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ABSTRACT

At the boundary between the known and the unknown, an agent inevitably con-
fronts the dilemma of whether to explore or to exploit. Epistemic uncertainty re-
flects such boundaries, representing systematic uncertainty due to limited knowl-
edge. In this paper, we propose a Bayesian reinforcement learning (RL) algo-
rithm, EUBRL, which leverages epistemic guidance to achieve principled explo-
ration. This guidance adaptively reduces per-step regret arising from estimation
errors. We establish nearly minimax-optimal regret and sample complexity guar-
antees for a specific class of priors in infinite-horizon discounted MDPs. Empiri-
cally, we evaluate EUBRL on tasks characterized by sparse rewards, long horizons,
and stochasticity. Results demonstrate that EUBRL achieves superior sample effi-
ciency, scalability, and consistency.

1 INTRODUCTION

In a completely unknown environment, what compels an agent to seek new knowledge? This drive
is captured by the concept of exploration, which lies at the heart of reinforcement learning, from
e-greedy to Boltzmann exploration (Sutton & Bartol [2018). Yet, these heuristics often fall short in
more challenging environments, particularly those with sparse rewards, long horizons, or stochas-
ticity. Epistemic uncertainty (Der Kiureghian & Ditlevsen) 2009) characterizes the degree of un-
knownness, providing a principled basis for exploration. However, it remains unclear how to most
effectively leverage this uncertainty to guide learning.

Bayesian RL (Duff] 2002) provides a framework for modeling a world of uncertainty. An agent
seeks to maximize cumulative rewards based on its current belief, interact with the environment, and
update that belief—without knowing the true dynamics and rewards. From the agent’s perspective,
the world is epistemically uncertain. It must balance exploration and exploitation to find a near-
optimal solution. By placing a prior over both transitions and rewards, epistemic uncertainty arises
from limited data: the less familiar the agent is with a region of the environment, the more it is
incentivized to explore it. Nonetheless, higher uncertainty also raises the risk of unreliable estimates.
A common approach is to add the uncertainty as a “bonus” directly to the reward, a strategy known
as optimism in the face of uncertainty (Kolter & Ng| (2009); Sorg et al.| (2012)). However, even
small errors in the reward can propagate into an inaccurate value function, potentially resulting in
unnecessary exploration and slower convergence.

When measuring the efficiency of an algorithm’s exploration, metrics such as regret (Lai & Robbins,
1985} |Auer et al.| |2008)—the cumulative difference from the optimal value function—or sample
complexity (Kakade} [2003)—the number of steps that are not e-optimal-—are commonly used. An
algorithm is said to be minimax-optimal (Lattimore & Hutter, [2012; |Dann & Brunskilll 2015) if its
bounds match the corresponding lower bound up to logarithmic factors. While previous works based
on optimism (Kakade} 2003} |Auer et al., 2008; Strehl & Littman) 2008 |[Kolter & Ng,|2009)) or sam-
pling (Strens} 2000; (Osband et al.,|2013) have been shown to achieve strong theoretical guarantees,
their use of uncertainty quantification remains limited, leaving room for improvement in practical
problems, particularly those requiring sustained and efficient exploration.

In this paper, we propose EUBRL, an Epistemic Uncertainty directed Bayesian RL algorithm for
principled exploration. We use probabilistic inference to model epistemic uncertainty as part of the
agent’s objective. This approach guides the agent to explore regions with high epistemic uncertainty
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while mitigating the impact of unreliable reward estimates. Our contributions are both theoretical
and empirical:

* We prove that EUBRL is nearly minimax-optimal in both regret and sample complexity
for infinite-horizon discounted MDPs, with epistemic uncertainty adaptively reducing the
per-step regret.

* We instantiate prior-dependent bounds and demonstrate their applications using conjugate
priors.

* We demonstrate that EUBRL excels across diverse tasks with sparse rewards, long horizons,
and stochasticity, achieving superior sample efficiency, scalability, and consistency.

To the best of our knowledge, our result is the first to achieve nearly minimax-optimal sample
complexity in infinite-horizon discounted MDPs, without assuming the existence of a generative
model (Gheshlaghi Azar et al., [2013).

2 PRELIMINARY

An infinite-horizon discounted Markov Decision Process (MDP) is defined by a tuple M =
(S, A, P,r,v), where S and A are the state and action spaces, both of finite cardinality, denoted
by S and A, respectively, P the transition kernel P(:|s,a), r the expected reward function, and
v € [0,1) the discount factor. We assume the source distribution of rewards has bounded support
in [0, Rmax]- A policy 7 is a mapping from states to actions, whose performance is measured by the

expected return V™ (s) = E {Z Vr(sesr, aser)|se = s, 7T:|. The goal is to find the optimal policy
=0

7*(s) = argmax, V7 (s), Vs € S, whose value function is V*(s). We denote the maximum value
function as VJ = %’“i; and, whenever applicable, V;I := H Ry, for its finite-horizon counterpart.

2.1 BAYESIAN RL

We consider the Bayes-adaptive MDP (BAMDP) (Duff, 2002)) to model the agent’s learning process.
Given a prior by, the uncertainty over both the transitions and rewards—or equivalently, possible
MDPs—is explicitly modeled. A policy is Bayes-optimal if it maximizes expected return in the
belief-augmented state space (s,b) € S x B, where b is a belief over MDPs. Formally, it solves
the Bellman optimality equation under the posterior predictives P, and 7, of the corresponding
BAMDP. However, this solution requires full Bayesian planning (Poupart et al.,[2006; |Kolter & Ng,
2009; |Sorg et al., 2012), which is computationally expensive and typically intractable because the
belief-augmented state space can be too large to enumerate, and the belief must be recalculated every
time a new state is encountered. Consequently, agents generally must approximate Bayes optimality.
One simple yet effective alternative is the mean MDP (Kolter & Ng|, 2009} [Sorg et al.| 2012), which
fixes the belief during planning. This is essentially equivalent to an MDP (S, A, Py, 7, ) given a
belief b. When indexed by time, b; refers to the posterior given all data up to time ¢. By solving
the corresponding mean MDP, we obtain a policy 7; derived from the subjective value function V*
and its objective evaluation in the underlying MDP, V"¢, Our goal is to find the optimal policy 7*
by repeatedly solving the mean MDP during interaction, alternating between posterior learning and
policy optimization.

2.2  METRICS FOR EXPLORATION

We define per-step regret as A; = V*(s;) — V™ (s;). Regret and sample complexity are defined
from different angles:

T [eS)
Regret Z Ay, Sample Complexity Z 1(A; > e).
t=1 t=1
Low regret does not imply low sample complexity, and vice versa. Regret, which is more cost-

oriented, focuses on how much you lose while learning, whereas sample complexity cares about
learning efficiency, i.e., the number of samples needed to learn properly.
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A lower bound is best achievable for regret, Q ( (1\/_57%)1?5 ) (He et al.,2021), and for sample complex-

ity, Q ((m) log 5) (Strehl et al.|, |2009; [Lattimore & Hutter, 2012). When an algorithm’s up-

per bound matches those lower bounds up to logarithmic factors, it is considered minimax-optimal;
if it holds only in the asymptotic regime of large 7" or small ¢, the algorithm is considered nearly
minimax-optimal.

3 METHODOLOGY

3.1 EPISTEMIC UNCERTAINTY

Learning an imperfect model is of epistemic nature, where the uncertainty arises from a lack of
knowledge and is, in principle, reducible by observing more data. In general, epistemic uncertainty
captures the degree of disagreement in the belief, typically, quantified by a distance measure as a
function of the posterior predictive and the likelihood. For example, for transitions, we have

Er(s,a) = fog(Py(s'ls,a)) = Ewnpw) [f 0 g(P(s]s, 0, W))],
for some functions f and g that take a scalar or a distribution as input. When f(x) = —22, g(p) =
E,(z)[z], it corresponds to the variance Varyp, (E[s[s,a,w]). When f(p) = H(p),g9(p) = p
it corresponds to mutual information MI(s,a) = H (Py(s'|s,a)) — Epw) [H (P(s']|s,a, w))]. A
similar argument holds for rewards £g(s, @) by substituting s’ with r.

We adopt a generalized formulation of epistemic uncertainty to integrate both sources:
E(s,a) = h(Er(s,a),Er(s,a)).
In this paper, we consider h(z,y) = 1(y/x 4+ \/y), where 1 is a scaling factor.

3.2 PROBABILISTIC INFERENCE AND EPISTEMIC GUIDANCE

Traditionally, RL aims to maximize cumulative reward. A pivotal question is how to account for
epistemic uncertainty in this objective to balance exploration and exploitation. One common ap-
proach is optimism-based methods, modifying rewards with an additive bonus 7 = 7, + N7bonus-
However, this can be misleading when 7} is uncertain. In this regard, we utilize probabilistic in-
ference to model epistemic uncertainty directly in the objective, disentangling exploration and ex-
ploitation and making it more resilient to unreliable reward estimates.

Probabilistic inference has a rich history in decision-making (Todorov, 2008; Toussaint, 2009;
Levine, 2018). It has been shown that standard RL can be formulated as an inference problem
by introducing a binary “optimality” random variable O;:

mapr logHP (O = 1]s¢, at)
t=0
with an exponential transformation P(O; = 1]|s¢, a¢) o exp (r(s¢, a¢)) and 7 denoting a trajectory.

We introduce the notion of probability of uncertainty, representing the degree of uncertainty, gov-
erned by a binary “uncertainty” variable U;. Marginalizing over this variable, we obtain a lower
bound on per-step likelihood:

10gP(Of = l\st,at) = IOgEUt [P (Ot = 1|5t,at, Ut) |5t,at]
Z ]EUt [IOgP (Ot = 1|St, Qg, Ut) |St, Clt] .
Note that since U, is binary, if we adopt the same exponential transformation, which intensifies the
higher uncertainty, we obtain the epistemically guided reward:
rEBRL (s a) == (1 — P(U = 1|s,a)) ry + P(U = 1|5,a)& (s, a).

Intuitively, when uncertain, EUBRL focuses more on epistemic uncertainty, as an intrinsic reward,
encouraging exploration; when confident, it is more committed to exploiting what has been learned.
We call this kind of behavior epistemic guidance. The probability of uncertainty P(U = 1|s,a)
naturally disentangles the two ends, being more indifferent to reward estimates in the early stage
and becoming more committed as evidence accumulates. Although its definition can vary, P(U =

1| s, a) must reflect epistemic uncertainty. For simplicity, we choose P(U = 1| s,a) = Sb(s ) and

Emax

use the shorthand Py (s, a) whenever applicable. The full Algorithm|[l]is provided in the appendix.
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4 THEORETICAL ANALYSIS

In this section, we aim to answer two key questions: (1) What is the role of epistemic guidance,
and (2) How efficient is the exploration for EUBRL. Theoretically, an algorithm is considered ef-
ficient in exploration if it achieves sublinear regret or polynomial sample complexity, the latter
being known as PAC-MDP (Kakade, 2003} |Strehl & Littman, |2008)). Many algorithms have been
shown to be efficient in exploration. In particular, (He et al.,[2021)) has shown that achieving nearly
minimax-optimality for regret is possible in infinite-horizon discounted MDPs. However, it is not
clear whether this holds for sample complexity. We show that EUBRL achieves both nearly minimax-
optimal regret and sample complexity, providing insight into how epistemic guidance adaptively re-
duces per-step regret. Our analysis builds on the concept of quasi-optimism (Lee & Oh| [2025),
which established minimax-optimality in finite-horizon episodic MDPs—yet its applicability to
infinite-horizon MDPs remains unexplored. Unlike finite-horizon episodic MDPs, which feature
clear separation into episodes and allow backward induction over horizons, infinite-horizon MDPs
are more involved due to the coupling of trajectories and the stationarity of value functions.

For the sake of brevity, our analysis begins from a frequentist perspective, with & (s, a) = \/ﬁ ,
s,a

where N(s, a) denotes the number of visits to (s, a) right before the ¢-th step. We then extend and
instantiate this framework in the Bayesian setting. For simplicity, we assume V(s) = (Q(V,YT )
with positive multiplicative constant C' = 1 in both settings, although the constant can be any finite
number.

4.1 REGRET DECOMPOSITION

The per-step regret, a central quantity in both regret and sample complexity, can be decomposed as
follows:

VA(s) = VT (s) = V*(s) = V'(s) + V'(s) = V'(s) + V'(s) = V™,

Quasi-optimism Complexity Accuracy

where ‘7"(5) is an auxiliary value function that ensures quasi-optimism, despite the introduction of
additional complexity.

Let {\;}$2; be a sequence of real numbers with A\, € (0,1],V¢ € N. Those values arise from
Freedman’s inequality (Freedman, [1975), which has been refined by (Lee & Oh, [2025). Denote
D, = Rpax e

Bounding each part individually and combining the results of Corollary 2H3] and Lemma [T4] we
obtain:

Theorem 1 (Bound of Per-step Regret). For infinite-horizon discounted MDPs, with probability at
least 1 — 0, it holds that for all s € S,t € N,

x 9 )
V*(s) — V™ (s) < (2 - mt(s)> MV +2J0(s)+ O (@t (1 + Vj)) ,
where we define the following as Epistemic Resistance

R (s) = 2P (5, m(s)) + 2P (5,7 (5)).

Here, Jﬁ (s) is a Bellman-like function involving error terms and can be bounded using Lemma
[21]in the Appendix

Intuitively, epistemic resistance adaptively reduces the per-step regret based on the unfamiliarity of
the actions chosen by the current policy and the optimal policy. The greater the uncertainty of these
actions, the lower the per-step regret, which highlights the critical role of epistemic uncertainty. In
fact, the reduction of total regret is even more pronounced, as indicated by the following bound.

Lemma 1 (Lower Bound of Epistemic Resistance). Given a uniform \y = \,Vt € N, it holds that

T
23R 2
t 4 > max N
t:E - R (st))\tV,y = 77(1 _ ’y) (5max (\/T 1) + 1> /\,

foranyT € N.
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4.2 FREQUENTIST BOUNDS

Theorem 2. For infinite-horizon discounted MDPs, for any fixed T € N, with probability at least
1 — 9, it holds that

N 2
Regret(T) < O < SAT 5°A ) .

A—ys T 1=

Note that when T" > fi—’;‘, the regret matches the lower bound, implying nearly minimax-optimality.
This result improves the state-of-the-art frequentist bound from (He et al.| [2021)).
Theorem 3. Let € € (0, V,ﬂ, 0 € (0,1, and M = (S, A, P,r,~y) be any MDP. There exists an input
N = Enax T + Ruax/m, such that if EUBRL is executed on MDP M, with probability at least 1 — 6,
V™ (s;) > V*(s;) — € is true for all but O ((62(fi4,y)3 + €(fif:)2> log %) steps.

