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ABSTRACT

We argue that the negative transfer problem occurring when the new task to learn
arrives is an important problem that needs not be overlooked when developing effec-
tive Continual Reinforcement Learning (CRL) algorithms. Through comprehensive
experimental validation, we demonstrate that such issue frequently exists in CRL
and cannot be effectively addressed by several recent work on either mitigating
plasticity loss of RL agents or enhancing the positive transfer in CRL scenario. To
that end, we develop Reset & Distill (R&D), a simple yet highly effective baseline
method, to overcome the negative transfer problem in CRL. R&D combines a
strategy of resetting the agent’s online actor and critic networks to learn a new
task and an offline learning step for distilling the knowledge from the online actor
and previous expert’s action probabilities. We carried out extensive experiments
on long sequence of Meta World tasks and show that our simple baseline method
consistently outperforms recent approaches, achieving significantly higher success
rates across a range of tasks. Our findings highlight the importance of considering
negative transfer in CRL and emphasize the need for robust strategies like R&D to
mitigate its detrimental effects.

1 INTRODUCTION

Following the impressive recent success of reinforcement learning (RL) (Mnih et al., 2013; Silver
et al., 2016; Mnih et al., 2015; Andrychowicz et al., 2020) in various applications, a plethora of
research has been done in improving the learning efficiency of RL algorithms. One important
avenue of the extension is the Continual Reinforcement Learning (CRL), in which an agent aims to
continuously learn and improve its decision-making policy over sequentially arriving tasks without
forgetting previously learned tasks. The motivation for such extension is clear since it is not practical
to either re-train an agent to learn multiple tasks seen so far or train a dedicated agent for each task
whenever a new task to learn arrives. The need for CRL is particularly pressing when the sequentially
arriving tasks to learn are similar to each other as in robot action learning (Kober et al., 2013).

In general, one of the main challenges of continual learning (CL) is to effectively transfer the learned
knowledge to a new task (i.e., improve plasticity) while avoiding catastrophic forgetting of previously
learned knowledge (i.e., improve stability). So far, most of the CRL methods (Mendez et al., 2020;
2022; Rolnick et al., 2019; Wolczyk et al., 2022) also focus on addressing such a challenge, largely
inspired by the methods developed in the supervised learning counterparts; e.g., improving the
stability by regularizing the deviation of the important parameters (Kirkpatrick et al., 2017; Zenke
et al., 2017; Ahn et al., 2019; Jung et al., 2020), storing the subset of dataset on previous tasks
Chaudhry et al. (2019a;b); Lopez-Paz & Ranzato (2017) or isolating the important parameters Mallya
& Lazebnik (2018); Mallya et al. (2018); Hung et al. (2019); Yoon et al. (2018). Furthermore, several
works mainly focused on improving the plasticity of the network by transferring the knowledge from
previous tasks (Rusu et al., 2016; Schwarz et al., 2018) or selectively re-using the important parts for
learning new tasks (Mendez et al., 2022; 2020; Mendez & Eaton, 2021).

Due to the aforementioned trade-off, it is generally understood that the plasticity degradation occurs
in continual learning mainly due to the emphasis on stability. However, several recent work pointed
out that, particularly in RL, the plasticity of a learner can decrease even when learning a single
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task (Nikishin et al., 2022; Lewandowski et al., 2023; Kumar et al., 2021; Lyle et al., 2022; 2023;
Sokar et al., 2023; Berariu et al., 2021), in which the stability is not considered at all. Those works
identified that the occurrence of such plasticity loss may be largely due to using non-stationary targets
while learning the value function. These findings give some clues for understanding the plasticity
degradation phenomenon in CRL, which occurs quite often not only when learning each task but also
when task transition happens, but not the full explanation.

Namely, in CRL, even when the simple fine-tuning is employed for sequentially learning tasks, it
is not hard to observe that a learner already suffers from learning a new task as we show in our
experiments in later sections. We may attempt to explain this plasticity degradation of fine-tuning,
which does not consider stability whatsoever, through the lens of the plasticity loss mentioned above;
i.e., since the non-stationarity of the learning objectives (or the reward functions) arises when task
transition happens, the plasticity loss occurs and hampers the learning ability. However, as we observe
from our careful empirical analyses, above explanation is not fully satisfactory since such plasticity
degradation turns out to be dependent on what specific task a learner has learned previously. That
is, we show that the dissimilarity between the learned tasks also becomes a critical factor for the
plasticity degradation (of fine-tuning) in CRL, which we identify as the negative transfer problem
that has been also considered in conventional transfer learning literature (Zhang et al., 2022; Taylor &
Stone, 2009; Chen et al., 2019).

To that end, we mainly focus on and try to address the negative transfer problem in CRL. In Section 3,
we first carry out a simple three-task experiment that exhibits a severe negative transfer for fine-tuning.
We show that simple adoption of the various remedy for the plasticity loss in RL agents proposed in
recent works (Nikishin et al., 2022; Lewandowski et al., 2023; Kumar et al., 2021; Lyle et al., 2022;
2023; Sokar et al., 2023; Berariu et al., 2021) cannot successfully mitigate the negative transfer in
our setting. Moreover, we also demonstrate that when such negative transfer phenomenon prevails,
methods that promote positive transfer (beyond fine-tuning) can also result in detrimental results.
Subsequently, via more extensive experiments using the Meta World (Yu et al., 2020) environment,
we identify that various levels of negative transfer exist depending on the task sequences and RL
algorithms. From these findings, in Section 4, we propose a simple method, dubbed as Reset &
Distill (R&D), that is tailored for CRL and prevents both the negative transfer (via resetting the
online learner) and forgetting (via distillation from offline learner). We also elaborate on how our
R&D differentiates from previous work in CRL (Schwarz et al., 2018) and multi-task RL (Teh et al.,
2017) via careful ablation. Finally, in Section 5, we present experimental results on longer task
sequences and show R&D significantly outperforms recent CRL baselines as well as methods that
simply plug-in the recent plasticity loss mitigation schemes to the CRL baselines. The quantitative
metric comparisons show the gain of R&D indeed comes from addressing both negative transfer
and forgetting. We stress that our result underscores addressing negative transfer phenomenon is
indispensable in CRL since our method can already surpass the methods that try to promote positive
transfers between tasks.

2 BACKGROUND

2.1 PRELIMINARIES

Notations. In CRL, an agent needs to sequentially learn multiple tasks without forgetting the past
tasks. We denote the task sequence by a task descriptor τ ∈ {1, ..., T}, in which T is the total number
of tasks. At each task τ , the agent interacts with the environment according to a Markov Decision
Process (MDP) (Sτ ,Aτ , pτ , rτ ), where Sτ and Aτ are the set of all possible states and actions for
task τ . Given st+1, st ∈ Sτ and at ∈ Aτ , pτ (st+1|st, at) is the probability of transitioning to st+1

given a state st and action at. rτ (st, at) is the reward function that produces a scalar value for each
transition (st, at). The objective of an RL agent is to obtain a policy π(at|st) that can maximize the
sum of expected cumulative rewards for each task τ .

