

000 EUBRL: EPISTEMIC UNCERTAINTY DIRECTED 001 002 BAYESIAN REINFORCEMENT LEARNING 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 ABSTRACT 008

009 At the boundary between the known and the unknown, an agent inevitably con-
010 fronts the dilemma of whether to explore or to exploit. Epistemic uncertainty re-
011 flects such boundaries, representing systematic uncertainty due to limited knowl-
012 edge. In this paper, we propose a Bayesian reinforcement learning (RL) algo-
013 rithm, EUBRL, which leverages epistemic guidance to achieve principled explo-
014 ration. This guidance adaptively reduces per-step regret arising from estimation
015 errors. We establish nearly minimax-optimal regret and sample complexity guar-
016 antees for a specific class of priors in infinite-horizon discounted MDPs. Empiri-
017 cally, we evaluate EUBRL on tasks characterized by sparse rewards, long horizons,
018 and stochasticity. Results demonstrate that EUBRL achieves superior sample effi-
019 ciency, scalability, and consistency.

020 1 INTRODUCTION 021

022 In a completely unknown environment, what compels an agent to seek new knowledge? This drive
023 is captured by the concept of exploration, which lies at the heart of reinforcement learning, from
024 ϵ -greedy to Boltzmann exploration (Sutton & Barto, 2018). Yet, these heuristics often fall short in
025 more challenging environments, particularly those with sparse rewards, long horizons, or stochas-
026 ticity. Epistemic uncertainty (Der Kiureghian & Ditlevsen, 2009) characterizes the degree of un-
027 knownness, providing a principled basis for exploration. However, it remains unclear how to most
028 effectively leverage this uncertainty to guide learning.

029 Bayesian RL (Duff, 2002) provides a framework for modeling a world of uncertainty. An agent
030 seeks to maximize cumulative rewards based on its current belief, interact with the environment, and
031 update that belief—without knowing the true dynamics and rewards. From the agent’s perspective,
032 the world is epistemically uncertain. It must balance exploration and exploitation to find a near-
033 optimal solution. By placing a prior over both transitions and rewards, epistemic uncertainty arises
034 from limited data: the less familiar the agent is with a region of the environment, the more it is
035 incentivized to explore it. Nonetheless, higher uncertainty also raises the risk of unreliable estimates.
036 A common approach is to add the uncertainty as a “bonus” directly to the reward, a strategy known
037 as *optimism in the face of uncertainty* (Kolter & Ng (2009); Sorg et al. (2012)). However, even
038 small errors in the reward can propagate into an inaccurate value function, potentially resulting in
039 unnecessary exploration and slower convergence.

040 When measuring the efficiency of an algorithm’s exploration, metrics such as regret (Lai & Robbins,
041 1985; Auer et al., 2008)—the cumulative difference from the optimal value function—or sample
042 complexity (Kakade, 2003)—the number of steps that are not ϵ -optimal—are commonly used. An
043 algorithm is said to be minimax-optimal (Lattimore & Hutter, 2012; Dann & Brunskill, 2015) if its
044 bounds match the corresponding lower bound up to logarithmic factors. While previous works based
045 on optimism (Kakade, 2003; Auer et al., 2008; Strehl & Littman, 2008; Kolter & Ng, 2009) or sam-
046 pling (Strens, 2000; Osband et al., 2013) have been shown to achieve strong theoretical guarantees,
047 their use of uncertainty quantification and empirical evaluation of exploration capabilities remain
048 limited, leaving room for improvement in practical problems, particularly those requiring sustained
049 and efficient exploration.

050 In this paper, we propose EUBRL, an **Epistemic Uncertainty directed Bayesian RL** algorithm for
051 principled exploration. We use probabilistic inference to model epistemic uncertainty as part of the
052 agent’s objective. This approach guides the agent to explore regions with high epistemic uncertainty

054 while mitigating the impact of unreliable reward estimates. Our contributions are both theoretical
 055 and empirical:
 056

- 057 • We prove that EUBRL is nearly minimax-optimal in both regret and sample complexity
 058 for infinite-horizon discounted MDPs, with epistemic uncertainty adaptively reducing the
 059 per-step regret.
- 060 • We instantiate prior-dependent bounds and demonstrate their applications using conjugate
 061 priors.
- 062 • We demonstrate that EUBRL excels across diverse tasks with sparse rewards, long horizons,
 063 and stochasticity, achieving superior sample efficiency, scalability, and consistency.

064 To the best of our knowledge, our result is the first to achieve nearly minimax-optimal sample
 065 complexity in infinite-horizon discounted MDPs, without assuming the existence of a generative
 066 model (Gheshlaghi Azar et al., 2013).

069 2 PRELIMINARY

070 An infinite-horizon discounted Markov Decision Process (MDP) is defined by a tuple $\mathcal{M} =$
 071 $(\mathcal{S}, \mathcal{A}, P, r, \gamma)$, where \mathcal{S} and \mathcal{A} are the state and action spaces, both of finite cardinality, denoted
 072 by S and A , respectively, P the transition kernel $P(\cdot|s, a)$, r the expected reward function, and
 073 $\gamma \in [0, 1)$ the discount factor. We assume the source distribution of rewards has bounded support
 074 in $[0, R_{\max}]$. A policy π is a mapping from states to actions, whose performance is measured by the
 075 expected return $V^\pi(s) = \mathbb{E} \left[\sum_{l=0}^{\infty} \gamma^l r(s_{t+l}, a_{t+l}) | s_t = s, \pi \right]$. The goal is to find the optimal policy
 076 $\pi^*(s) = \arg \max_{\pi} V^\pi(s)$, $\forall s \in \mathcal{S}$, whose value function is $V^*(s)$. We denote the maximum value
 077 function as $V_\gamma^\uparrow := \frac{R_{\max}}{1-\gamma}$ and, whenever applicable, $V_H^\uparrow := H R_{\max}$ for its finite-horizon counterpart.

081 2.1 BAYESIAN RL

082 We consider the Bayes-adaptive MDP (BAMDP) (Duff, 2002) to model the agent’s learning process.
 083 Given a prior b_0 , the uncertainty over both the transitions and rewards—or equivalently, possible
 084 MDPs—is explicitly modeled. A policy is Bayes-optimal if it maximizes expected return in the
 085 belief-augmented state space $(s, b) \in \mathcal{S} \times \mathcal{B}$, where b is a belief over MDPs. Formally, it solves the
 086 Bellman optimality equation under the posterior predictive transition model P_b and posterior predictive
 087 mean reward r_b of the corresponding BAMDP. However, this solution requires full Bayesian
 088 planning (Poupart et al., 2006; Kolter & Ng, 2009; Sorg et al., 2012), which is computationally
 089 expensive and typically intractable because the belief-augmented state space can be too large to
 090 enumerate, and the belief must be recalculated every time a new state is encountered. Consequently,
 091 agents generally must approximate Bayes optimality. One simple yet effective alternative is the
 092 mean MDP (Kolter & Ng, 2009; Sorg et al., 2012), which fixes the belief during planning. This is
 093 essentially equivalent to an MDP $(\mathcal{S}, \mathcal{A}, P_b, r_b, \gamma)$ given a belief b . When indexed by time, b_t refers
 094 to the posterior given all data up to time t . By solving the corresponding mean MDP, we obtain a
 095 policy π_t derived from the subjective value function V^t and its objective evaluation in the underlying
 096 MDP, V^{π_t} . Our goal is to find the optimal policy π^* by repeatedly solving the mean MDP during
 097 interaction, alternating between posterior learning and policy optimization.

098 2.2 METRICS FOR EXPLORATION

100 We define per-step regret as $\Delta_t := V^*(s_t) - V^{\pi_t}(s_t)$. Regret and sample complexity are defined
 101 from different angles:

$$103 \quad \text{Regret} \quad \sum_{t=1}^T \Delta_t, \quad \text{Sample Complexity} \quad \sum_{t=1}^{\infty} \mathbb{1}(\Delta_t > \epsilon).$$

106 Low regret does not imply low sample complexity, and vice versa. Regret, which is more cost-
 107 oriented, focuses on how much you lose while learning, whereas sample complexity cares about
 learning efficiency, i.e., the number of samples needed to learn properly.

