EUBRL: EPISTEMIC UNCERTAINTY DIRECTED BAYESIAN REINFORCEMENT LEARNING

Anonymous authors

Paper under double-blind review

ABSTRACT

At the boundary between the known and the unknown, an agent inevitably confronts the dilemma of whether to explore or to exploit. Epistemic uncertainty reflects such boundaries, representing systematic uncertainty due to limited knowledge. In this paper, we propose a Bayesian reinforcement learning (RL) algorithm, EUBRL, which leverages epistemic guidance to achieve principled exploration. This guidance adaptively reduces per-step regret arising from estimation errors. We establish nearly minimax-optimal regret and sample complexity guarantees for a specific class of priors in infinite-horizon discounted MDPs. Empirically, we evaluate EUBRL on tasks characterized by sparse rewards, long horizons, and stochasticity. Results demonstrate that EUBRL achieves superior sample efficiency, scalability, and consistency.

1 Introduction

In a completely unknown environment, what compels an agent to seek new knowledge? This drive is captured by the concept of exploration, which lies at the heart of reinforcement learning, from ϵ -greedy to Boltzmann exploration (Sutton & Barto, 2018). Yet, these heuristics often fall short in more challenging environments, particularly those with sparse rewards, long horizons, or stochasticity. Epistemic uncertainty (Der Kiureghian & Ditlevsen, 2009) characterizes the degree of unknownness, providing a principled basis for exploration. However, it remains unclear how to most effectively leverage this uncertainty to guide learning.

Bayesian RL (Duff, 2002) provides a framework for modeling a world of uncertainty. An agent seeks to maximize cumulative rewards based on its current belief, interact with the environment, and update that belief—without knowing the true dynamics and rewards. From the agent's perspective, the world is epistemically uncertain. It must balance exploration and exploitation to find a near-optimal solution. By placing a prior over both transitions and rewards, epistemic uncertainty arises from limited data: the less familiar the agent is with a region of the environment, the more it is incentivized to explore it. Nonetheless, higher uncertainty also raises the risk of unreliable estimates. A common approach is to add the uncertainty as a "bonus" directly to the reward, a strategy known as *optimism in the face of uncertainty* (Kolter & Ng (2009); Sorg et al. (2012)). However, even small errors in the reward can propagate into an inaccurate value function, potentially resulting in unnecessary exploration and slower convergence.

When measuring the efficiency of an algorithm's exploration, metrics such as regret (Lai & Robbins, 1985; Auer et al., 2008)—the cumulative difference from the optimal value function—or sample complexity (Kakade, 2003)—the number of steps that are not ϵ -optimal—are commonly used. An algorithm is said to be minimax-optimal (Lattimore & Hutter, 2012; Dann & Brunskill, 2015) if its bounds match the corresponding lower bound up to logarithmic factors. While previous works based on optimism (Kakade, 2003; Auer et al., 2008; Strehl & Littman, 2008; Kolter & Ng, 2009) or sampling (Strens, 2000; Osband et al., 2013) have been shown to achieve strong theoretical guarantees, their use of uncertainty quantification remains limited, leaving room for improvement in practical problems, particularly those requiring sustained and efficient exploration.

In this paper, we propose EUBRL, an Epistemic Uncertainty directed Bayesian RL algorithm for principled exploration. We use probabilistic inference to model epistemic uncertainty as part of the agent's objective. This approach guides the agent to explore regions with high epistemic uncertainty

while mitigating the impact of unreliable reward estimates. Our contributions are both theoretical and empirical:

- We prove that EUBRL is nearly minimax-optimal in both regret and sample complexity for infinite-horizon discounted MDPs, with epistemic uncertainty adaptively reducing the per-step regret.
- We instantiate prior-dependent bounds and demonstrate their applications using conjugate priors.
- We demonstrate that EUBRL excels across diverse tasks with sparse rewards, long horizons, and stochasticity, achieving superior sample efficiency, scalability, and consistency.

To the best of our knowledge, our result is the first to achieve nearly minimax-optimal sample complexity in infinite-horizon discounted MDPs, without assuming the existence of a generative model (Gheshlaghi Azar et al., 2013).

2 PRELIMINARY

An infinite-horizon discounted Markov Decision Process (MDP) is defined by a tuple $\mathcal{M}=(\mathcal{S},\mathcal{A},P,r,\gamma)$, where \mathcal{S} and \mathcal{A} are the state and action spaces, both of finite cardinality, denoted by S and A, respectively, P the transition kernel $P(\cdot|s,a)$, r the expected reward function, and $\gamma \in [0,1)$ the discount factor. We assume the source distribution of rewards has bounded support in $[0,R_{\max}]$. A policy π is a mapping from states to actions, whose performance is measured by the expected return $V^{\pi}(s) = \mathbb{E}\left[\sum_{l=0}^{\infty} \gamma^l r(s_{t+l},a_{t+l})|s_t=s,\pi\right]$. The goal is to find the optimal policy $\pi^{\star}(s) = \arg\max_{\pi} V^{\pi}(s), \ \forall s \in \mathcal{S}$, whose value function is $V^{\star}(s)$. We denote the maximum value function as $V^{\uparrow}_{\gamma} \coloneqq \frac{R_{\max}}{1-\gamma}$ and, whenever applicable, $V^{\uparrow}_{H} \coloneqq HR_{\max}$ for its finite-horizon counterpart.

2.1 BAYESIAN RL

We consider the Bayes-adaptive MDP (BAMDP) (Duff, 2002) to model the agent's learning process. Given a prior b_0 , the uncertainty over both the transitions and rewards—or equivalently, possible MDPs—is explicitly modeled. A policy is Bayes-optimal if it maximizes expected return in the belief-augmented state space $(s, b) \in \mathcal{S} \times \mathcal{B}$, where b is a belief over MDPs. Formally, it solves the Bellman optimality equation under the posterior predictives P_b and r_b of the corresponding BAMDP. However, this solution requires full Bayesian planning (Poupart et al., 2006; Kolter & Ng, 2009; Sorg et al., 2012), which is computationally expensive and typically intractable because the belief-augmented state space can be too large to enumerate, and the belief must be recalculated every time a new state is encountered. Consequently, agents generally must approximate Bayes optimality. One simple yet effective alternative is the mean MDP (Kolter & Ng, 2009; Sorg et al., 2012), which fixes the belief during planning. This is essentially equivalent to an MDP (S, A, P_b, r_b, γ) given a belief b. When indexed by time, b_t refers to the posterior given all data up to time t. By solving the corresponding mean MDP, we obtain a policy π_t derived from the subjective value function V^t and its objective evaluation in the underlying MDP, V^{π_t} . Our goal is to find the optimal policy π^* by repeatedly solving the mean MDP during interaction, alternating between posterior learning and policy optimization.

2.2 METRICS FOR EXPLORATION

We define per-step regret as $\Delta_t := V^*(s_t) - V^{\pi_t}(s_t)$. Regret and sample complexity are defined from different angles:

$$\text{Regret} \qquad \sum_{t=1}^T \boldsymbol{\Delta}_t \;, \qquad \qquad \text{Sample Complexity} \qquad \sum_{t=1}^\infty \mathbf{1}(\boldsymbol{\Delta}_t > \epsilon).$$

Low regret does not imply low sample complexity, and vice versa. Regret, which is more costoriented, focuses on how much you lose while learning, whereas sample complexity cares about learning efficiency, i.e., the number of samples needed to learn properly. A lower bound is best achievable for regret, $\widetilde{\Omega}\left(\frac{\sqrt{SAT}}{(1-\gamma)^{1.5}}\right)$ (He et al., 2021), and for sample complexity, $\widetilde{\Omega}\left(\left(\frac{SA}{\epsilon^2(1-\gamma)^3}\right)\log\frac{1}{\delta}\right)$ (Strehl et al., 2009; Lattimore & Hutter, 2012). When an algorithm's upper bound matches those lower bounds up to logarithmic factors, it is considered minimax-optimal; if it holds only in the asymptotic regime of large T or small ϵ , the algorithm is considered nearly minimax-optimal.

3

108

109

110 111

112

113

114 115

116 117

118 119

120

121

122

123 124

125

126

127

128

129

130

131 132

133 134

135

136

137

138

139 140

141

142

143

144 145 146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

METHODOLOGY 3.1 Epistemic Uncertainty

Learning an imperfect model is of epistemic nature, where the uncertainty arises from a lack of knowledge and is, in principle, reducible by observing more data. In general, epistemic uncertainty captures the degree of disagreement in the belief, typically, quantified by a distance measure as a function of the posterior predictive and the likelihood. For example, for transitions, we have

$$\mathcal{E}_T(s, a) = f \circ g(P_b(s'|s, a)) - \mathbb{E}_{\mathbf{w} \sim b(\mathbf{w})} \left[f \circ g(P(s'|s, a, \mathbf{w})) \right],$$

for some functions f and g that take a scalar or a distribution as input. When $f(x) = -x^2$, g(p) = $\mathbb{E}_{p(x)}[x]$, it corresponds to the variance $\operatorname{Var}_{\mathbf{w} \sim b}(\mathbb{E}[s'|s,a,\mathbf{w}])$. When $f(p) = \mathcal{H}(p), g(p) = p$, it corresponds to mutual information $MI(s, a) = \mathcal{H}(P_b(s'|s, a)) - \mathbb{E}_{b(\mathbf{w})}[\mathcal{H}(P(s'|s, a, \mathbf{w}))].$ A similar argument holds for rewards $\mathcal{E}_R(s,a)$ by substituting s' with r.

We adopt a generalized formulation of epistemic uncertainty to integrate both sources:

$$\mathcal{E}(s, a) := h(\mathcal{E}_T(s, a), \mathcal{E}_R(s, a)).$$

In this paper, we consider $h(x,y) = \eta(\sqrt{x} + \sqrt{y})$, where η is a scaling factor.

3.2 Probabilistic Inference and Epistemic Guidance

Traditionally, RL aims to maximize cumulative reward. A pivotal question is how to account for epistemic uncertainty in this objective to balance exploration and exploitation. One common approach is optimism-based methods, modifying rewards with an additive bonus $\tilde{r} = r_b + \eta r_{\text{bonus}}$. However, this can be misleading when r_b is uncertain. In this regard, we utilize probabilistic inference to model epistemic uncertainty directly in the objective, disentangling exploration and exploitation and making it more resilient to unreliable reward estimates.

Probabilistic inference has a rich history in decision-making (Todorov, 2008; Toussaint, 2009; Levine, 2018). It has been shown that standard RL can be formulated as an inference problem by introducing a binary "optimality" random variable \mathcal{O}_t :

$$\max_{\pi} \mathbb{E}_{P(\tau)} \left[\log \prod_{t=0}^{\infty} P\left(\mathcal{O}_t = 1 | s_t, a_t \right) \right]$$

with an exponential transformation $P(\mathcal{O}_t = 1 | s_t, a_t) \propto \exp(r(s_t, a_t))$ and τ denoting a trajectory.

We introduce the notion of *probability of uncertainty*, representing the degree of uncertainty, governed by a binary "uncertainty" variable U_t . Marginalizing over this variable, we obtain a lower bound on per-step likelihood:

$$\log P\left(\mathcal{O}_{t} = 1 | s_{t}, a_{t}\right) = \log \mathbb{E}_{U_{t}}\left[P\left(\mathcal{O}_{t} = 1 | s_{t}, a_{t}, U_{t}\right) | s_{t}, a_{t}\right]$$
$$\geq \mathbb{E}_{U_{t}}\left[\log P\left(\mathcal{O}_{t} = 1 | s_{t}, a_{t}, U_{t}\right) | s_{t}, a_{t}\right].$$

Note that since U_t is binary, if we adopt the same exponential transformation, which intensifies the higher uncertainty, we obtain the epistemically guided reward:

$$r_b^{\text{EUBRL}}(s, a) := (1 - P(U = 1|s, a)) r_b + P(U = 1|s, a) \mathcal{E}_b(s, a).$$

Intuitively, when uncertain, EUBRL focuses more on epistemic uncertainty, as an intrinsic reward, encouraging exploration; when confident, it is more committed to exploiting what has been learned. We call this kind of behavior *epistemic guidance*. The probability of uncertainty P(U=1|s,a)naturally disentangles the two ends, being more indifferent to reward estimates in the early stage and becoming more committed as evidence accumulates. Although its definition can vary, P(U = $1 \mid s, a)$ must reflect epistemic uncertainty. For simplicity, we choose $P(U = 1 \mid s, a) = \frac{\mathcal{E}_b(s, a)}{\mathcal{E}_{max}}$ and use the shorthand $P_U(s,a)$ whenever applicable. The full Algorithm 1 is provided in the appendix.

4 THEORETICAL ANALYSIS

In this section, we aim to answer two key questions: (1) What is the role of epistemic guidance, and (2) How efficient is the exploration for EUBRL. Theoretically, an algorithm is considered efficient in exploration if it achieves sublinear regret or polynomial sample complexity, the latter being known as PAC-MDP (Kakade, 2003; Strehl & Littman, 2008). Many algorithms have been shown to be efficient in exploration. In particular, (He et al., 2021) has shown that achieving nearly minimax-optimality for regret is possible in infinite-horizon discounted MDPs. However, it is not clear whether this holds for sample complexity. We show that EUBRL achieves both nearly minimax-optimal regret and sample complexity, providing insight into how epistemic guidance adaptively reduces per-step regret. Our analysis builds on the concept of quasi-optimism (Lee & Oh, 2025), which established minimax-optimality in finite-horizon episodic MDPs—yet its applicability to infinite-horizon MDPs remains unexplored. Unlike finite-horizon episodic MDPs, which feature clear separation into episodes and allow backward induction over horizons, infinite-horizon MDPs are more involved due to the coupling of trajectories and the stationarity of value functions.

For the sake of brevity, our analysis begins from a frequentist perspective, with $\mathcal{E}_b(s,a) = \frac{1}{\sqrt{N^t(s,a)}}$,

where $N^t(s,a)$ denotes the number of visits to (s,a) right before the t-th step. We then extend and instantiate this framework in the Bayesian setting. For simplicity, we assume $V^t(s) = \mathcal{O}(V_\gamma^\uparrow)$ with positive multiplicative constant C=1 in both settings, although the constant can be any finite number.

4.1 REGRET DECOMPOSITION

The per-step regret, a central quantity in both regret and sample complexity, can be decomposed as follows:

$$V^{\star}(s) - V^{\pi_t}(s) = \underbrace{V^{\star}(s) - \tilde{V}^t(s)}_{\text{Quasi-optimism}} + \underbrace{\tilde{V}^t(s) - V^t(s)}_{\text{Complexity}} + \underbrace{V^t(s) - V^{\pi_t}}_{\text{Accuracy}},$$

where $\widetilde{V}^t(s)$ is an auxiliary value function that ensures quasi-optimism, despite the introduction of additional complexity.

Let $\{\lambda_t\}_{t=1}^{\infty}$ be a sequence of real numbers with $\lambda_t \in (0,1], \forall t \in \mathbb{N}$. Those values arise from Freedman's inequality (Freedman, 1975), which has been refined by (Lee & Oh, 2025). Denote $\Phi_t := R_{\max} \lambda_t$.

Bounding each part individually and combining the results of Corollary 2–3 and Lemma 14, we obtain:

Theorem 1 (Bound of Per-step Regret). *For infinite-horizon discounted MDPs, with probability at least* $1 - \delta$, *it holds that for all* $s \in S, t \in \mathbb{N}$,

$$V^{\star}(s) - V^{\pi_t}(s) \leq \left(\frac{9}{2} - \Re^t(s)\right) \lambda_t V_{\gamma}^{\uparrow} + 2J_{\gamma}^t(s) + \mathcal{O}\left(\Phi_t\left(1 + \frac{\Phi_t}{V_{\gamma}^{\uparrow}}\right)\right),$$

where we define the following as Epistemic Resistance

$$\mathfrak{R}^{t}(s) \coloneqq 2P_{U}^{t}\left(s, \pi_{t}(s)\right) + \frac{9}{7}P_{U}^{t}\left(s, \pi^{\star}(s)\right).$$

Here, $J_{\gamma}^t(s)$ is a Bellman-like function involving error terms and can be bounded using Lemma 20–21 in the Appendix E.4.

Intuitively, *epistemic resistance* adaptively reduces the per-step regret based on the unfamiliarity of the actions chosen by the current policy and the optimal policy. The greater the uncertainty of these actions, the lower the per-step regret, which highlights the critical role of epistemic uncertainty. In fact, the reduction of total regret is even more pronounced, as indicated by the following bound.

Lemma 1 (Lower Bound of Epistemic Resistance). Given a uniform $\lambda_t = \lambda, \forall t \in \mathbb{N}$, it holds that

$$\sum_{t=1}^{T} \Re^t(s_t) \lambda_t V_{\gamma}^{\uparrow} \geq \frac{23 R_{\max}}{7(1-\gamma)} \left(\frac{2}{\mathcal{E}_{\max}} \left(\sqrt{T} - 1 \right) + 1 \right) \lambda,$$

for any $T \in \mathbb{N}$.

4.2 Frequentist Bounds

Theorem 2. For infinite-horizon discounted MDPs, for any fixed $T \in \mathbb{N}$, with probability at least $1 - \delta$, it holds that

$$\textit{Regret}(T) \leq \widetilde{\mathcal{O}}\left(\frac{\sqrt{SAT}}{(1-\gamma)^{1.5}} + \frac{S^2A}{(1-\gamma)^2} \right).$$

Note that when $T \ge \frac{S^3A}{1-\gamma}$, the regret matches the lower bound, implying nearly minimax-optimality. This result improves the state-of-the-art frequentist bound from (He et al., 2021).

Theorem 3. Let $\epsilon \in (0, V_{\gamma}^{\uparrow}]$, $\delta \in (0, 1]$, and $\mathcal{M} = (S, A, P, r, \gamma)$ be any MDP. There exists an input $\eta = \mathcal{E}_{max} \Upsilon + R_{max} \sqrt{m}$, such that if EUBRL is executed on MDP \mathcal{M} , with probability at least $1 - \delta$, $V^{\pi_t}(s_t) \geq V^{\star}(s_t) - \epsilon$ is true for all but $\widetilde{\mathcal{O}}\left(\left(\frac{SA}{\epsilon^2(1-\gamma)^3} + \frac{S^2A}{\epsilon(1-\gamma)^2}\right)\log\frac{1}{\delta}\right)$ steps.

Here, Υ is a function of $(S,A,\delta,\lambda,V_{\gamma}^{\uparrow})$, and m a critical point where the complexity term is sufficiently bounded (see Table 4). Note that when $\epsilon \in \left[0,\frac{1}{S(1-\gamma)}\right]$, the sample complexity matches the lower bound, implying nearly minimax-optimality. This result, to the best of our knowledge, is the first online algorithm to achieve such a bound without assuming a generative model (Gheshlaghi Azar et al., 2013).

4.3 From Frequentist to Bayesian

In this section, we instantiate prior-dependent bounds and demonstrate their applications using conjugate priors based on the frequentist results.

We abstract the properties of posterior predictive and epistemic uncertainty induced by priors. Due to space limitations, we only outline the conceptual ideas here and defer the details to Definitions 13–16. A prior is *decomposable* if the difference between the posterior predictive and the ground truth can be decomposed into a frequentist bound and a prior bias; a prior is *weakly-informative* if the posterior predictive is close to the empirical mean. If the prior is *uniform*, the prior bias admits a universal constant, and if *bounded*, the posterior predictive of the reward is bounded.

Definition 1. Let $\mathfrak C$ be defined by the class of *decomposable* or *weakly-informative* priors whose rate of epistemic uncertainty is $\Theta\left(\frac{1}{\sqrt{n}}\right)$.

This class can be quite expressive, as it can be either correlated or independent over state-actions, including hierarchical priors.

Theorem 4. Let $\mathcal{M} = (S, A, P, r, \gamma)$ be any MDP. For any prior $b_0 \in \mathfrak{C}$, there exists an instance of EUBRL such that, when executed on \mathcal{M} , it achieves, with probability at least $1 - \delta$, a priordependent bound on regret, or alternatively, on sample complexity, depending on the choice of η . If, furthermore, b is assumed to be uniform and bounded, these bounds are nearly minimax-optimal.

The significance of this result is that, depending on the priors, we can achieve even tighter bounds. In addition, it can be nearly minimax-optimal despite dependence on the prior. We demonstrate its applications with the two most commonly used priors: Dirichlet for transitions and Normal or Normal-Gamma for rewards.

Corollary 1. Let b_0 denote the joint distribution consisting of a Dirichlet prior $Dir(\alpha \mathbf{1}_{S\times 1})$ on the transition probability vector and a Normal prior $\mathcal{N}(\mu_0, \frac{1}{\tau_0})$ on the mean reward with known precision τ for all $(s, a) \in \mathcal{S} \times \mathcal{A}$. Then $b_0 \in \mathfrak{C}$ and is uniform and bounded, and hence achieves nearly minimax-optimality when used with EUBRL.

To the best of our knowledge, this is the first nearly minimax-optimality result in the Bayesian setting. Nevertheless, we also find that EUBRL can fail in certain special cases.

Proposition 1. For a Normal-Gamma prior $\mathcal{NG}(\mu_0, \lambda_0, \alpha_0, \beta_0)$, regardless of parameterization, there exists an MDP such that $\exists t \in \mathbb{N}$ for which quasi-optimism does not hold.

Table 1: Results on **Chain** environment. The average return and standard error are computed across 500 random seeds, with each run consisting of 1000 steps.

Algorithm	Average Return	SE
PSRL	3158	31
RMAX	3090	36
BEETLE	1754	-
BOSS	3003	-
Mean-MDP	3078	49
BEB	3430	-
MBIE-EB	3462	-
VBRB	3465	$20 \sim 50$
EUBRL	3473	16

Table 2: Summary of tasks. For Loop, we denote L as the number of loops and L_k as the k-th loop; for Deepsea, N is the side length; for LazyChain, N is the balanced length. "D" stands for deterministic and "S" stochastic.

TASK	S	A	r	Түре
CHAIN	5	2	$101_{(s'=5)}$	S
LOOP	4L+1	2	$2 1_{(s'=1 \text{ and } L_1)} +$	D
			$1_{\left(s'=1 \text{ AND } L_{k eq 1} ight)}$	
DEEPSEA	$N \times N$	2	$1_{(s'=(N,N))}$ -	D
_			$1_{(a=\text{RIGHT})} \frac{0.01}{N}$	_
DEEPSEA			$\mathcal{N}(1,1)1_{(s'=(N,N))} +$	S
			$\mathcal{N}(0,1)1_{(s'=(N,1))} - 1_{(a= ext{RIGHT})} rac{0.01}{N}$	
			$\mathbf{I}(a = \text{RIGHT}) {N}$	
LAZYCHAIN	2N + 1	3	$(2N-1) 1_{(s'=\text{RIGHT})} +$	S, D
			$(N-1)1_{(s'=\text{LEFT})}$ +	
			$0 1_{(a=\text{DO NOTHING})}$ –	
			$11_{(\mathrm{OTHERWISE})}$	

Intuitively, since the epistemic uncertainty of the Normal-Gamma depends on the sample variance, when the environment is deterministic or nearly deterministic, this term can be zero, leading to a degenerate rate of epistemic uncertainty that violates the requirement of quasi-optimism. Nonetheless, this issue can be alleviated by using sufficiently small prior parameters to control prior bias.

When the prior is misspecified such that the initial epistemic uncertainty is very low, the method may also encounter difficulties and could fail to converge.

Theorem 5 (Prior Misspecification). Let $\eta = 1$. There exists an MDP \mathcal{M} , a prior b_0 , an accuracy level $\epsilon_0 > 0$, and a confidence level $\delta_0 \in (0, 1]$ such that, with probability greater than $1 - \delta_0$,

$$V^{\pi_t}(s_t) < V^{\star}(s_t) - \epsilon_0$$

will hold for an unbounded number of time steps.

In other words, this counterexample highlights the vital importance of the scaling factor η and the priors in enabling efficient exploration.

5 EXPERIMENTS

In this section, we aim to measure the exploration capabilities of EUBRL on tasks with sparse rewards, long horizons, and stochasticity. We focus on sample efficiency, scalability, and consistency, as reflected by metrics such as the number of steps or episodes required to fully solve a task, scalability with respect to problem size, and success rate. We find that EUBRL generally matches or outperforms previous principled algorithms, with the advantage increasing as problem size grows. We compare EUBRL with both frequentist and Bayesian methods. Our benchmarks include well-known standard tasks in the Bayesian literature, Chain and Loop (Strens, 2000)—the former highly stochastic, the latter deterministic and emphasizing state-space structure—as well as more complex environments: we study DeepSea (Osband et al., 2019b;a) and design LazyChain, both featuring sparse rewards, long horizons, and deterministic and stochastic variants. Details are provided in Table 2.

Baselines Frequentist algorithms based on optimism include RMAX (Brafman & Tennenholtz, 2002), which assigns unknown state-action pairs the maximum possible reward, and MBIE-EB (Strehl & Littman, 2008), which uses Hoeffding's inequality to derive a reward bonus $r_{\text{bonus}}^t = \frac{1}{\sqrt{n^t(s,a)}}$, where $n^t(s,a)$ is the number of visits up to and including the t-th step. Bayesian methods are flexible in incorporating prior knowledge. Sampling-based methods include PSRL (Strens,

Table 3: Results on **Loop** environment of 2 Loops. The average return and standard error are computed across 500 random seeds, with each run consisting of 1000 steps.

Algorithm	Average Return	SE
PSRL	377	1
RMAX	394	0
Mean-MDP	233	3.4
BEB	386	0
EUBRL	395	0.04

Figure 1: Scaling of number of loops, leading to more sparsity and structural difficulty. Averaged over 500 random seeds.

2000; Osband et al., 2013), which acts optimally with respect to a model sampled from the belief, and BOSS, which samples multiple models and solves a merged MDP. Optimism-based Bayesian methods include BEB (Kolter & Ng, 2009), which is based on the mean-MDP with an additive bonus $r_{\text{bonus}}^t = \frac{1}{1+n^t(s,a)+1^{\top}\alpha}$, where α are the prior parameters of the Dirichlet distribution; however, it assumes the reward function is known, and VBRB (Sorg et al., 2012), which is based on the variance in the belief over both reward and transition. VBRB is similar to ours but, being tailored only to variance, does not include epistemic guidance. Moreover, classic Bayesian methods are worth comparing: BEETLE (Poupart et al., 2006) provides an analytic solution to BAMDP, where the Bayes-optimal policy implicitly trades off exploration and exploitation, and Mean-MDP (Poupart et al., 2006; Kolter & Ng, 2009; Sorg et al., 2012) approximates BAMDP without any reward bonus.

