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ABSTRACT

We study the Sobolev IPM problem for measures supported on a graph metric space,
where critic function is constrained to lie within the unit ball defined by Sobolev
norm. While Le et al. (2025) achieved scalable computation by relating Sobolev
norm to weighted LP-norm, the resulting framework remains intrinsically bound
to L? geometric structure, limiting its ability to incorporate alternative structural
priors beyond the L? geometry paradigm. To overcome this limitation, we propose
to generalize Sobolev IPM through the lens of Orlicz geometric structure, which
employs convex functions to capture nuanced geometric relationships, building
upon recent advances in optimal transport theory—particularly Orlicz-Wasserstein
(OW) and generalized Sobolev transport—that have proven instrumental in advanc-
ing machine learning methodologies. This generalization encompasses classical
Sobolev IPM as a special case while accommodating diverse geometric priors
beyond traditional L? structure. It however brings up significant computational
hurdles that compound those already inherent in Sobolev IPM. To address these
challenges, we establish a novel theoretical connection between Orlicz-Sobolev
norm and Musielak norm which facilitates a novel regularization for the generalized
Sobolev IPM (GSI). By further exploiting the underlying graph structure, we show
that GSI with Musielak regularization (GSI-M) reduces to a simple univariate
optimization problem, achieving remarkably computational efficiency. Empirically,
GSI-M is several-order faster than the popular OW in computation, and demon-
strates its practical advantages in comparing probability measures on a given graph
for document classification and several tasks in topological data analysis.

1 INTRODUCTION

Probability measures serve as canonical mathematical representations for diverse objects across
various research domains, e.g., documents in natural language processing (Kusner et al., 2015;
Yurochkin et al., 2019), persistence diagrams in topological data analysis (Edelsbrunner & Harer,
2008; Le et al., 2025), point clouds in computer vision and graphics (Hua et al., 2018; Wang et al.,
2019). To compare such measures, integral probability metrics (IPM) offer a versatile and principled
class of metric functions (Miiller, 1997). Conceptually, IPM operate by determining an optimal critic
function that achieves maximal discrimination between two probability measures. This mathematical
elegance and versatility has facilitated the widespread adoption of IPM throughout statistics and
machine learning (Sriperumbudur et al., 2009; Gretton et al., 2012; Peyré & Cuturi, 2019; Liang,
2019; Uppal et al., 2019; 2020; Nadjahi et al., 2020; Kolouri et al., 2020).

In this work, we study the Sobolev IPM problem for measures supported on a graph metric space,
where critic function is constrained within the unit ball induced by Sobolev norm (Adams & Fournier,
2003). Sobolev IPM has proven fundamental to numerous theoretical analyses, including convergence
rates in density estimation and approximation theory for deep architectures (Liang, 2017; 2021; Singh
et al., 2018). Although Le et al. (2025) recently pioneered computationally tractable algorithmic ap-
proach by relating Sobolev norm to weighted LP-norm, the resulting framework remains intrinsically
bound to LP geometric structure, thereby limiting its ability to incorporate alternative structural priors.
To overcome this limitation, we propose to generalize Sobolev IPM (GSI) through the lens of Orlicz
geometric structure, which employs convex functions to capture nuanced geometric relationships,
building upon seminal developments in optimal transport (OT) theory—notably Orlicz-Wasserstein
(OW) (Sturm, 2011; Kell, 2017; Guha et al., 2023; Altschuler & Chewi, 2023) and generalized
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Sobolev transport (GST) (Le et al., 2024)—that have demonstrated remarkable effectiveness in
advancing machine learning methodologies. More specifically, Altschuler & Chewi (2023) leverage
OW to facilitate the development of differential-privacy-inspired methodologies that address long-
standing convergence challenges in hypocoercive differential equations. Similarly, Guha et al. (2023)
demonstrate that OW substantially enhances Bayesian contraction rates, effectively circumventing
limitations inherent to traditional OT with Euclidean ground cost. Although the computational burden
of OW is substantial, GST offers a scalable variant suitable for practical use. Moreover, Orlicz
geometric structure has found broad applicability across diverse machine learning paradigms (Andoni
et al., 2018; Song et al., 2019; Deng et al., 2022; Chamakh et al., 2020; Lorenz & Mabhler, 2022). For
comprehensive studies of Orlicz functions, see (Adams & Fournier, 2003; Rao & Ren, 1991).

Analogous to the computational challenges inherent in Sobolev IPM, the generalized Sobolev IPM
(GSI) poses significant computational obstacles. To overcome these limitations, we establish a
novel connection between Orlicz-Sobolev norm and Musielak norm which in turn motivates a novel
regularization scheme for GSI. Exploiting the underlying graph structure, we further show that GSI
with Musielak regularization (GSI-M) reduces to a simple univariate optimization problem, yielding
substantial computational efficiency and enabling practical deployment at scale.

Contribution. Our contributions are three-fold as follows:

* We leverage a certain class of convex functions corresponding to Orlicz geometric struc-
ture to generalize Sobolev IPM beyond LP geometric structure for graph-based measures.
Additionally, we propose a novel regularization for the resulting GSI metric that yields an
efficient computation by simply solving a univariate optimization problem.

* GSI-M utilizes the Orlicz geometric structure in the same sense as OW/GST for OT problem.
We prove that GSI-M is a metric and show its equivalence to the original GSI. Moreover, we
establish its connections to original/regularized Sobolev IPM, and other transport distances.

* We empirically illustrate that GSI-M is more computationally efficient than OW, and compa-
rable to GST, a scalable variant of OW. We also provide initial evidences on the advantages
of GST for document classification and for several tasks in topological data analysis (TDA).

Organization. In §2, we review related backgrounds and notations. We describe the generalized
Sobolev IPM (GSI) and its novel Musielak regularization in §3. In §4, we prove the metric property
for the generalized Sobolev IPM with Musielak regularization (GSI-M) and establish its connection
to the original GSI, and other transport distances for graph-based measures. We then discuss related
works in §5. In §6, we empirically show the computational efficiency of GSI-M and provide initial
evidence of its benefits in document classification and TDA, following by concluding remarks in §7.
Proofs for theoretical results and additional materials are deferred to the Appendices.

2 PRELIMINARIES

In this section, we introduce notations, and briefly review graph, Orlicz functions, and Sobolev IPM.

Graph. We follow the setting for graph-based measures in (Le et al., 2025). We consider a connected,
undirected, and physical' graph G with set of nodes and edges V, E respectively, and positive edge
lengths {w, }.cp. For continuous graph setting, we regard G as the set of all nodes in V' and all
points forming the edges in E. Additionally, let [z, z] be the shortest path connecting z and z in
G, and equip G with graph metric dg(z, z), i.e., the length of [z, z]. We assume that there exists a
root node zg € V such that for any « € G, then [z, 2] is unique, i.e., the uniqueness property of the
shortest paths.” Denote P(G) (resp. P(G x G)) as the set of all nonnegative Borel measures on G
(resp. G x G) with a finite mass. For x € G, edge e € FE, define the sets A(z) and . as follows:

Az):={yeG: z € [2,y]}, Ye:={y€G: e C [20,y]}. (1)

By a continuous function f on G, we mean that f : G — R is continuous w.r.t. the topology on G
induced by the Euclidean distance. Similar notation is used for continuous functions on G x G.

'In the sense that V is a subset of R”, and each edge e € E is the standard line segment connecting the two
corresponding vertices of edge e in R™.
There may exist multiple paths connecting zo and z in G, but the shortest path [20, x] is unique.
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A family of convex functions. We consider the set of N-functions (Adams & Fournier, 2003, §8.2),

which are special convex functions on R.. Henceforth, a strictly increasing and convex function

® : [0,00) — [0, 00) is called an N-function if lim;_,q & = 0and lim;_, ;o ff) = +o00.

Orlicz functional space. For N-function ®, and a nonnegative Borel measure A on G, let Lo (G, \)
be the linear hull of the collection of all Borel measurable functions f : G — R satisfying
Jo @(|f(x)])A(dz) < co. Then, Ly (G, A) is a normed space with the Luxemburg norm, defined as

1l :inf{t S0 /@,@(Wj)') Adz) < 1}. o)

For positive weight function w on G, consider the weighted L“”(G A) as the linear hull of the set
of all Borel measurable functions f : G — R satisfying [, w(z)®(|f(z)[)A(dz) < co. Then,

L“’(G A) is a normed space’ with Musielak norm (Musielak, 2006 §10.2)" being defined by

£l ::inf{t >0 /(;w(ac)@('f(tz)'> Ada) < 1}. 3)

Sobolev IPM. For an exponent 1 < p < co and its conjugate p’,” let VVO1 (G, \) be the subspace
consisting of all functions f in the graph-based Sobolev space W1?(G, \) (Le et al., 2022, Definition
3.1) satisfying f(zg) = 0, then Sobolev IPM between measures 4, v € P(G) is defined as

Sy ) = sup

/ f@)p(dz) — / fly ‘ @
FEWS PG fllwr,p <1 1/G
where || f||;-1.» is the Sobolev norm (Adams & Fournier, 2003, §3.1), defined as

1l = (IF12 + 1F15.)7 - 5)

3 GENERALIZED SOBOLEV IPM (GSI)

Sobolev IPM provides a powerful yet rigid framework, essentially coupled with the LP geometric
structure within its definition (Equation (4)). As a result, it is nontrivial to utilize Sobolev IPM with
other prior structures, which is in stark contrast to the flexibility of optimal transport (OT) for its
adaptivity to diverse prior geometric structures by simply modifying the underlying cost function.
In this section, we leverage convex /N-functions to generalize Sobolev IPM. We first introduce the
graph-based Orlicz-Sobolev space (Le et al., 2024) and its Orlicz-Sobolev norm (Rao & Ren, 1991,
§9.3), (Adams & Fournier, 2003, §3.1, §8.30). Based on these components, we then describe the
definition of the generalized Sobolev IPM (GSI) for graph-based measures.

Definition 3.1 (Graph-based Orlicz-Sobolev space (Le et al., 2024)). Let ® be an N-function and A
be a nonnegative Borel measure on graph G. A continuous function f : G — R is said to belong to
the graph-based Orlicz-Sobolev space WLL (G, \) if there exists a function b € Lg (G, \) satisfying

f(2) — f(z0) = / h(y)A(dy), V€ G ©)

[ZO,CE]
Such function h is unique in L (G, ) and is called the generalized graph derivative of f w.r.t. the
measure \. Henceforth, this generalized graph derivative of f is denoted f.

Orlicz-Sobolev norm. WL (G, )\) is a normed space with the Orlicz-Sobolev norm (Rao & Ren,
1991; Adams & Fournier, 2003), defined as

||fHWL}I) = ||fHL¢ + ||f/||Lq> . @)

Additionally, let WLg, ,(G, A) be the subspace consisting of all functions f in WL (G, A) satisfying

f(2z0) = 0. Moreover, notice that for N-function ®(¢) = ¢? for 1 < p < oo, following (Le et al.,
2024, Proposition 4.3), we have WL} (G, \) = W1P(G, \) where WP is the graph-based Sobolev

space,” and the Lg-norm is equal to the LP-norm (Adams & Fournier, 2003).

*The weighted L%(G,)\) is a specific instance of the Musielak-Orlicz space, where the generalized N-
function ®(z,t) = w(z)®(t) forallt > 0and z € G.

“See also in (Harjulehto & Histo, 2019, Definition 3.2.1).

p' € [1, 0] satisfying % + ; =1.Ifp =1, thenp’ = oo.

8See a review in §
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Generalized Sobolev IPM (GSI). Similar to Sobolev IPM, the GSI is an instance of IPM where its
critic function belongs to the graph-based Orlicz-Sobolev space, and is constrained within the unit ball
of that space. More concretely, given a nonnegative Borel measure A on G, a pair of complementary
N-functions ®, ¥, the GSI between probability measures p, v € P(G) is defined as

/f dm—éﬂwmﬂ, ®)

where By = {f € WLy (G, \), ||f||WL3p < 1} is the unit ball defined by Orlicz-Sobolev norm.