Here, T is a function of (5, 4, J, A, V,YT ), and m a critical point where the complexity term is suf-

ficiently bounded (see Table . Note that when € € {0, ﬁ}, the sample complexity matches
the lower bound, implying nearly minimax-optimality. This result, to the best of our knowledge,
is the first online algorithm to achieve such a bound without assuming a generative model (Ghesh-

laghi Azar et al.| [2013]).

4.3 FROM FREQUENTIST TO BAYESIAN

In this section, we instantiate prior-dependent bounds and demonstrate their applications using con-
jugate priors based on the frequentist results.

We abstract the properties of posterior predictive and epistemic uncertainty induced by priors. Due
to space limitations, we only outline the conceptual ideas here and defer the details to Definitions[T3}-
[I6] A prior is decomposable if the difference between the posterior predictive and the ground truth
can be decomposed into a frequentist bound and a prior bias; a prior is weakly-informative if the
posterior predictive is close to the empirical mean. If the prior is uniform, the prior bias admits a
universal constant, and if bounded, the posterior predictive of the reward is bounded.

Definition 1. Let € be defined by the class of decomposable or weakly-informative priors whose
rate of epistemic uncertainty is © (ﬁ) .

This class can be quite expressive, as it can be either correlated or independent over state-actions,
including hierarchical priors.

Theorem 4. Let M = (S, A, P,r,) be any MDP. For any prior by € €, there exists an instance
of EUBRL such that, when executed on M, it achieves, with probability at least 1 — 0, a prior-
dependent bound on regret, or alternatively, on sample complexity, depending on the choice of 1. If,
furthermore, b is assumed to be uniform and bounded, these bounds are nearly minimax-optimal.

The significance of this result is that, depending on the priors, we can achieve even tighter bounds.
In addition, it can be nearly minimax-optimal despite dependence on the prior. We demonstrate
its applications with the two most commonly used priors: Dirichlet for transitions and Normal or
Normal-Gamma for rewards.

Corollary 1. Let by denote the joint distribution consisting of a Dirichlet prior Dir(algx1) on
the transition probability vector and a Normal prior N (po, %) on the mean reward with known

precision T for all (s,a) € S x A. Then by € € and is uniform and bounded, and hence achieves
nearly minimax-optimality when used with EUBRL.

To the best of our knowledge, this is the first nearly minimax-optimality result in the Bayesian
setting. Nevertheless, we also find that EUBRL can fail in certain special cases.

Proposition 1. For a Normal-Gamma prior NG (19, Ao, o, Bo), regardless of parameterization,
there exists an MDP such that 3t € N for which quasi-optimism does not hold.
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Table 2: Summary of tasks. For Loop, we denote
L as the number of loops and Ly, as the k-th loop;
for Deepsea, N is the side length; for LazyChain,
N is the balanced length. “D” stands for deter-
ministic and “S” stochastic.

Table 1: Results on Chain environment. The
average return and standard error are com-
puted across 500 random seeds, with each
run consisting of 1000 steps.

Algorithm  Average Return SE Task 5 A r TYPE
CHAIN 5 2 101(y— S

PSRL 3158 31 (s'=5)

RMAX 3090 36 Loor etz 2 (1</s/l:1ANZL1)) + D

BEETLE 1754 - /=1 AND Ljsq

BOSS 3003 _ DEEPSEA NxN 2 iES/:(N’]\;Rg - D

a=RIGHT N

Mean-MDP 3078 49 DEEPSEA N D oy + S

BEB 3430 ) N(07 1)1(5’:(N,1)) -

MBIE-EB 3462 - T

VBRS 3465 20 ~ 50 LAZYCHAIN 2N +1 3 (2N—-1)1(y—eun+ S,D

EUBRL 3473 16 (N - 1) 1(5’:LEFT) +

0 1(a=D0 NOTHING)

11 (OTHERWISE)

Intuitively, since the epistemic uncertainty of the Normal-Gamma depends on the sample variance,
when the environment is deterministic or nearly deterministic, this term can be zero, leading to a de-
generate rate of epistemic uncertainty that violates the requirement of quasi-optimism. Nonetheless,
this issue can be alleviated by using sufficiently small prior parameters to control prior bias.

When the prior is misspecified such that the initial epistemic uncertainty is very low, the method
may also encounter difficulties and could fail to converge.

Theorem 5 (Prior Misspecification). Let 7 = 1. There exists an MDP M, a prior by, an accuracy
level eg > 0, and a confidence level 5y € (0, 1] such that, with probability greater than 1 — §,

Ve (St) < V*(St) — €0
will hold for an unbounded number of time steps.

In other words, this counterexample highlights the vital importance of the scaling factor  and the
priors in enabling efficient exploration.

5 EXPERIMENTS

In this section, we aim to measure the exploration capabilities of EUBRL on tasks with sparse re-
wards, long horizons, and stochasticity. We focus on sample efficiency, scalability, and consistency,
as reflected by metrics such as the number of steps or episodes required to fully solve a task, scal-
ability with respect to problem size, and success rate. We find that EUBRL generally matches or
outperforms previous principled algorithms, with the advantage increasing as problem size grows.
We compare EUBRL with both frequentist and Bayesian methods. Our benchmarks include well-
known standard tasks in the Bayesian literature, Chain and Loop (Strens| 2000)—the former highly
stochastic, the latter deterministic and emphasizing state-space structure—as well as more complex
environments: we study DeepSea (Osband et al., 2019bja) and design LazyChain, both featuring
sparse rewards, long horizons, and deterministic and stochastic variants. Details are provided in
Table[2]

Baselines Frequentist algorithms based on optimism include RMAX (Brafman & Tennenholtz,
2002), which assigns unknown state-action pairs the maximum possible reward, and MBIE-EB
(Strehl & Littmanl, [2008), which uses Hoeffding’s inequality to derive a reward bonus rf & =

1 t . . . . . _ . _
7m, where n(s, a) is the number of visits up to and including the ¢-th step. Bayesian meth

ods are flexible in incorporating prior knowledge. Sampling-based methods include PSRL (Strens),
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Loop Scaling

—4— EUBRL
-4+- RMAX

N
o
o

w
v
(=)

Table 3: Results on Loop environment of 2
Loops. The average return and standard error
are computed across 500 random seeds, with
each run consisting of 1000 steps.

w
o
(=)

N
w
(=]

Algorithm  Average Return SE

Average Return upon Solving Task

200
PSRL 377 1
RMAX 394 0 150
Mean-MDP 233 3.4 24 8 16 32
BEB 386 0 # Loops
EUBRL 395 0.04 Figure 1: Scaling of number of loops, leading to

more sparsity and structural difficulty. Averaged
over 500 random seeds.

2000; |Osband et al., |2013)), which acts optimally with respect to a model sampled from the belief,
and BOSS, which samples multiple models and solves a merged MDP. Optimism-based Bayesian
methods 1nclude BEB (Kolter & Ngl|2009)), which is based on the mean-MDP with an additive bonus
TEonus = m, where « are the prior parameters of the Dirichlet distribution; however, it

assumes the reward function is known, and VBRB (Sorg et al.l [2012)), which is based on the vari-
ance in the belief over both reward and transition. VBRB is similar to ours but, being tailored only
to variance, does not include epistemic guidance. Moreover, classic Bayesian methods are worth
comparing: BEETLE (Poupart et al., 2006) provides an analytic solution to BAMDP, where the
Bayes-optimal policy implicitly trades off exploration and exploitation, and Mean-MDP (Poupart
et al., 2006} Kolter & Ng}, 2009} Sorg et al.L|2012) approximates BAMDP without any reward bonus.

Results As shown in Table [I] and [3] in Chain and Loop, EUBRL not only outperforms all rele-
vant baselines but also exhibits low variability. Notably, Mean-MDP consistently performs subpar,
highlighting the importance of a reward bonus for sustained and efficient exploration. Furthermore,
we evaluated EUBRL against RMAX—whose inductive bias favors deterministic environments—on
Loop by increasing the number of loops, which leads to more sparsity in the state space; surpris-
ingly, even with a perfect prior—so that RMAX knows the transitions and rewards after experiencing
them—it scales less favorably than EUBRL. This suggests that the priors in Bayesian methods may
have a smoothing effect, enabling more scalable performance in sparse environments.

Another standard benchmark is DeepSea, a hard-exploration problem where a dithering strategy
may require an exponentially large amount of data, and the success probability decays exponentially
as the problem size increases (Osband et al.| [2019b)). As depicted in Figure Q], for the deterministic
variant, most methods are able to solve the task. Surprisingly, PSRL (or Thompson sampling in ban-
dit setting)—despite being an effective sampling strategy for exploration—do not scale well as the
problem size increases, likely because their sampling is excessively frequent, causing unnecessary
exploration and fluctuations near convergence. Additionally, BEB, a Bayesian method, also based
on the mean MDP, does not leverage any posterior information in the reward bonus, making it less
flexible across different environments and resulting in slower convergence. On the other hand, the
stochastic variant is a harder problem, with stochastic rewards, additional competing sources, and
randomized transitions. We consider two priors for EUBRL: one more conservative and the other
more exploratory, denoted as EUBRL+. We find that our method is more sample-efficient, requiring
fewer steps to solve the task, and more scalable and consistent. Moreover, EUBRL+ perfectly solves
the task without failure—a result not observed in previous works.

Lastly, we design an environment called LazyChain, which involves long horizons, sparse rewards,
and myopia. Starting from the middle of the chain, the agent can choose to do nothing, incurring
no cost but making it impossible to obtain higher rewards. Even upon reaching one of the ends, the
agent receives a positive immediate reward, but the cumulative reward remains zero, preventing
effective credit assignment. To succeed, the agent must sufficiently explore the chain to reach both
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Figure 2: Success rate and average episodes to solve task, reported for both deterministic and
stochastic variants over different problem sizes (S = IV x NN). Averaged over 20 random seeds.

ends and overcome the myopia. Results in Figure [3] show that EUBRL consistently outperforms
other methods, exhibiting better sample efficiency and scalability, even under heavy noise injection
in the transitions.

Prior Selection We discuss the selection and incorporation of priors. We use independent Dirich-
let (Dearden et al [1999) and Normal-Gamma priors for transitions and rewards. Although Propo-
sition [4] suggests that Normal-Gamma may be degenerate, we find that it adapts more smoothly to
changes. Since we have diverse stochastic environments, the sample variance can inform epistemic
uncertainty. In contrast, Normal-Normal assumes the precision 7 (the reciprocal of variance) is
fixed, entirely disregarding variability.

Moreover, in practice—for example, in navigation tasks where per-step transitions are similar across
different states—it is beneficial to use a tied prior, maintaining a single global Dirichlet prior that
is aggregated and distributed among all states. As shown in Figure J] EUBRL (Tied Prior)
indeed reduces the number of samples required for convergence.

From Section 3.1} we know that the definition of epistemic uncertainty is not unique. Beyond
variance, one information-theoretic measure is mutual information, which quantifies the reduction
in uncertainty after collecting additional evidence. As shown in Figure[3] EUBRL (MI), although
taking slightly more steps, achieves the highest success rate.

6 RELATED WORKS

Bayesian RL. Bayesian RL maintains a posterior over uncertain quantities and uses this uncer-
tainty to guide policy selection. From bandits (Thompson| [1933} [Kaufmann et al.,2012) to MDPs
(Dearden et al [1999} [Strens, [2000; [Kolter & Ngl 2009), this idea enables effective exploration
strategies that are otherwise impossible with simple dithering. BAMDP 2002) formally
represents uncertainty over MDPs by augmenting the state with beliefs, allowing derivation of a
Bayes-optimal policy, though it is generally intractable. Approximate methods include mean-MDP

(Poupart et al, [2006), sparse sampling (Wang et al., 2005)), and approximate inference (Wang et al.|

2012). Despite being Bayesian, most of these works make limited use of uncertainty quantification,
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Figure 3: Success rate and average steps to solve task, reported for both deterministic and stochastic
variants over different problem sizes (S = 2N + 1). Averaged over 20 random seeds.

without fully leveraging the posterior. VBRB 2012) employs variance similar to ours;
however, it is motivated by Chebyshev’s inequality and lacks epistemic guidance.

Provably Efficient RL The idea of knownness 2003), combined with Hoeffding’s in-
equality, underlies the PAC-MDP (Strehl & Littman), 2008}, |Strehl et all, 2009) and PAC-BAMDP
(Kolter & Ng| 2009} [Araya-Lépez et al.,2012) guarantees, though these bounds are loose compared
to our frequentist results. (He et al.| shows that nearly minimax-optimal regret is achievable
in infinite-horizon discounted MDPs, but whether similar sample complexity guarantees hold re-
mains unclear. Although several works achieve nearly minimax-optimal regret
or sample complexity (Dann & Brunskill, 2015} [Dann et al.} 2019) in the finite-horizon setting us-
ing refined concentration bounds (Lee & Ohl 2025), the infinite-horizon setting is generally more
challenging due to trajectory coupling and value function stationarity.

Uncertainty Quantification Cognitively, epistemic uncertainty—arising from knowledge
gaps—elicits curiosity (Kidd & Hayden| [2015), which can enhance memory for surprising informa-
tion 2009). Mathematically, it represents the surprise or disagreement of one’s belief,
corresponding to mutual information (Hiillermeier & Waegeman| 2021)) or variance. Using epis-
temic uncertainty as an intrinsic reward is principled and more scalable than count-based methods.
An open question is how to capture it across multiple hierarchies without hand-crafted rewards.

7 CONCLUSION

In this paper, we introduce EUBRL, a Bayesian RL algorithm that leverages epistemically guided
rewards for principled exploration. The epistemic guidance naturally disentangles exploration and
exploitation, and is proven to adaptively reduce per-step regret. Theoretically, we prove that EUBRL
achieves nearly minimax-optimal regret and sample complexity for a class of priors that are suf-
ficiently expressive; we instantiate this result on the two most commonly used priors. Empirical
results demonstrate the strong exploration capabilities of EUBRL on tasks with sparse rewards, long
horizons, and stochasticity, achieving superior sample efficiency, scalability, and consistency. This
work opens the door to scaling EUBRL to more complex environments such as robotics and LLMs.
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A ALGORITHM

Algorithm 1 EUBRL

Sp ~ P(So)
7+ ValuelIteration(b)
fort <~ 0toT —1do
Act: a; = w(ag|st)
Interact: S¢41,7¢ ~ P(St41,7¢|S¢t, ar)
Update belief: b < BeliefUpdate(sit1,7t)
count =count +1
if 5441 is terminal or count exceeds the maximum then
St41 < 8~ P(sp)
count =0
end if
if time to update policy then
7 < ValuelIteration(b)
end if
end for

Note that the algorithm is general. For finite-horizon episodic MDPs, the maximum allowable steps
are H, and the policy is updated at this frequency. For infinite-horizon discounted MDPs, the policy
is updated at every step. A state is considered terminal if the agent cannot recover from it or if it rep-
resents a successful outcome, and the environment itself periodically resets such states, independent
of the agent.