Results As shown in Table 1 and 3, in Chain and Loop, EUBRL not only outperforms all relevant baselines but also exhibits low variability. Notably, Mean-MDP consistently performs subpar, highlighting the importance of a reward bonus for sustained and efficient exploration. Furthermore, we evaluated EUBRL against RMAX—whose inductive bias favors deterministic environments—on Loop by increasing the number of loops, which leads to more sparsity in the state space; surprisingly, even with a perfect prior—so that RMAX knows the transitions and rewards after experiencing them—it scales less favorably than EUBRL. This suggests that the priors in Bayesian methods may have a smoothing effect, enabling more scalable performance in sparse environments.

Another standard benchmark is DeepSea, a hard-exploration problem where a dithering strategy may require an exponentially large amount of data, and the success probability decays exponentially as the problem size increases (Osband et al., 2019b). As depicted in Figure 2, for the deterministic variant, most methods are able to solve the task. Surprisingly, PSRL (or Thompson sampling in bandit setting)—despite being an effective sampling strategy for exploration—do not scale well as the problem size increases, likely because their sampling is excessively frequent, causing unnecessary exploration and fluctuations near convergence. Additionally, BEB, a Bayesian method, also based on the mean MDP, does not leverage any posterior information in the reward bonus, making it less flexible across different environments and resulting in slower convergence. On the other hand, the stochastic variant is a harder problem, with stochastic rewards, additional competing sources, and randomized transitions. We consider two priors for EUBRL: one more conservative and the other more exploratory, denoted as EUBRL+. We find that our method is more sample-efficient, requiring fewer steps to solve the task, and more scalable and consistent. Moreover, EUBRL+ perfectly solves the task without failure—a result not observed in previous works.

Lastly, we design an environment called LazyChain, which involves long horizons, sparse rewards, and myopia. Starting from the middle of the chain, the agent can choose to do nothing, incurring no cost but making it impossible to obtain higher rewards. Even upon reaching one of the ends, the agent receives a positive immediate reward, but the cumulative reward remains zero, preventing effective credit assignment. To succeed, the agent must sufficiently explore the chain to reach both

Figure 2: Success rate and average episodes to solve task, reported for both deterministic and stochastic variants over different problem sizes $(S = N \times N)$. Averaged over 20 random seeds.

ends and overcome the myopia. Results in Figure 3 show that EUBRL consistently outperforms other methods, exhibiting better sample efficiency and scalability, even under heavy noise injection in the transitions.

Prior Selection We discuss the selection and incorporation of priors. We use independent Dirichlet (Dearden et al., 1999) and Normal-Gamma priors for transitions and rewards. Although Proposition 4 suggests that Normal-Gamma may be degenerate, we find that it adapts more smoothly to changes. Since we have diverse stochastic environments, the sample variance can inform epistemic uncertainty. In contrast, Normal-Normal assumes the precision τ (the reciprocal of variance) is fixed, entirely disregarding variability.

Moreover, in practice—for example, in navigation tasks where per-step transitions are similar across different states—it is beneficial to use a *tied* prior, maintaining a single global Dirichlet prior that is aggregated and distributed among all states. As shown in Figure 3, EUBRL (Tied Prior) indeed reduces the number of samples required for convergence.

From Section 3.1, we know that the definition of epistemic uncertainty is not unique. Beyond variance, one information-theoretic measure is mutual information, which quantifies the reduction in uncertainty after collecting additional evidence. As shown in Figure 3, EUBRL (MI), although taking slightly more steps, achieves the highest success rate.

6 RELATED WORKS

Bayesian RL Bayesian RL maintains a posterior over uncertain quantities and uses this uncertainty to guide policy selection. From bandits (Thompson, 1933; Kaufmann et al., 2012) to MDPs (Dearden et al., 1999; Strens, 2000; Kolter & Ng, 2009), this idea enables effective exploration strategies that are otherwise impossible with simple dithering. BAMDP (Duff, 2002) formally represents uncertainty over MDPs by augmenting the state with beliefs, allowing derivation of a Bayes-optimal policy, though it is generally intractable. Approximate methods include mean-MDP (Poupart et al., 2006), sparse sampling (Wang et al., 2005), and approximate inference (Wang et al., 2012). Despite being Bayesian, most of these works make limited use of uncertainty quantification,

Figure 3: Success rate and average steps to solve task, reported for both deterministic and stochastic variants over different problem sizes (S = 2N + 1). Averaged over 20 random seeds.

without fully leveraging the posterior. VBRB (Sorg et al., 2012) employs variance similar to ours; however, it is motivated by Chebyshev's inequality and lacks epistemic guidance.

Provably Efficient RL The idea of knownness (Kakade, 2003), combined with Hoeffding's inequality, underlies the PAC-MDP (Strehl & Littman, 2008; Strehl et al., 2009) and PAC-BAMDP (Kolter & Ng, 2009; Araya-López et al., 2012) guarantees, though these bounds are loose compared to our frequentist results. (He et al., 2021) shows that nearly minimax-optimal regret is achievable in infinite-horizon discounted MDPs, but whether similar sample complexity guarantees hold remains unclear. Although several works achieve nearly minimax-optimal regret (Azar et al., 2017) or sample complexity (Dann & Brunskill, 2015; Dann et al., 2019) in the finite-horizon setting using refined concentration bounds (Lee & Oh, 2025), the infinite-horizon setting is generally more challenging due to trajectory coupling and value function stationarity.

Uncertainty Quantification Cognitively, epistemic uncertainty—arising from knowledge gaps—elicits curiosity (Kidd & Hayden, 2015), which can enhance memory for surprising information (Kang et al., 2009). Mathematically, it represents the surprise or disagreement of one's belief, corresponding to mutual information (Hüllermeier & Waegeman, 2021) or variance. Using epistemic uncertainty as an intrinsic reward is principled and more scalable than count-based methods. An open question is how to capture it across multiple hierarchies without hand-crafted rewards.

7 Conclusion

In this paper, we introduce EUBRL, a Bayesian RL algorithm that leverages epistemically guided rewards for principled exploration. The epistemic guidance naturally disentangles exploration and exploitation, and is proven to adaptively reduce per-step regret. Theoretically, we prove that EUBRL achieves nearly minimax-optimal regret and sample complexity for a class of priors that are sufficiently expressive; we instantiate this result on the two most commonly used priors. Empirical results demonstrate the strong exploration capabilities of EUBRL on tasks with sparse rewards, long horizons, and stochasticity, achieving superior sample efficiency, scalability, and consistency. This work opens the door to scaling EUBRL to more complex environments such as robotics and LLMs.

REFERENCES

- Mauricio Araya-López, Olivier Buffet, and Vincent Thomas. Near-optimal BRL using optimistic local transitions. In *Proceedings of the 29th International Conference on Machine Learning, ICML 2012, Edinburgh, Scotland, UK, June 26 July 1, 2012.* icml.cc / Omnipress, 2012. URL http://icml.cc/2012/papers/76.pdf.
- Peter Auer, Thomas Jaksch, and Ronald Ortner. Near-optimal regret bounds for reinforcement learning. *Advances in neural information processing systems*, 21, 2008.
- Mohammad Gheshlaghi Azar, Ian Osband, and Rémi Munos. Minimax regret bounds for reinforcement learning. In *International conference on machine learning*, pp. 263–272. PMLR, 2017.
- Ronen I Brafman and Moshe Tennenholtz. R-max-a general polynomial time algorithm for near-optimal reinforcement learning. *Journal of Machine Learning Research*, 3(Oct):213–231, 2002.
- Christoph Dann and Emma Brunskill. Sample complexity of episodic fixed-horizon reinforcement learning. *Advances in Neural Information Processing Systems*, 28, 2015.
- Christoph Dann, Tor Lattimore, and Emma Brunskill. Unifying pac and regret: Uniform pac bounds for episodic reinforcement learning. *Advances in Neural Information Processing Systems*, 30, 2017.
- Christoph Dann, Lihong Li, Wei Wei, and Emma Brunskill. Policy certificates: Towards accountable reinforcement learning. In *International Conference on Machine Learning*, pp. 1507–1516. PMLR, 2019.
- Richard Dearden, Nir Friedman, and David Andre. Model based bayesian exploration. In Kathryn B. Laskey and Henri Prade (eds.), *UAI '99: Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence, Stockholm, Sweden, July 30 August 1, 1999*, pp. 150–159. Morgan Kaufmann, 1999. URL https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=164&proceeding_id=15.
- Armen Der Kiureghian and Ove Ditlevsen. Aleatory or epistemic? does it matter? *Structural safety*, 31(2):105–112, 2009.
- Michael O'Gordon Duff. *Optimal Learning: Computational procedures for Bayes-adaptive Markov decision processes*. University of Massachusetts Amherst, 2002.
- David A Freedman. On tail probabilities for martingales. *the Annals of Probability*, pp. 100–118, 1975.
- Mohammad Gheshlaghi Azar, Rémi Munos, and Hilbert J Kappen. Minimax pac bounds on the sample complexity of reinforcement learning with a generative model. *Machine learning*, 91(3): 325–349, 2013.
- Jiafan He, Dongruo Zhou, and Quanquan Gu. Nearly minimax optimal reinforcement learning for discounted mdps. *Advances in Neural Information Processing Systems*, 34:22288–22300, 2021.
- Eyke Hüllermeier and Willem Waegeman. Aleatoric and epistemic uncertainty in machine learning: An introduction to concepts and methods. *Machine learning*, 110(3):457–506, 2021.
- Sham Machandranath Kakade. *On the sample complexity of reinforcement learning*. University of London, University College London (United Kingdom), 2003.
 - Min Jeong Kang, Ming Hsu, Ian M Krajbich, George Loewenstein, Samuel M McClure, Joseph Tao-yi Wang, and Colin F Camerer. The wick in the candle of learning: Epistemic curiosity activates reward circuitry and enhances memory. *Psychological science*, 20(8):963–973, 2009.
 - Emilie Kaufmann, Olivier Cappé, and Aurélien Garivier. On bayesian upper confidence bounds for bandit problems. In *Artificial intelligence and statistics*, pp. 592–600. PMLR, 2012.
 - Celeste Kidd and Benjamin Y Hayden. The psychology and neuroscience of curiosity. *Neuron*, 88 (3):449–460, 2015.

- J Zico Kolter and Andrew Y Ng. Near-bayesian exploration in polynomial time. In *Proceedings of the 26th annual international conference on machine learning*, pp. 513–520, 2009.
 - Tze Leung Lai and Herbert Robbins. Asymptotically efficient adaptive allocation rules. *Advances in applied mathematics*, 6(1):4–22, 1985.
 - Tor Lattimore and Marcus Hutter. Pac bounds for discounted mdps. In *International Conference on Algorithmic Learning Theory*, pp. 320–334. Springer, 2012.
 - Harin Lee and Min-hwan Oh. Minimax optimal reinforcement learning with quasi-optimism. In *The Thirteenth International Conference on Learning Representations, ICLR 2025, Singapore, April 24-28, 2025.* OpenReview.net, 2025. URL https://openreview.net/forum?id=i8LCUpKvAz.
 - Sergey Levine. Reinforcement learning and control as probabilistic inference: Tutorial and review. *arXiv preprint arXiv:1805.00909*, 2018.
 - Ian Osband, Daniel Russo, and Benjamin Van Roy. (more) efficient reinforcement learning via posterior sampling. *Advances in Neural Information Processing Systems*, 26, 2013.
 - Ian Osband, Yotam Doron, Matteo Hessel, John Aslanides, Eren Sezener, Andre Saraiva, Katrina McKinney, Tor Lattimore, Csaba Szepesvari, Satinder Singh, et al. Behaviour suite for reinforcement learning. *arXiv preprint arXiv:1908.03568*, 2019a.
 - Ian Osband, Benjamin Van Roy, Daniel J Russo, and Zheng Wen. Deep exploration via randomized value functions. *Journal of Machine Learning Research*, 20(124):1–62, 2019b.
 - Pascal Poupart, Nikos Vlassis, Jesse Hoey, and Kevin Regan. An analytic solution to discrete bayesian reinforcement learning. In *Proceedings of the 23rd international conference on Machine learning*, pp. 697–704, 2006.
 - Jonathan Sorg, Satinder Singh, and Richard L Lewis. Variance-based rewards for approximate bayesian reinforcement learning. *arXiv preprint arXiv:1203.3518*, 2012.
 - Alexander L Strehl and Michael L Littman. An analysis of model-based interval estimation for markov decision processes. *Journal of Computer and System Sciences*, 74(8):1309–1331, 2008.
 - Alexander L Strehl, Lihong Li, and Michael L Littman. Reinforcement learning in finite mdps: Pac analysis. *Journal of Machine Learning Research*, 10(11), 2009.
 - Malcolm Strens. A bayesian framework for reinforcement learning. In *ICML*, volume 2000, pp. 943–950, 2000.
 - Richard S. Sutton and Andrew G. Barto. *Reinforcement Learning: An Introduction*. The MIT Press, second edition, 2018. URL http://incompleteideas.net/book/the-book-2nd.html.
 - William R Thompson. On the likelihood that one unknown probability exceeds another in view of the evidence of two samples. *Biometrika*, 25(3/4):285–294, 1933.
 - Emanuel Todorov. General duality between optimal control and estimation. In 2008 47th IEEE conference on decision and control, pp. 4286–4292. IEEE, 2008.
 - Marc Toussaint. Robot trajectory optimization using approximate inference. In *Proceedings of the 26th annual international conference on machine learning*, pp. 1049–1056, 2009.
 - Tao Wang, Daniel Lizotte, Michael Bowling, and Dale Schuurmans. Bayesian sparse sampling for on-line reward optimization. In *Proceedings of the 22nd international conference on Machine learning*, pp. 956–963, 2005.
- Yi Wang, Kok Sung Won, David Hsu, and Wee Sun Lee. Monte carlo bayesian reinforcement learning. In *Proceedings of the 29th International Conference on Machine Learning, ICML 2012, Edinburgh, Scotland, UK, June 26 July 1, 2012.* icml.cc / Omnipress, 2012. URL http://icml.cc/2012/papers/582.pdf.

A ALGORITHM

Algorithm 1 EUBRL

```
s_0 \sim P(s_0)
\pi \leftarrow \text{ValueIteration}(b)
\text{for } t \leftarrow 0 \text{ to } T - 1 \text{ do}
\text{Act: } a_t = \pi(a_t|s_t)
\text{Interact: } s_{t+1}, r_t \sim P(s_{t+1}, r_t|s_t, a_t)
\text{Update belief: } b \leftarrow \text{BeliefUpdate}(s_{t+1}, r_t)
\text{count = count + 1}
\text{if } s_{t+1} \text{ is terminal or count exceeds the maximum then}
s_{t+1} \leftarrow s \sim P(s_0)
\text{count = 0}
\text{end if}
\text{if time to update policy then}
\pi \leftarrow \text{ValueIteration}(b)
\text{end if}
\text{end for}
```

Note that the algorithm is general. For finite-horizon episodic MDPs, the maximum allowable steps are H, and the policy is updated at this frequency. For infinite-horizon discounted MDPs, the policy is updated at every step. A state is considered terminal if the agent cannot recover from it or if it represents a successful outcome, and the environment itself periodically resets such states, independent of the agent.

B NOTATIONS AND LOGARITHMIC TERMS

In this section, we summarize the notation and logarithmic terms used exclusively for the analysis of both finite- and infinite-horizon settings. To begin with, we denote $PV(s,a) := \mathbb{E}_{P(s'|s,a)}[V(s')]$ for any distribution P and function V.

B.1 Finite-horizon Episodic MDPs

Whenever we refer to k or h, they denote the episode and a particular step of that episode, respectively. We define $\Delta_h(V)(s,a) := V_h(s) - PV_{h+1}(s,a)$. Furthermore, we define $N^k(s,a)$ as the number of visits to (s,a) before the k-th episode, and $n_h^k(s,a)$ as the number of visits up to and including the k-th step of the k-th episode. It is useful to define stopping time ν_k as follows:

$$\nu^k \coloneqq \left\{ \begin{array}{l} \min\{h \in [H]: n_h^k(s_h^k, a_h^k) > 2N^k(s_h^k, a_h^k)\}, & \text{if h exists.} \\ H+1, & \text{otherwise.} \end{array} \right.$$

Intuitively, the stopping time is the first time step within an episode at which the number of visits has more than doubled compared to before the episode.

B.2 Infinite-horizon discounted MDPs

Whenever we refer to t, it denotes the time step, which is the same as the environment step. Analogously, we have $\Delta_{\gamma}(V)(s,a) \coloneqq V(s) - \gamma PV(s,a)$. In addition, we define $N^t(s,a)$ as the number of visits to (s,a) right before the t-th step, and $n^t(s,a)$ as the number of visits up to and including the t-th step. The stopping time ν_t is defined as follows:

$$\nu_t \coloneqq \left\{ \begin{array}{l} \min\{\tau \in [t,T] : n^\tau(s_\tau,a_\tau) > 2N^t(s_\tau,a_\tau)\}, & \text{if τ exists.} \\ T+1, & \text{otherwise.} \end{array} \right.$$

The main difference from the finite-horizon setting is that, for every time step t, we look ahead to determine a stopping time ν_t , rather than relying on a single stopping time that applies to an entire episode.

Table 4: Summary of logarithmic terms and additional notations used in the analysis, with shorthand notation. Each term is specialized for finite- and infinite-horizon MDPs, where symbol \Box takes either episodes or steps as input.

Shorthand	Finite-horizon episodic MDPs	Infinite-horizon discounted MDPs
ℓ_1	$\log\left(\frac{24HSA}{\delta}\right)$	$\log\left(\frac{24SA}{\delta}\right)$
$\ell_{2,\square}$	$\log\left(1 + \frac{kH}{SA}\right)$	$\log\left(1 + \frac{t}{SA}\right)$
$\ell_{3,\square}$	$\log\left(\frac{12SA(1+\log kH)}{\delta}\right)$	$\log\left(\frac{12SA(1+\log t)}{\delta}\right)$
$\ell_{3,\square}(s,a)$	$\log\left(\frac{12SA(1+\log N^k(s,a))}{\delta}\right)$	$\log\left(\frac{12SA(1+\log N^t(s,a))}{\delta}\right)$
$\ell_{4,\square}$	$\log rac{12H}{\delta}$	$\log rac{12t}{\delta}$
$\ell_{5,\epsilon}$	$\log\left(1 + 280B(\epsilon)H\right)$	$\log\left(1 + 140B(\epsilon)\right)$
$\ell_{6,\epsilon}$	$\log\lograc{V_H^{\uparrow}e}{\epsilon}$	$\log\lograc{V_{\gamma}^{\uparrow}e}{\epsilon(1-\gamma)}$
$B(\epsilon)$	$\frac{R_{\max}^2 H^2 \ell_1}{\epsilon^2} + \frac{R_{\max} HS(2\ell_1 + \ell_{6,\epsilon})}{\epsilon}$	$\frac{R_{\max}^2 \ell_1}{\epsilon^2 (1-\gamma)^3} + \frac{R_{\max} S(2\ell_1 + \ell_{6,\epsilon})}{\epsilon (1-\gamma)^2}$
m_{\square}	$rac{V_H^{+2}}{R_{ m max}^2\lambda_k^2} \ rac{V_H^{+2}}{R_{ m max}^2\lambda_k^2} \ rac{V_H^{+2}}{R_{ m max}^2\lambda}$	$rac{V_{\gamma}^{\uparrow2}}{R_{ ext{max}}^2\lambda_t^2} \ rac{V_{\gamma}^{\uparrow2}}{R_{ ext{max}}^2\lambda} \ rac{7V_{\gamma}^{\ell}\ell_1}{\lambda}$
m	$rac{V_H^{ op 2}}{R_{ m max}^2 \lambda}$	$rac{V_{\gamma}^{+2}}{R_{ m max}^2 \lambda}$
Υ^\square	$rac{7V_H^\uparrow\ell_1}{\lambda_k} rac{7V_H^\uparrow\ell_1}{\lambda_k}$	$\frac{7V_{\gamma}^{\uparrow}\ell_{1}}{\lambda}$
Υ	$rac{7V_H^{\gamma}\ell_1}{\lambda}$	$rac{7V_{\gamma}^{\uparrow}\ell_{1}}{\lambda}$
η^\square	$\mathcal{E}_{\max} \Upsilon^k + R_{\max} \sqrt{m_k}$	$\mathcal{E}_{max} \Upsilon^t + R_{max} \sqrt{m_t}$
η	$\mathcal{E}_{max} \Upsilon + R_{max} \sqrt{m}$	$\mathcal{E}_{max} \Upsilon + R_{max} \sqrt{m}$

C HIGH PROBABILITY EVENTS

In this section, we outline high probability events that are basis of the analysis henceforth. Let $\{\lambda_k\}_{k=1}^{\infty}$ be a sequence of real numbers with $\lambda_k \in (0,1], \forall k \in \mathbb{N}$ for finite-horizon episodic MDPs. Analogously, we have $\{\lambda_t\}_{t=1}^{\infty}$ for infinite-horizon discounted MDPs. They arise from Freedman's inequality (Freedman, 1975), and has been enhanced recently by (Lee & Oh, 2025).

C.1 REGRET ANALYSIS

C.1.1 FINITE-HORIZON EPISODIC MDPs

$$\begin{aligned} \mathbf{A}_{1} &:= \left\{ \left| (\hat{P}^{k} - P) V_{h+1}^{\star}(s, a) \right| \leq \frac{\lambda_{k}}{4V_{H}^{\dagger}} \mathrm{Var}(V_{h+1}^{\star})(s, a) + \frac{3V_{H}^{\dagger} \ell_{1}}{\lambda_{k} N^{k}(s, a)}, \forall (s, a) \in \mathcal{S} \times \mathcal{A}, h \in [H], k \in \mathbb{N} \right\} \\ \mathbf{A}_{2} &:= \left\{ (P - \hat{P}^{k})(V_{h+1}^{\star})^{2}(s, a) \leq \frac{1}{2} \mathrm{Var}(V_{h+1}^{\star})(s, a) + \frac{6V_{H}^{\dagger 2} \ell_{1}}{N^{k}(s, a)}, \forall (s, a) \in \mathcal{S} \times \mathcal{A}, h \in [H], k \in \mathbb{N} \right\} \\ \mathbf{A}_{3} &:= \left\{ \left| \hat{P}^{k}(s' \mid s, a) - P(s' \mid s, a) \right| \leq 2\sqrt{\frac{2P(s' \mid s, a)\ell_{3,k}(s, a)}{N^{k}(s, a)}} + \frac{2\ell_{3,k}(s, a)}{3N^{k}(s, a)}, \forall (s, a) \in \mathcal{S} \times \mathcal{A}, s' \in \mathcal{S}, k \in \mathbb{N} \right\} \\ \mathbf{A}_{4} &:= \left\{ \left| \hat{r}^{k}(s, a) - r(s, a) \right| \leq \lambda_{k} r(s, a) + \frac{R_{\max}\ell_{1}}{\lambda_{k} N^{k}(s, a)}, \forall (s, a) \in \mathcal{S} \times \mathcal{A}, k \in \mathbb{N} \right\} \\ \mathbf{A}_{5} &:= \left\{ \sum_{k=1}^{K} \sum_{h=1}^{\nu^{k} - 1} \left(PJ_{h+1}^{k}(s_{h}^{k}, a_{h}^{k}) - J_{h+1}^{k}(s_{h+1}^{k}) \right) \leq \frac{1}{4V_{H}^{\dagger}} \sum_{k=1}^{K} \sum_{h=1}^{\nu^{k} - 1} \mathrm{Var}(J_{h+1}^{k})(s_{h}^{k}, a_{h}^{k}) + 3V_{H}^{\dagger} \log \frac{6}{\delta}, \forall K \in \mathbb{N} \right\} \\ \mathbf{A}_{6} &:= \left\{ \sum_{k=1}^{K} \sum_{h=1}^{\nu^{k} - 1} \left(P(J_{h+1}^{k})^{2}(s_{h}^{k}, a_{h}^{k}) - (J_{h+1}^{k})^{2}(s_{h+1}^{k}) \right) \leq \frac{1}{2} \sum_{k=1}^{K} \sum_{h=1}^{\nu^{k} - 1} \mathrm{Var}(J_{h+1}^{k})(s_{h}^{k}, a_{h}^{k}) + 6V_{H}^{\dagger 2} \log \frac{6}{\delta}, \forall K \in \mathbb{N} \right\}. \end{aligned}$$

C.1.2 Infinite-horizon Discounted MDPs

$$\mathbf{A}_{1}^{\gamma} \coloneqq \left\{ \left| (\hat{P}^{t} - P)V^{\star}(s, a) \right| \leq \frac{\lambda_{t}}{4V_{\gamma}^{\uparrow}} \operatorname{Var}(V^{\star})(s, a) + \frac{3V_{\gamma}^{\uparrow}\ell_{1}}{\lambda_{t}N^{t}(s, a)}, \forall (s, a) \in \mathcal{S} \times \mathcal{A}, t \in \mathbb{N} \right\}$$

$$\mathbf{A}_{2}^{\gamma} \coloneqq \left\{ (P - \hat{P}^{t})(V^{\star})^{2}(s, a) \leq \frac{1}{2} \operatorname{Var}(V^{\star})(s, a) + \frac{6V_{\gamma}^{\uparrow2}\ell_{1}}{N^{t}(s, a)}, \forall (s, a) \in \mathcal{S} \times \mathcal{A}, t \in \mathbb{N} \right\}$$

$$\mathbf{A}_{3}^{\gamma} \coloneqq \left\{ \left| \hat{P}^{t}(s' \mid s, a) - P(s' \mid s, a) \right| \leq 2\sqrt{\frac{2P(s' \mid s, a)\ell_{3,k}(s, a)}{N^{t}(s, a)}} + \frac{2\ell_{3,k}(s, a)}{3N^{t}(s, a)}, \forall (s, a) \in \mathcal{S} \times \mathcal{A}, s' \in \mathcal{S}, t \in \mathbb{N} \right\}$$

$$\mathbf{A}_{4}^{\gamma} \coloneqq \left\{ \left| \hat{r}^{t}(s, a) - r(s, a) \right| \leq \lambda_{t}r(s, a) + \frac{R_{\max}\ell_{1}}{\lambda_{t}N^{t}(s, a)}, \forall (s, a) \in \mathcal{S} \times \mathcal{A}, t \in \mathbb{N} \right\}$$

$$\mathbf{A}_{5}^{\gamma} \coloneqq \left\{ \sum_{t=1}^{T} \sum_{l=0}^{\nu_{t}-1} \gamma^{l+1} \left(PJ^{t}(s_{t+l}, a_{t+l}) - J^{t}(s_{t+l+1}) \right) \leq \frac{(1-\gamma)}{8V_{\gamma}^{\uparrow}} \sum_{t=1}^{T} \operatorname{Var}\left(Y^{t}(s_{t+1}) \right) (s_{t}, a_{t}) + \frac{6V_{\gamma}^{\uparrow}}{1-\gamma} \log \frac{6}{\delta}, \forall T \in \mathbb{N} \right\}$$

$$\mathbf{A}_{6}^{\gamma} \coloneqq \left\{ \sum_{t=1}^{T} \left(P\left(Y^{t}(s_{t+1}) \right)^{2}(s_{t}, a_{t}) - (Y^{t}(s_{t+1}))^{2} \right) \leq \frac{1}{4} \sum_{t=1}^{T} \operatorname{Var}\left(Y^{t}(s_{t+1}) \right) (s_{t}, a_{t}) + \frac{12V_{\gamma}^{\uparrow2}}{(1-\gamma)^{2}} \log \frac{6}{\delta}, \forall T \in \mathbb{N} \right\}.$$

For the definition of $Y^t(s_{t+1})$, please refer to the proof of Lemma 20.