RL setting. In this paper, we mainly focus on the actor-critic method which combines both value-
based and policy-based methods. This method includes two networks: an actor that learns a policy
and a critic that learns the value function; the critic evaluates the policy by estimating the value of
each state-action pair, while the actor improves the policy by maximizing the expected reward. Given
task τ and st ∈ Sτ , at ∈ Aτ , we denote the actor parameterized by θτ as π(at|st;θτ ), and the critic
parameterized by ϕτ as Q(at, st;ϕτ ). For the algorithms that only use the state information in the
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critic, we denote the critic network as V (st;ϕτ ). Several state-of-the-art actor-critic methods, such
as SAC (Haarnoja et al., 2018) and PPO (Schulman et al., 2017), are available. For more details,
please refer to the original papers.

2.2 LOSS OF PLASTICITY IN RL

Here, we outline recent studies that pointed out the plasticity loss of RL algorithms from several
different viewpoints. Igl et al. (2021) found an evidence that using the non-stationary target when
learning the value function, unlike the stationary target of supervised learning, can permanently
impact the latent representations and adversely affect the generalization performance. From a similar
perspective, Kumar et al. (2021); Lyle et al. (2022) figured out that the non-stationarity of the
target may diminish the rank of the feature embedding matrix obtained by the value network. They
hypothesize that this phenomenon ultimately results in the capacity loss of the value function and
hinders the function from learning new tasks. To address this issue, Lyle et al. (2022) proposed
a regularization method, InFeR, to preserve the rank of the feature embedding matrix. Nikishin
et al. (2022) considered another viewpoint and demonstrated that RL methods that tend to highly
overfit to the initial data in the replay buffer can suffer from primacy bias that leads to the plasticity
degradation for the incoming samples. Furthermore, Sokar et al. (2023) argued that the large number
of dormant neurons in the value network, which could be caused by using the non-stationary targets
for learning, maybe another reason for the plasticity loss. To address this issue, they proposed ReDo
that selectively resets the dormant neurons to enlarge the capacity of the network.

While above proposals certainly made some progress, they still remained to be partial explanation
for the plasticity loss. Namely, Lyle et al. (2023) showed that as opposed to the analyses in Lyle
et al. (2022); Kumar et al. (2021), the high correlation between the rank of the feature embedding
matrix and the plasticity loss only appears when the underlying reward function is either easy or hard
to learn. For example, they showed that if the environment produces the sparse rewards, there is
low correlation between the feature rank and the plasticity loss. Subsequently, they also showed that
the large number of dormant neurons affected the plasticity loss only when the underlying network
architecture happens to be multi-layer perceptron. Lyle et al. (2023) proposed a new insight that the
root cause of the plasticity loss is the loss of curvature in the loss function. Lewandowski et al. (2023)
also stressed that the optimization landscape has diminishing curvature and proposed Wasserstein
regularization that regularizes the distribution of parameters if it is far from the distribution of the
randomly initialized parameters. Lee et al. (2023) divided the plasticity into two aspects. One is the
input plasticity which implies the adaptability of the model to the input data, and the other is the
label plasticity which implies the ability of the model to adapt to evolving input-output relationship.
Lee et al. (2023) show that combining all the methods (e.g. layer normalization, sharpness aware
minimization (SAM) (Foret et al., 2021), and reset Nikishin et al. (2022)) that improve the input and
label plasticity can enhance the overall plasticity. To the end, Nauman et al. (2024) broadly analyzed
various regularization techniques for improving the plasticity, and figure out that resetting the network
surpasses other schemes. In Nikishin et al. (2022); Lee et al. (2023); Nauman et al. (2024), all of
them show the effectiveness of the resetting the network while learning a single task. However, since
resetting the network can cause complete forgetting of past tasks in CRL setting, naively applying the
resetting schemes in CRL would be counterintuitive.

For alternative approaches, Dohare et al. (2021) considered the degradation of stochastic gradient
descent’s plasticity in both continual supervised and reinforcement learning. Furthermore, Abbas
et al. (2023) provided extensive empirical results showing that as a learner repeatedly learns a task
sequence multiple times, the performance of each task gets lower. They proposed that when the loss
of plasticity occurs, the weights change of value function network consistently shrinks as we proceed
the gradient descent. To address this issue, they adopted Concatenated ReLU (CReLU) to prevent the
gradient collapse. Despite the different viewpoint, the authors have referred to this phenomenon as
plasticity loss as well.

2.3 NEGATIVE TRANSFER IN TRANSFER LEARNING

The negative transfer problem has been identified as one of the important issues to consider in
transfer learning (Taylor & Stone, 2009). Namely, in Wang et al. (2019); Cao et al. (2018); Ge et al.
(2014); Rosenstein et al. (2005), they observed that when the source and target domains are not
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sufficiently similar, the transfer learned model on the target task may perform even worse than the
model that learns the target task from scratch (hence, negative transfer occurs). When the negative
transfer occurs in CRL, one may argue that it is just another version of plasticity loss mentioned in
the previous subsection since the task transition causes the non-stationarity of targets for learning an
agent. However, as we show in the next section, our simple experimental results demonstrate that
merely applying the methods in Lyle et al. (2022); Abbas et al. (2023); Lewandowski et al. (2023)
that aim to address the plasticity loss issue in RL do not fully resolve the negative transfer problem in
CRL.

3 THE NEGATIVE TRANSFER IN CRL

3.1 A MOTIVATING EXPERIMENT 0.0 0.5 1.0 1.5 2.0 2.5 3.0
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Figure 1: The success rates of SAC
and PPO on (a) push-wall and (b)
window-close tasks.

In this section, we carry out a simple experiment on a
popular Meta World (Yu et al., 2020) environment, which
consists of various robotic manipulation tasks, to showcase
the negative transfer problem in CRL.

Existence of negative transfer. Firstly, Figure 1(a) and
(b) show the success rates for learning the push-wall
and window-close tasks with SAC (Haarnoja et al.,
2018) and PPO (Schulman et al., 2017) algorithms for
3 million (M) steps from scratch, respectively. Note
that both algorithms achieve success rates close to 1,
showing both tasks are quite easy to learn from scratch.
Now, Figure 2(a) shows the results for continuously learning sweep-into, push-wall and
window-close tasks with simple fine-tuning (red) for 9M steps (3M steps for each task).
Namely, SAC and PPO are simply fine-tuned to push-wall after learning sweep-into and
window-close after push-wall. In this context, fine-tuning refers to adjusting all parameters
of the network without imposing any freezing or regularization constraints, hence, it does not put any
emphasis on the stability to combat catastrophic forgetting. In the results, we clearly observe that
both SAC and PPO completely fail to learn push-wall after learning sweep-into even when
the fully plastic fine-tuning is employed. Hence, we note such failure cannot be attributed to the
well-known stability-plasticity dilemma in continual learning.

