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Abstract

Pretraining molecular representations is critical in a variety of applications for1

drug and material discovery due to the limited number of labeled molecules, yet2

most existing work focuses on pretraining on 2D molecular graphs. The power of3

pretraining on 3D geometric structures, however, has been less explored. This is4

owning to the difficulty of finding a sufficient proxy task that can empower the5

pretraining to effectively extract essential features from the geometric structures.6

Motivated by the dynamic nature of 3D molecules, where the continuous motion of7

a molecule in the 3D Euclidean space forms a smooth potential energy surface, we8

propose a 3D coordinate denoising pretraining framework to model such an energy9

landscape. Leveraging an SE(3)-invariant score matching method, we propose10

GeoSSL in which the coordinate denoising proxy task is effectively boiled down to11

the denoising of the pairwise atomic distances in a molecule. Our comprehensive12

experiments confirm the effectiveness and robustness of our proposed method.13

1 Introduction14

Learning effective molecular representations is critical in a variety of tasks in drug and material15

discovery, such as molecular property prediction [12, 18, 64] and de novo molecular design and16

optimization [6, 45, 66]. Recent work based on graph neural networks (GNNs) [18] has shown17

superior performance thanks to the simplicity and effectiveness of GNNs in modeling graph-structured18

data. Recently, there is growing interest in developing pretraining or self-supervised learning methods19

for learning molecular representations by leveraging the huge amount of unlabeled molecule data [25,20

32, 54, 65]. These methods have shown superior performance on many tasks, especially when the21

number of labeled molecules is insufficient. One limitation of these approaches is that they represent22

molecules as topological graphs and molecular representations are learned through pretraining 2D23

topological structures (i.e., based on the covalent bonds). But intrinsically, for molecules, a more24

natural representation is their 3D geometric structures, which largely determine the corresponding25

physical and chemical properties. Recent work [18, 33] has empirically verified the importance26

of applying 3D geometric information for molecular property prediction tasks. Therefore, a more27

promising direction is to pretrain molecular representations based on their 3D geometric structures.28

The main challenge for molecule geometric pretraining arises from discovering an effective proxy29

task to empower the pretraining to extract essential features from the 3D geometric structures. Our30

proxy task is motivated by the following observations. Studies [42] have shown that molecules are not31

static but in a continuous motion in the 3D Euclidean space, forming a potential energy surface (PES).32

As shown in Figure 1, it is desirable to study the molecule in the local minima of the PES, called33

conformer. However, such stable state conformer often comes with different noises for the following34

reasons. First, the statistical and systematic errors on conformation estimation are unavoidable [10].35

Second, it has been well-acknowledged that a conformer can have vibrations around the local minima36

in PES. Thus we want to denoise the molecular coordinates to mimic these errors.37
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Figure 1: Illustration on coordinate geometry of molecules. The
molecule is in a continuous motion, forming a potential energy
surface (PES), where each 3D coordinate (x-axis) corresponds to
an energy value (y-axis). The provided molecules, i.e., conformers,
are in the local minima (g1). It often comes with noises around the
minima (e.g., statistical and systematic errors or vibrations), which
can be captured using the perturbed geometry (g2).

To achieve the aforementioned goal,38

we propose GeoSSL, an SE(3)-39

invariant denoising distance match-40

ing pretraining algorithm. In a nut-41

shell, to capture the smooth energy42

surface around the local minima, we43

aim to maximize the mutual informa-44

tion (MI) between a given stable ge-45

ometry and its perturbed version (i.e.,46

g1 and g2 in Figure 1). In practice,47

it is difficult to directly maximize the48

mutual information between two ran-49

dom variables. Thus, we propose to50

maximize a lower-bound of the above51

mutual information, which in turn amounts to denoising a geometric structure. Moreover, directly52

denoising such noisy coordinates, nevertheless, remains challenging because one may need to effec-53

tively constrain the pairwise atomic distances while changing the atomic coordinates. To cope with54

this obstacle, we further leverage an SE(3)-invariant score matching method to successfully transform55

the coordinate denoising desire to the denoising of pairwise atomic distances.56

Our main contributions are summarized as follows. (1) We propose a novel coordinate denoising57

method for molecular geometry pretraining, which to the best of our knowledge is the first to only58

utilize 3D molecular data for pretraining. (2) To overcome the challenge of attaining the coordinate59

denoising objective, we introduce an SE(3)-invariant score matching strategy to successfully transform60

such objective into the denoising of pairwise atomic distances, which can be effectively computed.61

(3) We empirically demonstrate the effectiveness and robustness of our proposed method, GeoSSL.62

2 Method63

We denote each molecule 3D position (conformer) as g = (X,R). Here X ∈ Rn×d is the atom64

attribute matrix and R ∈ Rn×3 is the atom 3D-coordinate matrix, where n is the number of atoms65

and d is the feature dimension. The representations for the i-th node and whole molecule are:66

hi = GNN-3D(T (g))i = GNN-3D(T (X,R))i, h = READOUT
(
h0, . . . , hn−1

)
, (1)

where T is the transformation function like atom masking, and READOUT is the readout function.67

In this work, we take the mean over all the node representations as the readout function.68

2.1 Coordinate Perturbation for Geometric Data69

The mainstream self-supervised learning community designs the pretraining task by defining70

multiple views from the data, and these views share common information to some degree. Thus,71

by designing generative or contrastive task to maximize the mutual information (MI) between72

these views, the pretrained representation can encode certain key information. This will make the73

representation more robust and can be more generalizable to downstream tasks. In our work, we74

propose GeoSSL, an SE(3)-invariant self-supervised learning (SSL) method for molecule geometric75

representation learning.The 3D geometric information, or the atomic coordinates are critical to76

molecular properties. We carry out an additional ablation study to verify this in Appendix C. Then77

based on this acknowledgement, we propose a geometry perturbation, which adds small noises to the78

atom coordinates. For notation, following Appendix B, we define the original geometry graph and an79

augmented geometry graph as two views, denoted as g1 = (X1, R1) and g2 = (X2, R2) respectively.80

The augmented geometry graph can be seen as a coordinate perturbation to the original graph with81

the same atom types, i.e., X2 = X1 and R2 = R1 + ϵ, where ϵ is drawn from a normal distribution.82

2.2 Coordinate Denoising with Mutual Information Maximization83

The two views defined above share certain common information. To maximize the MI, we turn to84

maximizing the following lower bound on the two geometry views:85

I(G1;G2) = Ep(g1,g2)

[
log

p(g1, g2)

p(g1)p(g2)

]
≥ 1

2
Ep(g1,g2)

[
log p(g1|g2) + log p(g2|g1)

]
≜ LMI. (2)
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Figure 2: Pipeline for GeoSSL (GeoSSL). The g1 and g2 are around the same local minima, yet with coordinate
noises perturbation. Originally we want to conduct coordinate denoising between these two views. Then as
proposed in GeoSSL, we transform it to an equivalent problem, i.e., distance denoising. This figure shows the
three key steps: extract the distances from the two geometric views, then perform distance perturbation, and
finally denoise the perturbed distances. Notice that the covalent bonds are added for illustration only.