C.2 SAMPLE COMPLEXITY

To analyze sample complexity, we consider modifying the last two events using an indicator function that only accounts for a subset of episodes or time steps deemed "bad". Since the resulting bound is almost identical, except that these "bad" indices replace the full summation, we denote such events as A_7 , A_8 for finite-horizon episodic MDPs, and A_7^{γ} , A_8^{γ} for infinite-horizon discounted MDPs.

C.3 PUTTING ALL TOGETHER

 Each undesirable event is assigned probability at most $\frac{\delta}{6}$. By the union bound, the probability of their intersection is at least $1 - \delta$. Therefore, we have the following events spanning different results:

$$\begin{split} \boldsymbol{\mathcal{A}} &\coloneqq \cap_{i=1}^{6} \mathbf{A}_{i} \\ \boldsymbol{\mathcal{B}} &\coloneqq \cap_{i=1}^{6} \mathbf{A}_{i}^{\gamma} \\ \boldsymbol{\mathcal{C}} &\coloneqq \left(\cap_{i=1}^{4} \mathbf{A}_{i} \right) \cap \left(\mathbf{A}_{7} \cap \mathbf{A}_{8} \right) \\ \boldsymbol{\mathcal{D}} &\coloneqq \left(\cap_{i=1}^{4} \mathbf{A}_{i}^{\gamma} \right) \cap \left(\mathbf{A}_{7}^{\gamma} \cap \mathbf{A}_{8}^{\gamma} \right). \end{split}$$

D PROOFS FOR FINITE-HORIZON EPISODIC MDPs

Our proof starts with finite-horizon episodic MDPs, which are simple to illustrate and play a vital role in bridging to the infinite-horizon case.

D.1 PRELIMINARY CONSTRUCTIONS

Since our formulation decays more aggressively than $\frac{1}{N^k}$, we need to introduce an auxiliary value function \tilde{V}^k that behaves the same as the original before a critical point m, however, after which the error should be manageable. That is, it is the value function of the MDP $(S,A,\hat{P}^k,\tilde{r}^k,H)$, where only the reward is different compared to V^k of $(S,A,\hat{P}^k,r_{\text{EUBRL}}^k,H)$. The modified reward is defined as $\tilde{r}^k = (1-P_U^k)\hat{r}^k + b^k$, where the bonus term b^k is defined as:

$$b^k = \left\{ \begin{array}{ll} P_U^k \eta^k \mathcal{E}^k, & \text{if } N^k < m. \\ P_U^k R_{\max} + \frac{\Upsilon^k}{N^k}, & \text{otherwise.} \end{array} \right.$$

Here $\eta^k = \mathcal{E}_{\max} \Upsilon^k + R_{\max} \sqrt{m_k}$, for which more details can be found in Lemma 33.

The reward is increased to a degree that decays at least as fast as $\frac{1}{N^k}$, ensuring an advantage over the complexity arising from the reciprocal of visits. Although this advantage holds for an arbitrary m, we need to control the error between the two value functions thereafter. For this reason, we set $m_k = \frac{V_{max}^{\dagger 2}}{R_{max}^2 \lambda_k^2}$, which yields a sufficiently small error.

D.2 QUASI-OPTIMISM WITH EPISTEMIC RESISTANCE

Lemma 2. For finite-horizon episodic MDPs, under high-probability event $A_1 \cap A_2$, it holds that for all $s \in S$, $h \in [H+1]$, $k \in \mathbb{N}$,

$$\widetilde{V}_h^k(s) + \left(\frac{3}{2} - P_U^{k,\star}(s)\right) \lambda_k H \ge V_h^{\star}(s)$$

Proof. Since we want to bound the error between $V^*(s)$ and $V^k(s)$ for any $s \in \mathcal{S}$. The auxiliary function is served as a bridge to achieve that. Let us decompose the error $V^*(s) - V^k(s)$ as follows:

$$V^{\star}(s) - V^k(s) = \underbrace{V^{\star}(s) - \widetilde{V}^k(s)}_{\text{Quasi-optimism}} + \underbrace{\widetilde{V}^k(s) - V^k(s)}_{\text{Complexity}}.$$

The complexity can be bounded by Lemma 3, and its proof will be given later. We now focus on the other part.

The proof follows the procedure of Lemma 2 in (Lee & Oh, 2025), with modifications to fit our formulation. The epistemic uncertainty guidance allows us to establish a refined induction hypothesis, thereby tightening the bound in proportion to the degree of uncertainty.

To simplify notations, we write $P_U^{k,\star}(s) \coloneqq P_U^k(s,\pi^\star(s))$ and $P_U^k(s) \coloneqq P_U^k(s,\pi^k(s))$. Furthermore, let $a^\star \coloneqq \pi^\star(s)$, $a \coloneqq \pi^k(s)$, and $\tilde{a} \coloneqq \tilde{\pi}^k(s)$ denote the actions under the optimal policies corresponding to V^\star, V^k , and \tilde{V}^k , respectively.

We prove by backward induction on h:

$$V_h^{\star}(s) - \widetilde{V}_h^k(s) \le \lambda_k \left(\left(2 - P_U^{k,\star}(s) \right) V_h^{\star}(s) - \frac{1}{2V_H^{\uparrow}} (V_h^{\star})^2(s) \right).$$

For the base case h=H+1, both sides are 0, therefore the inequality holds. Assume it holds for h+1, we will show it holds for h. If $\widetilde{V}_h^k=V_H^\uparrow$, then left-hand side will be no positive, therefore the inequality trivially holds. Suppose $\widetilde{V}_h^k< V_H^\uparrow$, by definition we have

$$\widetilde{V}_h^k(s) = \widetilde{r}^k(s, \widetilde{a}) + \widehat{P}^k \widetilde{V}_{h+1}^k(s, \widetilde{a}).$$

With this, we obtain:

$$\begin{split} V_h^{\star}(s) - \widetilde{V}_h^k(s) &= \left(r(s, a^{\star}) + PV_{h+1}^{\star}(s, a^{\star}) \right) - \left(\tilde{r}^k(s, \tilde{a}) + \hat{P}^k \widetilde{V}_{h+1}^k(s, \tilde{a}) \right) \\ &\stackrel{(\mathbf{a})}{\leq} \left(r(s, a^{\star}) + PV_{h+1}^{\star}(s, a^{\star}) \right) - \left(\tilde{r}^k(s, a^{\star}) + \hat{P}^k \widetilde{V}_{h+1}^k(s, a^{\star}) \right) \\ &= r(s, a^{\star}) - \tilde{r}^k(s, a^{\star}) + \left(PV_{h+1}^{\star}(s, a^{\star}) - \hat{P}^k \widetilde{V}_{h+1}^k(s, a^{\star}) \right) \\ &= r(s, a^{\star}) - \left((1 - P_U^{k, \star}(s)) \hat{r}^k(s, a^{\star}) + b^k(s, a^{\star}) \right) + \left(PV_{h+1}^{\star}(s, a^{\star}) - \hat{P}^k \widetilde{V}_{h+1}^k(s, a^{\star}) \right) \\ &\stackrel{(\mathbf{b})}{=} \left(1 - P_U^{k, \star}(s) \right) \left(r(s, a^{\star}) - \hat{r}^k(s, a^{\star}) \right) + \left(PU_U^{\star}(s) r(s, a^{\star}) - b^k(s, a^{\star}) \right) \\ &+ \left(PV_{h+1}^{\star}(s, a^{\star}) - \hat{P}^k \widetilde{V}_{h+1}^k(s, a^{\star}) \right), \end{split}$$

where (a) is due to the optimality of \tilde{a} and (b) by noting $r(s, a^\star) = \left((1 - P_U^{k,\star}(s)) + P_U^{k,\star}(s)\right) r(s, a^\star).$

Since $r \leq R_{\text{max}}$, we have:

$$P_U^{k,\star}(s)r(s,a^\star) - b^k(s,a^\star) \leq P_U^{k,\star}(s)R_{\max} - b^k(s,a^\star).$$

At this point, we note that the intermediate steps are identical to those in (Lee & Oh, 2025); therefore, we omit them here and state the resulting expression. Denote $\Upsilon^k := \frac{7V_H^{\uparrow}\ell_{1,k}}{\lambda_k}$, we obtain:

$$\begin{split} V_{h}^{\star}(s) - \widetilde{V}_{h}^{k}(s) &\leq -(b^{k}(s, a^{\star}) - P_{U}^{k, \star}(s)R_{\max}) + \frac{(7 - P_{U}^{k, \star}(s))V_{H}^{\uparrow}\ell_{1, k}}{\lambda_{k}N^{k}(s, a^{\star})} \\ &+ \lambda_{k}(2 - P_{U}^{k, \star}(s))(r(s, a^{\star}) + PV_{h+1}^{\star}(s, a^{\star})) - \frac{\lambda_{k}}{2V_{H}^{\uparrow}}(V_{h}^{\star})^{2}(s) \\ &= -(b^{k}(s, a^{\star}) - P_{U}^{k, \star}(s)R_{\max}) + \frac{(7 - P_{U}^{k, \star}(s))V_{H}^{\uparrow}\ell_{1, k}}{\lambda_{k}N^{k}(s, a^{\star})} + \lambda_{k}\left(\left(2 - P_{U}^{k, \star}(s)\right)V_{h}^{\star}(s) - \frac{1}{2V_{H}^{\uparrow}}(V_{h}^{\star})^{2}(s)\right) \\ &\leq -(b^{k}(s, a^{\star}) - P_{U}^{k, \star}(s)R_{\max}) + \frac{\Upsilon^{k}}{N^{k}(s, a^{\star})} + \lambda_{k}\left(\left(2 - P_{U}^{k, \star}(s)\right)V_{h}^{\star}(s) - \frac{1}{2V_{H}^{\uparrow}}(V_{h}^{\star})^{2}(s)\right) \\ &\stackrel{\text{(a)}}{\leq} \lambda_{k}\left(\left(2 - P_{U}^{k, \star}(s)\right)V_{h}^{\star}(s) - \frac{1}{2V_{U}^{\uparrow}}(V_{h}^{\star})^{2}(s)\right) \end{split} \tag{1}$$

where (a) is due to the fact of Lemma 33. Moreover, note that for $s \in \mathcal{S}$, we have $1 \leq 2 - P_U^{k,\star}(s) \leq 2$, therefore the function $f(x) = \left(2 - P_U^{k,\star}(s)\right)x - \frac{1}{2V_H^{\uparrow}}x^2, x \in [0,V_H^{\uparrow}]$ is bounded by $\left(\frac{3}{2} - P_U^{k,\star}(s)\right)V_H^{\uparrow}$. Substituting this for Eq. 1 completes the proof.

D.3 BOUNDEDNESS OF COMPLEXITY

Lemma 3. For all $s \in \mathcal{S}, h \in [H+1], k \in \mathbb{N}$, it holds that

$$\widetilde{V}_h^k(s) - V_h^k(s) \le R_{max} \lambda_k := \Phi_k.$$

We first introduce the the following elementary lemma:

Lemma 4. For any $n > \max\{m, \frac{1}{\epsilon^2}\}$, we have

$$\frac{1}{\sqrt{n}} - \frac{\sqrt{m}}{n} = \frac{\sqrt{n} - \sqrt{m}}{n} < \epsilon.$$

Proof. Since n > m, $\frac{1}{\sqrt{n}} - \frac{\sqrt{m}}{n} \ge 0$. To require ϵ -accuracy, it needs $\frac{1}{\sqrt{n}} < \frac{\sqrt{m}}{n} + \epsilon$. If we have $\frac{1}{\sqrt{n}} < \epsilon \Leftrightarrow n > \frac{1}{\epsilon^2}$, then the result is desired, which is because:

$$\frac{1}{\sqrt{n}} < \epsilon < \frac{\sqrt{m}}{n} + \epsilon$$

Proof of Lemma 3. The following will bound the complexity term $\widetilde{V}^k(s) - V^k(s)$. Since the two terms differ only in rewards, we first bound the difference in rewards $\Delta_r^k = |\widetilde{r}^k - r_{\text{EUBRL}}^k|$.

Without loss of generality, we bound the reward for finite-horizon episodic MDPs. We set $\epsilon_k = \frac{R_{\max} \lambda_k}{V_H^2}$, thereby $m_k = \frac{V_H^{\uparrow \, 2}}{R_{\max}^2 \lambda_k^2}$.

If $N^k < m_k$, the reward \tilde{r}^k of \tilde{V}^k is the same as r_{FUBRL}^k , therefore $\Delta_r^k = 0$; otherwise, we have

$$\begin{split} & \Delta_r^k = \left| \left(P_U^k R_{\text{max}} + \frac{\Upsilon^k}{N^k} \right) - \left(P_U^k \eta^k \mathcal{E}^k \right) \right| \\ & = \left| \left(P_U^k R_{\text{max}} + \frac{\Upsilon^k}{N^k} \right) - \left(\left(\Upsilon^k + \frac{R_{\text{max}}}{\mathcal{E}_{\text{max}}} \sqrt{m_k} \right) \frac{1}{N^k} \right) \right| \\ & = \left| P_U^k R_{\text{max}} - \frac{\frac{R_{\text{max}}}{\mathcal{E}_{\text{max}}} \sqrt{m_k}}{N^k} \right| \\ & = \left| \frac{1}{\sqrt{N^k}} \frac{R_{\text{max}}}{\mathcal{E}_{\text{max}}} - \frac{\frac{R_{\text{max}}}{\mathcal{E}_{\text{max}}} \sqrt{m_k}}{N^k} \right| \\ & = \left| \frac{R_{\text{max}}}{\mathcal{E}_{\text{max}}} \left(\frac{1}{\sqrt{N^k}} - \frac{\sqrt{m_k}}{N^k} \right) \right| \\ & = \frac{R_{\text{max}}}{\mathcal{E}_{\text{max}}} \left| \frac{\sqrt{N^k} - \sqrt{m_k}}{N^k} \right| \\ & = \frac{R_{\text{max}}}{\mathcal{E}_{\text{max}}} \left(\frac{\sqrt{N^k} - \sqrt{m_k}}{N^k} \right) \\ & \leq \frac{R_{\text{max}}}{\mathcal{E}_{\text{max}}} \frac{\lambda_k}{\mathcal{E}_{\text{max}}} \frac{\lambda_k}{\mathcal{H}} \\ & \leq R_{\text{max}} \frac{\lambda_k}{\mathcal{H}}, \end{split}$$

where the second to last is because of Lemma 4, and the last is because of the assumption that $\mathcal{E}_{max} \geq 1$.

By Simulation Lemma, we know that the value functions differ at most $R_{\text{max}}\lambda_t$.

For infinite-horizon discounted MDPs, the proof is similar, except that we need to replace the time index with t and the maximum value function with V_{γ}^{\uparrow} .

D.4 BOUNDEDNESS OF ACCURACY

Lemma 5. For finite-horizon episodic MDPs, under high-probability event $\cap_{i=1}^4 \mathbf{A}_i$, it holds that for all $s \in \mathcal{S}, h \in [H+1], k \in \mathbb{N}$,

$$V_h^k(s) - V_h^{\pi^k}(s) \le \left(3 - 2P_U^k(s) - \frac{2}{7}P_U^{k,\star}(s)\right)\lambda_k H + 2J^k(s) + \mathcal{O}\left(\frac{\Phi_k^2}{V_H^{\uparrow}} + \lambda_k \Phi_k\right).$$

It is convenient to define the following quantities for the analysis.

Definition 2. Let $D_h^k(s)$ be defined by

$$D_h^k(s) := \lambda_k \left((3 - 2P_U^k(s))V_h^{\star}(s) - \frac{1}{2V_H^{\uparrow}}(V_h^{\star})^2(s) \right) + \frac{1}{7V_H^{\uparrow}} \left((S_k)^2 - \left(\widehat{V}_h(s) + S_k \right)^2 \right),$$

where $\beta^k(s, a)$:

$$\beta^{k}(s,a) = P_{U}^{k}(s,a)\eta^{k}\mathcal{E}^{k}(s,a) + \beta_{1}^{k}(s,a) + (1 - P_{U}^{k}(s))\frac{V_{H}^{\uparrow}\ell_{1,k}}{\lambda_{k}N^{k}(s,a)}$$
$$\widehat{V}_{h}(s) := V_{h}^{k}(s) - V_{h}^{\star}(s)$$
$$S_{k} := \left(\frac{3}{2} - P_{U}^{k,\star}(s)\right)\lambda_{k}V_{H}^{\uparrow} + \Phi_{k},$$

in which

$$\beta_1^k(s,a) := \frac{1}{N^k(s,a)} \left(\frac{3V_H^{\uparrow} \ell_{1,k}}{\lambda_k} + 30V_H^{\uparrow} S \ell_{3,k}(s,a) \right).$$

Proof of Lemma 5. The key to bound the accuracy term $V_h^k(s) - V_h^{\pi_k}(s)$ is to decompose it into differences:

$$V_{h}^{k}(s) - V_{h}^{\pi_{k}}(s) = \underbrace{\Delta_{h}\left(V^{k} - V^{\pi_{k}}\right)(s, a)}_{I_{1}} + P\left(V_{h+1}^{k} - V_{h+1}^{\pi_{k}}\right)(s, a).$$

By Lemma 35, we know that

$$I_1 \le \left(\Delta_h(D^k)(s,a) + 2\beta^k(s,a)\right)$$

Denote

$$I_2 := (3 - 2P_U^k(s))V_h^{\star}(s) - \frac{1}{2V_H^{\uparrow}}(V_h^{\star})^2(s)$$
$$I_3 := \left(S_k^2 - \left(\widehat{V}_h(s) + S_k\right)^2\right),$$

we have $D_h^k(s) = \lambda_k I_2 + \frac{1}{7V_H^{\uparrow}} I_3$.

We now bound I_2 and I_3 individually.

Bounding I_2

$$I_2 \le \left(\frac{5}{2} - 2P_U^k(s)\right) V_H^{\uparrow} \tag{2}$$

Bounding I_3

$$I_3 = -\hat{V}_h(s)^2 - 2S_k \hat{V}_h(s) \le S_k^2, \ \hat{V}_h(s) \in [-V_H^{\uparrow}, V_H^{\uparrow}]$$
 (3)

$$S_k = \left(\frac{3}{2} - P_U^{k,\star}(s)\right) \lambda_k V_H^{\uparrow} + \Phi_k \tag{4}$$

$$S_k^2 \le \left(\frac{3}{2} - P_U^{k,\star}(s)\right)^2 \lambda_k^2 V_H^{\uparrow \, 2} + \Phi_k^2 + \left(3 - 2P_U^{k,\star}(s)\right) \lambda_k V_H^{\uparrow} \Phi_k \tag{5}$$

Therefore,

$$D_h^k(s) = \lambda_k I_2 + \frac{1}{7V_H^{\uparrow}} I_3 \tag{6}$$

$$\leq \left(\frac{5}{2} - 2P_U^k(s)\right)\lambda_k V_H^{\uparrow} + \frac{1}{7}\left(\frac{3}{2} - P_U^{k,\star}(s)\right)^2 \lambda_k^2 V_H^{\uparrow} + \mathcal{O}\left(\frac{\Phi_k^2}{V_H^{\uparrow}}\right) + \mathcal{O}(\lambda_k \Phi_k) \tag{7}$$

$$\leq \left(3 - 2P_U^k(s) - \frac{2}{7}P_U^{k,\star}(s)\right)\lambda_k V_H^{\uparrow} + \mathcal{O}\left(\frac{\Phi_k^2}{V_H^{\uparrow}} + \lambda_k \Phi_k\right). \tag{8}$$

Furthermore, by backward induction on h, we have

$$V_h^k(s) - V_h^{\pi_k}(s) = D_h^k(s) + 2J_h^k(s).$$

Combining this with the upper bound of $D_h^k(s)$ completes the proof.

D.5 BOUNDEDNESS OF J_1^k

Lemma 6. For finite-horizon episodic MDPs, under high-probability event $A_5 \cap A_6$, it holds that

$$\sum_{k=1}^K J_1^k(s_1^k) \leq 2 \sum_{k=1}^K \sum_{h=1}^{\nu^k-1} \beta^k(s_h^k, a_h^k) + 6 V_H^{\uparrow} SA \log \frac{12H}{\delta},$$

for all $K \in \mathbb{N}$.

Lemma 7. For finite-horizon episodic MDPs, under high-probability event $\mathbf{A}_5 \cap \mathbf{A}_6$, denote $\mathcal{Y}^{(K)} := \frac{12V_H^{\uparrow}\ell_{1,K}}{\lambda_K} + 30V_H^{\uparrow}S\ell_{3,K}$, it holds that

$$\sum_{k=1}^{K} J_1^k(s_1^k) \le 4\mathcal{Y}^{(K)} SA \log\left(1 + \frac{KH}{SA}\right) + 6V_H^{\uparrow} SA \log\frac{12H}{\delta},$$

for all $K \in \mathbb{N}$.

D.6 LOWER BOUND OF EPISTEMIC RESISTANCE

Lemma 8 (Lower Bound of Epistemic Resistance). *Given a uniform* $\lambda_k = \lambda, \forall k \in \mathbb{N}$, *it holds that*

$$\sum_{k=1}^{K} \mathfrak{R}^{k}(s_{1}^{k}) \lambda_{k} V_{H}^{\uparrow} \geq \frac{23R_{max}}{7} \left(\frac{2}{\mathcal{E}_{max}} \left(\sqrt{HK} - \sqrt{H} \right) + H \right) \lambda,$$

for any $K \in \mathbb{N}$.

Proof.

$$\begin{split} \sum_{k=1}^K P_U^k(s_1^k, a_1^k) &= 1 + \frac{1}{\mathcal{E}_{\text{max}}} \sum_{k=2}^K \frac{1}{\sqrt{N^k(s_1^k, a_1^k)}} \\ &\geq 1 + \frac{1}{\mathcal{E}_{\text{max}}} \sum_{k=2}^K \frac{1}{\sqrt{(k-1)H}} \\ &= 1 + \frac{1}{\mathcal{E}_{\text{max}}\sqrt{H}} \sum_{k=1}^{K-1} \frac{1}{\sqrt{k}} \\ &\geq 1 + \frac{1}{\mathcal{E}_{\text{max}}\sqrt{H}} \int_k^{k+1} \frac{1}{\sqrt{x}} \, dx \\ &= 1 + \frac{1}{\mathcal{E}_{\text{max}}\sqrt{H}} \left(2\sqrt{K} - 2\right), \end{split}$$

Note, this also holds for $P_U^{k,\star}(s_1^k,\pi_1^{\star}(s_1^k))$. Therefore, multiplying with $\frac{23}{7}\lambda V_H^{\uparrow}$ completes the proof.

D.7 REGRET ANALYSIS

Combining the results of Lemmas 2–5, we obtain the per-step regret:

Theorem 6. Under high-probability event A, it holds that for all $s \in S$, $h \in [H+1]$, $k \in \mathbb{N}$,

$$V^{\star}(s) - V^{\pi^k}(s) \le \left(\frac{9}{2} - \mathfrak{R}^k(s)\right) \lambda_k V_H^{\uparrow} + 2J^k(s) + \mathcal{O}\left(\Phi_k\left(1 + \frac{\Phi_k}{V_H^{\uparrow}}\right)\right),$$

where we define the following as Epistemic Resistance

$$\mathfrak{R}^k(s) := 2P_U^k(s) + \frac{9}{7}P_U^{k,\star}(s).$$

Theorem 7. For finite-horizon episodic MDPs, for any fixed $K \in \mathbb{N}$, with probability at least $1 - \delta$, it holds that

$$Regret(K) \le \widetilde{\mathcal{O}}(H\sqrt{SAK} + HS^2A).$$

Proof. From Theorem 6, we have:

$$\operatorname{Regret}(K) \leq \frac{9V_H^{\uparrow}}{2} \sum_{k=1}^K \lambda_k - V_H^{\uparrow} \sum_{k=1}^K \mathfrak{R}^k(s_1^k) \lambda_k + 2 \sum_{k=1}^K J^k(s_1^k) + \sum_{k=1}^K \mathcal{O}\left(\Phi_k\left(1 + \frac{\Phi_k}{V_H^{\uparrow}}\right)\right).$$

Choose
$$\lambda_k = \min\{1, 4\sqrt{\frac{SA\ell_1\ell_{2,K}}{K}}\}, \ \forall k \in [K] \ \text{and denote} \ \Psi(K) \coloneqq \frac{2\sum\limits_{k=1}^K \mathfrak{R}^k(s)}{9K}, \ \text{we have}$$

$$\begin{split} \frac{9V_H^{\uparrow}}{2} \sum_{k=1}^K \lambda_k - V_H^{\uparrow} \sum_{k=1}^K \mathfrak{R}^k(s_1^k) \lambda_k &= \frac{9V_H^{\uparrow}}{2} \left(1 - \frac{2\sum_{k=1}^K \mathfrak{R}^k(s_1^k)}{9K}\right) K \min\{1, 4\sqrt{\frac{SA\ell_1\ell_{2,K}}{K}}\} \\ &\leq 18V_H^{\uparrow} (1 - \Psi(K)) K \sqrt{\frac{SA\ell_1\ell_{2,K}}{K}} \\ &= 18V_H^{\uparrow} (1 - \Psi(K)) \sqrt{SAK\ell_1\ell_{2,K}}. \end{split}$$

From Lemma 7, we know that

$$\begin{split} 2\sum_{k=1}^{K} J^{k}(s_{1}^{k}) &\leq 8\mathcal{Y}^{(K)} SA \log \left(1 + \frac{KH}{SA}\right) + 12V_{H}^{\uparrow} SA \log \frac{12H}{\delta} \\ &\leq \frac{96V_{H}^{\uparrow} SA\ell_{1,K}\ell_{2,K}}{\lambda_{K}} + 240V_{H}^{\uparrow} S^{2} A\ell_{2,K}\ell_{3,K} + 12V_{H}^{\uparrow} SA \log \frac{12H}{\delta}. \\ &\leq 96V_{H}^{\uparrow} SA\ell_{1,K}\ell_{2,K} \max \left\{1, \frac{1}{4} \sqrt{\frac{K}{SA\ell_{1}\ell_{2,K}}}\right\} + 240V_{H}^{\uparrow} S^{2} A\ell_{2,K}\ell_{3,K} + 12V_{H}^{\uparrow} SA \log \frac{12H}{\delta}. \\ &\leq 96V_{H}^{\uparrow} SA\ell_{1,K}\ell_{2,K} + 24V_{H}^{\uparrow} \sqrt{SAK\ell_{1}\ell_{2,K}} + 240V_{H}^{\uparrow} S^{2} A\ell_{2,K}\ell_{3,K} + 12V_{H}^{\uparrow} SA \log \frac{12H}{\delta}. \\ &\leq 24V_{H}^{\uparrow} \sqrt{SAK\ell_{1}\ell_{2,K}} + 336V_{H}^{\uparrow} S^{2} A\ell_{1,K}^{\prime} (1 + \ell_{2,K}), \end{split}$$

where we denote $\ell'_{1,K} \coloneqq \log \frac{24HSA(1+\log KH)}{\delta}$ as an upper bound of both $\ell_{1,K}$ and $\ell_{3,K}$, and merge into the non-leading term.