Mitigating plasticity loss cannot fully address negative transfer. For an alternative explanation,
we can check whether such a failure can be identified by the indicators of the plasticity loss developed
by the studies presented in Section 2.2. Figure 2(b) shows the number of dormant neurons (Sokar
et al., 2023), rank of the feature embeddings (Lyle et al., 2022; Kumar et al., 2021), weight deviation
(Abbas et al., 2023), and Hessian sRank (Lewandowski et al., 2023) of the fine-tuned model’s actor
and critic across the three tasks. When focusing on the push-wall task, we observe mixed results;
namely, while some indicators (i.e., high dormant neurons and low feature rank) indeed point to the
plasticity loss of the model, the others (i.e., high Hessian sRank and high weight deviations) are
contradicting. Furthermore, in Figure 2(a), we also plot the results of the methods – i.e., ReDO,
InFeR, CReLU, and Wasserstein Regularization – that aim to mitigate the plasticity loss of the model
from the perspective of each respective indicator with the same color code in Figure 2(b). Still, the
success rates of all methods on push-wall remain significantly lower than the one in Figure 1.

Based on these results, we note that the dramatic performance degradation of the fine-tuning model on
the push-wall task cannot be well explained by the previous work on identifying and mitigating
the plasticity loss of an RL agent. Furthermore, if the plasticity loss were truly occurring at the
task transitions, the high success rate of the third, window-close task cannot be well understood,
either1. Therefore, we argue that the learnability of an RL task may depend on the preceding task, and
the negative transfer from the preceding task, which cannot be solely captured by previous research,
is one of the main obstacles to overcome in CRL.

1While the results differ depending on the learning algorithms, it is still clear that the third task has much
higher success rates than the second task.
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Figure 2: Results on continual fine-tuning SAC (top) and PPO (bottom) on 3 tasks. (a) Success rates
with various methods. (b) Various indicators of the plasticity loss of the models across the three tasks.

Promoting positive transfer cannot address negative transfer. There are several works in CRL
research that aim to promote positive transfers between tasks (beyond simple fine-tuning) (Schwarz
et al., 2018; Mendez et al., 2020; Mendez & Eaton, 2021; Mendez et al., 2022). One may expect those
methods might resolve the negative transfer issue by transferring useful knowledge from previous
task while learning a new task. However, from a simple ablation study on Progress & Compress
(P&C) (Schwarz et al., 2018), a well-known baseline that is designed to induce the positive transfer
in CRL, we can observe that such methods also show detrimental performance when negative transfer
phenomenon exists.

More specifically, Figure 3 shows the results of SAC on the same three tasks as in Figure 2 when
combined with several variations of P&C. Namely, P&C employs an adaptor to promote positive
transfer from previous task, and we evaluated the schemes with (w/) and without (w/o) the adaptor.
Moreover, as the original P&C paper (Schwarz et al., 2018) has also pointed out, the knowledge
learned in the active column and the adaptor may hinder the learning of new incoming task; thus, in
addition to the original ‘without (w/o) reset’ mode, we also tested with (w/) reset, which randomly
initializes the network parameters of both active column and adapter when learning a new task begins.
Hence, the ‘w/ adaptor & w/o reset’ and ‘w/ adaptor & w/reset’ modes are the variations of P&C
originally proposed in (Schwarz et al., 2018).
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Figure 3: Results of the 3-task experi-
ment with P&C variants, utilizing SAC.

From the figure, we first clearly observe that the ‘w/o reset’
mode, regardless of using adaptor or not, still fails to learn
the second task, push-wall. This result shows that the
mechanism for promoting positive transfer is not helpful
at all, if not harmful, for resolving the severe negative
transfer issue. Secondly, the ‘w/reset & w/adaptor’ mode
slightly increases the performance on push-wall, but
it still achieves much lower performance than learning
from scratch. This hints that the mechanism for promoting
positive transfer may in fact hurt the CRL performance,
when the degree of the negative transfer is severe. In such
a case, successfully addressing the negative transfer issue may have higher priority than promoting
positive transfer.

In summary, we show that methods for both mitigating plasticiy loss and promoting positive transfer
cannot successfully address the negative transfer issue in our three-task example.

3.2 IDENTIFYING VARIOUS LEVELS OF NEGATIVE TRANSFERS

Motivated by the results in the previous subsection, we carried out more extensive experiments using
Meta World (Yu et al., 2020), Deep Mind Control Suite (Tassa et al., 2018), and Atari (Mnih et al.,
2013) environment to check the various patterns of negative transfer in CRL.
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Figure 4: Negative transfer patterns for the two-task fine-tuning in Meta World with (a) SAC and (b)
PPO, when tasks from Plate, Push, Sweep groups are learned as the first (left) or the second
(right) task.

Meta World. We carefully selected 24 tasks that can be successfully learned from scratch, i.e.,
that can achieve success rates close to 1, within 3M steps. We then categorized them into 8 groups
by grouping the tasks that share the same first word in their task names. The 8 task groups were
{Button, Door, Faucet, Handle, Plate, Push, Sweep, Window}, and for more details on
the specific tasks in each group, please refer to the Appendix A.2. Note that the groups were
constructed simply based on the names of the tasks, hence, the tasks that are in the same group can
also be largely dissimilar — the main reason for the grouping is to save computational cost for our
experiments.

After the task grouping, we carried out substantial two-task CRL experiments with fine-tuning as
shown in Figure 4. Namely, we first picked three groups, Plate, Push, and Sweep, and verified
the patterns of the negative transfer on the second tasks depending on (i) when they come as the first
task, (ii) when they come as the second task, and (iii) when the applied RL algorithm changes. More
specifically, the left two figures in Figure 4 are for the results when tasks from Plate, Push, or
Sweep task group come as the first task and show the learnability degradation in the 8 task groups
that come as the second task (i.e., case (i)). In order to save the computation for the experiments,
we did not carry out the exhaustive pairwise two-task experiments, but averaged the results of the
following randomized experiments. Namely, we randomly sampled tasks from the first and second
task groups and sequentially learned those tasks with 3M steps each with fine-tuning, for 10 different
random seeds. (When the first and second task groups are identical, we sampled two different
tasks from the group and carried out the two-task learning.) Then, we computed the average of the
differences of rsecond, the success rate of the second task learned by fine-tuning after learning the
first task, and rscratch, the success rate of learning the second task from scratch, for each second task
group. The average was done over the number of episodes and random seeds, and the more negative
difference implies the severer negative transfer. The right two figures are for the reverse case, i.e.,
when tasks from Plate, Push, or Sweep task group come as the second task, the average success
rate differences are depicted depending on the first task group (i.e., case (ii)) 2. Finally, the upper
and lower figures are for the two popular RL algorithms, SAC and PPO (i.e., case (iii)). Overall, we
did 10 (random seeds)× 39 (two-task pairs)× 2 (algorithms) = 780 two-task experiments.