108 A lower bound is best achievable for regret, $\tilde{\Omega}\left(\frac{\sqrt{SAT}}{(1-\gamma)^{1.5}}\right)$ (He et al., 2021), and for sample complexity, $\tilde{\Omega}\left(\left(\frac{SA}{\epsilon^2(1-\gamma)^3}\right)\log\frac{1}{\delta}\right)$ (Strehl et al., 2009; Lattimore & Hutter, 2012). When an algorithm’s upper bound matches these lower bounds up to logarithmic factors, it is considered minimax-optimal; if it holds only in the asymptotic regime of large T or small ϵ , it is considered nearly minimax-optimal.
113

114 3 METHODOLOGY

116 3.1 EPISTEMIC UNCERTAINTY

118 Learning an imperfect model is of epistemic nature, where the uncertainty arises from a lack of
119 knowledge and is, in principle, reducible by observing more data. In general, epistemic uncertainty
120 captures the degree of disagreement in the belief—a distribution over model parameters \mathbf{w} , e.g. the
121 transition probability vector or the reward location and scale. For example, for transitions, we have:
122

$$\mathcal{E}_T(s, a) = f \circ g(P_b(s'|s, a)) - \mathbb{E}_{\mathbf{w} \sim b(\mathbf{w})} [f \circ g(P(s'|s, a, \mathbf{w}))],$$

123 for some functions f and g that take a scalar or a distribution as input. Intuitively, it reflects the
124 likelihoods’ deviation from the “average”. When $f(x) = -x^2$, $g(p) = \mathbb{E}_{p(x)}[x]$, it corresponds to
125 the variance $\text{Var}_{\mathbf{w} \sim b}(\mathbb{E}[s'|s, a, \mathbf{w}])$ (Kendall & Gal, 2017). When $f(p) = \mathcal{H}(p)$, $g(p) = p$, it corre-
126 sponds to mutual information $\text{MI}(s, a) = \mathcal{H}(P_b(s'|s, a)) - \mathbb{E}_{b(\mathbf{w})}[\mathcal{H}(P(s'|s, a, \mathbf{w}))]$ (Hüllermeier
127 & Waegeman, 2021). A similar argument holds for rewards $\mathcal{E}_R(s, a)$ by substituting s' with r .
128

129 We adopt a generalized formulation of epistemic uncertainty to integrate both sources:
130

$$\mathcal{E}_b(s, a) := h(\mathcal{E}_T(s, a), \mathcal{E}_R(s, a)).$$

131 In this paper, we consider $h(x, y) = \eta(\sqrt{x} + \sqrt{y})$, where η is a scaling factor.
132

3.2 PROBABILISTIC INFERENCE AND EPISTEMIC GUIDANCE

134 Traditionally, RL aims to maximize cumulative reward. A pivotal question is how to account for
135 epistemic uncertainty in this objective to balance exploration and exploitation. One common ap-
136 proach is optimism-based methods, modifying rewards with an additive bonus $\tilde{r} = r_b + \eta r_{\text{bonus}}$.
137 However, this can be misleading when r_b is uncertain. In this regard, we utilize probabilistic infer-
138 ence to model epistemic uncertainty directly in the objective, disentangling exploration and exploita-
139 tion and making it more resilient to unreliable reward estimates (see discussion in Appendix A).
140

141 Probabilistic inference has a rich history in decision-making (Todorov, 2008; Toussaint, 2009;
142 Levine, 2018). It has been shown that standard RL can be formulated as an inference problem
143 by introducing a binary “optimality” random variable \mathcal{O}_t :

$$\max_{\pi} \mathbb{E}_{P(\tau)} \left[\log \prod_{t=0}^{\infty} P(\mathcal{O}_t = 1 | s_t, a_t) \right]$$

144 with an exponential transformation $P(\mathcal{O}_t = 1 | s_t, a_t) \propto \exp(r(s_t, a_t))$ and τ denoting a trajectory.
145

146 We introduce the notion of *probability of uncertainty*, representing the degree of uncertainty, gov-
147 erned by a binary “uncertainty” variable U_t . Marginalizing over this variable, we obtain a lower
148 bound on per-step likelihood:
149

$$\begin{aligned} \log P(\mathcal{O}_t = 1 | s_t, a_t) &= \log \mathbb{E}_{U_t} [P(\mathcal{O}_t = 1 | s_t, a_t, U_t) | s_t, a_t] \\ &\geq \mathbb{E}_{U_t} [\log P(\mathcal{O}_t = 1 | s_t, a_t, U_t) | s_t, a_t]. \end{aligned}$$

150 Note that since U_t is binary, if we adopt the same exponential transformation, which intensifies the
151 higher uncertainty, we obtain the *epistemically guided reward*:
152

$$r_b^{\text{EUBRL}}(s, a) := (1 - P(U = 1 | s, a)) r_b(s, a) + P(U = 1 | s, a) \mathcal{E}_b(s, a).$$

153 Intuitively, when uncertain, EUBRL focuses more on epistemic uncertainty, as an intrinsic reward,
154 encouraging exploration; when confident, it is more committed to exploiting what has been learned.
155 We call this kind of behavior *epistemic guidance*. The probability of uncertainty $P(U = 1 | s, a)$
156 naturally disentangles the two ends, being more indifferent to reward estimates in the early stage
157 and becoming more committed as evidence accumulates. Although its definition can vary, $P(U = 1 | s, a)$
158 must reflect epistemic uncertainty. For simplicity, we choose $P(U = 1 | s, a) = \frac{\mathcal{E}_b(s, a)}{\mathcal{E}_{\max}}$,
159 where \mathcal{E}_{\max} is typically determined by the prior, and adopt the shorthand $P_U(s, a)$ henceforth.
160

162
163

3.3 ALGORITHM

164 The full Algorithm 1 is shown below. It alternates between posterior updating and policy learning.
 165 The belief update is in closed form due to conjugacy. Moreover, both epistemic uncertainty and
 166 posterior predictives can be expressed in closed form. Once a belief is updated, we derive the
 167 posterior predictive transition model P_b and posterior predictive mean reward r_b , from which we
 168 construct an MDP $\mathcal{M} = (\mathcal{S}, \mathcal{A}, P_b, r_b^{\text{EUBRL}}, \gamma)$, where r_b^{EUBRL} is the epistemically guided reward. The
 169 MDP is solved using value iteration (Sutton & Barto, 2018). For large-scale settings, approximate
 170 methods such as tree search may be required (Guez et al., 2012).

171
172**Algorithm 1** EUBRL

173 **Input:** prior b_0 , scaling factor η , discount factor γ or horizon H
 174 $s_0 \sim P(s_0)$
 175 $\pi_0 \leftarrow \text{Solve } \mathcal{M} = (\mathcal{S}, \mathcal{A}, P_{b_0}, r_{b_0}^{\text{EUBRL}}, \gamma)$
 176 **for** $t \leftarrow 0$ to $T - 1$ **do**
 177 Act: $a_t = \pi_t(s_t)$
 178 Interact: $s_{t+1}, r_t \sim P(s_{t+1}, r_t | s_t, a_t)$
 179 Update belief: $b_{t+1} \leftarrow \text{Belief Update}(s_{t+1}, r_t)$
 180 **if** time to reset **then**
 181 $s_{t+1} \leftarrow s \sim P(s_0)$
 182 **end if**
 183 **if** time to update policy **then**
 184 $\pi_{t+1} \leftarrow \text{Solve } \mathcal{M} = (\mathcal{S}, \mathcal{A}, P_{b_{t+1}}, r_{b_{t+1}}^{\text{EUBRL}}, \gamma)$
 185 **end if**
 186 **end for**

186

Notably, our algorithm is a general recipe that depends on the combination of reset and policy update, and generalizes to both infinite-horizon discounted MDPs and finite-horizon episodic MDPs. For finite-horizon episodic MDPs, the policy is updated and the episode is reset every H steps. For infinite-horizon discounted MDPs, the policy is updated at every step and there is no reset.

187
188
189
190
191
192
193
194

Unlike prior optimism-based approaches, our method features simplicity, avoiding intricate designs like knownness (Kakade, 2003; Strehl & Littman, 2008; Sorg et al., 2012) and tailored bonuses (Azar et al., 2017; Dann et al., 2019), and can, in principle, work with any Bayesian model. Compared to Bayesian RL (Kolter & Ng, 2009; Sorg et al., 2012), the key difference is our reward formulation.