Combining those two together, we get:

$$\begin{split} \text{Regret}(K) & \leq \left(42 - 18\Psi(K)\right) V_H^{\uparrow} \sqrt{SAK\ell_1\ell_{2,K}} + 336V_H^{\uparrow} S^2 A \ell_{1,K}'(1 + \ell_{2,K}) + \sum_{k=1}^K \mathcal{O}\left(\Phi_k\left(1 + \frac{\Phi_k}{V_H^{\uparrow}}\right)\right) \\ & \leq \left(42 - 18\Psi(K)\right) R_{\text{max}} H \sqrt{SAK\ell_1\ell_{2,K}} + 336R_{\text{max}} H S^2 A \ell_{1,K}'(1 + \ell_{2,K}) + \sum_{k=1}^K \mathcal{O}\left(\Phi_k\left(1 + \frac{\Phi_k}{V_H^{\uparrow}}\right)\right), \end{split}$$

where only the last part left to resolve.

 Given $\Phi_k = R_{\text{max}} \lambda_k$, we have one additional source of $\mathcal{O}(\lambda K)$, which will be merged into the leading term. In addition, note that

$$\begin{split} \sum_{k=1}^{K} \mathcal{O}\left(\frac{\Phi_{k}^{2}}{V_{H}^{\uparrow}}\right) &= \sum_{k=1}^{K} \widetilde{\mathcal{O}}\left(\frac{R_{\max}^{2} SA}{K V_{H}^{\uparrow}}\right) \\ &= \widetilde{\mathcal{O}}\left(\frac{R_{\max}^{2} SA}{V_{H}^{\uparrow}}\right) \\ &\leq \widetilde{\mathcal{O}}(R_{\max} SA), \end{split}$$

which only increases the non-leading term by some constants. So overall, we have:

$$\operatorname{Regret}(K) = \widetilde{\mathcal{O}}\left(H\sqrt{SAK} + HS^2A\right).$$

D.8 SAMPLE COMPLEXITY

Theorem 8. For finite-horizon episodic MDPs, with probability at least $1-\delta$, the sample complexity is bounded by

$$\widetilde{\mathcal{O}}\left(\left(\frac{H^2SA}{\epsilon^2} + \frac{HS^2A}{\epsilon}\right)\log\frac{1}{\delta}\right).$$

For finite-horizon episodic MDPs, the sample complexity of an algorithm is defined as the number of non- ϵ -optimal episodes taken over the course of learning (Dann & Brunskill, 2015; Dann et al., 2017). If this sample complexity can be bounded by a polynomial function $f(|S|, |A|, \frac{1}{\epsilon}, \frac{1}{\delta}, H)$, then the algorithm is PAC-MDP.

The proof is analogous to that of the infinite-horizon case in Appendix E.7; therefore, we only provide a sketch.

From Theorem 6, we know that the per-step regret can be bounded as follows:

$$V^{\star}(s_{1}^{k}) - V^{k}(s_{1}^{k}) \leq \left(\frac{9}{2} - \Re^{k}(s_{1}^{k})\right) \lambda_{k} V_{H}^{\uparrow} + 2J^{k}(s_{1}^{k}) + \Phi_{k} \left(1 + \left(3 - 2P_{U}^{k,\star}(s_{1}^{k})\right) \lambda_{k} + \frac{\Phi_{k}}{V_{H}^{\uparrow}}\right)$$

$$\leq \underbrace{\left(\frac{9}{2} - \Re^{k}(s_{1}^{k})\right) \lambda_{k} V_{H}^{\uparrow}}_{:=L_{1,k}} + \underbrace{2J^{k}(s_{1}^{k})}_{:=L_{2,k}} + \underbrace{\Phi_{k} \left(4 + \frac{\Phi_{k}}{V_{H}^{\uparrow}}\right)}_{:=L_{3,k}}$$

We choose $\lambda_k = \frac{\epsilon}{18V_H^{\uparrow}}$, so that we have $L_{1,k} \leq \frac{\epsilon}{4}$ and $L_{3,k} \leq \frac{\epsilon}{4}$. So the remaining step is to prove that majority of episodes satisfy $J^k(s_1^k) \leq \frac{\epsilon}{4}$, which implies $L_{2,k} \leq \frac{\epsilon}{2}$.

The following notations are to connect the number of non-optimal episodes with $J^k(s_1^k)$.

Let the set of non-optimal episodes within K total episodes be defined as $\Gamma_K := \{k \in [K] : J^k(s_1^k) > \frac{\epsilon}{4} \}$, and its cardinality $|\Gamma_K|$. We overload the definition of visits that occur only in Γ_K .

$$\begin{split} n_h^k(s,a) &\coloneqq \sum_{\kappa \in \Gamma_k} \sum_{\tau=1}^H \mathbf{1}((s_\tau^\kappa, a_\tau^\kappa) = (s,a), (\kappa < k \text{ or } \tau \leq h)) \\ N^k(s,a) &\coloneqq \sum_{\kappa \in \Gamma_{k-1}} \sum_{\tau=1}^H \mathbf{1}((s_\tau^\kappa, a_\tau^\kappa) = (s,a)) \\ \nu^k &\coloneqq \left\{ \begin{array}{l} \min\{h \in [H] : n_h^k(s_h^k, a_h^k) > 2N^k(s_h^k, a_h^k)\}, & \text{if } h \text{ exists.} \\ H+1, & \text{otherwise.} \end{array} \right. \end{split}$$

Akin to Lemma 26, we can bound $|\Gamma_K|$ using the fact that $J^k(s_1^k) > \frac{\epsilon}{4}$.

Definition 3. Let W(K) be defined by

$$W(K) := \frac{3456R_{\max}^2 H^2 SA\ell_{1,K}\ell_{2,K}}{\epsilon^2} + \frac{480R_{\max} HS^2 A\ell_{2,K}\ell_{3,K}}{\epsilon} + \frac{24R_{\max} HSA\ell_{1,K}}{\epsilon}.$$

Lemma 9. For finite-horizon episodic MDPs, under high-probability event C, it holds that

$$|\Gamma_K| \leq W(|\Gamma_K|),$$

for all $K \in \mathbb{N}$.

Proposition 2. For finite-horizon episodic MDPs, let K_0 be defined as

$$K_0 := \left\lceil \frac{6920R_{max}^2 H^2 SA\ell_1\ell_{5,\epsilon}}{\epsilon^2} + \frac{480R_{max} HS^2 A(2\ell_1 + \ell_{6,\epsilon})\ell_{5,\epsilon}}{\epsilon} \right\rceil.$$

Then the sample complexity of EUBRL is at most K_0 with probability at least $1 - \delta$.

Before proving this result, we need to bound the other way around i.e. $W(K_0) < K_0$.

Lemma 10. It holds that

$$W(K_0) < K_0$$
.

Proof of Proposition 2. From Lemma 9 and 10, we know that $|\Gamma_K| \leq W(|\Gamma_K|)$ and $W(K_0) < K_0$. It implies that $|\Gamma_K| \neq K_0$ for all $K \in \mathbb{N}$. Since $|\Gamma_K|$ increases by at most 1 starting from $|\Gamma_0| = 0$, that is, $|\Gamma_{K+1}| \leq |\Gamma_K| + 1$ for all $K \in \mathbb{N}$, we conclude that $|\Gamma_K| < K_0$ for all $K \in \mathbb{N}$. Otherwise, there exists K' such that $|\Gamma_{K'}| > K_0$. Assume K' is the minimal such index. Then it follows that $|\Gamma_{K'-1}| = K_0$, which leads to a contradiction.

E PROOFS FOR INFINITE-HORIZON DISCOUNTED MDPS

The difficulty in proving quasi-optimism and bounding accuracy is that we can no longer use backward induction on the horizon, since the value function is time-independent. To resolve this, we construct Bellman-like operators to bridge this gap.

E.1 QUASI-OPTIMISM WITH EPISTEMIC RESISTANCE

Lemma 11. For infinite-horizon discounted MDPs, under high-probability event $\mathbf{A}_1^{\gamma} \cap \mathbf{A}_2^{\gamma}$, it holds that for all $s \in \mathcal{S}, t \in \mathbb{N}$,

$$V^{\star}(s) - \widetilde{V}^{t}(s) \le \lambda_{t} \left(\left(2 - P_{U}^{t,\star}(s) \right) V^{\star}(s) - \frac{1}{2V_{\gamma}^{\uparrow}} (V^{\star})^{2}(s) \right).$$

Corollary 2. For infinite-horizon discounted MDPs, under high-probability event $\mathbf{A}_1^{\gamma} \cap \mathbf{A}_2^{\gamma}$, it holds that for all $s \in \mathcal{S}, t \in \mathbb{N}$,

$$V^{\star}(s) - \widetilde{V}^{t}(s) \le \lambda_{t} \left(\frac{3}{2} - P_{U}^{t,\star}(s)\right) V_{\gamma}^{\uparrow}.$$

To prove Lemma 11, we need a define a Bellman-like operator that is a contraction mapping and monotone.

Definition 4. Let operator \mathcal{T}_1 be defined by

$$(\mathcal{T}_1 V)(s) := \left(P_U^{t,\star}(s) R_{\max} - b^t(s, \pi^{\star}(s)) \right) + \left(1 - P_U^{t,\star}(s) \right) \left(r(s, \pi^{\star}(s)) - \hat{r}^t(s, \pi^{\star}(s)) \right)$$

$$+ \gamma \left(P - \hat{P}^t \right) V^{\star}(s, \pi^{\star}(s)) + \gamma \hat{P}^t V(s, \pi^{\star}(s)).$$

Lemma 12. \mathcal{T}_1 is a contraction mapping and monotone.

Proof. Denote

$$M(s) := (P_U^{t,\star}(s)R_{\max} - b^t(s, \pi^{\star}(s))) + (1 - P_U^{t,\star}(s)) (r(s, \pi^{\star}(s)) - \hat{r}^t(s, \pi^{\star}(s)))$$
$$+ \gamma (P - \hat{P}^t) V^{\star}(s, \pi^{\star}(s))$$

For any $U, V \in [0, V_{\gamma}^{\uparrow}]^S$, we have

$$\|\mathcal{T}_1 U - \mathcal{T}_1 V\|_{\infty} = \sup_{s} \left| \left(M(s) + \gamma \hat{P}^t U(s, \pi^*(s)) \right) - \left(M(s) + \gamma \hat{P}^t V(s, \pi^*(s)) \right) \right|$$
$$= \gamma \sup_{s} \left| \hat{P}^t (U - V) (s, \pi^*(s)) \right|$$
$$\leq \gamma \|U - V\|_{\infty}.$$

Therefore, \mathcal{T}_1 is a contraction mapping under ∞ -norm.

On the other hand, given $U, V \in [0, V_{\gamma}^{\uparrow}]^S$ such that $U(s) \leq V(s), \forall s \in \mathcal{S}$, we have

$$(\mathcal{T}_1 U - \mathcal{T}_1 V)(s) = \hat{P}^t (U - V) (s, \pi^*(s))$$

$$\leq 0.$$

Thus, \mathcal{T}_1 is monotone as well.

Lemma 13. Denote $f(s) = \lambda_t \left(\left(2 - P_U^{t,\star}(s) \right) V^{\star}(s) - \frac{1}{2V_{\gamma}^{\uparrow}} (V^{\star})^2(s) \right)$, under high-probability event $\mathbf{A}_1^{\gamma} \cap \mathbf{A}_2^{\gamma}$, it holds that

$$T_1 f < f$$

Proof. This follows the same procedure as the proof of Lemma 2, except that we use the boundedness of the discounted value function and the inequalities stated in the events A_1^{γ} and A_2^{γ} .

Now we prove Lemma 11.

Proof of Lemma 11. Denote $\Delta V := V^* - \widetilde{V}^t$.

Since \mathcal{T}_1 is a contraction mapping, by the Banach fixed-point theorem, there exists a fixed point \bar{V} such that $\bar{V} = \lim_{k \to \infty} (\mathcal{T}_1)^k g$ from an arbitrary initial point g.

Note, $\Delta V \leq \mathcal{T}_1 \Delta V$. By monotonicity and contraction of \mathcal{T}_1 from Lemma 12, we have $\Delta V \leq \mathcal{T}_1 \Delta V \leq \lim_{k \to \infty} (\mathcal{T}_1)^k \Delta V = \bar{V}$. By Lemma 13, we have $\mathcal{T}_1 f \leq f$, by monotonicity and contraction again, we have $\bar{V} = \lim_{k \to \infty} (\mathcal{T}_1)^k f \leq \mathcal{T}_1 f \leq f$. Combining two sides, we conclude that $\Delta V \leq f$, which completes the proof.

E.2 BOUNDEDNESS OF COMPLEXITY

Lemma 14. For all $s \in \mathcal{S}, t \in \mathbb{N}$, it holds that

$$\widetilde{V}^t(s) - V^t(s) \le R_{max} \lambda_t := \Phi_t.$$

Proof. See the proof of Lemma 3.

E.3 BOUNDEDNESS OF ACCURACY

In this section, we bound the accuracy term. Although it is tempting to use the same logic as in the previous section, it is worth noting that the nuance in the definition of J prevents this, as we no longer have an argument analogous to $\mathcal{T}_1 f \leq f$. We summarize the main results in advance.

Lemma 15. For infinite-horizon discounted MDPs, under high-probability event $\cap_{i=1}^4 \mathbf{A}_i^{\gamma}$, it holds that for all $s \in \mathcal{S}, t \in \mathbb{N}$,

$$V^{t}(s) - V^{\pi_{t}}(s) \le D_{\gamma}^{t}(s) + 2J_{\gamma}^{t}(s).$$

Corollary 3. For infinite-horizon discounted MDPs, under high-probability event $\cap_{i=1}^4 \mathbf{A}_i^{\gamma}$, it holds that for all $s \in \mathcal{S}, t \in \mathbb{N}$,

$$V^t(s) - V^{\pi_t}(s) \le \left(3 - 2P_U^t(s) - \frac{2}{7}P_U^{t,\star}(s)\right)\lambda_t V_{\gamma}^{\uparrow} + 2J_{\gamma}^t(s) + \mathcal{O}\left(\frac{\Phi_t^2}{V_{\gamma}^{\uparrow}} + \lambda_t \Phi_t\right).$$

Putting all together, we obtain

 Theorem 9. For infinite-horizon discounted MDPs, under high-probability event \mathcal{B} , it holds that for all $s \in \mathcal{S}, t \in \mathbb{N}$,

$$V^{\star}(s) - V^{\pi_t}(s) \le \left(\frac{9}{2} - \Re^t(s)\right) \lambda_t V_{\gamma}^{\uparrow} + 2J_{\gamma}^t(s) + \mathcal{O}\left(\Phi_t\left(1 + \frac{\Phi_t}{V_{\gamma}^{\uparrow}}\right)\right).$$

Before we dive into details, we define the following relevant quantities.

Definition 5. Let $D_{\gamma}^{t}(s)$ be defined by

$$D_{\gamma}^{t}(s) \coloneqq \lambda_{t} \left(\left(3 - 2P_{U}^{t}(s) \right) V^{\star}(s) - \frac{1}{2V_{\gamma}^{\uparrow}} (V^{\star})^{2}(s) \right) + \frac{1}{7V_{\gamma}^{\uparrow}} \left(\left(S_{t} \right)^{2} - \left(\widehat{V}(s) + S_{t} \right)^{2} \right),$$

where $\beta^t(s, a)$:

$$\beta^{t}(s, a) = P_{U}^{t}(s, a)\eta^{t}\mathcal{E}^{t}(s, a) + \beta_{1}^{t}(s, a) + (1 - P_{U}^{t}(s))\frac{V_{\gamma}^{\uparrow}\ell_{1}}{\lambda_{t}N^{t}(s, a)}$$
$$\widehat{V}(s) := V^{t}(s) - V^{\star}(s)$$
$$S_{t} := \left(\frac{3}{2} - P_{U}^{t, \star}(s)\right)\lambda_{t}V_{\gamma}^{\uparrow} + \Phi_{t},$$

in which

$$\beta_1^t(s,a) \coloneqq \frac{1}{N^t(s,a)} \left(\frac{3V_\gamma^\uparrow \ell_1}{\lambda_t} + 30V_\gamma^\uparrow S\ell_{3,t}(s,a) \right).$$

Definition 6. Let operator \mathcal{T}_2 be defined by

$$(\mathcal{T}_2V)(s) := \Delta_{\gamma}(D_{\gamma}^t)(s, \pi_t(s)) + 2\beta^t(s, \pi_t(s)) + \gamma P(V)(s, \pi_t(s)).$$

Definition 7. \mathcal{T} is affine if, for any vector V and E

$$\mathcal{T}(V+E) = \mathcal{T}V + \gamma PE.$$

Lemma 16. \mathcal{T}_2 is a contraction mapping, monotone, and affine.

Proof. The argument for contraction and monotonicity is similar to that of proof of Lemma 12. For the affine part, we observe:

$$\mathcal{T}_2(V+E) = \Delta_{\gamma}(D_{\gamma}^t) + 2\beta^t + \gamma P(V+E)$$
$$= \Delta_{\gamma}(D_{\gamma}^t) + 2\beta^t + \gamma PV + \gamma PE$$
$$= \mathcal{T}_2V + \gamma PE.$$

Lemma 17. Under high-probability event $\cap_{i=1}^4 \mathbf{A}_i^{\gamma}$, it holds that

$$\Delta_{\gamma} \left(V^t - V^{\pi_t} \right) (s, \pi_t(a)) \le \Delta_{\gamma} (D_{\gamma}^t) (s, \pi_t(a)) + 2\beta^t (s, \pi_t(a)).$$

Proof. The proof is completed by applying the procedure of Lemma 13 in (Lee & Oh, 2025), except using $\hat{V}_h(s) + S_k \geq 0$ from Lemmas 2–3 for variance decomposition and boundedness of the discounted value, together with an adjustment of some constants under event \mathbf{A}_3^{γ} .

Now we prove Lemma 15.

1296 Proof of Lemma 15. Denote $\Delta V := V^t - V^{\pi_t}$.

Note, $\Delta V(s) = \Delta_{\gamma}(\Delta V)(s, \pi_t(s)) + \gamma P(\Delta V)(s, \pi_t(s))$. By Lemma 17, we have

$$\Delta V \leq \mathcal{T}_2 \Delta V$$
. Condition 1

For brevity, we denote $g := \beta^t + \gamma PJ^t$, $f := \min\{g, V_{\gamma}^{\uparrow}\}$, and $D := D_{\gamma}^t$. We observe

$$\mathcal{T}_2(D+2f) = D+2g.$$
 Condition 2

Moreover, since $D \geq -\frac{6}{7}V_{\gamma}^{\uparrow}$ and $\Delta V \leq V_{\gamma}^{\uparrow}$, we have

$$\Delta V \leq D + 2V_{\gamma}^{\uparrow}$$
. Condition 3

Now, we claim $\Delta V \leq D + 2f$ is true. We consider two cases:

Case 1: $g(s) \ge V_{\gamma}^{\uparrow}$ For any state s where $g(s) \ge V_{\gamma}^{\uparrow}$, the function f(s) is defined as $f(s) = V_{\gamma}^{\uparrow}$. The inequality we want to prove becomes $\Delta V(s) \le D(s) + 2V_{\gamma}^{\uparrow}$, which is true by Condition 3.

Case 2: $g(s) < V_{\gamma}^{\uparrow}$ For states where $g(s) < V_{\gamma}^{\uparrow}$, the function f(s) is now defined as f(s) = g(s).

We prove by contradiction. Assume there is at least one state s where $g(s) < V_{\gamma}^{\uparrow}$ and the desired inequality is false.

We define an "error" function $E \coloneqq \Delta V - (D+2f)$. By the assumption, the set of states $\Xi \coloneqq \{s \in \mathcal{S}: E(s) > 0\}$ is non-empty. Let $E^\star \coloneqq \sup_{s \in \Xi} E(s)$, then $E^\star > 0$.

We start with Condition 1, that is, $\Delta V \leq T\Delta V$, and substitute $\Delta V = E + (D+2f)$, we get

$$E + (D+2f) \le \mathcal{T}_2(E+D+2f)$$

By the affinity in Lemma 16, we can write $\mathcal{T}_2(E+D+2f)=\mathcal{T}_2(D+2f)+\gamma PE$. By **Condition 2**, we have $\mathcal{T}_2(D+2f)=D+2g$. Combining this with Equation E.3, we obtain:

$$E + (D + 2f) \le (D + 2g) + \gamma PE.$$

Rearranging it, we get:

$$E < 2(q - f) + \gamma PE$$
.

Now, let us consider a state s^* where the error is maximal, i.e. $E(s^*) = E^*$. It must hold that:

$$E(s^*) \le 2(g(s^*) - f(s^*)) + \gamma(PE)(s^*)$$

$$\le 2(g(s^*) - f(s^*)) + \gamma E(s^*).$$

Thus, we get

$$(1 - \gamma)E(s^*) \le 2(g(s^*) - f(s^*)).$$

Since g(s) = f(s) whenever $g(s) < V_{\gamma}^{\uparrow}$, the above equals to zero, implying $E(s^{\star}) \leq 0$. This leads to a contradiction. Therefore we conclude that $\Delta V \leq D + 2f$.

E.4 BOUNDEDNESS OF J_{γ}^t

Lemma 18 ((Lee & Oh, 2025)). Let C > 0 be a constant and $\{X_t\}_{t=1}^{\infty}$ be a martingale difference sequence with respect to a filtration $\{\mathcal{F}_t\}_{t=0}^{\infty}$ with $X_t \leq C$ almost surely for all $t \in \mathbb{N}$. Then, for any $\lambda \in (0,1]$ and $\delta \in (0,1]$, the following inequality holds for all $n \in \mathbb{N}$ with probability at least $1-\delta$:

$$\sum_{t=1}^{n} X_t \le \frac{3\lambda}{4C} \sum_{t=1}^{n} \mathbb{E}[X_t^2 | \mathcal{F}_{t-1}] + \frac{C}{\lambda} \log \frac{1}{\delta}.$$

Lemma 19. For any time T, we have

$$\sum_{t=1}^{T} \mathbf{1}(t + \nu_t \neq T + 1) \le SA \log_2 2T.$$

 Proof. The general idea is similar to the proof of Lemma 30 in (Lee & Oh, 2025), but unlike the episodic setting, where episodes exhibit monotonicity, the infinite-horizon setting requires special consideration to handle coupled trajectories. By focusing on each individual state-action pair, we get:

$$\sum_{t=1}^{T} \mathbf{1}(t + \nu_t \neq T + 1) = \sum_{t=1}^{T} \sum_{(s,a) \in S \times A} \mathbf{1}(t + \nu_t \neq T + 1, (s_{t+\nu_t}, a_{t+\nu_t}) = (s, a))$$

$$= \sum_{(s,a) \in S \times A} \sum_{t=1}^{T} \mathbf{1}(t + \nu_t \neq T + 1, (s_{t+\nu_t}, a_{t+\nu_t}) = (s, a)).$$

If $t+\nu_t\neq T+1$, then $t+\nu_t$ is the first time step more than double the anchor t. Therefore, we have $n^{(t+\nu_t)}(s_{t+\nu_t},a_{t+\nu_t})\geq 2N^t(s_{t+\nu_t},a_{t+\nu_t})+1$. Since any step that is greater than $t+\nu_t$ is an inclusion of $n^{(t+\nu_t)}$, we have $N^{(t+\nu_t+c)}(s_{t+\nu_t},a_{t+\nu_t})\geq 2N^t(s_{t+\nu_t},a_{t+\nu_t})+1$ for any $c\in\mathbb{N}$. Based on this condition, we denote $M_T(s,a)$ as the number of steps $t\in\{1,2,\ldots,T\}$ such that $N^{(t+\nu_t+c)}(s,a)>2N^t(s,a)+1$, then, we have:

$$\sum_{t=1}^{T} \mathbf{1}(t + \nu_t \neq T + 1, (s_{t+\nu_t}, a_{t+\nu_t}) = (s, a)) \leq M_T(s, a).$$

We aim to bound the right-hand side above by finding contradiction between a upper and lower bound of $N^{(t+\nu_t+c)}(s,a)$. First, since there are at most (T-t+1) time steps left from the anchor t, we have $N^{(t+\nu_t+c)}(s,a) \leq N^t(s,a) + (T-t+1) \leq N^t(s,a) + T$. Combining this with $N^{(t+\nu_t+c)}(s,a) \geq 2N^t(s,a) + 1$, we know that it occurs only if $N^t(s,a) < T$. Next, we prove by induction that

$$Pt: N^t(s, a) \ge 2^{M_{t-1}(s, a)} - 1.$$

To verify this, let c = 1 and define a sequence of "checkpoints" that starts with t:

$$t_0 \coloneqq t, \qquad t_{k+1} \coloneqq t_k + \nu_{t_k} + 1.$$

Because $\nu_{t_k} \geq 0$, we have $t_{k+1} \geq t_k + 1$. Also $\nu_{t_k} \leq T - t_k + 1$ and $t_k \geq t \geq 1$ give $t_{k+1} \leq T$. Hence $\{t_k\}$ is a strictly increasing sequence bounded above by T, so after at most $T - t_0$ steps we reach $t_K = T$. If the induction statement holds for any step $t \in [t_k, t_{k+1}]$, then, by the above progress and termination argument, it follows that all steps are covered.

Let's first verity the base case P(1), for which we have $M_0=0$ and $N^{(1)}=0$, therefore the inequality holds. Then assume $P(t_0)$ holds, there are two cases to consider. If $N^{(t+\nu_t+1)}(s,a) \geq 2N^t(s,a)+1$, it implies that (s,a) is the first time step that triggers the stopping of ν_t , leading to $N^{(t+\nu_t+1)}(s,a) \geq 2^{M_{t-1}(s,a)+1}-1=2^{M_{t+\nu_t}(s,a)}-1$. Moreover, for each intermediate step l with $1 \leq l \leq \nu_t$, $P(t_0+l)$ holds; On the other hand, if (s,a) is not the pair that triggers ν_t , this means that it has not been doubled yet, implying $M_{t+\nu_t}(s,a)=M_{t-1}(s,a)$. However, there may still be some increments, and therefore $N^{(t+\nu_t+1)}(s,a) \geq N^t(s,a) \geq 2^{M_{t-1}(s,a)}-1=2^{M_{t+\nu_t}(s,a)}-1$. Thus, we conclude that the induction holds.