For N-function ¥(t) = ¢* with 1 < p < oo, the GSI turns into Sobolev IPM. Furthermore, notice
that the quantity inside the absolute signs is unchanged if f is replaced by f — f(zo). Thus, we can
assume without loss of generality that f(zo) = 0. This is the motivation for our introduction of the
Orlicz-Sobolev space WL%I,’O((G, A), which shares the same sense to Sobolev IPM approach (Le et al.,
2025), and the Sobolev GAN approach (Mroueh et al., 2018).

GSa(p,v) :=sup
feBy

Analogous to the computational challenges inherent in Sobolev IPM, the GSI poses significant
computational obstacles. We next draw a novel relation between the Orlicz-Sobolev norm and
Musielak norm to form a novel regularization for GSI for efficient computation.

Weight function. Hereafter, we consider the weight function, defined as

w(r) =14 —==, VreG. 9

Theorem 3.2 (Equivalence). For the length measure A on G, and function f € WL}I,VO((G, A), then
1
3 1 g < 1wy, < A+ AG) 1Sy - (10)

Theorem 3.2 implies that the Orlicz-Sobolev norm of a critic function f € WL?O(G, A) is equivalent
to the Musielak norm of its gradient f’, where weight function w is given explicitly in Equation (9).

Generalized Sobolev IPM with Musielak regularization (GSI-M). Based on the equivalent
relation given by Theorem 3.2, we propose to regularize the GSI (Equation (8)) by relaxing the
constraint on the critic function f in the graph-based Orlicz-Sobolev space WL}P’O. More precisely,
instead of f belonging to the unit ball By of the Orlicz-Sobolev space, we propose to constraint critic
f within the unit ball BE of the Musielak norm of f’ with N-function ¥, and weight function 0.
Hereafter, B&,ﬁ is defined by

8= {r e WLh 0@, 1y <1} (a1
We now formally define the generalized Sobolev IPM with Musielak regularization (GSI-M) between
two probability distributions on graph G.

Definition 3.3 (Generalized Sobolev IPM with Musielak regularization). Let A be a nonnegative
Borel measure on G and a pair of complementary N-functions ®, W. Then, for probability measures
u, v € P(G), the generalized Sobolev IPM with Musielak regularization is defined as

/ f(@)u(dz) - /G f(y)V(dy)‘- (12)

Computation. We next show that one can compute GS¢ by simply solving a univariate optimization
problem, paving ways for its practical applications.

GSa(u,v) = sup
feBy

Theorem 3.4 (GSI-M as univariate optimization problem). The generalized Sobolev IPM with
Musielak regularization GS& (11, V) in Definition can be computed as follows:

GSatuv) = jut 1 (14 [ o) @S @) - va@)) M) ). a3

4
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Notice that in Equation (13), both the subgraph A(z) (Equation (1)) and the weight function w(z)
(Equation (9)) depend on input point 2 under the integral over G. For practical applications, we next
derive an explicit formula for the integral over graph G in Equation (13) when the input probability
measures are supported on nodes V' of graph G. This gives an efficient method for computing the
GSI-M GS 4. Note that to achieve this result, we use the length measure on graph G (Le et al., 2022)
for the nonnegative Borel measure ), i.e., we have A([z, z]) = dg(z, 2),Vz, z € G. We summarize
the result in the following theorem.

Theorem 3.5 (Discrete case). Let A be the length measure on G, and ® be an N -function. Suppose
that i, v € P(G) are supported on nodes V of graph G." Then we have

G8a(p.) = nf (1 s [ / a0 @(’i'fg; ') wedtD | (14)

ecE

where h(e) := p(ye) — v(7e), and w(e) := syt 1+ i\((’g)) forall edge e € E andt € [0, 1].

From Theorem 3.5, one only needs to simply solve the univariate optimization problem to compute

the GSI-M gAS ¢.” We further note that for each edge e, given a specific popular N-function, then the
integral w.r.t. scalar ¢ has an explicit form for efficient computation, see Appendix § for details.

Special case with closed-form expression. We illustrate that for a specific NV-function, the GSI-M
can yield a closed-form expression for fast computation, especially for the discrete case when input
measures are supported on nodes V' of graph G.

Proposition 3.6 (Closed-form discrete case). Suppose that v € P(G) are supported on nodes V
p—1
of graph G. For N-function ®(t) = %t” with 1 < p < oo, length measure X on G, then

P

1
GSa(u,v) = (Z Be ln(re) - v(%)lp> : (15)
ecE
where for each edge e € E of graph G, the scalar number (3. is given by
5 | N0 (1 n 7*59%(%)) =2, .
(A(GHA(%)BU_C;)/\(&)S{(E)H‘(%)) otherwise.
The proofs for these theoretical results (in §3) are respectively placed in §B.1 — §

4  PROPERTIES OF GSI WITH MUSIELAK REGULARIZATION (GSI-M)

In this section, we derive the metric property for the GSI-M and establish a relationship for the GSI-M
with different NV-functions. Additionally, we draw connections of the GSI-M to the original GSI, the
original Sobolev IPM, the scalable regularized Sobolev IPM (Le et al., 2025), GST, Sobolev transport
(ST) (Le et al., 2022), OW (Sturm, 2011), and OT for graph-based measures.

Theorem 4.1 (Metrization). The generalized Sobolev IPM with Musielak regularization @(@ isa
metric on the space P(G) of probability measures on graph G.

The GSI-M is monotone with respect to the N-function ® as shown in the next result. Consequently,
it may enclose a stronger notion of metrics than Sobolev IPM for comparing graph-based measures.

Proposition 4.2 (GSI-M with different N-functions). For any two N-functions ®1, ®, satisfying
O, (t) < Oy(t) forallt € Ry, and p,v € P(G), then we have

GSa, (1) < GSa, (11, ).

7 An extension for measures supported in graph G is discussed in Appendix §F.

8Rao & Ren (1991, Theorem 13) derived the necessary and sufficient conditions to obtain the infimum for
problem (14).

See §D for a review on Sobolev IPM and its scalable regularization, GST, ST, OW, and standard OT.
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Connection to the original generalized Sobolev IPM. We next show that the GSI-M is equivalent
to the original generalized Sobolev IPM.

Theorem 4.3 (Relation with original generalized Sobolev IPM). For a nonnegative Borel measure A
on G, N-function ®, p,v € P(G), then

1 —
5 GSa(.v) < GSa(v) < (1+X(©)) GSa (11, 0), (7)
Hence, the generalized Sobolev IPM with Musielak regularization is equivalent to the original GSI.

Connection to the regularized Sobolev IPM. Denote Sp for the regularized p-order Sobolev IPM.

Proposition 4.4 (Connection between GSI-M and regularized Sobolev IPM). Ler ®(t) := (p _;B,VI 124
with1l < p < 00, é1 := max(1, \(G) ™! 17Tp and é5 := min(1, \(G)~! 5 Then, for a nonnega-

8
tive Borel measure X\ on graph G, and measures p,v € P(G), we have

&18,(pv) < GSa(p,v) < &2 Sy, v). (18)

Connection to the original Sobolev IPM. Denote S, for the original p-order Sobolev IPM.

Proposition 4.5 (Connection between GSI-M and original Sobolev IPM). Let ®(t) := (”_;%Atp

with 1 < p < co. For a nonnegative Borel measure \ on G, and measures j1,v € P(G), then

¢18y(pyv) < GSa (1) < 2 Sp(p, v), (19)

. — —1\1— 1 1
where ¢, = [BBNCY ) maxUAC) TP ) (1, A(G) )7 max(LAG) )] .

Connection to the generalized Sobolev transport. Denote GS7 ¢ for the GST with N-function ®.

Proposition 4.6 (Connection between GSI-M and generalized Sobolev transport). For a nonnegative
Borel measure X on G, then for all measures u,v € P(G), we have

1 —
5 95T w(.v) < GSu(p,v) < GSTu (. v). (20)

Connection to the Sobolev transport. Denote ST, for the p-order Sobolev transport.

Proposition 4.7 (Connection between GSI-M and Sobolev transport). For a nonnegative Borel
-1

measure A on G, N-function ®(t) := @=U" v with 1 < p < oo, and p,v € P(G), then we have

pP
1 —
3 STp(p,v) <GSa(p,v) < STp(p,v). @)}

Connection to the Orlicz-Wasserstein. Denote OV for the Orlicz-Wasserstein.

Proposition 4.8 (Connection between GSI-M and Orlicz-Wasserstein). Consider the limit case
O(t) :=t,'"" and graph G is a tree. For a nonnegative Borel measure A on G, p,v € P(G), then

%OW(u, v) < GSa (1, v) < OW(p,v). (22)

Connection to the optimal transport. Denote W), for the 1-order Wasserstein.

Proposition 4.9 (Connection between GSI-M and optimal transport). Under the same assumptions

in Proposition 4.8, then for all measures p,v € P(G), we have

1 —~

§W1(u’ V) < gS‘I)(,L"ay) < Wl(:ufvy)' (23)
The proofs for these theoretical results (in §4) are respectively placed in §B8.5 — §

19Although ®(t) = t is not an N-function due to its linear growth, it can be regarded as the limit p — 17 for
the function ®(¢) = t*.
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5 RELATED WORKS AND DISCUSSIONS

In this section, we discuss relations between the proposed GSI-M with related works in the literature.

Sobolev IPM and its regularization (Le et al., 2025). Propositions and show that for a
certain given N-function, GSI-M GS is provably equivalent to original Sobolev IPM S,, and its

scalable regularized approach Sp respectively. Additionally, GSI-M can be considered as a variational
generalization for Sobolev IPM and its regularization to incorporate more general geometric prior,
beyond the LP structure.

GST (Le et al., 2024) and ST (Le et al., 2022). Propositions and illustrate that GSI-M
is provably equivalent to the GST with the same N-function ®, and ST for a specific N-function
respectively. Similar to GST and ST, GSI-M constraints on gradient of a critic function. However,
we emphasize that the weight function (Equation (3)) plays the key role to establish the equivalence
between Orlicz-Sobolev norm and Musielak norm (Theorem 3.2) for the proposed Musielak regular-
ization for GSI problem, which constraints critic function within a unit ball of Orlicz-Sobolev norm
involving both the critic function and its gradient. Additionally, GSI-M and GST have the flexibility
to leverage geometric priors beyond the LP paradigm, while ST is coupled with the LP structure
within its definition, similar to Sobolev IPM.

OW (Sturm, 2011) and OT. Propositions and show that GSI-M is provably equivalent to
OW and OT respectively when graph G is a tree, and ®(¢) = ¢ (i.e., the limit case of N-function).
Additionally, both OW and GSI-M are able to employ Orlicz geometric structure with general V-
function. However, OW is challenging for computation, limits its practical applications while GSI-M
is much more efficient in computation, by simply solving a univariate optimization problem.

Graph-based measures. We study Sobolev IPM for two probability measures supported on the same
graph, which is also considered in (Le et al., 2025). We distinguish the considered problem with the
research lines on computing either kernels (Borgwardt et al., 2020) or distances/discrepancies (Pet-
ric Maretic et al., 2019; Xu et al., 2019; Dong & Sawin, 2020; Brogat-Motte et al., 2022; Bai et al.,
2025) between two input graphs.

6 EXPERIMENTS

In this section, we illustrate that GSI-M is fast for computation, which is several-order faster than
OW, and comparable to GST, a scalable variant of OW for graph-based measures. Additionally, we
show initial evidences on the advantages of GSI-M to compare probability measures supported on a
given graph for document classification, and several tasks in TDA.

