

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 GENERALIZED SOBOLEV IPM FOR GRAPH-BASED MEASURES

Anonymous authors

Paper under double-blind review

ABSTRACT

We study the Sobolev IPM problem for measures supported on a graph metric space, where critic function is constrained to lie within the unit ball defined by Sobolev norm. While [Le et al. \(2025\)](#) achieved scalable computation by relating Sobolev norm to weighted L^p -norm, the resulting framework remains intrinsically bound to L^p geometric structure, limiting its ability to incorporate alternative structural priors beyond the L^p geometry paradigm. To overcome this limitation, we propose to generalize Sobolev IPM through the lens of *Orlicz geometric structure*, which employs convex functions to capture nuanced geometric relationships, building upon recent advances in optimal transport theory—particularly Orlicz-Wasserstein (OW) and generalized Sobolev transport—that have proven instrumental in advancing machine learning methodologies. This generalization encompasses classical Sobolev IPM as a special case while accommodating diverse geometric priors beyond traditional L^p structure. It however brings up significant computational hurdles that compound those already inherent in Sobolev IPM. To address these challenges, we establish a novel theoretical connection between Orlicz-Sobolev norm and Musielak norm which facilitates a novel regularization for the generalized Sobolev IPM (GSI). By further exploiting the underlying graph structure, we show that GSI with Musielak regularization (GSI-M) reduces to a simple *univariate optimization* problem, achieving remarkably computational efficiency. Empirically, GSI-M is several-order faster than the popular OW in computation, and demonstrates its practical advantages in comparing probability measures on a given graph for document classification and several tasks in topological data analysis.

1 INTRODUCTION

Probability measures serve as canonical mathematical representations for diverse objects across various research domains, e.g., documents in natural language processing ([Kusner et al., 2015](#); [Yurochkin et al., 2019](#)), persistence diagrams in topological data analysis ([Edelsbrunner & Harer, 2008](#); [Le et al., 2025](#)), point clouds in computer vision and graphics ([Hua et al., 2018](#); [Wang et al., 2019](#)). To compare such measures, integral probability metrics (IPM) offer a versatile and principled class of metric functions ([Müller, 1997](#)). Conceptually, IPM operate by determining an optimal critic function that achieves maximal discrimination between two probability measures. This mathematical elegance and versatility has facilitated the widespread adoption of IPM throughout statistics and machine learning ([Sriperumbudur et al., 2009](#); [Gretton et al., 2012](#); [Peyré & Cuturi, 2019](#); [Liang, 2019](#); [Uppal et al., 2019, 2020](#); [Nadjahi et al., 2020](#); [Kolouri et al., 2020](#)).

In this work, we study the Sobolev IPM problem for measures supported on a graph metric space, where critic function is constrained within the unit ball induced by Sobolev norm ([Adams & Fournier, 2003](#)).¹ Sobolev IPM has proven fundamental to numerous theoretical analyses, including convergence rates in density estimation and approximation theory for deep architectures ([Liang, 2017](#); [2021](#); [Singh et al., 2018](#)). Although [Le et al. \(2025\)](#) recently pioneered computationally tractable algorithmic approach by relating Sobolev norm to weighted L^p -norm, the resulting framework remains intrinsically bound to L^p geometric structure, thereby limiting its ability to incorporate

¹One should distinguish Sobolev IPM problem from Sobolev transport ([Le et al., 2022](#)) and generalized Sobolev transport ([Le et al., 2025](#)) problems which only constraint on gradient of critic function. See §5 for a further discussion.

054 alternative structural priors. To overcome this limitation, we propose to generalize Sobolev IPM
 055 (GSI) through the lens of *Orlicz geometric structure*, which employs convex functions to capture
 056 nuanced geometric relationships, building upon seminal developments in optimal transport (OT)
 057 theory—notably Orlicz-Wasserstein (OW) (Sturm, 2011; Kell, 2017; Guha et al., 2023; Altschuler &
 058 Chewi, 2023) and generalized Sobolev transport (GST) (Le et al., 2024)—that have demonstrated
 059 remarkable effectiveness in advancing machine learning methodologies. More specifically, Altschuler &
 060 Chewi (2023) leverage OW to facilitate the development of differential-privacy-inspired method-
 061 logies that address long-standing convergence challenges in hypocoercive differential equations.
 062 Similarly, Guha et al. (2023) demonstrate that OW substantially enhances Bayesian contraction rates,
 063 effectively circumventing limitations inherent to traditional OT with Euclidean ground cost. Although
 064 the computational burden of OW is substantial, GST offers a scalable variant suitable for practical use.
 065 Moreover, Orlicz geometric structure has found broad applicability across diverse machine learning
 066 paradigms (Andoni et al., 2018; Song et al., 2019; Deng et al., 2022; Chamakh et al., 2020; Lorenz &
 067 Mahler, 2022). For comprehensive studies of Orlicz functions, see (Adams & Fournier, 2003; Rao &
 068 Ren, 1991).

069 Analogous to the computational challenges inherent in Sobolev IPM, the generalized Sobolev IPM
 070 (GSI) poses significant computational obstacles. To overcome these limitations, we establish a
 071 novel connection between Orlicz-Sobolev norm and Musielak norm which in turn motivates a *novel*
 072 *regularization* scheme for GSI. Exploiting the underlying graph structure, we further show that GSI
 073 with Musielak regularization (GSI-M) reduces to a simple *univariate optimization* problem, yielding
 074 substantial computational efficiency and enabling practical deployment at scale. **Therefore, our**
 075 **approach helps to mitigate the computational challenges of GSI, and paves the way for its practical**
 076 **applications, even at scale.**

077 **Contribution.** Our contributions are three-fold as follows:

- 078 • We leverage a certain class of convex functions corresponding to Orlicz geometric struc-
 079 ture to generalize Sobolev IPM beyond L^p geometric structure for graph-based measures.
 080 Additionally, we propose a *novel regularization* for the resulting GSI metric that yields an
 081 efficient computation by simply solving a univariate optimization problem.
- 082 • GSI-M utilizes the Orlicz geometric structure in the same sense as OW/GST for OT problem.
 083 We prove that GSI-M is a metric and show its *equivalence* to the original GSI. Moreover, we
 084 establish its connections to original/regularized Sobolev IPM, and other transport distances.
- 085 • We empirically illustrate that GSI-M is more computationally efficient than OW, and com-
 086 parable to GST, a scalable variant of OW. We also provide initial evidences on the advantages
 087 of GST for document classification and for several tasks in topological data analysis (TDA).

088 **Organization.** In §2, we review related backgrounds and notations. We describe the generalized
 089 Sobolev IPM (GSI) and its novel Musielak regularization in §3. In §4, we prove the metric property
 090 for the generalized Sobolev IPM with Musielak regularization (GSI-M) and establish its connection
 091 to the original GSI, and other transport distances for graph-based measures. We then discuss related
 092 works in §5. In §6, we empirically show the computational efficiency of GSI-M and provide initial
 093 evidence of its benefits in document classification and TDA, following by concluding remarks in §7.
 094 Proofs for theoretical results and additional materials are deferred to the Appendices.

095 2 PRELIMINARIES

096 In this section, we introduce notations, and briefly review graph, Orlicz functions, and Sobolev IPM.

097 **Graph.** We follow the setting for graph-based measures in (Le et al., 2025). We consider a connected,
 098 undirected, and physical² graph \mathbb{G} with set of nodes and edges V, E respectively, and positive edge
 099 lengths $\{w_e\}_{e \in E}$. For continuous graph setting, we regard \mathbb{G} as the set of all nodes in V and all
 100 points forming the edges in E . Additionally, let $[x, z]$ be the shortest path connecting x and z in
 101 \mathbb{G} , and equip \mathbb{G} with graph metric $d_{\mathbb{G}}(x, z)$, i.e., the length of $[x, z]$. We assume that there exists a
 102 root node $z_0 \in V$ such that for any $x \in \mathbb{G}$, then $[z_0, x]$ is unique, i.e., the uniqueness property of the

103
 104
 105
 106
 107 ²In the sense that V is a subset of \mathbb{R}^n , and each edge $e \in E$ is the standard line segment connecting the two
 108 corresponding vertices of edge e in \mathbb{R}^n .

shortest paths.³ Denote $\mathcal{P}(\mathbb{G})$ (resp. $\mathcal{P}(\mathbb{G} \times \mathbb{G})$) as the set of all nonnegative Borel measures on \mathbb{G} (resp. $\mathbb{G} \times \mathbb{G}$) with a finite mass. For $x \in \mathbb{G}$, edge $e \in E$, define the sets $\Lambda(x)$ and γ_e as follows:

$$\Lambda(x) := \{y \in \mathbb{G} : x \in [z_0, y]\}, \quad \gamma_e := \{y \in \mathbb{G} : e \subset [z_0, y]\}. \quad (1)$$

By a continuous function f on \mathbb{G} , we mean that $f : \mathbb{G} \rightarrow \mathbb{R}$ is continuous w.r.t. the topology on \mathbb{G} induced by the Euclidean distance. Similar notation is used for continuous functions on $\mathbb{G} \times \mathbb{G}$.

A family of convex functions. We consider the set of N -functions (Adams & Fournier, 2003, §8.2), which are special convex functions on \mathbb{R}_+ . Henceforth, a strictly increasing and convex function $\Phi : [0, \infty) \rightarrow [0, \infty)$ is called an N -function if $\lim_{t \rightarrow 0} \frac{\Phi(t)}{t} = 0$ and $\lim_{t \rightarrow +\infty} \frac{\Phi(t)}{t} = +\infty$.

Orlicz functional space. For N -function Φ , and a nonnegative Borel measure λ on \mathbb{G} , let $L_\Phi(\mathbb{G}, \lambda)$ be the linear hull of the collection of all Borel measurable functions $f : \mathbb{G} \rightarrow \mathbb{R}$ satisfying $\int_{\mathbb{G}} \Phi(|f(x)|) \lambda(dx) < \infty$. Then, $L_\Phi(\mathbb{G}, \lambda)$ is a normed space with the Luxemburg norm, defined as

$$\|f\|_{L_\Phi} := \inf \left\{ t > 0 \mid \int_{\mathbb{G}} \Phi\left(\frac{|f(x)|}{t}\right) \lambda(dx) \leq 1 \right\}. \quad (2)$$

For positive weight function \hat{w} on \mathbb{G} , consider the weighted $L_{\Phi}^{\hat{w}}(\mathbb{G}, \lambda)$ as the linear hull of the set of all Borel measurable functions $f : \mathbb{G} \rightarrow \mathbb{R}$ satisfying $\int_{\mathbb{G}} \hat{w}(x) \Phi(|f(x)|) \lambda(dx) < \infty$. Then, $L_{\Phi}^{\hat{w}}(\mathbb{G}, \lambda)$ is a normed space⁴ with Musielak norm (Musielak, 2006, §10.2)⁵ being defined by

$$\|f\|_{L_{\Phi}^{\hat{w}}} := \inf \left\{ t > 0 \mid \int_{\mathbb{G}} \hat{w}(x) \Phi\left(\frac{|f(x)|}{t}\right) \lambda(dx) \leq 1 \right\}. \quad (3)$$

Sobolev IPM. For an exponent $1 \leq p \leq \infty$ and its conjugate p' ,⁶ let $W_0^{1,p}(\mathbb{G}, \lambda)$ be the subspace consisting of all functions f in the graph-based Sobolev space $W^{1,p}(\mathbb{G}, \lambda)$ (Le et al., 2022, Definition 3.1) satisfying $f(z_0) = 0$, then Sobolev IPM between measures $\mu, \nu \in \mathcal{P}(\mathbb{G})$ is defined as

$$\mathcal{S}_p(\mu, \nu) := \sup_{f \in W_0^{1,p}(\mathbb{G}, \lambda), \|f\|_{W^{1,p}} \leq 1} \left| \int_{\mathbb{G}} f(x) \mu(dx) - \int_{\mathbb{G}} f(y) \nu(dy) \right|, \quad (4)$$

where $\|f\|_{W^{1,p}}$ is the Sobolev norm (Adams & Fournier, 2003, §3.1), defined as

$$\|f\|_{W^{1,p}} := (\|f\|_{L^p}^p + \|f'\|_{L^p}^p)^{\frac{1}{p}}. \quad (5)$$

From the definition of Sobolev IPM (in Equation (4)), it is essentially coupled with the L^p geometric structure. Consequently, unlike optimal transport (OT), where one can adapt to various prior geometric structures by simply modifying the underlying ground cost, it is nontrivial to use Sobolev IPM with other prior geometric structures. In the next section, we will leverage the set of convex N -functions to generalize Sobolev IPM beyond the coupled L^p geometric structure.⁷

3 GENERALIZED SOBOLEV IPM (GSI)

Sobolev IPM provides a powerful yet rigid framework, essentially coupled with the L^p geometric structure within its definition (Equation (4)). As a result, it is nontrivial to utilize Sobolev IPM with other prior structures, which is in stark contrast to the flexibility of optimal transport (OT) for its adaptivity to diverse prior geometric structures by simply modifying the underlying cost function. In this section, we leverage convex N -functions to generalize Sobolev IPM. We first introduce the graph-based Orlicz-Sobolev space (Le et al., 2024) and its Orlicz-Sobolev norm (Rao & Ren, 1991, §9.3), (Adams & Fournier, 2003, §3.1, §8.30). Based on these components, we then describe the definition of the generalized Sobolev IPM (GSI) for graph-based measures.

³There may exist multiple paths connecting z_0 and x in \mathbb{G} , but the shortest path $[z_0, x]$ is unique.

⁴The weighted $L_{\Phi}^{\hat{w}}(\mathbb{G}, \lambda)$ is a specific instance of the Musielak-Orlicz space, where the generalized N -function $\bar{\Phi}(x, t) = \hat{w}(x)\Phi(t)$ for all $t > 0$ and $x \in \mathbb{G}$.

⁵See also in (Harjulehto & Hästö, 2019, Definition 3.2.1).

⁶ $p' \in [1, \infty]$ satisfying $\frac{1}{p} + \frac{1}{p'} = 1$. If $p = 1$, then $p' = \infty$.

⁷To ease the readers, we further give a brief review for related works and notions in the literature in §D.

162 **Definition 3.1** (Graph-based Orlicz-Sobolev space (Le et al., 2024)). Let Φ be an N -function and λ
 163 be a nonnegative Borel measure on graph \mathbb{G} . A continuous function $f : \mathbb{G} \rightarrow \mathbb{R}$ is said to belong to
 164 the graph-based Orlicz-Sobolev space $WL_{\Phi}^1(\mathbb{G}, \lambda)$ if there exists a function $h \in L_{\Phi}(\mathbb{G}, \lambda)$ satisfying
 165

$$166 \quad f(x) - f(z_0) = \int_{[z_0, x]} h(y) \lambda(dy), \quad \forall x \in \mathbb{G}. \quad (6)$$

168 Such function h is unique in $L_{\Phi}(\mathbb{G}, \lambda)$ and is called the generalized graph derivative of f w.r.t. the
 169 measure λ . Henceforth, this generalized graph derivative of f is denoted f' .
 170

171 **Orlicz-Sobolev norm.** $WL_{\Phi}^1(\mathbb{G}, \lambda)$ is a normed space with the Orlicz-Sobolev norm (Rao & Ren,
 172 1991; Adams & Fournier, 2003), defined as

$$173 \quad \|f\|_{WL_{\Phi}^1} := \|f\|_{L_{\Phi}} + \|f'\|_{L_{\Phi}}. \quad (7)$$

175 Additionally, let $WL_{\Phi,0}^1(\mathbb{G}, \lambda)$ be the subspace consisting of all functions f in $WL_{\Phi}^1(\mathbb{G}, \lambda)$ satisfying
 176 $f(z_0) = 0$. Moreover, notice that for N -function $\Phi(t) = t^p$ for $1 < p < \infty$, following (Le et al.,
 177 2024, Proposition 4.3), we have $WL_{\Phi}^1(\mathbb{G}, \lambda) = W^{1,p}(\mathbb{G}, \lambda)$ where $W^{1,p}$ is the graph-based Sobolev
 178 space,⁸ and the L_{Φ} -norm is equal to the L^p -norm (Adams & Fournier, 2003).

179 **Generalized Sobolev IPM (GSI).** Similar to Sobolev IPM, the GSI is an instance of IPM where its
 180 critic function belongs to the graph-based Orlicz-Sobolev space, and is constrained within the unit ball
 181 of that space. More concretely, given a nonnegative Borel measure λ on \mathbb{G} , a pair of complementary
 182 N -functions Φ, Ψ , the GSI between probability measures $\mu, \nu \in \mathcal{P}(\mathbb{G})$ is defined as
 183

$$184 \quad \mathcal{GS}_{\Phi}(\mu, \nu) := \sup_{f \in \mathcal{B}_{\Psi}} \left| \int_{\mathbb{G}} f(x) \mu(dx) - \int_{\mathbb{G}} f(y) \nu(dy) \right|, \quad (8)$$

186 where $\mathcal{B}_{\Psi} := \left\{ f \in WL_{\Psi,0}^1(\mathbb{G}, \lambda), \|f\|_{WL_{\Psi}^1} \leq 1 \right\}$ is the unit ball defined by Orlicz-Sobolev norm.
 187 For N -function $\Psi(t) = t^p$ with $1 < p < \infty$, the GSI turns into Sobolev IPM. Furthermore, notice
 188 that the quantity inside the absolute signs is unchanged if f is replaced by $f - f(z_0)$. Thus, we can
 189 assume without loss of generality that $f(z_0) = 0$. This is the motivation for our introduction of the
 190 Orlicz-Sobolev space $WL_{\Psi,0}^1(\mathbb{G}, \lambda)$, which shares the same sense to Sobolev IPM approach (Le et al.,
 191 2025), and the Sobolev GAN approach (Mroueh et al., 2018).
 192

193 Analogous to the computational challenges inherent in Sobolev IPM, the GSI poses significant
 194 computational obstacles. We next draw a novel relation between the Orlicz-Sobolev norm and
 195 Musielak norm to form a novel regularization for GSI for efficient computation.

196 **Weight function.** Hereafter, we consider the weight function, defined as
 197

$$198 \quad \hat{w}(x) := 1 + \frac{\lambda(\Lambda(x))}{\lambda(\mathbb{G})}, \quad \forall x \in \mathbb{G}. \quad (9)$$

200 **Theorem 3.2** (Equivalence). *For the length measure λ on \mathbb{G} , and function $f \in WL_{\Phi,0}^1(\mathbb{G}, \lambda)$, then*

$$202 \quad \frac{1}{2} \|f'\|_{L_{\Phi}^{\hat{w}}} \leq \|f\|_{WL_{\Phi}^1} \leq (1 + \lambda(\mathbb{G})) \|f'\|_{L_{\Phi}^{\hat{w}}}. \quad (10)$$

205 Theorem 3.2 implies that the Orlicz-Sobolev norm of a critic function $f \in WL_{\Phi,0}^1(\mathbb{G}, \lambda)$ is equivalent
 206 to the Musielak norm of its gradient f' , where weight function \hat{w} is given explicitly in Equation (9).

207 **Remark 3.3.** The novel theoretical finding result in Theorem 3.2 plays the key role for the development
 208 of our regularization scheme approach, i.e., relaxing the constraint of critic function f within the
 209 unit ball induced by Orlicz-Sobolev norm by the Musielak norm constraint of its gradient f' with a
 210 specified weight function \hat{w} (Equation (9)).

211 **Discussion.** Le et al. (2025, Theorem 3.2) established an equivalence between the *Sobolev norm* of a
 212 critic function and *weighted L^p norm* of its gradient for the weight function $\hat{w}_{\mathcal{S}}(x) = 1 + \lambda(\Lambda(x))$
 213 for all $x \in \mathbb{G}$ by exploiting the closed-form expression of L^p -norm and weighted L^p -norm. It is
 214 *unknown* whether such result is still held for general N -functions, beyond the L^p geometric structure,
 215

⁸See a review in §D.3.

in Orlicz norm (Equation (2)) and Musielak norm (Equation (3)) for their considered weight function $\hat{w}_{\hat{\mathcal{S}}}$. In this work, we leverage the *different* weight function \hat{w} (Equation (9)), formed from our theoretical findings,⁹ to establish an equivalence between the *Orlicz-Sobolev norm* of a critic function and *Musielak norm* of its gradient. Notably, to our knowledge, the theoretical finding result in Theorem 3.2 is *novel*. It is in fact nontrivial, and clearly beyond existing results in (Le et al., 2025) for Sobolev IPM and the literature. Unlike the L^p geometric structure exploited in (Le et al., 2025), there is *no* closed-form expression for the Orlicz norm (Equation (2)) and Musielak norm (Equation (3)) for general N -functions in our considered GSI problem. In fact, it requires several novel auxiliary theoretical finding results in Appendix A.1, beyond existing results in (Le et al., 2025), to establish the *novel* equivalence result in Theorem 3.2. It is also worth noting that the Theorem 3.2 holds true for our considered weight function (Equation 9), and such equivalence result may not exist for any given general weight function.

Generalized Sobolev IPM with Musielak regularization (GSI-M). Based on the equivalent relation given by Theorem 3.2, we propose to regularize the GSI (Equation (8)) by relaxing the constraint on the critic function f in the graph-based Orlicz-Sobolev space $WL_{\Psi,0}^1$. More precisely, instead of f belonging to the unit ball \mathcal{B}_{Ψ} of the Orlicz-Sobolev space, we propose to constraint critic f within the unit ball $\mathcal{B}_{\Psi}^{\hat{w}}$ of the Musielak norm of f' with N -function Ψ , and weight function \hat{w} . Hereafter, $\mathcal{B}_{\Psi}^{\hat{w}}$ is defined by

$$\mathcal{B}_{\Psi}^{\hat{w}} := \left\{ f \in WL_{\Psi,0}^1(\mathbb{G}, \lambda), \|f'\|_{L_{\Psi}^{\hat{w}}} \leq 1 \right\}. \quad (11)$$

We now formally define the generalized Sobolev IPM with Musielak regularization (GSI-M) between two probability distributions on graph \mathbb{G} .

Definition 3.4 (Generalized Sobolev IPM with Musielak regularization). Let λ be a nonnegative Borel measure on \mathbb{G} and a pair of complementary N -functions Φ, Ψ . Then, for probability measures $\mu, \nu \in \mathcal{P}(\mathbb{G})$, the generalized Sobolev IPM with Musielak regularization is defined as

$$\widehat{\mathcal{GS}}_{\Phi}(\mu, \nu) := \sup_{f \in \mathcal{B}_{\Psi}^{\hat{w}}} \left| \int_{\mathbb{G}} f(x) \mu(dx) - \int_{\mathbb{G}} f(y) \nu(dy) \right|. \quad (12)$$

Computation. We next show that one can compute $\widehat{\mathcal{GS}}_{\Phi}$ by simply solving a univariate optimization problem, paving ways for its practical applications.

Theorem 3.5 (GSI-M as univariate optimization problem). *The generalized Sobolev IPM with Musielak regularization $\widehat{\mathcal{GS}}_{\Phi}(\mu, \nu)$ in Definition 3.4 can be computed as follows:*

$$\widehat{\mathcal{GS}}_{\Phi}(\mu, \nu) = \inf_{k>0} \frac{1}{k} \left(1 + \int_{\mathbb{G}} \hat{w}(x) \Phi \left(\frac{k}{\hat{w}(x)} |\mu(\Lambda(x)) - \nu(\Lambda(x))| \right) \lambda(dx) \right). \quad (13)$$

Notice that in Equation (13), both the subgraph $\Lambda(x)$ (Equation (1)) and the weight function $\hat{w}(x)$ (Equation (9)) depend on input point x under the integral over \mathbb{G} . For practical applications, we next derive an explicit formula for the integral over graph \mathbb{G} in Equation (13) when the input probability measures are supported on nodes V of graph \mathbb{G} . This gives an efficient method for computing the GSI-M $\widehat{\mathcal{GS}}_{\Phi}$. Note that to achieve this result, we use the length measure on graph \mathbb{G} (Le et al., 2022) for the nonnegative Borel measure λ , i.e., we have $\lambda([x, z]) = d_{\mathbb{G}}(x, z), \forall x, z \in \mathbb{G}$. We summarize the result in the following theorem.