195
196

4 THEORETICAL ANALYSIS

197
198
199
200
201
202
203
204
205
206
207
208
209

In this section, we aim to answer two key questions: (1) What is the role of epistemic guidance, and (2) How efficient is the exploration for EUBRL. Theoretically, an algorithm is considered efficient in exploration if it achieves sublinear regret or polynomial sample complexity, the latter being known as PAC-MDP (Kakade, 2003; Strehl & Littman, 2008). Many algorithms have been shown to be efficient in exploration. In particular, (He et al., 2021) has shown that achieving nearly minimax-optimality for regret is possible in infinite-horizon discounted MDPs. However, it is not clear whether this holds for sample complexity. We show that EUBRL achieves both nearly minimax-optimal regret and sample complexity, providing insight into how epistemic guidance adaptively reduces per-step regret. Our analysis builds on the concept of quasi-optimism (Lee & Oh, 2025), which established minimax-optimality in finite-horizon episodic MDPs—yet its applicability to infinite-horizon MDPs remains unexplored. Unlike finite-horizon episodic MDPs, which feature clear separation into episodes and allow backward induction over horizons, infinite-horizon MDPs are more involved due to the coupling of trajectories and the stationarity of value functions.

210
211
212
213
214
215

We commence our analysis from a frequentist perspective, with $\mathcal{E}_b(s, a) = \frac{1}{\sqrt{N^t(s, a)}}$, where $N^t(s, a)$ denotes the number of visits to (s, a) prior to the t -th step. Both the transition and reward are estimated using maximum likelihood estimators, corresponding to the empirical means \hat{P} and \hat{r} . We then extend and instantiate this framework to the Bayesian setting, deriving prior-dependent bounds for a specific class of priors and examining their applications to commonly used priors¹.

¹All results presented here remain valid for finite-horizon episodic MDPs.

216 4.1 REGRET DECOMPOSITION
217218 The per-step regret, a central quantity in both regret and sample complexity, can be decomposed as
219 follows:

220
$$221 V^*(s) - V^{\pi_t}(s) = \underbrace{V^*(s) - \tilde{V}^t(s)}_{\text{Quasi-optimism}} + \underbrace{\tilde{V}^t(s) - V^t(s)}_{\text{Complexity}} + \underbrace{V^t(s) - V^{\pi_t}}_{\text{Accuracy}},$$

222

223 Each term is defined by its purpose and consequence: **Quasi-optimism** is a weaker form of optimism
224 than typically assumed in theoretical works, allowing more relaxed requirements on algorithmic
225 components. **Complexity** stems from introducing $\tilde{V}^t(s)$, an auxiliary value function that ensures
226 quasi-optimism and adapts the previous analysis to our framework. **Accuracy** reflects the extent to
227 which the agent's internal model diverges from the true environment, serving as a key indicator of
228 how effectively an agent explores the environment and builds its model.229 We aim to bound these terms individually. To do so, we define an auxiliary sequence $\{\lambda_t\}_{t=1}^\infty$
230 where $\lambda_t \in (0, 1]$, $\forall t \in \mathbb{N}$. These values, derived from Freedman's inequality (Freedman, 1975)
231 and refined by Lee & Oh (2025), are used to bound quasi-optimism and accuracy. Furthermore, to
232 bound the accuracy term, we require $V^t(s) = \mathcal{O}(V_\gamma^\uparrow)$ to ensure the agent's subjective value function
233 remains bounded. Without loss of generality, we set the positive multiplicative constant $C = 1$. In
234 addition, for notational simplicity, we denote $\Phi_t := R_{\max} \lambda_t$.235 Consequently, by invoking Corollaries 2–3 and Lemma 14, we bound the terms with respect to the
236 epistemic uncertainty \mathcal{E}_b , the maximum value function V_γ^\uparrow , and the auxiliary sequence $\{\lambda_t\}_{t=1}^\infty$,
237 combining them to yield:238 **Theorem 1** (Bound of Per-step Regret). *For infinite-horizon discounted MDPs, with probability at
239 least $1 - \delta$, it holds that for all $s \in \mathcal{S}, t \in \mathbb{N}$,*

240
$$241 V^*(s) - V^{\pi_t}(s) \leq \left(\frac{9}{2} - \mathfrak{R}^t(s) \right) \lambda_t V_\gamma^\uparrow + 2J_\gamma^t(s) + \mathcal{O} \left(\Phi_t \left(1 + \frac{\Phi_t}{V_\gamma^\uparrow} \right) \right),$$

242

243 where we define the following as **Epistemic Resistance**

244
$$245 \mathfrak{R}^t(s) := 2P_U^t(s, \pi_t(s)) + \frac{9}{7}P_U^t(s, \pi^*(s)).$$

246

247 Here, $J_\gamma^t(s)$, a Bellman-like function involving error terms, is bounded in Lemmas 20–21 by ad-
248 dressing the challenge of trajectory coupling through a simple observation that grouping terms by
249 time step creates a martingale difference sequence (Durrett, 2019).250 Intuitively, *epistemic resistance* adaptively reduces the per-step regret based on the unfamiliarity of
251 the actions chosen by the current policy and the optimal policy. The greater the uncertainty of these
252 actions, the lower the per-step regret, which highlights the critical role of epistemic uncertainty. In
253 fact, the reduction of total regret is even more pronounced, as indicated by the following bound.254 **Lemma 1** (Lower Bound of Epistemic Resistance). *Given a uniform $\lambda_t = \lambda, \forall t \in \mathbb{N}$, it holds that*

255
$$256 \sum_{t=1}^T \mathfrak{R}^t(s_t) \lambda_t V_\gamma^\uparrow \geq \frac{23R_{\max}}{7(1-\gamma)} \left(\frac{2}{\mathcal{E}_{\max}} (\sqrt{T} - 1) + 1 \right) \lambda,$$

257

258 for any $T \in \mathbb{N}$.

259 That is, the regret bound of our method must be no worse than that without epistemic guidance.

260 4.2 FREQUENTIST BOUNDS
261262 **Theorem 2.** *For infinite-horizon discounted MDPs, for any fixed $T \in \mathbb{N}$, with probability at least
263 $1 - \delta$, it holds that*

264
$$265 \text{Regret}(T) \leq \tilde{\mathcal{O}} \left(\frac{\sqrt{SAT}}{(1-\gamma)^{1.5}} + \frac{S^2 A}{(1-\gamma)^2} \right).$$

266

270 Note that when $T \geq \frac{S^3 A}{1-\gamma}$, the regret matches the lower bound, implying nearly minimax-optimality.
 271 This result improves the state-of-the-art frequentist bound from (He et al., 2021).
 272

273 **Theorem 3.** *Let $\epsilon \in (0, V_\gamma^\uparrow]$, $\delta \in (0, 1]$, and $\mathcal{M} = (\mathcal{S}, \mathcal{A}, P, r, \gamma)$ be any MDP. There exists an input*
 274 *$\eta = \mathcal{E}_{\max} \Upsilon + R_{\max} \sqrt{m}$, such that if EUBRL is executed on MDP \mathcal{M} , with probability at least $1 - \delta$,*
 275 *$V^{\pi_t}(s_t) \geq V^*(s_t) - \epsilon$ is true for all but $\tilde{\mathcal{O}}\left(\left(\frac{SA}{\epsilon^2(1-\gamma)^3} + \frac{S^2 A}{\epsilon(1-\gamma)^2}\right) \log \frac{1}{\delta}\right)$ steps.*
 276

277 Here, Υ is a function of $(S, A, \delta, \lambda, V_\gamma^\uparrow)$, and m a critical point where the complexity term is suf-
 278 ficiently bounded (see Table 4). Note that when $\epsilon \in \left[0, \frac{1}{S(1-\gamma)}\right]$, the sample complexity matches
 279 the lower bound, implying nearly minimax-optimality. This result, to the best of our knowledge,
 280 is the first online algorithm to achieve such a bound without assuming a generative model (Ghesh-
 281 laghi Azar et al., 2013).
 282

283 4.3 FROM FREQUENTIST TO BAYESIAN

284 In this section, we instantiate prior-dependent bounds and demonstrate their applications using con-
 285 jugate priors, building upon the frequentist results. To bridge the gap between the frequentist and
 286 Bayesian settings, we formalize key properties of priors that ensure expressivity while facilitating
 287 the analysis of regret and sample complexity.
 288

289 Due to space limitations, we only outline the conceptual ideas here and defer the details to Defi-
 290 nitions 13–16. A prior is *decomposable* if the difference between the posterior predictive and the
 291 ground truth can be decomposed into a frequentist bound and a prior bias; a prior is *weakly informative*
 292 if the posterior predictive is close to the empirical mean. If the prior is *uniform*, the prior bias
 293 admits a universal constant, and if *bounded*, the prior predictive mean of the reward is bounded.
 294

295 **Definition 1.** Let \mathfrak{C} be defined by the class of *decomposable* or *weakly informative* priors whose
 296 rate of epistemic uncertainty is $\Theta\left(\frac{1}{\sqrt{n}}\right)$.
 297

298 This class can be quite expressive, as it can be either correlated or independent over state-actions,
 299 including hierarchical priors (Neal, 2012).