Document classification. We consider 4 real-world document datasets: TWITTER, RECIPE,
CLASSIC, AMAZON where their properties are given in Figure 2. Following (Le et al., 2025),
we apply word2vec to map words into vectors in R3%0, and use probability measures to represent
documents where we regard word-embedding vectors in R3% as supports, and corresponding word
frequencies as their support mass.

TDA. We consider 2 TDA tasks: (i) orbit recognition on the synthesized Orbit dataset (Adams
et al., 2017) for linked twist map, a discrete dynamical system modeling flow, which is used to model
flows in DNA microarrays (Hertzsch et al., 2007), and (ii) object shape image classification on a
10-class subset of MPEG7 dataset (Latecki et al., 2000) as in (Le et al., 2025). We summarize the
dataset properties in Figure 3. We use persistence diagrams (PD) (Edelsbrunner & Harer, 2008) to
represent objects of interest for these tasks. Then, we regard each PD as probability measures where
its supports are 2-dimensional topological feature data points with a uniform mass.

Graph. We use graph Gy, with 10K nodes, about 100K edges; and graph Gsq with 10K nodes,
about 1M edges (Le et al., 2025, §5) for experiments, except MPEG7 where these graphs have 1K
nodes, about 7K edges for G, and about 32K edges for Ggyy due to its smaller size. These

considered graphs empirically satisfy the assumptions in §2, also observed in (Le et al., 2025).

See a review for these graphs in Appendix §E.
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TWITTER (3/3108/26) RECIPE (15/4370/340) | CLASSIC (4/7093/197) AMAZON (4/8000/884)
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Figure 2: SVM results and time consumption for kernel matrices with graph Gy,. For each dataset,
the numbers in the parenthesis are the number of classes; the number of documents; and the maximum
number of unique words for each document respectively.

N-function. We consider two popular N-functions ® in applications: ®1(t) = exp(¢) — ¢t — 1, and
®y(t) = exp(t?) — 1. We also examine the limit case: ®q(t) = t.

Optimization algorithm. We use a second-order solver (i.e., fmincon with Trust Region Reflective
solver in MATLAB) for solving the univariate optimization problem for GSI-M.

Classification. We employ kernel- ‘
ized support vector machine (SVM) Eg‘év_r
for both document classification and ClGsim
TDA tasks. We use kernel exp(—td)

with hyperparameter ¢ > 0 and dis-
tance d such as GSI-M, GST, and OW
for graph-based measures. We fol-
low (Cuturi, 2013) to regularize the
Gram matrices of indefinite kernels
by adding a sufficiently large diago-
nal term, and use 1-vs-1 strategy for
multi-class classification with SVM.
We randomly split each dataset into
70%/30% for training and test with
10 repeats. Generally, we utilize cross 102
validation for hyper-parameters. For

SVM regularization hyperparameter, Figure 1: Time consumption on Gy .

we choose it from {0.01,0.1,1, 10}.

For the kernel hyperparameter 7, we choose it from {1/qs,1/(2¢,),1/(5¢s)} where ¢ is the s%
quantile of a random subset of distances observed on a training set and s = 10, 20, ..., 90. For the
root node zj in graph G, we choose it from a random 10-root-node subset of V' in G. Note that we
include preprocessing procedures, e.g., computing shortest paths, into reported time consumptions.

-

o
>
T

Time consymption (s)
o
N
T

-

o
©
T

40 =1 d=exp-t-1 b()=exp(®)-1

To illustrate the scale, we note that there are more than 29 million pairs of probability measures in
AMAZON, which are required to evaluate distances for kernelized SVM on each run.

Results and discussions. We illustrate the time consumption in Figure |, and SVM results with
corresponding time consumption for document classification and TDA in Figures 2 and 3 respectively,
for graph Gy o,. Corresponding results for graph Ggqy are placed in Appendix §C.

12See §C for further details.
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o Computational comparision. We compare the time consumption of GSI-M, GST, and OW
with ®g, @, 5 on random 10K pairs of measures in AMAZON with graph Gy, but with 1K nodes

and about 7K edges. Figure | illustrates that the computation of GSI-M ,C';L\S' is comparable to GST,

and several-order faster than OW. More specifically, 6:9 is 90, 5100x,2900x faster than OW for
Dg, &, ®s respectively. For N-functions ®; and @4, GSI-M takes less than 22 seconds while OW
needs at least 17 hours, and up to 27 hours for the computation.

We remark that following (Le et al., 2024, Remark 4.5), and Proposition for the limit p — 17,

both GSI-M-®, (GSs,) and GST-® (GST ¢,) are equal to the 1-order ST (S7 1), which have
closed-form expression for fast computation. Additionally, OW-® is equal to the OT with graph
metric ground cost (Guha et al., 2023; Le et al., 2024). Consequently, the computations of GSI-M,
GST, and OW with the limit case ® is more efficient than with N-functions ®1, .

o Document classification. We Orbit (5000/300) MPEG?7 (200/80)
evaluate GSI-M and GST with 5 08 +

Py, P, ®o, denoted as GSI-M-P; and &
GST-® for i = 0, 1, 2 respectively.
For OW, we only use ®, (denoted
as OW-®g), but exclude ®,, P> due
to their heavy computations, see Fig-
ure |. We also consider a special case
of OW-®( where it is computed on a
random tree extracted from the given
graph G, denoted as OW-P-Tree. We
remark that OW-®(-Tree is equal to
tree-Wasserstein (Le et al., 2019). Fig-
ure 2 illustrates that the performances
Of GSI_M Wlth all (I) fllnCthIlS com- EOW’—@(, [ OW-®¢-Tree [GSI-M-®) []GST-®, [l GSI-M-®, [ GST-®, -GSI'I\['(I)Q‘

pare favorably to those baselines. Sim- _. . . .
ilar to GST, observed in (Le et al., Figure 3: SVM results and time consumption for kernel

M M. .. matrices with graph Gy . For each dataset, the numbers in
2024), GSI-M-®, and GSI-M-; im the parenthesis are respectively the number of PD; and the
maximum number of points in PD.

=

o
IS

06

e
w

0.4

Average Accuracy

o
o

0.2

o

=)
&

=)
ES

=)
B

Time Consumption (s)

=)
R

prove performances of GSI-M-®, but
their computational time is several-
order slower since GSI-M-® has a closed-form expression, following Proposition and taking
the limit p — 17. Therefore, it may imply that Orlicz geometric structure in GSI-M may be help-
ful for document classification. Results on OW-®(; and OW-®-Tree also agree with observations
in (Le et al., 2024). Performances of OW-®,-Tree are better in CLASSIC, AMAZON, but worse
in TWITTER, RECIPE than those of OW-®,. Although OW-®(-Tree only leverages a partial
information of G, it forms positive definite kernels while kernels of OW-® are indefinite.

e TDA. We carry out for the same distances as in document classification. Figure 3 shows that we
have similar empirical observations as for document classification. For the same ® function, GSI-M
and GST are several-order faster OW. Orlicz geometric structure in GSI-M may be also useful for
TDA, i.e., performances of GSI-M-®; GSI-M-®, compare favorably to those of GSI-M-®, but they
are also several-order slower. Although OW-®,-Tree use a partial information of G, the positive
definiteness of its corresponding kernel may help to improve performances of OW-®, which agrees
with observations in (Le et al., 2024).

7 CONCLUSION

In this work, we propose the generalized Sobolev IPM (GSI) for graph-based measures by leveraging
the set of convex /V-functions to adopt Orlicz geometric structure for Sobolev IPM beyond its coupled
LP prior. Moreover, we propose a novel regularization for GSI, which is efficient for computation by
simply solving a univariate optimization problem. For future works, it is interesting to go beyond the
Sobolev geometric structure, e.g., employing more advanced yet challenging geometric structure for
IPM such as critic function within unit ball of Besov norm (i.e., Besov IPM) for applications.

BGSI-M-®y is equal to GST-®.
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APPENDIX

In this appendix, we provide further theoretical results in § A, and the detailed proofs for theoretical
results in the main manuscript and additional results in §B. Then, we describe further experiment
experimental details and empirical results in §C, following by brief reviews for related notions for the
development of our work and further discussions in §D and §F respectively.

A FURTHER THEORETICAL RESULTS

A.1 AUXILIARY RESULTS

Lemma A.1. Let ® be an N-function and f € WL}, (G, \). Then for any nonnegative weight
Sfunction w and t > 0, we have '
R 1 1 AG) |, 3
() @( —[f(2)] ) Ad2) < = [ @ == W) Xa(A)A(dy), (24)
G t AG) Je

4
where we write Ay, for measure \ weighted by function W, i.e., [ Ag(dz) := [@(x)\(dz).

The proof is placed in Appendix §

Lemma A.2. Let wg be any positive weight function such that wo(x) > A(A(z)) for all z € G.

>
Then if function f € WLy, o(G, \) and scalar t > 0 satisfying [ wo(x) <I><‘f (x)l) A(dz) < A(G),

t

we must have

£l L,
t> NG (25)

The proof is placed in Appendix §

Theorem A.3. Let wq be any positive weight function satisfying wo(xz) > A(A(x)) forall x € G.
For every function f € VVL}I,’O((G7 A), then

£l < MG worrce - (26)

The proof is placed in Appendix §

Lemma A4. Let ® be an N-function. For any two positive weight functions w1, ws such that
wi(x) > we(x) for all x € G, and any Borel measurable function f on G, then

||fHL;‘j1 2 ||fHL1;’2 . 27

The proof is placed in Appendix §
Lemma A.5. For N-function ®, scalart > 0, and scalar k > 1, then
O(kt) > kP(¢). (28)

The proof is placed in Appendix §
Lemma A.6. For N-function ®, positive weight function 1w on G, k > 0, then we have

ka“Lg :k”fHng- (29)

The proof is placed in Appendix §

A.2 FURTHER THEORETICAL RESULTS
Special case with closed-form expression. For specific /NV-function, the generalized Sobolev IPM
can yield a closed-form expression for computation.

Proposition A.7 (Closed-form expression). For N-function ®(t) = (p_;#tp with 1 < p < o0,
the generalized Sobolev IPM with Musielak regularization has a closed-form expression as follows:

@@(Hﬂ/) = {/Gw(x)lp |u(A(z)) — v(A(x))|P M(dx) . (30)

The proof is placed in Appendix §

13
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A.3 DISCRETE CASE FOR REGULARIZED GENERALIZED SOBOLEV IPM WITH POPULAR
N-FUNCTIONS

Following Theorem 3.5, the discrete case of the regularized generalized Sobolev IPM Q/:S o 18
~ klh
GSauv) = nf L (14% [/ (el wat] ) a1
eelR We (6)

where h(e) := p(v.) — v(7.) for every edge e € E, and w,(e) := ettt )\(( )) for all edge
ec€ Eandt € [0,1].

We consider popular practical N-functions ® for the GST and the OW: @4 () = exp(t) — ¢ — 1, and
®5(t) = exp(t?) — 1. We also examine the limit case: ®o(t) = t.

For each edge e € F, we want to compute

T we A(7e) klh(e)|
A ;:/ [ v 1 } ) Jdt 32
PO h@ @) P e | G2

For simplicity, let denote the exponential integral function for z > 0 as follow:

Ei(z) = / exi(t) dt, (33)
and notice that
C%Ei(z) - QXZ(Z), 240, (34)
and Fi(z) = —Ey(—2), where By (z) = [2° @20 g4,
For the limit case: ®((¢{) =t. We have
A, (e / k() wedt = k|(e)we. (35

For N-function: ®,(t) = exp(t) —t — 1. Fora > 0,b > 0, we consider

! [e%

See Appendix § for the detailed computation of A; where its results are summarized as follow:

w= g [ (55) -] < o 25) e

+ {(a + b)? eXp((laer> — v’ GXP(?;)} —2aa — [(a+b)* - v?] ] - 37

Therefore, we obtain
Ap, = Ay, (38)

where § = we,a = 5,0 =1+ k((G)),a = k|h(e)|.