B NOTATIONS AND LOGARITHMIC TERMS

In this section, we summarize the notation and logarithmic terms used exclusively for the analysis
of both finite- and infinite-horizon settings. To begin with, we denote PV (s, a) := Ep(y/s,4)[V (5')]
for any distribution P and function V.

B.1 FINITE-HORIZON EPIsODIC MDPs

Whenever we refer to k or h, they denote the episode and a particular step of that episode, respec-
tively. We define Ay, (V)(s,a) = Vi(s) — PVii1(s, a). Furthermore, we define N¥(s, a) as the
number of visits to (s, a) before the k-th episode, and n¥ (s, a) as the number of visits up to and
including the h-th step of the k-th episode. It is useful to define stopping time v, as follows:

ko { min{h € [H] :nj(s, ap) > 2N*(s};, ap)}, - if hoexists.
H+1, otherwise.

Intuitively, the stopping time is the first time step within an episode at which the number of visits
has more than doubled compared to before the episode.

B.2 INFINITE-HORIZON DISCOUNTED MDPs

Whenever we refer to t, it denotes the time step, which is the same as the environment step. Analo-
gously, we have A (V)(s,a) = V(s) — yPV (s, a). In addition, we define N’(s, a) as the number
of visits to (s, a) right before the ¢-th step, and n’(s, a) as the number of visits up to and including
the ¢-th step. The stopping time 14 is defined as follows:

. min{r € [t,T] : n"(s;,a,) > 2N'(s,,a,)}, if T exists.
T T+, otherwise.

The main difference from the finite-horizon setting is that, for every time step ¢, we look ahead to
determine a stopping time v, rather than relying on a single stopping time that applies to an entire
episode.

12
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Table 4: Summary of logarithmic terms and additional notations used in the analysis, with shorthand
notation. Each term is specialized for finite- and infinite-horizon MDPs, where symbol [J takes
either episodes or steps as input.

Shorthand Finite-horizon episodic MDPs Infinite-horizon discounted MDPs

24HSA 245 A
o log (#45>4) log (#54)
f20 log (1 + &) log (1+ 55)
SA(1+logk SA(1+lo,
ls0 log (12 (1;1 g kH) log (12 (};r g t)
O, k s,a O, t S,a
&m(s,a) log (12SA(1+15gN (s, ))) log (12SA(1+16gN (s, )))
40 log % log %
ls e log (1 +280B(e)H) log (1 + 140B(e))
T Te
Lo, loglog @ loglog E(‘l/”i_,y)
R2 H?¢ Rumax HS (201 4-46,) R2 ¢ Rumax S(201+06.)
B(G) €2 ! + € e 62(1771)3 + e(1—)2 °
v V]2
mo R, 7 Rz 7
V2 V.2
m R2,\ R2,\
O Ve AN
T ﬂ. : X
T 7v£,zl 7v£e1
77D Emaka + Rmax\/ mg gmaXTt + Rmax\/ my
gmaxT + Rmax\/a gmaxT + Rmax\/m

C HiGH PROBABILITY EVENTS

In this section, we outline high probability events that are basis of the analysis henceforth. Let
{ Ak}, be a sequence of real numbers with A\x, € (0,1],Vk € N for finite-horizon episodic MDPs.
Analogously, we have {\;}72, for infinite-horizon discounted MDPs. They arise from Freedman’s
inequality (Freedman, |1975), and has been enhanced recently by (Lee & Oh, [2025)).

13
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C.1 REGRET ANALYSIS

C.1.1 FINITE-HORIZON EPisoDIC MDPs

A A 3V
— k * < ANk * 71 h H. k
Al {‘(P P)‘/h—‘rl(sﬁa)‘ — 4vg~lvar(vh+l)(8,a) )\ka(S a) ,V(S,G) €S x Aa € [ ]7 eEN
. 1 . 6V, 24,
Ay = (P = P*)(Vii) (s,0) < ivar(vh-&-l)(saa) mvv(&a) €SxAhe[H,keN
- 2P(s" | s,a)ls k(s,a) = 203 5(s,a)
— k(! _ ! < ’ B > 1
A {P (s" | s,a) — P(s s,a)‘_Q\/ NE(s,a) +3Nk(s’a),V(s,a)€S><A,s €S, keN
Ay = | (s,a) —r(s a)| < Apr(s,a) + MV(S a) eSx A keN
) ) — ) )\ Nk(s a) ) )
K vF-1 1 K vF-1
As =D (PIR(shaf) = Thpa(shiy) < ﬁz Var(JE,1)(sh,af) + 3V 10.?; 5 VK EN
k=1 h=1 Vg 1231 =
K u’“—l 1 X L 6
Ag = Z Jh+1) (si,ai) - (Ji]f+1)2(32+1)) < ) Z Var(J,]erl)(slf“ alﬁ) + 6V11T12 log 57VK eN
k=1 h=1 k=1 h=1
C.1.2 INFINITE-HORIZON DISCOUNTED MDPs
A} = ‘(ﬁt — P)V*(s a)‘ < A NVar(V*Y(s,a) + P ICLTN V(s,a) €S x AteN
1 — b — 4V’;]~ ’ Ath(S CL) ) bl
o 9 1 6VT2£1
A =< (P —P")(V*)?(s,a) < §Var(V*)(s, a) + Ni(s.a)’ V(s,a) e Sx A teN
- 2P(s" | s,a)l3 k(s a) 23 1(s,a)
- tio! _ / <9 ’ 5 ’ /
Aj {P(s | s,a) — P(s |s,a)’_ \/ Nt(s,a) 3Nt(s’a),V(s,a)€S><A,s €S,teN
Al =S| (s,a) —r(s,a)| < N\r(s,a) + MV( a)eSx A teN
4 ’ = ’ MNt(s,a)’
S (1- : 6V 6
Ag = g Z + (5t+l7 at_,_l) - Jt(SH_H_l)) < SVT ;Var Y (S,u,_l)) (St, at) + 1 _’Y/y log E,VT eN
T 2
2 12\/T 6
Ag = {; ( St+1 (st7at) — (Y 8t+1 ) ZV&T 3t+1 ) (Stuat) + Wlog 5 VT €N

For the definition of Y*(s;,1), please refer to the proof of Lemma

C.2 SAMPLE COMPLEXITY

To analyze sample complexity, we consider modifying the last two events using an indicator function
that only accounts for a subset of episodes or time steps deemed “bad”. Since the resulting bound is
almost identical, except that these “bad” indices replace the full summation, we denote such events
as A7, Ag for finite-horizon episodic MDPs, and A7, A{ for infinite-horizon discounted MDPs.
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C.3 PUTTING ALL TOGETHER
Each undesirable event is assigned probability at most g. By the union bound, the probability of
their intersection is at least 1 — d. Therefore, we have the following events spanning different results:
A=n°_ A,
B:=n_,A]
C = ( i:1Ai) N (A7 N Asg)
D= (N_,A))N(ATNAY).

D PROOFS FOR FINITE-HORIZON EPISODIC MDPSs

Our proof starts with finite-horizon episodic MDPs, which are simple to illustrate and play a vital
role in bridging to the infinite-horizon case.

D.1 PRELIMINARY CONSTRUCTIONS

Since our formulation decays more aggressively than ﬁ, we need to introduce an auxiliary value

function V* that behaves the same as the original before a critical point m, however, after which
the error should be manageable. That is, it is the value function of the MDP (S, A, P* #* H),
where only the reward is different compared to V* of (S, A, P*, 7k prr, H). The modified reward
is defined as 7% = (1 — PE)#* + b¥, where the bonus term b* is defined as:

B PEnkek, if NF < m.
PE Ripax + ]%, otherwise.
Here 0% = Enax ¥ + Rumax/Mk, for which more details can be found in Lemma

The reward is increased to a degree that decays at least as fast as ﬁ, ensuring an advantage over
the complexity arising from the reciprocal of visits. Although this advantage holds for an arbitrary
m, we need to control the error between the two value functions thereafter. For this reason, we set

V2 . . .
mg = ﬁ, which yields a sufficiently small error.

D.2 QUASI-OPTIMISM WITH EPISTEMIC RESISTANCE

Lemma 2. For finite-horizon episodic MDPs, under high-probability event A1 N Ao, it holds that
foralls € S;h € [H+ 1],k €N,
3

V) + (5 - Pt 2 )

Proof. Since we want to bound the error between V*(s) and V*(s) for any s € S. The auxiliary
function is served as a bridge to achieve that. Let us decompose the error V*(s) — V¥(5s) as follows:

V*(s) = VF(s) = V*(s) — VF(s) + VF(s) — VF¥(s).

Quasi-optimism Complexity

The complexity can be bounded by Lemma|[3] and its proof will be given later. We now focus on the
other part.

The proof follows the procedure of Lemma 2 in (Lee & Oh,|2025), with modifications to fit our for-
mulation. The epistemic uncertainty guidance allows us to establish a refined induction hypothesis,
thereby tightening the bound in proportion to the degree of uncertainty.

To simplify notations, we write Py*(s) == PE(s,n*(s)) and PE(s) = Pk(s,7"(s)). Further-
more, let a* = 7*(s), a = 7"(s), and @ := 7¥(s) denote the actions under the optimal policies
corresponding to V*, V¥ and V¥, respectively.
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We prove by backward induction on h:
1

Vi () = V() < M ((2 - PEE) Vi) - r
H

(Vh*)z('o’)> :

For the base case h = H + 1, both sides are 0, therefore the inequality holds. Assume it holds for
h + 1, we will show it holds for h. If V,f = V;I, then left-hand side will be no positive, therefore the
inequality trivially holds. Suppose V¥ < VIE, by definition we have

V() = 7 (5.a) + PEVl (5,).
With this, we obtain:
Vir () = ViE(s) = (r(s, %) + PV (s,0%) = (7(s,0) + PPV (5,0))

@) * * * ~ * Dk *
< (r(s,0%) + PV (s.0%) = (F(s,0%) + PRV (5,07

=r(s,a*) — Fk(s, a*) + (PVh*H(s, a*) — I:’kv,fﬂ(s,a*))

= r(s,a%) — ((1 — PE*(s))ik (s, a*) + b (s, a*)) n (Pv,;ﬂ(s, a*) — PEVE (s, a*))

© (1= PE(s) (r(s,0%) = 7 (5,0) + (PE*(9)r(s,0%) = b (s,0%))
+ (PV{H(S, a*) — pkfffﬂ(s,a*)) ,
where (a) is due to the optimality of a and (b) by noting r(s,a*) =
(L= PE () + P () r(s, ).
Since r < Rpax, we have:
PE*(s)r(s,a*) — 0*(s,a*) < PE™(8) Rmax — b"(s, a*).
At this point, we note that the intermediate steps are identical to those in (Lee & Ohl2025)); therefore,

. . . Ve .
we omit them here and state the resulting expression. Denote Y* = I/{ikl’k, we obtain:

(7= P (s)Virboi

Vir(s) — th(s) < —(bk(s,a*) - PII;’*(S)RmaX) + Mo NE(s, a*)

Ak
2V,
7— PR () Ve

( o () Vil k

+ k(2 = Py () (r(s,a*) + PVt (s,a%) = —= (Vi) (s)

= —(bk(s,a*) - Pg’*(S)Rmax) +

k
< —(b*(s,a*) = P5*(5) Ruax) + Nk(l;a*) + Mg <<2 - P[’}’*(s)) Vir(s) — #
’ H
ESY ((2 — P (E) Vi) - Z;W,;)Q(s)) n
H

where (a) is due to the fact of Lemma Moreover, note that for s € S, we have 1 < 2 —

P[]j’*(s) < 2, therefore the function f(z) = (2 - Pg*(s)) x — #12, x € [0, VQI] is bounded by
H

(% - Pg’* (s)) VFTI. Substituting this for Eq. completes the proof. O

D.3 BOUNDEDNESS OF COMPLEXITY

Lemma 3. Foralls € S,h € [H + 1],k € N, it holds that
‘A}izlc(s) - V}f(s) < Rpaxhi = O

16

Vi

k,* * s
)\ka(s,a*) + A <<2 PU (s)) Vi (s) 2VII( Vi

*
3

)2(8)>
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We first introduce the the following elementary lemma:

Lemma 4. For any n > max{m, %}, we have

L _yvm 7f—\/m<€.

n n

B

Proof. Since n > m, ﬁ - ‘/f > 0. To require e-accuracy, it needs ﬁ < \/f + €. If we have

ﬁ <esn > }2, then the result is desired, which is because:

1
<e<@+e

vn n
O

Proof of Lemma[B] The following will bound the complexity term V* &s) — VE(s). Since the two
terms differ only in rewards, we first bound the difference in rewards AF = |[7F — 7k oo .

Without loss of generality, we bound the reward for finite-horizon episodic MDPs. We set ¢, =

T2
Runax Ak th — VH
Ak thereby my = w5t
vl Y Mk = Rz 32

If N* < my, the reward 7 of V* is the same as 7% srL» therefore A¥ = 0; otherwise, we have
k

T
Aﬁ = (P[I;Rmax + ]Vk> - (Pgnkgk)

k k max
— (PrRmaX+]\]Iq> - ((I +?ax\/mk> ]W)’

gmax V Nk NF
_Rmax VNk*\/mk
B gmax Nk
_Rmax VNk_\/mk
B gmax Nk
S Rmdx Rmax)\k

gmax Vaj

Rmax ﬁ

gmax H

Ak

< -
> Rmax b’

where the second to last is because of Lemma [] and the last is because of the assumption that
gmax 2 1'

By Simulation Lemma, we know that the value functions differ at most Ryax A¢.