Theorem 3.6 (Discrete case). *Let λ be the length measure on \mathbb{G} , and Φ be an N -function. Suppose that $\mu, \nu \in \mathcal{P}(\mathbb{G})$ are supported on nodes V of graph \mathbb{G} .¹⁰ Then we have*

$$\widehat{\mathcal{GS}}_{\Phi}(\mu, \nu) = \inf_{k>0} \frac{1}{k} \left(1 + \sum_{e \in E} \left[\int_0^1 \bar{w}_t(e) \Phi \left(\frac{k|\bar{h}(e)|}{\bar{w}_t(e)} \right) w_e dt \right] \right), \quad (14)$$

where $\bar{h}(e) := \mu(\gamma_e) - \nu(\gamma_e)$, and $\bar{w}_t(e) := \frac{w_e}{\lambda(\mathbb{G})} t + 1 + \frac{\lambda(\gamma_e)}{\lambda(\mathbb{G})}$ for all edge $e \in E$ and $t \in [0, 1]$.

⁹Especially from the novel auxiliary result in Theorem A.3 in Appendix A.1.

¹⁰An extension for measures supported in graph \mathbb{G} is discussed in Appendix §E.

From Theorem 3.6, by exploiting the graph structure for the integral over graph \mathbb{G} in Equation (13), one only needs to simply solve the univariate optimization problem to compute the GSI-M $\widehat{\mathcal{GS}}_\Phi$.¹¹ We further note that for each edge e , given a specific popular N -function, then the integral w.r.t. scalar t has an explicit form for efficient computation, see Appendix §A.3 for details.¹²

Special case with closed-form expression. We illustrate that for a specific N -function, the GSI-M can yield a closed-form expression for fast computation, especially for the discrete case when input measures are supported on nodes V of graph \mathbb{G} .

Proposition 3.7 (Closed-form discrete case). *Suppose that $\mu, \nu \in \mathcal{P}(\mathbb{G})$ are supported on nodes V of graph \mathbb{G} . For N -function $\Phi(t) = \frac{(p-1)^{p-1}}{p^p} t^p$ with $1 < p < \infty$, length measure λ on \mathbb{G} , then*

$$\widehat{\mathcal{GS}}_\Phi(\mu, \nu) = \left(\sum_{e \in E} \beta_e |\mu(\gamma_e) - \nu(\gamma_e)|^p \right)^{\frac{1}{p}}, \quad (15)$$

where for each edge $e \in E$ of graph \mathbb{G} , the scalar number β_e is given by

$$\beta_e := \begin{cases} \lambda(\mathbb{G}) \log \left(1 + \frac{w_e}{\lambda(\mathbb{G}) + \lambda(\gamma_e)} \right) & \text{if } p = 2, \\ \frac{(\lambda(\mathbb{G}) + \lambda(\gamma_e) + w_e)^{2-p} - (\lambda(\mathbb{G}) + \lambda(\gamma_e))^{2-p}}{(2-p)\lambda(\mathbb{G})^{1-p}} & \text{otherwise.} \end{cases} \quad (16)$$

The proofs for these theoretical results (in §3) are respectively placed in §B.1 – §B.4.

4 PROPERTIES OF GSI WITH MUSIELAK REGULARIZATION (GSI-M)

In this section, we derive the metric property for the GSI-M and establish a relationship for the GSI-M with different N -functions. Additionally, we draw connections of the GSI-M to the original GSI, the original Sobolev IPM, the scalable regularized Sobolev IPM (Le et al., 2025), GST, Sobolev transport (ST) (Le et al., 2022), OW (Sturm, 2011), and OT for graph-based measures.¹³

Theorem 4.1 (Metrization). *The generalized Sobolev IPM with Musielak regularization $\widehat{\mathcal{GS}}_\Phi$ is a metric on the space $\mathcal{P}(\mathbb{G})$ of probability measures on graph \mathbb{G} .*

The GSI-M is monotone with respect to the N -function Φ as shown in the next result. Consequently, it may enclose a stronger notion of metrics than Sobolev IPM for comparing graph-based measures.

Proposition 4.2 (GSI-M with different N -functions). *For any two N -functions Φ_1, Φ_2 satisfying $\Phi_1(t) \leq \Phi_2(t)$ for all $t \in \mathbb{R}_+$, and $\mu, \nu \in \mathcal{P}(\mathbb{G})$, then we have*

$$\widehat{\mathcal{GS}}_{\Phi_1}(\mu, \nu) \leq \widehat{\mathcal{GS}}_{\Phi_2}(\mu, \nu).$$

We next theoretically establish relations between our proposed GSI-M and other related IPM/transport approaches, including original GSI, the original Sobolev IPM, the regularized Sobolev IPM, GST, ST, OW, and OT for graph-based measures. Consequently, we can position the proposed GSI-M within the big research picture of the literature.

Connection to the original generalized Sobolev IPM. We next show that the GSI-M is equivalent to the original generalized Sobolev IPM.

Theorem 4.3 (Relation with original generalized Sobolev IPM). *For a nonnegative Borel measure λ on \mathbb{G} , N -function Φ , $\mu, \nu \in \mathcal{P}(\mathbb{G})$, then*

$$\frac{1}{2} \mathcal{GS}_\Phi(\mu, \nu) \leq \widehat{\mathcal{GS}}_\Phi(\mu, \nu) \leq (1 + \lambda(\mathbb{G})) \mathcal{GS}_\Phi(\mu, \nu), \quad (17)$$

Hence, the generalized Sobolev IPM with Musielak regularization is equivalent to the original GSI.

¹¹Rao & Ren (1991, Theorem 13) derived the necessary and sufficient conditions to obtain the infimum for problem (14).

¹²See §C.1 for further implementation notes for γ_e in GSI-M including practical preprocessing procedure and exploiting its sparsity to improve computational complexity.

¹³See §D for a review on Sobolev IPM and its scalable regularization, GST, ST, OW, and standard OT.

324 **Connection to the regularized Sobolev IPM.** Denote $\hat{\mathcal{S}}_p$ for the regularized p -order Sobolev IPM.
 325

326 **Proposition 4.4** (Connection between GSI-M and regularized Sobolev IPM). *Let $\Phi(t) := \frac{(p-1)^{p-1}}{p^p} t^p$
 327 with $1 < p < \infty$, $\hat{c}_1 := \max(1, \lambda(\mathbb{G})^{-1})^{\frac{1-p}{p}}$, and $\hat{c}_2 := \min(1, \lambda(\mathbb{G})^{-1})^{\frac{1-p}{p}}$. Then, for a nonnegative
 328 Borel measure λ on graph \mathbb{G} , and measures $\mu, \nu \in \mathcal{P}(\mathbb{G})$, we have*

$$329 \quad \hat{c}_1 \hat{\mathcal{S}}_p(\mu, \nu) \leq \hat{\mathcal{G}}\mathcal{S}_\Phi(\mu, \nu) \leq \hat{c}_2 \hat{\mathcal{S}}_p(\mu, \nu). \quad (18)$$

330 **Connection to the original Sobolev IPM.** Denote \mathcal{S}_p for the original p -order Sobolev IPM.
 331

332 **Proposition 4.5** (Connection between GSI-M and original Sobolev IPM). *Let $\Phi(t) := \frac{(p-1)^{p-1}}{p^p} t^p$
 333 with $1 < p < \infty$. For a nonnegative Borel measure λ on \mathbb{G} , and measures $\mu, \nu \in \mathcal{P}(\mathbb{G})$, then*

$$334 \quad c_1 \mathcal{S}_p(\mu, \nu) \leq \hat{\mathcal{G}}\mathcal{S}_\Phi(\mu, \nu) \leq c_2 \mathcal{S}_p(\mu, \nu), \quad (19)$$

335 where $c_1 := \left[\frac{\min(1, \lambda(\mathbb{G})^{p-1}) \max(1, \lambda(\mathbb{G})^{-1})^{1-p}}{1 + \lambda(\mathbb{G})^p} \right]^{\frac{1}{p}}$; $c_2 := \left[\min(1, \lambda(\mathbb{G})^{-1})^{1-p} \max(1, \lambda(\mathbb{G})^{p-1}) \right]^{\frac{1}{p}}$.

336 **Connection to the generalized Sobolev transport.** Denote \mathcal{GST}_Φ for the GST with N -function Φ .
 337

338 **Proposition 4.6** (Connection between GSI-M and generalized Sobolev transport). *For a nonnegative
 339 Borel measure λ on \mathbb{G} , then for all measures $\mu, \nu \in \mathcal{P}(\mathbb{G})$, we have*

$$340 \quad \frac{1}{2} \mathcal{GST}_\Phi(\mu, \nu) \leq \hat{\mathcal{G}}\mathcal{S}_\Phi(\mu, \nu) \leq \mathcal{GST}_\Phi(\mu, \nu). \quad (20)$$

341 **Connection to the Sobolev transport.** Denote \mathcal{ST}_p for the p -order Sobolev transport.
 342

343 **Proposition 4.7** (Connection between GSI-M and Sobolev transport). *For a nonnegative Borel
 344 measure λ on \mathbb{G} , N -function $\Phi(t) := \frac{(p-1)^{p-1}}{p^p} t^p$ with $1 < p < \infty$, and $\mu, \nu \in \mathcal{P}(\mathbb{G})$, then we have*

$$345 \quad \frac{1}{2} \mathcal{ST}_p(\mu, \nu) \leq \hat{\mathcal{G}}\mathcal{S}_\Phi(\mu, \nu) \leq \mathcal{ST}_p(\mu, \nu). \quad (21)$$

346 **Connection to the Orlicz-Wasserstein.** Denote \mathcal{OW} for the Orlicz-Wasserstein.
 347

348 **Proposition 4.8** (Connection between GSI-M and Orlicz-Wasserstein). *Consider the limit case
 349 $\Phi(t) := t$,¹⁴ and graph \mathbb{G} is a tree.¹⁵ For a nonnegative Borel measure λ on \mathbb{G} , $\mu, \nu \in \mathcal{P}(\mathbb{G})$, then*

$$350 \quad \frac{1}{2} \mathcal{OW}(\mu, \nu) \leq \hat{\mathcal{G}}\mathcal{S}_\Phi(\mu, \nu) \leq \mathcal{OW}(\mu, \nu). \quad (22)$$

351 **Connection to the optimal transport.** Denote \mathcal{W}_1 for the 1-order Wasserstein.
 352

353 **Proposition 4.9** (Connection between GSI-M and optimal transport). *Under the same assumptions
 354 in Proposition 4.8, then for all measures $\mu, \nu \in \mathcal{P}(\mathbb{G})$, we have*

$$355 \quad \frac{1}{2} \mathcal{W}_1(\mu, \nu) \leq \hat{\mathcal{G}}\mathcal{S}_\Phi(\mu, \nu) \leq \mathcal{W}_1(\mu, \nu). \quad (23)$$

356 The proofs for these theoretical results (in §4) are respectively placed in §B.5 – §B.13. See §5 for
 357 further discussions on these finding results to position the proposed GSI-M in the literature.
 358

360 5 RELATED WORKS AND DISCUSSIONS

361 In this section, we discuss relations between the proposed GSI-M with related works in the literature.

362 **Sobolev IPM and its regularization** (Le et al., 2025). Propositions 4.5 and 4.4 show that for a
 363 certain given N -function, GSI-M $\hat{\mathcal{G}}\mathcal{S}$ is provably equivalent to original Sobolev IPM \mathcal{S}_p and its

364 ¹⁴Although $\Phi(t) = t$ is not an N -function due to its linear growth, it can be regarded as the limit $p \rightarrow 1^+$ for
 365 the function $\Phi(t) = t^p$.

366 ¹⁵To our knowledge, it is *unknown* whether there is a connection between GSI-M and OW for general graphs
 367 with cycles. The finding result in Proposition 4.8 only holds for the tree-structured graph.

scalable regularized approach \hat{S}_p respectively. Additionally, GSI-M can be considered as a variational generalization for Sobolev IPM and its regularization to incorporate more general geometric prior, beyond the L^p structure.

GST (Le et al., 2024) and ST (Le et al., 2022). Propositions 4.6 and 4.7 illustrate that GSI-M is provably equivalent to the GST with the same N -function Φ , and ST for a specific N -function respectively. Similar to GST and ST, GSI-M constraints on gradient of a critic function **where GSI-M may be regarded as a weighted variant of GST**. However, we emphasize that the weight function (Equation (3)) plays the key role to establish the equivalence between Orlicz-Sobolev norm and Musielak norm (Theorem 3.2) for the proposed Musielak regularization for GSI problem, which constraints critic function within a unit ball of Orlicz-Sobolev norm involving both the critic function and its gradient. **Therefore, GSI-M with the weight function (Equation (3)) provides an efficient regularization approach for the generalized Sobolev IPM problem, ground-based by our theoretical finding results in Theorem 3.2.**¹⁶ Additionally, GSI-M and GST have the flexibility to leverage geometric priors beyond the L^p paradigm, while ST is coupled with the L^p structure within its definition, similar to Sobolev IPM.

OW (Sturm, 2011) and OT. Propositions 4.8 and 4.9 show that GSI-M is provably equivalent to OW and OT respectively when graph \mathbb{G} is a tree, and $\Phi(t) = t$ (i.e., the limit case of N -function). Additionally, both OW and GSI-M are able to employ Orlicz geometric structure with general N -function. However, OW is challenging for computation, limits its practical applications while GSI-M is much more efficient in computation, by simply solving a univariate optimization problem.

Graph-based measures. We study Sobolev IPM for *two probability measures* supported on the *same* graph, which is also considered in (Le et al., 2025). We distinguish the considered problem with the research lines on computing either kernels (Borgwardt et al., 2020) or distances/discrepancies (Petric Maretic et al., 2019; Xu et al., 2019; Dong & Sawin, 2020; Brogat-Motte et al., 2022; Bai et al., 2025) between *two input graphs* which are possibly *different*. See Appendix §E for a further discussion.

6 EXPERIMENTS

In this section, we illustrate that GSI-M is fast for computation, which is several-order faster than OW, and comparable to GST, a scalable variant of OW for graph-based measures. Additionally, we show initial evidences on the advantages of GSI-M to compare probability measures supported on a given graph for document classification, and several tasks in TDA. **These empirical results well-support our claimed contributions in §1.**

Document classification. We consider 4 real-world document datasets: TWITTER, RECIPE, CLASSIC, AMAZON where their properties are given in Figure 2. Following (Le et al., 2025), we apply word2vec to map words into vectors in \mathbb{R}^{300} , and use probability measures to represent documents where we regard word-embedding vectors in \mathbb{R}^{300} as supports, and corresponding word frequencies as their support mass.

TDA. We consider 2 TDA tasks: (i) orbit recognition on the synthesized Orbit dataset (Adams et al., 2017) for linked twist map, a discrete dynamical system modeling flow, which is used to model flows in DNA microarrays (Hertzsch et al., 2007), and (ii) object shape image classification on a 10-class subset of MPEG7 dataset (Latecki et al., 2000) as in (Le et al., 2025). We summarize the dataset properties in Figure 3. We use persistence diagrams (PD) (Edelsbrunner & Harer, 2008) to represent objects of interest for these tasks. Then, we regard each PD as probability measures where its supports are 2-dimensional topological feature data points with a uniform mass.

Graph. We use graph \mathbb{G}_{Log} with 10K nodes, about 100K edges; and graph \mathbb{G}_{Sqrt} with 10K nodes, about 1M edges (Le et al., 2025, §5) for experiments, except MPEG7 where these graphs have 1K nodes, about 7K edges for \mathbb{G}_{Log} , and about 32K edges for \mathbb{G}_{Sqrt} due to its smaller size. These considered graphs empirically satisfy the assumptions in §2, also observed in (Le et al., 2025).¹⁷

¹⁶It is *unknown* whether there is any connection between our considered GSI problem and a weighted variant of GST with any given general weight function. Note that our proposed GSI-M is theoretically ground-based on the novel finding results in Theorem 3.2 with the weight function \hat{w} (Equation (3)).

¹⁷See a review for these graphs in Appendix §E.

432 **N -function.** We consider two popular N -functions Φ in applications: $\Phi_1(t) = \exp(t) - t - 1$, and
 433 $\Phi_2(t) = \exp(t^2) - 1$. We also examine the limit case: $\Phi_0(t) = t$.
 434

435 **Optimization algorithm.** We use a second-order solver (i.e., *fmincon* with Trust Region Reflective
 436 solver in MATLAB) for solving the *univariate* optimization problem for GSI-M.

437 **Classification.** We employ kernelized support vector machine (SVM) for both document
 438 classification and TDA tasks. We use kernel $\exp(-\tilde{t}\tilde{d})$ with hyperparameter
 439 $\tilde{t} > 0$ and distance \tilde{d} such as GSI-M, GST, and OW for graph-based measures. We follow
 440 (Cuturi, 2013) to regularize the Gram matrices of indefinite kernels by adding a
 441 sufficiently large diagonal term, and use 1-vs-1 strategy for multi-class classification
 442 with SVM. We randomly split each dataset into 70%/30% for training and test with 10
 443 repeats. Generally, we utilize cross validation for hyper-parameters. For SVM regularization
 444 hyperparameter, we choose it from $\{0.01, 0.1, 1, 10\}$. For the kernel hyperpa-
 445 rameter \tilde{t} , we choose it from $\{1/q_s, 1/(2q_s), 1/(5q_s)\}$ where q_s is the $s\%$ quantile of a random
 446 subset of distances observed on a training set and $s = 10, 20, \dots, 90$. For the root node z_0 in graph
 447 \mathbb{G} , we choose it from a random 10-root-node subset of V in \mathbb{G} . Note that we include preprocessing
 448 procedures, e.g., computing shortest paths, into reported time consumptions.
 449

450 To illustrate the scale, we note that there are more than 29 million pairs of probability measures in
 451 AMAZON, which are required to evaluate distances for kernelized SVM on each run.¹⁸
 452

453 Figure 1: Time consumption on \mathbb{G}_{Log} .
 454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474 Figure 2: SVM results and time consumption for kernel matrices with graph \mathbb{G}_{Log} . For each dataset,
 475 the numbers in the parenthesis are the number of classes; the number of documents; and the maximum
 476 number of unique words for each document respectively.
 477

478 **Results and discussions.** We illustrate the time consumption in Figure 1, and SVM results with
 479 corresponding time consumption for document classification and TDA in Figures 2 and 3 respectively,
 480 for graph \mathbb{G}_{Log} . Corresponding results for graph \mathbb{G}_{Sqrt} are placed in Appendix §C.

481 **• Computational comparision.** We compare the time consumption of GSI-M, GST, and OW with
 482 Φ_0, Φ_1, Φ_2 on random 10K pairs of measures in AMAZON with graph \mathbb{G}_{Log} , but with 1K nodes and
 483 about 7K edges. Figure 1 illustrates that the computation of GSI-M $\widehat{\mathcal{GS}}$ is comparable to GST,
 484 and several-order faster than OW. More specifically, $\widehat{\mathcal{GS}}$ is $90\times, 5100\times, 2900\times$ faster than OW for
 485

¹⁸See §C for further details.

486 Φ_0, Φ_1, Φ_2 respectively. For N -functions Φ_1 and Φ_2 , GSI-M takes less than 22 *seconds* while OW
 487 needs at least 17 *hours*, and up to 27 *hours* for the computation.
 488

489 We remark that following (Le et al., 2024, Remark 4.5), and Proposition 3.7 for the limit $p \rightarrow 1^+$,
 490 both GSI-M- Φ_0 ($\widehat{\mathcal{GS}}_{\Phi_0}$) and GST- Φ_0 (\mathcal{GST}_{Φ_0}) are equal to the 1-order ST (\mathcal{ST}_1), which have
 491 closed-form expression for fast computation. Additionally, OW- Φ_0 is equal to the OT with graph
 492 metric ground cost (Guha et al., 2023; Le et al., 2024). Consequently, the computations of GSI-M,
 493 GST, and OW with the limit case Φ_0 is more efficient than with N -functions Φ_1, Φ_2 .

494 • **Document classification.** We evaluate GSI-M and GST with Φ_0, Φ_1, Φ_2 ,
 495 denoted as GSI-M- Φ_i and GST- Φ_0 for $i = 0, 1, 2$ respectively.¹⁹ For
 496 OW, we only use Φ_0 (denoted as OW- Φ_0), but exclude Φ_1, Φ_2 due to their
 497 heavy computations, see Figure 1. We also consider a special case of OW-
 498 Φ_0 where it is computed on a random tree extracted from the given graph
 499 \mathbb{G} , denoted as OW- Φ_0 -Tree. We remark that OW- Φ_0 -Tree is equal to
 500 tree-Wasserstein (Le et al., 2019). Figure 2 illustrates that the performances
 501 of GSI-M with all Φ functions compare favorably to those baselines. Similar
 502 to GST, observed in (Le et al., 2024), GSI-M- Φ_1 and GSI-M- Φ_2 improve
 503 performances of GSI-M- Φ_0 , especially in RECIPE, but their
 504 computational time is several-order slower since GSI-M- Φ_0 has a closed-form expression, following
 505 Proposition 3.7 and taking the limit $p \rightarrow 1^+$. Therefore, it may imply that Orlicz geometric structure
 506 in GSI-M may be helpful for document classification. Additionally, performances of GSI-M compare
 507 favorably to those of GST with the same N -functions Φ_1, Φ_2 , especially in TWITTER, RECIPE.
 508 Results on OW- Φ_0 and OW- Φ_0 -Tree also agree with observations in (Le et al., 2024). Performances
 509 of OW- Φ_0 -Tree are better in CLASSIC, AMAZON, but worse in TWITTER, RECIPE than those
 510 of OW- Φ_0 . Although OW- Φ_0 -Tree only leverages a partial information of \mathbb{G} , it forms positive definite
 511 kernels while kernels of OW- Φ_0 are indefinite.

512 • **TDA.** We carry out for the same distances as in document classification. Figure 3 shows that
 513 we have similar empirical observations as for document classification. For the same Φ function,
 514 GSI-M and GST are several-order faster OW. Orlicz geometric structure in GSI-M may be also useful
 515 for TDA, i.e., performances of GSI-M- Φ_1 GSI-M- Φ_2 compare favorably to those of GSI-M- Φ_0 ,
 516 especially in MPEG7, but they are also several-order slower. Additionally, performances of GSI-M
 517 compare favorably to those of GST with the same N -functions Φ_1, Φ_2 , especially in MPEG7 for
 518 N -function Φ_2 . Although OW- Φ_0 -Tree use a partial information of \mathbb{G} , the positive definiteness of its
 519 corresponding kernel may help to improve performances of OW- Φ_0 , which agrees with observations
 520 in (Le et al., 2024).

521 7 CONCLUSION

522 In this work, we propose the generalized Sobolev IPM (GSI) for graph-based measures by leveraging
 523 the set of convex N -functions to adopt Orlicz geometric structure for Sobolev IPM beyond its coupled
 524 L^p prior. Moreover, we propose a novel regularization for GSI, which is efficient for computation by
 525 simply solving a univariate optimization problem. For future works, it is interesting to derive efficient
 526 algorithmic approaches for the original Sobolev IPM and its generalization (without regularization),
 527 and go beyond the Sobolev geometric structure, e.g., employing more advanced yet challenging
 528 geometric structure for IPM such as critic function within unit ball of Besov norm (i.e., Besov IPM)
 529 for applications.