Additionally, the first-order derivative of A; w.r.t. k is as follows:

d%Al _ @ {_a {E1<aa—i—b) _EZ(‘;‘H +(a+b) exp<ao‘+b> —bexp(%) —a}. (39)

Moreover, its second-order derivative of A; w.r.t. k is as follows:
d? B |h(e)|? ! !
—A Eq —FEil—-)]. 40
akz T a “\ato ’( b ) (40)

14
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For N-function: ®5(t) = exp(t?) — 1. Fora > 0,b > 0, we consider

! «

See Appendix § for the detailed computation of A, where its result is summarized as follow:
B 9 ) a2 a2
A = — | — E — B
27 % | Y [P\ (aro)p "\ o2
2 o’ 2 o’ 2 _ 12
+ {(aer) exp<(a+b)2> —b exp(b2 ﬂ — [(a+b)*—0*] |. 42)

A, = A, (43)
where § = we,a = 575y, b =1+ /}\((?Gf)),a = k|h(e)|.

Therefore, we get

Additionally, the first-order derivative of Ay w.r.t. k is as follows:

dAs Balh(e)| [ ... a? a?
— = E — Ei . 44
dk a “\(a+b)2 “\ b2 “4)
Moreover, its second-order derivative of Ay w.r.t. k is as follows:
d? BlhE)? [ . o 2
Ay = — E E 9 2 2y _9 220 (4
2 . [ Z((a+b)2> Z(b2)+ exp(a”/(a+b)*) exp(a®/b%)| . (45)
B PROOFS

In this section, we give detailed proofs for the theoretical results in the main manuscript and additional
results in Appendix §A.

B.1 PROOF FOR THEOREM

Proof. We first derive the lower bound as follows:

I llwes =1y + 105,
>Nz, - (46)

Additionally, for any scalar £ > 1, we have

/ (I)(kIf’(x)I) / NICIA. )
G t G t
k (Az ()]
R E R,
Y . f'(@)]
<[y (5 o
The first inequality in (47) is due to Lemma A.5, and the second inequality in (48) comes from the

property of the length measure A, i.e., A\(A(z)) < A(G) forall z € G.
Therefore, we obtain

{t>0|/@@(k'f/(f””)x(dx)g}g{t>0/G];w(z)q><flix)>x(dx)§1}.

Notice that the infimum of a set is smaller than or equal to the infimum of its subset. Consequently,
we obtain

A gy 2 1 prare -

15
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Therefore, we have shown that

1
||f/||Lq> = I ||f/||L§)@/2 , forevery k> 1. (49)

By choosing £ = 2 in (49) and combining with the inequality in (46), we obtain the lower bound as
follows:

1
Ay, = 518 g -

Next, let weight function wy (z) := )‘(Qg))) for all x € G, we then derive the upper bound as follows:
llwey =1, + 1N,

AG) 1 Mgz + 1N oy (50)

SAG) 1 N pe + 11 M e (51)

=@+ AG) I NI Lg

where the first inequality in (50) is obtained by using Theorem with wo(z) := A(A(z)), and the
second inequality (51) is obtained by using Lemma

Hence, the proof is complete. u

B.2 PROOF FOR THEOREM

Proof. Consider a critic function f € WL}I,,O(G, A). Then by Definition 3.1, we have

f(@) = f(z0) + / FW)Mdy), VreG. (52)

[20,2]

Using (52), leveraging the indicator function of the shortest path [zg, 2] (denoted as 11.0,47), and
notice that 4(G) = 1, we get

/f p(dx) /fzo (dz) //[ZO ; Yp(da)
= G0+ [ [ 1) S A @(a0).

Then, applying Fubini’s theorem to interchange the order of integration in the above last integral, we

obtain
/G Fle)(dz) = f(z0) / / 10 21(%) £ (9) () A(dy)

= e+ [ ([ 1[zo,w]<y>u(dx))f’(y»(dy»

Using the definition of A(y) in Equation (1), we can rewrite it as

/ Fl@)u(de) = f(z0) + /G £ () (M) Mdy).

By exactly the same arguments, we also have
/ f(z)v(dz) = f(z0) / 'y ) A(dy).
G
Consequently, the regularized generalized Sobolev IPM in Equation (12) can be reformulated as

GSa (i, v) = sup
feBu)

/ F/(@) (A () — v(A(@))] A(da)|, (53)

16
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where we recall that BY = {f € WL}I,O(G, A) ||f'||L$ < 1} (see Equation (193)).
Observe that, we have on one hand
{f': feBy} C{g€ Lu(G ) : llgly <1}
On the other hand, for any ¢ € Ly (G, ), we have g = f’ with f(z) = f[zw:] g(y)A(dy) €
WLy (G, N).
Therefore, we conclude that

{f': feBy}={g€Lu(GA): [lglps <1}. (54)

% for € G, then Equation (53) can be recasted as

Consequently, if we let f(z) :=

GSao(p,v) = sup
9€Lw (G,\): Hg\lbg <1

[ i@ @) (55)

Additionally, &,V are a pair of complementary N-functions. Therefore, we obtain from (55)
and (Musielak, 2006, §13.20) * that

GSa (1, v) = || fll®,a- (56)

where || f||o . is the Musileak-Orlicz norm with weight function b, define by (see (Musielak, 2006,
§13.11)7)

Il = { [ @ i@aen@) s [a@uisonan <t}
By applying (Krasnoselskii & Rutickii, 1961, Theorem 10.5, §10.8) °, we have

1.0 = g%% (1—1—/@121(@@(1@‘]?@)’) A(dx)).

This together with (56) yields

GSo(p,v) = gg% (1 —|—/Gw(33)<1>(k ‘f(x)‘) A(daz))
_ ,i&%% (1 + /Gﬁ)(x) <I><k ‘“(A(m);(_x)”m(m)) D A(dx))
—int 1 (14 [0 8( 55 lde) - va@)] ) 2o

This completes the proof of the theorem.

B.3 PROOF FOR THEOREM

Proof. We consider the length measure on graph G for A. Thus, we have A({z}) = 0 forall z € G.

Consequently, we have

== el .
gS@(M, V) = 112% % 1+ Z / w(x) (I)(
e=(u,v)EE (u,)

4Also see (Rao & Ren, 1991, Proposition 10, §3.4).
S Also see (Rao & Ren, 1991, Definition 2, §3.3), (Harjulehto & Hésto, 2019, Definition 3.4.5).
16See also (Rao & Ren, 1991, Theorem 13, §3.3).
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Additionally, we consider input probability measures 1, v supported on nodes in V' of graph G. Thus,
for all edge e = (u,v) € E, and any point z € (u, v), we have

p(A(z)) = v(A(2)) = p(A(2) \ (u,0)) = v(A(2) \ (u, ). (59)
Moreover, let us consider edge e = (u,v) € E. Then for any = € (u,v), we have y € G \ (u,v)
belongs to A(z) if and only if y € 7. where we recall that A(z) and . are defined in Equation (1).

Thus, we have
Alx) \ (u,v) = 7, Vo € (u,v). (60)
Using Equations (59) and (60), we can rewrite Equation (67) as

G5 (w) = nf + (1 l/) )0 (s ) = vl ) A | 6

(u,v)EE

We next want to compute the integral in (69) for each edge (u,v) € E.

For this, recall that w(z) = 1 + /Qg)) ,Vx € G (see Equation (9)). Without loss of generality,

assume that dg (20, u) < dg(20,v), i.e., among two nodes u, v of the edge e, node v is farther away
from the root node zg than node u.

Notice that for x € (u,v), we can write x = v + t(u — v) for t € (0,1). With this change of variable,
we have

A(A(z)) k » )

/(uw) {1 + AG) } P 1+ )\(,\/EGQC))) l1(ve) (ve)| | AMdx) (62)
L MA@ =) k

- /0 b AG) @ 1 + 2Ati(u=—v))) l1(ve) — v(ve)| | wedt. (63)

G)

Moreover, we have
A + tu — 0))) = AA(®)) + Ao, v+ tu — 0)]) = A(ye) + wet.

Therefore,
/\(A(x))] k
1+ o —Jn(ye) = v(70)] | A(de) (64)
/(u v) { )‘(G) 1+ A()\Qé)))
YT ALe) F wet k

= [ [+ 25 | o s 00 -0 a9
_[M] we Ae) klu(ye) —vive)l
7/0 L\(G)tJrlJr)\(G)]@ ey a0 | et (66)

AG) AG)

Hence, the proof is complete.

B.4 PROOF FOR PROPOSITION

Proof. For the length measure A on graph G, we have A({z}) = 0 for all z € G. Consequently, for
p—1
N-function ®(t) = %tp with 1 < p < oo, from the closed-form expression of the generalized

Sobolev IPM with Musielak regularization in Proposition A.7, we obtain
Gl = Y /( )fU(I)H’ (M) — v(A(z)[" A(dz). (67)
e=(uwyeE Y
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Additionally, for input measures p, v supported on nodes in V' of graph G, then for all edge e =
(u,v) € E, and any point z € (u,v), we have

p(A(x)) = v(A(2)) = p(A(2) \ (u,v)) = v(A(2) \ (u,v)).

Therefore, from Equation (67), we obtain

GSalp )’ = Y )P (A (@) \ (u,0)) — v(A@) \ (u, )P A(da).  (68)

e=(u,v)EE (u U)

Moreover, consider edge e = (u, v) € F, for any x € (u,v), then we have y € G \ (u, v) belongs to
A(z) if and only if y € ~.."” Thus, we have

A@)\ (0,0) =7, Vo (u,v).
Thus, from Equation (68), we obtain

GSa(pmv)” = D |n(ve) —v()l [ (@) PAda). (69)

e=(u)EE (u,v)

From Equation (3), for any z in G, we have

AA())
AG)

Without loss of generality, for any edge e = (u,v) € FE, assume that dg (29, u) < dg(zo,v), i.e.,
among two nodes u, v of the edge e, node v is farther away from the root node z, than node .

w(z) =14 (70)

Observe that for z € (u,v), then © = v + t(u — v) for t € (0,1). Using this change of variable, we
obtain

)\(A(Qf)) 1-p B 1 —1 v "w— v 17pw
/m) {H NG) ] A(dﬂﬁ)—/o [1+AG) MA@+ t(u—v))] " wedt

Additionally, notice that
AA(v+t(u—0))) = AAW)) + A([v,v + t(u —v)]) = AMYe) + wet.

Thus, we obtain

MA@D]' [ 1 iy
/w) {H A(G)] A(dx)f/o [14+MG) ™ A(ve) + MG) L wet] .

Furthermore, the last integral can be computed easily depending on the case p = 2 or p #* 2.
Consequently, we obtain

/ {HA(A(@)]”M@: A(G)log (1+ 5%55) ifp—2,
(u,0)

A(G) QG+ A () +we)® P~ (AB) FA(re))* "
@E—pNG)

otherwise.

1—
Thus, we have f(u’v) {1 + )‘()\/}g)))} 3 A(dz) = B (see Equation (16)).

Consequently, from Equation (69), we obtain

S

GSa (v (Zﬂeu (Ye) = v(3e) P ) . (71)

ecE

Hence, the proof is completed.

'7See Equation (1) for the definitions of A(x) and ~e.
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B.5 PROOF FOR LEMMA

Proof. We will prove that the regularized generalized Sobolev IPM é?s ¢ satisfies: (i) nonnegativity,
(ii) indiscernibility, (iii) symmetry, and (iv) triangle inequality.

(i) Nonnegativity. By choosing f = 0 in Definition 3.3, we have that GS o (1, v) > 0 for every pair
of probability measures (1, v) in P(G) x P(G). Therefore, the regularized generalized Sobolev IPM

GS s is nonnegative.