For infinite-horizon discounted MDPs, the proof is similar, except that we need to replace the time
index with ¢ and the maximum value function with VJ . [
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D.4 BOUNDEDNESS OF ACCURACY

Lemma 5. For finite-horizon episodic MDPs, under high-probability event N}_, A;, it holds that
foralls € S;h € [H+ 1],k €N,

2

Vi) - i o) < (3 2mb0 - 2

@2
H

It is convenient to define the following quantities for the analysis.
Definition 2. Let Df(s) be defined by

1 1 ~ 2
D(s) = A ((3 ~ 2PE(s)Vi (s) - lems)) t T <<sk>2 — (Vi) + ) ) :
where 3% (s, a):
5 (5,a) = P (s a)n"€¥(s,a) + B (s,) + (1 — Ph(s))— A0
9 - U 9 T] 9 1 ’ U )\ka(S,a)
Vin(s) = ViF(s) — V¥ (s)

S = <2 ~ P{j’*(s)) AV + @y,

in which .
1 3Vt
Bi(s,a) = N (s, a) < I;,:’k +30V$553,k(87a)> :

Proof of Lemma[5] The key to bound the accuracy term V/*(s) — V;™(s) is to decompose it into
differences:

ViE(s) = Vi (s) = A (VE = V™) (s,a) +P (Vify, — Vi) (s,a).

I
By Lemma [35] we know that
I < (An(D)(s,a) + 26(s.a))
Denote
1
Iy := (3= 2P} () Vi (s) - W(VJ)Q(S)
H
) . 2
I3 = (Sk — (Vh(s) —+ Sk) ) ,
we have DF(s) = A\ I> + #13.
H
We now bound I and I3 individually.
Bounding [,
5
I, < (2 - 2P{j(s)> Vi 2)

Bounding /5

Iy = —Vi(5)? — 28, Vi(s) < SZ, Vi(s) € [~V Vi 3)

3
Sk = (2 - P{j’*(s)) eV + @ @)
2
3 . *
Sk < (2 - Py (s)) NVE? + @ + (3 —2Pf (s)) AV @ ©)
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Therefore,
1
Df(s) = ALz + @13 (6)
5 1/3 2 P2
< (2 - 2P5(5)> MV + = <2 - P{j’*(s)) ANV +0 (V’;> +ONe®i)  (7)
H
k 2 kox + @;
< (3—2Pk(s) — = (s)) MV + 0 o + 0D | (8)
H

Furthermore, by backward induction on h, we have
Vi (s) = Vi (s) = Dji(s) + 2J5(s).
Combining this with the upper bound of D,’j (s) completes the proof. O
D.5 BOUNDEDNESS OF Jf
Lemma 6. For finite-horizon episodic MDPs, under high-probability event A5 N Ag, it holds that
K K vh-1 19H
JE(sh) <2 R(sk,af) + 6V SAl
; 1(s7) < ZZB(Shaah)+ O A108 ==,

k=1 h=1

forall K € N.

Lemma 7. For finite-horizon episodic MDPs, under high-probability event As N Ag, denote
T

YU = UK 4 30V S0 e, it holds that

12H
5 b

K KH
> Jf(sh) <4y S Alog (1 + SA) + 6V, SAlog
k=1

forall K € N.

D.6 LOWER BOUND OF EPISTEMIC RESISTANCE

Lemma 8 (Lower Bound of Epistemic Resistance). Given a uniform A\, = \,Vk € N, it holds that

K 23R 2
S ORF(sHNVE > ( (\/HK —~ Jﬁ) + H) A,
k=1

7 gmax
forany K € N.

Proof.
K

X 1 1
Zpg(slf’ak):1+g Z F ok

k
1 max ; —o N (S

M~

—_— d
N gmax \% H /k \/'E

:1+ﬁ(2\/7(—2),

Note, this also holds for Py*(s¥, 7% (s})). Therefore, multiplying with 22 \V,} completes the prooé.]
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D.7 REGRET ANALYSIS

Combining the results of Lemmas we obtain the per-step regret:
Theorem 6. Under high-probability event A, it holds that for all s € S,h € [H + 1],k € N,

V*(s) = V™ (s) < (g - mk(s)> eV + 205 (s) + O (@k (1 + i’;)) :

where we define the following as Epistemic Resistance
9
RE(s) == 2Pk (s) + 713{;7*(5).
Theorem 7. For finite-horizon episodic MDPs, for any fixed K € N, with probability at least 1 — 6,
it holds that _
Regret(K) < O(HVSAK + HS?A).

Proof. From Theorem@ we have:
Dy,
Regret(K ZAk—VTka )\k+2ZJk sk +Zo<q>k< W))
H

2ka()

Choose A\, = min{1,4 %}, Vk € [K] and denote U(K —=57— we have
_ 0V ’ E (s SAE 0
HZ)\ —VTZERIC - 1- K min{1,4 %}
SA&EQ K
<18V (1 -
i K

=18V (1 - U(K )),/SAKMZK.

From Lemmal([7] we know that

12H
)

X KH
2; JF(sh) < 8y S Alog <1 + SA> + 12V, SAlog

_ 96V, SAly klo i 12H

: + 240V}, S? Aly g ls i + 12V, SAlog
K

1| K 12H
< 96V} S Al by i max {1, 1 m} + 240V} Al b i + 12V} S Alog ——.
12,

12H
< 96V SALy el jc + 24V /SAK 1 ls g + 240V} S? Aly i ls i + 12V SAlog -

< 24V \/SAK by i + 336V, S? Al 1o (1+ o ),

24HSA(1+log K H
where we denote /] ;- = log %

into the non-leading term.

as an upper bound of both ¢; i and /3 g, and merge

Combining those two together, we get:

K
(0]
Regret(K) < (42 — IS\P(K)) VI_TI\/ SAK€1€27K + 336VT52A€ (1 + EQ,K) + Z O (‘I)k (1 + k))
k=1
K
< (42 — 18\I/(K)) Ryax H+/ SAKElgz,K + 336RmaXHSQA£ILK(1 + 827}() + Z @ (Cbk (1 +
k=1
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where only the last part left to resolve.

Given ®;, = Rp.xAk, we have one additional source of O(AK), which will be merged into the
leading term. In addition, note that

feli)-£(%)
— Vi — KVT

_ 5 [ BawSA
o)
< O(RumuxSA),

which only increases the non-leading term by some constants. So overall, we have:

Regret(K) = O (H\/SAK + HSQA) :

D.8 SAMPLE COMPLEXITY

Theorem 8. For finite-horizon episodic MDPs, with probability at least 1 —§, the sample complexity
is bounded by
~ ((H?SA HS?’A 1
@) + log = | .
€2 € 0

For finite-horizon episodic MDPs, the sample complexity of an algorithm is defined as the number
of non-e-optimal episodes taken over the course of learning (Dann & Brunskill, 2015} Dann et al.,
2017). If this sample complexity can be bounded by a polynomial function f(|S|,|4], %, +, H),
then the algorithm is PAC-MDP.

(AP 57
The proof is analogous to that of the infinite-horizon case in Appendix therefore, we only
provide a sketch.

From Theorem [f] we know that the per-step regret can be bounded as follows:

V*(st) = VF(sh) < (g - ER’“(S’f)) eV + 2J5(sF) + @y <1 + (3 — 2P} *(51)> Ak + i’;)

H

o
< (9 - %k(s’f)> NeVip + 275 (s8) + @y, (4 + ’;)
2 —_—— V.
N———

=La i
=Lk =L3,k

We choose Ay, = so that we have Lq;, < § and L3, < §. So the remaining step is to prove

18VT ’
that majority of episodes satisfy J*(s}) < £, Wthh implies L27k <s.

The following notations are to connect the number of non-optimal episodes with J*(s%).

Let the set of non-optimal episodes within K total episodes be defined as I'x = {k € [K] :
JE(sk) > £}, and its cardinality [T |. We overload the definition of visits that occur only in I' k.

ny(s,a) = Z Z star) = (s,a),(k < kort < h))

kel =1
Nk(S7CL) = Z Z 'r? 'r S?a))
KED 1 7=1
o min{h € [H] : nf(sk,af) > 2N¥(s¥, ak)}, if hexists.
H+1, otherwise.
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Akin to Lemma|[26] we can bound |T | using the fact that J*(s¥) > .
Definition 3. Let W (K) be defined by

_ B456RHSAL ko | A80Rma HS? Al kel i | 24Rnan HS AL i
- k ,

W(K) :

€ € €

Lemma 9. For finite-horizon episodic MDPs, under high-probability event C, it holds that
Tk <W(Tk),

forall K € N.
Proposition 2. For finite-horizon episodic MDPs, let K be defined as

6O20R2, H2SAl b, ASORuarHS?A(201 + Lo, )ls.c
Ko = €2 + €

Then the sample complexity of EUBRL is at most K with probability at least 1 — §.

Before proving this result, we need to bound the the other way around i.e. W (Ky) < Kj.

Lemma 10. It holds that
W(Ko) < K.

Proof of Proposition2} From Lemmal[9)and[10} we know that [T x| < W (|T'x|) and W (K) < Ko.
It implies that [Tk | # K, for all K € N. Since |T'k | increases by at most 1 starting from |T'g| = 0,
thatis, ' y1| < |Tx|+ 1 forall K € N, we conclude that |I'x| < K for all K € N. Otherwise,
there exists K’ such that |T'x/| > K. Assume K’ is the minimal such index. Then it follows that
[Tk —1| = Ko, which leads to a contradiction. O

E PROOFS FOR INFINITE-HORIZON DISCOUNTED MDPs

The difficulty in proving quasi-optimism and bounding accuracy is that we can no longer use back-
ward induction on the horizon, since the value function is time-independent. To resolve this, we
construct Bellman-like operators to bridge this gap.

E.1 QUASI-OPTIMISM WITH EPISTEMIC RESISTANCE

Lemma 11. For infinite-horizon discounted MDPs, under high-probability event AT N A3, it holds
that forall s € §,t € N,

V*(s) — Vi(s) < A ((z — P (s)) V*(s) — 2;T(v*ﬁ(s)) .

Corollary 2. For infinite-horizon discounted MDPs, under high-probability event A7 N A3, it holds
that forall s € §,t € N,

Vi) - T <0 (5 - P Vi

To prove Lemma we need a define a Bellman-like operator that is a contraction mapping and
monotone.

Definition 4. Let operator 77 be defined by
(TiV) (s) = (P (8) Bmnax — U (5,7*(5))) + (L = Pi*(s)) (r(s,7*(5)) — (s, 7" (s)))
+ (P — Pt> V*(s, 7% (s)) + PV (s,7*(s)).

Lemma 12. 77 is a contraction mapping and monotone.
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Proof. Denote
M(s) = (Pf(3) Rmax — V(5,7 (5))) + (1 = P (5)) (r(s,7*(5)) = 7 (5,7 (5))
+y (P - Pt) V*(s,7*(s))
Forany U,V € [0,V]]%, we have
ITi = TaVllow = sup | (M(s) + yPU (s, 7*(5))) = (M(s) + vV (5.7*(s))) |
= ysup [P (U = V) (.7 (s))|
<ANU = Vs

Therefore, 77 is a contraction mapping under co-norm.

On the other hand, given U, V' € [0, V,/]¥ such that U(s) < V (s),Vs € S, we have

(WU = TaV)(s) = P (U = V) (s,7"(s))
<0.

Thus, 77 is monotone as well. O

Lemma 13. Denote f(s) = A ((2 - Pltj*(s)) V*(s) — 2‘1/T (V*)Q(s)), under high-probability
event A1 N A3, it holds that

Tf<f
Proof. This follows the same procedure as the proof of Lemma 2] except that we use the bounded-
ness of the discounted value function and the inequalities stated in the events A] and AJ. O
Now we prove Lemma [T}

Proof of Lemmal[T1} Denote AV :=V* — Vi,

Since 77 is a contraction mapping, by the Banach fixed-point theorem, there exists a fixed point V'
such that V' = lim_, o (71)* g from an arbitrary initial point g.

Note, AV < T7AV. By monotonicity and contraction of 7; from Lemma we have AV <
TIAV < limk_mj(Tl)kiAV = V. By Lemma we have 71 f < f, by monotonicity and con-
traction again, we have V' = limy_, (7})’“ f < 7Tif < f. Combining two sides, we conclude that
AV < f, which completes the proof. O

E.2 BOUNDEDNESS OF COMPLEXITY
Lemma 14. Forall s € S,t € N, it holds that

Vi(s) = VI(s) < Ryarht = @y
Proof. See the proof of Lemma 3] O

E.3 BOUNDEDNESS OF ACCURACY

In this section, we bound the accuracy term. Although it is tempting to use the same logic as in
the previous section, it is worth noting that the nuance in the definition of J prevents this, as we no
longer have an argument analogous to 71 f < f. We summarize the main results in advance.

Lemma 15. For infinite-horizon discounted MDPs, under high-probability event N}_; A, it holds
that forall s € S,t € N,
Vi(s) — V™ (s) < Di(s) + 2ny(3).
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Corollary 3. For infinite-horizon discounted MDPs, under high-probability event N}_, A7, it holds
that forall s € S,t € N,

2 P2
Vi(s) —V™i(s) < (3 — 2P (s) — 7P(tj*(s)) MV +2J0(s)+ 0O <V§ + )\t@t> .

Y

Putting all together, we obtain

Theorem 9. For infinite-horizon discounted MDPs, under high-probability event B, it holds that
foralls € S,t €N,

Before we dive into details, we define the following relevant quantities.
Definition 5. Let D! (s) be defined by

Di(s) =\ ((3 —2P;(s)) V*(s) - 21‘/T(V*)2(3)> + % ((St)2 - (‘7(3) + St)2> ,

where 3%(s, a):

Vi,
t _ pt t ot t _ pt o/
6 (Sva) - PU(Sva)n 2 (8,&) + 51(S,a) + (1 PU(S>))\tNt(S,a)
Vi(s) = Vi(s) = V*(s)
3 %
St = <2 — P(t]’ (S)) /\fV,YT =+ q)t,
in which
1 VI N
Bi(s,a) = Ni(s,a) ( y + 30V S0z 4(s,a) | -

Definition 6. Let operator 75 be defined by
(T2V) (5) = Ay (D5)(s,me(5)) + 26" (s, mi(s)) + P (V)(s, me(5))-
Definition 7. 7T is affine if, for any vector V" and F
T(V+E)=TV +~PE.
Lemma 16. 75 is a contraction mapping, monotone, and affine.

Proof. The argument for contraction and monotonicity is similar to that of proof of Lemma[I2} For
the affine part, we observe:

To(V + E) = Ay(DL) + 28" +yP(V + E)
= A, (D}) 428" + PV ++PE
=T,V +~PE.

