, and M. Welling. Estimating gradients for discrete random variables by
sampling without replacement. page 28, 2020.

[26] Y. LeCun and C. Cortes. MNIST handwritten digit database. 2010.

[27] Z. Li, F. Zhou, F. Chen, and H. Li. Meta-SGD: Learning to Learn Quickly for Few-Shot
Learning. arXiv:1707.09835 [cs], Sept. 2017.

[28] C. Liang, M. Norouzi, J. Berant, Q. Le, and N. Lao. Memory Augmented Policy Optimization
for Program Synthesis and Semantic Parsing. arXiv:1807.02322 [cs, stat], Jan. 2019.

[29] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra.
Continuous control with deep reinforcement learning. In 4th International Conference on
Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference
Track Proceedings, 2016.

[30] R. Liu, J. Regier, N. Tripuraneni, M. 1. Jordan, and J. D. McAuliffe. Rao-blackwellized
stochastic gradients for discrete distributions. In K. Chaudhuri and R. Salakhutdinov, editors,
Proceedings of the 36th International Conference on Machine Learning, ICML 2019, 9-15
June 2019, Long Beach, California, USA, volume 97 of Proceedings of Machine Learning
Research, pages 4023-4031. PMLR, 2019.

[31] C.J. Maddison, A. Mnih, and Y. W. Teh. The concrete distribution: A continuous relaxation
of discrete random variables. In 5th International Conference on Learning Representations,
ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings, 2017.

[32] A. R. Mahmood, H. Van Hasselt, and R. S. Sutton. Weighted importance sampling for off-
policy learning with linear function approximation. In NIPS, pages 3014-3022, 2014.

[33] J. Mao, J. Foerster, T. Rocktidschel, M. Al-Shedivat, G. Farquhar, and S. Whiteson. A base-
line for any order gradient estimation in stochastic computation graphs. In K. Chaudhuri
and R. Salakhutdinov, editors, Proceedings of the 36th International Conference on Machine
Learning, volume 97 of Proceedings of Machine Learning Research, pages 4343—4351, Long
Beach, California, USA, June 2019. PMLR.

12

[34] A. Mnih and K. Gregor. Neural variational inference and learning in belief networks. In
E. P. Xing and T. Jebara, editors, Proceedings of the 31st International Conference on Ma-
chine Learning, volume 32 of Proceedings of Machine Learning Research, pages 1791-1799,
Bejing, China, June 2014. PMLR.

[35] A. Mnih and D. J. Rezende. Variational inference for monte carlo objectives. In 33rd Interna-
tional Conference on Machine Learning, ICML 2016, 2016. ISBN 978-1-5108-2900-8.

[36] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley, D. Silver, and
K. Kavukcuoglu. Asynchronous methods for deep reinforcement learning. In Proceedings
of the 33nd International Conference on Machine Learning, ICML 2016, New York City, NY,
USA, June 19-24, 2016, pages 1928-1937, 2016.

[37] S. Mohamed, M. Rosca, M. Figurnov, and A. Mnih. Monte carlo gradient estimation in ma-
chine learning. Journal of Machine Learning Research, 21:132:1-132:62, 2020.

[38] P. Parmas. Total stochastic gradient algorithms and applications in reinforcement learning.
In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, edi-
tors, Advances in Neural Information Processing Systems, volume 31. Curran Associates, Inc.,
2018.

[39] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Te-
jani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. PyTorch: An imperative
style, high-performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d\textquotesingle Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Informa-
tion Processing Systems 32, pages 8024-8035. Curran Associates, Inc., 2019.

[40] G. C. Pflug. Sampling derivatives of probabilities. Computing, 1989. ISSN 0010485X. doi:
10.1007/BF02243227.

[41] R. Ranganath, S. Gerrish, and D. M. Blei. Black box variational inference. In Proceedings
of the Seventeenth International Conference on Artificial Intelligence and Statistics, AISTATS
2014, Reykjavik, Iceland, April 22-25, 2014, volume 33 of JMLR Workshop and Conference
Proceedings, pages 814-822. JMLR.org, 2014.

[42] S.J. Rennie, E. Marcheret, Y. Mroueh, J. Ross, and V. Goel. Self-Critical Sequence Training
for Image Captioning. In 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 1179-1195, Honolulu, HI, July 2017. IEEE. ISBN 978-1-5386-0457-1. doi:
10.1109/CVPR.2017.131.

[43] D.J. Rezende, S. Mohamed, and D. Wierstra. Stochastic backpropagation and approximate
inference in deep generative models. In E. P. Xing and T. Jebara, editors, Proceedings of the
31st International Conference on Machine Learning, volume 32 of Proceedings of Machine
Learning Research, pages 1278—1286, Bejing, China, June 2014. PMLR.

[44] R. Y. Rubinstein and D. P. Kroese. Simulation and the Monte Carlo Method, volume 10. John
Wiley & Sons, 2016.

[45] J. Schulman, N. Heess, T. Weber, and P. Abbeel. Gradient estimation using stochastic compu-
tation graphs. In Advances in Neural Information Processing Systems, 2015.

[46] J. C. Spall et al. Multivariate stochastic approximation using a simultaneous perturbation
gradient approximation. /IEEFE transactions on automatic control, 37(3):332-341, 1992.

[47] G. Tucker, A. Mnih, C. J. Maddison, D. Lawson, and J. Sohl-Dickstein. REBAR: Low-
variance, unbiased gradient estimates for discrete latent variable models. In Advances in Neural
Information Processing Systems, 2017.

[48] T. Weber, N. Heess, L. Buesing, and D. Silver. Credit assignment techniques in stochas-
tic computation graphs. In K. Chaudhuri and M. Sugiyama, editors, The 22nd International
Conference on Artificial Intelligence and Statistics, AISTATS 2019, 16-18 April 2019, Naha,
Okinawa, Japan, volume 89 of Proceedings of Machine Learning Research, pages 2650-2660.
PMLR, 2019.

[49] R. J. Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Machine Learning, 1992. ISSN 0885-6125. doi: 10.1007/bf00992696.

[50] X. Xu, S. Zu, Y. Zhang, H. Zhou, and W. Feng. Backprop-Q: Generalized Backpropagation
for Stochastic Computation Graphs. arXiv:1807.09511 [cs, stat], Jan. 2019.

13

[51] M. Yin and M. Zhou. ARM: Augment-reinforce-merge gradient for stochastic binary networks.
In 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA,
USA, May 6-9, 2019. OpenReview.net, 2019.

[52] M. Yin, Y. Yue, and M. Zhou. ARSM: Augment-reinforce-swap-merge estimator for gradient
backpropagation through categorical variables. In K. Chaudhuri and R. Salakhutdinov, editors,
Proceedings of the 36th International Conference on Machine Learning, ICML 2019, 9-15
June 2019, Long Beach, California, USA, volume 97 of Proceedings of Machine Learning
Research, pages 7095-7104. PMLR, 2019.

14