From the figures, we can first observe that PPO tends to suffer from the negative transfer more
severely than SAC in general. Furthermore, it is apparent that the negative transfer pattern differs
depending on the specific task sequence. Namely, for the Plate task group with SAC, the negative
transfer rarely occurs regardless of the task group being the first or second tasks. However, for the
Push group with SAC, we observe that while the tasks in the group do not cause too much negative
transfer on the second tasks when they are learned first, they tend to suffer from negative transfer

2The experiments for the overlapping pairs as in case (i) are not repeated, but the same results are shown.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

-200.0

-150.0

-100.0

-50.0

0.0

50.0

100.0

150.0
ball-in-cup-catch

( )

finger-turn-easy

( )

fish-upright

( )

ball-in-cup-catch
cartpole-balance

cartpole-swingup
finger-turn-easy

fish-upright
point-mass-easy

reacher-easy

-200.0

-150.0

-100.0

-50.0

0.0

50.0

100.0

150.0
( )

ball-in-cup-catch

( )

finger-turn-easy

( )

fish-upright

DeepMind Control, SAC

Re
tu

rn
 D

iff
er

en
ce

 (G
se

co
nd

G
sc

ra
tc

h)

Figure 5: Negative transfer patterns in DeepMind Control environment with SAC.

0.4

0.2

0.0

0.2

0.4

0.6 bank-heist ( ) battle-zone ( ) breakout ( )

alien amidar assault asterix bank-heist battle-zone boxing breakout

0.6

0.4

0.2

0.0

0.2

0.4

0.6
( ) bank-heist ( ) battle-zone ( ) breakout

No
rm

al
ize

d 
Sc

or
e 

Di
ffe

re
nc

e

Atari-100k, Rainbow

Figure 6: Negative transfer patterns in Atari-100k environment with Rainbow.

when learned after other tasks. Finally, for the Sweep group with SAC, it is evident that the tasks in
the group both cause negative transfer on the second tasks and suffer from the negative transfer from
the first tasks.

DM Control. In this experiment, we selected 7 tasks, which are {ball-in-cup-catch,
cartpole-balance, cartpole-swingup, finger-turn-easy, fish-upright, point-
mass-easy, reacher-easy}. Using those tasks, we trained SAC and PPO, and similar to the
case in the Meta World experiment, we also selected 3 representative tasks, {ball-in-cup-catch,
finger-turn-easy, fish-upright}. In this experiment, we did not make the tasks groups.
Figure 5 shows the results of the SAC. The whole results on both SAC and PPO are in the Ap-
pendix A.6. To measure the degree of the negative transfer, we report the return difference. In
the figure, the negative transfer also occurs quite frequently, and especially for fish-upright
task, this task always suffer from the negative transfer regardless of the first task. This phenomenon
is similar to push task group in the Meta World. For more detailed explanation, please refer to
Appendix A.6

Atari. Different from Meta World and DM Control, Atari environment produces visual observation,
which is much more complex than previous experiments. In this experiment, we selected 8 tasks,
which are {alien, assault, bank-heist, boxing, amidar, asterix, battle-zone,
breakout}. In this experiment, we trained Rainbow (Hessel et al., 2018) on two task pairs, and
we selected 3 representative tasks, {bank-heist, battle-zone, breakout}. Figure 6 shows
the results. We report the difference of the normalized score which is normalized by the score
obtained from scratch. In the figure, we can clearly observe that the negative transfer problem also
occurs between Atari games. Especially for the battle-zone, when it lies on the second task, it
suffer from severe negative transfer in most cases. For more detailed explanation, please refer to
Appendix A.7

4 A SIMPLE BASELINE FOR ADDRESSING THE NEGATIVE TRANSFER IN CRL

Motivation. In the previous section, it was highlighted that in cases where negative transfer is severe,
the previous knowledge from earlier tasks can become an obstacle to learning. To mitigate the effects
of negative transfer, it is essential to consider two key factors: first, all prior knowledge from previous
tasks should be erased during the learning of the current task, and second, catastrophic forgetting
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must be prevented to enable sequential learning across multiple tasks. A straightforward approach to
eliminating previous knowledge is to randomly reinitialize all network parameters. However, this
is insufficient on its own, as it inevitably leads to forgetting within the network, making it difficult
to meet both requirements. To overcome this challenge, we propose the use of two actor networks:
the online and offline learners. This dual-network framework with periodic reset aims to balance
the need to discard outdated knowledge to learn the current task while maintaining the ability to
learn sequentially without forgetting. This approach is not entirely novel. In fact, our method can
be considered analogous to the ‘w/reset, w/o adaptor’ mode in the experiment shown in Figure 3.
However, P&C applies dual network mechanism in conjunction with an adaptor to facilitate positive
transfer, which contrasts with our method, as our primary motivation lies in reducing transfer itself.

A simple baseline for addressing negative transfer. Let us provide a more detailed description of
the proposed method. Specifically, let us denote the parameters of online actor and critic network as
θonline and ϕonline, respectively, and the parameters of offline actor as θoffline. In this method, θonline
and ϕonline undergo periodic resets after finishing learning each task. For the sake of convenience
in describing our method, we denote the parameters of the online actor right after learning task τ ,
but before resetting them, as θ∗

τ . Note these parameters are not stored or utilized directly in the
subsequent tasks.

Based on the notation, consider when τ = 1, i.e., the learning the first task. Clearly, the online actor
and critic can learn the task with existing RL algorithms like SAC or PPO. Once the learning is done,
we can then generate a replay buffer Dτ by utilizing the expert actor with parameter θ∗

τ
3. Next, we

train the offline actor using the state-action pairs in Dτ by distilling the knowledge from θ∗
τ to the

offline actor with θoffline. Then, we storeMτ , a small subset of Dτ , in the expert bufferM. After
completing the training for the initial task, we reset all of the parameters θonline and ϕonline before
initiating learning for the next task. The whole process is iteratively applied to subsequent tasks
τ = 2, · · · , T . During the distillation process after the first task, the buffer for the current task, Dτ ,
and the buffer containing information from all previously encountered tasks,M, are used together to
prevent forgetting. Hence, the loss function for the offline actor for task τ becomes

ℓR&D,τ (θoffline) =∑
(st,πτ )∈BDτ

KL
(
π(·|st;θ∗

τ )
∣∣∣∣π(·|st;θoffline)

)
︸ ︷︷ ︸

(a)

+
∑

(st,πk)∈BM

KL
(
π(·|st;θoffline)

∣∣∣∣π(·|st;θ∗
k)
)

︸ ︷︷ ︸
(b)

,

in which BDτ
and BM are mini-batch sampled from Dτ andM, respectively, πτ ≜ π(·|st;θ∗

τ ) and
πk ≜ π(·|st;θ∗

k), and k < τ refers to the tasks preceding the training of the current task τ . The final
outcome of this method is the offline actor, θoffline, which has sequentially learned all tasks. Note our
method has two distinct training phases: the first to reset parameters for the online learner, and the
second to distill knowledge to the offline learner. Consequently, we dub our algorithm as Reset and
Distill (R&D), and a comprehensive summary of the Algorithm is given in Appendix A.1.