Lemma 17. Under high-probability event M} A, it holds that

Ay (VE = V™) (5,m(a)) < Ay (DL)(5.m(a)) + 26 (s, mi(a)).
Proof. The proof is completed by applying the procedure of Lemma 13 in (Lee & Ohl[2025), except
using Vh( ) + Sk > 0 from Lemmas [2H3| for variance decomposition and boundedness of the

discounted value, together with an adjustment of some constants under event AJ. O

Now we prove Lemma [I5]
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Proof of Lemmal[I3] Denote AV := V' — V™,
Note, AV (s) = Ay (AV) (s,m(s)) +vP (AV) (s, m(s)). By Lemmal[l7] we have
AV < TLAV. Condition 1

For brevity, we denote g :== 3¢ + vPJ¢, f := min{g, V,YT} and D = ny. We observe
T2(D+2f) =D+ 2g. Condition 2
Moreover, since D > fgvj and AV < VJ , we have

AV < D +2V]. Condition 3
Now, we claim AV < D + 2f is true. We consider two cases:

Case 1: g(s) > V| Forany state s where g(s) > V.I, the function f(s) is defined as f(s) = V.
The inequality we want to prove becomes AV (s) < D(s) + QVJ , which is true by Condition 3.

Case 2: g(s) < VI For states where g(s) < V., the function f(s) is now defined as f(s) = g(s).
¥ ¥

We prove by contradiction. Assume there is at least one state s where g(s) < VJ and the desired
inequality is false.

We define an “error” function E := AV — (D + 2f). By the assumption, the set of states = := {s €
S : E(s) > 0} is non-empty. Let E* := sup, .= E(s), then E* > 0.

We start with Condition 1, that is, AV < TAV, and substitute AV = E + (D + 2f), we get

E+ (D+2f) <T(E+ D +2f)
By the affinity in Lemma[l6] we can write 73(E + D + 2f) = T2(D + 2f) +vPE. By Condition
2, we have 75(D + 2f) = D + 2g. Combining this with Equation [E.3] we obtain:

E+ (D+2f)<(D+2g)+~PE.
Rearranging it, we get:

E<2(g- f)+~PE.
Now, let us consider a state s* where the error is maximal, i.e. E(s*) = E*. It must hold that:
BE(s*) <2(g(s*) — f(s*)) + v(PE)(s¥)
< 2(g(s*) — f(s7)) +vE(s").

Thus, we get

(1 =7)E(s*) <2(g(s*) = f(s)).

Since g(s) = f(s) whenever g(s) < V.I, the above equals to zero, implying E(s*) < 0. This leads
to a contradiction. Therefore we conclude that AV < D + 2f. O

E.4 BOUNDEDNESS OF .J}

Lemma 18 ((Lee & Oh, 2025)). Let C > 0 be a constant and { X}, be a martingale difference

sequence with respect to a filtration {F;}32, with X; < C almost surely for all t € N. Then, for

any A € (0,1] and § € (0, 1], the following inequality holds for all n € N with probability at least
— 4

n 3A n C 1
X, < 2N E[X?|F_ — log =.
; t_4CtZ:; [X{|Fe 1]+)\0g(S

Lemma 19. For any time T, we have

D A(t+w #T+1) < SAlog, 2T.

t=1
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Proof. The general idea is similar to the proof of Lemma 30 in (Lee & Oh} 2025)), but unlike the
episodic setting, where episodes exhibit monotonicity, the infinite-horizon setting requires special
consideration to handle coupled trajectories. By focusing on each individual state-action pair, we
get:

YA+ #T+1) =" > Ut+n#T+1,(s140,,01,) = (s,0))

t=1 t=1 (s,a)ESxA

T
= Z Zl(t+ Vi 7é T+1, (St+Vt7at+Vt) = (Sva))'

(s,a)eSxAt=1

Ift+ vy # T 4+ 1, then t 4 1, is the first time step more than double the anchor ¢. Therefore, we
have n(*t0) (s44 . agyn,) > 2N (8144, Gt ) + 1. Since any step that is greater than ¢ + v; is
an inclusion of n(***), we have N(+ve+e) (s, a0 ,,) > 2N (s44,,,a44,,) + 1 forany ¢ € N.
Based on this condition, we denote My (s, a) as the number of steps ¢t € {1,2,...,7T} such that
NEtte) (5 ) > 2Nt (s, a) + 1, then, we have:
T

S At + v # T+ 1, (8140, aeg,) = (5,0)) < Mr(s, a).

t=1
We aim to bound the right-hand side above by finding contradiction between a upper and lower
bound of N(+¥:+¢) (s q). First, since there are at most (7' — ¢ + 1) time steps left from the anchor
t, we have N(H7+9) (s q) < N'(s,a) + (T —t + 1) < N'(s,a) + T. Combining this with
NEHvit+e) (s, a) > 2Nt (s,a) + 1, we know that it occurs only if N*(s,a) < T. Next, we prove by
induction that

Pt: N'(s,a) > 2Me-1(s0) _ 1,

To verify this, let c = 1 and define a sequence of “‘checkpoints” that starts with ¢:

t() = t, tk+1 = tk + Vit + 1.

Because 14, > 0, we have tj41 >t + 1. Alsory, <T —tp+1landity >t > 1givetpy; <T.
Hence {t)} is a strictly increasing sequence bounded above by T', so after at most T — ¢, steps
we reach t i = T. If the induction statement holds for any step ¢ € [ty,tx+1], then, by the above
progress and termination argument, it follows that all steps are covered.

Let’s first verity the base case P(1), for which we have My = 0 and N M) = 0, there-
fore the inequality holds. Then assume P(ty) holds, there are two cases to consider. If
N4 (5 q) > 2N'(s,a) + 1, it implies that (s,a) is the first time step that triggers the
stopping of vy, leading to N+t (5 q) > 2Mei(s0)+l _ 1 — 9Mitw(5:09) _ 1 More-
over, for each intermediate step ! with 1 < [ < v, P(tp + ) holds; On the other hand,
if (s,a) is not the pair that triggers 14, this means that it has not been doubled yet, imply-
ing Myy,,(s,a) = M;_1(s,a). However, there may still be some increments, and therefore
N(t“"’t"‘l)(s,a) > Ni(s,a) > oMi—1(s,a) _ 1 = 9Mitv,(s:0) _ 1 Thus, we conclude that the
induction holds.

This gives us a lower bound, suggesting M;_1(s,a) cannot grow faster than logarithmically in
T. Formally, once M;_1(s,a) reaches |log, T'| + 1 for some ¢, it cannot increase further, since
N'(s,a) < T. Therefore, we conclude that Mr(s,a) < |log, T'| + 1 < log, 2T, which completes
the proof. O

Lemma 20. For infinite-horizon discounted MDPs, under high-probability event A} N Al, it holds
that
T vi—1 1
13V, 12T
iji(st) < Z > VB (841 arsr) + 1 7;51410% =

t=1 t=1 =

forallT € N.

Proof.
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Bounding Jﬁ(st) Given a T-path (s1,a1,71,...,S7,ar,77,S7+1) Where actions are chosen
from 7;(s;) at each time step, we decompose J (s;) as follows:

JE(s1) < B (s, a0) + P I (51, ar)
= B'(st,a) + YPT (s, a) — I (s441) + 7 (8¢41)

ve—1

< B sern, ai) +9 (PT (segn, aipt) — T (siaig)) +97 T (Se40)-
=0

Si1, Sa,

Then, we take summation over 1" steps:

T ve—1 T vi—1 T
PIFACIED DD BETED DD DETED BUSACTA)
t=1 t=1 [=0 t=1 [=0 t=1

11 Iz 13

Bounding /35 By Lemmaand Jt(sr41) < VJ, we get:

I3 VT (st40,)

Il
M=

o
Il

1

Il
B

(Lt +v #T+1) + 1t +v =T+ 1) T (St40,)

&
Il
-

T
Lt v # T+ 1)y T (se4w,) + 31t + v =T + 19" T (5014,
t=1

Il
M=

o~
I
-

T
Lt + v # T+ 17" T (s040) + ) Lt v =T + 1)y T (s741)
1 t=1

v
Ut # T 100 T ) + 722
1
.

V.
T v
Vvtgl(t—&-l/t#T—i—l)—&-l_fy

I
B

~
I

[M]=

<

~
Il

IN

—

v

< V'SAlog, 2T + .
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Bounding /5

N
S
|

—

hex

Il
[M]=
&

~
Il
—
Il
~+~ O

I
=

1(l S V¢ — 1)8271

~+
Il
[y
T I
-+~ ©

Il
[M]=
]

1 < v — DY (PI (5040, aegr) — ' (Se4141))

~+

16
M- 1
M- T

Lr—t < v — D)y (P (sr,ar) — T (5741))

3
I
—
~
I
—

G
[M]=
Mﬂ

1t—7<v, — 1)'yt_T'H (PJ7 (styat) — I (8¢41)),

~
Il
-
3
Il

1

=X

where (a) is due to the exchange of rows and columns and (b) to the reverse of the roles of indexes

Note that in the final step, we make a bag of martingale differences with the same time index;
therefore, it is not hard to verify that X; is a martingale difference sequence, with E[X;|F;] =

t
0, B[(X;)?|F] = Var (Z 1(t—7<v, — 1)fyt_7+1JT(st+1)) (s¢,at) and bounded as | X;| <
T=1
VT v . t .
T <1 t(st_H) = > 1(t—7 < v, —1)y*"7"1J7(s;41) and applying Lemmal(l8
T=1

to {X;}2, with A = =, we get the following:

T
I, = ZXt
t=1
) 1
(1-7) . 6V 6
< Var (Y*(s St,ap) + lo . 9
S ; (Y'(st41)) (51, a) T logs ©)

=L

Next, we will bound the sum of variances L. First, we look at each individual variance.

Ly == Var(Y'(s¢11))(st,a¢) = P (Yt(st+1))2 (st,at) — (PY"(s5441)( 8t7flt))2
=P (Yt(5t+1))2 (sesae) = (Y (5041))% 4+ (Y (5041))° — (PYt(SH—l)(Staat))Q
=P (Yt(8t+1))2 (st;a) = (Y'(s141))°
+ (Y'(st41) + PY (s041) (se,a¢)) - (Y (s041) — PY " (5141) (¢, a¢))
T
< P (V' (5001))” (50, 0) — (Ve (5031))? 4o

— (Yt(8t+1) PYt(StH)(st,at)) .

=7
Akin to the previous argument, the second term is a martingale difference sequence, therefore, we

obtain:

T

t t d GVT 6
Y - PY < l .
; (St+1) (st41)(s¢,a¢) < ; “(st41))(se, ar) + = 0g — 5
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Based on this, we can simplify the bounding on L:

T
L:ZLt

T
Z (Y(s41) = PY"(5t41) (51, a1))
t_l
T
2V (1 6V 6
< Zi + Var(Y*(s Sy ap) + il log =
;t <8vTZ (seen)) o 00) + =0 Jog 5
T T
1 12V12 6
:tz:: ZZ::VHI St+1 (st,at)—f—ﬁlogg
T
1 12V12 6
= VA L+ —7 log—
tzzl t+4 +(1_7)2 og(S
T
1 12v12 6
SZZt+ZL+ﬁlog6. (10)

o~
Il

1

It is not difficult to check that {Z;}$°, is a martingale difference sequence with E[Z;|F:] = 0,

E[(Z:)?|F] = Var ((Yt(st+1)) ) (s¢,at) and bounded as | Z;| < {i=5yz- Moreover, by applying
Lemma 9 in (Lee & Oh, [2025]) to the second-order moment, we have

Var ((Yt(st+1))2) (s¢,a) < Vi

ol
(1=7)?
Combining this with Lemma. w1th A= we get the following.

12V12 6
ZZt <= ZVar H(siqn )(st,at)Jrﬁlogg

1 12VT 2 6

— L2
TR SRR

Var (Yt(5t+1)) (St, at).

12’

Substituting this into Eq. [T0} we obtain:

T 2
1 12v7 6
L< Zy+ =L 71
; kLt g loe s
1 12V.12 6 1 12V12 6
<=L 771 —+-L+—"—log~
B R TR el I R R el
1 24V12 6
=L+ —2-1
SRR TR NS
which has a recursive structure, leading to:
12
748‘/7 logg.
=77 %5
Substituting this into[J] we have:

(1-7), 6V 6

I < L log —
ST Tl
1—~) 48V12 6 6V 6
Mivlog,Jrivlog,
gV (1—=9)2 76 1-v 796
12VT 6
<
= 1-
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Finally, we conclude that

T

ZJfY(St) <Li+1,+ 13

t=1

6

12V
<L+ 5

1-—-

log

5
o1 13VT1 6
1ty 08

13v7
< Tt g SAlog

SAI

13V.
Sfl—i- V

3VT

which completes the proof.

v
+ VTSA10g22T+ -
-

+V7

2T
4

SAlog, 2T

5.
6

13V!
g + 1 SA10g2T

12T

Lemma 21. For infinite-horizon discounted MDPs, under high-probability event Al N A{, it holds

that

ZJt

forall T € N.

g (14—
SA 1- 5

3VT 12T

Proof. Based on Lemma we only need to bound I;, which is a series of discounted sum of 3¢.

By the definition of the stopping time v, we know that for any ¢ that satisfies ¢t —

T < vy —1, we have

nt(sy,a;) < 2N7 (s, a;) looking back at a previous anchor 7. Moreover, we infer that n’(s;, a;) >

2 must hold, otherwise it cannot satisfy the condition. We denote the set Z(s,a) C {1,2,...

30
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the time steps at which the pair (s, a) is encountered.

T vi—1
L= 4B (str1,ae41)
t=1 [=0
T T-—t
= Z 1(1 < v — D' B (se41, ar)
t=1 [=0

T
= Z 1(r—t <vy— 1)y 'Bsr,0a,)

T=11t=1
T ¢
= Z Z 1t —7 <vy — 1)y 7B (8¢, a4)
t=171=1
T ¢
_ VT
= 1t—7<v, — 1)y T——
22 " N

—
3
Il
—
—
»
-+
s
-
~

t=1 =1 (51, 1)
(2) S 2
2) (1) 1(t—7 < vy — 1)1(nf(se,ar) > 27"
;Tﬂ ( N1 o) " nt (s, ar)
T 1 t
< 2™ N1 (nt > 9 1t—7<v,— 14" "
YN " 1(nf (s, ar) )nt(shat)z (t—7<wv.—1)y

- t
7 (s,a)ESXALEL(s,a) n'(s,a)
(1) NT*(s,0)
<2 3 1
1—7v n

(s,a)eSx A n=2

oP(T)
< 13) Z log (1 + N"*!(s,a))
- (s,a)eSxA

2Y(T) T
< Alog [ 1+ —
_1_75’ og(+SA),

where (a) holds because we can distinguish two cases:

o If t — 7 > v; — 1, then the indicator 1(t — 7 < v; — 1) is zero, so the product vanishes
regardless of the other indicator;

e Ift — 7 < v, — 1, then, as shown earlier, we have n'(s;, a;) > 2.
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E.5 LOWER BOUND OF EPISTEMIC RESISTANCE

Proof.
S Ay =1s Ly
=1 gmax t—2 Nt(St, at)
T
1 1
>1+
o 51]13)( ; t - 1
=1+ Ly
gmax =1 \/7?
T-1 t41
1 1
>1+ / — dx
gmax t=1 t ﬁ
1 (T
=1+ — dx
gmax 1 \/E
1
14 (2\/T - 2) .
5max

Note, this also holds for P{;* (s, 7*(s;)). Therefore, multiplying with ?AVJ completes the proof.