(ii) Indiscernibility. Assume that g/‘\S’ o (i, v) = 0, then we have

/ F(@)u(dz) — / f(@)p(dz) = 0, (72)
G G

for all f € WLy, ,(G, A) satisfying the constraint || f'|

e <L

Letg € WL\11,70(G, A) be any nonconstant function. Then « := ||¢’||z, > 0. Then by choosing

[ = £, wehave f € WLy (G, \) with || /]|, = H%HL\I, = 1)l¢/llc, = 1 where we use
Lemma for the second equation. Hence, it follows from (72) that

[ 52wt - [ 2 a0 o,

/G g(e)u(dz) = / g(2)(dz). (73)

G

which implies that

Thus, we have shown that (73) holds true for every nonconstant function g € WL}I,_O((& A). Addi-
tionally, Equation (73) is also obviously true for any constant function g. Therefore, we obtain

/G glanlde) = [ glav(do)

G

for every g € WL}I,,O(G, A), which gives = v as desired.

(iii) Symmetry. This property is obvious from Definition 3.3 as the value é‘\S' & (i, V) is unchanged
when the role of 1 and v is interchanged, i.e.,

GSa(u,v) = GSa (v, ).

(iv) Triangle inequality. Let i, v, o be probability measures in P(G), then for any function f €
WLy, 4(G, \) satisfying the constraint [f'llze <1, we have

/G f(@)uldz) — /G f(@)v(da)

=|| [ omtan) - [ srotan] + | [ swotan) - [ seman)
/G F(@)(dz) - /G f(@)or(d) /G F(@)r(dr) - /G f(@)(da)

< GSs(,0) +GSs(0,v).

By taking the supremum over f, this implies that

GSa(1,v) < GSa(,0) + GSa(0,v).

< +

Due to these above properties, we conclude that the regularized generalized Sobolev IPM g/:S o isa
metric on the space P(G) of probability measures on graph G.
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B.6 PROOF FOR PROPOSITION

Gutuv)i= sup | [ rlowtan) - [ f(y)v(dy)‘- (74)
feBw G
BY = {f € WLL o(@, ), 1/l <1} (75)

Proof. Let ¥, and U5 be respectively the complementary functions of ®; and ®,, consider an
arbitrary positive scale ¢ € R, and notice that &; < ®9, then we have:

at — ®q(a) > at — ®Py(a) foreverya € Ry,

= sup (at — ®1(a)) > sup (at — P2(a)).
a>0 a>0

This implies that
\Ifl(t) > \I’Q(t), forallt € R+.

It follows that LY (G,\) C Ly (G, \) and WLy, o(G,A) C WLy, ¢(G, \). Moreover, for any
fixed Orlicz function f’ and any number ¢ > 0, we have

/sz(x)\h('flix)'))\(dx) z/(gw(x) Wg(f/ix)>>\(dx).

Consequently, we obtain

{t>0 | /Gw(x)\m('/f/gx)') A(dz) < 1} c {t>0 | /Gw(x)%(wf)') A(dz) < 1}.

Since the infimum of a set is smaller than or equal to the infimum of its subset, we deduce that
neo "o
1 g > 171,
It follows from this and VVL%I,I,O(G7 A) C WL\11;2,0(G7 A) that
{F1F WLy oG, 1 g, <1} {f1feWLy, oG, If Iy, <1}
Since the supremum of a set is larger than or equal to the supremum of its subset, we conclude that

é‘\s‘qh (M7 V) < é‘\s‘q& (:u7 V)>

for any input measures u, v in P(G). Therefore, the proof is complete.

|
B.7 PROOF FOR PROPOSITION
Proof. Given a positive scalar ¢ > 0, a pair of complementary N-functions ¢, ¥, and let B\”ﬁ’c =
{f € WLy (G, \) : Hf’||Lm < c} We define the IPM distance w.r.t. BY . as follows
I P ptaa) = [ rowian). 76)
feBy. G
By exploiting the graph structure for the IPM objective function and applying a similar reasoning as
in the proof of identity (53) in §B.2, we can rewrite Equation (76) as
GSa.c(uv) = sup z)) = v(A(2))] Ad)]| - (77)
feBy.
Additionally, by using a similar reasoning as in the proof of (54) in §B.2, we have
" 1
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Let f(x) ;= wA@)=vA@) g5 1 ¢ G. Then by using (78), Equation (77) can be recasted as

cw(x)
G8so(mv)=  sup [ @ f@leg@)ias)
9€Lu(@N): gl g <2 1/G
" e Ly PR
“Ji..
:,12%% <1+/sz(:r)<l>(k‘f(x)>/\(dx)> (80)

k>0

|
inf £ <1+/ W(z) k‘“(A(x))w ”(A(g‘"))D A(dx)>

c (k/c)>0
= Eg&p(u,V), (8D)

where the third equality in (79) following from (Musielak, 2006, §13.20) and Equation (57), the
fourth equality in (80) following from (Krasnoselskii & Rutickii, 1961, Theorem 10.5, §10.8), and
the last equality in (8 1) following from Theorem

Additionally, notice that from Theorem 3.2, we have

e 17y < Wy, < 217l - (82)
where ¢; = 1/2,and c3 = 1 + A(G).
This implies that

Bi ., 2 By 2 By, (83)
Therefore, for probability measures p, v € P(G), we have
GSa.c. (1) 2 GSw(p1,v) = G8n.c, (1, v)- (84)

It follows from Equations (81) and (84) that

1 ~ 1 —~
o GSa (1, v) 2 GSa(p,v) 2 o GSo(p,v). (85)
Consequently, we obtain
¢1GSa (1, v) < GSa (1, v) < ¢2 GSa (i, ). (86)
Hence, we have
1 —
5 GS0(1,v) < GSa(n,v) < (14 A(G)) GSs (1, v). 87)
The proof is complete.
]

B.8 PROOF FOR PROPOSITION

Proof. Following Equation (55) in the proof of Theorem 3.4 in §B.2, we have

GSa(p,v) = sup
9€Lw (G,\): HgHLg <1

/G () f(2)g(x)A(da)] (8)
where f(z) = W forz € G.
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Additionally, following (Le et al., 2024, Remark A.1), for ®(t) = @‘;#tp with 1 < p < oo, we
have its complementary function ¥ (t) = ¢t? where ¢ is the conjugate of p, i.e., 1/¢ + 1/p = 1.

Consequently, we have Ly = L9, and L'\‘fj = Lfb, where LZ} is the weighted L9 space with weight
function w. Therefore, we can rewrite Equation (88) as follows:

GSo(u, v) = sup /w(m)f(ac)g(x)/\(dx) (89)
gGLq(GAMIgHLngl G
=7, (90)
- | [ o) [f)] xan)]” o)
G
= [ [ o ae) - van s ©2)

Moreover, following (Le et al., 2025, Theorem 3.4), the closed-form of the regularized p-order
Sobolev IPM is as follows:

S,(uv) = [ /G ()7 [u(A(z)) — v(A2)? A(dx>] " ©3)

where the weight function wg(x) = 1 + A(A(x)) for all z € G (Le et al., 2025, Equation (5)).

Recall that w(z) = 1 + % for all z € G. For any = € G, we have

A(A(2))

min(1, A(G) 1) (1 + A(A(z))) <1+ NG)

< max(1, \(G)™H)(1 + A(A(x))).

Then, for 1 < p < oo, we obtain
min(1, \(G) ™) Pavg (x)! 7P > b (z)' P > max(1, \(G) 1) Pag (). (94)
Therefore, from Equations (92), (93), (94), we get
&1 8p(,v) < GSa () < &2 Sy, v), (95)
where ¢, = max(1, A(G)’l)kTp and é; = min(1, )\((Gr)*l)l;pp.

Hence, the proof is complete. u
B.9 PROOF FOR PROPOSITION

Proof. Following Proposition 4.4, we have

max(L, A(G) ™) 7" Sy, v) < G8o(u,v) < min(LAG) ™) 7 Sy(mr).  (96)
Additionally, following (Le et al., 2025, Theorem 4.2), we have

min(1, \(G)P~1) v . gl
R S S A < < p P
{ Ty S <8 < rasLACP ] Sr) )
Therefore, from Equations (96), (97), we obtain
¢1 8y, v) < GSa () < 2 Sy, ), (98)

. e C1v1-p L 1
where ¢; = [mm(l,)\(@,)p lllﬁax)(:,)\(@) 11 p} p;c2 _ [miD(L )\(G)—l)l—p max(l,)\(G)p_l)] P

Hence, the proof is complete.
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B.10 PROOF FOR PROPOSITION

Proof. From Equation (9), for any x € G, we have
1 <a(z) <2 99)
Then, for any ¢ > 0, we have

/(}w('flf)') A(dz) g/@w@:)w(”é‘””) A(dz) §2/G\11<f/ix)> A(dz).  (100)

Consequently, we obtain

{t>0|/@xy(wx)|) )\(dx)gl} (101)
foom Lo ()<
2{t>0|2/ ('f()|))\(dx)§1}.

Additionally, observe that by following Lemma A5, for any ¢ > 0, we have

2/@@(”5””') A(dz) g/@xp(z fé”) A(dz) (102)

Consequently, we have

{r=0r2 [0 xan <1f o {e> 01 [0 (2 0@ <1} aoy

Notice that the infimum of a set is smaller than or equal to the infimum of its subset. Consequently,
from Equations (101), and (103), we obtain

170 < 170 <int fe>01 [ o(2 2 ) sy <1} (104)

Moreover, we also have

1nf{t>0|/ ( i ))\(dx)<1}:2mf{(t/2)>0|/G\I/(|{t/g))|>)\(dx)<l}

=2|f'll, - (105)

Thus, we obtain
1 Ny < W N <2012, - (106)

With the technical assumption f(zo) = 0, then WL}, is equal to I/VL}I,70 (as assumed for GSI-M
throughout our work). Thus, we have

{fGW%thhwél}Q{fGW@imehgél}Q{fEWIthhwSlﬂ}.Um)

Additionally, for a positive scalar ¢ > 0, a pair of complementary /N-function ®, W, let consider

/G f(@)(de) - /G f(@)u(da)

Following (Le et al., 2024, Equations (12), (13) in §A.1), we can rewrite GS7 g . as follows:

/g(m)h(m) A(dz)|, (109)

G8Tw (i) = sup

FEWLY If 1, <1/e

(108)

GST w.c(1,v) = sup

9ELw(G,A): lgllLg <1/c

where h(z) := u(A(z)) — v(A(z)) for all z € G. Consequently, let § = cg, we have

GST a.0(1,v) = sup / g(x)@ A(de) (110)
G

GELw(G,A): [|gllLg <1

24



Under review as a conference paper at ICLR 2026

By applying (Rao & Ren, 1991, Proposition 10, pp.81), we obtain

GSToc(p,v) = || (111)
Clle
where H LCL H ® is the Orlicz norm (Rao & Ren, 1991, Definition 2, pp.58), defined as
h 1
2| =sw{ [ Sh@)g@)| Ade) s [ w(lg@))Adr) < 1. (112)
Cllo Gl€ G

Then, by applying (Rao & Ren, 1991, Theorem 13, pp.69), we have

h ) :;I;foé <1+/Gq><’z h(a:)|) A(dx)).