To solve Equation (2), we introduce the energy-based model (EBM) for estimation. EBM has86

been acknowledged as a flexible framework for its powerful usage in modeling distribution over87

highly-structured data, like molecules [24, 31]. The lower bound can be turned into:88

LCoor-MI =
1

2
Ep(g1,g2)

[
log

exp(f(R1, g2))

AR1|g2

]
+

1

2
Ep(g2,g1)

[
log

exp(f(R2, g1))

AR2|g1

]
, (3)

where the f(·) are the negative of energy functions, and AR1|g2
and AR2|g1

are the intractable89

partition functions. This equation can be treated as denoising the atom coordinates of one view from90

the geometry of the other view.91

2.3 From Coordinate Denoising to Distance Denoising: GeoSSL92

2.3.1 Denoising Distance Matching93

Score. The score is defined as the gradient of the negative energy function w.r.t. the atom coordinates:94

95

s(R1, g2) ≜ ∇R1 log p(R1|g2) = ∇R1f(R1, g2). (4)

Score Decomposition: From Coordinates To Distances. Through back-propagation [46], the score96

on atom coordinates can be further decomposed into the scores attached to pairwise distances:97

s(R1, g2)i =
∑
j ̸=i

∂f(R1, g2)

∂d1,ij
· ∂d1,ij
∂r1,i

=
∑
j ̸=i

1

d1,ij
· s(d1, g2)ij · (r1,i − r1,j), (5)

where s(d1, g2)ij ≜
∂f(R1,g2)

∂d1,ij
. Such decomposition has a nice underlying intuition from the pseudo-98

force perspective: the pseudo-force on each atom can be further decomposed as the summation of99

pseudo-forces attached to the pairwise distances between this atom and all its neighbors. Note that100

here the pairwise atoms are connected in the 3D Euclidean space, not by the covalent bonds.101

Denoising Distance Matching (DDM). Then we adopt the denoising score matching (DSM) [59] to102

our task. To be more concrete, we take the Gaussian kernel as the perturbed noise distribution on each103

pairwise distance, i.e., qσ(d̃1|g2) = Epdata(d1|g2)[qσ(d̃1|d1)], where σ is the deviation in Gaussian104

perturbation. One main advantage of using the Gaussian kernel is that the following gradient of105

conditional log-likelihood has a closed-form formulation: ∇d̃1
log qσ(d̃1|d1, g2) = (d1 − d̃1)/σ

2,106

and the objective function of DSM is to train a score network to match it.107

To adapt to our setting, by taking the Fisher divergence as the discrepancy metric and the trick108

mentioned above, the estimation objective can be simplified to:109

DF (qσ(d̃1|g2)||pθ(d̃1|g2)) =
1

2
Epdata(d1|g2)Eqσ(d̃1|d1,g2)

[
∥sθ(d̃1, g2)−

d1 − d̃1

σ2
∥2
]
+ C. (6)

For more detailed derivations, please refer to Appendix D.110
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Table 1: Downstream results on 12 quantum mechanics prediction tasks from QM9. We take 110K for training,
10K for validation, and 11K for test. The evaluation is mean absolute error, and the best results are in bold.

Pretraining Alpha ↓ Gap ↓ HOMO↓ LUMO ↓ Mu ↓ Cv ↓ G298 ↓ H298 ↓ R2 ↓ U298 ↓ U0 ↓ Zpve ↓
– 0.048 44.50 26.00 21.11 0.016 0.025 8.31 7.67 0.132 7.77 7.89 1.322
Supervised 0.049 45.33 26.61 21.77 0.016 0.026 8.97 8.59 0.170 8.35 8.19 1.346
Type Prediction 0.050 47.28 30.56 23.18 0.016 0.024 9.32 9.10 0.163 8.94 8.60 1.357
Distance Prediction 0.063 47.62 29.18 22.40 0.019 0.045 12.02 12.31 0.636 11.76 12.22 1.840
Angle Prediction 0.056 47.36 29.53 22.61 0.018 0.027 10.23 10.13 0.143 9.95 9.70 1.643
3D InfoGraph 0.053 44.79 27.09 21.66 0.016 0.027 9.22 8.78 0.143 8.94 9.11 1.465
RR 0.048 44.85 25.42 20.82 0.015 0.025 8.56 8.20 0.133 7.89 7.62 1.329
InfoNCE 0.052 45.65 26.70 21.87 0.016 0.027 9.17 9.62 0.130 8.77 8.63 1.519
EBM-NCE 0.049 44.18 26.29 21.46 0.015 0.026 8.56 8.13 0.126 8.01 7.96 1.447

GeoSSL (ours) 0.046 40.22 23.48 19.42 0.015 0.024 7.65 7.09 0.122 6.99 6.92 1.307

Table 2: Downstream results on 8 force prediction tasks from MD17. We take 1K for training, 1K for validation,
and the number of molecules for test are varied among different tasks, ranging from 48K to 991K. The evaluation
is mean absolute error, and the best results are in bold.

Pretraining Aspirin ↓ Benzene ↓ Ethanol ↓ Malonaldehyde ↓ Naphthalene ↓ Salicylic ↓ Toluene ↓ Uracil ↓
– 0.556 0.052 0.213 0.338 0.138 0.288 0.155 0.194
Supervised 0.478 0.145 0.318 0.434 0.460 0.527 0.251 0.404
Type Prediction 1.656 0.349 0.414 0.886 1.684 1.807 0.660 1.020
Distance Prediction 1.434 0.090 0.378 1.017 0.631 1.569 0.350 0.415
Angle Prediction 0.839 0.105 0.337 0.517 0.772 0.931 0.274 0.676
3D InfoGraph 0.844 0.114 0.344 0.741 1.062 0.945 0.373 0.812
RR 0.502 0.052 0.219 0.334 0.130 0.312 0.152 0.192
InfoNCE 0.881 0.066 0.275 0.550 0.356 0.607 0.186 0.559
EBM-NCE 0.598 0.073 0.237 0.518 0.246 0.416 0.178 0.475

GeoSSL (ours) 0.453 0.051 0.166 0.288 0.129 0.266 0.122 0.183

3 Experiments111

In this section, we compare our method with nine 3D geometric pretraining baselines, including one112

randomly-initialized, one supervised, and seven self-supervised approaches. For the downstream113

tasks, we adopt 22 tasks covering quantum mechanics prediction, force prediction and binding114

affinity prediction. Our proposed GeoSSL is model-agnostic, and here we evaluate our method using115

one of the state-of-the-art geometric graph neural networks, PaiNN [44]. Due to space limit, pther116

experiment details, e.g., the pretraining dataset and downstream datasets, and pretraining baselines117

are also provided in Appendix E.118

QM9 [40] and MD17 [9] are two datasets on the quantum mechanics and force prediction. The119

results are displayed in Tables 1 and 2 respectively. From Tables 1 and 2, we can observe that most120

the pretraining baselines tested perform on par with or even worse than the randomly-initialized121

baseline. Promisingly, our proposed GeoSSL achieves consistently improved performance on all the122