This gives us a lower bound, suggesting $M_{t-1}(s,a)$ cannot grow faster than logarithmically in T. Formally, once $M_{t-1}(s,a)$ reaches $\lfloor \log_2 T \rfloor + 1$ for some t, it cannot increase further, since $N^t(s,a) < T$. Therefore, we conclude that $M_T(s,a) \le \lfloor \log_2 T \rfloor + 1 \le \log_2 2T$, which completes the proof.

Lemma 20. For infinite-horizon discounted MDPs, under high-probability event $\mathbf{A}_5^{\gamma} \cap \mathbf{A}_6^{\gamma}$, it holds that

$$\sum_{t=1}^{T} J_{\gamma}^{t}(s_{t}) \leq \sum_{t=1}^{T} \sum_{l=0}^{\nu_{t}-1} \gamma^{l} \beta^{t}(s_{t+l}, a_{t+l}) + \frac{13V_{\gamma}^{\uparrow}}{1 - \gamma} SA \log \frac{12T}{\delta},$$

for all $T \in \mathbb{N}$.

Proof.

 Bounding $J_{\gamma}^t(s_t)$ Given a T-path $(s_1, a_1, r_1, \dots, s_T, a_T, r_T, s_{T+1})$ where actions are chosen from $\pi_t(s_t)$ at each time step, we decompose $J_{\gamma}^t(s_t)$ as follows:

$$J_{\gamma}^{t}(s_{t}) \leq \beta^{t}(s_{t}, a_{t}) + \gamma P J^{t}(s_{t}, a_{t})$$

$$= \beta^{t}(s_{t}, a_{t}) + \gamma P J^{t}(s_{t}, a_{t}) - \gamma J^{t}(s_{t+1}) + \gamma J^{t}(s_{t+1})$$

$$\vdots$$

$$\leq \sum_{l=0}^{\nu_{t}-1} \underbrace{\gamma^{l} \beta^{t}(s_{t+l}, a_{t+l})}_{\mathbf{S}_{1,l}} + \underbrace{\gamma^{l+1} \left(P J^{t}(s_{t+l}, a_{t+l}) - J^{t}(s_{t+l+1})\right)}_{\mathbf{S}_{2,l}} + \gamma^{\nu_{t}} J^{t}(s_{t+\nu_{t}}).$$

Then, we take summation over T steps:

$$\sum_{t=1}^{T} J_{\gamma}^{t}(s_{t}) \leq \underbrace{\sum_{t=1}^{T} \sum_{l=0}^{\nu_{t}-1} \mathbf{S}_{1,l}}_{I_{1}} + \underbrace{\sum_{t=1}^{T} \sum_{l=0}^{\nu_{t}-1} \mathbf{S}_{2,l}}_{I_{2}} + \underbrace{\sum_{t=1}^{T} \gamma^{\nu_{t}} J^{t}(s_{t+\nu_{t}})}_{I_{3}}.$$

Bounding I_3 By Lemma 19 and $J^t(s_{T+1}) \leq V_{\gamma}^{\uparrow}$, we get:

$$I_{3} = \sum_{t=1}^{T} \gamma^{\nu_{t}} J^{t}(s_{t+\nu_{t}})$$

$$I_{438}$$

$$I_{439}$$

$$I_{440}$$

$$I_{441}$$

$$I_{442}$$

$$I_{443}$$

$$I_{444}$$

$$I_{444}$$

$$I_{445}$$

$$I_{446}$$

$$I_{446}$$

$$I_{446}$$

$$I_{447}$$

$$I_{446}$$

$$I_{447}$$

$$I_{448}$$

$$I_{448}$$

$$I_{449}$$

$$I_{449}$$

$$I_{450}$$

$$I_{450}$$

$$I_{450}$$

$$I_{451}$$

$$I_{452}$$

$$I_{453}$$

$$I_{453}$$

$$I_{454}$$

$$I_{455}$$

$$I_{456}$$

$$I_{$$

Bounding I_2

$$I_{2} = \sum_{t=1}^{T} \sum_{l=0}^{\nu_{t}-1} \mathbf{S}_{2,l}$$

$$= \sum_{t=1}^{T} \sum_{l=0}^{T-t} \mathbf{1}(l \le \nu_{t} - 1)\mathbf{S}_{2,l}$$

$$= \sum_{t=1}^{T} \sum_{l=0}^{T-t} \mathbf{1}(l \le \nu_{t} - 1)\gamma^{l+1} \left(PJ^{t}(s_{t+l}, a_{t+l}) - J^{t}(s_{t+l+1})\right)$$

$$\stackrel{\text{(a)}}{=} \sum_{\tau=1}^{T} \sum_{t=1}^{\tau} \mathbf{1}(\tau - t \le \nu_{t} - 1)\gamma^{\tau - t + 1} \left(PJ^{t}(s_{\tau}, a_{\tau}) - J^{t}(s_{\tau + 1})\right)$$

$$\stackrel{\text{(b)}}{=} \sum_{t=1}^{T} \sum_{\tau=1}^{t} \mathbf{1}(t - \tau \le \nu_{\tau} - 1)\gamma^{t - \tau + 1} \left(PJ^{\tau}(s_{t}, a_{t}) - J^{\tau}(s_{t+1})\right),$$

$$:= X_{t}$$

where (a) is due to the exchange of rows and columns and (b) to the reverse of the roles of indexes.

Note that in the final step, we make a bag of martingale differences with the same time index; therefore, it is not hard to verify that X_t is a martingale difference sequence, with $E[X_t | \mathcal{F}_t] = 0$, $E[(X_t)^2 | \mathcal{F}_t] = \mathrm{Var}\left(\sum_{\tau=1}^t \mathbf{1}(t-\tau \leq \nu_\tau - 1)\gamma^{t-\tau+1}J^\tau(s_{t+1})\right)(s_t, a_t)$ and bounded as $|X_t| \leq \frac{\gamma V_\gamma^{\uparrow}}{1-\gamma} \leq \frac{V_\gamma^{\uparrow}}{1-\gamma}$. Denoting $Y^t(s_{t+1}) := \sum_{\tau=1}^t \mathbf{1}(t-\tau \leq \nu_\tau - 1)\gamma^{t-\tau+1}J^\tau(s_{t+1})$ and applying Lemma 18 to $\{X_t\}_{t=1}^{\infty}$ with $\lambda = \frac{1}{6}$, we get the following:

$$I_{2} = \sum_{t=1}^{T} X_{t}$$

$$\leq \frac{(1-\gamma)}{8V_{\gamma}^{\uparrow}} \underbrace{\sum_{t=1}^{T} \operatorname{Var}\left(Y^{t}(s_{t+1})\right)(s_{t}, a_{t})}_{:-L} + \frac{6V_{\gamma}^{\uparrow}}{1-\gamma} \log \frac{6}{\delta}. \tag{9}$$

Next, we will bound the sum of variances L. First, we look at each individual variance.

$$L_{t} \coloneqq \operatorname{Var}(Y^{t}(s_{t+1}))(s_{t}, a_{t}) = P(Y^{t}(s_{t+1}))^{2}(s_{t}, a_{t}) - (PY^{t}(s_{t+1})(s_{t}, a_{t}))^{2}$$

$$= P(Y^{t}(s_{t+1}))^{2}(s_{t}, a_{t}) - (Y^{t}(s_{t+1}))^{2} + (Y^{t}(s_{t+1}))^{2} - (PY^{t}(s_{t+1})(s_{t}, a_{t}))^{2}$$

$$= P(Y^{t}(s_{t+1}))^{2}(s_{t}, a_{t}) - (Y^{t}(s_{t+1}))^{2}$$

$$+ (Y^{t}(s_{t+1}) + PY^{t}(s_{t+1})(s_{t}, a_{t})) \cdot (Y^{t}(s_{t+1}) - PY^{t}(s_{t+1})(s_{t}, a_{t}))$$

$$\leq \underbrace{P(Y^{t}(s_{t+1}))^{2}(s_{t}, a_{t}) - (Y^{t}(s_{t+1}))^{2}}_{:=Z_{t}} + \frac{2V_{\gamma}^{+}}{1 - \gamma} (Y^{t}(s_{t+1}) - PY^{t}(s_{t+1})(s_{t}, a_{t})).$$

Akin to the previous argument, the second term is a martingale difference sequence, therefore, we obtain:

$$\sum_{t=1}^{T} Y^{t}(s_{t+1}) - PY^{t}(s_{t+1})(s_{t}, a_{t}) \leq \frac{1-\gamma}{8V_{\gamma}^{\uparrow}} \sum_{t=1}^{T} \operatorname{Var}(Y^{t}(s_{t+1}))(s_{t}, a_{t}) + \frac{6V_{\gamma}^{\uparrow}}{1-\gamma} \log \frac{6}{\delta}.$$

Based on this, we can simplify the bounding on L:

$$L = \sum_{t=1}^{T} L_{t}$$

$$\leq \sum_{t=1}^{T} Z_{t} + \frac{2V_{\gamma}^{\uparrow}}{1 - \gamma} \sum_{t=1}^{T} \left(Y^{t}(s_{t+1}) - PY^{t}(s_{t+1})(s_{t}, a_{t}) \right)$$

$$\leq \sum_{t=1}^{T} Z_{t} + \frac{2V_{\gamma}^{\uparrow}}{1 - \gamma} \left(\frac{1 - \gamma}{8V_{\gamma}^{\uparrow}} \sum_{t=1}^{T} \text{Var}(Y^{t}(s_{t+1}))(s_{t}, a_{t}) + \frac{6V_{\gamma}^{\uparrow}}{1 - \gamma} \log \frac{6}{\delta} \right)$$

$$= \sum_{t=1}^{T} Z_{t} + \frac{1}{4} \sum_{t=1}^{T} \text{Var}(Y^{t}(s_{t+1}))(s_{t}, a_{t}) + \frac{12V_{\gamma}^{\uparrow 2}}{(1 - \gamma)^{2}} \log \frac{6}{\delta}$$

$$= \sum_{t=1}^{T} Z_{t} + \frac{1}{4} L + \frac{12V_{\gamma}^{\uparrow 2}}{(1 - \gamma)^{2}} \log \frac{6}{\delta}$$

$$\leq \sum_{t=1}^{T} Z_{t} + \frac{1}{4} L + \frac{12V_{\gamma}^{\uparrow 2}}{(1 - \gamma)^{2}} \log \frac{6}{\delta}.$$
(10)

It is not difficult to check that $\{Z_t\}_{t=1}^{\infty}$ is a martingale difference sequence, with $E[Z_t|\mathcal{F}_t]=0$, $E[(Z_t)^2|\mathcal{F}_t]=\operatorname{Var}\left(\left(Y^t(s_{t+1})\right)^2\right)(s_t,a_t)$ and bounded as $|Z_t|\leq \frac{V_{\gamma}^{\uparrow\,2}}{(1-\gamma)^2}$. Moreover, by applying Lemma 9 in (Lee & Oh, 2025) to the second-order moment, we have:

$$\operatorname{Var}\left(\left(Y^{t}(s_{t+1})\right)^{2}\right)\left(s_{t}, a_{t}\right) \leq \frac{4V_{\gamma}^{\uparrow 2}}{(1-\gamma)^{2}} \operatorname{Var}\left(Y^{t}(s_{t+1})\right)\left(s_{t}, a_{t}\right).$$

Combining this with Lemma 18 with $\lambda = \frac{1}{12}$, we get the following.

$$\sum_{t=1}^{T} Z_{t} \leq \frac{1}{4} \sum_{t=1}^{T} \operatorname{Var} \left(Y^{t}(s_{t+1}) \right) (s_{t}, a_{t}) + \frac{12V_{\gamma}^{\uparrow 2}}{(1 - \gamma)^{2}} \log \frac{6}{\delta}$$
$$= \frac{1}{4} L + \frac{12V_{\gamma}^{\uparrow 2}}{(1 - \gamma)^{2}} \log \frac{6}{\delta}$$

Substituting this into Eq. 10, we obtain:

$$L \leq \sum_{t=1}^{T} Z_{t} + \frac{1}{4}L + \frac{12V_{\gamma}^{\uparrow 2}}{(1-\gamma)^{2}} \log \frac{6}{\delta}$$

$$\leq \frac{1}{4}L + \frac{12V_{\gamma}^{\uparrow 2}}{(1-\gamma)^{2}} \log \frac{6}{\delta} + \frac{1}{4}L + \frac{12V_{\gamma}^{\uparrow 2}}{(1-\gamma)^{2}} \log \frac{6}{\delta}$$

$$= \frac{1}{2}L + \frac{24V_{\gamma}^{\uparrow 2}}{(1-\gamma)^{2}} \log \frac{6}{\delta},$$

which has a recursive structure, leading to:

$$L \le \frac{48V_{\gamma}^{\uparrow 2}}{(1-\gamma)^2} \log \frac{6}{\delta}.$$

Substituting this into 9, we have:

$$\begin{split} I_2 &\leq \frac{(1-\gamma)}{8V_{\gamma}^{\uparrow}} L + \frac{6V_{\gamma}^{\uparrow}}{1-\gamma} \log \frac{6}{\delta} \\ &\leq \frac{(1-\gamma)}{8V_{\gamma}^{\uparrow}} \frac{48V_{\gamma}^{\uparrow 2}}{(1-\gamma)^2} \log \frac{6}{\delta} + \frac{6V_{\gamma}^{\uparrow}}{1-\gamma} \log \frac{6}{\delta} \\ &\leq \frac{12V_{\gamma}^{\uparrow}}{1-\gamma} \log \frac{6}{\delta}. \end{split}$$

Finally, we conclude that

$$\sum_{t=1}^{T} J_{\gamma}^{t}(s_{t}) \leq I_{1} + I_{2} + I_{3}$$

$$\leq I_{1} + \frac{12V_{\gamma}^{\uparrow}}{1 - \gamma} \log \frac{6}{\delta} + \left(V_{\gamma}^{\uparrow} SA \log_{2} 2T + \frac{V_{\gamma}^{\uparrow}}{1 - \gamma}\right)$$

$$\leq I_{1} + \frac{13V_{\gamma}^{\uparrow}}{1 - \gamma} \log \frac{6}{\delta} + V_{\gamma}^{\uparrow} SA \log_{2} 2T$$

$$\leq I_{1} + \frac{13V_{\gamma}^{\uparrow}}{1 - \gamma} \log \frac{6}{\delta} + \frac{V_{\gamma}^{\uparrow}}{1 - \gamma} SA \log_{2} 2T$$

$$\leq I_{1} + \frac{13V_{\gamma}^{\uparrow}}{1 - \gamma} SA \log \frac{6}{\delta} + \frac{2V_{\gamma}^{\uparrow}}{1 - \gamma} SA \log 2T$$

$$\leq I_{1} + \frac{13V_{\gamma}^{\uparrow}}{1 - \gamma} SA \log \frac{6}{\delta} + \frac{13V_{\gamma}^{\uparrow}}{1 - \gamma} SA \log 2T$$

$$= I_{1} + \frac{13V_{\gamma}^{\uparrow}}{1 - \gamma} SA \log \frac{12T}{\delta}.$$

which completes the proof.

Lemma 21. For infinite-horizon discounted MDPs, under high-probability event $\mathbf{A}_5^{\gamma} \cap \mathbf{A}_6^{\gamma}$, it holds that

$$\sum_{t=1}^{T} J_{\gamma}^{t}(s_{t}) \leq \frac{2\mathcal{Y}^{(T)}}{1-\gamma} SA \log \left(1 + \frac{T}{SA}\right) + \frac{13V_{\gamma}^{\uparrow}}{1-\gamma} SA \log \frac{12T}{\delta},$$

for all $T \in \mathbb{N}$.

1615
1616
1617 Proof. Based on Lemma 20, we only need to bound I_1 , which is a series of discounted sum of β^t .
1618 By the definition of the stopping time ν_t , we know that for any t that satisfies $t-\tau \leq \nu_t-1$, we have

By the definition of the stopping time ν_t , we know that for any t that satisfies $t-\tau \leq \nu_t-1$, we have $n^t(s_t,a_t) \leq 2N^\tau(s_t,a_t)$ looking back at a previous anchor τ . Moreover, we infer that $n^t(s_t,a_t) \geq 2$ must hold, otherwise it cannot satisfy the condition. We denote the set $\mathcal{I}(s,a) \subseteq \{1,2,\ldots,T\}$ as

the time steps at which the pair (s, a) is encountered.

$$I_{1} = \sum_{t=1}^{T} \sum_{t=0}^{\nu_{t-1}} \gamma^{l} \beta^{t}(s_{t+l}, a_{t+l})$$

$$= \sum_{t=1}^{T} \sum_{l=0}^{\nu_{t-1}} 1(l \le \nu_{t} - 1) \gamma^{l} \beta^{t}(s_{t+l}, a_{t+l})$$

$$= \sum_{t=1}^{T} \sum_{l=0}^{\tau} 1(\tau - t \le \nu_{t} - 1) \gamma^{\tau - t} \beta^{t}(s_{\tau}, a_{\tau})$$

$$= \sum_{t=1}^{T} \sum_{\tau=1}^{\tau} 1(\tau - t \le \nu_{\tau} - 1) \gamma^{\tau - \tau} \beta^{\tau}(s_{t}, a_{t})$$

$$= \sum_{t=1}^{T} \sum_{\tau=1}^{t} 1(t - \tau \le \nu_{\tau} - 1) \gamma^{t - \tau} \beta^{\tau}(s_{t}, a_{t})$$

$$= \sum_{t=1}^{T} \sum_{\tau=1}^{t} 1(t - \tau \le \nu_{\tau} - 1) \gamma^{t - \tau} \frac{\mathcal{Y}^{\tau}}{N^{\tau}(s_{t}, a_{t})}$$

$$\leq \mathcal{Y}^{(T)} \sum_{t=1}^{T} \sum_{\tau=1}^{t} 1(t - \tau \le \nu_{\tau} - 1) \gamma^{t - \tau} \frac{1}{N^{\tau}(s_{t}, a_{t})}$$

$$\leq \mathcal{Y}^{(T)} \sum_{t=1}^{T} \sum_{\tau=1}^{t} 1(t - \tau \le \nu_{\tau} - 1) \gamma^{t - \tau} \frac{2}{n^{t}(s_{t}, a_{t})}$$

$$\leq \mathcal{Y}^{(T)} \sum_{t=1}^{T} \sum_{\tau=1}^{t} 1(t - \tau \le \nu_{\tau} - 1) \gamma^{t - \tau} \frac{2}{n^{t}(s_{t}, a_{t})}$$

$$\leq \mathcal{Y}^{(T)} \sum_{t=1}^{T} \sum_{\tau=1}^{t} 1(t - \tau \le \nu_{\tau} - 1) 1(n^{t}(s_{t}, a_{t}) \ge 2) \gamma^{t - \tau} \frac{2}{n^{t}(s_{t}, a_{t})}$$

$$\leq 2\mathcal{Y}^{(T)} \sum_{t=1}^{T} 1(n^{t}(s_{t}, a_{t}) \ge 2) \frac{1}{n^{t}(s_{t}, a_{t})} \sum_{\tau=1}^{t} 1(t - \tau \le \nu_{\tau} - 1) \gamma^{t - \tau}$$

$$\leq 2\mathcal{Y}^{(T)} \sum_{t=1}^{T} \sum_{\tau=1}^{T} 1(n^{t}(s_{t}, a_{t}) \ge 2) \frac{1}{n^{t}(s_{t}, a_{t})}$$

$$\leq 2\mathcal{Y}^{(T)} \sum_{t=1}^{T} \sum_{\tau=1}^{T} 1(n^{t}(s_{t}, a_{t}) \ge 2) \frac{1}{n^{t}(s_{t}, a_{t})}$$

$$\leq 2\mathcal{Y}^{(T)} \sum_{t=1}^{T} \sum_{\tau=1}^{T} 1(n^{t}(s_{t}, a_{t}) \ge 2) \frac{1}{n^{t}(s_{t}, a_{t})}$$

$$\leq 2\mathcal{Y}^{(T)} \sum_{t=1}^{T} \sum_{\tau=1}^{T} 1(n^{t}(s_{t}, a_{t}) \ge 2) \frac{1}{n^{t}(s_{t}, a_{t})}$$

$$\leq 2\mathcal{Y}^{(T)} \sum_{t=1}^{T} \sum_{\tau=1}^{T} 1(n^{t}(s_{t}, a_{t}) \ge 2) \frac{1}{n^{t}(s_{t}, a_{t})}$$

$$\leq 2\mathcal{Y}^{(T)} \sum_{t=1}^{T} \sum_{\tau=1}^{T} 1(n^{t}(s_{t}, a_{t}) \ge 2) \frac{1}{n^{t}(s_{t}, a_{t})}$$

$$\leq 2\mathcal{Y}^{(T)} \sum_{t=1}^{T} \sum_{\tau=1}^{T} 1(n^{t}(s_{t}, a_{t}) \ge 2)$$

$$\leq 2\mathcal{Y}^{(T)} \sum_{t=1}^{T} \sum_{\tau=1}^{T} \sum_{\tau=1}^{T} 1(n^{t}(s_{t}, a_{t$$

where (a) holds because we can distinguish two cases:

- If $t \tau > \nu_{\tau} 1$, then the indicator $\mathbf{1}(t \tau \leq \nu_{\tau} 1)$ is zero, so the product vanishes regardless of the other indicator;
- If $t-\tau \leq \nu_{\tau}-1$, then, as shown earlier, we have $n^t(s_t,a_t)\geq 2$.

E.5 LOWER BOUND OF EPISTEMIC RESISTANCE

Proof.

$$\begin{split} \sum_{t=1}^T P_U^t(s_t, a_t) &= 1 + \frac{1}{\mathcal{E}_{\text{max}}} \sum_{t=2}^T \frac{1}{\sqrt{N^t(s_t, a_t)}} \\ &\geq 1 + \frac{1}{\mathcal{E}_{\text{max}}} \sum_{t=2}^T \frac{1}{\sqrt{t-1}} \\ &= 1 + \frac{1}{\mathcal{E}_{\text{max}}} \sum_{t=1}^{T-1} \frac{1}{\sqrt{t}} \\ &\geq 1 + \frac{1}{\mathcal{E}_{\text{max}}} \sum_{t=1}^{T-1} \int_t^{t+1} \frac{1}{\sqrt{x}} \, dx \\ &= 1 + \frac{1}{\mathcal{E}_{\text{max}}} \int_1^T \frac{1}{\sqrt{x}} \, dx \\ &= 1 + \frac{1}{\mathcal{E}_{\text{max}}} \left(2\sqrt{T} - 2 \right). \end{split}$$

Note, this also holds for $P_U^{t,\star}(s_t, \pi^{\star}(s_t))$. Therefore, multiplying with $\frac{23}{7}\lambda V_{\gamma}^{\uparrow}$ completes the proof.

E.6 REGRET ANALYSIS

E.6.1 PROOF OF THEOREM 2

Prior to deriving the regret, we state the following lemma.

Lemma 22. It holds that

$$\ell_{4,T} < \ell_1 + \ell_{2,T}$$

for all $T \in \mathbb{N}$.