Thus, together with (111), we obtain

e 1 1 1 V
65T oclnu) =+ int s (14 [ @/ @) A@n) ) = L 6T alur). 13

Since the supremum of a set is larger than or equal to the supremum of its subset, then for 1, v € P(G),
from Equations (107), (108), (113), and consider ¢ = 2, then we obtain

-~ 1
Hence, the proof is complete. |
B.11 PROOF FOR PROPOSITION

Proof. For N-function ®(t) = (p_;#tp with 1 < p < oo, following (Le et al., 2024, Proposition
4.4), we have

GSTa(u,v) = ST (1, v). (115)
Additionally, following Proposition 4.6, we have
5 G8T (1) < G8a(v) < GSTa(nv). (116)
Thus, from Equations (115), and (116), we obtain
L ST 0) < G8alpv) < ST, (1), (117)
Hence, the proof is complete. |

B.12 PROOF FOR PROPOSITION

Proof. For the limit case ®(t) := ¢, and graph G is a tree, then following (Le et al., 2024, Remark
4.5 and Proposition 4.6), we have

GSTa(u,v) = OW(p,v). (118)
Additionally, following Proposition 4.6, we have
5 O8T (1) < G8a(nv) < GSTa(nv). (119)
Thus, from Equations (118), and (119), we obtain
%OW(% v) < GSa(n,v) < OW(u,v). (120)
Hence, the proof is complete.
]
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B.13 PROOF FOR PROPOSITION

Proof. For the limit case ®(t) := ¢, and notice that lim,,_,;+ 2 *”” tP =t (Le et al., 2024, $§A.7),

then following (Le et al., 2024, Proposition 4.4), by taking the 11m1t p — 17, the closed-form of
generalized Sobolev transport (GST) is equal to the 1-order Sobolev transport (ST), ie.,

G8Te(p,v) = ST1(p,v). (121)

Additionally, suppose that graph G is a tree, then by following Le et al. (2022), the 1-order ST is in
turn equal to the 1-order Wasserstein.

STI(M) V) :Wl(/’% V)' (122)
Therefore, from Equations (121), and (122), we obtain
GST o (u,v) = Wi (p,v). (123)
Moreover, following Proposition 4.6, we have
1 .
§gST‘I>(,ua V) < gS‘I’(,u7V) < gST‘P(,ua V)' (124)
Thus, from Equations (123), and (124), we obtain
1 —~
§W1(Ma V) < gS‘I)(IU/7V) < Wl(:u7y)' (125)
Hence, the proof is complete.
]

B.14 PROOF FOR LEMMA

Proof. Consider an N-function @, f € WL}b,O(G, A), a nonnegative weight function w, and ¢ > 0.
Then we have

[awa({ 1) san = [a@e(; \ / et A ) A)

. /G ua<:c>q>( o /G L (0 () @) ) A(d).126)

For a > 0, let ®,,(s) := ®(as) for s > 0. Then ®,, is also a convex, non-decreasing function. Using
this function, we can rewrite Equation (126) as follows:

a@) @ @) M) = [0 e (|55 [ Lewr 0 M) ) M),
: ¢ ©) Je

Then, by applying Jensen’s inequality, we have

/(;w(x)q>(1|f(x)|> @) < 555 // 1) ()]) Mdy)A(de)

// ( [Tz, )f/(y)’))‘(dy))\(dx).

Due to ®(0) = 0, we can rewrite the above expression as

Lo (G s 1 [ o) < [ e (FPrw) A(dw)A(dx)

~ 5155 Lo ([ 1m0 (22177001 ) A ) g
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Applying Fubini’s theorem, we can interchange the order of the integrations. As a consequence, we
obtain

Lowa(ju@rans s [ [oenmaman) (X o)

o 1 )‘(G) / Y
s (I)<t i <y>|)xm<A<y>>A<dy>.

Hence, the proof is complete. u

B.15 PROOF FOR LEMMA

Proof. The conclusion of the lemma is trivial if || f|| ;. = 0. Thus we only need to consider the case
[ fll, > 0in the following proof. As a consequence and due to f(zp) = 0, there must be x € G
such that |f/(z)| > 0, i.e. the set {x € G : |f'(x)| > 0} is nonempty.

We will prove the result by contradiction. Specifically, suppose by contradiction that 0 < ¢ < %

Then as |f/(z)| = 0 implies @ (M) = 0 and as @ is strictly increasing, we have

/Gwo(x)<1><|f/§x)|) Adz) :/q;,f/|>ow°(x)®(wfﬂ> Adz)

AG) |,
Lo w”“”(nﬂm ! “”) A(d)

= [wo@ e SEH @) A (127)
g ..

On the other hand, since

11, =t (=01 [ o(LN ) ran <1}
/G‘I’(|||J;(||i)q,) Mo =1

Applying Lemma forw = 1and t = || f[|, to the above left hand side, we have

o @ 1 AG) .
- /G q>( fHL@))\(d ) <3E /G @(l o If(y)l> (A () A(dy)

L AG) e )
AG) /«;@ <|f||L¢ 1/ @)l) 0(¥)A(dy).

e M) )1 ) wol@)A(dy) = AG).
P\

This together with the inequality in (127) yields

/Gwo(x) @(th”) A(dz) > A(G),

which contradicts the assumption. Hence, the proof is complete. |

we deduce that

Thus, we obtain
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B.16 PROOF FOR THEOREM

Proof. We consider the Musielak norm with weight function (G) for gradient function f’

171 o :inf{t>0|/61§(zg) q;(fi ))de)él}'

/wo(ff)@ M A(dz) < A(G).
G ”f ”L'(IIL)’O/MG)

[ wo/AG), We conclude that
D

In particular,

Therefore, by applying Lemma with ¢ := || f|
11l < MG worre -

Hence, the proof is complete. u

B.17 PROOF FOR LEMMA
Proof. For any N-function ®, any Borel measurable function f on G, and scalar ¢ > 0, we have

/Gwl(x)q><|ff)|) A(dz) Z/ng(:c)q)(v(tx)> A(dz).

Therefore, we obtain

{t>0|/@w1(1:)<1>(|f(tx))/\(dx)gl}g{t>0|/ng(x)@cf(tx)'))\(dx)gl}.

Notice that the infimum of a set is smaller than or equal to the infimum of its subset. As a consequence,

we obtain
1l > 1l -

The proof is complete.

|
B.18 PROOF FOR LEMMA
Proof. Notice that ® is a convex function and ®(0) = 0. Therefore, for any 0 < s < ¢, we have
v =G (1)) )
<500+ (1-3) 00 =30
which yields (I)( ) < qj(t) . Thus, the function ¢ — q}(t) is nondecreasing on (0, +00).
Consequently, since k > 1, we get
O(t)  D(kt)
N 2N
t =kt
That is, k®(t) < ®(kt). The proof is complete. |
B.19 PROOF FOR LEMMA
Following the definition of Musielak norm (Equation (3)), we have
k
sl 1nf{t> 0 |/ (' f )> Adz) < 1} (128)
_klnf{ >0|/ ( t/k)>/\(dx)§1} (129)
=k fllLs - (130)

The proof is complete.
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B.20 PROOF FOR PROPOSITION

Proof. Following (Le et al., 2024, Remark A.1), for ®(¢) = %tp with 1 < p < oo, we

have its complementary N-function W(t) = t¢ where q is the conjugate of p, i.e., 1/¢ +1/p = 1.
Consequently, we have Ly = L9, and LY} = L%, where LY is the weighted L? space with weight
function w.

Additionally, let f(z) = W for x € G, by following Equation (55) in the proof of
Theorem in §B.2, we have

é:S<p(p, v)= sup / W(z) f () g(x)A(dz) (131)
9€Lw (@ N):llgll g <1 /G
= s ) feg()a) (132)
9ELI(CA): llgll g <11/G
—||f (133)
Ly
1
Lo »
= [ [ o i@ x| (134)
G
%
= | [ o ae) - s s (135)
G
Hence, the proof is complete.
|
B.21 COMPUTE A; FOR Ag, IN éc\Sq>1 (§A.3)
For a > 0,b > 0, we consider the term
! @
Ay = t+b) P —— | dt. 136
; 5/0(a+>1(at+b) (136)
Set u = at + b, so du = adt and u € [b, a + b], then we can rewrite
B a+b
Ay = E/ [uexp(a/u) — a — u] du. (137)
b
Next, we want to compute
a-+b
Bg, :/ wexp(a/u)du. (138)
b
First, we use the substitution by setting v = a/u. Then u = /v and du = —av~2dw.
The integrand becomes
/uexp(a/u)du = / @ exp(v)[—av?dv] = —a? / exp(v)v~3dv. (139)
v
Second, we use two integrations by parts to compute:
B; = /exp(v)vigdv. (140)
Applying the integration by part, we get
1 1
B = 3 /exp(v)vide ~5 exp(v)v 2. (141)
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Applying the integration by part for the integral in the right hand side, we obtain
/exp(v)v”dv = /exp(v)vildv —exp(v)v~t.

Then, from Equations (140), (141), and (142), we obtain

By = % (Ei(v) — exp(v)v™!) — %exp(v)qf2 +C
_ g oL -1 b ~2
= 2Ez(v) 5 exp(v)v 5 exp(v)v™ =+ C.

Thus, from Equations (171), and (143), and recall that v = «/u, we have

/uexp(a/u)du = —a’B;

2

_ —%Ei(a/u) n oﬁexp(a/u) a? exp(a/u)

2 alu 2 (afu)?

+C

= 3 [ exp(a/u) + auexp(a/u) — o?Bia/u)] +C.

Thus, an antiderivative for the integrand of A; is

Fa, = g / [uexp(a/u) — o — u] du
= 2% (“2 exp(a/u) + auexp(a/u) — QQEi(a/w — 9qu — ug) Lc

Hence, we have
Al = FAI((L—I—b) - FAl(b)-

Or, we obtain

e g i) B )] o oo (1 55) b))

+ {(a +b)? exp<aa> -’ exp(j)} —20a = [(a+b)* = 7] ]

Therefore, we have
A = A17

where 8 = w,,a = 35 e =1+ /\((G)),oz—k|h( ).

Additionally, we next compute the derivative of A; w.r.t. k.

For simplicity, let

S Nt

then we have

Al = ;Sl (OZ)
Thus, we have
% _ dA1 da
dk ~ da dk°
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g
+ {(a—f—b exp(aib) exp } —2aa — [(a+b)* —b°],

(142)

(143)

(144)

(145)

(146)

(147)

(148)

(149)

(150)

.(151)

(152)

(153)

(154)

(155)
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Notice that <L Fi(z) = ex‘;&, and use the chain rule, we have

For the first term of Sy, let S11(a) 1= — [Ez(aer) - Ez(%)} , we have
dsSi1 . (e e
— 2% |E B4 - _ .
=2 | Z(H )~ Ei(3)] - alesta/ta+) - explar)
For second term of Sy, let S1a(a [ +b) exp(aib) — bexp(%)} , we have
dSi2

- (a+b)exp< +b> bex (b)+a[exp(a/(a+b))fexp(a/b)].

For the third term of S, denote S13(av) := (a + b)? exp(%ﬂ)) — b%exp (%), we have

dSis « o
o (a+b)exp< +b> —bexp(g>
For the fourth term of Sy, we have £ (—2aa) = —2a.

The last term of .S; is constant w.r.t. c.

Therefore, we obtain

(156)

(157)

(158)

d%;Al _ @ {_a {Ez<aa—i—b> —Ez(j)} t(a +b)exp< j‘_b> —bexp(%) —a} (159)

Furthermore, we next compute the second-order derivative of A; w.r.t. k.

2 Blhe) d
g2 = @@

where we denote

Qi(e) == —a [El<aj—b> —Ez(‘;‘)] (a+b)exp( ib> —bexp(%) _a

By using the chain rule, we have
d? Blh(e) h(e)?

w2t T Ty dan(a)’
For the first term of @1, denote Q1 () 1= — [Ez(Hb) - Ez(%)} , we have
dQ11 B { « e exp(a/(a+b)) exp(a/b
da __[El(a—HJ_EZ(b)}_a[ o B }

- [Ez(a i b) - Ez(?j)} — Jexp(e/(a + b)) — exp(a/b] .

For the second term of ()1, we have

Lot pex o exp(aj_b>.

For the third term of @1, we have

% [—bexp(a/b)] = —exp(a/b).