20 tasks in QM9 and MD17. All these observations empirically verify the effectiveness of the distance123

denoising, which models the most determinant factor in molecule geometric data. The ligand binding124

affinity (LBA) and ligand efficacy prediction (LEP) are two binding affinity prediction tasks proposed125

in Atom3D [56]. Results in Table 11 (Appendix) indicate that, for the LBA task, one pretraining126

method fails to generalize to LBA (the loss gets too large), and all the other pretraining baselines127

cannot beat the randomly-initialized baseline. For the LEP task, the supervised and two contrastive128

learning pretraining baselines stand out for both ROC and PR metrics. Meaningfully, for both tasks,129

GeoSSL is able to achieve promising improvement, revealing that modeling the local region around130

conformer with distance denoising can also benefit for binding affinity downstream tasks.131

4 Conclusions and Future Directions132

We proposed a novel coordinate denoising method, coined GeoSSL, for molecular geometry pretrain-133

ing, and showed its superior performance to state-of-the-art pretraining baselines.134

Our work opens up venues for multiple promising directions. First from the machine learning perspec-135

tive, we propose a general pipeline on using Energy Based Model (EBM) for MI maximization. Yet,136

there are more explorations on the success of EBM, like GFlowNet [3], and it would be interesting137

to explore how to combine it with molecular geometric data along this systematic path. In addition,138

GeoSSL does not utilize the 2D structure (i.e., covalent bonds for molecules), and it would be139

desirable to consider how to utilize the distance denoising together with the 2D topology information.140
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A Benchmarks and Related Work300

A.1 Equivariant Geometric Molecule Representation Learning301

Geometric Representation Learning. Recently, 3D geometric representation learning has been widely explored302

in the machine learning community, including but not limited to 3D point clouds [7, 38, 47, 57], N-body303

particle [39, 41], and 3D molecular conformation [5, 28, 29, 35, 43, 44, 48], amongst many others. The learned304

representation should satisfy the physical constraints, e.g., it should be equivariant to the transition on the305

Euclidean space. Such constraints can be depicted with the group symmetry as introduced below.306

SE(3)-Invariance Energy. Constrained by the physical nature of 3D data, a key principle we need to follow is to307

learn an SE(3)-equivariant representation function. The SE(3) is the special Euclidean group consisting of rigid308

transformations in the 3D Cartesian space, where the transformations include all the combinations of translations309

and rotations. Namely, the learned representation should be equivariant to translations and rotations for molecule310

geometries. We also note that for some specific tasks like molecular chirality [1], the representation needlessly311

satisfy the reflection equivariance. For more rigorous discussion, please check [15, 17, 55]. In this work, we will312

design an SE(3)-invariant energy function based on an SE(3)-equivariant representation backbone model.313

A.2 Self-Supervised Learning for Molecule Representation Learning314

In general, there are two categories of self-supervised learning (SSL) [34, 36, 61, 62]: contrastive and generative,315

and the main difference is if the supervised signals are constructed in an inter-data or intra-data manner. To316

be more concrete, contrastive SSL extracts two views from the data and designs the supervised signals by317

detecting if the sampled view pairs are from the same data, and generative SSL learns structural information by318

reconstructing partial information from the data itself.319

2D Molecular Graph (Topology) Self-Supervised Learning. Currently, one of the mainstream research320

lines for molecule pretraining is on the 2D molecular graph. It treats the molecules as 2D graph, where atoms321

and bonds are nodes and edges respectively. It then carries out a pretraining task by either detecting if the322

two augmentations (e.g., neighborhood extraction, node dropping, edge dropping, etc) correspond to the same323

molecular graph [25, 54, 65] or if the representation can successfully reconstruct the masked subgraph in an324

auto-encoding manner [25, 26, 32].325

3D Molecular Graph (Geometry) Self-Supervised Learning. As the increasing interest on the 3D geometric326

representation learning, there has been some initial explorations [14, 33] involving the geometric SSL for327

molecules. GraphMVP [33] introduces an extra 2D topology and employs detection and reconstruction tasks328

simultaneously between 2D and 3D graphs, yet it focuses on 2D downstream tasks. ChemRL-GEM [14] designs329

a novel model using both the 2D and 3D molecular graphs. In terms of SSL, it utilizes the geometry information330

by taking the distance prediction and angle prediction as the generative pretraining tasks. Some of their geometric331

SSL tasks will be used as baselines in our work, yet we want to highlight that our work is focusing on the pure332

3D geometric data without the covalent bonds (2D topology). To the best of our knowledge, our work is the first333

to explicitly do SSL on pure 3D geometry along the molecule representation learning research line.334

A.3 Benchmark on QM9335

Current work is using different optimization strategies and different data split (in terms of the splitting size).336

Originally there are 133,885 molecules in QM9, where 3,054 are filtered out, leading to 130,831 molecules.337

During the benchmark, we find that:338

• The performance on QM9 is very robust to either using (1) 110K for training, 10K for val, 10,831 for339

test or using (2) 100K for training, 13,083 for val and 17,748 for test.340

• The optimization, especially the learning rate scheduler is very critical. During the benchmarking, we341

find that using cosine annealing learning rate schedule [37] is generally the most robust.342

For more detailed discussion on QM9, please refer to Appendix E. We show the benchmark results on QM9343

in Table 3.344

Table 3: Benchmark results on 12 quantum mechanics prediction tasks from QM9. We take 110K for
training, 10K for validation, and 11K for test. The evaluation is mean absolute error (MAE).

Alpha ↓ Gap ↓ HOMO↓ LUMO ↓ Mu ↓ Cv ↓ G298 ↓ H298 ↓ R2 ↓ U298 ↓ U0 ↓ Zpve ↓
SchNet 0.070 50.38 31.81 25.76 0.029 0.031 14.60 14.24 0.131 13.99 14.12 1.686
SE(3)-Trans 0.136 58.27 35.95 35.41 0.052 0.068 68.50 70.22 1.828 70.14 72.28 5.302
EGNN 0.067 48.77 28.98 24.44 0.032 0.031 11.02 11.07 0.078 10.83 10.70 1.578
DimeNet++ 0.046 38.14 21.23 17.57 0.029 0.022 7.98 7.19 0.306 6.86 6.93 1.204
SphereNet 0.050 39.54 21.88 18.66 0.026 0.025 8.65 7.43 0.262 8.28 8.01 1.390
SEGNN 0.057 41.08 22.46 21.46 0.025 0.028 13.07 13.94 0.472 14.64 13.89 1.662
PaiNN 0.048 44.50 26.00 21.11 0.016 0.025 8.31 7.67 0.132 7.77 7.89 1.322
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A.4 Related Work345

We acknowledge that there is a parallel work called Protein Tertiary SSL (PTSSL) [21] working on the geometric346

self-supervised learning. Yet, there are some fundamental differences between theirs and ours, as listed below:347