Proof. Expand $\ell_{4,T}$ and relate it to $\ell_{2,T}$, we get:

$$\begin{split} \ell_{4,T} &= \log \frac{12T}{\delta} \\ &< \log \frac{12(SA+T)}{\delta} \\ &= \log \frac{12SA(1+\frac{T}{SA})}{\delta} \\ &= \log \left(\frac{12SA}{\delta}\right) + \log \left(1+\frac{T}{SA}\right) \\ &\leq \ell_1 + \ell_{2,T}. \end{split}$$

Proof. From Lemma 9, we have:

 $\operatorname{Regret}(T) \leq \frac{9V_{\gamma}^{\uparrow}}{2} \sum_{t=1}^{T} \lambda_{t} - V_{\gamma}^{\uparrow} \sum_{t=1}^{T} \mathfrak{R}^{t}(s) \lambda_{t} + 2 \sum_{t=1}^{T} J_{\gamma}^{t}(s) + \sum_{t=1}^{T} \mathcal{O}\left(\Phi_{t}\left(1 + \frac{\Phi_{t}}{V_{\gamma}^{\uparrow}}\right)\right)$

Choose
$$\lambda_t = \min\{1, 3\sqrt{\frac{SA\ell_1\ell_{2,T}}{T(1-\gamma)}}\}, \ \forall t \in [T] \ \text{and denote} \ \Psi(T) \coloneqq \frac{2\sum\limits_{t=1}^T \mathfrak{R}^t(s)}{9T}, \ \text{we have}$$

$$\frac{9V_{\gamma}^{\uparrow}}{2} \sum_{t=1}^{T} \lambda_{t} - V_{\gamma}^{\uparrow} \sum_{t=1}^{T} \Re^{t}(s) \lambda_{t} = \frac{9V_{\gamma}^{\uparrow}}{2} \left(1 - \frac{2\sum_{t=1}^{T} \Re^{t}(s)}{9T} \right) T \min\{1, 3\sqrt{\frac{SA\ell_{1}\ell_{2,T}}{T(1-\gamma)}} \}$$

$$\leq 14 \frac{R_{\text{max}}}{1-\gamma} \left(1 - \Psi(T) \right) T \sqrt{\frac{SA\ell_{1}\ell_{2,T}}{T(1-\gamma)}}$$

$$= 14 \left(1 - \Psi(T) \right) \frac{R_{\text{max}}}{(1-\gamma)^{1.5}} \sqrt{SAT\ell_{1}\ell_{2,T}}.$$

From Lemma 21, we know that

$$\begin{split} 2\sum_{t=1}^{T} J_{\gamma}^{t}(s_{1}^{t}) &\leq \frac{4\mathcal{Y}^{(T)}}{1-\gamma} SA \log \left(1 + \frac{T}{SA}\right) + \frac{26V_{\gamma}^{+}}{1-\gamma} SA \log \frac{12T}{\delta} \\ &\leq \frac{48V_{\gamma}^{+} SA\ell_{1,T}\ell_{2,T}}{(1-\gamma)\lambda_{T}} + \frac{120V_{\gamma}^{+}}{1-\gamma} S^{2}A\ell_{2,T}\ell_{3,T} + \frac{26V_{\gamma}^{+}}{1-\gamma} SA \log \frac{12T}{\delta}. \\ &\leq \frac{48V_{\gamma}^{+} SA\ell_{1,T}\ell_{2,T}}{(1-\gamma)} \max \left\{1, \frac{1}{3}\sqrt{\frac{T(1-\gamma)}{SA\ell_{1}\ell_{2,T}}}\right\} + \frac{120V_{\gamma}^{+}}{1-\gamma} S^{2}A\ell_{2,T}\ell_{3,T} + \frac{26V_{\gamma}^{+}}{1-\gamma} SA \log \frac{12T}{\delta}. \\ &\leq \frac{48R_{\max}SA\ell_{1,T}\ell_{2,T}}{(1-\gamma)^{2}} + \frac{16R_{\max}}{(1-\gamma)^{1.5}} \sqrt{SAT\ell_{1}\ell_{2,T}} + \frac{120R_{\max}}{(1-\gamma)^{2}} S^{2}A\ell_{2,T}\ell_{3,T} + \frac{26R_{\max}}{(1-\gamma)^{2}} SA \log \frac{12T}{\delta}. \\ &\stackrel{\text{(a)}}{\leq} \frac{16R_{\max}}{(1-\gamma)^{1.5}} \sqrt{SAT\ell_{1}\ell_{2,T}} + \left(\frac{120R_{\max}}{(1-\gamma)^{2}} S^{2}A\ell_{2,T}\ell_{3,T} + \frac{48R_{\max}SA\ell_{1,T}\ell_{2,T}}{(1-\gamma)^{2}} + \frac{26R_{\max}}{(1-\gamma)^{2}} SA(\ell_{1,T}+\ell_{2,T})\right) \\ &\stackrel{\text{(b)}}{\leq} \frac{16R_{\max}}{(1-\gamma)^{1.5}} \sqrt{SAT\ell_{1}\ell_{2,T}} + \left(\frac{120R_{\max}}{(1-\gamma)^{2}} S^{2}A\ell_{2,T}\ell_{1,T} + \frac{48R_{\max}SA\ell_{1,T}^{\prime}\ell_{2,T}}{(1-\gamma)^{2}} + \frac{26R_{\max}}{(1-\gamma)^{2}} SA(\ell_{1,T}+\ell_{2,T})\right) \\ &\leq \frac{16R_{\max}}{(1-\gamma)^{1.5}} \sqrt{SAT\ell_{1}\ell_{2,T}} + \left(\frac{120R_{\max}}{(1-\gamma)^{2}} S^{2}A\ell_{2,T}\ell_{1,T} + \frac{48R_{\max}SA\ell_{1,T}^{\prime}(1+\ell_{2,T})}{(1-\gamma)^{2}} + \frac{26R_{\max}}{(1-\gamma)^{2}} SA\ell_{2,T}\right) \\ &\leq \frac{16R_{\max}}{(1-\gamma)^{1.5}} \sqrt{SAT\ell_{1}\ell_{2,T}} + \left(\frac{120R_{\max}}{(1-\gamma)^{2}} S^{2}A\ell_{2,T}\ell_{1,T} + \frac{48R_{\max}SA\ell_{1,T}^{\prime}(1+\ell_{2,T})}{(1-\gamma)^{2}} + \frac{26R_{\max}}{(1-\gamma)^{2}} SA\ell_{2,T}\right) \\ &\leq \frac{16R_{\max}}{(1-\gamma)^{1.5}} \sqrt{SAT\ell_{1}\ell_{2,T}} + \frac{168R_{\max}}{(1-\gamma)^{2}} S^{2}A\ell_{2,T}(1+\ell_{1,T}) + \frac{48R_{\max}SA\ell_{1,T}^{\prime}(1+\ell_{2,T})}{(1-\gamma)^{2}}\right) \\ &\leq \frac{16R_{\max}}{(1-\gamma)^{1.5}} \sqrt{SAT\ell_{1}\ell_{2,T}} + \frac{168R_{\max}}{(1-\gamma)^{2}} S^{2}A\ell_{2,T}(1+\ell_{1,T}), \end{split}$$

where (a) uses the Lemma 22, and (b) $\ell'_{1,T}$ is denoted as $\log \frac{24SA(1+\log T)}{\delta}$, therein $\ell'_{1,T} \ge \ell_1$ and $\ell'_{1,T} \ge \ell_{3,T}$.

Combining those two together, we get:

$$\mathrm{Regret}(T) \leq (30 - 14\Psi(T)) R_{\max} \frac{\sqrt{SAT\ell_1\ell_{2,T}}}{(1 - \gamma)^{1.5}} + 168 R_{\max} \frac{S^2A}{(1 - \gamma)^2} (1 + \ell_{1,T}') (1 + \ell_{2,T}) + \sum_{t=1}^T \mathcal{O}\left(\Phi_t\left(1 + \frac{\Phi_t}{V_\gamma^\uparrow}\right)\right),$$

where only the last part left to resolve.

Given $\Phi_t = R_{\text{max}} \lambda_t$, we have one additional source of $\mathcal{O}(\lambda T)$, which will be merged into the leading term. In addition, note that

$$\begin{split} \sum_{t=1}^{T} \mathcal{O}(\frac{\Phi_{t}^{2}}{V_{\gamma}^{\uparrow}}) &= \sum_{t=1}^{T} \widetilde{\mathcal{O}}\left(\frac{R_{\max}^{2} SA}{T V_{\gamma}^{\uparrow}}\right) \\ &= \widetilde{\mathcal{O}}\left(\frac{R_{\max}^{2} SA}{V_{\gamma}^{\uparrow}}\right) \\ &< \widetilde{\mathcal{O}}(R_{\max} SA), \end{split}$$

which only increases the non-leading term by some constants. So overall, we have:

$$\operatorname{Regret}(T) = \widetilde{\mathcal{O}}\left(\frac{\sqrt{SAT}}{(1-\gamma)^{1.5}} + \frac{S^2A}{(1-\gamma)^2}\right).$$

E.6.2 STATE-ACTION DEPENDENT $\lambda_t(s,a)$

Definition 8. Let \mathcal{G} be defined by

$$\mathcal{G} = \sum_{(s,a)\in\mathcal{S}\times\mathcal{A}} \left(\sqrt{1 - \frac{46}{63}\bar{P}_U(s,a)} \right),$$

where

$$\begin{split} \bar{P}_{U}^{\tau}(s,a) \coloneqq \min\{P_{U}^{\tau}(s,a), P_{U}^{\tau,\star}(s)\} \\ \bar{P}_{U}(s,a) \coloneqq \min_{2 \leq n \leq N^{T+1}(s,a)} \min_{1 \leq \tau \leq t_{(s,a)}(n)} \bar{P}_{U}^{\tau}(s,a) \end{split}$$

Notably, we have the property of \mathcal{G} that $\frac{17}{63}SA \leq \mathcal{G} \leq SA$. The maximum is attained only if $\bar{P}_U(s,a) \equiv 0, \forall (s,a) \in \mathcal{S} \times \mathcal{A}$.

If the epistemic uncertainty is non-increasing, then $\bar{P}_U(s,a)$ is corresponding to exactly the epistemic uncertainty at the end of learning, that is, $\bar{P}_U^{T+1}(s,a)$, reflecting the systematic uncertainty of a particular state-action.

Lemma 23. Denote
$$\rho^t(s,a) := \frac{\sqrt{\frac{9}{2} - \Re^t(s,a)}\ell_{1,t}}{N^t(s,a)}$$
, it holds that

$$\sum_{t=1}^{T} \sum_{l=0}^{\nu_t - 1} \gamma^l \rho^t(s_{t+l}, a_{t+l}) \le \frac{3\sqrt{2}\ell_{1,T}}{(1 - \gamma)} \mathcal{G} \log \left(1 + \frac{T}{\mathcal{G}} \right).$$

1836 | Proof. Denote
$$I := \sum_{t=1}^{T} \sum_{l=0}^{t-1} \gamma^{l} \rho^{l}(s_{t+l}, a_{t+l})$$
, we have 1838 | 1839 | $I := \sum_{t=1}^{T} \sum_{r=1}^{t} 1(t - \tau \leq \nu_{\tau} - 1) \gamma^{t-\tau} \frac{\ell_{1,\tau}}{N^{\tau}(s_{t}, a_{t})} \left(\sqrt{\frac{9}{2}} - \Re^{\tau}(s_{t}, a_{t}) \right)$ | 1841 | $I := \sum_{t=1}^{t} \sum_{\tau=1}^{t} 1(t - \tau \leq \nu_{\tau} - 1) \gamma^{t-\tau} \frac{\ell_{1,\tau}}{n^{t}(s_{t}, a_{t})} \left(\sqrt{\frac{9}{2}} - \Re^{\tau}(s_{t}, a_{t}) \right)$ | 1842 | $I := \sum_{t=1}^{T} \sum_{\tau=1}^{t} 1(t - \tau \leq \nu_{\tau} - 1) \gamma^{t-\tau} \frac{2\ell_{1,\tau}}{n^{t}(s_{t}, a_{t})} \left(\sqrt{\frac{9}{2}} - \Re^{\tau}(s_{t}, a_{t}) \right)$ | 1843 | $I := \sum_{t=1}^{T} \sum_{\tau=1}^{t} 1(t - \tau \leq \nu_{\tau} - 1) \gamma^{t-\tau} \frac{1}{n^{t}(s_{t}, a_{t})} \left(\sqrt{1 - \frac{46}{63}} \bar{P}_{U}^{\tau}(s_{t}, a_{t}) \right)$ | 1850 | $I := \sum_{t=1}^{T} \sum_{\tau=1}^{t} 1(t - \tau \leq \nu_{\tau} - 1) \gamma^{t-\tau} \frac{1}{n^{t}(s_{t}, a_{t})} \left(\sqrt{1 - \frac{46}{63}} \bar{P}_{U}^{\tau}(s_{t}, a_{t}) \right)$ | 1851 | $I := \sum_{t=1}^{T} \sum_{\tau=1}^{t} 1(t - \tau \leq \nu_{\tau} - 1) \gamma^{t-\tau} \frac{1}{n^{t}(s_{t}, a_{t})} \left(\sqrt{1 - \frac{46}{63}} \bar{P}_{U}^{\tau}(s_{t}, a_{t}) \right)$ | 1852 | $I := \sum_{t=1}^{T} \sum_{\tau=1}^{t} 1(t - \tau \leq \nu_{\tau} - 1) \gamma^{t-\tau} \frac{1}{n^{t}(s_{t}, a_{t})} \left(\sqrt{1 - \frac{46}{63}} \bar{P}_{U}^{\tau}(s_{t}, a_{t}) \right)$ | 1854 | $I := \sum_{t=1}^{T} \sum_{\tau=1}^{t} 1(n^{t}(s_{t}, a_{t}) \geq 2) \frac{1}{n^{t}(s_{t}, a_{t})} \sum_{\tau=1}^{t} 1(t - \tau \leq \nu_{\tau} - 1) \gamma^{t-\tau} \left(\sqrt{1 - \frac{46}{63}} \lim_{t \leq \tau \leq t} P_{U}^{\tau}(s_{t}, a_{t}) \right)$ | 1855 | $I := \sum_{t=1}^{T} \sum_{\tau=1}^{t} 1(n^{t}(s_{t}, a_{t}) \geq 2) \frac{1}{n^{t}(s_{t}, a_{t})} \left(\sqrt{1 - \frac{46}{63}} \lim_{t \leq \tau \leq t} P_{U}^{\tau}(s_{t}, a_{t}) \right)$ | 1856 | $I := \sum_{t=1}^{T} \sum_{\tau=1}^{T} 1(n^{t}(s_{t}, a_{t}) \geq 2) \frac{1}{n^{t}(s_{t}, a_{t})} \left(\sqrt{1 - \frac{46}{63}} \lim_{t \leq \tau \leq t} P_{U}^{\tau}(s_{t}, a_{t}) \right)$ | 1857 | $I := \sum_{t=1}^{T} \sum_{\tau=1}^{T} 1(n^{t}(s_{t}, a_{t}) \geq 2) \frac{1}{n^{t}(s_{t}, a_{t})} \left(\sqrt{1 - \frac{46}{63}} \lim_{t \leq \tau \leq t} P_{U}^{\tau}(s_{t}, a_{t}) \right)$ | 1859 | $I := \sum_{t=1}^{T} \sum_{\tau=1}^{T} 1(n^{t}(s_{t}, a_{t}) \geq 2) \frac{1}{n^{t}(s_{t}, a_{t})} \left(\sqrt{1 - \frac{46}{63}} \lim_{t \leq \tau \leq t} P_{U}^{\tau}(s_{t}, a_{t}) \right)$ | 1850 | $I := \sum_{t=1}^{T} \sum_{\tau=1}^{T} 1(n^{t}(s_{t}, a_{t}) \geq 2) \frac{1}{n^{t}(s_{t}, a_{t})} \left(\sqrt{1 - \frac{46}{63}} \lim_{t \leq \tau \leq t} P_{U}^{\tau}$

where we have used the following facts:

1889

(a) Monotonicity of $\ell_{1,\tau}$

(b)
$$\Re^{\tau}(s_t, a_t) \geq \frac{23}{7} \bar{P}_U^{\tau}(s_t, a_t)$$

(c) Jensen's inequality

Lemma 24. For any $T \in \mathbb{N}$ and $\mathbf{x} \in [a, b]^N$, 0 < a < b, define function $G(\mathbf{x}) = \sum_{n=1}^N \sqrt{x_n}$ and $f(\mathbf{x}) = G(\mathbf{x}) \log \left(1 + \frac{T}{G(\mathbf{x})}\right)$, we have that

$$f(\mathbf{1}a) \le f(\mathbf{x}) \le f(\mathbf{1}b).$$

Proof. Using the elementary fact that $g(u) = u \log \left(1 + \frac{T}{u}\right)$, u > 0 is nondecreasing on $(0, \infty)$ completes the proof.

Proof. From Lemma 9, we have:

$$\begin{split} \operatorname{Regret}(T) & \leq \frac{9V_{\gamma}^{\uparrow}}{2} \sum_{t=1}^{T} \lambda_{t} - V_{\gamma}^{\uparrow} \sum_{t=1}^{T} \mathfrak{R}^{t}(s) \lambda_{t} + 2 \sum_{t=1}^{T} J_{\gamma}^{t}(s) + \sum_{t=1}^{T} \mathcal{O}\left(\Phi_{t}\left(1 + \frac{\Phi_{t}}{V_{\gamma}^{\uparrow}}\right)\right) \\ & = V_{\gamma}^{\uparrow} \sum_{t=1}^{T} \left(\frac{9}{2} - \mathfrak{R}^{t}(s)\right) \lambda_{t} + 2 \sum_{t=1}^{T} J_{\gamma}^{t}(s) + \sum_{t=1}^{T} \mathcal{O}\left(\Phi_{t}\left(1 + \frac{\Phi_{t}}{V_{\gamma}^{\uparrow}}\right)\right). \end{split}$$

Choosing $\lambda_t = \min\left\{1, \frac{C}{\sqrt{\frac{9}{2} - \Re^t(s)}} \sqrt{\frac{SA\ell_{1,T}\ell_{2,T}}{T(1-\gamma)}}\right\}, \ \forall t \in [T], \text{ we have } t \in [T]$

$$\begin{split} V_{\gamma}^{\uparrow} \sum_{t=1}^{T} \left(\frac{9}{2} - \Re^{t}(s) \right) \lambda_{t} &= V_{\gamma}^{\uparrow} \sum_{t=1}^{T} \left(\frac{9}{2} - \Re^{t}(s) \right) \min \left\{ 1, \frac{C}{\sqrt{\frac{9}{2} - \Re^{t}(s)}} \sqrt{\frac{SA\ell_{1,T}\ell_{2,T}}{T(1 - \gamma)}} \right\} \\ &\leq C \frac{R_{\max}}{1 - \gamma} \sum_{t=1}^{T} \left(\sqrt{\frac{9}{2} - \Re^{t}(s)} \right) \sqrt{\frac{SA\ell_{1,T}\ell_{2,T}}{T(1 - \gamma)}} \\ &\leq C \frac{R_{\max}}{1 - \gamma} \sqrt{T \left(\frac{9}{2}T - \sum_{t=1}^{T} \Re^{t}(s) \right) \sqrt{\frac{SA\ell_{1,T}\ell_{2,T}}{T(1 - \gamma)}}} \\ &\leq \underbrace{\frac{CR_{\max}}{(1 - \gamma)^{1.5}} \sqrt{\left(\frac{9}{2}T - \sum_{t=1}^{T} \Re^{t}(s) \right) SA\ell_{1,T}\ell_{2,T}}}_{:=\mathcal{J}_{1}\left(\sum_{t=1}^{T} \Re^{t}(s)\right)}. \end{split}$$

Given

$$\begin{split} \mathcal{Y}^t &= \frac{12 V_{\gamma}^{\uparrow} \ell_{1,t}}{\lambda_t} + 30 V_{\gamma}^{\uparrow} S \ell_{3,t} \\ &= 12 V_{\gamma}^{\uparrow} \ell_{1,t} \max \left\{ 1, \frac{\sqrt{\frac{9}{2} - \Re^t(s)}}{C} \sqrt{\frac{T(1-\gamma)}{SA\ell_{1,T}\ell_{2,T}}} \right\} + 30 V_{\gamma}^{\uparrow} S \ell_{3,t} \\ &= \underbrace{12 V_{\gamma}^{\uparrow} \ell_{1,t}}_{\mathcal{Y}_1^t} + \underbrace{\frac{12}{C} V_{\gamma}^{\uparrow} \ell_{1,t} \sqrt{\frac{9}{2} - \Re^t(s)} \sqrt{\frac{T(1-\gamma)}{SA\ell_{1,T}\ell_{2,T}}}}_{\mathcal{Y}_5^t} + \underbrace{30 V_{\gamma}^{\uparrow} S \ell_{3,t}}_{\mathcal{Y}_3^t}. \end{split}$$

From Lemma 20 and 23, we get

$$\begin{array}{ll} \begin{array}{ll} 1946 \\ 1947 \\ 1948 \\ 1949 \\ 1950 \\ 1951 \\ 1951 \\ 1951 \\ 1952 \\ 1952 \\ 1953 \\ 1954 \\ 1955 \\ 1955 \\ 1956 \\ 1957 \\ 1958 \\ 1959 \\ 1950 \\ 1950 \\ 1951 \\ 1952 \\ 1953 \\ 1954 \\ 1955 \\ 1956 \\ 1957 \\ 1958 \\ 1958 \\ 1959 \\ 1950 \\ 1960 \\ 1961 \\ 1962 \\ 1961 \\ 1962 \\ 1963 \\ 1964 \\ 1965 \\ 1966 \\ 1967 \\ 1968 \\ 1968 \\ 1968 \\ 1968 \\ 1969 \\ 1960 \\ 1961 \\ 1962 \\ 1960 \\ 1961 \\ 1962 \\ 1963 \\ 1964 \\ 1965 \\ 1966 \\ 1966 \\ 1967 \\ 1968 \\ 1968 \\ 1968 \\ 1968 \\ 1969 \\ 1960 \\ 1961 \\ 1962 \\ 1962 \\ 1963 \\ 1964 \\ 1965 \\ 1966 \\ 1966 \\ 1967 \\ 1968 \\ 1968 \\ 1968 \\ 1968 \\ 1968 \\ 1968 \\ 1969 \\ 1960 \\ 1960 \\ 1961 \\ 1962 \\ 1962 \\ 1963 \\ 1964 \\ 1964 \\ 1965 \\ 1966 \\ 1967 \\ 1968 \\ 19$$

Combining everything together, we get:

$$\operatorname{Regret}(T) \leq \mathcal{J}_1\left(\sum_{t=1}^T \mathfrak{R}^t(s)\right) + \mathcal{J}_2(\mathcal{G}) + \frac{168R_{\max}}{(1-\gamma)^2}S^2A\ell_{1,T}(1+\ell_{2,T}) + \sum_{t=1}^T \mathcal{O}\left(\Phi_t\left(1+\frac{\Phi_t}{V_\gamma^\uparrow}\right)\right).$$

So, depending on the contribution of $\sum_{t=1}^{T} \Re^t(s)$ and \mathcal{G} , we can get different bounds. In what will follow, we choose $C = 3\sqrt{\frac{9}{2}}$.

Disregarding \mathcal{G} Even ignoring the first part, we can obtain a tigher bound where the leading term is offset by the sum of epistemic resistance $\sum_{t=1}^{T} \Re^t(s)$ as follows:

$$\begin{split} \operatorname{Regret}(T) & \leq \left(16 + 14 \sqrt{\left(1 - \frac{2\sum\limits_{t=1}^{T} \Re^t(s)}{9T}\right)}\right) \frac{R_{\max}}{(1 - \gamma)^{1.5}} \sqrt{SAT\ell_{1,T}\ell_{2,T}} + \frac{168R_{\max}}{(1 - \gamma)^2} S^2 A\ell_{1,T}(1 + \ell_{2,T}) \\ & + \sum_{t=1}^{T} \mathcal{O}\left(\Phi_t\left(1 + \frac{\Phi_t}{V_\gamma^{\uparrow}}\right)\right), \end{split}$$

Considering Both Let $N=SA, a=\frac{17}{63}, b=1$, by Lemma 24, we know that

$$\ell_{2,T}^{\prime\star} =: \sqrt{\frac{17}{63}} SA \log \left(1 + \frac{T}{\sqrt{\frac{17}{63}} SA}\right) \le \mathcal{G}\ell_{2,T}^{\prime} \le SA \log \left(1 + \frac{T}{SA}\right),$$

with this, at best, we can achieve:

$$\begin{split} \text{Regret}^{\star}(T) & \leq \sqrt{\frac{17}{63}} \left(16 \sqrt{\frac{{\ell_{2,T}^{\prime \star}}^{2}}{\ell_{2,T}}} + 14 \sqrt{\ell_{2,T}} \right) \frac{R_{\text{max}}}{(1 - \gamma)^{1.5}} \sqrt{SAT\ell_{1,T}} + \frac{168 R_{\text{max}}}{(1 - \gamma)^{2}} S^{2} A \ell_{1,T} (1 + \ell_{2,T}) \\ & + \sum_{t=1}^{T} \mathcal{O} \left(\Phi_{t} \left(1 + \frac{\Phi_{t}}{V_{\gamma}^{\uparrow}} \right) \right). \end{split}$$

If the ratio $\frac{T}{SA}$ is large, then $\ell_{2,T}^{\prime\star}\simeq\ell_{2,T}$. Therefore, the overall reduction is by a factor of $\sqrt{\frac{17}{63}}\approx0.519$. In this case, we can improve the constant in the leading term by roughly one-half.

Lastly, the treatment of the part of Φ_t is similar to that in the uniform case. Therefore, we ultimately have

$$\operatorname{Regret}(T) = \widetilde{\mathcal{O}}\left(\frac{\sqrt{SAT}}{(1-\gamma)^{1.5}} + \frac{S^2A}{(1-\gamma)^2}\right).$$

E.7 SAMPLE COMPLEXITY

For infinite-horizon discounted MDPs, the sample complexity of an algorithm is defined as the number of non- ϵ -optimal steps such that $V^{\pi_t}(s_t) \leq V^{\star}(s_t) - \epsilon$ taken over the course of learning (Kakade, 2003; Strehl & Littman, 2008). If this sample complexity can be bounded by a polynomial function $f(|S|, |A|, \frac{1}{\epsilon}, \frac{1}{\delta}, \frac{1}{1-\gamma})$, then the algorithm is PAC-MDP. We are interested in proving PAC-MDP for the full range $\epsilon \in (0, V_{\gamma}^{\uparrow}]$.

From Theorem 9, we know that the per-step regret can be bounded as follows:

$$V^{\star}(s_t) - V^{\pi_t}(s_t) \leq \left(\frac{9}{2} - \mathfrak{R}^t(s_t)\right) \lambda_t V_{\gamma}^{\uparrow} + 2J_{\gamma}^t(s_t) + \Phi_t \left(1 + \left(3 - 2P_U^{t,\star}(s)\right) \lambda_t + \frac{\Phi_t}{V_{\gamma}^{\uparrow}}\right)$$

$$\leq \underbrace{\left(\frac{9}{2} - \mathfrak{R}^t(s_t)\right) \lambda_t V_{\gamma}^{\uparrow}}_{:=L_{1,t}} + \underbrace{2J_{\gamma}^t(s_t)}_{:=L_{2,t}} + \underbrace{\Phi_t \left(4 + \frac{\Phi_t}{V_{\gamma}^{\uparrow}}\right)}_{:=L_{3,t}}$$

For $L_{1,t}$, we can choose $\lambda_t = \frac{\epsilon}{18V_{\gamma}^{\uparrow}}$, so that we have $L_{1,t} \leq \frac{\epsilon}{4}$. In addition, note that $\Phi_t = R_{\max} \lambda_t$ and $\lambda_t^2 = \frac{\epsilon^2}{18^2 V_{\gamma}^{\uparrow 2}} \leq \frac{\epsilon}{18^2 V_{\gamma}^{\uparrow}}$, substituting it into $L_{3,t}$, we have:

$$\begin{split} & \Phi_t = R_{\max} \lambda_t = R_{\max} \frac{\epsilon}{18 V_{\gamma}^{\uparrow}} = \frac{\epsilon (1-\gamma)}{18} \leq \frac{\epsilon}{18} \\ & \frac{\Phi_t^2}{V_{\gamma}^{\uparrow}} = \frac{R_{\max}^2 \lambda_t^2}{V_{\gamma}^{\uparrow}} \leq \frac{1}{18^2} \frac{R_{\max}^2 \epsilon}{V_{\gamma}^{\uparrow 2}} = \frac{\epsilon (1-\gamma)^2}{18^2} \leq \frac{\epsilon}{18^2}. \end{split}$$

Therefore, we obtain $L_{3,t} \leq \left(\frac{4}{18} + \frac{1}{18^2}\right) \epsilon \leq \frac{\epsilon}{4}$.

If we can prove that $L_{2,t} \leq \frac{\epsilon}{2}$, or equivalently, $J_{\gamma}^t(s_t) \leq \frac{\epsilon}{4}$, then the time step t can be said to be optimal. To achieve this, we introduce a set of new notations that explicitly connect the number of non-optimal steps with $J_{\gamma}^t(s_t)$.

We define the set of non-optimal steps within T total steps as $\Gamma_T := \{t \in [T] : J^t_{\gamma}(s_t) > \frac{\epsilon}{4}\}$, and its cardinality $|\Gamma_T|$. Then we want to prove that $|\Gamma_T|$ is polynomially bounded for all $T \in \mathbb{N}$.

For analyzing non- ϵ -optimal steps, it is useful to overload the definition of visits so that it only includes those occurring in Γ_T .

$$\begin{split} n^t(s,a) &\coloneqq \sum_{t \in \Gamma_t} \mathbf{1}((s_t,a_t) = (s,a)) \\ N^t(s,a) &\coloneqq \sum_{t \in \Gamma_{t-1}} \mathbf{1}((s_t,a_t) = (s,a)) \\ \nu_t &\coloneqq \begin{cases} &\min\{\tau \in [t,T] : n^\tau(s_\tau,a_\tau) > 2N^t(s_\tau,a_\tau)\}, & \text{if } \tau \text{ exists.} \\ &T+1, & \text{otherwise.} \end{cases} \end{split}$$

Next, we bound the sum of $J_{\gamma}^{t}(s_{t})$ but only for the steps in Γ_{T} .