300 **Theorem 4.** *Let $\mathcal{M} = (\mathcal{S}, \mathcal{A}, P, r, \gamma)$ be any MDP. For any prior $b_0 \in \mathfrak{C}$, there exists an instance*
 301 *of EUBRL such that, when executed on \mathcal{M} , it achieves, with probability at least $1 - \delta$, a prior-
 302 dependent bound on regret, or alternatively, on sample complexity, depending on the choice of η . If,*
 303 *furthermore, b is assumed to be uniform and bounded, these bounds are nearly minimax-optimal.*
 304

305 The significance of this result is that, depending on the priors, we can achieve even tighter bounds.
 306 In addition, it can be nearly minimax-optimal despite dependence on the prior. We demonstrate
 307 its applications with the two most commonly used priors: Dirichlet for transitions and Normal or
 308 Normal-Gamma for rewards.

309 **Corollary 1.** *Let b_0 denote the joint distribution consisting of a Dirichlet prior $\text{Dir}(\alpha \mathbf{1}_{S \times 1})$ on*
 310 *the transition probability vector and a Normal prior $\mathcal{N}(\mu_0, \frac{1}{\tau_0})$ on the mean reward with known*
 311 *precision τ for all $(s, a) \in \mathcal{S} \times \mathcal{A}$. Then $b_0 \in \mathfrak{C}$ and is uniform and bounded, and hence achieves*
 312 *nearly minimax-optimality when used with EUBRL.*

313 To the best of our knowledge, this is the first nearly minimax-optimality result in the Bayesian
 314 setting. Nevertheless, we also find that EUBRL can fail in certain special cases.
 315

316 **Proposition 1.** *For a Normal-Gamma prior $\mathcal{N}\mathcal{G}(\mu_0, \lambda_0, \alpha_0, \beta_0)$, there exists a parameterization*
 317 *and an MDP such that $\exists t \in \mathbb{N}$ for which quasi-optimism does not hold.*

318 Intuitively, since the epistemic uncertainty of the Normal-Gamma depends on the sample variance,
 319 when the environment is deterministic or nearly deterministic, this term can be zero, leading to a de-
 320 generate rate of epistemic uncertainty that violates the requirement of quasi-optimism. Nonetheless,
 321 this issue can be alleviated by using sufficiently small prior parameters to control prior bias.
 322

323 When the prior is misspecified such that the initial epistemic uncertainty is very low, the method
 324 may also encounter difficulties and could fail to converge.

324
 325
 326
 327
 328
 329
 330
 Table 1: Results on **Chain** environment. The
 average return and standard error are com-
 puted across 500 random seeds, with each
 run consisting of 1000 steps.

Algorithm	Average Return	SE
PSRL	3158	31
RMAX	3090	36
BEETLE	1754	-
BOSS	3003	-
Mean-MDP	3078	49
BEB	3430	-
MBIE-EB	3462	-
VBRB	3465	20 ~ 50
EUBRL	3473	16

Table 2: Summary of tasks. For Loop, we denote L as the number of loops and L_k as the k -th loop; for DeepSea, N is the side length; for LazyChain, N is the balanced length. “D” stands for deterministic and “S” stochastic.

Task	S	A	r	Type
CHAIN	5	2	$10 \mathbf{1}_{(s'=5)}$	S
LOOP	$4L + 1$	2	$2 \mathbf{1}_{(s'=1 \text{ AND } L_1)}$ $\mathbf{1}_{(s'=1 \text{ AND } L_k \neq 1)}$	+ D
DEEPSSEA	$N \times N$	2	$\mathbf{1}_{(s'=(N,N))}$ $\mathbf{1}_{(a=\text{RIGHT})} \frac{0.01}{N}$ $\mathcal{N}(1, 1) \mathbf{1}_{(s'=(N,N))}$ $\mathcal{N}(0, 1) \mathbf{1}_{(s'=(N,1))}$ $\mathbf{1}_{(a=\text{RIGHT})} \frac{0.01}{N}$	- D
DEEPSSEA				S
LAZYCHAIN	$2N + 1$	3	$(2N - 1) \mathbf{1}_{(s'=\text{RIGHT})}$ $(N - 1) \mathbf{1}_{(s'=\text{LEFT})}$ $0 \mathbf{1}_{(a=\text{DO NOTHING})}$ $1 \mathbf{1}_{(\text{OTHERWISE})}$	S, D

344
 345 **Theorem 5** (Prior Misspecification). *Let $\eta = 1$. There exists an MDP \mathcal{M} , a prior b_0 , an accuracy*
 346 *level $\epsilon_0 > 0$, and a confidence level $\delta_0 \in (0, 1]$ such that, with probability greater than $1 - \delta_0$,*

$$V^{\pi_t}(s_t) < V^*(s_t) - \epsilon_0$$

347 *will hold for an unbounded number of time steps.*

348 We construct a two-armed bandit with a misspecified prior such that the prior is confidently wrong
 349 and produces low epistemic uncertainty, leading to repeated commitment to the suboptimal arm with
 350 high probability.

351 In other words, this counterexample highlights the vital importance of the scaling factor η and the
 352 priors in enabling efficient exploration.

356 5 EXPERIMENTS

357 In this section, we aim to measure the exploration capabilities of EUBRL on tasks with sparse re-
 358 wards, long horizons, and stochasticity. We focus on sample efficiency, scalability, and consistency,
 359 as reflected by metrics such as the number of steps or episodes required to fully solve a task, scal-
 360 ability with respect to problem size, and success rate. We find that EUBRL generally matches or
 361 outperforms previous principled algorithms, with the advantage increasing as problem size grows.
 362 We compare EUBRL with both frequentist and Bayesian methods. Our benchmarks include well-
 363 known standard tasks in the Bayesian literature, Chain and Loop (Strens, 2000)—the former highly
 364 stochastic, the latter deterministic and emphasizing state-space structure—as well as more complex
 365 environments: we study DeepSea (Osband et al., 2019b;a) and design LazyChain, both featuring
 366 sparse rewards, long horizons, and deterministic and stochastic variants. A concise summary is
 367 provided in Table 2, with detailed descriptions available in Appendix C.1.

368 **Baselines** Frequentist algorithms based on optimism include RMAX (Brafman & Tennenholtz,
 369 2002), which assigns unknown state-action pairs the maximum possible reward, and MBIE-EB
 370 (Strehl & Littman, 2008), which uses Hoeffding’s inequality to derive a reward bonus $r_{\text{bonus}}^t =$
 371 $\frac{1}{\sqrt{n^t(s,a)}}$, where $n^t(s, a)$ is the number of visits up to and including the t -th step. Bayesian meth-
 372 ods are flexible in incorporating prior knowledge. Sampling-based methods include PSRL (Strens,
 373 2000; Osband et al., 2013), which acts optimally with respect to a model sampled from the belief,
 374 and BOSS, which samples multiple models and solves a merged MDP. Optimism-based Bayesian
 375 methods include BEB (Kolter & Ng, 2009), which is based on the mean-MDP with an additive bonus
 376 $r_{\text{bonus}}^t = \frac{1}{1+n^t(s,a)+\mathbf{1}^\top \boldsymbol{\alpha}}$, where $\boldsymbol{\alpha}$ are the prior parameters of the Dirichlet distribution; however, it

378
 379
 380
 381 Table 3: Results on **Loop** environment of 2
 382 Loops. The average return and standard error
 383 are computed across 500 random seeds, with
 384 each run consisting of 1000 steps.

Algorithm	Average Return	SE
PSRL	377	1
RMAX	394	0
Mean-MDP	233	3.4
BEB	386	0
EUBRL	395	0.04

395
 396 assumes the reward function is known, and VBRB (Sorg et al., 2012), which is based on the
 397 variance in the belief over both reward and transition. VBRB is similar to ours but, being tailored only
 398 to variance, does not include epistemic guidance. Moreover, classic Bayesian methods are worth
 399 comparing: BEETLE (Poupart et al., 2006) provides an analytic solution to BAMDP, where the
 400 Bayes-optimal policy implicitly trades off exploration and exploitation, and Mean-MDP (Poupart
 401 et al., 2006; Kolter & Ng, 2009; Sorg et al., 2012) approximates BAMDP without any reward bonus.