(1) Key notion on pseudo-force. PTSSL directly applies the denoised score matching method into protein348

tertiary structures, yet our focus is on how the notion of pseudo-force can come into the play, which possess better349

generalization ability. (2) Task setting. PTSSL works on protein and utilize both the 2D and 3D information,350

and our work is purely working on the 3D geometric information. (3) Technical novelty. PTSSL designs the351

DSM objective for SSL, and what we propose is a systematic tool: using energy-based model and score matching352

to solve the geometric SSL problem opens a new venue in this field. (4) Objective. PTSSL directly designs353

one objective function, which is denoising from one view to the other. Ours starts from the lower bound of MI,354

which is symmetric in terms of the denoising directions. We believe that such symmetry are treating the two355

views equally, and can better reveal the mutual concept, making the pre-trained representation more robust to the356

position augmentations. (5) Empirical baseline. PTSSL lacks the comparisons with other pre-training methods,357

while we compare with 7 SOTA pre-training methods, especially those driven by maximizing the MI with the358

same augmentations. Without such comparisons, it is hard to tell the effectiveness of the pseudo-force matching359

for geometric data. (6) Score network. Last but not least, the score network designed in PTSSL does not satisfy360

the SE(3) equivariant property.361

B Preliminaries362

Molecular Geometry Graph. Molecules can be naturally featured in a geometric formulation, i.e., all the atoms363

are spatially located in 3D Euclidean space. Note that the covalent bonds are added heuristically by expert rules,364

so they are only applicable in 2D topology graph not 3D geometry graph. Besides, atoms are not static, but in a365

continual motion along a potential energy surface [2]. The 3D structures at the local minima on this surface are366

named conformer, as shown in Figure 1. Conformers at such equilibrium state possess nice properties and we367

would like to model them during pretraining.368

Geometric Neural Network. We denote each conformer as g = (X,R). Here X ∈ Rn×d is the atom attribute369

matrix and R ∈ Rn×3 is the atom 3D-coordinate matrix, where n is the number of atoms and d is the feature370

dimension. The representations for the i-th node and whole molecule are:371

hi = GNN-3D(T (g))i = GNN-3D(T (X,R))i, h = READOUT
(
h0, . . . , hn−1

)
, (7)

where T is the transformation function like atom masking, and READOUT is the readout function. In this work,372

we take the mean over all the node representations as the readout function.373

Energy-Based Model and Denoising Score Matching. Energy-based model (EBM) is a flexible tool for374

modeling the underlying data distribution in the form of Gibbs distribution as pθ(x) = exp(−E(x))/A, where375

pθ(x) is the model distribution, A is the normalization constant and it is intractable due to the high cardinality376

of the data space. Recently, there has been various progress in solving this intractable function, including377

contrastive divergence [11], noise contrastive estimation [22], and score matching (SM) [27, 51, 52]. Specifically,378

SM solves this by introducing a concept called score: it is the gradient of the log-likelihood with respect to the379

data. SM then matches the model score and data score using Fisher divergence. Further along this research380

line, denoising score matching (DSM) [59] combines SM with denoising auto-encoding. The main advantage381

of DSM is that its solution is equivalent to SM yet with a computationally feasible and efficient solver. In this382

work, we will explore how DSM can be applied for molecule geometry representation learning by utilizing the383

distance information, one of the most fundamental factors in the geometric data.384

Problem Setup. Our goal here is to apply a self-supervised pretraining algorithm on a large molecular geometric385

dataset, and adapt the pretrained representation for fine-tuning on geometric downstream tasks. For both the386

pretraining and downstream tasks, only the 3D geometric information is available, and our solution is agnostic in387

terms of the backbone geometric neural network.388

C An Example On The Importance of Atom Coordinates389

First it has been widely acknowledged [13] that the atom positions or molecule shapes are important factors to390

the quantum properties. Here we carry out an evidence example to empirically verify this. The goal here is to391

make predictions on 12 quantum properties in QM9.392

The molecule geometric data includes two main components as input features: the atom types and atom393

coordinates. Other key information can be inferred accordingly, including the pairwise distances and torsion394

angles. We consider corruption on each of the component to empirically test their importance accordingly.395

• Atom type corruption. There are in total 118 types of atom types, and the standard embedding option396

is to apply the one-hot encoding. In the corruption case, we replace all the atom types with a hold-out397

index, i.e., index 119.398
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• Atom coordinate corruption. Originally QM9 includes atom coordinates that are in the stable state,399

and now we replace them with the coordinates generated with MMFF [23] from RDKit [30].400

Table 4: An evidence example on molecular data. The goal is to predict 12 quantum properties
(regression tasks) of 3D molecules (with 3D coordinates on each atom). The evaluation metric is
MAE.

Model Mode Alpha ↓ Gap ↓ HOMO↓ LUMO ↓ Mu ↓ Cv ↓ G298 ↓ H298 ↓ R2 ↓ U298 ↓ U0 ↓ Zpve ↓

SchNet
Stable Geometry 0.070 50.59 32.53 26.33 0.029 0.032 14.68 14.85 0.122 14.70 14.44 1.698
Type Corruption 0.074 52.07 33.64 26.75 0.032 0.032 21.68 22.93 0.231 23.01 22.99 1.677
Coordinate Corruption 0.265 110.59 79.92 78.59 0.422 0.113 57.07 58.92 18.649 60.71 59.32 5.151

PaiNN
Stable Geometry 0.048 44.50 26.00 21.11 0.016 0.025 8.31 7.67 0.132 7.77 7.89 1.322
Type Corruption 0.057 45.61 27.22 22.16 0.016 0.025 11.48 11.60 0.181 11.15 10.89 1.339
Coordinate Corruption 0.223 108.31 73.43 72.35 0.391 0.095 48.40 51.82 16.828 51.43 48.95 4.395

We take SchNet and PaiNN as the backbone 3D GNN models, and the results are in Table 4. We can observe that401

(1) Both corruption examples lead to performance decrease. (2) The atom coordinate corruption may lead to more402

severe performance decrease than the atom type corruption. To put this into another way is that, when we corrupt403

the atom types with the same hold-out type, it is equivalently to removing the atom type information. Thus, this404

can be viewed as using the equilibrium atom coordinates alone, and the property prediction is comparatively405

robust. This observation can also be supported from the domain perspective. According to the valence bond406

theory, the atom type information can be implicitly and roughly inferred from the atom coordinates.407

Therefore, by combining all the above observations and analysis, one can draw the conclusion that, for molecule408

geometry data, the atom coordinates reveal more fundamental information for representation learning.409

D Mutual Information Maximization with Energy-Based Model410

In this section, we will give a detailed discussion on the mutual information (MI) maximization with energy-based411

model (EBM).412

First, let us recall the definition of MI. MI measures the non-linear dependency between two variables, defined413

as:414

I(g1; g2) = Ep(g1,g2)

[
log

p(g1, g2)

p(g1)p(g2)

]
. (8)