Some concerns about R&D. Though R&D is devised to overcome the negative transfer in CRL,
there still exists several concerns inherent in R&D. First, unlike the online learner, there may be
concerns that the offline actor, could still suffer from negative transfer. However, we expect the
degree of negative transfer to be lower in the supervised imitation learning setting, where learning
occurs with true labels, compared to online RL bootstrapping, which uses the network’s output as the
learning target.

Second, due to the periodic reset characteristic of the online learner, R&D does not take positive
transfer into consideration at all. However, we have observed that in CRL, negative transfer is so
severe that existing methods designed to facilitate positive transfer often experience performance
degradation due to negative transfer before achieving the intended benefits of positive transfer. Based
on this observation, R&D was designed with the primary goal of evaluating performance by focusing
solely on mitigating negative transfer. While positive transfer remains a critical issue in CRL, and
R&D cannot be seen as a permanent solution for CRL, if R&D demonstrates superior performance

3If we use an off-policy algorithm like SAC, we can reuse the replay buffer employed to train the online
actor and critic. However, we discovered that such reuse of the replay buffer may lead to a degradation in the
performance of the offline policy, due to the discrepancy between state-action pairs and the expert.
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compared to other algorithms, it would indicate that addressing negative transfer should take priority
before considering positive transfer.

5 EXPERIMENTAL EVALUATION
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Figure 7: Negative transfer patterns using (a) SAC and (b) PPO with various methods when tasks
from Plate, Push and Sweep groups are learned as the first or the second task. For each method,
the difference of success rates is averaged over all randomly sampled first or second tasks.

5.1 TWO-TASK FINE-TUNING EXPERIMENTS WITH VARIOUS METHODS

We fine-tuned SAC and PPO equipped with CReLU Abbas et al. (2023) or InFeR Lyle et al. (2022)
on two consecutive tasks to investigate their potential to mitigate negative transfer effects, as detailed
in Section 3. Figure 7 provides the results. In many cases, we can observe that fine-tuning with
CReLU and InFeR still suffer from the negative transfer in PPO, and R&D effectively resolved the
negative transfer. In SAC, the overall performance of R&D for tackling the negative transfer is better
than InFeR and CReLU. The main difference between R&D and fine-tuning variations in terms of
the learning procedure is the usage of bootstrapping. Since R&D learns a new task only through the
supervised learning, the degree of the negative transfer is much less than the fine-tuning variations.
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Figure 8: The average success rates of different methods for three types of sequences.

5.2 EVALUATION ON LONG SEQUENCE OF TASKS

We evaluated R&D on long task sequences which consist of multiple environments from Meta World,
and compare the results with several state-of-the-art CL baselines. For the experiment, we used a
total of 3 task sequences: Easy, Hard, and Random. For Easy and Hard sequences, the degree of the
negative transfer is extremely low and high, respectively. For the Random sequence, we randomly
select 8 tasks, and we shuffled the 8 tasks. For the details on each sequence, please refer to the
Appendix A.3.

In this experiment, we compared our method to three CL baselines: EWC Kirkpatrick et al. (2017),
P&C Schwarz et al. (2018), and ClonEx Wolczyk et al. (2022), along with naïve fine-tuning 4.
Furthermore, we also compare our method to ClonEx with InFeR Lyle et al. (2022) and CReLU
Abbas et al. (2023) to check that whether those methods can tackle both negative transfer and
catastrophic forgetting. Please note that ClonEx leverages the best-reward exploration technique

4Note that because of the severe negative transfer when training P&C with PPO, the loss diverges to infinity,
so that we are unable to train P&C with PPO. Therefore, we only report the results of P&C with SAC.
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originally designed only for SAC, leading us to choose Behavioral Cloning (BC) as the method for
PPO implementation.

Figure 8 shows the results. Since the offline actor of R&D learns new tasks in offline way, we instead
put markers on the results of R&D and connected them with lines to notice the difference between
the baselines. All results are averaged over 10 random seeds. In this figure, we can observe that when
the negative transfer rarely occur (‘Easy’), the performance of R&D and ClonEx, ClonEx with InFeR,
and ClonEx with CReLU is similar. However, when the negative transfer occurs often (‘Hard’ and
‘Random’), R&D outperforms all the baselines.

5.3 ANALYSES ON NEGATIVE TRANSFER AND FORGETTING

Table 1: The results on negative transfer and forgetting with various schemes.
Measure Negative transfer (↑) Forgetting (↓)
Sequence Easy Hard Random Easy Hard Random

SAC / PPO
Fine-tuning -0.096 / -0.379 -0.500 / -0.624 -0.193 / -0.425 0.900 / 0.361 0.504 / 0.331 0.777 / 0.336

EWC -0.071 / -0.536 -0.457 / -0.676 -0.260 / -0.375 0.852 / 0.319 0.512 / 0.281 0.671 / 0.430
P&C -0.071 / - -0.507 / - -0.207 / - 0.871 / - 0.472 / - 0.702 / -

ClonEx -0.057 / -0.425 -0.513 / -0.608 -0.276 / -0.438 0.015 / 0.027 0.005 / 0.043 0.040 / 0.014
ClonEx + CReLU -0.196 / -0.325 -0.558 / -0.610 -0.213 / -0.275 0.039 / 0.029 0.067 / 0.003 0.012 / -0.014
ClonEx + InFeR -0.117 / -0.075 -0.503 / -0.462 -0.232 / -0.286 0.031 / 0.043 0.001 / -0.014 0.038 / 0.000

R&D -0.002 / 0.025 -0.041 / 0.025 -0.014 / 0.013 0.000 / 0.050 0.008 / 0.029 0.045 / 0.029

To quantitatively analyze how negative transfer and forgetting actually occurs in our experiments,
we measured the forgetting and transfer of 5 methods: R&D, Fine-tuning, ClonEx(BC), ClonEx
with CReLU, and ClonEx with InFeR. Let us denote the success rate of the task j when the actor
immediately finished learning task i as Ri,j , and the success rate after training task i from scratch
as RSingle

i . Then the transfer after learning task τ , denoted as Tτ , and the forgetting of task i after
learning task τ , denoted as Fτ,i, are defined as follows, respectively:

Tτ =Rτ,τ −RSingle
τ and Fτ,i = max

l∈{1,...,i−1}
Rl,i −Rτ,i.