The last term of ()1 is a constant w.r.t. c.

o= S [} ()

Hence, we complete the detailed derivation for Aj.

Therefore, we obtain
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(161)

(162)

(163)

(164)

(165)

(166)

(167)
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B.22 COMPUTE As FOR Ag, IN éc\Sq>2 (§A.3)

For a > 0,b > 0, we consider

Ay = B/Ol(at +b) (bg(CltC’er) dt. (168)
Set u = at + b, so du = adt and u € [b, a + b], then we can rewrite
Ay = i/baer [wexp(a®/u?) — u] du. (169)
Next, we want to compute
By, = /ba+buexp(a2/u2)du. (170)
First, we use the substitution by setting v = a2 /u?, so v > 0 on the interval. Then dv = —2a2u~3du,

3
— _u’
ordu = 57 dv.

The integrand becomes

1 2
/uexp(aZ/UQ)du: —/ﬁﬁ exp(v)dv = —%/exp(v)vddv, (171)

since we have u* = atv=2.

Second, following Equation (142), we have

By = /exp(v)v_zdv = Fi(v) — exp(v)v~! + C. (172)

Thus, we obtain
/uexp(az/u2)du = 7%2 (Ei(v) — exp(v)v™!) + C (173)
= % [u? exp(a? /u®) — &*Ei(a? /u?)] + C, (174)

since v = o /u?, and consequently exp(v)v ! = (u?/a?) exp(a?/u?).

Thus, an antiderivative for the integrand of A, is

Fa, = g/ [uexp(a®/u®) — u] du (175)
B (1 ‘ u?
== (2 [u® exp(a®/u?) — & Ei(a® /u?)] — 2) +C. (176)
Hence, we have
A2:FA2(a+b)—FA2(b). (177)

Or, we obtain

g ) ()

+ {(m—b)2 exp( o ) —b? eXp<O‘2>} — [(a+0b)* =] ] (178)

Therefore, we have
As, = As, (179)

where f = we,a = 55,0 =1+ ’t\((’g)),a = k|h(e)|.
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Additionally, we next compute the derivative of Ay w.r.t. k.

For simplicity, let

sute) = o [ () - ()

2 o? 2 o? 2 2
+ (a+b) exp m —b exp b72 — [(a‘i'b) _b ] 5 (180)
then we have 3
Thus, we have
dA2 - dA2 da
T da dk (182)

Notice that %Ei(z) = %(z), and use the chain rule, we have

% — 2 [Ez((a(jjb)Q> - Ez(obfﬂ —a? [i exp(a?/(a+b)?) — %exp(az/bz)
+2a [exp(a?/(a + b)?) — exp(a® /b?)]

94 {E@(mfb)z) - Ez(?jjﬂ . (183)

Therefore, we obtain

o) ()

Furthermore, we next compute the second-order derivative of As w.r.t. k.

@ Bl d

s = = E L Qy(a), (185)
where we denote
. a? [ a?
By using the chain rule, we have
d? Blh(e)| | - ) a? [ a?
—A = — h B ———s | — Ei| —
gt =l P(e) o ()

+a E exp(a?/(a+b)%) — % eXp(az/bz)} |h(e) } (187)
Therefore, we obtain

(;L;AQ - —mhf)‘Q [Ez ( @ fb?) — Ei ((Zj) +2exp(a?/(a+b)?) — 2exp(a2/b2)} .(188)

Hence, we complete the detailed derivation for A,.

C FURTHER EXPERIMENTAL DETAILS AND EMPIRICAL RESULTS

C.1 FURTHER EXPERIMENTAL DETAILS

We summarize the number of pairs of probability measures for each dataset which is required to
evaluate for kernelized SVM in Table 1.
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Implementation notes for . in GSI-M.

o Preprocessing procedure for .. Following (Le et al., 2025), we precompute . for all edge e in
the given graph G. It only needs once for such preprocessing procedure since it does not depend on
input measures, but only the graph structure itself. More concretely, we apply the Dijkstra algorithm
to recompute the shortest paths from root node 2 to all other input supports (or vertices) with
complexity O(|E| + |V|log|V|) where we write | - | for the set cardinality. Then, we can evaluate -y,
for each edge e in F.

e Sparsity of v.. As observed in (Le et al., 2025), for any support of input measure y, its mass is
contributed to u(7.) if and only if e C [z, x] (Le et al., 2022). Therefore, let supp(u) be the set of
supports of measure 1, and define £, , C F as follows

E,.:={ec€E |3z (supp(n) Usupp(v)),e C [0, 2]} .

Additionally, note that ®(0) = 0 for all N-function ®. Then, in fact, we can remove all edges
e € E\ E,, in the summation in Equation (14) for the univariate optimization problem for
computing GSI-M.

Table 1: The number of pairs of probability measures on datasets for kernelized SVM.

Datasets #pairs
TWITTER | 4394432
RECIPE 8687560
CLASSIC | 22890777
AMAZON 29117200
Orbit 11373250
MPEG7 18130

C.2 FURTHER EMPIRICAL RESULTS

We provide further results, corresponding to the empirical results in §6 for graph Gggy.

Computational comparison. We illustrate corresponding results for computational comparison on
graph Ggq with 1K nodes and 32K edges in Figure 4. The computation of GSI-M is also several-

order faster than OW, and comparable to GST. More concretely, Q/:S’ is 100x, 6800, 2900 x faster
than OW for &, 1, P, respectively. For N-functions ®; and ®5, GSI-M takes less than 23 seconds
while OW needs at least 19 hours, and up to 34 hours for the computation.

Document classification. Figure 5 illustrates corresponding results for document classification on
graph Ggq with 10K nodes and about 1M edges.

TDA. Figure 6 shows corresponding results for TDA on graph Ggg; with 10K nodes and about 1M
edges.

D BRIEF REVIEWS

In this section, we give a brief review for related notions which we have used in the development of
our proposal. For completeness, we also summarize some notions reviewed in (Le et al., 2024; 2025).

D.1 GRAPH ILLUSTRATION

We illustrate graph notions, reviewed in §2, in Figure 7.

D.2 A REVIEW ON FUNCTIONAL SPACES

We describe a short review on the L? space, the weighted L? space.
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Figure 4: Time consumption for GSI-M, GST and OW on Ggy with 1K nodes and 32K edges.

TWITTER (3/3108/26) RECIPE (15/4370/340) ; CLASSIC (4/7093/197) AMAZON (4/8000/884)
073 06 = 09 ™
Zo72 i 0.8 08
§ 0.71 0.55 0.8 07
; 0.7 0.7 0.6
< 069 0% 0.6 05
z 04
0.68 -
0.45 05
L L 03 L
e 5 —_
2108 — 108 10
E 10
s
§103 10 10
S 3
S 10
o
(]
E
F 102 L 10° L 103 L |

(B OW-2 EEEOW-3;-Trec [EICSI-M-8 []GST-, [IGSIM-2, [0]GST-3, [ GSIM-3,
Figure 5: SVM results and time consumption for kernel matrices with graph Gggy.

L? space. For a nonnegative Borel measure A on G, let L”(G, \) be the space of all Borel mea-
surable functions f : G — Rs.t. [, [f(y)[PA(dy) < oc. For p = co, we instead assume that f is
bounded A-a.e. Then, LP(G, \) is a normed space with the norm being defined as follows:

[PAIPZRES (/@ If(y)lp/\(dy)y for1 <p < oc.

On the other hand, for p = oo, then we have
|fllzee :=inf {t e R: |f(z)| < tfor N-ae. z € G}.

Additionally, functions f1, fo € LP(G, A) are considered to be the same if f1(z) = fo(x) for A-a.e.
z e G.

L space. For a nonnegative Borel measure A\ on G, and a positive weight function @ on G, let

L% (G, ) be the space of all Borel measurable functions f : G — Rs.t. [ w(x)|f(z)[PA(dz) < co.
For p = oo, we instead assume that f is bounded wA-a.e. Then, L” (G, \) is a normed space with
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Figure 6: SVM results and time consumption for kernel matrices with graph Gggy.

Figure 7: A geodetic graph with 10 nodes {1, z2,..., 210} and 15 edges {e1,e2,...,€15}, and
each edge length equals to 1, i.e., we; = 1, V. For any x;, x;, there is a unique shortest path between
them, with a length 2. Therefore, it satisfies the uniqueness property of the shortest paths. Let x4

be the unique-path root node (i.e., zp = 1), and subgraph G containing 3 nodes {z2, x5, x7} and 2
edges {ea, e7}, then we have A(z3) = y(e1) = G.

the norm being defined as follows:

[fllze = (/Gw(xﬂf(xﬂp)\(dx)); forl < p < oo.

For the case p = oo, as w(x) > 0 for every z € G, we have
[fllzee :=inf{t € R: |f(z)| < tfor (WA)-ae. z € G}
=inf{t eR: |f(z)| < tfor A\-ae. z € G}
= [[fllze-

D.3 A REVIEW ON SOBOLEV TRANSPORT

In this section, we provide a brief review on the Sobolev transport (ST) (Le et al., 2022) for graph-
based measures, and the length measure on a graph.

Definition D.1 (Graph-based Sobolev space (Le et al., 2022)). Let A be a nonnegative Borel measure
on G, and let 1 < p < co. A continuous function f : G — R is said to belong to the Sobolev space
WLP(G, \) if there exists a function b € LP(G, \) satisfying

f(@) — f(z0) = / h(y) Mdy) Yz €G. (189)

[ZO 7"”]
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Such function & is unique in LP (G, A) and is called the graph derivative of f w.r.t. the measure \.
The graph derivative of f € W1P(G, \) is denoted as f' € LP(G, \).

Sobolev transport (ST) (Le et al., 2022). For probability measures i, v € P(G), and 1 < p < oo,
the p-order Sobolev transport (ST) (Le et al., 2022, Definition 3.2) is defined as

STp(p,v) = { Sup [fG fl@)u(dz) = fq f(w)wdx)}

o ; (190)
s.t. f € WHP(G, N), ||f HLP/(G,A) <1

where we write f’ for the generalized graph derivative of f, and lep/((G, A) for the graph-based
Sobolev space on G.

Proposition D.2 (Closed-form expression of Sobolev transport (Le et al., 2022)). Let A\ be any
nonnegative Borel measure on G, and let 1 < p < oco. Then, we have

STy(u) = ([ IntA @) = via)P A(dm); ,

where A(x) is the subset of G defined by Equation (1).

Definition D.3 (Length measure (Le et al., 2022)). Let A* be the unique Borel measure on G s.t. the
restriction of A* on any edge is the length measure of that edge. That is, A* satisfies:

i) For any edge e connecting two nodes u and v, we have A*({x,y)) = (¢t — s)w. whenever
x=(1-su+svandy = (1 —t)u+ tv for s,t € [0,1) with s < ¢. Here, recall that
(x,y) is the line segment in e connecting = and y.

ii) For any Borel set F' C G, we have

AN(F) =Y M(Fne).

ecE

Lemma D.4 (\* is the length measure on graph (Le et al., 2022)). Suppose that G has no short cuts,
namely, any edge e is a shortest path connecting its two end-points. Then, \* is a length measure in
the sense that

A*([l‘7y}) = dG(xa y)

for any shortest path [z, y] connecting x,y. Particularly, \* has no atom in the sense that \*({x}) =
0 for every x € G.

D.4 A REVIEW ON SOBOLEV IPM AND ITS SCALABLE REGULARIZED APPROACH

We give a brief review on the Sobolev norm (Adams & Fournier, 2003), Sobolev IPM, and its scalable
regularized approach (Le et al., 2025) for graph-based measures.