Lemma 25. For infinite-horizon discounted MDPs, under high-probability event $\mathbf{A}_7^{\gamma} \cap \mathbf{A}_8^{\gamma}$, it holds that

$$\sum_{t \in \Gamma} J_{\gamma}^{t}(s_{t}) \leq \frac{2\mathcal{Y}^{(|\Gamma_{T}|)}}{1 - \gamma} SA \log \left(1 + \frac{|\Gamma_{T}|}{SA}\right) + \frac{13V_{\gamma}^{\uparrow}}{1 - \gamma} SA \log \frac{12|\Gamma_{T}|}{\delta},$$

for all $T \in \mathbb{N}$.

Proof. The proof follows the same procedure as in Lemma 19 20 and 21, except adding the indicator function $\mathbf{1}(t \in \Gamma_T)$ to each time step.

Based on the above result and Lemma 22, we can bound $|\Gamma_T|$ using the fact that $J_{\gamma}^t(s_t) > \frac{\epsilon}{4}$.

Definition 9. Let W(T) be defined by

$$W(T) \coloneqq \frac{1780 R_{\max}^2 SA\ell_{1,T}\ell_{2,T}}{\epsilon^2 (1-\gamma)^3} + \frac{240 R_{\max} S^2 A\ell_{2,T}\ell_{3,T}}{\epsilon (1-\gamma)^2} + \frac{52 R_{\max} SA\ell_{1,T}}{\epsilon (1-\gamma)^2}$$

Lemma 26. For infinite-horizon discounted MDPs, under high-probability event D, it holds that

$$|\Gamma_T| \leq W(|\Gamma_T|),$$

for all $T \in \mathbb{N}$.

Proof. From Lemma 25 and 22, we get

$$|\Gamma_T| \le \frac{8\mathcal{Y}^{(T)}SA\ell_{2,T}}{\epsilon(1-\gamma)} + \frac{52V_{\gamma}^{\uparrow}SA(\ell_{1,T}+\ell_{2,T})}{\epsilon(1-\gamma)}.$$

Substituting the definition of $\mathcal{Y}^{(T)}$ into the above, we have

$$\begin{split} |\Gamma_T| & \leq \frac{1728 R_{\max}^2 SA\ell_{1,|\Gamma_T|}\ell_{2,|\Gamma_T|}}{\epsilon^2 (1-\gamma)^3} + \frac{240 R_{\max} S^2 A\ell_{2,|\Gamma_T|}\ell_{3,|\Gamma_T|}}{\epsilon (1-\gamma)^2} + \frac{52 R_{\max} SA(\ell_{1,|\Gamma_T|} + \ell_{2,|\Gamma_T|})}{\epsilon (1-\gamma)^2} \\ & \leq \frac{1780 R_{\max}^2 SA\ell_{1,|\Gamma_T|}\ell_{2,|\Gamma_T|}}{\epsilon^2 (1-\gamma)^3} + \frac{240 R_{\max} S^2 A\ell_{2,|\Gamma_T|}\ell_{3,|\Gamma_T|}}{\epsilon (1-\gamma)^2} + \frac{52 R_{\max} SA\ell_{1,|\Gamma_T|}}{\epsilon (1-\gamma)^2}, \end{split}$$

where (a) uses the facts that $\frac{V_{\gamma}^{\uparrow}}{\epsilon} \geq 1$ and $\ell_{1,|\Gamma_T|} \geq 1$, therefore concludes the proof.

Proposition 3. For infinite-horizon discounted MDPs, let T_0 be defined as

$$T_0 := \left| \frac{3670R_{max}^2 SA\ell_1 \ell_{5,\epsilon}}{\epsilon^2 (1 - \gamma)^3} + \frac{480R_{max} S^2 A(2\ell_1 + \ell_{6,\epsilon})\ell_{5,\epsilon}}{\epsilon (1 - \gamma)^2} \right|.$$

Then the sample complexity of EUBRL is at most T_0 with probability at least $1 - \delta$.

Before proving this result, we need to bound the the other way around i.e. $W(T_0) < T_0$.

Lemma 27. It holds that

$$W(T_0) < T_0$$
.

2106 Proof. Denote $B:=\frac{R_{\max}^2\ell_1}{\epsilon^2(1-\gamma)^3}+\frac{R_{\max}S(2\ell_1+\ell_{6,\epsilon})}{\epsilon(1-\gamma)^2}$, therefore we have $T_0\leq 3670BSA\ell_{5,\epsilon}$ where $\ell_{5,\epsilon}=\log\left(1+140B\right)\leq 5B$. Then we have:

$$\ell_{2,T_0} = \log\left(1 + \frac{T_0}{SA}\right)$$

$$\leq 2\ell_{5,\epsilon}.$$

Moreover, we have:

$$\ell_1 \le \frac{4SA}{\delta}$$

$$\ell_{6,\epsilon} \le \frac{V_{\gamma}^{\uparrow}}{\epsilon(1-\gamma)}.$$

Therefore, we get:

$$2\ell_1 + \ell_{6,\epsilon} \le \frac{8SA}{\delta} + \frac{V_{\gamma}^{\uparrow}}{\epsilon(1 - \gamma)}$$
$$\le \frac{9V_{\gamma}^{\uparrow}SA}{\delta\epsilon(1 - \gamma)}.$$

We use this to bound B as follows:

$$\begin{split} B &= \frac{R_{\text{max}}^2 \ell_1}{\epsilon^2 (1 - \gamma)^3} + \frac{R_{\text{max}} S(2\ell_1 + \ell_{6,\epsilon})}{\epsilon (1 - \gamma)^2} \\ &\leq \frac{4 R_{\text{max}}^2 S A}{\delta \epsilon^2 (1 - \gamma)^3} + \frac{9 R_{\text{max}}^2 S^2 A}{\delta \epsilon^2 (1 - \gamma)^4} \\ &= \frac{13 R_{\text{max}}^2 S^2 A}{\delta \epsilon^2 (1 - \gamma)^4}. \end{split}$$

With this, we now bound $\log T_0$, which is a part of ℓ_{3,T_0} .

$$\begin{split} \log T_0 & \leq \log 18350 B^2 S A \\ & \leq \log 18350 \frac{169 R_{\text{max}}^4 S^4 A^2}{\delta^2 \epsilon^4 (1 - \gamma)^8} S A \\ & = \log \frac{18350 \times 169}{e^4} e^4 \frac{R_{\text{max}}^4 S^4 A^2}{\delta^2 \epsilon^4 (1 - \gamma)^8} S A \\ & \leq \underbrace{\log \frac{56800 S^5 A^3}{\delta^2}}_{} + \log \frac{V_{\gamma}^{\uparrow 2} e^4}{\epsilon^4 (1 - \gamma)^4}. \end{split}$$

We now bound L_1 .

$$L_1 = \log \frac{56800S^5 A^3}{\delta^2}$$

$$\leq \log \frac{56800S^5 A^5}{\delta^5}$$

$$\leq \log \frac{9^5 S^5 A^5}{\delta^5}$$

$$= 5 \log \frac{9SA}{\delta}$$

$$\leq 11 \frac{SA}{\delta}.$$

Therefore

$$\log T_0 \le 11 \frac{SA}{\delta} + 4 \log \frac{V_{\gamma}^{\uparrow} e}{\epsilon (1 - \gamma)}$$
$$\le \frac{15SA}{\delta} \log \frac{V_{\gamma}^{\uparrow} e}{\epsilon (1 - \gamma)}.$$

Then, substitute this into ℓ_{3,T_0} , we get:

$$\ell_{3,T_0} = \log \frac{12SA(1 + \log T_0)}{\delta}$$

$$= \log \frac{12SA}{\delta} + \log (1 + \log T_0)$$

$$\leq \ell_1 + \log \left(1 + \frac{15SA}{\delta} \log \frac{V_{\gamma}^{\uparrow} e}{\epsilon (1 - \gamma)} \right)$$

$$\stackrel{\text{(a)}}{\leq} \ell_1 + \log \left(\frac{16SA}{\delta} \log \frac{V_{\gamma}^{\uparrow} e}{\epsilon (1 - \gamma)} \right)$$

$$\leq \ell_1 + \log \left(\frac{16SA}{\delta} \right) + \log \log \frac{V_{\gamma}^{\uparrow} e}{\epsilon (1 - \gamma)}$$

$$\leq 2\ell_1 + \ell_{6,\epsilon},$$

where for (a) we have used the facts that $\frac{SA}{\delta} \geq 1$ and $\log \frac{V_{\gamma}^{\gamma}e}{\epsilon(1-\gamma)} \geq 1$.

Now, we prove $W(T_0) < T_0$. Since $B \ge 1$, therefore $\ell_{5,\epsilon} \ge \log 141 > 1$. This leads to $T_0 \ge 3670SA$, henceforce $\ell_{2,T_0} \ge 1$. Along with $\frac{V_{\gamma}^{\uparrow}}{\epsilon} \ge 1$, we have:

$$\begin{split} W(T_0) &= \frac{1780 R_{\max}^2 SA\ell_{1,T_0}\ell_{2,T_0}}{\epsilon^2 (1-\gamma)^3} + \frac{240 R_{\max} S^2 A\ell_{2,T_0}\ell_{3,T_0}}{\epsilon (1-\gamma)^2} + \frac{52 R_{\max} SA\ell_{1,T_0}}{\epsilon (1-\gamma)^2} \\ &\leq \frac{1780 R_{\max}^2 SA\ell_{1,T_0}\ell_{2,T_0}}{\epsilon^2 (1-\gamma)^3} + \frac{240 R_{\max} S^2 A\ell_{2,T_0}\ell_{3,T_0}}{\epsilon (1-\gamma)^2} + \frac{52 R_{\max}^2 SA\ell_{1,T_0}\ell_{2,T_0}}{\epsilon^2 (1-\gamma)^3} \\ &= \frac{1832 R_{\max}^2 SA\ell_{1,T_0}\ell_{2,T_0}}{\epsilon^2 (1-\gamma)^3} + \frac{240 R_{\max} S^2 A\ell_{2,T_0}\ell_{3,T_0}}{\epsilon (1-\gamma)^2} \\ &\coloneqq W'(T_0) \end{split}$$

Substituting the bounds on logarithmic terms, we obtain:

$$\begin{split} W(T_0) &\leq W'(T_0) \\ &\leq \frac{3664R_{\max}^2SA\ell_1\ell_{5,\epsilon}}{\epsilon^2(1-\gamma)^3} + \frac{480R_{\max}S^2A\ell_{5,\epsilon}(2\ell_1+\ell_{6,\epsilon})}{\epsilon(1-\gamma)^2} \\ &\leq \frac{3666R_{\max}^2SA\ell_1\ell_{5,\epsilon}}{\epsilon^2(1-\gamma)^3} + \frac{480R_{\max}S^2A\ell_{5,\epsilon}(2\ell_1+\ell_{6,\epsilon})}{\epsilon(1-\gamma)^2} - 2 \\ &\leq \frac{3670R_{\max}^2SA\ell_1\ell_{5,\epsilon}}{\epsilon^2(1-\gamma)^3} + \frac{480R_{\max}S^2A\ell_{5,\epsilon}(2\ell_1+\ell_{6,\epsilon})}{\epsilon(1-\gamma)^2} - 2 \\ &\leq \left\lfloor \frac{3670R_{\max}^2SA\ell_1\ell_{5,\epsilon}}{\epsilon^2(1-\gamma)^3} + \frac{480R_{\max}S^2A\ell_{5,\epsilon}(2\ell_1+\ell_{6,\epsilon})}{\epsilon(1-\gamma)^2} \right\rfloor + 1 - 2 \\ &\leq \left\lfloor \frac{3670R_{\max}^2SA\ell_1\ell_{5,\epsilon}}{\epsilon^2(1-\gamma)^3} + \frac{480R_{\max}S^2A\ell_{5,\epsilon}(2\ell_1+\ell_{6,\epsilon})}{\epsilon(1-\gamma)^2} \right\rfloor - 1 \\ &\leq T_0 - 1 \\ &< T_0. \end{split}$$

Now, we formally prove Proposition 3.

Proof. From Lemma 26 and 27, we know that $|\Gamma_T| \leq W(|\Gamma_T|)$ and $W(T_0) < T_0$. It implies that $|\Gamma_T| \neq T_0$ for all $T \in \mathbb{N}$. Since $|\Gamma_T|$ increases by at most 1 starting from $|\Gamma_0| = 0$, that is, $|\Gamma_{T+1}| \leq |\Gamma_T| + 1$ for all $T \in \mathbb{N}$, we conclude that $|\Gamma_T| < T_0$ for all $T \in \mathbb{N}$. Otherwise, there exists T' such that $|\Gamma_{T'}| > T_0$. Assume T' is the minimal such index. Then it follows that $|\Gamma_{T'-1}| = T_0$, which leads to a contradiction.

F POSTERIOR PREDICTIVE AND EPISTEMIC UNCERTAINTY

In this section, we will give backgrounds necessary to relate the Bayes estimator to the MLE estimator.

F.1 POSTERIOR PREDICTIVE

F.1.1 TRANSITION

Lemma 28. Let $b_0 := Dir(\alpha)$ be a Dirichlet prior over transition for a fixed $(s, a) \in \mathcal{S} \times \mathcal{A}$, and define $\alpha_0 := \mathbf{1}^{\top} \alpha$ as the sum of prior parameters. Let n denote the total number of visits to (s, a). Then, the following decomposition holds:

$$P_b - P = \frac{n}{n + \alpha_0} \left(\hat{P} - P \right) + \frac{\alpha_0}{n + \alpha_0} \left(P_{b_0} - P \right),$$

for any posterior b and $n \in \mathbb{N}$.

Proof. Note $P_{b_0} = \frac{\alpha}{\alpha_0}$, we get:

$$\begin{split} P_b - P &= \frac{\mathbf{n} + \alpha}{n + \alpha_0} - P \\ &= \frac{n\hat{P} + \alpha_0 P_{b_0}}{n + \alpha_0} - \left(\frac{n}{n + \alpha_0} + \frac{\alpha_0}{n + \alpha_0}\right) P \\ &= \frac{n}{n + \alpha_0} \left(\hat{P} - P\right) + \frac{\alpha_0}{n + \alpha_0} \left(P_{b_0} - P\right). \end{split}$$

F.1.2 REWARD

Lemma 29. Let $b_0 := \mathcal{N}(\mu_0, \frac{1}{\tau_0})$ be a Normal prior over mean of reward for a fixed $(s, a) \in \mathcal{S} \times \mathcal{A}$, and τ the precision of the data distribution, which is assumed to be known. Let n denote the total number of visits to (s, a). Then, the following decomposition holds:

$$r_b(s,a) - r(s,a) = \frac{\tau_0}{\tau_0 + n\tau} (\mu_0 - r(s,a)) + \frac{n\tau}{\tau_0 + n\tau} (\hat{r}(s,a) - r(s,a)),$$

for any posterior b *and* $n \in \mathbb{N}$.

Proof. By definition, we have the posterior predictive of the reward:

$$r_b(s,a) = \frac{\tau_0 \mu_0 + \tau \sum_{i=1}^n r_i}{\tau_0 + n\tau}.$$

The difference to the ground truth reward is:

$$r_b(s,a) - r(s,a) = \frac{\tau_0 \mu_0 + \tau \sum_{i=1}^n r_i}{\tau_0 + n\tau} - r(s,a)$$

$$= \frac{(\tau_0 \mu_0 + n\tau \hat{r}(s,a)) - (\tau_0 + n\tau)r(s,a)}{\tau_0 + n\tau}$$

$$= \frac{\tau_0 (\mu_0 - r(s,a)) + n\tau(\hat{r}(s,a) - r(s,a))}{\tau_0 + n\tau}$$

$$= \frac{\tau_0}{\tau_0 + n\tau} (\mu_0 - r(s,a)) + \frac{n\tau}{\tau_0 + n\tau} (\hat{r}(s,a) - r(s,a)).$$

Corollary 4. Let $b_0 := \mathcal{NG}(\mu_0, \lambda_0, \alpha_0, \beta_0)$ be a Normal-Gamma prior over reward for a fixed $(s, a) \in \mathcal{S} \times \mathcal{A}$. Let n denote the total number of visits to (s, a). Then, the following decomposition holds:

$$r_b(s,a) - r(s,a) = \frac{\lambda_0}{\lambda_0 + n} (\mu_0 - r(s,a)) + \frac{n}{\lambda_0 + n} (\hat{r}(s,a) - r(s,a)),$$

for any posterior b and $n \in \mathbb{N}$.

F.2 EPISTEMIC UNCERTAINTY

The definition of variance-based epistemic uncertainty for both transition and reward is:

$$\mathcal{E}_T(s, a) := \operatorname{Var}_{\mathbf{w} \sim b} (\mathbb{E}[s'|s, a, \mathbf{w}])$$

$$\mathcal{E}_R(s, a) := \operatorname{Var}_{\mathbf{w} \sim b} (\mathbb{E}[r|s, a, \mathbf{w}])$$

And we consider a generalized form of epistemic uncertainty to combine the two sources together:

$$\mathcal{E}'(s,a) := f(\mathcal{E}_T(s,a), \mathcal{E}_R(s,a)).$$

In this paper, we consider $f(x,y) = \eta(\sqrt{x} + \sqrt{y})$.

F.2.1 BOUNDS FOR TRANSITION

Since it is meaningless to take expectation over categories for a categorical distribution, we instead choose some feature vector for each component. One of the sensible choices is the basis function $\mathbf{e}_i = (0, 0, \dots, i, \dots, 0)$, which leads to the following formulation.

Definition 10. The variance-based epistemic uncertainty of Dirichlet-Multinomial model is defined as follows:

$$\mathcal{E}_T(s,a) = \sum_{k=1}^{S} \frac{(\alpha_k + n_k)(\alpha_0 + n - \alpha_k - n_k)}{(\alpha_0 + n)^2(\alpha_0 + n + 1)}.$$

Lemma 30. For Dirichlet prior, the epistemic uncertainty in transition follows that

$$\mathcal{E}_T(s,a) = \mathcal{O}\left(rac{1}{n}
ight) \quad ext{and} \quad \mathcal{E}_T(s,a) = \Omega\left(rac{1}{n^2}
ight),$$

for any $(s, a) \in \mathcal{S} \times \mathcal{A}$ and $n \in \mathbb{N}$.

Proof. Let $T := \alpha_0 + n$, then we have:

$$\mathcal{E}_{T}(s,a) = \frac{T^{2} - \sum_{k=1}^{S} (\alpha_{k} + n_{k})^{2}}{T^{2}(T+1)}.$$

We will derive its upper and lower bound. We start with the upper bound.

Note $\sum_{k=1}^{S} (\alpha_k + n_k)^2 \ge 0$, therefore we have:

$$\mathcal{E}_T(s,a) \le \frac{T^2}{T^2(T+1)}$$

$$= \frac{1}{(T+1)}$$

$$= \frac{1}{n+\alpha_0+1}$$

$$\le \frac{1}{n}.$$

So $\mathcal{E}_T(s,a) = \mathcal{O}(\frac{1}{n})$ with constant $C_2 = 1$

Now, we focus on the lower bound. Consider the worse case, where we have only one state being visited, denote its index as j, we have

$$T^{2} - \sum_{k=1}^{S} (\alpha_{k} + n_{k})^{2} = (\alpha_{0} + n)^{2} - (n + \alpha_{j})^{2} + \sum_{k \neq j} \alpha_{j}^{2}$$

$$= (n^{2} + 2\alpha_{0}n + \alpha_{0}^{2}) - (n^{2} + 2\alpha_{j}n + \sum_{j=1}^{S} \alpha_{j}^{2})$$

$$= (2\alpha_{0} - 2\alpha_{j})n + (\alpha_{0}^{2} - \sum_{j=1}^{S} \alpha_{j}^{2})$$

$$\geq (2\alpha_{0} - 2\alpha_{j})n.$$

Therefore

$$\begin{split} \frac{\mathcal{E}_{T}(s,a)}{\frac{1}{n^{2}}} &\geq \frac{(2\alpha_{0} - 2\alpha_{j})n}{\frac{T}{n}^{2}(T+1)} \\ &\geq \frac{(2\alpha_{0} - 2\alpha_{j})}{\frac{T}{n}^{2}(\frac{T+1}{n})} \\ &= \frac{(2\alpha_{0} - 2\alpha_{j})}{(1 + \frac{\alpha_{0}}{n})^{2}(1 + \frac{\alpha_{0}+1}{n})} \\ &\geq \frac{(2\alpha_{0} - 2\alpha_{j})}{(1 + \alpha_{0})^{2}(2 + \alpha_{0})}. \end{split}$$

So $\mathcal{E}_T(s,a) = \Omega(\frac{1}{n^2})$ with constant $C_1 = \frac{(2\alpha_0 - 2\alpha_j)}{(1+\alpha_0)^2(2+\alpha_0)}$. This corresponds to the case where the transition is deterministic or near-deterministic.

F.2.2 BOUNDS FOR REWARD

Definition 11 (Normal-Normal). The variance-based epistemic uncertainty of Normal-Normal model is defined as follows:

$$\mathcal{E}_R(s,a) = \frac{1}{\tau_0 + \tau n}.$$

Definition 12 (Normal-Gamma). The variance-based epistemic uncertainty of Normal-Gamma model is defined as follows:

$$\mathcal{E}_R(s,a) = \frac{\beta}{\lambda(\alpha-1)},$$

where

$$\lambda = \lambda_0 + n$$

$$\alpha = \alpha_0 + \frac{n}{2}$$

$$\beta = \beta_0 + \frac{1}{2} \left(n\hat{\sigma}^2 + \frac{\lambda_0 n(\bar{x} - \mu_0)^2}{\lambda_0 + n} \right).$$

Lemma 31. For Normal prior, the epistemic uncertainty in reward follows that

$$\mathcal{E}_R(s,a) = \Theta\left(\frac{1}{n}\right)$$

for any $(s, a) \in \mathcal{S} \times \mathcal{A}$ and $n \in \mathbb{N}$.

Proof. Note by choosing $C_1 = \frac{1}{\tau_0 + \tau}$ for lower bound and $C_2 = \frac{1}{\tau}$ for upper bound concludes. \Box

Lemma 32. For Normal-Gamma prior, the epistemic uncertainty in reward follows that

$$\mathcal{E}_R(s,a) = \mathcal{O}\left(rac{1}{n}
ight) \quad ext{and} \quad \mathcal{E}_T(s,a) = \Omega\left(rac{1}{n^2}
ight),$$

for any $(s, a) \in \mathcal{S} \times \mathcal{A}$ and $n \in \mathbb{N}$.

 Proof. The upper bound is trivial. For the lower bound, consider the deterministic case, leading to sample variance being zero. Therefore the numerator is $\Theta(1)$ whereas the denominator $\mathcal{O}(n^2)$. \square

G FROM FREQUENTIST TO BAYESIAN

G.1 Properties of Priors

Definition 13 (Decomposable). A prior b_0 parameterized by θ is said to be *decomposable* if there exist functions $f(n, \theta)$, $g(n, \theta)$ for transitions and $h(n, \theta)$, $s(n, \theta)$ for rewards such that

$$P_b - P = f(n, \theta)(\hat{P} - P) + g(n, \theta)(P_{b_0} - P),$$

$$r_b - r = h(n, \theta)(\hat{r} - r) + s(n, \theta)(r_{b_0} - r),$$

with the constraints

$$f(n, \boldsymbol{\theta}) \le 1, \quad h(n, \boldsymbol{\theta}) \le 1 \quad \forall n \in \mathbb{N}; \quad g(n, \boldsymbol{\theta}) = \mathcal{O}\left(\frac{S}{n}\right), \quad s(n, \boldsymbol{\theta}) = \mathcal{O}\left(\frac{1}{n}\right),$$

for some positive multiplicative constant $C_q(\theta)$ and $C_s(\theta)$.

Note, when indexed by a particular (s, a), all the quantities above can depend on it.

Definition 14 (Weakly Informative). A prior b_0 parameterized by θ is said to be *weakly informative* if

$$|r_b - \hat{r}| = \mathcal{O}\bigg(rac{1}{n}\bigg) \quad ext{ and } \quad \|P_b - \hat{P}\|_1 = \mathcal{O}\bigg(rac{S}{n}\bigg) \,.$$

Definition 15 (Uniform). A prior b_0 parameterized by θ is said to be *uniform* if there exist positive constants C_g and C_s such that

$$C_q(\boldsymbol{\theta})(s,a) \leq C_q$$
 and $C_s(\boldsymbol{\theta})(s,a) \leq C_s$

for any $(s, a) \in \mathcal{S} \times \mathcal{A}$.

Definition 16 (Bounded). A prior b_0 parameterized by θ is said to be *bounded* if there exists $\bar{R} \geq 0$ such that $|r_{b_0}(s,a)| \leq \bar{R}$ for any $(s,a) \in \mathcal{S} \times \mathcal{A}$.

Definition 17. Let \mathfrak{C} be defined by the class of *decomposable* or *weakly-informative* priors whose rate of epistemic uncertainty is $\Theta\left(\frac{1}{\sqrt{n}}\right)$.

Theorem 10. Let $\mathcal{M} = (S, A, P, r, \gamma)$ be any MDP. For any prior $b_0 \in \mathfrak{C}$, there exists an instance of EUBRL such that, when executed on \mathcal{M} , it achieves, with probability at least $1 - \delta$, a priordependent bound on regret, or alternatively, on sample complexity, depending on the choice of η . If, furthermore, b is assumed to be uniform and bounded, these bounds are nearly minimax-optimal.

Proof of Theorem 10. Note, by either weak informativeness or decomposability, the additional complexity is at most $\mathcal{O}\left(\frac{S}{n}\right)$ for transitions and $\mathcal{O}\left(\frac{1}{n}\right)$ for reward. This applies to the events, e.g. $\mathbf{A}_{1:4}^{\gamma}$, which involve bounding the distance between the posterior predictive and the ground truth. Without loss of generality, we assume b is weakly informative. We bound $\left|(\hat{P}^t - P)V^*(s, a)\right|$ as follows:

$$|(P_{b_t} - P)V^{\star}(s, a)| = \left| f(N^t(s, a), \boldsymbol{\theta})(\hat{P}^t - P)V^{\star}(s, a) + g(N^t(s, a), \boldsymbol{\theta})(P_{b_0} - P)V^{\star}(s, a) \right|$$

$$\leq \underbrace{\left| (\hat{P}^t - P)V^{\star}(s, a) \right|}_{\text{Frequentist Bound}} + \underbrace{\left(C_g(\boldsymbol{\theta})(s, a) \| P_{b_0} - P \|_1 V_{\gamma}^{\uparrow} \right) \frac{S}{N^t(s, a)}}_{\text{Prior Bias}},$$

where the first term is simply the original bound derived in the analysis of MLE estimators, while the second term captures the complexity arising from prior misspecification. If the prior is correctly specified, there is no additional overhead; otherwise, this term must be accounted for in the final bound.