Notice that to keep consistent with the notations above, we will be using g1 and g2 as the two variables. Then415

we can obtain a lower bound to MI:416

I(g1; g2) = Ep(g1,g2)

[
log

p(g1, g2)

p(g1)p(g2)

]
≥ 1

2
Ep(g1,g2)

[
log p(g1|g2) + log p(g2|g1)

]
≜ LMI. (9)

Thus, we transform the MI maximization problem into maximizing the summation of two conditional log-417

likelihoods. Such objective function opens a wider venue for estimating MI, e.g., using the EBM to esti-418

mate Equation (9).419

Adaptation to Geometric Data The 3D geometric information, or the atomic coordinates are critical420

to molecular properties. Then based on this, we propose a geometry perturbation, which adds small noises to421

the atom coordinates. This geometry perturbation possess certain motivations from both domain and machine422

learning perspectives. (1) From the practical experiment perspective, the statistical and systematic errors [10]423

on conformation estimation are unavoidable. Coordinate perturbation is a natural way to enable learning424

representations robust to such noises. (2) From the domain aspect, molecules are not static but in a continuous425

motion in the 3D Euclidean space, and we can obtain a potential energy surface accordingly. We are interested426

in modeling the conformer, i.e., the 3D coordinates with the lowest energy. However, even the conformer at the427

lowest energy point can have vibrations, and coordinate perturbation can better capture such movement yet with428

the same order of magnitude on energies. (3) As will be illustrated later, our proposed method can be simplified429

as denoising atomic distance matching. (4) Leveraging coordinate perturbation for model regularization has also430

been empirically verified its effectiveness for supervised molecule geometric representation learning [19]. Such431

characteristics of the molecular geometry motivate us to apply the coordinate perturbation. If we take each of the432

two views as adding noise to the coordinates from the other view, then the objective in Equation (9) essentially433

states that we want to conduct coordinate denoising, as shown in Figure 3. Yet, this is not a trivial task due to the434

complicated geometric space (e.g., 3D coordinates) reconstruction.435
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Figure 3: Pipeline for denoising coordinate matching.

D.1 An EBM framework for MI estimation436

The lower bound in Equation (9) is composed of two conditional log-likelihood terms, and then we model the437

conditional likelihood with EBM. This gives us:438

LEBM = −1

2
Ep(g1,g2)

[
log

exp(fg1(g1, g2))

Ag1|g2

+ log
exp(fg2(g2, g1))

Ag2|g1

]
, (10)

where fg1(g1, g2) = −E(g1|g2) and fg2(g2, g1) = −E(g2|g1) are the negative energy functions, and Ag1|g2
439

and Ag2|g1
are the corresponding partition functions. The energy functions can be flexibly defined, thus the440

bottleneck here is the intractable partition function due to the high cardinality. To solve this, existing methods441

include noise-contrastive estimation (NCE) [22] and score matching (SM) [51, 52], and we will describe how to442

apply them for MI maximization.443

D.2 EBM-NCE for MI estimation444

Under the EBM framework, if we solve Equation (10) with Noise-Contrastive Estimation (NCE) [22], the final445

objective is termed EBM-NCE, as:446

LEBM-NCE =− 1

2
Epdata(y)

[
Epn(g1|g2)[log

(
1− σ(fg1(g1, g2))

)
] + Epdata(g1|g2)[log σ(fg1(g1, g2))]

]
− 1

2
Epdata(x)

[
Epn(g2|g1)[log

(
1− σ(fg2(g2, g1))

)
] + Epdata(g2|g1)[log σ(fg2(g2, g1))]

]
.

(11)

All the detailed derivations can be found in [22]. Specifically, EBM-NCE is equivalent to the Jensen-Shannon447

estimation for MI, while the mathematical intuitions and derivation processes are different. Besides, it also448

belongs to the contrastive SSL venue. That is, it aims at aligning the positive pairs and contrasting the negative449

pairs.450

D.3 EBM-SM for MI estimation: GeoSSL451

In this subsection, we will be focusing on the geometric data like molecular geometry. Recall that we have452

two views: g1 and g2, and the goal is to maximize the lower bound of the mutual information in Equation (9).453

Because the two views share the same atomic features, it can be reduced to:454

LMI =
1

2
Ep(g1,g2)

[
log p(g1|g2)

]
+

1

2
Ep(g1,g2)

[
log p(g2|g1)

]
=

1

2
Ep(g1,g2)

[
log p(⟨X1, R1⟩|⟨X2, R2⟩)

]
+

1

2
Ep(g1,g2)

[
log p(⟨X2, R2⟩|⟨X1, R1⟩)

]
=

1

2
Ep(g1,g2)

[
log p(R1|g2)

]
+

1

2
Ep(g1,g2)

[
log p(R2|g1)

]
=

1

2
Ep(g1,g2)

[
log

exp(f(R1, g2))

AR1|g2

]
+

1

2
Ep(g2,g1)

[
log

exp(f(R2, g1))

AR2|g1

]
,

(12)

where the f(·) are the negative of energy functions, and AR1|g2
and AR2|g1

are the intractable partition functions.455

The first equation in Equation (12) results from that the two views share the same atom types. This equation can456

be treated as denoising the atom coordinates of one view from the geometry of the other view. In the following,457

we will explore how to use the score matching for solving EBM, and further transform the coordinate-aware458

mutual information maximization to the denoising distance matching (GeoSSL) as the final objective.459
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Figure 4: Pipeline for GeoSSL (GeoSSL). The g1 and g2 are around the same local minima, yet with coordinate
noises perturbation. Originally we want to do coordinate denoising between these two views. Then as proposed
in GeoSSL, we transform it to an equivalent problem, i.e., distance denoising. This figure shows the three key
steps: extract the distances from the two geometric views, then perform distance perturbation, and finally denoise
the perturbed distances.

Score Definition. The two terms in Equation (3) are in the mirroring direction. Thus in what follows, we460

may as well adopt a proxy task that these two directions can calculated separately, and take one direction for461

illustration, e.g., log exp(f(R1,g2))
AR1|g2

. The score is defined as the gradient of the log-likelihood w.r.t. the data,462

i.e., the atom coordinates in our case. Because the normalization function is a constant w.r.t. the data, it will463

disappear during the score calculation. To adapt it into our setting, the score is obtained as the gradient of the464

negative energy function w.r.t. the atom coordinates, as:465

s(R1, g2) = ∇R1 log p(R1|g2) = ∇R1f(R1, g2). (13)

If we assume that the learned optimal energy function, i.e., f(·), possesses certain physical or chemical466

information, then the score in Equation (13) can be viewed as a special form of the pseudo-force. This may467

require more domain-specific knowledge, and we leave this for future exploration.468

Score Decomposition: From Coordinates To Distances. Through back-propagation [46], the score on atom469

coordinates can be further decomposed into the scores attached to pairwise distances:470

s(R1, g2)i =
∂f(R1, g2)

∂r1,i

=
∑

j∈N (i)

∂f(R1, g2)

∂d1,ij
· ∂d1,ij
∂r1,i

=
∑

j∈N (i)