530 ¹⁹GSI-M- Φ_0 is equal to GST- Φ_0 .

531 Figure 3: SVM results and time consumption for kernel
 532 matrices with graph \mathbb{G}_{Log} . For each dataset, the numbers in
 533 the parenthesis are respectively the number of PD; and the
 534 maximum number of points in PD.

540 REFERENCES
541

542 Henry Adams, Tegan Emerson, Michael Kirby, Rachel Neville, Chris Peterson, Patrick Shipman,
543 Sofya Chepushtanova, Eric Hanson, Francis Motta, and Lori Ziegelmeier. Persistence images: A
544 stable vector representation of persistent homology. *Journal of Machine Learning Research*, 18(1):
545 218–252, 2017. 8

546 Robert A Adams and John JF Fournier. *Sobolev spaces*. Elsevier, 2003. 1, 2, 3, 4, 38, 40, 41

547 Jason M Altschuler and Sinho Chewi. Faster high-accuracy log-concave sampling via algorithmic
548 warm starts. *arXiv preprint arXiv:2302.10249*, 2023. 2

549

550 Alexandr Andoni, Chengyu Lin, Ying Sheng, Peilin Zhong, and Ruiqi Zhong. Subspace embedding
551 and linear regression with Orlicz norm. In *International Conference on Machine Learning*, pp.
552 224–233. PMLR, 2018. 2

553 Yikun Bai, Huy Tran, Hengrong Du, Xinran Liu, and Soheil Kolouri. Fused partial gromov-
554 wasserstein for structured objects. *arXiv preprint arXiv:2502.09934*, 2025. 8

555

556 Karsten Borgwardt, Elisabetta Ghisu, Felipe Llinares-López, Leslie O’Bray, Bastian Rieck, et al.
557 Graph kernels: State-of-the-art and future challenges. *Foundations and Trends® in Machine
558 Learning*, 13(5-6):531–712, 2020. 8, 41

559

560 Luc Brodat-Motte, Rémi Flamary, Céline Brouard, Juho Rousu, and Florence d’Alché Buc. Learning
561 to predict graphs with fused gromov-wasserstein barycenters. In *International Conference on
562 Machine Learning*, pp. 2321–2335. PMLR, 2022. 8

563 Linda Chamakh, Emmanuel Gobet, and Zoltán Szabó. Orlicz random Fourier features. *The Journal
564 of Machine Learning Research*, 21(1):5739–5775, 2020. 2

565

566 M. Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In *Advances in Neural
567 Information Processing Systems*, pp. 2292–2300, 2013. 9

568

569 Yichuan Deng, Zhao Song, Omri Weinstein, and Ruizhe Zhang. Fast distance oracles for any
570 symmetric norm. *Advances in Neural Information Processing Systems*, 35:7304–7317, 2022. 2

571

572 Yihe Dong and Will Sawin. COPT: Coordinated optimal transport on graphs. *Advances in Neural
573 Information Processing Systems*, 33:19327–19338, 2020. 8, 41

574

575 Herbert Edelsbrunner and John Harer. Persistent homology - A survey. *Contemporary Mathematics*,
576 453:257–282, 2008. 1, 8

577

578 Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and Alexander Smola. A
579 kernel two-sample test. *The Journal of Machine Learning Research*, 13(1):723–773, 2012. 1

580

581 Aritra Guha, Nhat Ho, and XuanLong Nguyen. On excess mass behavior in Gaussian mixture models
582 with Orlicz-Wasserstein distances. In *International Conference on Machine Learning, ICML*,
583 volume 202, pp. 11847–11870. PMLR, 2023. 2, 10

584

585 Petteri Harjulehto and Peter Hästö. *Orlicz Spaces and Generalized Orlicz Spaces*. Springer, 2019. 3,
586 18

587

588 Jan-Martin Hertzsch, Rob Sturman, and Stephen Wiggins. DNA microarrays: Design principles for
589 maximizing ergodic, chaotic mixing. *Small*, 3(2):202–218, 2007. 8

590

591 Binh-Son Hua, Minh-Khoi Tran, and Sai-Kit Yeung. Pointwise convolutional neural networks. In
592 *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 984–993,
593 2018. 1

594

595 Martin Kell. On interpolation and curvature via Wasserstein geodesics. *Advances in Calculus of
596 Variations*, 10(2):125–167, 2017. 2

597

598 Soheil Kolouri, Nicholas A. Ketz, Andrea Soltoggio, and Praveen K. Pilly. Sliced Cramer synaptic
599 consolidation for preserving deeply learned representations. In *International Conference on
600 Learning Representations*, 2020. 1

594 M. A. Krasnoselskii and Ya. B. Rutickii. *Convex functions and Orlicz spaces*. P. Noordhoff Ltd.,
 595 Groningen, 1961. 18, 23

596

597 Matt Kusner, Yu Sun, Nicholas Kolkin, and Kilian Weinberger. From word embeddings to document
 598 distances. In *International conference on machine learning*, pp. 957–966, 2015. 1

599

600 Longin Jan Latecki, Rolf Lakamper, and T Eckhardt. Shape descriptors for non-rigid shapes with a
 601 single closed contour. In *Proceedings of the IEEE Conference on Computer Vision and Pattern
 602 Recognition (CVPR)*, volume 1, pp. 424–429, 2000. 8

603

604 Tam Le, Makoto Yamada, Kenji Fukumizu, and Marco Cuturi. Tree-sliced variants of Wasserstein
 605 distances. In *Advances in neural information processing systems*, pp. 12283–12294, 2019. 10, 39

606

607 Tam Le, Truyen Nguyen, Dinh Phung, and Viet Anh Nguyen. Sobolev transport: A scalable metric
 608 for probability measures with graph metrics. In *International Conference on Artificial Intelligence
 609 and Statistics*, pp. 9844–9868. PMLR, 2022. 1, 3, 5, 6, 8, 27, 35, 37, 38, 39, 41, 42

610

611 Tam Le, Truyen Nguyen, and Kenji Fukumizu. Generalized Sobolev transport for probability
 612 measures on a graph. In *Forty-first International Conference on Machine Learning*, 2024. 2, 3, 4,
 613 8, 10, 24, 25, 26, 27, 30, 35, 39, 40, 41, 42

614

615 Tam Le, Truyen Nguyen, Hideitsu Hino, and Kenji Fukumizu. Scalable Sobolev IPM for probability
 616 measures on a graph. In *International Conference on Machine Learning*, 2025. 1, 2, 4, 5, 6, 7, 8,
 617 24, 35, 38, 39, 41, 42, 43

618

619 Tengyuan Liang. How well can generative adversarial networks learn densities: A nonparametric
 620 view. *arXiv preprint*, 2017. 1

621

622 Tengyuan Liang. Estimating certain integral probability metric (IPM) is as hard as estimating under
 623 the IPM. *arXiv preprint*, 2019. 1

624

625 Tengyuan Liang. How well generative adversarial networks learn distributions. *Journal of Machine
 626 Learning Research*, 22(228):1–41, 2021. 1

627

628 Dirk Lorenz and Hinrich Mahler. Orlicz space regularization of continuous optimal transport problems.
 629 *Applied Mathematics & Optimization*, 85(2):14, 2022. 2

630

631 Youssef Mroueh, Chun-Liang Li, Tom Sercu, Anant Raj, , and Yu Cheng. Sobolev GAN. In
 632 *International Conference on Learning Representations*, pp. 5767–5777, 2018. 4

633

634 Alfred Müller. Integral probability metrics and their generating classes of functions. *Advances in
 635 Applied Probability*, 29(2):429–443, 1997. 1

636

637 Julian Musielak. *Orlicz spaces and modular spaces*, volume 1034. Springer, 2006. 3, 18, 23, 40, 41

638

639 Kimia Nadjahi, Alain Durmus, Lénaïc Chizat, Soheil Kolouri, Shahin Shahrampour, and Umut
 640 Simsekli. Statistical and topological properties of sliced probability divergences. *Advances in
 641 Neural Information Processing Systems*, 33:20802–20812, 2020. 1

642

643 Hermina Petric Maretic, Mireille El Gheche, Giovanni Chierchia, and Pascal Frossard. GOT: An
 644 optimal transport framework for graph comparison. *Advances in Neural Information Processing
 645 Systems*, 32, 2019. 8, 41

646

647 Gabriel Peyré and Marco Cuturi. Computational optimal transport. *Foundations and Trends® in
 648 Machine Learning*, 11(5-6):355–607, 2019. 1

649

650 Malempati Madhusudana Rao and Zhong Dao Ren. Theory of Orlicz spaces. *Marcel Dekker*, 1991.
 651 2, 3, 4, 6, 18, 26, 40

652

653 Shashank Singh, Ananya Uppal, Boyue Li, Chun-Liang Li, Manzil Zaheer, and Barnabás Póczos.
 654 Nonparametric density estimation under adversarial losses. *Advances in Neural Information
 655 Processing Systems*, 31, 2018. 1

648 Zhao Song, Ruosong Wang, Lin Yang, Hongyang Zhang, and Peilin Zhong. Efficient symmetric
 649 norm regression via linear sketching. *Advances in Neural Information Processing Systems*, 32,
 650 2019. 2

651 Bharath K Sriperumbudur, Kenji Fukumizu, Arthur Gretton, Bernhard Schölkopf, and Gert RG
 652 Lanckriet. On integral probability metrics, ϕ -divergences and binary classification. *arXiv preprint*,
 653 2009. 1

654 Karl-Theodor Sturm. Generalized Orlicz spaces and Wasserstein distances for convex-concave scale
 655 functions. *Bulletin des sciences mathématiques*, 135(6-7):795–802, 2011. 2, 6, 8

656 Ananya Uppal, Shashank Singh, and Barnabás Póczos. Nonparametric density estimation & con-
 657 vergence rates for GANs under Besov IPM losses. *Advances in neural information processing*
 658 systems, 32, 2019. 1

659 Ananya Uppal, Shashank Singh, and Barnabás Póczos. Robust density estimation under Besov IPM
 660 losses. *Advances in Neural Information Processing Systems*, 33:5345–5355, 2020. 1

661 Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and Justin M Solomon.
 662 Dynamic graph CNN for learning on point clouds. *ACM Transactions on Graphics (TOG)*, 38(5):
 663 1–12, 2019. 1

664 Hongteng Xu, Dixin Luo, Hongyuan Zha, and Lawrence Carin Duke. Gromov-Wasserstein learning
 665 for graph matching and node embedding. In *International conference on machine learning*, pp.
 666 6932–6941. PMLR, 2019. 8

667 Mikhail Yurochkin, Sebastian Claici, Edward Chien, Farzaneh Mirzazadeh, and Justin M Solomon.
 668 Hierarchical optimal transport for document representation. *Advances in neural information*
 669 *processing systems*, 32, 2019. 1

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

APPENDIX

In this appendix, we provide further theoretical results in §A, and the detailed proofs for theoretical results in the main manuscript and additional results in §B. Then, we describe further experiment experimental details and empirical results in §C, following by brief reviews for related notions for the development of our work and further discussions in §D and §E respectively.

A FURTHER THEORETICAL RESULTS

A.1 AUXILIARY RESULTS

Lemma A.1. *Let Φ be an N -function and $f \in WL_{\Phi,0}^1(\mathbb{G}, \lambda)$. Then for any nonnegative weight function \hat{w} and $t > 0$, we have*

$$\int_{\mathbb{G}} \hat{w}(x) \Phi\left(\frac{1}{t} |f(x)|\right) \lambda(dx) \leq \frac{1}{\lambda(\mathbb{G})} \int_{\mathbb{G}} \Phi\left(\frac{\lambda(\mathbb{G})}{t} |f'(y)|\right) \bar{\lambda}_{\hat{w}}(\Lambda(y)) \lambda(dy), \quad (24)$$

where we write $\bar{\lambda}_{\hat{w}}$ for measure λ weighted by function \hat{w} , i.e., $\int \bar{\lambda}_{\hat{w}}(dx) := \int \hat{w}(x) \lambda(dx)$.

The proof is placed in Appendix §B.14.

Lemma A.2. *Let w_0 be any positive weight function such that $w_0(x) \geq \lambda(\Lambda(x))$ for all $x \in \mathbb{G}$. Then if function $f \in WL_{\Phi,0}^1(\mathbb{G}, \lambda)$ and scalar $t > 0$ satisfying $\int_{\mathbb{G}} w_0(x) \Phi\left(\frac{|f(x)|}{t}\right) \lambda(dx) \leq \lambda(\mathbb{G})$, we must have*

$$t \geq \frac{\|f\|_{L_{\Phi}}}{\lambda(\mathbb{G})}. \quad (25)$$

The proof is placed in Appendix §B.15.

Theorem A.3. *Let w_0 be any positive weight function satisfying $w_0(x) \geq \lambda(\Lambda(x))$ for all $x \in \mathbb{G}$. For every function $f \in WL_{\Phi,0}^1(\mathbb{G}, \lambda)$, then*

$$\|f\|_{L_{\Phi}} \leq \lambda(\mathbb{G}) \|f'\|_{L_{\Phi}^{w_0/\lambda(\mathbb{G})}}. \quad (26)$$

The proof is placed in Appendix §B.16.

Lemma A.4. *Let Φ be an N -function. For any two positive weight functions w_1, w_2 such that $w_1(x) \geq w_2(x)$ for all $x \in \mathbb{G}$, and any Borel measurable function f on \mathbb{G} , then*

$$\|f\|_{L_{\Phi}^{w_1}} \geq \|f\|_{L_{\Phi}^{w_2}}. \quad (27)$$

The proof is placed in Appendix §B.17.

Lemma A.5. *For N -function Φ , scalar $t > 0$, and scalar $k \geq 1$, then*

$$\Phi(kt) \geq k\Phi(t). \quad (28)$$

The proof is placed in Appendix §B.18.

Lemma A.6. *For N -function Φ , positive weight function \hat{w} on \mathbb{G} , $k > 0$, then we have*

$$\|kf\|_{L_{\Phi}^{\hat{w}}} = k \|f\|_{L_{\Phi}^{\hat{w}}}. \quad (29)$$

The proof is placed in Appendix §B.19.

A.2 FURTHER THEORETICAL RESULTS

Special case with closed-form expression. For specific N -function, the generalized Sobolev IPM can yield a closed-form expression for computation.

Proposition A.7 (Closed-form expression). *For N -function $\Phi(t) = \frac{(p-1)^{p-1}}{p^p} t^p$ with $1 < p < \infty$, the generalized Sobolev IPM with Musielak regularization has a closed-form expression as follows:*

$$\widehat{\mathcal{GS}}_{\Phi}(\mu, \nu) = \left[\int_{\mathbb{G}} \hat{w}(x)^{1-p} |\mu(\Lambda(x)) - \nu(\Lambda(x))|^p \lambda(dx) \right]^{\frac{1}{p}}. \quad (30)$$

The proof is placed in Appendix §B.20.

756 A.3 DISCRETE CASE FOR REGULARIZED GENERALIZED SOBOLEV IPM WITH POPULAR
 757 N -FUNCTIONS
 758

759 Following Theorem 3.6, the discrete case of the regularized generalized Sobolev IPM $\widehat{\mathcal{GS}}_\Phi$ is

$$760 \quad 761 \quad 762 \quad \widehat{\mathcal{GS}}_\Phi(\mu, \nu) = \inf_{k>0} \frac{1}{k} \left(1 + \sum_{e \in E} \left[\int_0^1 \bar{w}_t(e) \Phi \left(\frac{k|\bar{h}(e)|}{\bar{w}_t(e)} \right) w_e dt \right] \right), \quad (31)$$

763 where $\bar{h}(e) := \mu(\gamma_e) - \nu(\gamma_e)$ for every edge $e \in E$, and $\bar{w}_t(e) := \frac{w_e}{\lambda(\mathbb{G})} t + 1 + \frac{\lambda(\gamma_e)}{\lambda(\mathbb{G})}$ for all edge
 764 $e \in E$ and $t \in [0, 1]$.

765 We consider popular practical N -functions Φ for the GST and the OW: $\Phi_1(t) = \exp(t) - t - 1$, and
 766 $\Phi_2(t) = \exp(t^2) - 1$. We also examine the limit case: $\Phi_0(t) = t$.

767 For each edge $e \in E$, we want to compute

$$768 \quad 769 \quad 770 \quad \mathcal{A}_\Phi(e) := \int_0^1 \left[\frac{w_e}{\lambda(\mathbb{G})} t + 1 + \frac{\lambda(\gamma_e)}{\lambda(\mathbb{G})} \right] \Phi \left(\frac{k|\bar{h}(e)|}{\frac{w_e}{\lambda(\mathbb{G})} t + 1 + \frac{\lambda(\gamma_e)}{\lambda(\mathbb{G})}} \right) w_e dt \quad (32)$$

771 For simplicity, let denote the exponential integral function for $z > 0$ as follow:

$$772 \quad 773 \quad 774 \quad Ei(z) = \int_{-\infty}^z \frac{\exp(t)}{t} dt, \quad (33)$$

775 and notice that

$$776 \quad 777 \quad 778 \quad \frac{d}{dz} Ei(z) = \frac{\exp(z)}{z}, \quad z \neq 0, \quad (34)$$

779 and $Ei(z) = -E_1(-z)$, where $E_1(z) = \int_z^\infty \frac{\exp(-t)}{t} dt$.

780 **For the limit case:** $\Phi_0(t) = t$. We have

$$781 \quad 782 \quad 783 \quad \mathcal{A}_{\Phi_0}(e) := \int_0^1 k|\bar{h}(e)| w_e dt = k|\bar{h}(e)| w_e. \quad (35)$$

784 **For N -function:** $\Phi_1(t) = \exp(t) - t - 1$. For $a > 0, b > 0$, we consider

$$785 \quad 786 \quad 787 \quad A_1 := \beta \int_0^1 (at + b) \Phi_1 \left(\frac{\alpha}{at + b} \right) dt. \quad (36)$$

788 See Appendix §B.21 for the detailed computation of A_1 where its results are summarized as follow:

$$789 \quad 790 \quad 791 \quad A_1 = \frac{\beta}{2a} \left[-\alpha^2 \left[Ei \left(\frac{\alpha}{a+b} \right) - Ei \left(\frac{\alpha}{b} \right) \right] + \alpha \left[(a+b) \exp \left(\frac{\alpha}{a+b} \right) - b \exp \left(\frac{\alpha}{b} \right) \right] \right. \\ 792 \quad 793 \quad 794 \quad \left. + \left[(a+b)^2 \exp \left(\frac{\alpha}{a+b} \right) - b^2 \exp \left(\frac{\alpha}{b} \right) \right] - 2\alpha a - [(a+b)^2 - b^2] \right]. \quad (37)$$

795 Therefore, we obtain

$$796 \quad 797 \quad 798 \quad \mathcal{A}_{\Phi_1} = A_1, \quad (38)$$

800 where $\beta = w_e, a = \frac{w_e}{\lambda(\mathbb{G})}, b = 1 + \frac{\lambda(\gamma_e)}{\lambda(\mathbb{G})}, \alpha = k|\bar{h}(e)|$.

801 Additionally, the first-order derivative of A_1 w.r.t. k is as follows:

$$802 \quad 803 \quad 804 \quad \frac{d}{dk} A_1 = \frac{\beta|\bar{h}(e)|}{a} \left\{ -\alpha \left[Ei \left(\frac{\alpha}{a+b} \right) - Ei \left(\frac{\alpha}{b} \right) \right] + (a+b) \exp \left(\frac{\alpha}{a+b} \right) - b \exp \left(\frac{\alpha}{b} \right) - a \right\}. \quad (39)$$

805 Moreover, its second-order derivative of A_1 w.r.t. k is as follows:

$$806 \quad 807 \quad 808 \quad \frac{d^2}{dk^2} A_1 = -\frac{\beta|\bar{h}(e)|^2}{a} \left[Ei \left(\frac{\alpha}{a+b} \right) - Ei \left(\frac{\alpha}{b} \right) \right]. \quad (40)$$

810 **For N -function:** $\Phi_2(t) = \exp(t^2) - 1$. For $a > 0, b > 0$, we consider
 811

$$812 \quad 813 \quad A_2 := \beta \int_0^1 (at + b) \Phi_2\left(\frac{\alpha}{at + b}\right) dt. \quad (41)$$

814 See Appendix §B.22 for the detailed computation of A_2 where its result is summarized as follow:
 815

$$816 \quad 817 \quad A_2 = \frac{\beta}{2a} \left[-\alpha^2 \left[Ei\left(\frac{\alpha^2}{(a+b)^2}\right) - Ei\left(\frac{\alpha^2}{b^2}\right) \right] \right. \\ 818 \quad \left. + \left[(a+b)^2 \exp\left(\frac{\alpha^2}{(a+b)^2}\right) - b^2 \exp\left(\frac{\alpha^2}{b^2}\right) \right] - [(a+b)^2 - b^2] \right]. \quad (42)$$

822 Therefore, we get

$$823 \quad \mathcal{A}_{\Phi_2} = A_2, \quad (43)$$

824 where $\beta = w_e, a = \frac{w_e}{\lambda(\mathbb{G})}, b = 1 + \frac{\lambda(\gamma_e)}{\lambda(\mathbb{G})}, \alpha = k|\bar{h}(e)|$.
 825

826 Additionally, the first-order derivative of A_2 w.r.t. k is as follows:

$$827 \quad 828 \quad \frac{dA_2}{dk} = -\frac{\beta\alpha|\bar{h}(e)|}{a} \left[Ei\left(\frac{\alpha^2}{(a+b)^2}\right) - Ei\left(\frac{\alpha^2}{b^2}\right) \right]. \quad (44)$$

830 Moreover, its second-order derivative of A_2 w.r.t. k is as follows:

$$831 \quad 832 \quad \frac{d^2}{dk^2} A_2 = -\frac{\beta|\bar{h}(e)|^2}{a} \left[Ei\left(\frac{\alpha^2}{(a+b)^2}\right) - Ei\left(\frac{\alpha^2}{b^2}\right) + 2 \exp(\alpha^2/(a+b)^2) - 2 \exp(\alpha^2/b^2) \right]. \quad (45)$$

835 B PROOFS

837 In this section, we give detailed proofs for the theoretical results in the main manuscript and additional
 838 results in Appendix §A.