Similarly, we have the decomposition for the reward

$$|r_{b_t}(s,a) - r(s,a)| \le |\hat{r}^t(s,a) - r(s,a)| + (C_s(\boldsymbol{\theta})(s,a) |r_{b_0}(s,a) - r(s,a)|) \frac{1}{N^t(s,a)}.$$

By merging all the quantities of the same order of $\frac{1}{N^t}$, we can overload the definition of Υ^t , \mathcal{Y}^t , and β^t , respectively. For brevity, we drop the dependency on (s, a) for each term.

Quasi-optimism
$$\Upsilon^t \leftarrow \Upsilon^t + \left(C_g(\boldsymbol{\theta}) \left\| P_{b_0} - P \right\|_1 V_{\gamma}^{\uparrow} \right) \frac{S}{N^t} + \left(C_s(\boldsymbol{\theta}) \left| r_{b_0} - r \right| \right) \frac{1}{N^t}$$
 Accuracy
$$\beta_1^t \leftarrow \beta_1^t + 2 \left(C_g(\boldsymbol{\theta}) \left\| P_{b_0} - P \right\|_1 V_{\gamma}^{\uparrow} \right) \frac{S}{N^t}$$

$$\beta^t \leftarrow P_U^t \eta^t \mathcal{E}^t + \beta_1^t + \left(1 - P_U^t(s)\right) \frac{V_{\gamma}^{\uparrow} \ell_1}{\lambda_t N^t} + \left(1 - P_U^t(s)\right) \left(C_s(\boldsymbol{\theta}) \left| r_{b_0} - r \right| \right) \frac{1}{N^t}$$
 Bounding $J_{\gamma}^t(s_t)$
$$\mathcal{Y}^t \leftarrow \frac{12 V_{\gamma}^{\uparrow} \ell_1}{\lambda_t} + 30 V_{\gamma}^{\uparrow} S \ell_{3,t} + 3 \left(C_g(\boldsymbol{\theta}) \left\| P_{b_0} - P \right\|_1 V_{\gamma}^{\uparrow} S \right) + 2 \left(C_s(\boldsymbol{\theta}) \left| r_{b_0} - r \right| \right).$$

In addition, since the rate of the epistemic uncertainty is $\Theta\left(\frac{1}{\sqrt{N^t}}\right)$, a scaling factor η can be chosen appropriately such that $P_U^t(s,a)\eta^t\mathcal{E}^t(s,a)-P_U^t(s,a)R_{\max}\geq \frac{\Upsilon^t}{N^t(s,a)}$, akin to that of the proof of Lemma 33, with which we are guaranteed the quasi-optimism to hold.

Since

$$||P_{b_0}(\cdot|s,a) - P(\cdot|s,a)||_1 \le 2$$

$$|r_{b_0}(s,a) - r(s,a)| \le |r_{b_0}(s,a)| + R_{\max},$$

we denote

$$\Lambda_T(\boldsymbol{\theta}) := \max_{(s,a) \in \mathcal{S} \times \mathcal{A}} \left\{ C_g(\boldsymbol{\theta})(s,a) \right\}$$

$$\Lambda_R(\boldsymbol{\theta}) := \max_{(s,a) \in \mathcal{S} \times \mathcal{A}} \left\{ C_s(\boldsymbol{\theta})(s,a) \left(|r_{b_0}(s,a)| + R_{\max} \right) \right\}.$$

Following the same procedure for analyzing regret and sample complexity, we obtain priordependent bounds as follows:

$$\begin{split} \textbf{Regret} & \qquad \widetilde{\mathcal{O}}\left(\frac{\sqrt{SAT}}{(1-\gamma)^{1.5}} + (1+\Lambda_T(\pmb{\theta}))\frac{S^2A}{(1-\gamma)^2} + \Lambda_R(\pmb{\theta})\frac{SA}{1-\gamma}\right) \\ \textbf{Sample Complexity} & \qquad \widetilde{\mathcal{O}}\left(\left(\frac{SA}{\epsilon^2(1-\gamma)^3} + (1+\Lambda_T(\pmb{\theta}) + \Lambda_R(\pmb{\theta}))\frac{S^2A}{\epsilon(1-\gamma)^2}\right)\log\frac{1}{\delta}\right). \end{split}$$

If the prior b_0 is furthermore assumed to be uniform and bounded, both $\Lambda_T(\theta)$ and $\Lambda_R(\theta)$ will reduce to constants that do not depend on the state-action pairs, thus leading to a bound similar to that in the frequentist case.

Remark 1. Since the epistemic uncertainty is additive across both reward and transition sources, it suffices for either source to satisfy an order of $\Theta\left(\frac{1}{\sqrt{n}}\right)$. The other source may decay faster.

In the following sections, we will instantiate specific priors.

G.2 DIRICHLET AND NORMAL PRIORS

Corollary 5. Let b_0 denote the joint distribution consisting of a Dirichlet prior $\mathrm{Dir}(\alpha \mathbf{1}_{S \times 1})$ on the transition probability vector and a Normal prior $\mathcal{N}(\mu_0, \frac{1}{\tau_0})$ on the mean reward with known precision τ for all $(s, a) \in \mathcal{S} \times \mathcal{A}$. Then $b_0 \in \mathfrak{C}$ and is uniform and bounded.

Proof. By Lemma 31, we know that $\mathcal{E}'_R(s,a) = \Theta\left(\frac{1}{\sqrt{n}}\right)$. By Lemma 30, we know that $\mathcal{E}'_T(s,a) = O\left(\frac{1}{\sqrt{n}}\right)$ and $\mathcal{E}'_T(s,a) = O\left(\frac{1}{n}\right)$. By Remark 1, this makes the final epistemic uncertainty $\mathcal{E}'(s,a) = O\left(\frac{1}{\sqrt{n}}\right)$. In addition, Lemma 28 and Lemma 29 imply that the prior is *decomposable*. All together, we have $b_0 \in \mathfrak{C}$.

In addition, we can find $C_g = \alpha$ and $C_s = \frac{\tau_0}{\tau}$ as required by the uniformality in Definition 15. And note that $|r_{b_0}(s,a)| = |\mu_0|, \forall (s,a) \in \mathcal{S} \times \mathcal{A}$, therefore the boundedness in Definition 16 is satisfied as well

G.3 DIRICHLET AND NORMAL-GAMMA PRIORS

Proposition 4. For a Normal-Gamma prior, regardless of parameterization, there exists an MDP such that $\exists t \in \mathbb{N}$ for which quasi-optimism does not hold.

This follows from the fact that the epistemic uncertainty under a Normal-Gamma prior depends on the sample variance, which multiplies the number of visits n in the numerator (Definition 12). In deterministic or nearly deterministic MDPs, the sample variance can be zero, yielding a lower bound on the epistemic uncertainty:

$$\mathcal{E}_R(s,a) = \Omega\left(\frac{1}{n^2}\right),$$

which is insufficient to guarantee quasi-optimism, especially when a prior bias is present. Even the frequentist bound may vanish.

H HELPER LEMMAS

Lemma 33. It holds that

$$b^k(s,a) - P_U^k(s,a)R_{max} \ge \frac{\Upsilon^k}{N^k(s,a)},$$

for any $(s, a) \in \mathcal{S} \times \mathcal{A}$ and $k \in \mathbb{N}$.

Proof. For $N^k(s,a) \ge m$, the inequality trivially holds. For $N^k(s,a) < m$, note by choosing $\eta^k = \mathcal{E}_{\max} \Upsilon^k + R_{\max} \sqrt{m_k}$, we have:

$$(b^{k}(s, a) - P_{U}^{k}(s, a)R_{\max}) - \frac{\Upsilon^{k}}{N^{k}(s, a)} = (P_{U}^{k}(s, a)\eta^{k}\mathcal{E}^{k}(s, a) - P_{U}^{k}(s, a)R_{\max}) - \frac{\Upsilon^{k}}{N^{k}(s, a)}$$

$$= \left(\frac{\eta^{k}}{\mathcal{E}_{\max}} \frac{1}{N^{k}(s, a)} - \frac{R_{\max}}{\mathcal{E}_{\max}} \frac{1}{\sqrt{N^{k}(s, a)}}\right) - \frac{\Upsilon^{k}}{N^{k}(s, a)}$$

$$= \left(\left(\Upsilon^{k} + \frac{R_{\max}}{\mathcal{E}_{\max}}\sqrt{m_{k}}\right) \frac{1}{N^{k}(s, a)} - \frac{R_{\max}}{\mathcal{E}_{\max}} \frac{1}{\sqrt{N^{k}(s, a)}}\right) - \frac{\Upsilon^{k}}{N^{k}(s, a)}$$

$$= \frac{R_{\max}}{\mathcal{E}_{\max}} \left(\frac{\sqrt{m_{k}}}{N^{k}(s, a)} - \frac{1}{\sqrt{N^{k}(s, a)}}\right)$$

$$= \frac{R_{\max}}{\mathcal{E}_{\max}} \left(\frac{\sqrt{m_{k}} - \sqrt{N^{k}(s, a)}}{N^{k}(s, a)}\right)$$

$$> 0$$

which is as desired.

The following Lemma is helpful in proving both the quasi-optimism and accuracy for finite-horizon discounted MDPs.

Lemma 34. Let $C \ge 0$ be a constant and $\gamma \in (0,1)$. Let V be a function such that $V: \mathcal{S} \to [0,C]$. For any $(s,a) \in \mathcal{S} \times \mathcal{A}$, the variance of V under $P(\cdot|s,a)$ is bounded as follows:

$$\gamma \operatorname{Var}(V)(s, a) \le -\Delta_{\gamma}(V^2)(s, a) + (1 + \gamma)C \max\{\Delta_{\gamma}(V)(s, a), 0\}.$$

Equivalently, the following inequality holds:

$$\gamma \text{Var}(V)(s, a) - \gamma P(V)^{2}(s, a) \le -(V(s))^{2} + (1 + \gamma)C \max\{\Delta_{\gamma}(V)(s, a), 0\}.$$

Proof. Adding and subtracting $(V(s))^2$ to $\gamma Var(V)(s,a)$, we get

$$\begin{split} \gamma \text{Var}(V)(s,a) &= \gamma P(V)^2(s,a) - \gamma (PV(s,a))^2 \\ &= \gamma P(V)^2(s,a) - (V(s))^2 + (V(s))^2 - \gamma (PV(s,a))^2 \\ &\overset{\textbf{(a)}}{\leq} \gamma P(V)^2(s,a) - (V(s))^2 + (V(s))^2 - \gamma^2 (PV(s,a))^2 \\ &= \gamma P(V)^2(s,a) - (V(s))^2 + (V(s) + \gamma PV(s,a)) \left(V(s) - \gamma PV(s,a)\right) \\ &\overset{\textbf{(b)}}{\leq} \gamma P(V)^2(s,a) - (V(s))^2 + (1+\gamma)C\left(V(s) - \gamma PV(s,a)\right) \\ &= -\Delta_{\gamma}(V^2)(s,a) + (1+\gamma)C\left(V(s) - \gamma PV(s,a)\right) \\ &< -\Delta_{\gamma}(V^2)(s,a) + (1+\gamma)C \max\{\Delta_{\gamma}(V)(s,a),0\}, \end{split}$$

where (a) is due to the fact that $\gamma > \gamma^2$ and (b) by the boundedness of value functions.

Lemma 35. Let V^k denote the value function of the approximate MDP under its derived policy π_k . Let V^{π_k} denote the value function of the true MDP under the same policy. Then the difference between V^k and V^{π_k} is bounded as follows:

$$\Delta_h \left(V^k - V^{\pi_k} \right)(s, a) \le \left(\Delta_h(D^k)(s, a) + 2\beta^k(s, a) \right).$$

Proof. The proof is completed by applying the procedure of Lemma 13 in (Lee & Oh, 2025), except using $\widehat{V}_h(s) + S_k \geq 0$ from Lemmas 2–3 for variance decomposition, together with an adjustment of some constants.

I Prior Misspecification

Problem Setting Given a two-armed bandit:

$$a_1: P(r|a_1) = \mathbf{Bern}(\mu_1) \tag{11}$$

$$a_2: P(r|a_2) = \mathbf{Bern}(\mu_2) \tag{12}$$

with
$$\mu_1 > \mu_2$$
 (13)

We use Beta distribution to model the belief over the parameter of the underlying Bernoulli distribution. We have independent prior $b(\mathbf{w}|a_i) = \mathbf{Beta}(\alpha_i, \beta_i)$ over each arm with parameters $\alpha_i > 0, \beta_i > 0, i \in \{1, 2\}$. Since Beta distribution is the conjugate prior of the Bernoulli distribution, after observing the number of success S_i and failures F_i , we can get the posterior in a closed-from, i.e.

$$b(\mathbf{w}|a_i, S_i, F_i) = \mathbf{Beta}(\alpha_i + S_i, \beta_i + F_i)$$
(14)

=
$$\mathbf{Beta}(\alpha_i', \beta_i'), i \in \{1, 2\}.$$
 (15)

Then the EUBRL reward will be:

$$r_i^{\text{EUBRL}} = (1 - P_U) \,\hat{r}_i + P_U \,\mathcal{E}_i, \text{ where}$$
 (16)

$$\hat{r}_i = \mathbb{E}_{b(\mathbf{w}|a_i, S_i, F_i), P(r|a_i, \mathbf{w})}[r]$$

$$(17)$$

$$= \frac{\alpha_i + S_i}{(\alpha_i + S_i) + (\beta_i + F_i)} \tag{18}$$

$$=\frac{\alpha_i'}{\alpha_i' + \beta_i'} \tag{19}$$

The epistemic uncertainty can also be expressed in a closed form:

$$\mathcal{E}(a_i) = \operatorname{Var}_{b(\mathbf{w}|a_i, S_i, F_i)} \left[\mathbb{E}_{P(r|a_i, \mathbf{w})} \left[r \right] \right]$$
 (20)

$$= \operatorname{Var}_{b(\mathbf{w}|a_i, S_i, F_i)}[\mathbf{w}] \tag{21}$$

$$=\frac{\alpha_i'\beta_i'}{(\alpha_i'+\beta_i')^2(\alpha_i'+\beta_i'+1)}$$
(22)

If we assume that the parameters of the prior are equal, we can show that epistemic uncertainty is non-increasing. This result is formalized in the following lemma:

Lemma 36. Given a Beta prior distribution Beta (α, β) with $\alpha = \beta > 0$ for the parameter of a Bernoulli distribution, the variance of the posterior distribution decreases monotonically with the number of observations.

Proof. Let denote the b_0 as the Beta prior before observing any outcome from the Bernoulli distribution. It has a variance $Var(b_0) = \frac{1}{4(2\alpha+1)}$. After observing one sample from the Bernoulli distribution, whether it is success or failure, we will have an updated posterior b_1 with the variance:

$$Var(b_1) = \frac{\alpha}{2(2\alpha + 1)^2}$$
 (23)

By examining the difference between the two, we have $Var(b_0) - Var(b_1) = \frac{1}{4(2\alpha+1)^2} > 0$. Therefore, the variance of the posterior is decreasing after observing one outcome. However, since this result will hold for the next posterior compared to the current posterior as well, we can conclude that the variance of the posterior is monotonically decreasing.

We will prove the following theorem:

Theorem 11 (Prior Misspecification). Let $\eta = 1$. There exists an MDP \mathcal{M} , a prior b_0 , an accuracy level $\epsilon_0 > 0$, and a confidence level $\delta_0 \in (0,1]$ such that, with probability greater than $1-\delta_0$,

$$V^{\pi_t}(s_t) < V^{\star}(s_t) - \epsilon_0 \tag{24}$$

will hold for an unbounded number of time steps.

Proof. Before any new observation, both $r_i^{\text{EUBRL}} = \mathcal{E}_{\text{max}}$, therefore breaking the tie leads to a half probability to choose either arm. Consider choosing the second arm, it will lead to some reduction of the epistemic uncertainty because of the new observation.

We aim to force the agent to repeatedly select this arm, thereby preventing it from ever reaching the optimal one. To achieve this, we need to ensure that (to simplify notation, we will henceforth drop the dependency of the epistemic uncertainty on the action; \mathcal{E} will refer to the epistemic uncertainty of the second arm whenever it is considered):

$$r_2^{\text{EUBRL}} - r_1^{\text{EUBRL}} = ((1 - P_U)\hat{r} + P_U \mathcal{E}) - \mathcal{E}_{\text{max}}$$
(25)

$$= ((1 - P_U)\hat{r} + P_U \mathcal{E}) - ((1 - P_U)\mathcal{E}_{max} + P_U \mathcal{E}_{max})$$
 (26)

$$= (1 - P_U)(\hat{r} - \mathcal{E}_{\text{max}}) + P_U(\mathcal{E} - \mathcal{E}_{\text{max}})$$
(27)

$$>0.$$
 (28)

Note, the second term in the penultimate line is a quadratic function; therefore, we can obtain its minimum as follows:

$$\min_{\mathcal{E}} \frac{1}{\mathcal{E}_{\text{max}}} \left(\mathcal{E}^2 - \mathcal{E}_{\text{max}} \mathcal{E} \right)$$

$$= -\frac{\mathcal{E}_{\text{max}}}{4}$$
(30)

$$= -\frac{\mathcal{E}_{\text{max}}}{4} \tag{30}$$

Therefore, as long as we ensure that Eq. 27 with substitution of this lower bound is non-negative, we can guarantee Eq. 28 to hold. That being said, we require the following condition to be satisfied:

$$(1 - P_U)\left(\hat{r} - \mathcal{E}_{\text{max}}\right) - \frac{\mathcal{E}_{\text{max}}}{4} \ge 0,\tag{31}$$

which is equivalent to:

$$\hat{r} \ge \frac{\mathcal{E}_{\text{max}}}{4(1 - P_U)} + \mathcal{E}_{\text{max}}.$$
(32)

By Lemma 36, we know that P_U is decreasing. Therefore, it suffices to ensure that:

$$\hat{r} \ge \frac{\mathcal{E}_{\text{max}}}{4(1 - P_{U,1})} + \mathcal{E}_{\text{max}},\tag{33}$$

where $P_{U,1}$ denotes the probability of uncertainty after observing the first outcome from the second

Moreover, the right-hand side can be expressed as:

$$s(a) := \frac{\mathcal{E}_{\text{max}}}{4(1 - P_{U,1})} + \mathcal{E}_{\text{max}}$$

$$(34)$$

$$=\frac{1}{16} + \frac{1}{4(2\alpha + 1)}. (35)$$

Since $\alpha \in (0, \infty)$, we can bound s(a) within the interval $(\frac{1}{16}, \frac{5}{16})$, which will be useful in our later analysis.

We now aim to show that, under certain priors, the probability of the agent sticking to the second arm is high. In other words, it suffices to show that the probability of not pulling the second arm is small. To that end, let us focus on the event $\hat{r} < s(a)$.

To proceed, we consider the following decomposition of the reward estimate:

$$\hat{r} = \frac{\alpha + S_n}{2\alpha + n}$$

$$= \frac{n}{2\alpha + n} \bar{r} + \frac{\alpha}{2\alpha + n},$$
(36)

$$=\frac{n}{2\alpha+n}\bar{r}+\frac{\alpha}{2\alpha+n},\tag{37}$$

where n is the total number of occurrences of the outcome from the second arm, and S_n is the total number of successes among those n occurrences.

Notably, we can factor out the empirical mean \bar{r} , resulting in a new inequality:

$$\bar{r} < \frac{s(a) - \frac{\alpha}{2\alpha + n}}{\frac{n}{2\alpha + n}} \tag{38}$$

$$= \frac{a(2s(a)-1)}{n} + s \tag{39}$$

$$:= g(a, n) \tag{40}$$

Next, we apply Hoeffding's inequality to the expression above:

$$P(\bar{r} < g(a, n)) = P(\mu_2 - \bar{r} > \mu_2 - g(a, n)) \tag{41}$$

$$\leq \exp\left(-2n(\mu_2 - s(a))^2\right). \tag{42}$$

This provides an upper bound on the probability of not pulling the second arm over n samples. By applying the union bound at each step, we can bound the probability that the second arm is not pulled at least once, and refer to this event as "Omission":

$$P(\text{Omission}) = P\left(\bigcup_{n=1}^{\infty} \left(\bar{r} < g(a, n)\right)\right) \tag{43}$$

$$\leq \sum_{n=1}^{\infty} P(\bar{r} < g(a, n)) \tag{44}$$

$$= \underbrace{\sum_{n=1}^{\lfloor a \rfloor} P(\bar{r} < g(a,n))}_{S_1} + \underbrace{\sum_{n=(\lfloor a \rfloor + 1)}^{\infty} P(\bar{r} < g(a,n))}_{S_2}, \tag{45}$$

where we split the sum into two parts based on the floor of a, which we will analyze individually.

Bounding S_2 We denote $k = \frac{\lfloor a \rfloor}{n}$. Since $n > \lfloor a \rfloor$, we know that $k \in [0, 1)$. Therefore, we can rewrite g(a, n) as:

$$g(a,n) = k(2s-1) + s, k \in [0,1).$$
(46)

For every fixed n, we want to find both the lower and upper bound of g(a,n). Since we know $s \in \left(\frac{1}{16},\frac{5}{16}\right)$ and g(a,n) is linear in s, we can solve for the range of g(a,n) as $A_n = \left(\frac{1}{16} - \frac{7}{8}k, \frac{5}{16} - \frac{3}{8}k\right)$. In addition, since $k \in [0,1)$, we can solve for a superset $A = \left(-\frac{13}{16}, \frac{5}{16}\right)$ that contains every set $A_n, \forall n > \lfloor a \rfloor$. We then analyze the squared term $(\mu_2 - g(a,n))^2$. This is a quadratic function with axis of symmetry of μ_2 . There are two possible cases for the relationship between μ_2 and A: either $\mu_2 \leq \frac{5}{16}$ or $\mu_2 > \frac{5}{16}$. For the first case, the minimum of the quadratic function will be zero, which cancels out the effect of n and results in the largest probability—an outcome we want to avoid. Therefore, we consider the second case, $\mu_2 > \frac{5}{16}$, where the minimum of the quadratic function occurs at $g = \frac{5}{16}$. We denote this minimum as $C := (\mu_2 - \frac{5}{16})^2$. Then we can bound the second term in the probability of omission as follows:

$$S_2 = \sum_{n=(|a|+1)}^{\infty} P(\bar{r} < g(a,n))$$
(47)

$$\leq \sum_{n=(\lfloor a\rfloor+1)}^{\infty} \exp(-2Cn) \tag{48}$$

$$= \exp(-2C\lfloor a\rfloor) \sum_{n=1}^{\infty} \exp(-2Cn)$$
 (49)

$$= \exp(-2C\lfloor a\rfloor) \frac{\exp(-2C)}{1 - \exp(-2C)} \tag{50}$$

$$= \frac{\exp(-2C(\lfloor a \rfloor + 1))}{1 - \exp(-2C)} \tag{51}$$

$$\leq \frac{\eta}{2},\tag{52}$$

where $\eta \in (0,1)$ is arbitrary confidence level.

We solve for the above and obtain $\lfloor a \rfloor \geq \frac{1}{2C} \log(\frac{2}{\eta(1-\exp^{-2C})}) - 1 := a_1$. Next, we will bound the other term.

Bounding S_1 The goal is to isolate the parameter a and make it dominant. We expand the exponent as:

$$2n(\mu_2 - g(a,n))^2 = 2\left(\underbrace{n(\mu_2 - s)^2}_{I_1} + \underbrace{2((\mu_2 - s)(1 - 2s))a}_{I_2} + \underbrace{\frac{(2s - 1)^2}{n}a^2}_{I_3}\right).$$
 (53)

Since $\mu_2 > \frac{5}{16}$ and $s \in \left(\frac{1}{16}, \frac{5}{16}\right)$, therefore $I_2 > 0$. And the remaining two terms are also positive. Based on this observation, we provide a lower bound for the exponent as follows:

$$2n(\mu_2 - g(a, n))^2 \ge 2I_3 \ge \frac{\frac{9}{32}}{n}a^2.$$
 (54)

Next, we use this result to bound S_1 :

$$S_1 \le \sum_{n=1}^{\lfloor a \rfloor} \exp\left(-\frac{\frac{9}{32}}{n} \lfloor a \rfloor^2\right) \tag{55}$$

$$\leq \sum_{n=1}^{\lfloor a\rfloor} \exp\left(-\frac{9}{32}\lfloor a\rfloor\right) \tag{56}$$

$$= \lfloor a \rfloor \exp\left(-\frac{9}{32} \lfloor a \rfloor\right) \tag{57}$$

$$\leq \frac{\eta}{2},\tag{58}$$

which unfortunately has no closed-form solution. However, we can leverage the Lambart W function to obtain an analytical solution. Denote $u=-\frac{9}{32}\lfloor a\rfloor$, then Eq. 57 can be rewritten as $-\frac{32}{9}u\exp(u)$. We instead bound it as follows:

$$-\frac{32}{9}u\exp(u) \le \frac{\eta}{2} \tag{59}$$

$$\Leftrightarrow u \exp(u) \ge -\frac{9}{64}\eta,\tag{60}$$

which matches to the Lambart W function. Since there are two branches $W_0(x)$ and $W_{-1}(x)$ of the Lambart W function when $x \in [-\frac{1}{e},0)$, and $W_{-1}(x) < W_0(x) < 0$. We can get $u \leq W_{-1}(-\frac{9}{64}\eta)$, therefore $\lfloor a \rfloor \geq -\frac{32}{9}W_{-1}(-\frac{9}{64}\eta) := a_2$.

Combining the two bounds together, as long as we choose $\lfloor a \rfloor > \max\{a_1, a_2\}$, the probability of omission will be bounded as follows:

$$P(\text{Omission}) \le S_1 + S_2 \le \frac{\eta}{2} + \frac{\eta}{2} = \eta. \tag{61}$$

Therefore, if we denote the event of sticking to the second arm as Sticky, its probability will be:

$$P(\text{Sticky}) = P\left(\bigcap_{n=1}^{\infty} \overline{(\bar{r} < g(a, n))}\right)$$
 (62)

$$= 1 - P\left(\bigcup_{n=1}^{\infty} \left(\bar{r} < g(a, n)\right)\right) \tag{63}$$

$$=1-P(\text{Omission})\tag{64}$$

$$> 1 - \eta, \tag{65}$$

Therefore, we can conclude that with probability greater than $\delta_0 = \frac{1}{2} \cdot (1 - \eta)$, the second arm will be always pulled, leading to suboptimality. More formally, for any $\epsilon_0 < \mu_1 - \mu_2$, we have:

$$V^{\pi_t}(s_t) < V^{\star}(s_t) - \epsilon_0, \tag{66}$$

where $V^{\pi_t}(s_t) = u_2$ and $V^{\star}(s_t) = \mu_1$, which completes our proof.