402
 403 **Results** As shown in Table 1 and 3, in Chain and Loop, EUBRL not only outperforms all relevant
 404 baselines but also exhibits low variability. Notably, Mean-MDP consistently performs subpar,
 405 highlighting the importance of a reward bonus for sustained and efficient exploration. Furthermore,
 406 we evaluated EUBRL against RMAX—whose inductive bias favors deterministic environments—on
 407 Loop by increasing the number of loops, which leads to more sparsity in the state space; surprisingly,
 408 even with a perfect prior—so that RMAX knows the transitions and rewards after experiencing
 409 them—it scales less favorably than EUBRL. This suggests that the priors in Bayesian methods may
 410 have a smoothing effect, enabling more scalable performance in sparse environments.

411 Another standard benchmark is DeepSea, a hard-exploration problem where a dithering strategy
 412 may require an exponentially large amount of data, and the success probability decays exponentially
 413 as the problem size increases (Osband et al., 2019b). As depicted in Figure 2, for the deterministic
 414 variant, most methods are able to solve the task. Surprisingly, PSRL (or Thompson sampling in
 415 the bandit setting)—despite being an effective sampling strategy for exploration—does not scale
 416 well as the problem size increases, likely because their sampling is excessively frequent, causing
 417 unnecessary exploration and fluctuations near convergence. Additionally, BEB, a Bayesian method,
 418 also based on the mean MDP, does not leverage any posterior information in the reward bonus,
 419 making it less flexible across different environments and resulting in slower convergence. On the
 420 other hand, the stochastic variant is a harder problem, with stochastic rewards, additional competing
 421 sources, and randomized transitions. We consider two priors for EUBRL: one more conservative and
 422 the other more exploratory, denoted as EUBRL+. We find that our method is more sample-efficient,
 423 requiring fewer steps to solve the task, and more scalable and consistent. Notably, EUBRL+ perfectly
 424 solves the task without failure—a result not observed in previous works.

425 Lastly, we introduce a new environment called LazyChain, which involves long horizons, sparse
 426 rewards, and myopia. The only positive rewards are at the two ends, with the left end being sub-
 427 optimal. Starting from the middle of the chain, the agent can move at a per-step cost or choose to do
 428 nothing, incurring no cost but making it impossible to obtain higher rewards. Even upon reaching
 429 the left end, the agent receives a positive immediate reward, yet the cumulative reward remains zero,
 430 hindering effective credit assignment. To succeed, the agent must sufficiently explore the chain to
 431 reach both ends and overcome the myopia. Results in Figure 3 show that EUBRL consistently out-
 432 performs other methods, exhibiting better sample efficiency and scalability, even under heavy noise
 433 injection in the transitions. A comparison with DeepSea is provided in Remark 1.

Figure 1: Scaling of number of loops, leading to more sparsity and structural difficulty. Averaged over 500 random seeds.

Figure 2: Success rate and average episodes to solve task, reported for both deterministic and stochastic variants over different problem sizes ($S = N \times N$). Averaged over 20 random seeds.

Prior Selection We discuss the selection and incorporation of priors. We use independent Dirichlet (Dearden et al., 1999) and Normal-Gamma priors for transitions and rewards. Although Proposition 4 suggests that Normal-Gamma may be degenerate, we find that it adapts more smoothly to changes. Since we have diverse stochastic environments, the sample variance can help inform epistemic uncertainty. In contrast, Normal-Normal assumes the precision τ (the reciprocal of variance) is fixed, entirely disregarding variability.

Moreover, in practice—for example, in navigation tasks where per-step transitions are similar across different states—it is beneficial to use a *tied* prior, maintaining a single global Dirichlet prior that is aggregated and shared among all states. As shown in Figure 3, EUBRL (Tied Prior) indeed reduces the number of samples required for convergence and achieves a higher overall success rate.

From Section 3.1, we know that the definition of epistemic uncertainty is not unique. Beyond variance, one information-theoretic measure is mutual information, which quantifies the reduction in uncertainty after collecting additional evidence. We find that mutual information is more exploratory than variance. As shown in Figure 3, EUBRL (MI), although taking slightly more steps, achieves the highest overall success rate.

6 RELATED WORKS

Bayesian RL Bayesian RL maintains a posterior over uncertain quantities and uses this uncertainty to guide policy selection. From bandits (Thompson, 1933; Kaufmann et al., 2012) to MDPs (Dearden et al., 1999; Strens, 2000; Kolter & Ng, 2009), this idea enables effective exploration strategies that are otherwise impossible with simple dithering. BAMDP (Duff, 2002) formally represents uncertainty over MDPs by augmenting the state with beliefs, allowing derivation of a Bayes-optimal policy, though it is generally intractable. Approximate methods include mean-MDP (Poupart et al., 2006), sparse sampling (Wang et al., 2005), and approximate inference (Wang et al., 2012). Despite being Bayesian, most of these works make limited use of uncertainty quantification, without fully leveraging the posterior. VBRB (Sorg et al., 2012) employs variance similar to ours; however, it is motivated by Chebyshev’s inequality and lacks epistemic guidance.

Figure 3: Success rate and average steps to solve task, reported for both deterministic and stochastic variants over different problem sizes ($S = 2N + 1$). Averaged over 20 random seeds.

Provably Efficient RL The idea of knownness (Kakade, 2003), combined with Hoeffding’s inequality, underlies the PAC-MDP (Strehl & Littman, 2008; Strehl et al., 2009) and PAC-BAMDP (Kolter & Ng, 2009; Araya-López et al., 2012) guarantees, though these bounds are loose compared to our frequentist results. He et al. (2021) shows that nearly minimax-optimal regret is achievable in infinite-horizon discounted MDPs, but whether similar sample complexity guarantees hold remains unclear. Although several works achieve nearly minimax-optimal regret (Azar et al., 2017) or sample complexity (Dann & Brunskill, 2015; Dann et al., 2019) in the finite-horizon setting using refined concentration bounds (Lee & Oh, 2025), the infinite-horizon setting is generally more challenging due to trajectory coupling and value function stationarity.

Uncertainty Quantification Epistemic uncertainty—arising from knowledge gaps—has deep roots in cognition: it elicits curiosity (Kidd & Hayden, 2015) and enhances memory for surprising information (Kang et al., 2009). Mathematically, this manifests as surprise or disagreement in one’s belief, captured by mutual information (Hüllermeier & Waegeman, 2021) or variance (Kendall & Gal, 2017). Despite this rich foundation, formal study of epistemic uncertainty in Bayesian RL remains limited. As an intrinsic motivation emerging naturally from Bayesian inference, epistemic uncertainty offers a versatile, principled approach to learning—yet a critical open question remains: how to capture it across multiple hierarchies, minimizing the need of hand-crafted rewards.

7 CONCLUSION

In this paper, we introduce EUBRL, a Bayesian RL algorithm that leverages epistemically guided rewards for principled exploration. The epistemic guidance naturally disentangles exploration and exploitation and adaptively reduces per-step regret. Theoretically, we prove that EUBRL achieves nearly minimax-optimal regret and sample complexity for a class of sufficiently expressive priors, with concrete instantiations for the two most commonly used priors. Empirical results demonstrate the strong exploration capabilities of EUBRL on tasks with sparse rewards, long horizons, and stochasticity, achieving superior sample efficiency, scalability, and consistency. Scalable epistemic uncertainty estimation and efficient Bayesian planning with function approximation remain open and promising directions for future research. See discussion in Appendix B.3.

540 REFERENCES
541

542 Mauricio Araya-López, Olivier Buffet, and Vincent Thomas. Near-optimal BRL using optimistic
543 local transitions. In *Proceedings of the 29th International Conference on Machine Learning, ICML 2012, Edinburgh, Scotland, UK, June 26 - July 1, 2012*. icml.cc / Omnipress, 2012. URL
544 <http://icml.cc/2012/papers/76.pdf>.

545

546 Peter Auer, Thomas Jaksch, and Ronald Ortner. Near-optimal regret bounds for reinforcement
547 learning. *Advances in neural information processing systems*, 21, 2008.

548

549 Mohammad Gheshlaghi Azar, Ian Osband, and Rémi Munos. Minimax regret bounds for reinforce-
550 ment learning. In *International conference on machine learning*, pp. 263–272. PMLR, 2017.

551

552 Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty in
553 neural network. In *International conference on machine learning*, pp. 1613–1622. PMLR, 2015.

554

555 Ronen I Brafman and Moshe Tennenholtz. R-max-a general polynomial time algorithm for near-
556 optimal reinforcement learning. *Journal of Machine Learning Research*, 3(Oct):213–231, 2002.