840 B.1 PROOF FOR THEOREM 3.2

841 *Proof.* We first derive the lower bound as follows:

$$843 \quad 844 \quad \|f\|_{WL_{\Phi}^1} = \|f\|_{L_{\Phi}} + \|f'\|_{L_{\Phi}} \\ 845 \quad \geq \|f'\|_{L_{\Phi}}. \quad (46)$$

846 Additionally, for any scalar $k \geq 1$, we have
 847

$$848 \quad 849 \quad \int_{\mathbb{G}} \Phi\left(k \frac{|f'(x)|}{t}\right) \lambda(dx) \geq \int_{\mathbb{G}} k \Phi\left(\frac{|f'(x)|}{t}\right) \lambda(dx) \quad (47)$$

$$850 \quad 851 \quad \geq \int_{\mathbb{G}} \frac{k}{2} \left(1 + \frac{\lambda(\Lambda(x))}{\lambda(\mathbb{G})}\right) \Phi\left(\frac{|f'(x)|}{t}\right) \lambda(dx) \quad (48)$$

$$852 \quad 853 \quad = \int_{\mathbb{G}} \frac{k}{2} \hat{w}(x) \Phi\left(\frac{|f'(x)|}{t}\right) \lambda(dx).$$

855 The first inequality in (47) is due to Lemma A.5, and the second inequality in (48) comes from the
 856 property of the length measure λ , i.e., $\lambda(\Lambda(x)) \leq \lambda(\mathbb{G})$ for all $x \in \mathbb{G}$.
 857

858 Therefore, we obtain

$$859 \quad 860 \quad \left\{ t > 0 \mid \int_{\mathbb{G}} \Phi\left(k \frac{|f'(x)|}{t}\right) \lambda(dx) \leq 1 \right\} \subseteq \left\{ t > 0 \mid \int_{\mathbb{G}} \frac{k}{2} \hat{w}(x) \Phi\left(\frac{|f'(x)|}{t}\right) \lambda(dx) \leq 1 \right\}.$$

862 Notice that the infimum of a set is smaller than or equal to the infimum of its subset. Consequently,
 863 we obtain

$$k \|f'\|_{L_{\Phi}} \geq \|f'\|_{L_{\Phi}^{k\hat{w}/2}}.$$

864 Therefore, we have shown that
 865

$$866 \quad \|f'\|_{L_\Phi} \geq \frac{1}{k} \|f'\|_{L_\Phi^{k\hat{\psi}/2}}, \quad \text{for every } k \geq 1. \quad (49)$$

868 By choosing $k = 2$ in (49) and combining with the inequality in (46), we obtain the lower bound as
 869 follows:
 870

$$871 \quad \|f\|_{WL_\Phi^1} \geq \frac{1}{2} \|f'\|_{L_\Phi^{\hat{\psi}}}. \quad (49)$$

872 Next, let weight function $w_1(x) := \frac{\lambda(\Lambda(x))}{\lambda(\mathbb{G})}$ for all $x \in \mathbb{G}$, we then derive the upper bound as follows:
 873

$$875 \quad \|f\|_{WL_\Phi^1} = \|f\|_{L_\Phi} + \|f'\|_{L_\Phi} \\ 876 \quad \leq \lambda(\mathbb{G}) \|f'\|_{L_\Phi^{w_1}} + \|f'\|_{L_\Phi} \quad (50) \\ 877 \quad \leq \lambda(\mathbb{G}) \|f'\|_{L_\Phi^{\hat{\psi}}} + \|f'\|_{L_\Phi^{\hat{\psi}}} \quad (51) \\ 878 \quad = (1 + \lambda(\mathbb{G})) \|f'\|_{L_\Phi^{\hat{\psi}}},$$

880 where the first inequality in (50) is obtained by using Theorem A.3 with $w_0(x) := \lambda(\Lambda(x))$, and the
 881 second inequality (51) is obtained by using Lemma A.4.
 882

883 Hence, the proof is complete. ■
 884

885 B.2 PROOF FOR THEOREM 3.5

886 *Proof.* Consider a critic function $f \in WL_{\Psi,0}^1(\mathbb{G}, \lambda)$. Then by Definition 3.1, we have
 887

$$888 \quad f(x) = f(z_0) + \int_{[z_0,x]} f'(y) \lambda(dy), \quad \forall x \in \mathbb{G}. \quad (52)$$

889 Using (52), leveraging the indicator function of the shortest path $[z_0, x]$ (denoted as $\mathbf{1}_{[z_0,x]}$), and
 890 notice that $\mu(\mathbb{G}) = 1$, we get
 891

$$892 \quad \int_{\mathbb{G}} f(x) \mu(dx) = \int_{\mathbb{G}} f(z_0) \mu(dx) + \int_{\mathbb{G}} \int_{[z_0,x]} f'(y) \lambda(dy) \mu(dx) \\ 893 \quad = f(z_0) + \int_{\mathbb{G}} \int_{\mathbb{G}} \mathbf{1}_{[z_0,x]}(y) f'(y) \lambda(dy) \mu(dx).$$

894 Then, applying Fubini's theorem to interchange the order of integration in the above last integral, we
 895 obtain
 896

$$897 \quad \int_{\mathbb{G}} f(x) \mu(dx) = f(z_0) + \int_{\mathbb{G}} \int_{\mathbb{G}} \mathbf{1}_{[z_0,x]}(y) f'(y) \mu(dx) \lambda(dy) \\ 898 \quad = f(z_0) + \int_{\mathbb{G}} \left(\int_{\mathbb{G}} \mathbf{1}_{[z_0,x]}(y) \mu(dx) \right) f'(y) \lambda(dy).$$

899 Using the definition of $\Lambda(y)$ in Equation (1), we can rewrite it as
 900

$$901 \quad \int_{\mathbb{G}} f(x) \mu(dx) = f(z_0) + \int_{\mathbb{G}} f'(y) \mu(\Lambda(y)) \lambda(dy).$$

902 By exactly the same arguments, we also have
 903

$$904 \quad \int_{\mathbb{G}} f(x) \nu(dx) = f(z_0) + \int_{\mathbb{G}} f'(y) \nu(\Lambda(y)) \lambda(dy).$$

905 Consequently, the regularized generalized Sobolev IPM in Equation (12) can be reformulated as
 906

$$907 \quad \widehat{\mathcal{G}\mathcal{S}}_{\Phi}(\mu, \nu) = \sup_{f \in \mathcal{B}_{\Psi}^{\hat{\psi}}} \left| \int_{\mathbb{G}} f'(x) [\mu(\Lambda(x)) - \nu(\Lambda(x))] \lambda(dx) \right|, \quad (53)$$

918 where we recall that $\mathcal{B}_\Psi^{\hat{w}} = \left\{ f \in WL_{\Psi,0}^1(\mathbb{G}, \lambda) : \|f'\|_{L_\Psi^{\hat{w}}} \leq 1 \right\}$ (see Equation (193)).
 919

920 Observe that, we have on one hand
 921

$$\{f' : f \in \mathcal{B}_\Psi^{\hat{w}}\} \subset \{g \in L_\Psi(\mathbb{G}, \lambda) : \|g\|_{L_\Psi^{\hat{w}}} \leq 1\}.$$

923 On the other hand, for any $g \in L_\Psi(\mathbb{G}, \lambda)$, we have $g = f'$ with $f(x) := \int_{[z_0, x]} g(y) \lambda(dy) \in$
 924 $WL_{\Psi,0}^1(\mathbb{G}, \lambda)$.
 925

926 Therefore, we conclude that
 927

$$\{f' : f \in \mathcal{B}_\Psi^{\hat{w}}\} = \{g \in L_\Psi(\mathbb{G}, \lambda) : \|g\|_{L_\Psi^{\hat{w}}} \leq 1\}. \quad (54)$$

929 Consequently, if we let $\hat{f}(x) := \frac{\mu(\Lambda(x)) - \nu(\Lambda(x))}{\hat{w}(x)}$ for $x \in \mathbb{G}$, then Equation (53) can be recasted as
 930

$$\widehat{\mathcal{GS}}_\Phi(\mu, \nu) = \sup_{g \in L_\Psi(\mathbb{G}, \lambda) : \|g\|_{L_\Psi^{\hat{w}}} \leq 1} \left| \int_{\mathbb{G}} \hat{w}(x) \hat{f}(x) g(x) \lambda(dx) \right| \quad (55)$$

935 Additionally, Φ, Ψ are a pair of complementary N -functions. Therefore, we obtain from (55)
 936 and (Musielak, 2006, §13.20)²⁰ that
 937

$$\widehat{\mathcal{GS}}_\Phi(\mu, \nu) = \|\hat{f}\|_{\Phi, \hat{w}}, \quad (56)$$

939 where $\|\hat{f}\|_{\Phi, \hat{w}}$ is the Musileak-Orlicz norm with weight function \hat{w} , define by (see (Musielak, 2006,
 940 §13.11)²¹)
 941

$$\|\hat{f}\|_{\Phi, \hat{w}} := \left\{ \int_{\mathbb{G}} \hat{w}(x) \hat{f}(x) g(x) \lambda(dx) : \int_{\mathbb{G}} \hat{w}(x) \Psi(|g(x)|) \lambda(dx) \leq 1 \right\}. \quad (57)$$

945 By applying (Krasnoselskii & Rutickii, 1961, Theorem 10.5, §10.8)²², we have
 946

$$\|\hat{f}\|_{\Phi, \hat{w}} = \inf_{k > 0} \frac{1}{k} \left(1 + \int_{\mathbb{G}} \hat{w}(x) \Phi \left(k |\hat{f}(x)| \right) \lambda(dx) \right).$$

949 This together with (56) yields
 950

$$\begin{aligned} \widehat{\mathcal{GS}}_\Phi(\mu, \nu) &= \inf_{k > 0} \frac{1}{k} \left(1 + \int_{\mathbb{G}} \hat{w}(x) \Phi \left(k |\hat{f}(x)| \right) \lambda(dx) \right) \\ &= \inf_{k > 0} \frac{1}{k} \left(1 + \int_{\mathbb{G}} \hat{w}(x) \Phi \left(k \left| \frac{\mu(\Lambda(x)) - \nu(\Lambda(x))}{\hat{w}(x)} \right| \right) \lambda(dx) \right) \\ &= \inf_{k > 0} \frac{1}{k} \left(1 + \int_{\mathbb{G}} \hat{w}(x) \Phi \left(\frac{k}{\hat{w}(x)} |\mu(\Lambda(x)) - \nu(\Lambda(x))| \right) \lambda(dx) \right). \end{aligned}$$

958 This completes the proof of the theorem. ■
 959

961 B.3 PROOF FOR THEOREM 3.6

963 *Proof.* We consider the length measure on graph \mathbb{G} for λ . Thus, we have $\lambda(\{x\}) = 0$ for all $x \in \mathbb{G}$.
 964 Consequently, we have
 965

$$\widehat{\mathcal{GS}}_\Phi(\mu, \nu) = \inf_{k > 0} \frac{1}{k} \left(1 + \sum_{e=(u,v) \in E} \int_{(u,v)} \hat{w}(x) \Phi \left(\frac{k}{\hat{w}(x)} |\mu(\Lambda(x)) - \nu(\Lambda(x))| \right) \lambda(dx) \right). \quad (58)$$

970 ²⁰Also see (Rao & Ren, 1991, Proposition 10, §3.4).

971 ²¹Also see (Rao & Ren, 1991, Definition 2, §3.3), (Harjulehto & Hästö, 2019, Definition 3.4.5).

972 See also (Rao & Ren, 1991, Theorem 13, §3.3).

972 Additionally, we consider input probability measures μ, ν supported on nodes in V of graph \mathbb{G} . Thus,
 973 for all edge $e = \langle u, v \rangle \in E$, and any point $x \in (u, v)$, we have
 974

$$975 \mu(\Lambda(x)) - \nu(\Lambda(x)) = \mu(\Lambda(x) \setminus (u, v)) - \nu(\Lambda(x) \setminus (u, v)). \quad (59)$$

976 Moreover, let us consider edge $e = \langle u, v \rangle \in E$. Then for any $x \in (u, v)$, we have $y \in \mathbb{G} \setminus (u, v)$
 977 belongs to $\Lambda(x)$ if and only if $y \in \gamma_e$ where we recall that $\Lambda(x)$ and γ_e are defined in Equation (1).
 978 Thus, we have

$$979 \Lambda(x) \setminus (u, v) = \gamma_e, \quad \forall x \in (u, v). \quad (60)$$

980 Using Equations (59) and (60), we can rewrite Equation (67) as
 981

$$982 \widehat{\mathcal{GS}}_\Phi(\mu, \nu) = \inf_{k>0} \frac{1}{k} \left(1 + \sum_{e=\langle u, v \rangle \in E} \int_{(u, v)} \hat{w}(x) \Phi \left(\frac{k}{\hat{w}(x)} |\mu(\gamma_e) - \nu(\gamma_e)| \right) \lambda(dx) \right). \quad (61)$$

983 We next want to compute the integral in (69) for each edge $\langle u, v \rangle \in E$.
 984

985 For this, recall that $\hat{w}(x) = 1 + \frac{\lambda(\Lambda(x))}{\lambda(\mathbb{G})}, \forall x \in \mathbb{G}$ (see Equation (9)). Without loss of generality,
 986 assume that $d_{\mathbb{G}}(z_0, u) \leq d_{\mathbb{G}}(z_0, v)$, i.e., among two nodes u, v of the edge e , node v is farther away
 987 from the root node z_0 than node u .
 988

989 Notice that for $x \in (u, v)$, we can write $x = v + t(u - v)$ for $t \in (0, 1)$. With this change of variable,
 990 we have

$$991 \int_{(u, v)} \left[1 + \frac{\lambda(\Lambda(x))}{\lambda(\mathbb{G})} \right] \Phi \left(\frac{k}{1 + \frac{\lambda(\Lambda(x))}{\lambda(\mathbb{G})}} |\mu(\gamma_e) - \nu(\gamma_e)| \right) \lambda(dx) \quad (62)$$

$$992 = \int_0^1 \left[1 + \frac{\lambda(\Lambda(v + t(u - v)))}{\lambda(\mathbb{G})} \right] \Phi \left(\frac{k}{1 + \frac{\lambda(\Lambda(v + t(u - v)))}{\lambda(\mathbb{G})}} |\mu(\gamma_e) - \nu(\gamma_e)| \right) w_e dt. \quad (63)$$

993 Moreover, we have
 994

$$995 \lambda(\Lambda(v + t(u - v))) = \lambda(\Lambda(v)) + \lambda([v, v + t(u - v)]) = \lambda(\gamma_e) + w_e t. \quad (64)$$

996 Therefore,

$$997 \int_{(u, v)} \left[1 + \frac{\lambda(\Lambda(x))}{\lambda(\mathbb{G})} \right] \Phi \left(\frac{k}{1 + \frac{\lambda(\Lambda(x))}{\lambda(\mathbb{G})}} |\mu(\gamma_e) - \nu(\gamma_e)| \right) \lambda(dx) \quad (64)$$

$$998 = \int_0^1 \left[1 + \frac{\lambda(\gamma_e) + w_e t}{\lambda(\mathbb{G})} \right] \Phi \left(\frac{k}{1 + \frac{\lambda(\gamma_e) + w_e t}{\lambda(\mathbb{G})}} |\mu(\gamma_e) - \nu(\gamma_e)| \right) w_e dt \quad (65)$$

$$999 = \int_0^1 \left[\frac{w_e}{\lambda(\mathbb{G})} t + 1 + \frac{\lambda(\gamma_e)}{\lambda(\mathbb{G})} \right] \Phi \left(\frac{k |\mu(\gamma_e) - \nu(\gamma_e)|}{\frac{w_e}{\lambda(\mathbb{G})} t + 1 + \frac{\lambda(\gamma_e)}{\lambda(\mathbb{G})}} \right) w_e dt \quad (66)$$

1000 Hence, the proof is complete. ■
 1001

1002 B.4 PROOF FOR PROPOSITION 3.7

1003 *Proof.* For the length measure λ on graph \mathbb{G} , we have $\lambda(\{x\}) = 0$ for all $x \in \mathbb{G}$. Consequently, for
 1004 N -function $\Phi(t) = \frac{(p-1)^{p-1}}{p^p} t^p$ with $1 < p < \infty$, from the closed-form expression of the generalized
 1005 Sobolev IPM with Musielak regularization in Proposition A.7, we obtain

$$1006 \widehat{\mathcal{GS}}_\Phi(\mu, \nu)^p = \sum_{e=\langle u, v \rangle \in E} \int_{(u, v)} \hat{w}(x)^{1-p} |\mu(\Lambda(x)) - \nu(\Lambda(x))|^p \lambda(dx). \quad (67)$$

1026 Additionally, for input measures μ, ν supported on nodes in V of graph \mathbb{G} , then for all edge $e =$
 1027 $\langle u, v \rangle \in E$, and any point $x \in (u, v)$, we have
 1028

$$1029 \mu(\Lambda(x)) - \nu(\Lambda(x)) = \mu(\Lambda(x) \setminus (u, v)) - \nu(\Lambda(x) \setminus (u, v)).$$

1030 Therefore, from Equation (67), we obtain
 1031

$$1032 \widehat{\mathcal{GS}}_{\Phi}(\mu, \nu)^p = \sum_{e=\langle u, v \rangle \in E} \int_{(u, v)} \hat{w}(x)^{1-p} |\mu(\Lambda(x) \setminus (u, v)) - \nu(\Lambda(x) \setminus (u, v))|^p \lambda(dx). \quad (68)$$

1035 Moreover, consider edge $e = \langle u, v \rangle \in E$, for any $x \in (u, v)$, then we have $y \in \mathbb{G} \setminus (u, v)$ belongs to
 1036 $\Lambda(x)$ if and only if $y \in \gamma_e$.²³ Thus, we have
 1037

$$1038 \Lambda(x) \setminus (u, v) = \gamma_e, \quad \forall x \in (u, v).$$

1039 Thus, from Equation (68), we obtain
 1040

$$1041 \widehat{\mathcal{GS}}_{\Phi}(\mu, \nu)^p = \sum_{e=\langle u, v \rangle \in E} |\mu(\gamma_e) - \nu(\gamma_e)|^p \int_{(u, v)} \hat{w}(x)^{1-p} \lambda(dx). \quad (69)$$

1044 From Equation (3), for any x in \mathbb{G} , we have
 1045

$$1046 \hat{w}(x) = 1 + \frac{\lambda(\Lambda(x))}{\lambda(\mathbb{G})}. \quad (70)$$

1048 Without loss of generality, for any edge $e = \langle u, v \rangle \in E$, assume that $d_{\mathbb{G}}(z_0, u) \leq d_{\mathbb{G}}(z_0, v)$, i.e.,
 1049 among two nodes u, v of the edge e , node v is farther away from the root node z_0 than node u .

1050 Observe that for $x \in (u, v)$, then $x = v + t(u - v)$ for $t \in (0, 1)$. Using this change of variable, we
 1051 obtain

$$1053 \int_{(u, v)} \left[1 + \frac{\lambda(\Lambda(x))}{\lambda(\mathbb{G})} \right]^{1-p} \lambda(dx) = \int_0^1 \left[1 + \lambda(\mathbb{G})^{-1} \lambda(\Lambda(v + t(u - v))) \right]^{1-p} w_e dt$$

1055 Additionally, notice that
 1056

$$1057 \lambda(\Lambda(v + t(u - v))) = \lambda(\Lambda(v)) + \lambda([v, v + t(u - v)]) = \lambda(\gamma_e) + w_e t.$$

1059 Thus, we obtain
 1060

$$1061 \int_{(u, v)} \left[1 + \frac{\lambda(\Lambda(x))}{\lambda(\mathbb{G})} \right]^{1-p} \lambda(dx) = \int_0^1 \left[1 + \lambda(\mathbb{G})^{-1} \lambda(\gamma_e) + \lambda(\mathbb{G})^{-1} w_e t \right]^{1-p} w_e dt.$$

1063 Furthermore, the last integral can be computed easily depending on the case $p = 2$ or $p \neq 2$.
 1064 Consequently, we obtain
 1065

$$1066 \int_{(u, v)} \left[1 + \frac{\lambda(\Lambda(x))}{\lambda(\mathbb{G})} \right]^{1-p} \lambda(dx) = \begin{cases} \lambda(\mathbb{G}) \log \left(1 + \frac{w_e}{\lambda(\mathbb{G}) + \lambda(\gamma_e)} \right) & \text{if } p = 2, \\ \frac{(\lambda(\mathbb{G}) + \lambda(\gamma_e) + w_e)^{2-p} - (\lambda(\mathbb{G}) + \lambda(\gamma_e))^{2-p}}{(2-p)\lambda(\mathbb{G})^{1-p}} & \text{otherwise.} \end{cases}$$

1069 Thus, we have $\int_{(u, v)} \left[1 + \frac{\lambda(\Lambda(x))}{\lambda(\mathbb{G})} \right]^{1-p} \lambda(dx) = \beta_e$ (see Equation (16)).
 1070

1072 Consequently, from Equation (69), we obtain
 1073

$$1074 \widehat{\mathcal{GS}}_{\Phi}(\mu, \nu) = \left(\sum_{e \in E} \beta_e |\mu(\gamma_e) - \nu(\gamma_e)|^p \right)^{\frac{1}{p}}. \quad (71)$$

1076 Hence, the proof is completed. ■
 1077

1078 ²³See Equation (1) for the definitions of $\Lambda(x)$ and γ_e .
 1079

1080 B.5 PROOF FOR LEMMA 4.1
10811082 *Proof.* We will prove that the regularized generalized Sobolev IPM $\widehat{\mathcal{GS}}_\Phi$ satisfies: (i) nonnegativity,
1083 (ii) indiscernibility, (iii) symmetry, and (iv) triangle inequality.1084 **(i) Nonnegativity.** By choosing $f = 0$ in Definition 3.4, we have that $\widehat{\mathcal{GS}}_\Phi(\mu, \nu) \geq 0$ for every pair
1085 of probability measures (μ, ν) in $\mathcal{P}(\mathbb{G}) \times \mathcal{P}(\mathbb{G})$. Therefore, the regularized generalized Sobolev IPM
1086 $\widehat{\mathcal{GS}}_\Phi$ is nonnegative.
10871088 **(ii) Indiscernibility.** Assume that $\widehat{\mathcal{GS}}_\Phi(\mu, \nu) = 0$, then we have
1089

1090
$$\int_{\mathbb{G}} f(x) \mu(dx) - \int_{\mathbb{G}} f(x) \nu(dx) = 0, \quad (72)$$

1091

1092 for all $f \in WL_{\Psi,0}^1(\mathbb{G}, \lambda)$ satisfying the constraint $\|f'\|_{L_{\Psi}^{\frac{1}{\alpha}}} \leq 1$.
10931094 Let $g \in WL_{\Psi,0}^1(\mathbb{G}, \lambda)$ be any nonconstant function. Then $\alpha := \|g'\|_{L_{\Psi}} > 0$. Then by choosing
1095 $f := \frac{g}{\alpha}$, we have $f \in WL_{\Psi,0}^1(\mathbb{G}, \lambda)$ with $\|f'\|_{L_{\Psi}} = \|\frac{g'}{\alpha}\|_{L_{\Psi}} = \frac{1}{\alpha} \|g'\|_{L_{\Psi}} = 1$ where we use
1096 Lemma A.6 for the second equation. Hence, it follows from (72) that
1097

1098
$$\int_{\mathbb{G}} \frac{g(x)}{\alpha} \mu(dx) - \int_{\mathbb{G}} \frac{g(x)}{\alpha} \nu(dx) = 0,$$

1099

1100 which implies that
1101

1102
$$\int_{\mathbb{G}} g(x) \mu(dx) = \int_{\mathbb{G}} g(x) \nu(dx). \quad (73)$$

1103

1104 Thus, we have shown that (73) holds true for every nonconstant function $g \in WL_{\Psi,0}^1(\mathbb{G}, \lambda)$. Addi-
1105 tionally, Equation (73) is also obviously true for any constant function g . Therefore, we obtain
1106

1107
$$\int_{\mathbb{G}} g(x) \mu(dx) = \int_{\mathbb{G}} g(x) \nu(dx),$$

1108

1109 for every $g \in WL_{\Psi,0}^1(\mathbb{G}, \lambda)$, which gives $\mu = \nu$ as desired.
11101111 **(iii) Symmetry.** This property is obvious from Definition 3.4 as the value $\widehat{\mathcal{GS}}_\Phi(\mu, \nu)$ is unchanged
1112 when the role of μ and ν is interchanged, i.e.,
1113

1114
$$\widehat{\mathcal{GS}}_\Phi(\mu, \nu) = \widehat{\mathcal{GS}}_\Phi(\nu, \mu).$$