1

d1,ij
· ∂f(R1, g2)

∂d1,ij
· (r1,i − r1,j)

=
∑

j∈N (i)

1

d1,ij
· s(d1, g2)ij · (r1,i − r1,j),

(14)

where s(d1, g2)ij ≜ ∂f(R1,g2)
∂d1,ij

. Such decomposition has a nice underlying intuition from the pseudo-force471

perspective: the pseudo-force on each atom can be further decomposed as the summation of pseudo-forces472

on the pairwise distances starting from this atom. Note that here the pairwise atoms are connected in the 3D473

Euclidean space, not by the covalent-bonding.474

Denoising Distance Matching (DDM). Then we adopt the denoising score matching (DSM) [59] to our task. To475

be more concrete, we take the Gaussian kernel as the perturbed noise distribution on each pairwise distance, i.e.,476

qσ(d̃1|g2) = Epdata(d1|g2)[qσ(d̃1|d1)], where σ is the deviation in Gaussian perturbation. One main advantage477

of using the Gaussian kernel is that the following gradient of conditional log-likelihood has a closed-form478

formulation: ∇d̃1
log qσ(d̃1|d1, g2) = (d1 − d̃1)/σ

2, and the goal of DSM is to train a score network to match479

it. This trick was first introduced in [59], and has been widely utilized in the score matching applications [49, 50].480

To adapt this into our setting, this is essentially saying that we want to train a “distance network”, i.e., sθ(d̃1|g2),481

to match the distance perturbation, or we can say it aims at matching the pseudo-force with the pairwise distances482

from another aspect. By taking the Fisher divergence as the discrepancy metric and the trick mentioned above,483
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the estimation sθ(d̃1, g2) ≈ ∇d̃1
log q(d̃1|d1, g2) can be simplified to the following:484

DF (qσ(d̃1|g2)||pθ(d̃1|g2)) =
1

2
Epdata(d1|g2)Eqσ(d̃1|d1,g2)

[
∥sθ(d̃1, g2)−

d1 − d̃1

σ2
+ ∥2

]
+ C. (15)

Final objective. We adopt the following four model training tricks from [33, 49, 50] to stabilize the score485

matching training process. (1) We carry out the distance denoising at L-level of noises. (2) We add a weighting486

coefficient λ(σ) = σβ for each noise level, where β is the annealing factor. (3) We scale the score network by a487

factor of 1/σ. (4) We sample the exactly same atoms from the two geometry views with masking ratio r. Finally,488

by considering the two directions and all the above tricks, the objective function becomes the follows:489

LGeoSSL =
1

2L

L∑
l=1

σβ
l Epdata(d1|g2)Eq(d̃1|d1,g2)

[∥∥∥sθ(d̃1, g2)

σl
− d1 − d̃1

σ2
l

∥∥∥2

2

]
+

1

2L

L∑
l=1

σβ
l Epdata(d2|g1)Eq(d̃2|d2,g1)

[∥∥∥sθ(d̃2, g1)

σl
− d2 − d̃2

σ2
l

∥∥∥2

2

]
.

(16)

D.4 Discussions490

Using the energy-based model (EBM) to solve MI maximization can open a novel venue, especially for high-491

structured data like molecular geometry. To solve EBM, existing methods include noise-contrastive estimation492

(NCE) [22], score matching (SM) [52], etc. To put this under the MI maximization setting, EBM-NCE is493

essentially a contrastive learning method, where the goal is to align the positive pairs and contrast the negative494

pairs simultaneously. While EBM-SM or GeoSSL is a generative self-supervised learning (SSL) on distance495

denoising, and it is especially appealing in the field for geometric data representation learning.496

Score matching can be smoothly adopted to 3D geometric setting. Because scores are defined as gradients of497

the energy function with respect to the atom positions, it can be thought of a form of pseudo-forces. Following498

this, GeoSSL can be viewed as a pseudo-force matching, which is more natural to the molecular structures.499

However, further understanding of this requires more domain knowledge in understanding or designing of the500

energy function. This is beyond the score of this paper, and we would like to leave it for future exploration.501

Recently, there have been a certain works [33] proving that 3D geometric information is useful for 2D topology.502

Here we want to conjecture that the reverse direction is also meaningful: 2D topology can be also useful for503

3D representation. This may not seem reasonable from the domain perspective, since 2D topology can be504

heuristically obtained from the 3D geometry, i.e., all the 2D information is redundant to 3D geometry. However,505

from the machine learning theory perspective [4, 16], this is still helpful in reducing the sample complexity.506

From a higher level perspective, we want to explicitly point out that such gap between machine learning and507

scientific domain has been widely existed, and it would be an interesting direction for further exploration.508

E Experiments509

In this section, we would like to discuss the experiment details of our work. The main structure is as follows:510

• In Appendix E.1, we introduce the computation resources.511

• In Appendix E.2, we introduce the pretraining dataset.512

• In Appendix E.3, we introduce the pretraining baselines.513

• In Appendices E.4 to E.6, we introduce the downstream datasets.514

– Notice that because the performance of QM9 and MD17 is quite stable after fixing the seed (e.g.,515

42), we we will not run cross-validation. This also follows the main literature [35, 43, 44].516

– Yet, for LBA & LEP, these two datasets are quite small and are very sensitive to the data splitting,517

so we pick up 5 seeds (12, 22, 32, 42, and 52) and run cross validation on them.518

• In Appendix E.7, we list the key hyperparameters for all the pretraining baselines and GeoSSL.519

• In Appendix E.8, we show the empirical results using SchNet as the backbone.520

• In Appendix E.9, we show the empirical results using PaiNN as the backbone.521

E.1 Computational Resources522

We have 20 V100 GPU cards for computation at an internal cluster. Each job can be finished within 3-24 hours.523

E.2 Pretraining Dataset: Molecule3D524

The PubChemQC database is a large-scale database with around 4M molecules with 3D geometries, and it525

calculates both the ground-state and excited-state 3D geometries using DFT (density functional theory). Due to526
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the high computational cost, only several thousand molecules can be processed every day, and this dataset takes527

years of efforts in total. Following this, Molecule3D [63] takes the ground-state geometries and transforms the528

data formats into a deep learning-friendly way. It also parses essential quantum properties for each molecule,529

including energies of the highest occupied molecular orbital (HOMO) and the lowest occupied molecular orbital530

(LUMO), the energy gap between HOMO-LUMO, and the total energy. For our molecular geometry pretraining,531

we take a subset of 1M molecules with 3D geometries from Molecule3D.532

E.3 Pretraining Baselines533

Self-Supervised Learning Pretraining Baselines We first consider the four coordinate-MI-unaware SSL534

methods: (1) Type Prediction is to predict the atom type of masked atoms; (2) Distance Prediction aims to535

predict the pairwise distances among atoms; (3) Angle Prediction is to predict the angle among triplet atoms, i.e.,536

the bond angle prediction; (4) 3D InfoGraph adopts the contrastive learning paradigm by taking the node-graph537

pair from the same molecule geometry as positive and negative otherwise. Next, following the coordinate-aware538