557

558 Christoph Dann and Emma Brunskill. Sample complexity of episodic fixed-horizon reinforcement
559 learning. *Advances in Neural Information Processing Systems*, 28, 2015.

560

561 Christoph Dann, Tor Lattimore, and Emma Brunskill. Unifying pac and regret: Uniform pac bounds
562 for episodic reinforcement learning. *Advances in Neural Information Processing Systems*, 30,
563 2017.

564

565 Christoph Dann, Lihong Li, Wei Wei, and Emma Brunskill. Policy certificates: Towards account-
566 able reinforcement learning. In *International Conference on Machine Learning*, pp. 1507–1516.
567 PMLR, 2019.

568

569 Richard Dearden, Nir Friedman, and David Andre. Model based bayesian exploration. In Kathryn B.
570 Laskey and Henri Prade (eds.), *UAI '99: Proceedings of the Fifteenth Conference on Uncer-
571 tainty in Artificial Intelligence, Stockholm, Sweden, July 30 - August 1, 1999*, pp. 150–159. Morgan
572 Kaufmann, 1999. URL https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=164&proceeding_id=15.

573

574 Armen Der Kiureghian and Ove Ditlevsen. Aleatory or epistemic? does it matter? *Structural safety*,
575 31(2):105–112, 2009.

576

577 Michael O’Gordon Duff. *Optimal Learning: Computational procedures for Bayes-adaptive Markov
578 decision processes*. University of Massachusetts Amherst, 2002.

579

580 Rick Durrett. *Probability: theory and examples*, volume 49. Cambridge university press, 2019.

581

582 Vikranth Dwaracherla, Xiuyuan Lu, Morteza Ibrahimi, Ian Osband, Zheng Wen, and Benjamin Van
583 Roy. Hypermodels for exploration. In *International Conference on Learning Representations*,
584 2020. URL <https://openreview.net/forum?id=ryx6WgStPB>.

585

586 Ying Fan and Yifei Ming. Model-based reinforcement learning for continuous control with posterior
587 sampling. In *international conference on machine learning*, pp. 3078–3087. PMLR, 2021.

588

589 David A Freedman. On tail probabilities for martingales. *the Annals of Probability*, pp. 100–118,
590 1975.

591

592 Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model
593 uncertainty in deep learning. In *international conference on machine learning*, pp. 1050–1059.
594 PMLR, 2016.

595

596 Yarin Gal, Riashat Islam, and Zoubin Ghahramani. Deep bayesian active learning with image data.
597 In *International conference on machine learning*, pp. 1183–1192. PMLR, 2017.

598

599 Mohammad Gheshlaghi Azar, Rémi Munos, and Hilbert J Kappen. Minimax pac bounds on the
600 sample complexity of reinforcement learning with a generative model. *Machine learning*, 91(3):
601 325–349, 2013.

594 Arthur Guez, David Silver, and Peter Dayan. Efficient bayes-adaptive reinforcement learning using
595 sample-based search. *Advances in neural information processing systems*, 25, 2012.
596

597 Danijar Hafner, Timothy P. Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control:
598 Learning behaviors by latent imagination. In *8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020*. OpenReview.net, 2020. URL
599 <https://openreview.net/forum?id=S11OTC4tDS>.
600

601 Jiafan He, Dongruo Zhou, and Quanquan Gu. Nearly minimax optimal reinforcement learning for
602 discounted mdps. *Advances in Neural Information Processing Systems*, 34:22288–22300, 2021.
603

604 Nicolas Heess, Gregory Wayne, David Silver, Timothy P. Lillicrap, Tom Erez, and Yuval
605 Tassa. Learning continuous control policies by stochastic value gradients. In Corinna
606 Cortes, Neil D. Lawrence, Daniel D. Lee, Masashi Sugiyama, and Roman Garnett (eds.),
607 *Advances in Neural Information Processing Systems 28: Annual Conference on Neural In-
608 formation Processing Systems 2015, December 7-12, 2015, Montreal, Quebec, Canada*, pp.
609 2944–2952, 2015. URL <https://proceedings.neurips.cc/paper/2015/hash/148510031349642de5ca0c544f31b2ef-Abstract.html>.
610

611 Eyke Hüllermeier and Willem Waegeman. Aleatoric and epistemic uncertainty in machine learning:
612 An introduction to concepts and methods. *Machine learning*, 110(3):457–506, 2021.
613

614 Sham Machandranath Kakade. *On the sample complexity of reinforcement learning*. University of
615 London, University College London (United Kingdom), 2003.
616

617 Min Jeong Kang, Ming Hsu, Ian M Krajbich, George Loewenstein, Samuel M McClure, Joseph
618 Tao-yi Wang, and Colin F Camerer. The wick in the candle of learning: Epistemic curiosity
619 activates reward circuitry and enhances memory. *Psychological science*, 20(8):963–973, 2009.
620

621 Emilie Kaufmann, Olivier Cappé, and Aurélien Garivier. On bayesian upper confidence bounds for
622 bandit problems. In *Artificial intelligence and statistics*, pp. 592–600. PMLR, 2012.
623

624 Michael Kearns and Satinder Singh. Near-optimal reinforcement learning in polynomial time. *Ma-
625 chine learning*, 49(2):209–232, 2002.
626

627 Alex Kendall and Yarin Gal. What uncertainties do we need in bayesian deep learning for computer
628 vision? *Advances in neural information processing systems*, 30, 2017.
629

629 Celeste Kidd and Benjamin Y Hayden. The psychology and neuroscience of curiosity. *Neuron*, 88
630 (3):449–460, 2015.
631

632 J Zico Kolter and Andrew Y Ng. Near-bayesian exploration in polynomial time. In *Proceedings of
633 the 26th annual international conference on machine learning*, pp. 513–520, 2009.
634

635 David Krueger, Chin-Wei Huang, Riashat Islam, Ryan Turner, Alexandre Lacoste, and Aaron
636 Courville. Bayesian hypernetworks. *arXiv preprint arXiv:1710.04759*, 2017.
637

638 Tze Leung Lai and Herbert Robbins. Asymptotically efficient adaptive allocation rules. *Advances
639 in applied mathematics*, 6(1):4–22, 1985.
640

641 Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
642 uncertainty estimation using deep ensembles. *Advances in neural information processing systems*,
643 30, 2017.
644

645 Tor Lattimore and Marcus Hutter. Pac bounds for discounted mdps. In *International Conference on
646 Algorithmic Learning Theory*, pp. 320–334. Springer, 2012.
647

648 Harin Lee and Min-hwan Oh. Minimax optimal reinforcement learning with quasi-optimism. In
649 *The Thirteenth International Conference on Learning Representations, ICLR 2025, Singapore,
650 April 24-28, 2025*. OpenReview.net, 2025. URL <https://openreview.net/forum?id=18LCUpKvAz>.
651

652 Sergey Levine. Reinforcement learning and control as probabilistic inference: Tutorial and review.
653 *arXiv preprint arXiv:1805.00909*, 2018.
654

648 Xiuyuan Lu and Benjamin Van Roy. Ensemble sampling. *Advances in neural information processing*
 649 *systems*, 30, 2017.

650

651 Radford M Neal. *Bayesian learning for neural networks*, volume 118. Springer Science & Business
 652 Media, 2012.

653 Ian Osband, Daniel Russo, and Benjamin Van Roy. (more) efficient reinforcement learning via
 654 posterior sampling. *Advances in Neural Information Processing Systems*, 26, 2013.

655

656 Ian Osband, Yotam Doron, Matteo Hessel, John Aslanides, Eren Sezener, Andre Saraiva, Katrina
 657 McKinney, Tor Lattimore, Csaba Szepesvari, Satinder Singh, et al. Behaviour suite for reinforce-
 658 ment learning. *arXiv preprint arXiv:1908.03568*, 2019a.

659 Ian Osband, Benjamin Van Roy, Daniel J Russo, and Zheng Wen. Deep exploration via randomized
 660 value functions. *Journal of Machine Learning Research*, 20(124):1–62, 2019b.

661

662 Ian Osband, Yotam Doron, Matteo Hessel, John Aslanides, Eren Sezener, Andre Saraiva, Katrina
 663 McKinney, Tor Lattimore, Csaba Szepesvari, Satinder Singh, Benjamin Van Roy, Richard S.
 664 Sutton, David Silver, and Hado van Hasselt. Behaviour suite for reinforcement learning. In
 665 *8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia,*
 666 *April 26-30, 2020*. OpenReview.net, 2020. URL <https://openreview.net/forum?id=rygf-kSYwH>.