O
E.6 REGRET ANALYSIS
E.6.1 PROOF OF THEOREM[2]
Prior to deriving the regret, we state the following lemma.
Lemma 22. It holds that
Ly <l + b,
forall T € N.
Proof. Expand ¢4 1 and relate it to {5 7, we get:
12T
Ly = log 5
12(SA+T)
< log — 5
125A(1 + L
= log —( T 52)
0
1 1254 +1 1+ r
=log | —— o} —
A & SA
<l +Llyr.
O

Proof. From Lemmal9] we have:

oyt T T T T P
t
Regret(T') < TV ) 1: A=V 1: Ri(s)h +2) 1j Ji(s)+ > 0 ((In (1 + VJ))
t= t= t=

t=1
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2 35 9 (s)

Choose A\; = min{1, 3 SA?%)T }, Vt € [T] and denote ¥(T') := —=5~—, we have

2 Z R (s
Wi & d oVt SAz l
el t t _ 2y b,
5 g sz::%(s))\t— 5 T min{1,3 T = )}
< 14 2tmax Rmax 1 _ SA£1£2 T
- 1- 'y T(1—7)
Rmax

= 14(1 — U(T)) mw/mmew

From Lemma 21} we know that

26V
22Jt ) < LSAlog (1 + ;) 12T

ABVIS ALy ply 120V 26V. 127
i o Al 1 g Alog ——.
(1—’7)/\T +1_ 52 2T3T+ S og 5
48V IS Al rlo 1 1 [T —7) 120VT 26V 127
oy T e - 2A
1-7) ax SAlly 1 1— S forlsr

48-Rmax51461,T‘€2,T 16Rmdx

12 max max 2T
=/ SATl by 1 + 0% S2A£2T€3T+ 26 SAlog

< +
L=y = =E (S ERCr
(&) 16 R 120 Rax 2 ASR. SAl 2lsr  26Rm
< (1 — ~\1.5 ) )
S T-is SAT€1€2T+<(1 )2 550 Al Tls T + -2 1= 5 SA(lr + lar)
(b) 16Rmax 120Rmax 2 48RmaxSA£/1 T€2,T 26Rmax
S A ois s
Y SAT€1€2T+((1 72 SAZQTE 1—7)? +(1—’7) SA(€1T+£2T)>
16Rmax 120Rmax 2 48RmaXSA€/1 T(l —|— 62,T) 26Rmax
S T ais 5
S - )is SATC by 7 + <(1 )2 S= AL, Tﬁ =2 + (177)25A€2,T
105 120R A8 Riax SAL, (1 + bo.7)
< & AT max 2A 1 , ’
SU-)is S €1€2T—|—<(1 )2 SPAl r(1+ 45 ) + T >
16 Rnax 168 Rinax
= 1—7)15 SAThbr + (1— )2 SQA(l + 0 7)(1+ b)),

where (a) uses the Lemma and (b) ¢ 7 is denoted as log w, therein ¢} ;- > /; and
Uy p 2l

Combining those two together, we get:
/SAT S2A = ®
Regret(T) < (30 — 14\P(T))Rmaxﬁ;LZT + 168Rmaxm(1 +O A+ br)+> 00 [1+— ||,
t=1
where only the last part left to resolve.

Given ®; = Rpax ¢, we have one additional source of O(A\T'), which will be merged into the leading
term. In addition, note that
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which only increases the non-leading term by some constants. So overall, we have:

~ AT ZA
Regret(T) = O ( S 5 )

= T

E.6.2 STATE-ACTION DEPENDENT X;(s, a)

Definition 8. Let G be defined by

g = Z ( 1—;l§PU(s,a)>,

(s,a)eSx.A

where

P{(s,a) = min{Pj(s,a), P (s)} )

Py(s,a) = min min Pl (s,a
( ? ) 2§TLSNT+1(S)G')1S7§t(sﬁa)(n) U( ? )

Notably, we have the property of G that é—;SA < G < SA. The maximum is attained only if
Py(s,a) =0,Y(s,a) € S x A.

If the epistemic uncertainty is non-increasing, then Py (s, a) is corresponding to exactly the epis-

temic uncertainty at the end of learning, that is, 155 *1(s, a), reflecting the systematic uncertainty of
a particular state-action.

Vv 2-Nt(s,a)l1,: .
Lemma 23. Denote pt(s,a) = L2 NDT(,E ;))61, , it holds that

T vi—1

¢ 320 T
Z Vol (8641, angr) < #glog (1 + > .
t=1 1=0 (1=7) g
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T vi—1
Proof. Denote I == > > ~'pt(s¢41,a:11), we have
t=1 1=0
L ¢ 9
I= 1(t—7<v, — Iy 7—27 /2 _mr
;; (f-r<v % NT(St,at)< 2 (Shat))
T ¢
201 + 9
< 1t —7 <y, — 1y 7T —0 = — R7 (s,
a1 ()
(3)25 3 tlt < 1)yt 1 ) RT
S 1,TZZ (t—7<vr—1)y 0t (2, az) 5 (51, ar)
t=171=1
T t 1
< 3V 1(t—7<v, — 1)y 7 \/1 — P7(st,
3\/> l,T;; ( T 1% )’7 nt($t7at) ( 63 (St at))
T t
:3\/§€1T§T:11(t—7<1/r—1)1(n (St’at)>2)7t_7n St, ag <\/1 63P (St’at)>
d 1
< 3v20 1 > 9 1W—7<v, -1 1— — Pr(sy,
\fmtzzl (n*(s¢, ar) n(shat);( T<v;—1) <\/ a3 L0 (st at))
d 1 46
t t—1
§3\/§€17T;1(n (8¢, at) ZQ)W <\/l @1r<nT1n Py (St,at)>;1(t7'§1/71)’y

< 3v2h,r il(nt(st,at) > Q)L <\/1 8 in Py (Staat))

63 1<r<t

IN

3\/§€17T <\/1 — m1n1<T<t PU(s a))
> D ') 22) o a)
(s,a)eSxXAteL(s,a)

3\5£1,T NT+(s.q) (\/1 — % minlé.,.gt(sw(n) PE(S, a))
(eI YD "

(s,a)eSxA n=2

NT+1(5,0)
3v2¢ B )
f : T 1- min min  Pj(s,a) E il
(- (s, a)eSxA 63 2SnSNTHi(s,0) 1ST<t(s,0) () n

= 3(\1[—ng (\/IPU s a)) log (1 + NT*1(s,a))

(s, a)ESX.A

— p S,a T+1sa
Wb (1~ 8BPu(s,0)) (14 NT+(s,0))
(=) g

(s,a)eSx.A

IN

IN

IN

( 146, (s, a)) (NT+1(s,q))
G

3v/2¢
= fl’Tglog TS

(1 _'7) (s,a)eSx.A

3\/5@1 T NT+1(37CL)
: 1+ Z —_—

< gl
(1_7) > (s,a)ESx A g
(¢) 3\@61’1“ ( T)
< — Gl 14—
= -y 9e\ltg)

where we have used the following facts:
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(a) Monotonicity of ¢; ,

(b) K7 (s¢,a:) > ZPf(se,ar)

(¢) Jensen’s inequality
O
N
Lemma 24. Forany T € Nand x € [a,b]", 0 < a < b, define function G(x) = . \/z,, and
n=1
f(x) = G(x)log (1 + G(x)) we have that
f(1a) < f(x) < f(10).

Proof. Using the elementary fact that g(u) = ulog (1 + %) , u > 0 is nondecreasing on (0, 00)
completes the proof. O

Proof. From Lemma[J] we have:

C SAl Tl T
7 _t(s) T(1—v)

T
9 9 C SAl 7
T 2yt —_yt Y _ ot 1,72, T
V,YZ<2 9‘%(5)))\,5 VAYZ(2 %())mm{l T(l—y)}
BRiax < [ ]9 SAl é
max 1T2T
< il
-01_72(\/2 ) Srter
/SAEITEQT
T(1—~

CRmax
S(:[-WJ( T th )SAElTEQT

} , Vt € [T], we have

=71 (tili)‘i (s)
Given
12V, ,
t _ 3
= # + 30V, S03.,
/5 —Ri(s) |
2 T(1 —
= ]-QVJELI max {1, C SA<£1 Tez)T + 30V$S€3’t
9 T —7)
=12V, + = W 2 R(s)y | ——T + 30V Sl .
. AN R () SAl plyp 27
yi A%

Vs
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From Lemma[20]and 23] we get

T vi—1

T
26V 12T
2§ :Jf{(sﬁ) <2 § E V' B (St41, argr) + 1 _L 08—~
t=1

t=1 [=0

T t
B yT 26V 12T
<2 1t—7<v, — 1)y 7 SAlog
a ;Tz; o=y 1 NT(Stvat)+1— El

1 T T T 26V’)T 12T
< ZZZ (t =7 < v = D37 s T 95 4+ 35) + T SAlog =

1)
t=171=1
ABVISAly 1ly
(1—9)Ar
72\/§V$€1,T T(1—7) (Gt 1)
Cll—9) | SAlzlor ™"
=72(9)
120V
= S Aly 7ls 1
6VT 12T
+ = SAI -

72f 2Rmax o , 168Rmax oo
S ﬁ SATEl TZQT WS A[l)T(l +€2’T)

Combining everything together, we get:
168 Rmax P
Regret(T) < 7y (Z%t )-i—Jz Gg)+ (l_m)d S2A€1T(1—|—€2T +ZO<<I>t <1+V$>>.
t=1 ¥

T
So, depending on the contribution of > R(s) and G, we can get different bounds. In what will
=1

follow, we choose C' = 3\/g .

Disregarding G Even ignoring the first part, we can obtain a tigher bound where the leading term

T
is offset by the sum of epistemic resistance > R’ (s) as follows:

t=1
5> 9t (s)
2 Rt(s
— R, 168R,
R V< |16+14 | |1 - =L max AT X G2 Al (1
egret( )_ 6+ 9T (1_7) S £1T£2T+(1 ) S €1T( +€2T)

+;O<c1>t <1+ i}))

Considering Both Let N = SA,a= =%, b =1, by Lemma. we know that

63’

1 T T
o = \/lSAlog 1+ < gty » < SAlog (1—|—)
’ 63 \/ESA : SA
63
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with this, at best, we can achieve:

* 17 él* max 168Rlﬂax 2
Regret (T) < — | 16 + 14+/45 T SATY, T+ ———S° Al T(l + 4y T)
63 52 T (1—7)?

+éo<@t (H;))

If the ratio s ~ s large, then A o o~ {5 7. Therefore, the overall reduction is by a factor of 4 J1T ~

3
0.519. In this case, we can improve the constant in the leading term by roughly one-half.

Lastly, the treatment of the part of ®, is similar to that in the uniform case. Therefore, we ultimately
have

Regret(T) = O <( SAT 524 ) .

1= A=)

E.7 SAMPLE COMPLEXITY

For infinite-horizon discounted MDPs, the sample complexity of an algorithm is defined as the
number of non-e-optimal steps such that V™ (s;) < V*(s;) — € taken over the course of learning
(Kakade} 2003 |Strehl & Littman 2008). If this sample complexity can be bounded by a polynomial
function f(|S], |4, ¢, 5, 17 ), then the algorithm is PAC-MDP. We are interested in proving PAC-

MDP for the full range € € (0, V].

From Theorem 0] we know that the per-step regret can be bounded as follows:

V*(se) = V™ (s¢) < (Z — mt<st)) AV 4205 (s¢) + @ (1 (3 2P () A + 3)

9 P
<= = R(se) ) MV 42 (s) + @y [ 4+ —
2 Y Y V’r
—— y
=Ly —————
=Ly =La,
For L, ;, we can choose \; = svT’ so that we have L; ; < £. In addition, note that ®; = Ry At
and )\f = ﬁ < ﬁ, substituting it into L3 ;, we have:
€ e(l1—7) €
P, = Rmax)\ == Rmax == S -5
K ! 18VT 18 18
(I)% maLX/\2 1 Rrgnax 6(1 - 7)2 €
e < —.
v, v — 18 Vy2 18 18

Therefore, we obtain Lz, < (75 + 13z) € < <.

If we can prove that Ly ; < ;, or equivalently, J,’i(st) < < 5 then the time step ¢ can be said to be

optimal. To achieve thls we introduce a set of new notations that explicitly connect the number of
non-optimal steps with .J! (is;).

We define the set of non-optimal steps within 7T total steps as I'r := {t € [T] : J!(s;) > §}, and
its cardinality |T'7|. Then we want to prove that |['7| is polynomially bounded for all T € N.
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For analyzing non-e-optimal steps, it is useful to overload the definition of visits so that it only
includes those occurring in I'p.

n'(s,a) = Z 1((st,a¢) = (s,0a))

tel:
N'(s,a) = Y 1(sya) = (s,0))
tely 1
min{7 € [t,T] : n"(s,,a,) > 2N'(s,,a,)}, if T exists.
e { T+1, otherwise.

Next, we bound the sum of .J! (s;) but only for the steps in T'z..

Lemma 25. For infinite-horizon discounted MDPs, under high-probability event A7 N A{, it holds
that

oY(ITrl) Tr\ 13V 120 |
Ji(sy) < =——SAlog [ 1+ L SAL
Z 7(80) < 11—+ ©8 +SA +177 e
tel'r

forall T € N.

Proof. The proof follows the same procedure as in Lemma and[21] except adding the indicator
function 1(¢ € I'r) to each time step. O

Based on the above result and Lemma we can bound |I'r| using the fact that .J! (s;) > §.
Definition 9. Let W (T') be defined by

_ 1780R2, SAl plar  240RnmaxS?Aly 7l 52RmaxSAl 1

W(T) =
&) (1 —7)? e(1-7)? e(1-7)°
Lemma 26. For infinite-horizon discounted MDPs, under high-probability event D, it holds that
Pzl < W(ITr]),
forall T € N.