1115

1116 **(iv) Triangle inequality.** Let μ, ν, σ be probability measures in $\mathcal{P}(\mathbb{G})$, then for any function $f \in$
1117 $WL_{\Psi,0}^1(\mathbb{G}, \lambda)$ satisfying the constraint $\|f'\|_{L_{\Psi}^{\frac{1}{\alpha}}} \leq 1$, we have
1118

1119
$$\begin{aligned} & \left| \int_{\mathbb{G}} f(x) \mu(dx) - \int_{\mathbb{G}} f(x) \nu(dx) \right| \\ &= \left| \left[\int_{\mathbb{G}} f(x) \mu(dx) - \int_{\mathbb{G}} f(x) \sigma(dx) \right] + \left[\int_{\mathbb{G}} f(x) \sigma(dx) - \int_{\mathbb{G}} f(x) \nu(dx) \right] \right| \\ &\leq \left| \int_{\mathbb{G}} f(x) \mu(dx) - \int_{\mathbb{G}} f(x) \sigma(dx) \right| + \left| \int_{\mathbb{G}} f(x) \sigma(dx) - \int_{\mathbb{G}} f(x) \nu(dx) \right| \\ &\leq \widehat{\mathcal{GS}}_\Phi(\mu, \sigma) + \widehat{\mathcal{GS}}_\Phi(\sigma, \nu). \end{aligned}$$

1120

1121 By taking the supremum over f , this implies that
1122

1123
$$\widehat{\mathcal{GS}}_\Phi(\mu, \nu) \leq \widehat{\mathcal{GS}}_\Phi(\mu, \sigma) + \widehat{\mathcal{GS}}_\Phi(\sigma, \nu).$$

1124

1125 Due to these above properties, we conclude that the regularized generalized Sobolev IPM $\widehat{\mathcal{GS}}_\Phi$ is a
1126 metric on the space $\mathcal{P}(\mathbb{G})$ of probability measures on graph \mathbb{G} .
1127

■

1134 B.6 PROOF FOR PROPOSITION 4.2
1135

1136
$$\widehat{\mathcal{GS}}_{\Phi}(\mu, \nu) := \sup_{f \in \mathcal{B}_{\Psi}^{\hat{\psi}}} \left| \int_{\mathbb{G}} f(x) \mu(dx) - \int_{\mathbb{G}} f(y) \nu(dy) \right|. \quad (74)$$

1137
1138

1139
$$\mathcal{B}_{\Psi}^{\hat{\psi}} := \left\{ f \in WL_{\Psi,0}^1(\mathbb{G}, \lambda), \|f'\|_{L_{\Psi}^{\hat{\psi}}} \leq 1 \right\}. \quad (75)$$

1140
1141

1142 *Proof.* Let Ψ_1 and Ψ_2 be respectively the complementary functions of Φ_1 and Φ_2 , consider an
1143 arbitrary positive scale $t \in \mathbb{R}_+$, and notice that $\Phi_1 \leq \Phi_2$, then we have:

1144
$$\begin{aligned} at - \Phi_1(a) &\geq at - \Phi_2(a) \text{ for every } a \in \mathbb{R}_+, \\ 1145 \Rightarrow \sup_{a \geq 0} (at - \Phi_1(a)) &\geq \sup_{a \geq 0} (at - \Phi_2(a)). \end{aligned}$$

1146

1147 This implies that

1148
$$\Psi_1(t) \geq \Psi_2(t), \text{ for all } t \in \mathbb{R}_+.$$

1149

1150 It follows that $L_{\Psi_1}^{\hat{\psi}}(\mathbb{G}, \lambda) \subset L_{\Psi_2}^{\hat{\psi}}(\mathbb{G}, \lambda)$ and $WL_{\Psi_1,0}^1(\mathbb{G}, \lambda) \subset WL_{\Psi_2,0}^1(\mathbb{G}, \lambda)$. Moreover, for any
1151 fixed Orlicz function f' and any number $t > 0$, we have

1152
$$\int_{\mathbb{G}} \hat{w}(x) \Psi_1\left(\frac{|f'(x)|}{t}\right) \lambda(dx) \geq \int_{\mathbb{G}} \hat{w}(x) \Psi_2\left(\frac{|f'(x)|}{t}\right) \lambda(dx).$$

1153
1154

1155 Consequently, we obtain

1156
$$\left\{ t > 0 \mid \int_{\mathbb{G}} \hat{w}(x) \Psi_1\left(\frac{|f'(x)|}{t}\right) \lambda(dx) \leq 1 \right\} \subset \left\{ t > 0 \mid \int_{\mathbb{G}} \hat{w}(x) \Psi_2\left(\frac{|f'(x)|}{t}\right) \lambda(dx) \leq 1 \right\}.$$

1157
1158

1159 Since the infimum of a set is smaller than or equal to the infimum of its subset, we deduce that

1160
$$\|f'\|_{L_{\Psi_1}^{\hat{\psi}}} \geq \|f'\|_{L_{\Psi_2}^{\hat{\psi}}}.$$

1161

1162 It follows from this and $WL_{\Psi_1,0}^1(\mathbb{G}, \lambda) \subset WL_{\Psi_2,0}^1(\mathbb{G}, \lambda)$ that

1163
$$\left\{ f \mid f \in WL_{\Psi_1,0}^1(\mathbb{G}, \lambda), \|f'\|_{L_{\Psi_1}^{\hat{\psi}}} \leq 1 \right\} \subset \left\{ f \mid f \in WL_{\Psi_2,0}^1(\mathbb{G}, \lambda), \|f'\|_{L_{\Psi_2}^{\hat{\psi}}} \leq 1 \right\}.$$

1164
1165

1166 Since the supremum of a set is larger than or equal to the supremum of its subset, we conclude that

1167
$$\widehat{\mathcal{GS}}_{\Phi_1}(\mu, \nu) \leq \widehat{\mathcal{GS}}_{\Phi_2}(\mu, \nu),$$

1168

1169 for any input measures μ, ν in $\mathcal{P}(\mathbb{G})$. Therefore, the proof is complete. ■1170
1171 B.7 PROOF FOR PROPOSITION 4.31172 *Proof.* Given a positive scalar $c > 0$, a pair of complementary N -functions Φ, Ψ , and let $\mathcal{B}_{\Psi,c}^{\hat{\psi}} :=$
1173
$$\left\{ f \in WL_{\Psi,0}^1(\mathbb{G}, \lambda) : \|f'\|_{L_{\Psi}^{\hat{\psi}}} \leq \frac{1}{c} \right\}.$$
 We define the IPM distance w.r.t. $\mathcal{B}_{\Psi,c}^{\hat{\psi}}$ as follows

1174
$$\widetilde{\mathcal{GS}}_{\Phi,c}(\mu, \nu) := \sup_{f \in \mathcal{B}_{\Psi,c}^{\hat{\psi}}} \left| \int_{\mathbb{G}} f(x) \mu(dx) - \int_{\mathbb{G}} f(y) \nu(dy) \right|. \quad (76)$$

1175
1176

1177 By exploiting the graph structure for the IPM objective function and applying a similar reasoning as
1178 in the proof of identity (53) in §B.2, we can rewrite Equation (76) as
1179

1180
$$\widetilde{\mathcal{GS}}_{\Phi,c}(\mu, \nu) = \sup_{f \in \mathcal{B}_{\Psi,c}^{\hat{\psi}}} \left| \int_{\mathbb{G}} f'(x) [\mu(\Lambda(x)) - \nu(\Lambda(x))] \lambda(dx) \right|. \quad (77)$$

1181

1182 Additionally, by using a similar reasoning as in the proof of (54) in §B.2, we have
1183

1184
$$\{f' : f \in \mathcal{B}_{\Psi,c}^{\hat{\psi}}\} = \left\{ g \in L_{\Psi}(\mathbb{G}, \lambda) : \|g\|_{L_{\Psi}^{\hat{\psi}}} \leq \frac{1}{c} \right\}. \quad (78)$$

1185
1186

1188 Let $\tilde{f}(x) := \frac{\mu(\Lambda(x)) - \nu(\Lambda(x))}{c \hat{w}(x)}$ for $x \in \mathbb{G}$. Then by using (78), Equation (77) can be recasted as
1189

$$\begin{aligned} 1190 \widetilde{\mathcal{GS}}_{\Phi,c}(\mu, \nu) &= \sup_{g \in L_\Psi(\mathbb{G}, \lambda): \|g\|_{L_\Psi^{\hat{w}}} \leq \frac{1}{c}} \left| \int_{\mathbb{G}} \hat{w}(x) \tilde{f}(x) [cg(x)] \lambda(dx) \right| \\ 1191 &= \sup_{\tilde{g} \in L_\Psi(\mathbb{G}, \lambda): \|\tilde{g}\|_{L_\Psi^{\hat{w}}} \leq 1} \left| \int_{\mathbb{G}} \hat{w}(x) \tilde{f}(x) \tilde{g}(x) \lambda(dx) \right| \\ 1192 &= \|\tilde{f}\|_{\Phi, \hat{w}} \end{aligned} \tag{79}$$

$$1193 = \inf_{k>0} \frac{1}{k} \left(1 + \int_{\mathbb{G}} \hat{w}(x) \Phi\left(k \left| \tilde{f}(x) \right| \right) \lambda(dx) \right) \tag{80}$$

$$\begin{aligned} 1194 &= \inf_{k>0} \frac{1}{k} \left(1 + \int_{\mathbb{G}} \hat{w}(x) \Phi\left(k \left| \frac{\mu(\Lambda(x)) - \nu(\Lambda(x))}{c \hat{w}(x)} \right| \right) \lambda(dx) \right) \\ 1195 &= \frac{1}{c} \inf_{(k/c)>0} \frac{1}{(k/c)} \left(1 + \int_{\mathbb{G}} \hat{w}(x) \Phi\left(\frac{(k/c)}{\hat{w}(x)} |\mu(\Lambda(x)) - \nu(\Lambda(x))| \right) \lambda(dx) \right) \\ 1196 &= \frac{1}{c} \widehat{\mathcal{GS}}_\Phi(\mu, \nu), \end{aligned} \tag{81}$$

1200 where the third equality in (79) following from (Musielak, 2006, §13.20) and Equation (57),
1201 the fourth equality in (80) following from (Krasnoselskii & Rutickii, 1961, Theorem 10.5, §10.8), and
1202 the last equality in (81) following from Theorem 3.5.

1203 Additionally, notice that from Theorem 3.2, we have

$$1204 c_1 \|f'\|_{L_\Psi^{\hat{w}}} \leq \|f\|_{WL_\Psi^1} \leq c_2 \|f'\|_{L_\Psi^{\hat{w}}}, \tag{82}$$

1205 where $c_1 = 1/2$, and $c_2 = 1 + \lambda(\mathbb{G})$.

1206 This implies that

$$1207 \mathcal{B}_{\Psi, c_1}^{\hat{w}} \supseteq \mathcal{B}_\Psi \supseteq \mathcal{B}_{\Psi, c_2}^{\hat{w}}. \tag{83}$$

1208 Therefore, for probability measures $\mu, \nu \in \mathcal{P}(\mathbb{G})$, we have

$$1209 \widetilde{\mathcal{GS}}_{\Phi, c_1}(\mu, \nu) \geq \mathcal{GS}_\Phi(\mu, \nu) \geq \widetilde{\mathcal{GS}}_{\Phi, c_2}(\mu, \nu). \tag{84}$$

1210 It follows from Equations (81) and (84) that

$$1211 \frac{1}{c_1} \widehat{\mathcal{GS}}_\Phi(\mu, \nu) \geq \mathcal{GS}_\Phi(\mu, \nu) \geq \frac{1}{c_2} \widehat{\mathcal{GS}}_\Phi(\mu, \nu). \tag{85}$$

1212 Consequently, we obtain

$$1213 c_1 \mathcal{GS}_\Phi(\mu, \nu) \leq \widehat{\mathcal{GS}}_\Phi(\mu, \nu) \leq c_2 \mathcal{GS}_\Phi(\mu, \nu). \tag{86}$$

1214 Hence, we have

$$1215 \frac{1}{2} \mathcal{GS}_\Phi(\mu, \nu) \leq \widehat{\mathcal{GS}}_\Phi(\mu, \nu) \leq (1 + \lambda(\mathbb{G})) \mathcal{GS}_\Phi(\mu, \nu). \tag{87}$$

1216 The proof is complete. ■

B.8 PROOF FOR PROPOSITION 4.4

1217 *Proof.* Following Equation (55) in the proof of Theorem 3.5 in §B.2, we have

$$1218 \widehat{\mathcal{GS}}_\Phi(\mu, \nu) = \sup_{g \in L_\Psi(\mathbb{G}, \lambda): \|g\|_{L_\Psi^{\hat{w}}} \leq 1} \left| \int_{\mathbb{G}} \hat{w}(x) \hat{f}(x) g(x) \lambda(dx) \right|, \tag{88}$$

1219 where $\hat{f}(x) = \frac{\mu(\Lambda(x)) - \nu(\Lambda(x))}{\hat{w}(x)}$ for $x \in \mathbb{G}$.

1242 Additionally, following (Le et al., 2024, Remark A.1), for $\Phi(t) = \frac{(p-1)^{p-1}}{p^p} t^p$ with $1 < p < \infty$, we
 1243 have its complementary function $\Psi(t) = t^q$ where q is the conjugate of p , i.e., $1/q + 1/p = 1$.
 1244

1245 Consequently, we have $L_\Psi = L^q$, and $L_{\hat{\Psi}}^{\hat{w}} = L_{\hat{w}}^q$, where $L_{\hat{w}}^q$ is the weighted L^q space with weight
 1246 function \hat{w} . Therefore, we can rewrite Equation (88) as follows:

$$1247 \widehat{\mathcal{GS}}_\Phi(\mu, \nu) = \sup_{g \in L^q(\mathbb{G}, \lambda): \|g\|_{L_{\hat{w}}^q} \leq 1} \left| \int_{\mathbb{G}} \hat{w}(x) \hat{f}(x) g(x) \lambda(dx) \right| \quad (89)$$

$$1250 = \left\| \hat{f} \right\|_{L_{\hat{w}}^p} \quad (90)$$

$$1252 = \left[\int_{\mathbb{G}} \hat{w}(x) \left| \hat{f}(x) \right|^p \lambda(dx) \right]^{\frac{1}{p}} \quad (91)$$

$$1255 = \left[\int_{\mathbb{G}} \hat{w}(x)^{1-p} |\mu(\Lambda(x)) - \nu(\Lambda(x))|^p \lambda(dx) \right]^{\frac{1}{p}}. \quad (92)$$

1258 Moreover, following (Le et al., 2025, Theorem 3.4), the closed-form of the regularized p -order
 1259 Sobolev IPM is as follows:

$$1261 \hat{\mathcal{S}}_p(\mu, \nu) = \left[\int_{\mathbb{G}} \hat{w}_{\hat{\mathcal{S}}}(x)^{1-p} |\mu(\Lambda(x)) - \nu(\Lambda(x))|^p \lambda(dx) \right]^{\frac{1}{p}}, \quad (93)$$

1263 where the weight function $\hat{w}_{\hat{\mathcal{S}}}(x) = 1 + \lambda(\Lambda(x))$ for all $x \in \mathbb{G}$ (Le et al., 2025, Equation (5)).
 1264

1265 Recall that $\hat{w}(x) = 1 + \frac{\lambda(\Lambda(x))}{\lambda(\mathbb{G})}$ for all $x \in \mathbb{G}$. For any $x \in \mathbb{G}$, we have
 1266

$$1267 \min(1, \lambda(\mathbb{G})^{-1})(1 + \lambda(\Lambda(x))) \leq 1 + \frac{\lambda(\Lambda(x))}{\lambda(\mathbb{G})} \leq \max(1, \lambda(\mathbb{G})^{-1})(1 + \lambda(\Lambda(x))).$$

1269 Then, for $1 < p < \infty$, we obtain

$$1271 \min(1, \lambda(\mathbb{G})^{-1})^{1-p} \hat{w}_{\hat{\mathcal{S}}}(x)^{1-p} \geq \hat{w}(x)^{1-p} \geq \max(1, \lambda(\mathbb{G})^{-1})^{1-p} \hat{w}_{\hat{\mathcal{S}}}(x). \quad (94)$$

1272 Therefore, from Equations (92), (93), (94), we get

$$1274 \hat{c}_1 \hat{\mathcal{S}}_p(\mu, \nu) \leq \widehat{\mathcal{GS}}_\Phi(\mu, \nu) \leq \hat{c}_2 \hat{\mathcal{S}}_p(\mu, \nu), \quad (95)$$

1276 where $\hat{c}_1 = \max(1, \lambda(\mathbb{G})^{-1})^{\frac{1-p}{p}}$ and $\hat{c}_2 = \min(1, \lambda(\mathbb{G})^{-1})^{\frac{1-p}{p}}$.
 1277

Hence, the proof is complete. ■

B.9 PROOF FOR PROPOSITION 4.5

1281 *Proof.* Following Proposition 4.4, we have

$$1283 \max(1, \lambda(\mathbb{G})^{-1})^{\frac{1-p}{p}} \hat{\mathcal{S}}_p(\mu, \nu) \leq \widehat{\mathcal{GS}}_\Phi(\mu, \nu) \leq \min(1, \lambda(\mathbb{G})^{-1})^{\frac{1-p}{p}} \hat{\mathcal{S}}_p(\mu, \nu). \quad (96)$$

1284 Additionally, following (Le et al., 2025, Theorem 4.2), we have

$$1286 \left[\frac{\min(1, \lambda(\mathbb{G})^{p-1})}{1 + \lambda(\mathbb{G})^p} \right]^{\frac{1}{p}} \mathcal{S}_p(\mu, \nu) \leq \hat{\mathcal{S}}_p(\mu, \nu) \leq \left[\max(1, \lambda(\mathbb{G})^{p-1}) \right]^{\frac{1}{p}} \mathcal{S}_p(\mu, \nu) \quad (97)$$

1289 Therefore, from Equations (96), (97), we obtain

$$1290 c_1 \mathcal{S}_p(\mu, \nu) \leq \widehat{\mathcal{GS}}_\Phi(\mu, \nu) \leq c_2 \mathcal{S}_p(\mu, \nu), \quad (98)$$

1292 where $c_1 = \left[\frac{\min(1, \lambda(\mathbb{G})^{p-1}) \max(1, \lambda(\mathbb{G})^{-1})^{1-p}}{1 + \lambda(\mathbb{G})^p} \right]^{\frac{1}{p}}$; $c_2 = \left[\min(1, \lambda(\mathbb{G})^{-1})^{1-p} \max(1, \lambda(\mathbb{G})^{p-1}) \right]^{\frac{1}{p}}$.
 1293

1294 Hence, the proof is complete. ■

1296 B.10 PROOF FOR PROPOSITION 4.6
12971298 *Proof.* From Equation (9), for any $x \in \mathbb{G}$, we have
1299

1300
$$1 \leq \hat{w}(x) \leq 2. \quad (99)$$

1301 Then, for any $t > 0$, we have
1302

1303
$$\int_{\mathbb{G}} \Psi\left(\frac{|f'(x)|}{t}\right) \lambda(dx) \leq \int_{\mathbb{G}} \hat{w}(x) \Psi\left(\frac{|f'(x)|}{t}\right) \lambda(dx) \leq 2 \int_{\mathbb{G}} \Psi\left(\frac{|f'(x)|}{t}\right) \lambda(dx). \quad (100)$$

1304 Consequently, we obtain
1305

1306
$$\begin{aligned} & \left\{ t > 0 \mid \int_{\mathbb{G}} \Psi\left(\frac{|f'(x)|}{t}\right) \lambda(dx) \leq 1 \right\} \\ & \supseteq \left\{ t > 0 \mid \int_{\mathbb{G}} \hat{w}(x) \Psi\left(\frac{|f'(x)|}{t}\right) \lambda(dx) \leq 1 \right\} \\ & \supseteq \left\{ t > 0 \mid 2 \int_{\mathbb{G}} \Psi\left(\frac{|f'(x)|}{t}\right) \lambda(dx) \leq 1 \right\}. \end{aligned} \quad (101)$$

1308 Additionally, observe that by following Lemma A.5, for any $t > 0$, we have
1309

1310
$$2 \int_{\mathbb{G}} \Psi\left(\frac{|f'(x)|}{t}\right) \lambda(dx) \leq \int_{\mathbb{G}} \Psi\left(2 \frac{|f'(x)|}{t}\right) \lambda(dx) \quad (102)$$

1311 Consequently, we have
1312

1313
$$\left\{ t > 0 \mid 2 \int_{\mathbb{G}} \Psi\left(\frac{|f'(x)|}{t}\right) \lambda(dx) \leq 1 \right\} \supseteq \left\{ t > 0 \mid \int_{\mathbb{G}} \Psi\left(2 \frac{|f'(x)|}{t}\right) \lambda(dx) \leq 1 \right\}. \quad (103)$$

1314 Notice that the infimum of a set is smaller than or equal to the infimum of its subset. Consequently,
1315 from Equations (101), and (103), we obtain
1316

1317
$$\|f'\|_{L_{\Psi}} \leq \|f'\|_{L_{\Psi}} \leq \inf \left\{ t > 0 \mid \int_{\mathbb{G}} \Psi\left(2 \frac{|f'(x)|}{t}\right) \lambda(dx) \leq 1 \right\}. \quad (104)$$

1318 Moreover, we also have
1319

1320
$$\begin{aligned} \inf \left\{ t > 0 \mid \int_{\mathbb{G}} \Psi\left(2 \frac{|f'(x)|}{t}\right) \lambda(dx) \leq 1 \right\} &= 2 \inf \left\{ (t/2) > 0 \mid \int_{\mathbb{G}} \Psi\left(\frac{|f'(x)|}{(t/2)}\right) \lambda(dx) \leq 1 \right\} \\ &= 2 \|f'\|_{L_{\Psi}}. \end{aligned} \quad (105)$$

1321 Thus, we obtain
1322

1323
$$\|f'\|_{L_{\Psi}} \leq \|f'\|_{L_{\Psi}} \leq 2 \|f'\|_{L_{\Psi}}. \quad (106)$$

1324 With the technical assumption $f(z_0) = 0$, then WL_{Ψ}^1 is equal to $WL_{\Psi,0}^1$ (as assumed for GSI-M
1325 throughout our work). Thus, we have
1326

1327
$$\{f \in WL_{\Psi}^1, \|f'\|_{L_{\Psi}} \leq 1\} \supseteq \{f \in WL_{\Psi,0}^1, \|f'\|_{L_{\Psi}} \leq 1\} \supseteq \{f \in WL_{\Psi}^1, \|f'\|_{L_{\Psi}} \leq 1/2\}. \quad (107)$$

1328 Additionally, for a positive scalar $c > 0$, a pair of complementary N -function Φ, Ψ , let consider
1329

1330
$$\widetilde{\mathcal{GST}}_{\Phi,c}(\mu, \nu) := \sup_{f \in WL_{\Psi}^1, \|f'\|_{L_{\Psi}} \leq 1/c} \left| \int_{\mathbb{G}} f(x) \mu(dx) - \int_{\mathbb{G}} f(x) \nu(dx) \right|. \quad (108)$$

1331 Following (Le et al., 2024, Equations (12), (13) in §A.1), we can rewrite $\widetilde{\mathcal{GST}}_{\Phi,c}$ as follows:
1332

1333
$$\widetilde{\mathcal{GST}}_{\Phi,c}(\mu, \nu) = \sup_{g \in L_{\Psi}(\mathbb{G}, \lambda): \|g\|_{L_{\Psi}} \leq 1/c} \left| \int_{\mathbb{G}} g(x) h(x) \lambda(dx) \right|, \quad (109)$$