667

668 Pascal Poupart, Nikos Vlassis, Jesse Hoey, and Kevin Regan. An analytic solution to discrete
 669 bayesian reinforcement learning. In *Proceedings of the 23rd international conference on Ma-
 chine learning*, pp. 697–704, 2006.

670

671 Tom Rainforth, Adam Foster, Desi R Ivanova, and Freddie Bickford Smith. Modern bayesian ex-
 672 perimental design. *Statistical Science*, 39(1):100–114, 2024.

673

674 Remo Sasso, Michelangelo Conserva, and Paulo Rauber. Posterior sampling for deep reinforce-
 675 ment learning. In *International Conference on Machine Learning*, pp. 30042–30061. PMLR, 2023.

676

677 Jonathan Sorg, Satinder Singh, and Richard L Lewis. Variance-based rewards for approximate
 678 bayesian reinforcement learning. *arXiv preprint arXiv:1203.3518*, 2012.

679

680 Alexander L Strehl and Michael L Littman. An analysis of model-based interval estimation for
 681 markov decision processes. *Journal of Computer and System Sciences*, 74(8):1309–1331, 2008.

682

683 Alexander L Strehl, Lihong Li, and Michael L Littman. Reinforcement learning in finite mdps: Pac
 684 analysis. *Journal of Machine Learning Research*, 10(11), 2009.

685

686 Malcolm Strens. A bayesian framework for reinforcement learning. In *ICML*, volume 2000, pp.
 687 943–950, 2000.

688

689 Bhavya Sukhija, Lenart Treven, Cansu Sancaktar, Sebastian Blaes, Stelian Coros, and Andreas
 690 Krause. Optimistic active exploration of dynamical systems. *Advances in Neural Information
 691 Processing Systems*, 36:38122–38153, 2023.

692

693 Richard S. Sutton and Andrew G. Barto. *Reinforcement Learning: An Introduction*. The MIT Press,
 694 second edition, 2018. URL <http://incompleteideas.net/book/the-book-2nd.html>.

695

696 William R Thompson. On the likelihood that one unknown probability exceeds another in view of
 697 the evidence of two samples. *Biometrika*, 25(3/4):285–294, 1933.

698

699 Emanuel Todorov. General duality between optimal control and estimation. In *2008 47th IEEE
 700 conference on decision and control*, pp. 4286–4292. IEEE, 2008.

701

702 Marc Toussaint. Robot trajectory optimization using approximate inference. In *Proceedings of the
 703 26th annual international conference on machine learning*, pp. 1049–1056, 2009.

704

705 Tao Wang, Daniel Lizotte, Michael Bowling, and Dale Schuurmans. Bayesian sparse sampling for
 706 on-line reward optimization. In *Proceedings of the 22nd international conference on Machine
 707 learning*, pp. 956–963, 2005.

702 Yi Wang, Kok Sung Won, David Hsu, and Wee Sun Lee. Monte carlo bayesian reinforcement
703 learning. In *Proceedings of the 29th International Conference on Machine Learning, ICML 2012,*
704 *Edinburgh, Scotland, UK, June 26 - July 1, 2012.* icml.cc / Omnipress, 2012. URL <http://icml.cc/2012/papers/582.pdf>.

705
706 Christopher KI Williams and Carl Edward Rasmussen. *Gaussian processes for machine learning*,
707 volume 2. MIT press Cambridge, MA, 2006.
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Figure 4: Comparison between standard RL and our formulation as represented by probabilistic graphical models (PGMs). We introduce the variable of “uncertainty” U , which partitions the optimality \mathcal{O} into distinct cases: one is when certain, the other is when uncertain.

A CONTROL AS INFERENCE

In this section, we expand the discussion on the motivation for using probabilistic inference to incorporate epistemic uncertainty into the agent’s learning objective. In decision-making problems, an agent seeks to accumulate knowledge through interactions with the environment. Standard RL achieves this by maximizing accumulated rewards; however, this approach often becomes overly exploitative of known rewards and ignorant of unknown potential rewards. Consequently, the learning process is not truly *active*, as it is driven primarily by observed rewards rather than by the uncertainty surrounding them.

By contrast, UCB-based bonuses introduce a proxy for “uncertainty,” such as the inverse of visit counts, to promote more active exploration. However, these methods often fail to distinguish whether a reward estimate is reliable or not when the uncertainty is high. This limitation motivates us to disentangle exploration from exploitation via epistemically guided rewards, which are anchored in probabilistic inference.

Specifically, probabilistic graphical models provide a principled framework to condition on additional hidden variables (e.g., U). As illustrated in Figure 4, this conditioning allows us to partition optimality (\mathcal{O}) into two cases (or more, depending on modeling choices): one in which the agent is uncertain, corresponding to epistemic uncertainty, and one in which it is certain, corresponding to reward estimates. This mechanism thereby focuses more on exploration when epistemic uncertainty is high, while shifting to exploitation when the agent is confident in its existing knowledge.

B MODEL SPECIFICATION

B.1 HIERARCHICAL REWARD MODEL

In our setting, $r(s, a)$ denotes the expected reward, which is a deterministic function. The source distribution can be modeled as either $P(r|s, a)$ or $P(r|s, a, s')$. Notably, the former is independent of the outcome following the action, making it less expressive and potentially misrepresenting the underlying generative process. For example, in many scenarios, the reward is meaningful only when feedback is received, which depends on the next state s' . In such cases, the reward distribution $P(r|s, a)$ effectively becomes a mixture distribution:

$$P(r|s, a) = \mathbb{E}_{P(s'|s, a)}[P(r|s, a, s')].$$

If we were to use simple distributions e.g. Normal distribution to model $P(r|s, a)$, then it will underrepresent the more complex true mixture distribution. On the other hand, if $P(r|s, a)$ can be

sufficiently represented by a class of distributions, its feedback-dependent counterpart $P(r|s, a, s')$ must be representable with similar complexity. Moreover, learning $P(r|s, a, s')$ and the transition model $P(s'|s, a)$ is disentangled, allowing computation to be appropriately allocated. In contrast, learning $P(r|s, a)$ implicitly learns $P(s'|s, a)$, which makes learning more difficult and prevents reuse of existing knowledge. Therefore, we adopt modeling $P(r|s, a, s')$ in our implementation and aggregate epistemic uncertainty in reward as follows:

$$\mathcal{E}_R(s, a) := \mathbb{E}_{P_b(s'|s, a)} [\mathcal{E}_R(s, a, s')].$$

B.2 EPISTEMIC UNCERTAINTY

Variance-based epistemic uncertainty involves evaluating the expectation of either the transition model or the reward model. However, unlike real-valued distributions, it is meaningless to take an expectation over a categorical distribution, since the numeric representation does not correspond to the actual categories. To address this, we encode the state using one-hot encoding when calculating epistemic uncertainty for the Dirichlet distribution. The exact formulations are provided in Section H.2.

The maximum epistemic uncertainty \mathcal{E}_{\max} , as required by the epistemically guided reward, is fully determined by the priors and therefore does not introduce any additional degrees of freedom. Although epistemic uncertainty is generally non-increasing, for certain priors it may not be strictly so—for example, the Normal-Gamma prior for the reward, which incorporates the sample variance. Therefore, it is safer to track the maximum epistemic uncertainty throughout learning, ensuring that P_U remains well-defined.

For mutual information-based epistemic uncertainty, it is worth noting that a closed-form solution exists for the Dirichlet distribution. By leveraging the known moments of the Dirichlet, we obtain:

$$\begin{aligned} \text{MI}_b(s, a) &= E_{b(\mathbf{w})} [D_{\text{KL}}(P(s'|s, a, \mathbf{w}) \| P_b(s'|s, a))] \\ &= \sum_i \frac{\alpha_i}{\alpha_0} \left[\psi(\alpha_i + 1) - \psi(\alpha_0 + 1) - \log \frac{\alpha_i}{\alpha_0} \right], \end{aligned}$$

where ψ is the digamma function.

B.3 DISCUSSION ON FUNCTION APPROXIMATION

Although our work is not intended for immediate deployment with deep function approximators, we believe that the conceptual idea of epistemically guided reward could inspire future research. The main barriers we foresee are the efficiency and quality of both epistemic uncertainty estimation and Bayesian planning. Furthermore, we discuss how our theoretical results could be extended beyond the current setting.