Proof. From Lemma [25and22] we get

8YMISAly r  B2VISA(ly 1+ lo1)
e(1—7) el =)

Substituting the definition of YT into the above, we have

Tr| <

|F ‘ < 1728R[2naxSA€1,|FT|€27‘FT| + 240RmaxS2A‘€27|FT|‘€3,|FT| + 52RmaxSA(€1,|FT| + 62»‘FT|)
e E(1—7)? (1 -7)? (1 -7)?
(z) 1780Rr2naxSA€1,‘FT|€2,‘FT| n 240Rmax52A€2,|FT|€3,|FT| n 52RmaxSA£17\FT|
- (1 —n)? e(1—7)? (-2
T
where (a) uses the facts that V% > 1and EupT‘ > 1, therefore concludes the proof. O

Proposition 3. For infinite-horizon discounted MDPs, let Ty be defined as

. 3670R,2”MSA€1€576 480RmaXS2A(261 + £67e)€5,e
L et (1=

Then the sample complexity of EUBRL is at most Ty with probability at least 1 — 0.

Before proving this result, we need to bound the the other way around i.e. W (Tp) < Tp.

Lemma 27. It holds that
W(To) < Tp.
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— _Bnb RuanS(201 406 )
Proof. Denote B = =y + e

U5 ¢ =log (14 140B) < 5B. Then we have:

To
fam = s (14 5

, therefore we have Ty < 3670BSAl5 . where

<205 .
Moreover, we have:
0 < 45 A
=
\VAl
‘€6,e S X
€(1—7)
Therefore, we get:
8SA 1740}
2, +lg < —— i
PHReET T )
9VISA
< —
~ de(l—7)

‘We use this to bound B as follows:

Rr2nax£1 RmaxS(2£1 + 66 e)
B= :
e2(1—7)3 e(l—v)?
4R2 SA 9RZ S%A

=517 a1 )t
 13R2,5%A

— max
de2(1— )t
With this, we now bound log T}, which is a part of {3 ;.
log Ty < log 18350B2S A

169R%,, S A°
< max
< log 1835055 A5 4

4 4 A2
18350 x 160 ; RpnS'A%
p 52e4(1 — )8

568005° A3 ViZet
<log s +log m.
—_— ———
Z:Ll

= log

‘We now bound L.
568005° A3
g 2
56800.5° A°
55
0595 A5
55
9SA
)

L1=10

< log

< log

= b5log

SA
<11—.
- ]

Therefore
SA Ve
logTy < 11— + 41 t
e
o 1594, Vie
ST d-y
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Then, substitute this into /3 7,, we get:
1)

125 A
= log 1254 + log (1 + log Tp)

1
1554 Vie
5 el—)

(a) 165 A Ve
< 1 +1 1 "
>~ t1 + og ( 5 0og 6(1 _ 7))

Ve

€(1—7)

637To = 10g

< /{1 +log <1+

16SA
</{; +log <5> + log log

<201 + g e,

Te

where for (a) we have used the facts that 22 > 1 and log V% > 1.
J e(1—)

Now, we prove W (Ty) < Tp. Since B > 1, therefore {5 . > log 141 > 1. This leads to Ty >

A
36705 A, henceforce ¢5 7, > 1. Along with VTV > 1, we have:
1780R2 S Al Tol2,1, 240Rmax5’2A€2,T0€37T0 52Rmax SAl 1,

W) = a0 (1) (1)
1780R2,SAl 1 by 240RmaS?Als 1031, 52R2, SAly 102 13,
SEEI (Y (172 21— )?
1832R2, SAl 1 lor,  240RmaS* Als 1,03 1,
G (1)
=W'(Ty)
Substituting the bounds on logarithmic terms, we obtain:
W (To) < W'(Tp)
- 3664R2, SAl 5.  A80RmaxS?Als (201 + (6..)
- eld=y)p e(1-7)°
3666 R2, SAl1l5 . A80RmaxS?Als (201 + {6 () _g
(1 —n)? e(1—7)?
3670R2, SAl 5. A80RmaxS?Als (201 + {6.() _q
(1 —n)° e(1-7)?
3670R2, SAlls .  A80RumaS?Als (201 + ls.c)
< ’ —~|+1-2
{ 21— (1) J
3670R2, SAl U5 480RumaxS?Als (201 + lg c)
€ 4 <l
{ 21— (1 -7 J
=Tp—1
< Tp.

Now, we formally prove Proposition [3]

Proof. From Lemma [26] and 27] we know that |T'r| < W(|['r|) and W (Tp) < Tp. It implies
that [T'p| # To for all T € N. Since |I'r| increases by at most 1 starting from |[T'g| = 0, that is,
ITri1] < |T'p|+1forall T € N, we conclude that |I'r| < Tp for all T € N. Otherwise, there exists
T’ such that |T'r+| > Ty. Assume 7 is the minimal such index. Then it follows that |T'r/_1| = Tp,

which leads to a contradiction.
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F POSTERIOR PREDICTIVE AND EPISTEMIC UNCERTAINTY

In this section, we will give backgrounds necessary to relate the Bayes estimator to the MLE esti-
mator.

F.1 POSTERIOR PREDICTIVE

F.1.1 TRANSITION

Lemma 28. Let by := Dir() be a Dirichlet prior over transition for a fixed (s,a) € S x A, and
define o = 1" cv as the sum of prior parameters. Let n denote the total number of visits to (s, a).
Then, the following decomposition holds:

n ~ (%))
Py —P— (P—P) P, — P),
b n -+ ag +n+ao( b )

for any posterior b and n € N.

Proof. Note P,, = o%, we get:

p-p-2t* _p
n + g
nP+aono< n N o >P
n + oo n + oo n + oo
n ~ (%))
- (P—P) + (Py, — P).
n + og n+ g

F.1.2 REWARD

Lemma 29. Let by == N (10, %) be a Normal prior over mean of reward for a fixed (s,a) € S X A,
and T the precision of the data distribution, which is assumed to be known. Let n denote the total
number of visits to (s, a). Then, the following decomposition holds:
T0 nrt

To +nT (o = 7(s,0)) + To +nT

rp(s,a) —r(s,a) = (7(s,a) — r(s,a)),
for any posterior b and n € N.

Proof. By definition, we have the posterior predictive of the reward:

n
Topo +T . T
i=1

ro(s,a) = To+nT
The difference to the ground truth reward is:
Topo +T D T

- =1

Tb(S, Cl) T(S’ a) - To +nr T(S, a)
_ (Topo +n7i(s,a)) — (10 +n7)r(s,a)
B To +NT
o TO(:UO - ’I"(S, a)) + ’I’LT(’F(S, CL) — T(Sa a))
B To + N7
- T0 . nrt N .
= (o —r(s,a)) + e (7(s,a) — r(s,a)).
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Corollary 4. Let by = NG(po, Mo, 0, Bo0) be a Normal-Gamma prior over reward for a fixed
(s,a) € S8 X A. Let n denote the total number of visits to (s, a). Then, the following decomposition
holds:

Ao

Ao+ n

7“17(8, a) —r(s, a) = (o — T(S7 a)) + (f‘(sva) - r(s,a)),

Ao+ n
for any posterior b and n € N.

F.2 EPISTEMIC UNCERTAINTY

The definition of variance-based epistemic uncertainty for both transition and reward is:

Er(s,a) = Vary~s (E[s'|s, a, w])
Er(s,a) = Vary.p (E[r]s,a, w])

And we consider a generalized form of epistemic uncertainty to combine the two sources together:
E'(s,a) = f(Er(s,a),Er(s,a)).
In this paper, we consider f(z,y) = n(y/z + \/y).

F.2.1 BOUNDS FOR TRANSITION

Since it is meaningless to take expectation over categories for a categorical distribution, we instead
choose some feature vector for each component. One of the sensible choices is the basis function
=(0,0,...,4,...,0), which leads to the following formulation.

Definition 10. The variance-based epistemic uncertainty of Dirichlet-Multinomial model is defined
as follows:

Z (ag +ni)(o +n — ap — ng)
(s,a) =

= (g +n)?(ag+n+1)

Lemma 30. For Dirichlet prior, the epistemic uncertainty in transition follows that

ersa)=0(5) anad el =0 ().

n n?

forany (s,a) € S x Aandn € N.

Proof. LetT = ag + n, then we have:

S

T2 — 3 (0w + ng)?
< _ k=1
r(s,0) T2(T + 1)
We will derive its upper and lower bound. We start with the upper bound.
S
Note Y (ag + ng)? > 0, therefore we have:
k=1
T2
&
T(Saa) Tz(T—f—l)
B 1
- (T+1)
B 1
n4 ap+1
1
< —.
n

So Er(s,a) = O(+) with constant Cy = 1
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Now, we focus on the lower bound. Consider the worse case, where we have only one state being
visited, denote its index as j, we have

5
T? — Z(ak +n)? = (ap+ 1) — (n+a;)* + Za?
k=1 k#j
s
= (n® + 2a0n + af) — (n® + 2a;n + Z a?)
j=1
= (29 — 2aj)n + (af — Za?)
j=1
> (20 — 2a;)n.
Therefore
Er(s,a) S (209 — 2a5)n
= X1
w (5)
- (20[0 — 20éj)
" m( e
(2&0 — 20[j)
T (I+a0)?(2+ag)
So &r(s,a) = Q%) with constant C; = % This corresponds to the case where the
transition is deterministic or near-deterministic. O

F.2.2 BOUNDS FOR REWARD

Definition 11 (Normal-Normal). The variance-based epistemic uncertainty of Normal-Normal

model is defined as follows: )

To+T1n

Er(s,a) =

Definition 12 (Normal-Gamma). The variance-based epistemic uncertainty of Normal-Gamma
model is defined as follows: 8

Erls ) = N1y
where
A=X+n

n
a:a0+§

- 1 R )\On(f - /J())2
B="60+3 <n02—|—>.

Ao+ 1

Lemma 31. For Normal prior, the epistemic uncertainty in reward follows that

Enls,a) = © (1>

n

Sforany (s,a) € S x Aandn € N.

1

Proof. Note by choosing C; = - for lower bound and Cy = % for upper bound concludes. [

70
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Lemma 32. For Normal-Gamma prior, the epistemic uncertainty in reward follows that
Enls,a) =0 (L) and En(s,a)=0 (=
r(s,a) = - an r(s,a) = 7

forany (s,a) € S x Aandn € N.

Proof. The upper bound is trivial. For the lower bound, consider the deterministic case, leading to
sample variance being zero. Therefore the numerator is ©(1) whereas the denominator O(n?). [

G FROM FREQUENTIST TO BAYESIAN

G.1 PROPERTIES OF PRIORS

Definition 13 (Decomposable). A prior by parameterized by 0 is said to be decomposable if there
exist functions f(n, @), g(n, @) for transitions and h(n, ), s(n, @) for rewards such that
Pb*P: f(n’e)(P—P) +g(n70)(Pbo 7P)7
ry — 1 = h(n,0)(F —r) + s(n,0)(rp, — 1),

with the constraints

F,0) <1, h(n8)<1 YneN;, g(n6) = o(i) L s(n,) = 0<1> ,

n

for some positive multiplicative constant C, () and C(6).

Note, when indexed by a particular (s, a), all the quantities above can depend on it.

Definition 14 (Weakly Informative). A prior by parameterized by 0 is said to be weakly informative

if
1 .
[ o(> and ||P, — P, 0(5>.
n n

Definition 15 (Uniform). A prior by parameterized by 0 is said to be uniform if there exist positive
constants Cy and C such that

Cy(0)(s,a) <C, and Cs(0)(s,a) < C

for any (s,a) € S x A.

Definition 16 (Bounded). A prior by parameterized by 0 is said to be bounded if there exists R > 0
such that |y, (s,a)| < R for any (s,a) € S x A.

Definition 17. Let € be defined by the class of decomposable or weakly-informative priors whose
rate of epistemic uncertainty is © (%)

Theorem 10. Let M = (S, A, P,r,~) be any MDP. For any prior by € €, there exists an instance
of EUBRL such that, when executed on M, it achieves, with probability at least 1 — §, a prior-

dependent bound on regret, or alternatively, on sample complexity, depending on the choice of 0. If,
Sfurthermore, b is assumed to be uniform and bounded, these bounds are nearly minimax-optimal.

Proof of Theorem Note, by either weak informativeness or decomposability, the additional com-
. . § o l . . o

plexity is at most O (£) for transitions and O () for reward. This applies to the events, e.g. A,

which involve bounding the distance between the posterior predictive and the ground truth. Without

loss of generality, we assume b is weakly informative. We bound ’(pt — P)V*(s, a)’ as follows:

(B, = P)V*(5,0)| = | £(N'(s,0), 0)(P' = P)V*(s,0) + g(N'(5,0),0) (Py, — P) V*(s,0)

< ‘(Pt - P)V*(S,CL)‘ + (Cg(e)(87a) HPbo - P”l V’J) ]\]tf%a)’

Frequentist Bound Prior Bias
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where the first term is simply the original bound derived in the analysis of MLE estimators, while
the second term captures the complexity arising from prior misspecification. If the prior is correctly
specified, there is no additional overhead; otherwise, this term must be accounted for in the final
bound.

Similarly, we have the decomposition for the reward
1

76, (s,0) —7(s,a)] < [i'(s,0) — r(s,a)| + (Cs(0)(s,a) [ro, (s, a) — (s, a)]) Ni(s,a)’

By merging all the quantities of the same order of ﬁ, we can overload the definition of Y*, ), and
B¢, respectively. For brevity, we drop the dependency on (s, a) for each term.

. . S 1
Quasi-optimism T T+ (Cy(0) | P, — Pl VJ) ~i T (Cs(0) |16y — 7)) Nt
S
Accuracy B+ Bl +2 (C’g(0) | Py, — Pl VJ) N
T 1

v
B Po'E' + By + (1= Pi(s))

NN (1 — Pf(5)) (Cs(8) b, — 1)

Nt
12V71¢
Bounding J!(s) Vo Tﬂ + 30V Sls ¢ + 3 (Cy() | Py, — Py VIS) +2(Cs(0) [, — 7).
t

In addition, since the rate of the epistemic uncertainty is © (ﬁ) , a scaling factor 7 can be chosen
appropriately such that P} (s, a)n'E' (s, a) — Ph(s,a) Rmax > ﬁga), akin to that of the proof of
Lemma [33] with which we are guaranteed the quasi-optimism to hold.

Since
[Py (-[s,a) — P(:|s,a)[|; <2
|Tb0 (S’ a’) - 7"(87 a’)| S |rb() (87 a)| + Rmax»
we denote
Ar(0) = max (C,(0)(s.0)
AR(B) = max {CS(B)(S7 a’) (|Tbo (5, a)‘ + Rmax)} .
(s,a)ESX.A

Following the same procedure for analyzing regret and sample complexity, we obtain prior-
dependent bounds as follows:

~ SAT S2A SA
. ~ SA S2A 1
Sample Complexity @) ((62(1’7)3 + (1+Ar(0) + Ag(0)) 6(17)2) log 5) .