After learning all T tasks, for the transfer and the forgetting, we report the average of Tτ and FT,i for
all task τ ∈ {1, ..., T} and i ∈ {1, ..., T}, respectively. In this measure, for the transfer, if this has
negative value, it indicates the negative transfer occurs. Note that the higher values of transfer and
the lower values of forgetting are better in our setting. Table 1 shows the results on the transfer and
forgetting. In this table, all CRL baselines, except for R&D, display vulnerability to negative transfer.
Across all methods, negative transfer tends to be more prominent in the ‘Hard’ sequence compared
to the ‘Easy’ sequence, whereas it appears to be at a moderate level for the ‘Random’ sequence. It
is worth mentioning that, as discussed in Section 3, PPO exhibits a higher propensity for negative
transfer compared to SAC.

In terms of forgetting, it appears that CRL methods, excluding ClonEx and R&D, also experience
catastrophic forgetting. Given that SAC typically exhibits greater forgetting than PPO, one might
infer that PPO is a more suitable choice for CRL. But this is not the case, as negative transfer rate of
PPO is higher than that of SAC, resulting in a smaller number of trainable tasks in the sequence for
PPO. Therefore, it is inappropriate to directly compare the forgetting of SAC and PPO.

In our previous findings, we observed that while the average success rate of ClonEx surpasses that of
other CRL baselines, it still falls short of the average success rate achieved by R&D. However, the
results indicate that ClonEx exhibits forgetting comparable to R&D. Hence, we can deduce that the
performance degradation of ClonEx is attributed to negative transfer rather than forgetting.

6 CONCLUSION

In this paper, we demonstrate the pervasiveness of negative transfer in the CRL setting. Specifically,
we show that recent studies addressing plasticity loss do not effectively mitigate this issue, as
evidenced by comprehensive and extensive experiments conducted in the Meta-World environment.
To effectively address negative transfer in CRL, we propose R&D, a simple yet highly effective
method. Experimentally, we illustrate that R&D, utilizing both resetting and distillation, not only
addresses negative transfer but also effectively mitigates the catastrophic forgetting problem.
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A APPENDIX

A.1 ALGORITHM

Algorithm 1 Reset and Distill (R&D)
Input: Number of epochs E; Total number of tasks T
Initialize: Network parameters θonline, ϕonline and θoffline; Expert bufferM← ∅
for τ = 1, · · · , T do

if τ > 1 then
Randomly re-initialize θonline and ϕonline

end if
Learn task τ using θonline and ϕonline
Generate replay buffer Dτ

for e = 1, · · · , E do
Sample BDτ ∼ Dτ and BM ∼M
Compute ℓR&D(θoffline) using BDτ and BM
Update θoffline with∇ℓR&D(θoffline)

end for
Store small subsetMτ of Dτ intoM

end for

A.2 DETAILS ON 8 TASK GROUPS

Prior to examining negative transfer in CRL, we identified tasks that could be learned within
3M steps among the 50 robotic manipulation tasks included in Meta-World Yu et al. (2020).

button-press-v2 button-press-topdown-v2

Figure 10: Visualization of button-press
(left) and button-press-topdown (right).

Figure 9 illustrates the success rates when training the
50 tasks using the SAC algorithm Haarnoja et al. (2018)
for 3M steps. In this figure, tasks with lower area under
the curve (AUC) values can be interpreted as requiring a
relatively larger number of steps for training. This implies
that some tasks may not be learned within 3M steps in
certain cases. Therefore, to identify negative transfer in
specific tasks, it is necessary to prioritize tasks that can
be fully learned within 3M steps, i.e., tasks with high
success rates and AUC values. Following this criterion,
we selected 24 tasks:

As indicated by their names, the tasks can be classified based on similarity. For example, as seen in
Figure 10, both button-press and button-press-topdown involve the robot pressing a button,
with the only difference being the direction of the button. By grouping similar tasks together, the 24
selected tasks can be classified into a total of 8 groups.

• Button: {button-press-topdown, button-press-topdown-wall, button-press, button-press-wall}

• Door: {door-close, door-lock, door-open, door-unlock}

• Faucet: {faucet-open, faucet-close}

• Handle: {handle-press-side, handle-press, handle-pull-side, handle-pull}

• Plate: {plate-slide-back-side, plate-slide-back,
plate-slide-side, plate-slide}

• Push: {push, push-wall}

• Sweep: {sweep-into, sweep}

• Window: {window-close, window-open}

A.3 DETAILS ON THE LONG SEQUENCE EXPERIMENTS

We evaluated R&D on long task sequences which consist of multiple environments from Meta-World,
and compare the results with several state-of-the-art CL baselines. For the experiment, we used a total
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Figure 9: Success rates after training 50 task in Meta-World for 3M steps. SAC was used for training.
Results from two different random seeds are distinguished by different colors. The bar plot represents
the success rate, and the line marker represents the area under the curve (AUC) of the success rate
curve obtained during training.

of 3 task sequences. Firstly, we identified task pairs that exhibit negative transfer when fine-tuning
two tasks consecutively. With this information, it is possible to compare the potential difficulties
between the task sequences we want to learn. For example, consider different task sequences like
A→B→C→D and E→F→G→H where each alphabet represents one task. If we observed negative
transfer occurring in consecutive task pairs (A, B), (C, D) and (F, G) within the sequences, the first
sequence contains two pairs likely to exhibit negative transfer, while the second has only one such
pair. Therefore we can expect the first sequence to be more challenging than the second.

We utilized this method to create two task sequences, each with a length of 8: ‘Hard’ and ‘Easy’. The
‘Hard’ sequence comprises 6 task pairs where negative transfer occurs in the 2-task setting, while
the ‘Easy’ sequence is generated by connecting only those task pairs where negative transfer does
not occur. To further validate the results in an arbitrary sequence, we randomly chose 8 out of the
24 tasks employed in the preceding section and conducted training by shuffling them based on each
random seed. Henceforth, we will refer these arbitrary sequences as the ‘Random’ sequence.

The sequences constructed using as above are as follows. Task name marked in bold indicates that
negative transfer may occur when it is learned continuously followed by the previous task.