1334 where $h(x) := \mu(\Lambda(x)) - \nu(\Lambda(x))$ for all $x \in \mathbb{G}$. Consequently, let $\tilde{g} = cg$, we have
1335

1336
$$\widetilde{\mathcal{GST}}_{\Phi,c}(\mu, \nu) = \sup_{\tilde{g} \in L_{\Psi}(\mathbb{G}, \lambda): \|\tilde{g}\|_{L_{\Psi}} \leq 1} \left| \int_{\mathbb{G}} \tilde{g}(x) \frac{h(x)}{c} \lambda(dx) \right| \quad (110)$$

1350 By applying (Rao & Ren, 1991, Proposition 10, pp.81), we obtain
 1351

$$\widetilde{\mathcal{GST}}_{\Phi,c}(\mu, \nu) = \left\| \frac{h}{c} \right\|_{\Phi} \quad (111)$$

1354 where $\left\| \frac{h}{c} \right\|_{\Phi}$ is the Orlicz norm (Rao & Ren, 1991, Definition 2, pp.58), defined as
 1355

$$\left\| \frac{h}{c} \right\|_{\Phi} := \sup \left\{ \int_{\mathbb{G}} \left| \frac{1}{c} h(x) g(x) \right| \lambda(dx) : \int_{\mathbb{G}} \Psi(|g(x)|) \lambda(dx) \leq 1 \right\}. \quad (112)$$

1359 Then, by applying (Rao & Ren, 1991, Theorem 13, pp.69), we have
 1360

$$\left\| \frac{h}{c} \right\|_{\Phi} = \inf_{k>0} \frac{1}{k} \left(1 + \int_{\mathbb{G}} \Phi \left(\frac{k}{c} |h(x)| \right) \lambda(dx) \right).$$

1363 Thus, together with (111), we obtain
 1364

$$\widetilde{\mathcal{GST}}_{\Phi,c}(\mu, \nu) = \frac{1}{c} \inf_{(k/c)>0} \frac{1}{(k/c)} \left(1 + \int_{\mathbb{G}} \Phi((k/c) |h(x)|) \lambda(dx) \right) = \frac{1}{c} \mathcal{GST}_{\Phi}(\mu, \nu). \quad (113)$$

1367 Since the supremum of a set is larger than or equal to the supremum of its subset, then for $\mu, \nu \in \mathcal{P}(\mathbb{G})$,
 1368 from Equations (107), (108), (113), and consider $c = 2$, then we obtain
 1369

$$\mathcal{GST}_{\Phi}(\mu, \nu) \geq \widehat{\mathcal{GS}}(\mu, \nu) \geq \frac{1}{2} \mathcal{GST}_{\Phi}(\mu, \nu). \quad (114)$$

1372 Hence, the proof is complete. ■
 1373

1374 B.11 PROOF FOR PROPOSITION 4.7

1376 *Proof.* For N -function $\Phi(t) = \frac{(p-1)^{p-1}}{p^p} t^p$ with $1 < p < \infty$, following (Le et al., 2024, Proposition
 1377 4.4), we have

$$\mathcal{GST}_{\Phi}(\mu, \nu) = \mathcal{ST}_p(\mu, \nu). \quad (115)$$

1380 Additionally, following Proposition 4.6, we have

$$\frac{1}{2} \mathcal{GST}_{\Phi}(\mu, \nu) \leq \widehat{\mathcal{GS}}_{\Phi}(\mu, \nu) \leq \mathcal{GST}_{\Phi}(\mu, \nu). \quad (116)$$

1383 Thus, from Equations (115), and (116), we obtain
 1384

$$\frac{1}{2} \mathcal{ST}_p(\mu, \nu) \leq \widehat{\mathcal{GS}}_{\Phi}(\mu, \nu) \leq \mathcal{ST}_p(\mu, \nu). \quad (117)$$

1387 Hence, the proof is complete. ■
 1388

1389 B.12 PROOF FOR PROPOSITION 4.8

1390 *Proof.* For the limit case $\Phi(t) := t$, and graph \mathbb{G} is a tree, then following (Le et al., 2024, Remark
 1391 4.5 and Proposition 4.6), we have
 1392

$$\mathcal{GST}_{\Phi}(\mu, \nu) = \mathcal{OW}(\mu, \nu). \quad (118)$$

1395 Additionally, following Proposition 4.6, we have

$$\frac{1}{2} \mathcal{GST}_{\Phi}(\mu, \nu) \leq \widehat{\mathcal{GS}}_{\Phi}(\mu, \nu) \leq \mathcal{GST}_{\Phi}(\mu, \nu). \quad (119)$$

1398 Thus, from Equations (118), and (119), we obtain
 1399

$$\frac{1}{2} \mathcal{OW}(\mu, \nu) \leq \widehat{\mathcal{GS}}_{\Phi}(\mu, \nu) \leq \mathcal{OW}(\mu, \nu). \quad (120)$$

1402 Hence, the proof is complete. ■
 1403

1404 B.13 PROOF FOR PROPOSITION 4.9
1405

1406 *Proof.* For the limit case $\Phi(t) := t$, and notice that $\lim_{p \rightarrow 1^+} \frac{(p-1)^{p-1}}{p^p} t^p = t$ (Le et al., 2024, §A.7),
1407 then following (Le et al., 2024, Proposition 4.4), by taking the limit $p \rightarrow 1^+$, the closed-form of
1408 generalized Sobolev transport (GST) is equal to the 1-order Sobolev transport (ST), i.e.,
1409

$$1410 \quad \mathcal{GST}_\Phi(\mu, \nu) = \mathcal{ST}_1(\mu, \nu). \quad (121)$$

1411 Additionally, suppose that graph \mathbb{G} is a tree, then by following Le et al. (2022), the 1-order ST is in
1412 turn equal to the 1-order Wasserstein.
1413

$$1414 \quad \mathcal{ST}_1(\mu, \nu) = \mathcal{W}_1(\mu, \nu). \quad (122)$$

1415 Therefore, from Equations (121), and (122), we obtain
1416

$$1417 \quad \mathcal{GST}_\Phi(\mu, \nu) = \mathcal{W}_1(\mu, \nu). \quad (123)$$

1418 Moreover, following Proposition 4.6, we have
1419

$$1420 \quad \frac{1}{2} \mathcal{GST}_\Phi(\mu, \nu) \leq \widehat{\mathcal{GS}}_\Phi(\mu, \nu) \leq \mathcal{GST}_\Phi(\mu, \nu). \quad (124)$$

1422 Thus, from Equations (123), and (124), we obtain
1423

$$1424 \quad \frac{1}{2} \mathcal{W}_1(\mu, \nu) \leq \widehat{\mathcal{GS}}_\Phi(\mu, \nu) \leq \mathcal{W}_1(\mu, \nu). \quad (125)$$

1425 Hence, the proof is complete. ■
1426

1427 B.14 PROOF FOR LEMMA A.1
1428

1429 *Proof.* Consider an N -function Φ , $f \in WL_{\Phi,0}^1(\mathbb{G}, \lambda)$, a nonnegative weight function \hat{w} , and $t > 0$.
1430 Then we have

$$1431 \quad \int_{\mathbb{G}} \hat{w}(x) \Phi\left(\frac{1}{t} |f(x)|\right) \lambda(dx) = \int_{\mathbb{G}} \hat{w}(x) \Phi\left(\frac{1}{t} \left| \int_{\mathbb{G}} \mathbf{1}_{[z_0,x]}(y) f'(y) \lambda(dy) \right| \right) \lambda(dx) \\ 1432 \quad = \int_{\mathbb{G}} \hat{w}(x) \Phi\left(\frac{\lambda(\mathbb{G})}{t} \left| \frac{1}{\lambda(\mathbb{G})} \int_{\mathbb{G}} \mathbf{1}_{[z_0,x]}(y) f'(y) \lambda(dy) \right| \right) \lambda(dx). \quad (126)$$

1433 For $\alpha > 0$, let $\bar{\Phi}_\alpha(s) := \Phi(\alpha s)$ for $s > 0$. Then $\bar{\Phi}_\alpha$ is also a convex, non-decreasing function. Using
1434 this function, we can rewrite Equation (126) as follows:
1435

$$1436 \quad \int_{\mathbb{G}} \hat{w}(x) \Phi\left(\frac{1}{t} |f(x)|\right) \lambda(dx) = \int_{\mathbb{G}} \hat{w}(x) \bar{\Phi}_{\frac{\lambda(\mathbb{G})}{t}}\left(\left| \frac{1}{\lambda(\mathbb{G})} \int_{\mathbb{G}} \mathbf{1}_{[z_0,x]}(y) f'(y) \lambda(dy) \right| \right) \lambda(dx).$$

1437 Then, by applying Jensen's inequality, we have
1438

$$1439 \quad \int_{\mathbb{G}} \hat{w}(x) \Phi\left(\frac{1}{t} |f(x)|\right) \lambda(dx) \leq \frac{1}{\lambda(\mathbb{G})} \int_{\mathbb{G}} \int_{\mathbb{G}} \hat{w}(x) \bar{\Phi}_{\frac{\lambda(\mathbb{G})}{t}}\left(\left| \mathbf{1}_{[z_0,x]}(y) f'(y) \right| \right) \lambda(dy) \lambda(dx) \\ 1440 \quad = \frac{1}{\lambda(\mathbb{G})} \int_{\mathbb{G}} \int_{\mathbb{G}} \hat{w}(x) \Phi\left(\frac{\lambda(\mathbb{G})}{t} \left| \mathbf{1}_{[z_0,x]}(y) f'(y) \right| \right) \lambda(dy) \lambda(dx).$$

1441 Due to $\Phi(0) = 0$, we can rewrite the above expression as
1442

$$1443 \quad \int_{\mathbb{G}} \hat{w}(x) \Phi\left(\frac{1}{t} |f(x)|\right) \lambda(dx) \leq \frac{1}{\lambda(\mathbb{G})} \int_{\mathbb{G}} \hat{w}(x) \left(\int_{[z_0,x]} \Phi\left(\frac{\lambda(\mathbb{G})}{t} |f'(y)|\right) \lambda(dy) \right) \lambda(dx) \\ 1444 \quad = \frac{1}{\lambda(\mathbb{G})} \int_{\mathbb{G}} \hat{w}(x) \left(\int_{\mathbb{G}} \mathbf{1}_{[z_0,x]}(y) \Phi\left(\frac{\lambda(\mathbb{G})}{t} |f'(y)|\right) \lambda(dy) \right) \lambda(dx).$$

1458 Applying Fubini's theorem, we can interchange the order of the integrations. As a consequence, we
 1459 obtain

$$\begin{aligned} 1462 \int_{\mathbb{G}} \hat{w}(x) \Phi\left(\frac{1}{t} |f(x)|\right) \lambda(dx) &\leq \frac{1}{\lambda(\mathbb{G})} \int_{\mathbb{G}} \left(\int_{\mathbb{G}} \hat{w}(x) \mathbf{1}_{[z_0, x]}(y) \lambda(dx) \right) \Phi\left(\frac{\lambda(\mathbb{G})}{t} |f'(y)|\right) \lambda(dy) \\ 1464 &= \frac{1}{\lambda(\mathbb{G})} \int_{\mathbb{G}} \Phi\left(\frac{\lambda(\mathbb{G})}{t} |f'(y)|\right) \bar{\lambda}_{\hat{w}}(\Lambda(y)) \lambda(dy). \end{aligned}$$

1466 Hence, the proof is complete. ■

1469 B.15 PROOF FOR LEMMA A.2

1471 *Proof.* The conclusion of the lemma is trivial if $\|f\|_{L_\Phi} = 0$. Thus we only need to consider the case
 1472 $\|f\|_{L_\Phi} > 0$ in the following proof. As a consequence and due to $f(z_0) = 0$, there must be $x \in \mathbb{G}$
 1473 such that $|f'(x)| > 0$, i.e. the set $\{x \in \mathbb{G} : |f'(x)| > 0\}$ is nonempty.

1474 We will prove the result by contradiction. Specifically, suppose by contradiction that $0 < t < \frac{\|f\|_{L_\Phi}}{\lambda(\mathbb{G})}$.

1475 Then as $|f'(x)| = 0$ implies $\Phi\left(\frac{|f'(x)|}{t}\right) = 0$ and as Φ is strictly increasing, we have

$$\begin{aligned} 1479 \int_{\mathbb{G}} w_0(x) \Phi\left(\frac{|f'(x)|}{t}\right) \lambda(dx) &= \int_{\mathbb{G}, |f'| > 0} w_0(x) \Phi\left(\frac{|f'(x)|}{t}\right) \lambda(dx) \\ 1481 &> \int_{\mathbb{G}, |f'| > 0} w_0(x) \Phi\left(\frac{\lambda(\mathbb{G})}{\|f\|_{L_\Phi}} |f'(x)|\right) \lambda(dx) \\ 1484 &= \int_{\mathbb{G}} w_0(x) \Phi\left(\frac{\lambda(\mathbb{G})}{\|f\|_{L_\Phi}} |f'(x)|\right) \lambda(dx). \end{aligned} \tag{127}$$

1487 On the other hand, since

$$1489 \|f\|_{L_\Phi} = \inf \left\{ t > 0 \mid \int_{\mathbb{G}} \Phi\left(\frac{|f(x)|}{t}\right) \lambda(dx) \leq 1 \right\}$$

1491 we deduce that

$$1492 \int_{\mathbb{G}} \Phi\left(\frac{|f(x)|}{\|f\|_{L_\Phi}}\right) \lambda(dx) = 1.$$

1495 Applying Lemma A.1 for $\hat{w} = 1$ and $t = \|f\|_{L_\Phi}$ to the above left hand side, we have

$$\begin{aligned} 1498 1 &= \int_{\mathbb{G}} \Phi\left(\frac{|f(x)|}{\|f\|_{L_\Phi}}\right) \lambda(dx) \leq \frac{1}{\lambda(\mathbb{G})} \int_{\mathbb{G}} \Phi\left(\frac{\lambda(\mathbb{G})}{\|f\|_{L_\Phi}} |f'(y)|\right) \lambda(\Lambda(y)) \lambda(dy) \\ 1501 &\leq \frac{1}{\lambda(\mathbb{G})} \int_{\mathbb{G}} \Phi\left(\frac{\lambda(\mathbb{G})}{\|f\|_{L_\Phi}} |f'(y)|\right) w_0(y) \lambda(dy). \end{aligned}$$

1503 Thus, we obtain

$$1505 \int_{\mathbb{G}} \Phi\left(\frac{\lambda(\mathbb{G})}{\|f\|_{L_\Phi}} |f'(x)|\right) w_0(x) \lambda(dy) \geq \lambda(\mathbb{G}).$$

1507 This together with the inequality in (127) yields

$$1510 \int_{\mathbb{G}} w_0(x) \Phi\left(\frac{|f'(x)|}{t}\right) \lambda(dx) > \lambda(\mathbb{G}),$$

1511 which contradicts the assumption. Hence, the proof is complete. ■

1512 B.16 PROOF FOR THEOREM A.3
15131514 *Proof.* We consider the Musielak norm with weight function $\frac{w_0}{\lambda(\mathbb{G})}$ for gradient function f'
1515

1516
$$\|f'\|_{L_{\Phi}^{w_0/\lambda(\mathbb{G})}} = \inf \left\{ t > 0 \mid \int_{\mathbb{G}} \frac{w_0(x)}{\lambda(\mathbb{G})} \Phi\left(\frac{|f'(x)|}{t}\right) \lambda(dx) \leq 1 \right\}.$$

1517

1518 In particular,

1519
$$\int_{\mathbb{G}} w_0(x) \Phi\left(\frac{|f'(x)|}{\|f'\|_{L_{\Phi}^{w_0/\lambda(\mathbb{G})}}}\right) \lambda(dx) \leq \lambda(\mathbb{G}).$$

1520
1521

1522 Therefore, by applying Lemma A.2 with $t := \|f'\|_{L_{\Phi}^{w_0/\lambda(\mathbb{G})}}$, we conclude that
1523

1524
$$\|f\|_{L_{\Phi}} \leq \lambda(\mathbb{G}) \|f'\|_{L_{\Phi}^{w_0/\lambda(\mathbb{G})}}.$$

1525 Hence, the proof is complete. ■
15261527 B.17 PROOF FOR LEMMA A.4
15281529 *Proof.* For any N -function Φ , any Borel measurable function f on \mathbb{G} , and scalar $t > 0$, we have
1530

1531
$$\int_{\mathbb{G}} w_1(x) \Phi\left(\frac{|f(x)|}{t}\right) \lambda(dx) \geq \int_{\mathbb{G}} w_2(x) \Phi\left(\frac{|f(x)|}{t}\right) \lambda(dx).$$

1532

1533 Therefore, we obtain
1534

1535
$$\left\{ t > 0 \mid \int_{\mathbb{G}} w_1(x) \Phi\left(\frac{|f(x)|}{t}\right) \lambda(dx) \leq 1 \right\} \subseteq \left\{ t > 0 \mid \int_{\mathbb{G}} w_2(x) \Phi\left(\frac{|f(x)|}{t}\right) \lambda(dx) \leq 1 \right\}.$$

1536 Notice that the infimum of a set is smaller than or equal to the infimum of its subset. As a consequence,
1537 we obtain
1538

$$\|f\|_{L_{\Phi}^{w_1}} \geq \|f\|_{L_{\Phi}^{w_2}}.$$

1539 The proof is complete. ■
15401541 B.18 PROOF FOR LEMMA A.5
15421543 *Proof.* Notice that Φ is a convex function and $\Phi(0) = 0$. Therefore, for any $0 < s \leq t$, we have
1544

1545
$$\begin{aligned} \Phi(s) &= \Phi\left(\frac{s}{t}t + \left(1 - \frac{s}{t}\right)0\right) \\ 1546 &\leq \frac{s}{t}\Phi(t) + \left(1 - \frac{s}{t}\right)\Phi(0) = \frac{s}{t}\Phi(t), \end{aligned}$$

1547

1548 which yields $\frac{\Phi(s)}{s} \leq \frac{\Phi(t)}{t}$. Thus, the function $t \mapsto \frac{\Phi(t)}{t}$ is nondecreasing on $(0, +\infty)$.
15491550 Consequently, since $k \geq 1$, we get
1551

1552
$$\frac{\Phi(t)}{t} \leq \frac{\Phi(kt)}{kt}.$$

1553

1554 That is, $k\Phi(t) \leq \Phi(kt)$. The proof is complete. ■
15551556 B.19 PROOF FOR LEMMA A.6
15571558 Following the definition of Musielak norm (Equation (3)), we have
1559

1560
$$\|kf\|_{L_{\Phi}^{\hat{w}}} = \inf \left\{ t > 0 \mid \int_{\mathbb{G}} \hat{w}(x) \Phi\left(\frac{|kf(x)|}{t}\right) \lambda(dx) \leq 1 \right\} \quad (128)$$

1561

1562
$$= k \inf \left\{ \frac{t}{k} > 0 \mid \int_{\mathbb{G}} \hat{w}(x) \Phi\left(\frac{|f(x)|}{t/k}\right) \lambda(dx) \leq 1 \right\} \quad (129)$$

1563

1564
$$= k \|f\|_{L_{\Phi}^{\hat{w}}}. \quad (130)$$

1565

The proof is complete.

1566 B.20 PROOF FOR PROPOSITION A.7
1567

1568 *Proof.* Following (Le et al., 2024, Remark A.1), for $\Phi(t) = \frac{(p-1)^{p-1}}{p^p}t^p$ with $1 < p < \infty$, we
1569 have its complementary N -function $\Psi(t) = t^q$ where q is the conjugate of p , i.e., $1/q + 1/p = 1$.
1570 Consequently, we have $L_\Psi = L^q$, and $L_{\hat{\Psi}}^{\hat{w}} = L_{\hat{w}}^q$, where $L_{\hat{w}}^q$ is the weighted L^q space with weight
1571 function \hat{w} .

1572 Additionally, let $\hat{f}(x) = \frac{\mu(\Lambda(x)) - \nu(\Lambda(x))}{\hat{w}(x)}$ for $x \in \mathbb{G}$, by following Equation (55) in the proof of
1573 Theorem 3.5 in §B.2, we have

$$1575 \quad \widehat{\mathcal{GS}}_\Phi(\mu, \nu) = \sup_{g \in L_\Psi(\mathbb{G}, \lambda): \|g\|_{L_{\hat{\Psi}}^{\hat{w}}} \leq 1} \left| \int_{\mathbb{G}} \hat{w}(x) \hat{f}(x) g(x) \lambda(dx) \right| \quad (131)$$

$$1578 \quad = \sup_{g \in L^q(\mathbb{G}, \lambda): \|g\|_{L_{\hat{w}}^q} \leq 1} \left| \int_{\mathbb{G}} \hat{w}(x) \hat{f}(x) g(x) \lambda(dx) \right| \quad (132)$$

$$1581 \quad = \|\hat{f}\|_{L_{\hat{w}}^p} \quad (133)$$

$$1583 \quad = \left[\int_{\mathbb{G}} \hat{w}(x) |\hat{f}(x)|^p \lambda(dx) \right]^{\frac{1}{p}} \quad (134)$$

$$1586 \quad = \left[\int_{\mathbb{G}} \hat{w}(x)^{1-p} |\mu(\Lambda(x)) - \nu(\Lambda(x))|^p \lambda(dx) \right]^{\frac{1}{p}}. \quad (135)$$

1588
1589 Hence, the proof is complete. ■

1592 B.21 COMPUTE A_1 FOR \mathcal{A}_{Φ_1} IN $\widehat{\mathcal{GS}}_{\Phi_1}$ (§A.3)

1594 For $a > 0, b > 0$, we consider the term

$$1596 \quad A_1 := \beta \int_0^1 (at + b) \Phi_1 \left(\frac{\alpha}{at + b} \right) dt. \quad (136)$$

1598 Set $u = at + b$, so $du = adt$ and $u \in [b, a + b]$, then we can rewrite

$$1600 \quad A_1 = \frac{\beta}{a} \int_b^{a+b} [u \exp(\alpha/u) - \alpha - u] du. \quad (137)$$

1603 Next, we want to compute

$$1605 \quad B_{\Phi_1} = \int_b^{a+b} u \exp(\alpha/u) du. \quad (138)$$

1607 First, we use the substitution by setting $v = \alpha/u$. Then $u = \alpha/v$ and $du = -\alpha v^{-2} dv$.

1608 The integrand becomes

$$1610 \quad \int u \exp(\alpha/u) du = \int \frac{\alpha}{v} \exp(v) [-\alpha v^{-2} dv] = -\alpha^2 \int \exp(v) v^{-3} dv. \quad (139)$$

1613 Second, we use two integrations by parts to compute:

$$1615 \quad B_1 := \int \exp(v) v^{-3} dv. \quad (140)$$

1617 Applying the integration by part, we get

$$1619 \quad B_1 = \frac{1}{2} \int \exp(v) v^{-2} dv - \frac{1}{2} \exp(v) v^{-2}. \quad (141)$$

1620 Applying the integration by part for the integral in the right hand side, we obtain
 1621

$$1622 \int \exp(v)v^{-2}dv = \int \exp(v)v^{-1}dv - \exp(v)v^{-1}. \quad (142)$$

1624 Then, from Equations (140), (141), and (142), we obtain
 1625

$$1626 B_1 = \frac{1}{2} (Ei(v) - \exp(v)v^{-1}) - \frac{1}{2} \exp(v)v^{-2} + C \quad (143)$$

$$1628 = \frac{1}{2} Ei(v) - \frac{1}{2} \exp(v)v^{-1} - \frac{1}{2} \exp(v)v^{-2} + C. \quad (144)$$

1631 Thus, from Equations (171), and (143), and recall that $v = \alpha/u$, we have
 1632

$$1633 \int u \exp(\alpha/u)du = -\alpha^2 B_1 \quad (145)$$

$$1635 = -\frac{\alpha^2}{2} Ei(\alpha/u) + \frac{\alpha^2}{2} \frac{\exp(\alpha/u)}{\alpha/u} + \frac{\alpha^2}{2} \frac{\exp(\alpha/u)}{(\alpha/u)^2} + C \quad (146)$$

$$1637 = \frac{1}{2} [u^2 \exp(\alpha/u) + \alpha u \exp(\alpha/u) - \alpha^2 Ei(\alpha/u)] + C. \quad (147)$$

1639 Thus, an antiderivative for the integrand of A_1 is
 1640

$$1641 F_{A_1} := \frac{\beta}{a} \int [u \exp(\alpha/u) - \alpha - u] du \quad (148)$$

$$1644 = \frac{\beta}{2a} (u^2 \exp(\alpha/u) + \alpha u \exp(\alpha/u) - \alpha^2 Ei(\alpha/u) - 2\alpha u - u^2) + C. \quad (149)$$

1646 Hence, we have

$$1647 1648 A_1 = F_{A_1}(a+b) - F_{A_1}(b). \quad (150)$$

1649 Or, we obtain

$$1650 1651 A_1 = \frac{\beta}{2a} \left[-\alpha^2 \left[Ei\left(\frac{\alpha}{a+b}\right) - Ei\left(\frac{\alpha}{b}\right) \right] + \alpha \left[(a+b) \exp\left(\frac{\alpha}{a+b}\right) - b \exp\left(\frac{\alpha}{b}\right) \right] \right. \\ 1653 1654 \left. + \left[(a+b)^2 \exp\left(\frac{\alpha}{a+b}\right) - b^2 \exp\left(\frac{\alpha}{b}\right) \right] - 2\alpha a - [(a+b)^2 - b^2] \right]. \quad (151)$$

1656 Therefore, we have

$$1657 1658 \mathcal{A}_{\Phi_1} = A_1, \quad (152)$$

1659 where $\beta = w_e$, $a = \frac{w_e}{\lambda(\mathbb{G})}$, $b = 1 + \frac{\lambda(\gamma_e)}{\lambda(\mathbb{G})}$, $\alpha = k|\bar{h}(e)|$.