MI maximization framework introduced in Equation (2), we include two contrastive and one generative SSL539

baselines. (5) InfoNCE [58] and (6) EBM-NCE [33] are the two widely-used contrastive learning loss functions,540

where the goal is to simultaneously align the positive views and contrast the negative views. (7) Representation541

reconstruction (RR) [33] is a generative SSL that is proxy to maximize the MI. It is a more general form of542

non-contrastive SSL methods like BOYL [20] and SimSiam [8], and the goal is to reconstruct each view from its543

counterpart in the representation space. Following this, our proposed GeoSSL can be classified as generative544

SSL, yet it aims at denoising the pairwise distances instead.545

Supervised Pretraining Baseline We also compare our method with a supervised pretraining baseline. As546

aforementioned, the large-scale pretraining dataset uses the DFT to calculate the energy, and extracts the most547

stable conformers with the lowest energies, which reveal the most fundamental properties of molecules in the548

3D Euclidean space. Thus, such energies can be naturally adopted as the supervised signals, and we take this as549

a supervised pretraining baseline.550

E.4 Dataset: QM9551

QM9 [40] is a dataset of 134K molecules consisting of 9 heavy atoms. It includes 12 tasks that are related to the552

quantum properties. For example, U0 and U298 are the internal energies at 0K at 0K and 298.15K respectively,553

and U298 and G298 are the other two energies that can be transferred from H298 respectively. The other 8 tasks554

are quantum mechanics related to the DFT process. We follow [43] in preprocessing the dataset (including unit555

transformation for each task).556

Current work is using different data split (in terms of the splitting size). Originally there are 133,885 molecules557

in QM9, where 3,054 are filtered out, leading to 130,831 molecules. During the benchmark, we find that the558

performance on QM9 is very robust to either using (1) 110K for training, 10K for val, 10,831 for test or using559

(2) 100K for training, 13,083 for val and 17,748 for test. In this paper, we are using option (1).560

E.5 Dataset: MD17561

MD17 [9] is a dataset on molecular dynamics simulation. It includes eight tasks, corresponding to eight organic562

molecules, and each task includes the molecule positions along the potential energy surface (PES), as shown563

in Figure 1. The goal is to predict the energy-conserving interatomic forces for each atom at each molecule564

position. We list some basic statistics in Table 5. We follow [35, 44] in preprocessing the dataset (including unit565

transformation for each task).566

Table 5: Some basic statistics on MD17.
Pretraining Aspirin ↓ Benzene ↓ Ethanol ↓ Malonaldehyde ↓ Naphthalene ↓ Salicylic ↓ Toluene ↓ Uracil ↓
Train 1K 1K 1K 1K 1K 1K 1K 1K
Validation 1K 1K 1K 1K 1K 1K 1K 1K
Test 209,762 47,863 553,092 991,237 324,250 318,231 440,790 131,770

E.6 Dataset: LBA & LEP567

Atom3D [56] is a newly published dataset. It gathers several core tasks for 3D molecules, including binding568

affinity. The binding affinity prediction is to measure the strength of binding interaction between a small569

molecule to the target protein. Here we will model both the small molecule and large molecule (protein) with570

their 3D atom coordinates provided.571

During the binding process, there is a cavity in a protein that can potentially possess suitable properties for572

binding a small molecule (ligand), and it is termed a pocking [53]. Because of the large volume of protein, we573

15



Table 6: Some basic statistics on LBA & LEP. For LBA, we use split-by-sequence-identity-30: we split
protein-ligand complexes such that no protein in the test dataset has more than 30% sequence identity with any
protein in the training dataset. For LEP, we split the complex pairs by protein target.

Pretraining LBA LEP

Train 3,507 304
Validation 466 110
Test 490 104
Split split-by-identity-30 split-by-target

follow [56] by only taking the binding pocket, where there are no more than 600 atoms for each molecule and574

protein pair. To be more concrete, we consider two binding affinity tasks. (1) The first task is ligand binding575

affinity (LBA). It is gathered from [60] and the task is to predict the binding affinity strength between a small576

molecule and a protein pocket. (2) The second task is ligand efficacy prediction (LEP). The input is a ligand577

and both the active and inactive conformers of a protein, and the goal is to predict whether or not the ligand can578

activate the protein’s function. We list some basic statistics in Table 6.579

E.7 Hyperparameter Specification580

We list all the detailed hyperparameters in this subsection. For all the methods, we use the same optimization581

strategy, i.e., with learning rate as 5e-4 and cosine annealing learning rate schedule [37]. The other hyperparame-582

ters for each pretraining method are listed in Table 7. For the other hyperparameters, we are using the default583

hyperparameters, as attached in the codes.584

Table 7: Hyperparameter specifications.
Pretraining Hyperparameter Value

Supervised task {total energy}

Type Prediction masking ratio {0.15, 0.3}

Distance Prediction prediction rate {1}

Angle Prediction prediction rate {1e-3, 1e-4}

RR
perturbed noise µ {0}
perturbed noise σ {0.3}
masking ratio r {0, 0.3}

InfoNCE
perturbed noise µ {0}
perturbed noise σ {0.3, 1}
masking ratio r {0, 0.3}

EBM-NCE
perturbed noise µ {0}
perturbed noise σ {0.3, 1}
masking ratio r {0, 0.3}

GeoSSL

perturbed noise µ {0}
perturbed noise σ {0.3}
masking ratio r {0, 0.3}
L {30, 50}
σ1 {0.01}
σL {10}
annealing factor β {0.05, 0.2, 2, 5, 10}
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E.8 SchNet as Backbone Model585

We want to highlight that some backbone models (e.g., DimeNet++ and SphereNet) may perform better or on586

par with the PaiNN, as shown in Table 3. Yet they will be out of GPU memory. Thus, considering all (including587

the model performance, computation efficiency, and memory cost) together, we adopt PaiNN as the backbone588

model in the main paper.589

In this section, we carry out experiments using SchNet as the backbone model. We follow the same process as590

in Section 3, i.e., we compare our method with one randomly-initialized and seven pretraining baselines. The591

results on QM9, MD17, LBA and LEP are in Tables 8 to 10 accordingly. From these three tables, we can observe592

that in general, GeoSSL can reach the most optimal results, yielding 21 best performance in 22 downstream593

tasks, and can reach comparative performance on the remaining task (within top 2 model). This can largely594

support the effectiveness of our proposed method, GeoSSL. In addition, we also want to mention that a lot of595

pretraining tasks show the negative transfer issue. Comparing to the results in Section 3, we conjecture that this596

is related to the task (both pretraining and downstream tasks) and the backbone model. Yet, this is beyond the597

scope of our work, and we would like to leave this as a future direction.598

Table 8: Downstream results on 12 quantum mechanics prediction tasks from QM9. We take 110K for training,
10K for validation, and 11K for test. The evaluation is mean absolute error, and the best results are in bold.