Easy {faucet-open→ door-close→ button-press-topdown-wall→ handle-pull→ window-close→
plate-slide-back-side→ handle-press→ door-lock}
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Hard {faucet-open→ push→ sweep→ button-press-topdown→ window-open→ sweep-into
→ button-press-wall→ push-wall}

Random {door-unlock, faucet-open, handle-press-side, handle-pull-side, plate-slide-back-side, plate-
slide-side, shelf-place, window-close}

A.4 RESULTS OF R&D ON 3-TASK EXPERIMENTS

0 1 2 3 4 5 6 7 8 9
Environment steps 1e6

0.0
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0.4
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sweep-into push-wall window-close

SAC + P&C

w/o reset
w/ adaptor
w/o reset
w/o adaptor

w/ reset
w/ adaptor
w/ reset
w/o adaptor

R&Dw/o reset
w/ adaptor
w/o reset
w/o adaptor

w/ reset
w/ adaptor
w/ reset
w/o adaptor

R&D

Figure 11: Results of the 3-task experiment with P&C variants and R&D, utilizing SAC

In this section, we include not only the results of R&D but also the results of the online actor of R&D
which corresponds to ‘w/reset & w/o adaptor’. Figure 11 shows the results. In the figure, we can
observe that the online actor does not suffer from the negative transfer, and eventually, the R&D
can also effectively resolve the negative transfer. Through the above results, we want to stress that
resetting the whole agent and discarding the previously learned knowledge is effective on tackling
the negative transfer.
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A.5 EFFECT OF THE SIZE OFMτ AND Dτ
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Figure 12: The average success rates
of R&D with SAC and PPO on various
|Dτ | and |M|.

In this section, we additionally investigate the impact of
the size of the expert and the replay buffer on the per-
formance of R&D. To examine the effect, we conducted
experiments by varying the size of the replay buffer used
in the distillation phase from 10k to 1M, and the size of
the expert buffer from 1k to 10k. We used ‘Hard’ se-
quence, which can be considered as the most challenging
sequence in the previous experiments as it showed the
highest negative transfer among the 3 sequences, and mea-
sured the average success rate of each task after all tasks
were learned. Figure 12 illustrates the results. Note that
|Dτ | and |Mk| indicate the size of replay and expert buffer
respectively. Both SAC and PPO algorithms show that
as the replay buffer size increases, the average success
rate also increase. This is because if the size of the re-
play buffer is too small, the total number of samples used
for training the model decreases, leading to insufficient
learning. When we varied the size of the expert buffer,
we did not observe any noticeable differences. Based on
this result, we can reduce the expert buffer size to achieve
better memory efficiency.
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A.6 EXPERIMENTS ON DEEPMIND CONTROL SUITE (TASSA ET AL., 2018)
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Figure 13: Two-task fine-tuning results for (a) SAC and (b) PPO with standard deviation. The values
with a ± sign refer to the standard deviation.

To show the existence of the negative transfer in other domain, we also carry out experiments on
DeepMind Control Suite Tassa et al. (2018). First, we select 7 tasks {ball-in-cup-catch,
cartpole-balance, cartpole-swingup, finger-turn-easy, fish-upright,
point-mass-easy, reacher-easy}. Those tasks are carefully selected which can be suc-
cessfully learned from scratch within 1M steps. Different from the experiment in Section 3.1, we
do not make groups on those tasks. After selecting the tasks, we also carry out the two-task CRL
experiments on 18 pairs like in Figure 4 with 5 different random seeds. Figure 13 shows the results.
In this case, similar to the case in Meta World experiment, the negative transfer in PPO is much
severe than SAC. When the three tasks are in first tasks, the negative transfer occurs more frequently.
Only ball-in-cup-catch is getting worse when it lies on the second task. In terms of SAC,
there are some cases where the negative transfer occurs rarely or severely. For example, for the
fish-upright task, the phenomenon is quite opposite when it lies on the first task (rarely occurs)
or the second task (frequently occurs). For the other tasks, we can also find the negative transfer quite
often. Therefore, also in the DeepMind Control Suite environment, we can easily find the negative
transfer problem.
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A.6.1 RESULTS OF R&D ON DEEPMIND CONTROL SUITE (TASSA ET AL., 2018)
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Figure 14: Two-task R&D results for (a) SAC and (b) PPO with standard deviation.

To further investigate the effectiveness of R&D for tackling the negative transfer in other domain, we
carry experiments on DeepMind Control Suite Tassa et al. (2018). The overall experiment is same as
in Section A.6. In Figure 14 (a), in most scenarios, our observations indicate that the R&D framework
effectively alleviates negative transfer when compared to fine-tuning. However, an exception was
noted when R&D was utilized in conjunction with SAC, leading to an unexpected performance
decline in a specific task (cartpole-swingup). To investigate this phenomenon further, we conducted
additional experiments. In these experiments, we employed knowledge distillation by transferring
knowledge from a policy trained on the cartpole-swingup task to a randomly initialized agent. The
results revealed a return difference of -209.1± 149.1, aligning closely with the performance observed
when the offline actor was pre-trained on other tasks without resetting. These findings imply that
the inability to learn the cartpole-swingup task is attributed to factors unrelated to negative transfer
during the distillation process. If negative transfer were the underlying cause, applying knowledge
distillation to a randomly initialized network would not have led to performance degradation relative
to training the agent from scratch.
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A.7 EXPERIMENTS ON ATARI GAMES (MNIH ET AL., 2013)
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Figure 15: Two-task fine-tuning results for Rainbow with standard deviation. The values with a ±
sign refer to the standard deviation.

To show the existence of the negative transfer in visual domain, we carry out experiments on
Atari games (Mnih et al., 2013). First, we select 8 games {alien, assault, bank-heist,
boxing, amidar, asterix, battle-zone, breakout}. In this experiment, we trained Rain-
bow (Hessel et al., 2018) on two task pairs, and we selected 3 representative tasks, {bank-heist,
battle-zone, breakout}. Same as the experiment on DeepMind Control Suite, we did not
make group in this experiment. We carry out two-task CRL experiment on 21 task pairs with 5 differ-
ent random seeds. Figure 15 shows the result. First, in this figure, we can observe that the negative
transfer frequently occurs across various task pairs. For example, when the tasks bank-heist and
breakout lie on the first task, the most of the second tasks perform poorly. Furthermore, in case of
battle-zone, the negative transfer pattern is opposite when battle-zone lies on the first task
or the second task. For the former case, the degree of the negative transfer is small. However, for the
latter case, most of the proceeding tasks suffer from the negative transfer severely.

A.8 ANALYSIS ON THE ORDER OF THE KL DIVERGENCE IN R&D
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Figure 16: Results of experiments changing the direction of KL divergence for the R&D loss across
three 8-task sequences (Easy, Hard, Random).

One may observe a difference in the orders of KL divergence between (a) and (b). This discrepancy
arises from the fact that the order employed in (a) adheres to the traditional form of knowledge
distillation Hinton et al. (2015), while the order in (b) follows the convention used in Wolczyk et al.
(2022). In this section, we performed experiments by changing the direction of KL divergence for the
R&D loss. These experiments were applied to the three 8-task sequences mentioned in the main text.
Figure 16 shows the results. In the figure, the results indicate that the order of KL divergence did not
significantly impact the performance.
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A.9 THE RESULTS WITH ERROR BARS

In this section, we report the results of Table 1, Figure 4, and Figure 7 with error bars, which
corresponds to Table 2, Figure 18, and Figure 17, respectively.
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Figure 17: Two-task CRL experiments on various methods. Note that for the methods with CReLU,
the results of ‘From scratch’ are obtained by training vanilla RL methods with CReLU.
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Figure 18: Negative transfer patterns for the two-task fine-tuning with (a) SAC and (b) PPO, when
tasks from Plate, Push, Sweep groups are learned as the first (left) or the second (right) task.
The values with a ± sign refer to the standard deviation.
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Table 2: The transfer and forgetting results with standard deviation. Note that the numbers after ±
represent the standard deviation.