1660 Additionally, we next compute the derivative of A_1 w.r.t. k .

1662 For simplicity, let

$$1663 1664 S_1(\alpha) := -\alpha^2 \left[Ei\left(\frac{\alpha}{a+b}\right) - Ei\left(\frac{\alpha}{b}\right) \right] + \alpha \left[(a+b) \exp\left(\frac{\alpha}{a+b}\right) - b \exp\left(\frac{\alpha}{b}\right) \right] \\ 1666 1667 + \left[(a+b)^2 \exp\left(\frac{\alpha}{a+b}\right) - b^2 \exp\left(\frac{\alpha}{b}\right) \right] - 2\alpha a - [(a+b)^2 - b^2], \quad (153)$$

1668 then we have

$$1669 1670 A_1 = \frac{\beta}{2a} S_1(\alpha). \quad (154)$$

1671 Thus, we have

$$1673 \frac{dA_1}{dk} = \frac{dA_1}{d\alpha} \frac{d\alpha}{dk}. \quad (155)$$

1674 Notice that $\frac{d}{dz} Ei(z) = \frac{\exp(z)}{z}$, and use the chain rule, we have
 1675

1676 For the first term of S_1 , let $S_{11}(\alpha) := -\alpha^2 \left[Ei\left(\frac{\alpha}{a+b}\right) - Ei\left(\frac{\alpha}{b}\right) \right]$, we have
 1677

$$1678 \frac{dS_{11}}{d\alpha} = -2\alpha \left[Ei\left(\frac{\alpha}{a+b}\right) - Ei\left(\frac{\alpha}{b}\right) \right] - \alpha [\exp(\alpha/(a+b)) - \exp(\alpha/b)]. \quad (156)$$

1680 For second term of S_1 , let $S_{12}(\alpha) := \alpha \left[(a+b) \exp\left(\frac{\alpha}{a+b}\right) - b \exp\left(\frac{\alpha}{b}\right) \right]$, we have
 1681

$$1682 \frac{dS_{12}}{d\alpha} = (a+b) \exp\left(\frac{\alpha}{a+b}\right) - b \exp\left(\frac{\alpha}{b}\right) + \alpha [\exp(\alpha/(a+b)) - \exp(\alpha/b)]. \quad (157)$$

1685 For the third term of S_1 , denote $S_{13}(\alpha) := (a+b)^2 \exp\left(\frac{\alpha}{a+b}\right) - b^2 \exp\left(\frac{\alpha}{b}\right)$, we have
 1686

$$1687 \frac{dS_{13}}{d\alpha} = (a+b) \exp\left(\frac{\alpha}{a+b}\right) - b \exp\left(\frac{\alpha}{b}\right) \quad (158)$$

1690 For the fourth term of S_1 , we have $\frac{d}{d\alpha}(-2\alpha a) = -2a$.
 1691

1692 The last term of S_1 is constant w.r.t. α .
 1693

Therefore, we obtain

$$1694 \frac{d}{dk} A_1 = \frac{\beta |\bar{h}(e)|}{a} \left\{ -\alpha \left[Ei\left(\frac{\alpha}{a+b}\right) - Ei\left(\frac{\alpha}{b}\right) \right] + (a+b) \exp\left(\frac{\alpha}{a+b}\right) - b \exp\left(\frac{\alpha}{b}\right) - a \right\}. \quad (159)$$

Furthermore, we next compute the second-order derivative of A_1 w.r.t. k .

$$1698 \frac{d^2}{dk^2} A_1 = \frac{\beta |\bar{h}(e)|}{a} \frac{d}{dk} Q_1(\alpha), \quad (160)$$

where we denote

$$1702 Q_1(\alpha) := -\alpha \left[Ei\left(\frac{\alpha}{a+b}\right) - Ei\left(\frac{\alpha}{b}\right) \right] + (a+b) \exp\left(\frac{\alpha}{a+b}\right) - b \exp\left(\frac{\alpha}{b}\right) - a. \quad (161)$$

By using the chain rule, we have

$$1705 \frac{d^2}{dk^2} A_1 = \frac{\beta |\bar{h}(e)|^2}{a} \frac{d}{d\alpha} Q_1(\alpha), \quad (162)$$

1708 For the first term of Q_1 , denote $Q_{11}(\alpha) := -\alpha \left[Ei\left(\frac{\alpha}{a+b}\right) - Ei\left(\frac{\alpha}{b}\right) \right]$, we have
 1709

$$1710 \frac{dQ_{11}}{d\alpha} = - \left[Ei\left(\frac{\alpha}{a+b}\right) - Ei\left(\frac{\alpha}{b}\right) \right] - \alpha \left[\frac{\exp(\alpha/(a+b))}{\alpha} - \frac{\exp(\alpha/b)}{\alpha} \right] \quad (163)$$

$$1712 = - \left[Ei\left(\frac{\alpha}{a+b}\right) - Ei\left(\frac{\alpha}{b}\right) \right] - [\exp(\alpha/(a+b)) - \exp(\alpha/b)]. \quad (164)$$

1714 For the second term of Q_1 , we have
 1715

$$1716 \frac{d}{d\alpha} \left[(a+b) \exp\left(\frac{\alpha}{a+b}\right) \right] = \exp\left(\frac{\alpha}{a+b}\right). \quad (165)$$

1718 For the third term of Q_1 , we have
 1719

$$1720 \frac{d}{d\alpha} [-b \exp(\alpha/b)] = -\exp(\alpha/b). \quad (166)$$

1722 The last term of Q_1 is a constant w.r.t. α .
 1723

1724 Therefore, we obtain

$$1725 \frac{d^2}{dk^2} A_1 = -\frac{\beta |\bar{h}(e)|^2}{a} \left[Ei\left(\frac{\alpha}{a+b}\right) - Ei\left(\frac{\alpha}{b}\right) \right]. \quad (167)$$

1727 Hence, we complete the detailed derivation for A_1 .

1728 B.22 COMPUTE A_2 FOR \mathcal{A}_{Φ_2} IN $\widehat{\mathcal{GS}}_{\Phi_2}$ (§A.3)1729 For $a > 0, b > 0$, we consider

1730
$$A_2 := \beta \int_0^1 (at + b) \Phi_2\left(\frac{\alpha}{at + b}\right) dt. \quad (168)$$

1731 Set $u = at + b$, so $du = adt$ and $u \in [b, a + b]$, then we can rewrite

1732
$$A_2 = \frac{\beta}{a} \int_b^{a+b} [u \exp(\alpha^2/u^2) - u] du. \quad (169)$$

1733 Next, we want to compute

1734
$$B_{\Phi_2} = \int_b^{a+b} u \exp(\alpha^2/u^2) du. \quad (170)$$

1735 First, we use the substitution by setting $v = \alpha^2/u^2$, so $v > 0$ on the interval. Then $dv = -2\alpha^2 u^{-3} du$,
1736 or $du = -\frac{u^3}{2\alpha^2} dv$.

1737 The integrand becomes

1738
$$\int u \exp(\alpha^2/u^2) du = - \int \frac{1}{2\alpha^2} u^4 \exp(v) dv = -\frac{\alpha^2}{2} \int \exp(v) v^{-2} dv, \quad (171)$$

1739 since we have $u^4 = \alpha^4 v^{-2}$.

1740 Second, following Equation (142), we have

1741
$$B_2 := \int \exp(v) v^{-2} dv = Ei(v) - \exp(v) v^{-1} + C. \quad (172)$$

1742 Thus, we obtain

1743
$$\int u \exp(\alpha^2/u^2) du = -\frac{\alpha^2}{2} (Ei(v) - \exp(v) v^{-1}) + C \quad (173)$$

1744
$$= \frac{1}{2} [u^2 \exp(\alpha^2/u^2) - \alpha^2 Ei(\alpha^2/u^2)] + C, \quad (174)$$

1745 since $v = \alpha^2/u^2$, and consequently $\exp(v) v^{-1} = (u^2/\alpha^2) \exp(\alpha^2/u^2)$.1746 Thus, an antiderivative for the integrand of A_2 is

1747
$$F_{A_2} := \frac{\beta}{a} \int [u \exp(\alpha^2/u^2) - u] du \quad (175)$$

1748
$$= \frac{\beta}{a} \left(\frac{1}{2} [u^2 \exp(\alpha^2/u^2) - \alpha^2 Ei(\alpha^2/u^2)] - \frac{u^2}{2} \right) + C. \quad (176)$$

1749 Hence, we have

1750
$$A_2 = F_{A_2}(a + b) - F_{A_2}(b). \quad (177)$$

1751 Or, we obtain

1752
$$A_2 = \frac{\beta}{2a} \left[-\alpha^2 \left[Ei\left(\frac{\alpha^2}{(a+b)^2}\right) - Ei\left(\frac{\alpha^2}{b^2}\right) \right] \right. \\ \left. + \left[(a+b)^2 \exp\left(\frac{\alpha^2}{(a+b)^2}\right) - b^2 \exp\left(\frac{\alpha^2}{b^2}\right) \right] - [(a+b)^2 - b^2] \right]. \quad (178)$$

1753 Therefore, we have

1754
$$\mathcal{A}_{\Phi_2} = A_2, \quad (179)$$

1755 where $\beta = w_e, a = \frac{w_e}{\lambda(\mathbb{G})}, b = 1 + \frac{\lambda(\gamma_e)}{\lambda(\mathbb{G})}, \alpha = k|\bar{h}(e)|$.

1782 Additionally, we next compute the derivative of A_2 w.r.t. k .
 1783
 1784 For simplicity, let

$$1785 \quad S_2(\alpha) := -\alpha^2 \left[Ei\left(\frac{\alpha^2}{(a+b)^2}\right) - Ei\left(\frac{\alpha^2}{b^2}\right) \right] \\ 1786 \quad + \left[(a+b)^2 \exp\left(\frac{\alpha^2}{(a+b)^2}\right) - b^2 \exp\left(\frac{\alpha^2}{b^2}\right) \right] - [(a+b)^2 - b^2], \quad (180)$$

1790 then we have

$$1791 \quad A_2 = \frac{\beta}{2a} S_2(\alpha). \quad (181)$$

1793 Thus, we have

$$1794 \quad \frac{dA_2}{dk} = \frac{dA_2}{d\alpha} \frac{d\alpha}{dk}. \quad (182)$$

1797 Notice that $\frac{d}{dz} Ei(z) = \frac{\exp(z)}{z}$, and use the chain rule, we have
 1798

$$1799 \quad \frac{dS_2}{d\alpha} = -2\alpha \left[Ei\left(\frac{\alpha^2}{(a+b)^2}\right) - Ei\left(\frac{\alpha^2}{b^2}\right) \right] - \alpha^2 \left[\frac{2}{\alpha} \exp(\alpha^2/(a+b)^2) - \frac{2}{\alpha} \exp(\alpha^2/b^2) \right] \\ 1800 \quad + 2\alpha [\exp(\alpha^2/(a+b)^2) - \exp(\alpha^2/b^2)] \\ 1801 \quad = -2\alpha \left[Ei\left(\frac{\alpha^2}{(a+b)^2}\right) - Ei\left(\frac{\alpha^2}{b^2}\right) \right]. \quad (183)$$

1806 Therefore, we obtain

$$1807 \quad \frac{dA_2}{dk} = -\frac{\beta\alpha|\bar{h}(e)|}{a} \left[Ei\left(\frac{\alpha^2}{(a+b)^2}\right) - Ei\left(\frac{\alpha^2}{b^2}\right) \right]. \quad (184)$$

1810 Furthermore, we next compute the second-order derivative of A_2 w.r.t. k .
 1811

$$1812 \quad \frac{d^2}{dk^2} A_2 = -\frac{\beta|\bar{h}(e)|}{a} \frac{d}{dk} Q_2(\alpha), \quad (185)$$

1814 where we denote

$$1815 \quad Q_2(\alpha) := \alpha \left[Ei\left(\frac{\alpha^2}{(a+b)^2}\right) - Ei\left(\frac{\alpha^2}{b^2}\right) \right]. \quad (186)$$

1817 By using the chain rule, we have

$$1818 \quad \frac{d^2}{dk^2} A_2 = -\frac{\beta|\bar{h}(e)|}{a} \left\{ \bar{h}(e) \left[Ei\left(\frac{\alpha^2}{(a+b)^2}\right) - Ei\left(\frac{\alpha^2}{b^2}\right) \right] \right. \\ 1819 \quad \left. + \alpha \left[\frac{2}{\alpha} \exp(\alpha^2/(a+b)^2) - \frac{2}{\alpha} \exp(\alpha^2/b^2) \right] |\bar{h}(e)| \right\}. \quad (187)$$

1824 Therefore, we obtain

$$1825 \quad \frac{d^2}{dk^2} A_2 = -\frac{\beta|\bar{h}(e)|^2}{a} \left[Ei\left(\frac{\alpha^2}{(a+b)^2}\right) - Ei\left(\frac{\alpha^2}{b^2}\right) + 2 \exp(\alpha^2/(a+b)^2) - 2 \exp(\alpha^2/b^2) \right]. \quad (188)$$

1828 Hence, we complete the detailed derivation for A_2 .
 1829

1831 C FURTHER EXPERIMENTAL DETAILS AND EMPIRICAL RESULTS

1832 C.1 FURTHER EXPERIMENTAL DETAILS

1833 We summarize the number of pairs of probability measures for each dataset which is required to
 1834 evaluate for kernelized SVM in Table 1.

1836 **Implementation notes for γ_e in GSI-M.**
1837

1838 • **Preprocessing procedure for γ_e .** Following (Le et al., 2025), we precompute γ_e for all edge e in
1839 the given graph \mathbb{G} . It only needs once for such preprocessing procedure since it does not depend on
1840 input measures, but only the graph structure itself. More concretely, we apply the Dijkstra algorithm
1841 to recompute the shortest paths from root node z_0 to all other input supports (or vertices) with
1842 complexity $\mathcal{O}(|E| + |V| \log |V|)$ where we write $|\cdot|$ for the set cardinality. Then, we can evaluate γ_e
1843 for each edge e in E .

1844 • **Sparsity of γ_e .** As observed in (Le et al., 2025), for any support of input measure μ , its mass is
1845 contributed to $\mu(\gamma_e)$ if and only if $e \subseteq [z_0, x]$ (Le et al., 2022). Therefore, let $\text{supp}(\mu)$ be the set of
1846 supports of measure μ , and define $E_{\mu, \nu} \subseteq E$ as follows
1847

$$E_{\mu, \nu} := \{e \in E \mid \exists z \in (\text{supp}(\mu) \cup \text{supp}(\nu)), e \subseteq [z_0, z]\}.$$

1849 Additionally, note that $\Phi(0) = 0$ for all N -function Φ . Then, in fact, we can remove all edges
1850 $e \in E \setminus E_{\mu, \nu}$ in the summation in Equation (14) for the univariate optimization problem for
1851 computing GSI-M.

1852 Table 1: The number of pairs of probability measures on datasets for kernelized SVM.
1853

Datasets	#pairs
TWITTER	4394432
RECIPE	8687560
CLASSIC	22890777
AMAZON	29117200
Orbit	11373250
MPEG7	18130

1862 C.2 FURTHER EMPIRICAL RESULTS
1863

1864 We provide further results, corresponding to the empirical results in §6 for graph \mathbb{G}_{Sqrt} .
1865

1866 **Computational comparison.** We illustrate corresponding results for computational comparison on
1867 graph \mathbb{G}_{Sqrt} with 1K nodes and 32K edges in Figure 4. The computation of GSI-M is also several-
1868 order faster than OW, and comparable to GST. More concretely, $\widehat{\mathcal{GS}}$ is $100\times$, $6800\times$, $2900\times$ faster
1869 than OW for Φ_0 , Φ_1 , Φ_2 respectively. For N -functions Φ_1 and Φ_2 , GSI-M takes less than 23 seconds
1870 while OW needs at least 19 hours, and up to 34 hours for the computation.
1871

1872 **Document classification.** Figure 5 illustrates corresponding results for document classification on
1873 graph \mathbb{G}_{Sqrt} with 10K nodes and about 1M edges.
1874

1875 **TDA.** Figure 6 shows corresponding results for TDA on graph \mathbb{G}_{Sqrt} with 10K nodes and about 1M
1876 edges.
1877

1878 D BRIEF REVIEWS
1879

1880 In this section, to ease the readers, we give a brief review for related notions which we have used
1881 in the development of our proposal. For completeness, we also summarize some notions reviewed
1882 in (Le et al., 2024; 2025).
1883

1884 D.1 GRAPH ILLUSTRATION
1885

1886 We illustrate graph notions, reviewed in §2, in Figure 7.
1887

1888 D.2 A REVIEW ON FUNCTIONAL SPACES
1889

1890 We describe a short review on the L^p space, the weighted L^p space.
1891

Figure 4: Time consumption for GSI-M, GST and OW on \mathbb{G}_{Sqrt} with 1K nodes and 32K edges.Figure 5: SVM results and time consumption for kernel matrices with graph \mathbb{G}_{Sqrt} .

L^p space. For a nonnegative Borel measure λ on \mathbb{G} , let $L^p(\mathbb{G}, \lambda)$ be the space of all Borel measurable functions $f : \mathbb{G} \rightarrow \mathbb{R}$ s.t. $\int_{\mathbb{G}} |f(y)|^p \lambda(dy) < \infty$. For $p = \infty$, we instead assume that f is bounded λ -a.e. Then, $L^p(\mathbb{G}, \lambda)$ is a normed space with the norm being defined as follows:

$$\|f\|_{L^p} := \left(\int_{\mathbb{G}} |f(y)|^p \lambda(dy) \right)^{\frac{1}{p}} \text{ for } 1 \leq p < \infty.$$

On the other hand, for $p = \infty$, then we have

$$\|f\|_{L^\infty} := \inf \{t \in \mathbb{R} : |f(x)| \leq t \text{ for } \lambda\text{-a.e. } x \in \mathbb{G}\}.$$

Additionally, functions $f_1, f_2 \in L^p(\mathbb{G}, \lambda)$ are considered to be the same if $f_1(x) = f_2(x)$ for λ -a.e. $x \in \mathbb{G}$.

$L_{\hat{w}}^p$ space. For a nonnegative Borel measure λ on \mathbb{G} , and a positive weight function \hat{w} on \mathbb{G} , let $L_{\hat{w}}^p(\mathbb{G}, \lambda)$ be the space of all Borel measurable functions $f : \mathbb{G} \rightarrow \mathbb{R}$ s.t. $\int_{\mathbb{G}} \hat{w}(x) |f(x)|^p \lambda(dx) < \infty$. For $p = \infty$, we instead assume that f is bounded $\hat{w}\lambda$ -a.e. Then, $L_{\hat{w}}^p(\mathbb{G}, \lambda)$ is a normed space with

Figure 6: SVM results and time consumption for kernel matrices with graph \mathbb{G}_{Sqrt} .

Figure 7: A geodetic graph with 10 nodes $\{x_1, x_2, \dots, x_{10}\}$ and 15 edges $\{e_1, e_2, \dots, e_{15}\}$, and each edge length equals to 1, i.e., $w_{e_j} = 1, \forall j$. For any x_i, x_j , there is a unique shortest path between them, with a length 2. Therefore, it satisfies the uniqueness property of the shortest paths. Let x_1 be the unique-path root node (i.e., $z_0 = x_1$), and subgraph $\tilde{\mathbb{G}}$ containing 3 nodes $\{x_2, x_3, x_7\}$ and 2 edges $\{e_2, e_7\}$, then we have $\Lambda(x_2) = \gamma(e_1) = \tilde{\mathbb{G}}$.

the norm being defined as follows:

$$\|f\|_{L_{\hat{w}}^p} := \left(\int_{\mathbb{G}} \hat{w}(x) |f(x)|^p \lambda(dx) \right)^{\frac{1}{p}} \text{ for } 1 \leq p < \infty.$$

For the case $p = \infty$, as $\hat{w}(x) > 0$ for every $x \in \mathbb{G}$, we have

$$\begin{aligned} \|f\|_{L_{\hat{w}}^\infty} &:= \inf \{t \in \mathbb{R} : |f(x)| \leq t \text{ for } (\hat{w}\lambda)\text{-a.e. } x \in \mathbb{G}\} \\ &= \inf \{t \in \mathbb{R} : |f(x)| \leq t \text{ for } \lambda\text{-a.e. } x \in \mathbb{G}\} \\ &= \|f\|_{L^\infty}. \end{aligned}$$

D.3 A REVIEW ON SOBOLEV TRANSPORT

In this section, we provide a brief review on the Sobolev transport (ST) (Le et al., 2022) for graph-based measures, and the length measure on a graph.

Definition D.1 (Graph-based Sobolev space (Le et al., 2022)). Let λ be a nonnegative Borel measure on \mathbb{G} , and let $1 \leq p \leq \infty$. A continuous function $f : \mathbb{G} \rightarrow \mathbb{R}$ is said to belong to the Sobolev space $W^{1,p}(\mathbb{G}, \lambda)$ if there exists a function $h \in L^p(\mathbb{G}, \lambda)$ satisfying

$$f(x) - f(z_0) = \int_{[z_0, x]} h(y) \lambda(dy) \quad \forall x \in \mathbb{G}. \quad (189)$$

Such function h is unique in $L^p(\mathbb{G}, \lambda)$ and is called the graph derivative of f w.r.t. the measure λ . The graph derivative of $f \in W^{1,p}(\mathbb{G}, \lambda)$ is denoted as $f' \in L^p(\mathbb{G}, \lambda)$.