Pretraining Alpha ↓ Gap ↓ HOMO↓ LUMO ↓ Mu ↓ Cv ↓ G298 ↓ H298 ↓ R2 ↓ U298 ↓ U0 ↓ Zpve ↓
– 0.070 50.59 32.53 26.33 0.029 0.032 14.68 14.85 0.122 14.70 14.44 1.698
Supervised 0.070 51.34 32.62 27.61 0.030 0.032 14.08 14.09 0.141 14.13 13.25 1.727
Type Prediction 0.084 56.07 34.55 30.65 0.040 0.034 18.79 19.39 0.201 19.29 18.86 2.001
Distance Prediction 0.068 49.34 31.18 25.52 0.029 0.032 13.93 13.59 0.122 13.64 13.18 1.676
Angle Prediction 0.084 57.01 37.51 30.92 0.037 0.034 15.81 15.89 0.149 16.41 15.76 1.850
3D InfoGraph 0.076 53.33 33.92 28.55 0.030 0.032 15.97 16.28 0.117 16.17 15.96 1.666
RR 0.073 52.57 34.44 28.41 0.033 0.038 15.74 16.11 0.194 15.58 14.76 1.804
InfoNCE 0.075 53.00 34.29 27.03 0.029 0.033 15.67 15.53 0.125 15.79 14.94 1.675
EBM-NCE 0.073 52.86 33.74 28.07 0.031 0.032 14.02 13.65 0.121 13.70 13.45 1.677

GeoSSL (ours) 0.066 48.59 30.83 25.27 0.028 0.031 13.06 12.33 0.117 12.48 12.06 1.631

Table 9: Downstream results on 8 force prediction tasks from MD17. We take 1K for training, 1K for validation,
and the number of molecules for test are varied among different tasks, ranging from 48K to 991K. The evaluation
is mean absolute error, and the best results are in bold.

Pretraining Aspirin ↓ Benzene ↓ Ethanol ↓ Malonaldehyde ↓ Naphthalene ↓ Salicylic ↓ Toluene ↓ Uracil ↓
– 1.196 0.404 0.542 0.879 0.534 0.786 0.562 0.730
Supervised 1.863 0.413 0.512 1.254 0.846 1.005 0.529 0.899
Type Prediction 1.293 0.787 0.547 0.879 1.030 1.076 0.614 0.738
Distance Prediction 1.414 0.453 0.845 1.371 0.591 0.819 0.588 0.993
Angle Prediction 3.030 0.450 0.485 0.845 1.112 1.214 0.791 1.016
3D InfoGraph 1.545 0.448 0.640 1.080 0.827 1.096 0.735 0.760
RR 1.878 0.450 0.690 2.255 0.960 1.382 0.784 1.188
InfoNCE 1.286 0.396 0.512 1.007 0.778 1.060 0.667 0.933
EBM-NCE 1.271 0.400 0.570 0.972 0.605 0.862 0.576 0.790

GeoSSL (ours) 1.176 0.368 0.434 0.779 0.460 0.700 0.561 0.679

Table 10: Downstream results on 2 binding affinity tasks. We select three evaluation metrics for LBA: the
root mean squared error (RMSD), the Pearson correlation (Rp) and the Spearman correlation (RS). LEP is a
binary classification task, and we use the area under the curve for receiver operating characteristics (ROC) and
precision-recall (PR) for evaluation. We run cross validation with 5 seeds, and the best results are in bold.

Pretraining LBA LEP

RMSD ↓ RP ↑ RC ↑ ROC ↑ PR ↑
– 1.489 ± 0.02 0.522 ± 0.01 0.501 ± 0.01 0.436 ± 0.03 0.369 ± 0.02
Supervised 1.477 ± 0.04 0.528 ± 0.02 0.503 ± 0.03 0.462 ± 0.05 0.392 ± 0.03
Type Prediction 1.483 ± 0.04 0.498 ± 0.03 0.481 ± 0.03 0.570 ± 0.04 0.509 ± 0.07
Distance Prediction 1.461 ± 0.06 0.535 ± 0.04 0.512 ± 0.04 0.502 ± 0.06 0.415 ± 0.05
Angle Prediction 1.499 ± 0.01 0.475 ± 0.01 0.462 ± 0.02 0.532 ± 0.06 0.449 ± 0.03
3D InfoGraph 1.467 ± 0.06 0.526 ± 0.03 0.500 ± 0.03 0.515 ± 0.05 0.412 ± 0.04
RR – – – 0.439 ± 0.04 0.365 ± 0.02
InfoNCE 1.528 ± 0.05 0.483 ± 0.02 0.464 ± 0.02 0.588 ± 0.06 0.523 ± 0.05
EBM-NCE 1.499 ± 0.03 0.509 ± 0.02 0.498 ± 0.02 0.493 ± 0.07 0.429 ± 0.06

GeoSSL (ours) 1.432 ± 0.02 0.550 ± 0.02 0.529 ± 0.02 0.633 ± 0.03 0.541 ± 0.03
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E.9 PaiNN as Backbone Model599

Due to the page limit, we illustrate the results on of ligand binding affinity (LBA) and ligand efficacy prediction600

(LEP) on PaiNN here Table 11.601

Table 11: Downstream results on 2 binding affinity tasks. We select three evaluation metrics for LBA: the
root mean squared error (RMSD), the Pearson correlation (Rp) and the Spearman correlation (RS). LEP is a
binary classification task, and we use the area under the curve for receiver operating characteristics (ROC) and
precision-recall (PR) for evaluation. We run cross validation with 5 seeds, and the best results are in bold.

Pretraining LBA LEP

RMSD ↓ RP ↑ RC ↑ ROC ↑ PR ↑
– 1.463 ± 0.06 0.572 ± 0.02 0.568 ± 0.02 0.675 ± 0.04 0.549 ± 0.05
Supervised 1.551 ± 0.08 0.539 ± 0.03 0.533 ± 0.03 0.696 ± 0.03 0.554 ± 0.03
Charge Prediction 2.316 ± 0.80 0.387 ± 0.11 0.400 ± 0.11 0.630 ± 0.05 0.557 ± 0.07
Distance Prediction 1.542 ± 0.08 0.545 ± 0.03 0.540 ± 0.03 0.521 ± 0.07 0.479 ± 0.07
Angle Prediction – – – 0.545 ± 0.07 0.504 ± 0.07
3D InfoGraph – – – 0.540 ± 0.03 0.469 ± 0.03
RR 1.515 ± 0.07 0.545 ± 0.03 0.539 ± 0.03 0.654 ± 0.05 0.518 ± 0.06
InfoNCE 1.564 ± 0.05 0.508 ± 0.03 0.497 ± 0.05 0.693 ± 0.06 0.571 ± 0.08
EBM-NCE 1.499 ± 0.06 0.547 ± 0.03 0.534 ± 0.03 0.691 ± 0.05 0.603 ± 0.07

GeoSSL (ours) 1.451 ± 0.03 0.577 ± 0.02 0.572 ± 0.01 0.776 ± 0.03 0.694 ± 0.06
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