Measure Transfer (↑) Forgetting (↓)
Sequence Easy Hard Random Easy Hard Random

SAC
Fine-tuning -0.0955 ± 0.0929 -0.5002 ± 0.1236 -0.1925 ± 0.132 0.8997 ± 0.0912 0.5040 ± 0.1333 0.7766 ± 0.1111

EWC -0.0708 ± 0.0813 -0.4567 ± 0.0915 -0.2598 ± 0.1294 0.8517 ± 0.1129 0.5123 ± 0.0969 0.6714 ± 0.1327
P&C -0.0708 ± 0.1134 -0.5065 ± 0.1439 -0.2077 ± 0.1517 0.8714 ± 0.1187 0.4723 ± 0.1338 0.7023 ± 0.1335

ClonEx -0.0570 ± 0.0768 -0.5130 ± 0.1574 -0.2760 ± 0.1322 0.0146 ± 0.0437 0.0049 ± 0.0632 0.0397 ± 0.0714
ClonEx + CReLU -0.1958 ± 0.1936 -0.5580 ± 0.1166 -0.2132 ± 0.1947 0.0389 ± 0.0557 0.0671 ± 0.0997 0.0117 ± 0.0291

ClonEx+InFeR -0.1172 ± 0.1030 -0.5032 ± 0.1654 -0.2322 ± 0.1655 0.0311 ± 0.0626 0.0006 ± 0.0666 0.0377 ± 0.1073
R&D -0.0020 ± 0.0232 -0.0412 ± 0.0566 -0.0140 ± 0.0603 0.0000 ± 0.0000 0.0083 ± 0.0359 0.0454 ± 0.0701

PPO
Fine-tuning -0.3788 ± 0.1866 -0.6238 ± 0.1439 -0.4250 ± 0.2318 0.3614 ± 0.1114 0.3314 ± 0.1117 0.3357 ± 0.1567

EWC -0.5363 ± 0.2493 -0.6763 ± 0.1365 -0.3750 ± 0.1250 0.3186 ± 0.1250 0.2814 ± 0.1591 0.4300 ± 0.0043
P&C - - - - - -

ClonEx -0.4250 ± 0.1785 -0.6075 ± 0.1576 -0.4375 ± 0.2183 0.0271 ± 0.0621 0.0429 ± 0.0655 0.0143 ± 0.0429
ClonEx + CReLU -0.325 ± 0.1392 -0.6100 ± 0.1814 -0.2750 ± 0.1458 0.0286 ± 0.0571 0.0029 ± 0.0086 -0.0143 ± 0.0769

ClonEx+InFeR -0.0750 ± 0.1696 -0.4625 ± 0.2440 -0.2875 ± 0.3115 0.0429 ± 0.0655 -0.0143 ± 0.0429 0.0000 ± 0.0000
R&D 0.0250 ± 0.0500 0.0250 ± 0.0500 0.0125 ± 0.0375 0.0500 ± 0.0906 0.0286 ± 0.0571 0.0286 ± 0.0571

A.10 DETAILS ON EXPERIMENT SETTINGS

In the all experiments, we used Adam optimizer and the code implementations for all experiments
are based on Garage proposed in Yu et al. (2020). For the machines, we used 16 A5000 GPUs for all
experiments.

A.10.1 HYPERPARAMETERS FOR THE EXPERIMENTAL RESULTS

The hyperparameters for SAC and PPO are described in Table 3 and Table 4, respectively. For the
hyperparameters on the CRL methods, the details are described as follows:

• EWC, P&C: The regularization coefficient was set to 1000

• BC: The regularization coefficient was set to 1, and the expert buffer size |Mk| was set to
10k for task k.

• R&D: The regularization coefficient was set to 1, and the expert buffer size |Mk| was set to
10k for task k. Furthermore, the replay buffer size |D| was set to 106

Table 3: Model hyperparameters for SAC

Description Value
(Meta World)

Value
(DeepMind Control)

General Hyperparameters
Maximum episode length 500 1000
Environment steps per task 3M 1M
Evaluation steps 100k 100k
Gradient updates per environment step 1 0.25
Discount factor 0.99 0.99
Algorithm-Specific Hyperparameters
Hidden sizes (256, 256) (1024, 1024)
Activation function ReLU ReLU
Policy learning rate 3× 10−4 1× 10−4

Q-function learning rate 3× 10−4 1× 10−4

Replay buffer size 106 106

Mini batch size 64 1024
Policy min. std e−20 e−20

policy max. std e2 e2

Soft target interpolation 5× 10−3 5× 10−3

Entropy coefficient(α) automatic_tuning 0.2
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Table 4: Model hyperparameters for PPO

Description Value
(Meta World)

Value
(DeepMind Control)

General Hyperparameters
Maximum episode length 500 1000
Environment steps per task 3M 1M
Mini batch size 64 1024
Evaluation steps 100k 100k
Gradient updates per environment step 1 1
Discount factor 0.99 0.99
Algorithm-Specific Hyperparameters
Batch size 15000 10000
Hidden sizes (128, 128) (1024, 1024)
Policy activation function ReLU ReLU
Value activation function tanh tanh
Policy learning rate 5× 10−4 3× 10−4

Value learning rate 5× 10−4 3× 10−4

Policy min. std 0.5 0.5
Policy max. std 1.5 1.5
Likelihood ratio clip range 0.2 0.2
Advantage estimation 0.95 0.95
Entropy method no_entropy no_entropy
Normalize value input / output True True

A.11 SOCIETAL IMPACTS

The R&D method effectively addresses the negative transfer problem, significantly enhancing the
performance and adaptability of AI systems. This improvement allows AI to learn new tasks more
effectively without detrimental effects from previous experiences, leading to more robust applications.
Industries reliant on AI for automation and optimization can benefit from increased efficiency and
cost savings, as AI systems reduce downtime and the need for retraining. Additionally, advancements
in robotics (e.g., healthcare robots, autonomous vehicles, and industrial robots) can lead to safer and
more reliable robots, enhancing their integration into everyday and high-stakes environments.

A.12 LIMITATIONS

Though, in our work, we only consider the effect of the negative transfer, considering the positive
transfer is also important point in CRL. Our method, R&D, can effectively resolve the negative
transfer, but does not have the ability on the positive transfer by utilizing the useful information on
the previous tasks. Furthermore, our experiments are mainly focused on Meta World environment,
and we did not carry out experiments on much larger scale such as Atari or Deepmind Lab.
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