Sobolev transport (ST) (Le et al., 2022). For probability measures $\mu, \nu \in \mathcal{P}(\mathbb{G})$, and $1 \leq p \leq \infty$, the p -order Sobolev transport (ST) (Le et al., 2022, Definition 3.2) is defined as

$$\mathcal{ST}_p(\mu, \nu) := \left\{ \begin{array}{l} \sup \left[\int_{\mathbb{G}} f(x) \mu(dx) - \int_{\mathbb{G}} f(x) \nu(dx) \right] \\ \text{s.t. } f \in W^{1,p}(\mathbb{G}, \lambda), \|f'\|_{L^{p'}(\mathbb{G}, \lambda)} \leq 1, \end{array} \right. \quad (190)$$

where we write f' for the generalized graph derivative of f , and $W^{1,p}(\mathbb{G}, \lambda)$ for the graph-based Sobolev space on \mathbb{G} .

ST is a scalable variant of optimal transport (OT) for probability measures supported on a graph (i.e., not OT itself) since it relaxes the Lipschitz constraint for the critic function as in 1-order Wasserstein by considering this Lipschitz constraint in a Sobolev space. Additionally, Le et al. (2022, Corollary 4.3) showed that 1-order Sobolev transport is identical to 1-order Wasserstein *when the graph is a tree*. Furthermore, Le et al. (2022, §4.1) admitted that the exact relationship between p -order Sobolev transport and p -order Wasserstein when $p > 1$ is *unknown*.

Proposition D.2 (Closed-form expression of Sobolev transport (Le et al., 2022)). *Let λ be any nonnegative Borel measure on \mathbb{G} , and let $1 \leq p < \infty$. Then, we have*

$$\mathcal{ST}_p(\mu, \nu) = \left(\int_{\mathbb{G}} |\mu(\Lambda(x)) - \nu(\Lambda(x))|^p \lambda(dx) \right)^{\frac{1}{p}},$$

where $\Lambda(x)$ is the subset of \mathbb{G} defined by Equation (1).

Definition D.3 (Length measure (Le et al., 2022)). Let λ^* be the unique Borel measure on \mathbb{G} s.t. the restriction of λ^* on any edge is the length measure of that edge. That is, λ^* satisfies:

- i) For any edge e connecting two nodes u and v , we have $\lambda^*(\langle x, y \rangle) = (t - s)w_e$ whenever $x = (1 - s)u + sv$ and $y = (1 - t)u + tv$ for $s, t \in [0, 1]$ with $s \leq t$. Here, recall that $\langle x, y \rangle$ is the line segment in e connecting x and y .
- ii) For any Borel set $F \subset \mathbb{G}$, we have

$$\lambda^*(F) = \sum_{e \in E} \lambda^*(F \cap e).$$

Lemma D.4 (λ^* is the length measure on graph (Le et al., 2022)). *Suppose that \mathbb{G} has no short cuts, namely, any edge e is a shortest path connecting its two end-points. Then, λ^* is a length measure in the sense that*

$$\lambda^*([x, y]) = d_{\mathbb{G}}(x, y)$$

for any shortest path $[x, y]$ connecting x, y . Particularly, λ^* has no atom in the sense that $\lambda^*(\{x\}) = 0$ for every $x \in \mathbb{G}$.

D.4 A REVIEW ON SOBOLEV IPM AND ITS SCALABLE REGULARIZED APPROACH

We give a brief review on the Sobolev norm (Adams & Fournier, 2003), Sobolev IPM, and its scalable regularized approach (Le et al., 2025) for graph-based measures.

Sobolev norm. $W^{1,p}(\mathbb{G}, \lambda)$ is a normed space (reviewed in §D.3), with the Sobolev norm (Adams & Fournier, 2003, §3.1) being defined as

$$\|f\|_{W^{1,p}} := \left(\|f\|_{L^p}^p + \|f'\|_{L^p}^p \right)^{\frac{1}{p}}. \quad (191)$$

Additionally, let $W_0^{1,p}(\mathbb{G}, \lambda)$ be the subspace consisting of all functions f in $W^{1,p}(\mathbb{G}, \lambda)$ satisfying $f(z_0) = 0$. Denote $\mathcal{B}_p := \{f \in W_0^{1,p}(\mathbb{G}, \lambda) : \|f\|_{W^{1,p}} \leq 1\}$ as the unit ball in the Sobolev space.

Sobolev IPM. Sobolev IPM for graph-based measures is an instance of the IPM where its critic function belongs to the graph-based Sobolev space, and is constrained within the unit ball of that space. More concretely, given a nonnegative Borel measure λ on \mathbb{G} , an exponent $1 \leq p \leq \infty$ and its conjugate p' , the Sobolev IPM between measures $\mu, \nu \in \mathcal{P}(\mathbb{G})$ is defined as follows:

$$\mathcal{S}_p(\mu, \nu) := \sup_{f \in \mathcal{B}_{p'}} \left| \int_{\mathbb{G}} f(x) \mu(dx) - \int_{\mathbb{G}} f(y) \nu(dy) \right|. \quad (192)$$

Note that one should distinguish Sobolev IPM problem from Sobolev transport (Le et al., 2022), generalized Sobolev transport (GST) (Le et al., 2024), and Wasserstein problems. In fact, for Sobolev IPM, the critic function is constrained within a unit ball of Sobolev norm, which involves both critic function and its gradient while Sobolev transport, GST and Wasserstein only constraint on gradient of critic function (i.e., Lipschitz constraint).

Scalable regularized Sobolev IPM (Le et al., 2025). For weight function $\hat{w}_{\hat{\mathcal{S}}}(x) = 1 + \lambda(\Lambda(x))$, for all $x \in \mathbb{G}$. Let $\mathcal{B}(p', \hat{w}_{\hat{\mathcal{S}}})$ be defined as follows:

$$\mathcal{B}(p', \hat{w}_{\hat{\mathcal{S}}}) := \left\{ f \in W_0^{1,p'}(\mathbb{G}, \lambda) : \|f'\|_{L_{\hat{w}_{\hat{\mathcal{S}}}}^{p'}} \leq 1 \right\}. \quad (193)$$

Then, the regularized Sobolev IPM is defined as

Definition D.5 (Regularized Sobolev IPM on graph (Le et al., 2025)). Let λ be a nonnegative Borel measure on \mathbb{G} and $1 \leq p \leq \infty$. Then for any given probability measures $\mu, \nu \in \mathcal{P}(\mathbb{G})$, the regularized Sobolev IPM is defined as

$$\hat{\mathcal{S}}_p(\mu, \nu) := \sup_{f \in \mathcal{B}(p', \hat{w}_{\hat{\mathcal{S}}})} \left| \int_{\mathbb{G}} f(x) \mu(dx) - \int_{\mathbb{G}} f(y) \nu(dy) \right|. \quad (194)$$

Note that it is *unknown* whether the regularization approach in Le et al. (2025) with weight function $\hat{w}_{\hat{\mathcal{S}}}$ can be extended for general cases beyond the L^p geometric structure, e.g., Orlicz geometric structure.

D.5 A REVIEW ON IPM AND WASSERSTEIN DISTANCE

We provide a short review on IPM and Wasserstein distance for probability measures.

IPM. Integral probability metrics (IPM) for probability measures μ, ν are defined as follows:

$$\gamma_{\mathcal{F}}(\mu, \nu) = \sup_{f \in \mathcal{F}} \left| \int_{\lambda} f(x) \mu(dx) - \int_{\lambda} f(y) \nu(dy) \right|. \quad (195)$$

Special case: 1-Wasserstein distance (dual formulation). The 1-Wasserstein distance is a special case of IPM. In particular, for $\mathcal{F} = \mathcal{F}_W := \{f : |f(x) - f(y)| \leq d_{\mathbb{G}}(x, y)\}$ where $d_{\mathbb{G}}$ is the graph metric on graph \mathbb{G} , then IPM is equal to the 1-Wasserstein distance with ground cost $d_{\mathbb{G}}$

$$\mathcal{W}(\mu, \nu) = \sup_{f \in \mathcal{F}_W} \left| \int_{\mathbb{G}} f(x) \mu(dx) - \int_{\mathbb{G}} f(y) \nu(dy) \right|. \quad (196)$$

p -Wasserstein distance (primal formulation). Let $1 \leq p < \infty$, for probability measures μ and ν on \mathbb{G} , then, the p -Wasserstein distance is defined as follows:

$$\mathcal{W}_p(\mu, \nu)^p = \inf_{\pi \in \Pi(\mu, \nu)} \int_{\mathbb{G} \times \mathbb{G}} d_{\mathbb{G}}(x, y)^p \pi(dx, dy),$$

where $\Pi(\mu, \nu) := \{\pi \in \mathcal{P}(\mathbb{G} \times \mathbb{G}) : \pi_1 = \mu, \pi_2 = \nu\}$; π_1, π_2 are the first and second marginals of π respectively.

We would like to remark that to our knowledge, there is *no* closed-form expression for optimal transport (OT) problem for probability measures on a graph in general. However, when the graph is a tree, OT admits closed-form expression, a.k.a., tree-Wasserstein (Le et al., 2019).

2106 D.6 ORLICZ FUNCTIONS
21072108 We provide a brief review on Orlicz functions as summarized in (Le et al., 2024) for completeness.
2109 For comprehensive studies on Orlicz functions, see (Adams & Fournier, 2003; Rao & Ren, 1991).
21102111 **Popular examples of N -functions.** Some popular examples for N -functions (Adams & Fournier,
2112 2003, §8.2) in the literature are as follows:
2113

- 2114 1. $\Phi(t) = t^p$ with $1 < p < \infty$.
- 2115 2. $\Phi(t) = \exp(t) - t - 1$.
- 2116 3. $\Phi(t) = \exp(t^p) - 1$ with $1 < p < \infty$.
- 2117 4. $\Phi(t) = (1+t) \log(1+t) - t$.

2119
2120 **Complementary function.** For N -function Φ , its complementary function $\Psi : \mathbb{R}_+ \rightarrow \mathbb{R}_+$ (Adams
2121 & Fournier, 2003, §8.3) is the N -function, defined as follows:
2122

$$\Psi(t) = \sup [at - \Phi(a) \mid a \geq 0], \quad \text{for } t \geq 0. \quad (197)$$

2123
2124 **Popular examples of complementary pairs of N -functions.** Some popular complementary pairs
2125 of N -functions (Adams & Fournier, 2003, §8.3), (Rao & Ren, 1991, §2.2) are as follows:
2126

- 2127 1. $\Phi(t) = \frac{t^p}{p}$ and $\Psi(t) = \frac{t^q}{q}$ where q is the conjugate of p , i.e., $\frac{1}{p} + \frac{1}{q} = 1$ and $1 < p < \infty$.
- 2128 2. $\Phi(t) = \exp(t) - t - 1$ and $\Psi(t) = (1+t) \log(1+t) - t$.
- 2129 3. For the N -function $\Phi(t) = \exp(t^p) - 1$ with $1 < p < \infty$, its complementary N -function
2130 yields an explicit for, but not simple (Rao & Ren, 1991, §2.2), see (Le et al., 2024, §A.8) for
2131 the details.

2133
2134 **Young inequality.** Let Φ, Ψ be a pair of complementary N -functions, then we have
2135

$$st \leq \Psi(s) + \Phi(t).$$

2136
2137 **Orlicz norm.** Together with the Luxemburg norm, the Orlicz norm (Rao & Ren, 1991, §3.3,
2138 Definition 2) is a popular norm for $L_\Phi(\mathbb{G}, \lambda)$ in the literature, defined as
2139

$$\|f\|_\Phi := \sup \left\{ \int_{\mathbb{G}} |f(x)g(x)|\lambda(dx) \mid \int_{\mathbb{G}} \Psi(|g(x)|)\lambda(dx) \leq 1 \right\}, \quad (198)$$

2140
2141 where Ψ is the complementary N -function of Φ .
21422143
2144 **Computation for Orlicz norm.** Following (Rao & Ren, 1991, §3.3, Theorem 13), the Orlicz norm
2145 can be recasted as follows:
2146

$$\|f\|_\Phi = \inf_{k>0} \frac{1}{k} \left(1 + \int_{\mathbb{G}} \Phi(k|f(x)|)\lambda(dx) \right).$$

2147
2148 Therefore, one can use any second-order method, e.g., `fmincon` solver in MATLAB (with trust
2149 region reflective algorithm), to solve the *univariate* optimization problem for Orlicz norm computation.
21502151
2152 **Equivalence (Adams & Fournier, 2003, §8.17) (Musielak, 2006, §13.11).** The Luxemburg norm
2153 is equivalent to the Orlicz norm. In fact, we have
2154

$$\|f\|_{L_\Phi} \leq \|f\|_\Phi \leq 2 \|f\|_{L_\Phi}. \quad (199)$$

2155
2156 **Connection between L^p and L_Φ functional spaces.** When the convex function $\Phi(t) = t^p$, for
2157 $1 < p < \infty$, we have
2158

$$L^p(\mathbb{G}, \lambda) = L_\Phi(\mathbb{G}, \lambda).$$

2160 **Generalized Hölder inequality.** Let Φ, Ψ be a pair of complementary N -functions, then generalized
 2161 Hölder inequality w.r.t. Luxemburg norm (Adams & Fournier, 2003, §8.11) is as follows:
 2162

$$2163 \quad \left| \int_{\mathbb{G}} f(x)g(x)\lambda(dx) \right| \leq 2 \|f\|_{L_\Phi} \|g\|_{L_\Psi}. \quad (200)$$

2164 Additionally, we have the generalized Hölder inequality w.r.t. Luxemburg norm and Orlicz
 2165 norm (Musielak, 2006, §13.13) is as follows:
 2166

$$2167 \quad \left| \int_{\mathbb{G}} f(x)g(x)\lambda(dx) \right| \leq \|f\|_{L_\Phi} \|g\|_\Psi. \quad (201)$$

2171 D.7 GENERALIZED SOBOLEV TRANSPORT (GST)

2172 We briefly review generalized Sobolev transport (GST) (Le et al., 2024) for graph-based measures.

2173 **Generalized Sobolev transport (GST) (Le et al., 2024).** Let Φ be an N -function and λ be a
 2174 nonnegative Borel measure on \mathbb{G} . For probability measures μ, ν on a graph \mathbb{G} , the generalized
 2175 Sobolev transport (GST) is defined as follows:
 2176

$$2177 \quad \mathcal{GS}_\Phi(\mu, \nu) := \begin{cases} \sup & \left| \int_{\mathbb{G}} f(x)\mu(dx) - \int_{\mathbb{G}} f(x)\nu(dx) \right| \\ 2178 & \text{s.t. } f \in WL_\Psi^1(\mathbb{G}, \lambda), \|f'\|_{L_\Psi} \leq 1, \end{cases}$$

2179 where Ψ is the complementary function of Φ (see Equation (197)).

2180 Note that GST is a scalable variant of Orlicz-Wasserstein (OW) for graph-based probability measures
 2181 (i.e., not OW itself). Moreover, Le et al. (2024, Proposition 4.6) showed that GST is equal to OW
 2182 when the graph is a tree, and $\Phi(t) = t$ (i.e., the limite case of N -function).

2183 E FURTHER DISCUSSIONS

2184 For completeness, we recall important discussions on the underlying graph in (Le et al., 2022; 2024;
 2185 2025), since they are also applied and/or adapted to the proposed generalized Sobolev IPM with
 2186 Musielak regularization.

2187 **Measures on a graph (Le et al., 2025).** We reemphasize that in this work we consider the Sobolev
 2188 IPM problem between *two input probability measures* supported on the *same* graph, which is also
 2189 explored in (Le et al., 2025). Such measures supported on a graph metric space are also considered in
 2190 OT problem, explored in (Le et al., 2022; 2024). Our work generalizes Sobolev IPM, and we also
 2191 derive a novel regularization for the generalized Sobolev IPM, which admits an efficient algorithmic
 2192 approach (i.e., simply solving a univariate optimization problem for its computation).

2193 The generalized Sobolev IPM with Musielak regularization (GSI-M) is for *input probability measures*,
 2194 i.e., to compute distance between two probability measures, on the *same* graph. We further distinguish
 2195 the considered problem to the following related problems:

2196 • **Compute distance between two (different) input graphs.** Petric Maretic et al. (2019); Dong &
 2197 Sawin (2020) compute OT problem between *two input graphs*, where their goals are to compute
 2198 distance between such two input graphs. Therefore, they are essentially different to our considered
 2199 problem which computes distance between *two input probability measures* supported on the *same*
 2200 graph.

2201 • **Graph kernels between two (different) input graphs.** Graph kernels are functions between *two*
 2202 *input graphs* to measure their similarity. See Borgwardt et al. (2020) for a comprehensive review on
 2203 graph kernels. Obviously, this research direction is different to our considered kernels for SVM which
 2204 are built upon the GSI-M used for measuring similarity between *two input probability measures* on
 2205 the *same* graph.

2206 **Path length for points in graph \mathbb{G} (Le et al., 2022).** We can canonically measure a path length
 2207 connecting any two points $x, y \in \mathbb{G}$ where x, y are not necessary to be nodes in V of graph \mathbb{G} .

2214 Consider the edge $e = \langle u, v \rangle$ connecting two nodes $u, v \in V$, for $x, y \in \mathbb{R}^n$ and $x, y \in e$, we have
 2215

$$x = (1 - s)u + sv, \\ y = (1 - t)u + tv,$$

2216 for some scalars $t, s \in [0, 1]$. Therefore, the length of the path $[x, y]$ along edge e (i.e., the line
 2217 segment $\langle x, y \rangle$) is equal to $|t - s|w_e$. As a result, the length for an arbitrary path in \mathbb{G} can be similarly
 2218 defined by breaking down into pieces over edges and summing over their corresponding lengths (Le
 2219 et al., 2022).
 2220

2221 **Extension to measures supported on \mathbb{G} .** Similar to the regularized Sobolev IPM (Le et al., 2025),
 2222 the discrete case of the GSI-M in Equation (14) can be easily extended for measures with finite
 2223 supports on \mathbb{G} (i.e., supports of the input measures may not be nodes in V , but possibly points
 2224 on edges in E) by using the same strategy to measure a path length for support data points in
 2225 graph \mathbb{G} . More precisely, we break down edges containing supports into pieces and sum over their
 2226 corresponding values instead of the sum over edges.
 2227

2228 **The assumption of uniqueness property of the shortest paths on \mathbb{G} .** As discussed in (Le et al.,
 2229 2022; 2024; 2025), note that $w_e \in \mathbb{R}_+$ for any edge $e \in E$ in graph \mathbb{G} , it is almost surely that every
 2230 node in V can be regarded as unique-path root node since with a high probability, lengths of paths
 2231 connecting any two nodes in graph \mathbb{G} are different.
 2232

2233 Additionally, for some special graph, e.g., a grid of nodes, there is *no* unique-path root node for such
 2234 graph. However, by perturbing each node, and/or perturbing lengths of edges if \mathbb{G} is a non-physical
 2235 graph, with a small deviation, we can obtain a graph satisfying the unique-path root node assumption.
 2236

2237 Besides that, for input probability measures with full supports in graph \mathbb{G} , or at least full supports in
 2238 any cycle in graph \mathbb{G} , then it exists a special support data point where there are multiple shortest paths
 2239 from the root node to it. In this case, we simply choose one fixed shortest path among them for this
 2240 support data point (or we can add a virtual edge from the root node to this support data point where
 2241 the edge length is deducted by a small deviation). In many practical applications (e.g., document
 2242 classification and TDA in our experiments), one can neglect this special case since input probability
 2243 measures have a finite number of supports.
 2244

2245 **The generalized Sobolev IPM with Musielak regularization (GSI-M).** Similar to regularized
 2246 Sobolev IPM (Le et al., 2025), we assume that the graph metric space is given. The question of
 2247 adaptively learning an optimal graph metric structure from given data is left for future work for
 2248 further investigation.
 2249

2250 **The graphs \mathbb{G}_{Log} and \mathbb{G}_{Sqrt} (Le et al., 2022).** For an efficient and fast computation, we apply the
 2251 farthest-point clustering method to cluster supports of measures into at most M clusters.²⁴ Then, let
 2252 the set of vertices V be the set of centroids of these clusters, i.e., graph vertices. For edges, in graph
 2253 \mathbb{G}_{Log} , we randomly choose $(M \log M)$ edges; and $M^{3/2}$ edges for graph \mathbb{G}_{Sqrt} . We further denote
 2254 the set of those randomly sampled edges as \tilde{E} .
 2255

2256 For each edge e , its corresponding edge length (i.e., edge weight) w_e is computed by the Euclidean
 2257 distance between the two corresponding nodes of edge e . Let n_c be the number of connected
 2258 components in the graph $\tilde{\mathbb{G}}(V, \tilde{E})$. Then, we randomly add $(n_c - 1)$ more edges between these n_c
 2259 connected components to construct a connected graph \mathbb{G} from $\tilde{\mathbb{G}}$. Let E_c be the set of these $(n_c - 1)$
 2260 added edges and denote set $E = \tilde{E} \cup E_c$, then $\mathbb{G}(V, E)$ is the constructed graph.
 2261

2262 **Datasets.** For the datasets in our experiments (i.e., TWITTER, RECIPE, CLASSIC, AMAZON
 2263 for document datasets, and Orbit, MPEG7 for TDA), one can contact the authors of Sobolev
 2264 transport (Le et al., 2022) to access to them.
 2265

2266 **Computational devices.** We run all of our experiments on commodity hardware.
 2267

2268 ²⁴ M is the input number of clusters for the clustering method. Consequently, the clustering result has at most
 2269 M clusters, depending on input data.

2268
 2269 **Hyperparamter validation.** We use the same strategy as in (Le et al., 2025). For validation, we
 2270 further randomly split *the training set* into 70%/30% for validation-training and validation with 10
 2271 repeats to choose hyper-parameters in experiments.

2272 **Further discussion on hyperparameters.** The performance of the generalized Sobolev IPM with
 2273 Musielak regularization (GSI-M) basically depends on the choice of the N -function Φ , which is
 2274 much similar to how kernel functions impact performance in kernel-dependent machine learning
 2275 framework. In our experiments with N -functions Φ_1 and Φ_2 , performances with N -function Φ_1 is
 2276 slightly more favorable than those with N -function Φ_2 , except in `MPEG7` dataset with graph \mathbb{G}_{Sqrt} .

2277 Determining the optimal N -function Φ for the generalized Sobolev IPM with Musielak regularization
 2278 (GSI-M) in a given task is an open problem that warrants further investigation. We leave it for future
 2279 work. As an interim solution, cross-validation can be used to select N -function Φ from a set of
 2280 candidate functions.

2281 **The number of pairs in training and test for kernelized SVM (Le et al., 2025).** Let N_{tr}, N_{te}
 2282 be the number of measures for training and test respectively. For the kernelized SVM training, the
 2283 number of pairs which we need to evaluate distances is $(N_{tr} - 1) \times \frac{N_{tr}}{2}$. On the test phase, the number
 2284 of pairs which we need to evaluate distances is $N_{tr} \times N_{te}$. Therefore, for each run, the number of
 2285 pairs which we require to evaluate distances for both training and test is totally $N_{tr} \times (\frac{N_{tr}-1}{2} + N_{te})$.
 2286 See Table 1 for the number of pairs we need to evaluate distances for kernelized SVM in experiments.

2287 **Large language models (LLM) for writing.** LLM is only used for word choice to aid the writing.

2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321