Sobolev norm. Wl’p((G, A) is a normed space (reviewed in §D.3), with the Sobolev norm (Adams
& Fournier, 2003, §3.1) being defined as

1l = (LI + 1F120)7 - (191)

Additionally, let VVO1 (G, \) be the subspace consisting of all functions f in W1 (G, \) satisfying
f(z0) = 0. Denote B, := {f €Wy P(G, ) : || fllyrw < 1} as the unit ball in the Sobolev space.

Sobolev IPM. Sobolev IPM for graph-based measures is an instance of the IPM where its critic
function belongs to the graph-based Sobolev space, and is constrained within the unit ball of that
space. More concretely, given a nonnegative Borel measure A on G, an exponent 1 < p < oo and its
conjugate p’, the Sobolev IPM between measures u, v € P(G) is defined as follows:

Sy(uv) = sup | [ slotan) - [ f(y)V(dy)‘- (192)

fGBp/
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Scalable regularized Sobolev IPM (Le et al., 2025). Let B(p’, &) be defined as follows:

B, w) = {1 € WG\ s |1l <1} (193)

Then, the regularized Sobolev IPM is defined as

Definition D.5 (Regularized Sobolev IPM on graph (Le et al., 2025)). Let A be a nonnegative
Borel measure on G and 1 < p < co. Then for any given probability measures p, v € P(G), the

regularized Sobolev IPM is defined as
| st = [ swpwtan). (194)
G

D.5 A REVIEW ON IPM AND WASSERSTEIN DISTANCE

S, (u, v) :==sup
fEB(p’ )

We provide a short review on IPM and Wasserstein distance for probability measures.

IPM. Integral probability metrics (IPM) for probability measures p, v are defined as follows:

uias) — | f(y)V(dy)’- (195)

Special case: 1-Wasserstein distance (dual formulation). The 1-Wasserstein distance is a special
case of IPM. In particular, for F = Fy := {f : | f(x) — f(y)| < dg(z,y)} where dg is the graph
metric on graph G, then IPM is equal to the 1-Wasserstein distance with ground cost dg

/ F(@)u(d) — /G f(y)V(dy)‘- (196)

p-Wasserstein distance (primal formulation). Let 1 < p < oo, for probability measures p and v
on G, then, the p-Wasserstein distance is defined as follows:

v7(p,v) = sup
fer

W(u,v) = sup
feFw

W,o(uv)P = inf / d (x,y)Pr(dz, dy),
GxG

m€M(p,v)

where IT(p, v) := {7r €EPGXG): mp=p, m= 1/}; 71, o are the first and second marginals of

w respectively.

D.6 ORLICZ FUNCTIONS

We provide a brief review on Orlicz functions as summarized in (Le et al., 2024) for completeness.
For comprehensive studies on Orlicz functions, see (Adams & Fournier, 2003; Rao & Ren, 1991).

Popular examples of N-functions. Some popular examples for N-functions (Adams & Fournier,
2003, §8.2) in the literature are as follows:

1. (t) =P with1 < p < 0.

2. d(t) =exp(t) —t — 1.

3. O(t) = exp(t?) — 1 with1 < p < o0.
4. o(t) = (1 +t)log(l+t) —t.

Complementary function. For N-function @, its complementary function ¥ : R, — R, (Adams
& Fournier, 2003, §8.3) is the /N-function, defined as follows:

U(t) =suplat — ®(a) | a > 0], for t>0. (197)
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Popular examples of complementary pairs of /NV-functions. Some popular complementary pairs
of N-functions (Adams & Fournier, 2003, §8.3), (Rao & Ren, 1991, §2.2) are as follows:

1. () = % and U(t) = % where g is the conjugate of p, i.e., = +

2. O(t) =exp(t) —t —land ¥(¢) = (1 +t)log(1 +t) — ¢.

3. For the N-function ®(t) = exp(t?) — 1 with 1 < p < o0, its complementary N-function
yields an explicit for, but not simple (Rao & Ren, 1991, §2.2), see (Le et al., 2024, §A.8) for
the details.

1 1 _

Young inequality. Let &, U be a pair of complementary [N-functions, then we have
st < W(s)+ D(t).

Orlicz norm. Together with the Luxemburg norm, the Orlicz norm (Rao & Ren, 1991, §3.3,
Definition 2) is a popular norm for Lg (G, A) in the literature, defined as

£l = s { [ 1f@a@)r@) | [ B(la@Daa) <1}, (198)

where U is the complementary N-function of ®.

Computation for Orlicz norm. Following (Rao & Ren, 1991, §3.3, Theorem 13), the Orlicz norm
can be recasted as follows:

I£lo = jut 7 (14 [ @@ ).

Therefore, one can use any second-order method, e.g., fmincon solver in MATLAB (with trust re-
gion reflective algorithm), to solve the univariate optimization problem for Orlicz norm computation.

Equivalence (Adams & Fournier, 2003, §8.17) (Musielak, 2006, §13.11). The Luxemburg norm
is equivalent to the Orlicz norm. In fact, we have

1 llze < Iflle <201z, - (199)

Connection between LP and L4 functional spaces. When the convex function ®(t) = ¢, for
1 < p < o0, we have
LP(G,\) = Lg(G, N).

Generalized Holder inequality. Let ®, ¥ be a pair of complementary N-functions, then general-
ized Holder inequality w.r.t. Luxemburg norm (Adams & Fournier, 2003, §8.11) is as follows:

/ F(@)g(x)A(dx)
G

Additionally, we have the generalized Holder inequality w.r.t. Luxemburg norm and Orlicz
norm (Musielak, 2006, §13.13) is as follows:

/ F(@)g(x)\(dx)
G

<2 fllz, lolz,, - (200)

<Nl gl - (201)

D.7 GENERALIZED SOBOLEV TRANSPORT (GST)

We briefly review generalized Sobolev transport (GST) (Le et al., 2024) for graph-based measures.

Generalized Sobolev transport (GST) (Le et al., 2024). Let ® be an N-function and A be a
nonnegative Borel measure on G. For probability measures 1, on a graph G, the generalized
Sobolev transport (GST) is defined as follows:

GSo(p,v)= sup ’f@ f(@)p(dz) — fG f(x)l/(dx)‘
’ st fEWLLGN), [l <1,

where U is the complementary function of ® (see Equation (197)).
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E FURTHER DISCUSSIONS

For completeness, we recall important discussions on the underlying graph in (Le et al., 2022; 2024;
2025), since they are also applied and/or adapted to the proposed generalized Sobolev IPM with
Musielak regularization.

Measures on a graph (Le et al., 2025). We reemphasize that in this work we consider the Sobolev
IPM problem between two input probability measures supported on the same graph, which is also
explored in (Le et al., 2025). Such measures supported on a graph metric space are also considered in
OT problem, explored in (Le et al., 2022; 2024). Our work generalizes Sobolev IPM, and we also
derive a novel regularization for the generalized Sobolev IPM, which admits an efficient algorithmic
approach (i.e., simply solving a univariate optimization problem for its computation).

The generalized Sobolev IPM with Musielak regularization (GSI-M) is for input probability measures,
i.e., to compute distance between two probability measures, on the same graph. We further distinguish
the considered problem to the following related problems:

o Compute distance between two (different) input graphs. Petric Maretic et al. (2019); Dong &
Sawin (2020) compute OT problem between two input graphs, where their goals are to compute
distance between such two input graphs. Therefore, they are essentially different to our considered
problem which computes distance between two input probability measures supported on the same
graph.

o Graph kernels between two (different) input graphs. Graph kernels are functions between fwo
input graphs to measure their similarity. See Borgwardt et al. (2020) for a comprehensive review on
graph kernels. Obviously, this research direction is different to our considered kernels for SVM which
are built upon the GSI-M used for measuring similarity between two input probability measures on
the same graph.

Path length for points in graph G (Le et al., 2022). We can canonically measure a path length
connecting any two points z,y € G where x, y are not necessary to be nodes in V' of graph G.

Consider the edge e = (u, v) connecting two nodes u,v € V, for z,y € R"™ and x, y € e, we have
x=(1—s)u+ sv,
y=(1-t)u+tv,

for some scalars ¢, s € [0,1]. Therefore, the length of the path [z, y] along edge e (i.e., the line
segment (x, y)) is equal to |t — s|w,. As a result, the length for an arbitrary path in G can be similarly
defined by breaking down into pieces over edges and summing over their corresponding lengths (Le
etal., 2022).

Extension to measures supported on G. Similar to the regularized Sobolev IPM (Le et al., 2025),
the discrete case of the GSI-M in Equation (14) can be easily extended for measures with finite
supports on G (i.e., supports of the input measures may not be nodes in V, but possibly points
on edges in E) by using the same strategy to measure a path length for support data points in
graph G. More precisely, we break down edges containing supports into pieces and sum over their
corresponding values instead of the sum over edges.

The assumption of uniqueness property of the shortest paths on G. As discussed in (Le et al.,
2022; 2024; 2025), note that w, € R, for any edge e € E in graph G., it is almost surely that every
node in V' can be regarded as unique-path root node since with a high probability, lengths of paths
connecting any two nodes in graph G are different.

Additionally, for some special graph, e.g., a grid of nodes, there is no unique-path root node for such
graph. However, by perturbing each node, and/or perturbing lengths of edges if G is a non-physical
graph, with a small deviation, we can obtain a graph satisfying the unique-path root node assumption.

Besides that, for input probability measures with full supports in graph G, or at least full supports in
any cycle in graph G, then it exists a special support data point where there are multiple shortest paths
from the root node to it. In this case, we simply choose one fixed shortest path among them for this
support data point (or we can add a virtual edge from the root node to this support data point where
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the edge length is deducted by a small deviation). In many practical applications (e.g., document
classification and TDA in our experiments), one can neglect this special case since input probability
measures have a finite number of supports.

The generalized Sobolev IPM with Musielak regularization (GSI-M). Similar to regularized
Sobolev IPM (Le et al., 2025), we assume that the graph metric space is given. The question of
adaptively learning an optimal graph metric structure from given data is left for future work for
further investigation.

The graphs Gy,og and Ggqr (Le et al., 2022).  For an efficient and fast computation, we apply the
farthest-point clustering method to cluster supports of measures into at most M clusters. ® Then, let
the set of vertices V" be the set of centroids of these clusters, i.e., graph vertices. For edges, in graph
Grog, we randomly choose (M log M) edges; and M 3/2 edges for graph Gsqri- We further denote

the set of those randomly sampled edges as F.

For each edge e, its corresponding edge length (i.e., edge weight) w, is computed by the Euclidean
distance between the two corresponding nodes of edge e. Let n. be the number of connected
components in the graph @(V, E) Then, we randomly add (n. — 1) more edges between these n.
connected components to construct a connected graph G from G. Let E, be the set of these (ne—1)
added edges and denote set E = E U E,, then G(V, E) is the constructed graph.

Datasets. For the datasets in our experiments (i.e., TWITTER, RECIPE, CLASSIC, AMAZON
for document datasets, and Orbit, MPEG7 for TDA), one can contact the authors of Sobolev
transport (Le et al., 2022) to access to them.

Computational devices. We run all of our experiments on commodity hardware.

Hyperparamter validation. We use the same strategy as in (Le et al., 2025). For validation, we
further randomly split the training set into 70%/30% for validation-training and validation with 10
repeats to choose hyper-parameters in experiments.

The number of pairs in training and test for kernelized SVM (Le et al., 2025). Let N, Ny
be the number of measures for training and test respectively. For the kernelized SVM training, the
number of pairs which we need to evaluate distances is (N, —1) X % On the test phase, the number
of pairs which we need to evaluate distances is Ny X Ny.. Therefore, for each run, the number of
pairs which we require to evaluate distances for both training and test is totally N, x (% + Nie).

See Table | for the number of pairs we need to evaluate distances for kernelized SVM in experiments.

Large language models (LLM) for writing. LLM is only used for word choice to aid the writing.

18 M is the input number of clusters for the clustering method. Consequently, the clustering result has at most
M clusters, depending on input data.
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