If the prior by is furthermore assumed to be uniform and bounded, both A1 (€) and Ar(0) will
reduce to constants that do not depend on the state-action pairs, thus leading to a bound similar to
that in the frequentist case. O

Remark 1. Since the epistemic uncertainty is additive across both reward and transition sources, it
suffices for either source to satisfy an order of © (ﬁ) The other source may decay faster.

In the following sections, we will instantiate specific priors.

G.2 DIRICHLET AND NORMAL PRIORS

Corollary 5. Let by denote the joint distribution consisting of a Dirichlet prior Dir(algx1) on
the transition probability vector and a Normal prior N (po, %) on the mean reward with known

precision T for all (s,a) € S x A. Then by € € and is uniform and bounded.
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Proof. By Lemma we know that £ (s,a) = © (ﬁ) . By Lemma we know that £7.(s,a) =
(@] (ﬁ) and &;.(s,a) = Q (). By Remark , this makes the final epistemic uncertainty £’(s,a) =

S} (ﬁ) . In addition, Lemmaand Lemma|29|imply that the prior is decomposable. All together,
we have by € €.
In addition, we can find Cy = o and Cs = " as required by the uniformality in Definition |15} And

note that |ry, (s, a)| = |pol, ¥(s,a) € S x A, therefore the boundedness in Definition[16]is satisfied
as well. O

G.3 DIRICHLET AND NORMAL-GAMMA PRIORS

Proposition 4. For a Normal-Gamma prior, regardless of parameterization, there exists an MDP
such that 3t € N for which quasi-optimism does not hold.

This follows from the fact that the epistemic uncertainty under a Normal-Gamma prior depends on
the sample variance, which multiplies the number of visits 7 in the numerator (Definition [I2)). In
deterministic or nearly deterministic MDPs, the sample variance can be zero, yielding a lower bound

on the epistemic uncertainty:
1
6 9 = Q 5 |
f (S a) < n2 >

which is insufficient to guarantee quasi-optimism, especially when a prior bias is present. Even the
frequentist bound may vanish.

H HELPER LEMMAS

Lemma 33. It holds that
Tk
k k
b (87(1) — PU(Sya)Rmax 2 m,

forany (s,a) € S x Aand k € N.

Proof. For N¥(s,a) > m, the inequality trivially holds. For N*(s,a) < m, note by choosing
77k = gmaka + Rmax\/m , We have:

T
L k ok _ pk , .
NF(s,q) (PU(s,a)n E¥(s,a) — P (s, a)Rmax

k
(b*(s,a) — PE(s,a) Rmnax) — N¥(s,a)
Tk:
s,a)
1

)~ NG
nk 1 - Rinax 1 7
Emax Nk(57a) Emax \/Nk(s,a) Nk(

Tk

R 1 R,
— Tk max _ Llmax
( " Vm’“) NF g
R
&

max m o 1

max Nk(sva) \/Nk(s,a)
Rmax (\/WTk_ Nk(sva)>
&

which is as desired. O

The following Lemma is helpful in proving both the quasi-optimism and accuracy for finite-horizon
discounted MDPs.
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Lemma 34. Let C' > 0 be a constant and y € (0,1). Let V be a function such thatV : S — [0, C].
For any (s,a) € S X A, the variance of V under P(-|s, a) is bounded as follows:

Var(V)(s,a) < —A,(V?)(s,a) + (1 + v)C max{A,(V)(s,a),0}.
Equivalently, the following inequality holds:
YVar(V)(s,a) — yP(V)?(s,a) < —(V(s))* + (1 + v)C max{A,(V)(s,a),0}.

Proof. Adding and subtracting (V (s))? to yVar(V)(s, a), we get

( (
yWVar(V)(s,a) = yP(V)*(s,a) = y(PV(s,a))?
= WP( )2(s,a) = (V(5)* + (V(5))* = 4(PV(s,a))?

< YP(V)?(s,a) = (V(5)* + (V(5))* = 7*(PV(s,a))®
=P(V)*(s,a) = (V(s5))* + (V(s) + 7PV (s,a)) (V(s) = 7PV (s,a))
< PV)25,) — (V(5))? + (147)C (V(s) 1PV (5,0)
= —A,(V?)(s,a) + (L +7)C (V(s) = 7PV (s,a))
—A,(V2)(s,a) + (1 +7)C max{A, (V)(s, a), 0},
where (a) is due to the fact that ¥ > 2 and (b) by the boundedness of value functions. O

—~~

Lemma 35. Let V¥ denote the value function of the approximate MDP under its derived policy
. Let V™ denote the value function of the true MDP under the same policy. Then the difference
between V¥ and V™" is bounded as follows:

Ap (VF=V™) (s,a) < (An(D")(s,a) +28%(s,a)) .

Proof. The proof is completed by applying the procedure of Lemma 13 in (Lee & Ohl[2025)), except

using Vi (s) + Sk > 0 from Lemmas for variance decomposition, together with an adjustment
of some constants.

O
I PRIOR MISSPECIFICATION
Problem Setting Given a two-armed bandit:
ai : P(rla1) = Bern(u1) (11)
ay : P(r|as) = Bern(uz) (12)
with p11 > o (13)

We use Beta distribution to model the belief over the parameter of the underlying Bernoulli dis-
tribution. We have independent prior b(w|a;) = Beta(a;, 8;) over each arm with parameters
a; > 0,8; > 0,i € {1,2}. Since Beta distribution is the conjugate prior of the Bernoulli dis-
tribution, after observing the number of success S; and failures F;, we can get the posterior in a
closed-from, i.e.

b(Wl(L“SZ,Fz) = Beta(ai -I—S“ﬂz —l—FZ) (14)
— Beta(a), 4)),i € {1,2}. (15)
Then the EUBRL reward will be:
rEUBRL — (1 — Py) # + Py &;, where (16)
TAZ’ = Eb(w\ai,Si,Fi),P(ﬂai,w) [7‘} (17)
a; + 5;

= 18
(o +5;) + (Bi + Fi) (%)

o
_ i 19
o + pi (19)
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The epistemic uncertainty can also be expressed in a closed form:

E(a;) = Varyiwla;,s:.7) [EP(r|as,w) [7]] (20)
= Varb(w\aiaSmFi) [W] 21
_ o3 22)

(o + B)?(af + B +1)

If we assume that the parameters of the prior are equal, we can show that epistemic uncertainty is
non-increasing. This result is formalized in the following lemma:

Lemma 36. Given a Beta prior distribution Beta(«, 5) with o = > 0 for the parameter of a
Bernoulli distribution, the variance of the posterior distribution decreases monotonically with the
number of observations.

Proof. Let denote the by as the Beta prior before observing any outcome from the Bernoulli dis-
tribution. It has a variance Var(by) = m. After observing one sample from the Bernoulli

distribution, whether it is success or failure, we will have an updated posterior b; with the variance:

«

Var(b;) = Pt i)

(23)
By examining the difference between the two, we have Var(by) — Var(b;) = m > 0. There-
fore, the variance of the posterior is decreasing after observing one outcome. However, since this

result will hold for the next posterior compared to the current posterior as well, we can conclude that
the variance of the posterior is monotonically decreasing. O

We will prove the following theorem:

Theorem 11 (Prior Misspecification). Let p = 1. There exists an MDP M, a prior by, an accuracy
level g > 0, and a confidence level &y € (0, 1] such that, with probability greater than 1 — &,

V7 (st) < V*(s¢) — € (24)

will hold for an unbounded number of time steps.

Proof. Before any new observation, both 7EUBRL = £ . therefore breaking the tie leads to a half

probability to choose either arm. Consider choosing the second arm, it will lead to some reduction
of the epistemic uncertainty because of the new observation.

We aim to force the agent to repeatedly select this arm, thereby preventing it from ever reaching the
optimal one. To achieve this, we need to ensure that (to simplify notation, we will henceforth drop
the dependency of the epistemic uncertainty on the action; £ will refer to the epistemic uncertainty
of the second arm whenever it is considered):

r];UBRL _ ,rlliUBRL — ((1 _ PU)f 4 PUE) _ gmax (25)
= ((1 - Py)r+ Py€) — ((1 — Py)&max + Pumax) (26)
=(1-=Py)(F —Emnax) + Pu (€ — Emax) 27)
> 0. (28)

Note, the second term in the penultimate line is a quadratic function; therefore, we can obtain its
minimum as follows:

min (82 - Smaxg) (29)
SHIHX
=T h (30)

Therefore, as long as we ensure that Eq. with substitution of this lower bound is non-negative,
we can guarantee Eq. [28]to hold. That being said, we require the following condition to be satisfied:

8max > 0

(1_PU)(f_5maX)_ 4 =

€Y
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which is equivalent to:

gmax
f > ———— + Emax 32
Tz 4(1 — PU) + Ema (32)
By Lemma[36] we know that Py is decreasing. Therefore, it suffices to ensure that:
Smax
P>+ Emax; 33
T_4(1—PU71)+ a ( )

where Py 1 denotes the probability of uncertainty after observing the first outcome from the second
arm.

Moreover, the right-hand side can be expressed as:
gmax
s(a) 1 = ——F"——~
(a) 41— Pya)
1 1

= 35
16 12+ =

+ gmax (34)

1)’
Since a € (0, 00), we can bound s(a) within the interval (%, 1%) , which will be useful in our later
analysis.

We now aim to show that, under certain priors, the probability of the agent sticking to the second
arm is high. In other words, it suffices to show that the probability of not pulling the second arm is
small. To that end, let us focus on the event #* < s(a).

To proceed, we consider the following decomposition of the reward estimate:

po 0T (36)
200+ n
n - «o 37)

- 2a—|—nr 200+ n’

where n is the total number of occurrences of the outcome from the second arm, and S,, is the total
number of successes among those n occurrences.

Notably, we can factor out the empirical mean 7, resulting in a new inequality:

S(G) - Qain

. (38)
2a+n
2 -1
_ a( s(a) ) +s (39)
n

=g(a,n) (40)

Next, we apply Hoeffding’s inequality to the expression above:
P(r<g(a,n)) = P(ua — 7 > p2 — g(a,n)) 41
<exp (—2n(p2 — 5(a))2) . (42)

This provides an upper bound on the probability of not pulling the second arm over n samples. By
applying the union bound at each step, we can bound the probability that the second arm is not
pulled at least once, and refer to this event as “Omission™:

P(Omission) = P (U2, (T < g(a,n))) (43)
< Z P(r < g(a,n)) (44)
n=1
la] o)
=Y PF<glan)+ »  PF<glan), (45)
=1 n=(lal+1)
S1 S

where we split the sum into two parts based on the floor of a, which we will analyze individually.
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Bounding S; We denote k = % Since n > |a], we know that k € [0, 1). Therefore, we can
rewrite g(a,n) as:
gla,n) =k(2s—1)+ s,k €[0,1). (46)

For every fixed n, we want to find both the lower and upper bound of g(a, n). Since we know s €

(35, %) and g(a, n) is linear in s, we can solve for the range of g(a,n) as A, = ({5 — Lk, & — 2k).
13 5

In addition, since £ € [0, 1), we can solve for a superset A = (—35, 75) that contains every set
A, ¥n > |a]. We then analyze the squared term (us — g(a,n))?. This is a quadratic function
with axis of symmetry of ps. There are two possible cases for the relationship between o and A:
either po < % or fig > 1%. For the first case, the minimum of the quadratic function will be zero,

which cancels out the effect of n and results in the largest probability—an outcome we want to avoid.

Therefore, we consider the second case, po > 1575’ where the minimum of the quadratic function
occurs at g = 1%. We denote this minimum as C' := (2 — 1%.)2. Then we can bound the second
term in the probability of omission as follows:
Sp= Y P(F<g(a,n)) (47)
n=(la]+1)
< Z exp(—2Cn) (48)
n=(la]+1)
= exp(—2C1la]) Z exp(—2Cn) (49)
n=1
exp(—2C)
= -2C —_— 50
exp( La]) 1 — exp(—2C) (50)
_ exp(—2C(|a] + 1)) 1)
1 —exp(—2C)
n
<= 52
<5 (52)

where i € (0, 1) is arbitrary confidence level.

We solve for the above and obtain [a] > 5t log(
other term.

W) — 1 := ay. Next, we will bound the

Bounding S; The goal is to isolate the parameter a and make it dominant. We expand the exponent

as:
_ 2 _ 2 . _ (2s—1)* ,
2n(pue — g(a,n))* =2 | n(uz — $)*+2 ((u2 — s)(1 — 2s)) a+ ——a" |. (53)
Iy I, \—I/—/
3
Since 2 > 15—6 and s € (%, 1—56), therefore I > 0. And the remaining two terms are also positive.
Based on this observation, we provide a lower bound for the exponent as follows:
9
2n (e — g(a,n))? > 2I3 > 3242 (54)
n

Next, we use this result to bound S :

la)
S < Zexp (_n2 Laj2> (55)

9
< 2 exp (—32 LaJ) (56)
9
~ Lafexp (~5lal) 57)
n
<5 (58)

51



Under review as a conference paper at ICLR 2026

which unfortunately has no closed-form solution. However, we can leverage the Lambart W function

to obtain an analytical solution. Denote u = — 35| a], then Eq. can be rewritten as — 22w exp(u).
We instead bound it as follows:
32
— QU exp(u) < g (59)
9
& > ——n, 60
wexp(u) > il (60)

which matches to the Lambart W function. Since there are two branches Wy (x) and W_; (x) of the
Lambart W function when z € [—1,0), and W_; () < Wy(z) < 0. We can get u < W_1(—&n),

therefore [a| > —32W_y(—&n) = as.

Combining the two bounds together, as long as we choose |a| > max{aj,as}, the probability of
omission will be bounded as follows:

P(Omission) < 51452 < g—l—g =. (61)
Therefore, if we denote the event of sticking to the second arm as St icky, its probability will be:
P(sticky)=P (m;‘;l(f < g(a, n))) (62)
=1-P(U3Z, (T <gla,n))) (63)
=1— P(Omission) (64)
>1-—n, (65)

Therefore, we can conclude that with probability greater than §y = % - (1 — n), the second arm will
be always pulled, leading to suboptimality. More formally, for any ey < p1 — o, we have:

Ve (St) < V*(St) — €0, (66)

where V7™ (s;) = ug and V*(s¢) = p1, which completes our proof. O
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