Epistemic Uncertainty Estimation Existing approximate Bayesian methods can be leveraged for this purpose, e.g., deep ensembles (Lakshminarayanan et al., 2017), Bayes by Backprop (Blundell et al., 2015), MC dropout (Gal & Ghahramani, 2016), or Bayesian hypernets (Krueger et al., 2017; Dwaracherla et al., 2020). However, these methods typically require multiple models or samples, which can significantly hinder computational efficiency, particularly when integrated with Bayesian planning. Meanwhile, some efforts (Fan & Ming, 2021; Sasso et al., 2023) have been made to scale PSRL to continuous state and action spaces using Bayesian linear regression, offering a lighter-weight alternative. When epistemic uncertainty is quantified via mutual information, active learning (Gal et al., 2017) and Bayesian experimental design (Rainforth et al., 2024) provide tractable estimators. In particular, Sukhija et al. (2023) model the dynamics with Gaussian processes (Williams & Rasmussen, 2006), deriving a tractable upper bound on mutual information, which demonstrates strong zero-shot capability on novel tasks. Nevertheless, a key open question remains: can we construct a well-calibrated epistemic uncertainty estimator that does not rely heavily on sampling?

Bayesian Planning One can leverage sparse and smart sampling strategies, such as employing lazy sampling (Guez et al., 2012) or reusing a set of pre-sampled models (Wang et al., 2012; Lu & Van Roy, 2017). Additionally, trajectories can be simulated in latent space using Monte Carlo estimates, similar to Dreamer (Hafner et al., 2020), while policy optimization can be performed

864 via reparameterized policy gradients (Heess et al., 2015). Despite these advances, computational
 865 efficiency remains suboptimal, and the accuracy of the solution is unclear.
 866

867 **Approximation Error** When approximation is involved, a natural question arises: do the theo-
 868 retical results in the paper still hold? We argue that our theoretical results remain meaningful in
 869 the approximate setting. For example, when an exact MDP solver is not available, we may need
 870 to resort to an approximate one, whose solution we denote by $\hat{\pi}_t$. The per-step regret can then be
 871 re-expressed as follows:

$$872 \quad V^*(s) - V^{\hat{\pi}_t}(s) = V^*(s) - V^{\pi_t}(s) + \underbrace{V^{\pi_t}(s) - V^{\hat{\pi}_t}(s)}_{\text{Approximation Error}}.$$

$$873$$

$$874$$

875 As shown, the per-step regret can be decomposed into two components: the first part corresponds
 876 to the results established in the paper, while the second part captures the quality of the approximate
 877 solver. If a reasonably good approximation is available, we can derive similar regret and sample
 878 complexity bounds, albeit with an additional term reflecting the approximation error.
 879

880 This property is appealing because, given the same solver, our method will always outperform alter-
 881 native approaches. It also implies that EUBRL can be integrated with existing solvers, such as tree
 882 search-based or rollout-based methods, as discussed previously.
 883

884 Overall, scalable epistemic uncertainty estimation and efficient Bayesian planning with function
 885 approximation remain open and promising directions for future research, providing a fundamen-
 886 tal basis for enabling active exploration in increasingly complex environments. Moreover, a more
 887 comprehensive theoretical analysis of the approximate setting is another direction worth pursuing.
 888

889 C EXPERIMENTAL SETUP

$$890$$

891 C.1 ENVIRONMENTS

$$892$$

893 Our benchmarks include standard tasks from the Bayesian literature, Chain and Loop, originally
 894 introduced by (Strens, 2000) as testbeds for smart exploration. These tasks are challenging due to the
 895 presence of multiple suboptimal policies and the fact that the optimal policy produces rewards that
 896 are distant. The two tasks differ in their characteristics: in Chain, transitions are highly stochastic
 897 and actions may not always have the intended effect, whereas Loop, although deterministic, has a
 898 state-space structure that makes exploration difficult.
 899

900 In addition to these, we evaluate more complex and larger-scale tasks. In particular, DeepSea (Os-
 901 band et al., 2019b), as implemented in Bsuite (Osband et al., 2020), requires deep exploration as a
 902 core capability for RL agents. It has been shown that dithering strategies such as ϵ -greedy or Boltz-
 903 mann exploration fail to achieve deep exploration and may require exponentially many episodes to
 904 learn anything meaningful. In contrast, optimistic or randomized strategies can solve the task in the
 905 optimal number of episodes (Osband et al., 2019b). DeepSea has two variants: one deterministic,
 906 where both transitions and rewards are predictable, and one stochastic, which introduces noise to
 907 transitions and rewards and includes competing reward sources, making it more challenging. Not-
 908 ably, no algorithm has been shown to consistently succeed across different problem sizes in the
 909 stochastic setting.
 910

911 Furthermore, we introduce a new environment called LazyChain, where effective credit assignment
 912 is bottlenecked by exploration, and efficient exploration is hindered by myopia. In this environ-
 913 ment, seemingly promising immediate rewards may not provide meaningful feedback for learning
 914 the value function. LazyChain also has deterministic and stochastic variants. Details of all these
 915 environments are provided below.
 916

917 **Chain** (Strens, 2000) is a five-state problem with two abstract actions, {left, right}. Each action
 918 has a probability of “slipping”, which causes it to produce the opposite effect. The optimal behavior
 919 is to always choose the action right; however, if the other action is chosen, the agent will be reset to
 920 the leftmost state.
 921

922 **Loop** (Strens, 2000) was originally proposed as a two-loop problem jointly connected at a single
 923 start state. It is a deterministic environment consisting of nine states and two actions, {a, b}. Repeat-

Figure 5: Visualization of DeepSea.

edly taking action a causes traversal of the right loop, yielding a reward of 1 when the agent returns to the start state, while repeatedly taking action b traverses the left loop, yielding a reward of 2. If a single step is missed in the left loop, the agent is immediately sent back to the start state, while all other actions taken within the right loop continue the traversal. This problem makes exploration difficult due to the structure of state-space and sparse rewards.

We generalize this environment to more than two loops, with only one loop yielding the optimal reward. The size of the action space expands to match the number of loops, with each action corresponding to entering a specific loop. Similarly, any incorrect action taken within the optimal loop causes a reset to the start state, while the other loops continue their traversal.

Deep Sea (Osband et al., 2019b;a) consists of $S = N \times N$ states and two actions, $\{\text{left}, \text{right}\}$, which move the agent diagonally and terminate exactly after N steps per episode (see Figure 5). In the deterministic variant, there is only one positive reward at the bottom-right cell, representing a treasure. However, there is a per-step cost of $r = -\frac{0.01}{N}$ to discourage the agent from moving in that direction, while no cost is incurred when moving the other way. In the stochastic variant, a “bad” transition is generated with probability $\frac{1}{N}$ when moving toward the treasure, introducing a high degree of uncertainty from which the agent may not recover. Moreover, additive noise $\mathcal{N}(0, 1)$ is applied to the rewards at both the treasure cell and the bottom-left cell.

Lazy Chain is a balanced chain, with the initial state in the middle and the two halves of equal length (see Figure 6). The only positive rewards are at the two ends; however, the left end is sub-optimal. The per-step cost for moving along the chain is $r = -1$. To test the exploration capability of an algorithm, we introduce another action, `do nothing`, which leaves the agent in the current state with no cost incurred. Notably, although the left end gives a positive reward, accounting for the cost to reach it, the cumulative reward will be zero. This makes credit assignment even harder, as it fails to distinguish between “worth nothing because nothing happened” and “worth nothing because a lot of bad things and one good thing happened.” Without proper exploration, an agent may either converge confidently on the suboptimal path or be unable to receive any positive rewards, eventually leading to a myopic solution—remaining in the same state. There are two variants of this environment: the deterministic version, in which transitions are fully predictable, and the stochastic version, in which actions may be flipped at each time step with probability $p = 0.2$. In addition, the agent is reset to the middle of the chain whenever either end is reached.

Remark 1. Notably, unlike DeepSea, where the probability of error decays and is limited to the “right” action with no adverse effect, LazyChain maintains a constant error probability, affects all movement actions, and produces opposite effects, making larger problem sizes increasingly challenging, potentially exponentially so. Additionally, DeepSea is episodic, terminating exactly in N steps, whereas LazyChain may take an arbitrarily long time to explore the chain, even indefinitely, if one keeps choosing `do nothing`. Moreover, LazyChain has more suboptimal solutions, since DeepSea is isomorphic to the right half of the chain of LazyChain, where any action that does not head toward the treasure is considered a failure.

Figure 6: Visualization of LazyChain.

985 C.2 METRICS

987 The metrics we choose reflect the key aspects of interest: sample efficiency, scalability, and consistency. These are measured by the number of steps or episodes required to solve a task, scalability
 988 with respect to problem size, and consistency in terms of success rate. Additionally, we report the
 989 average return whenever applicable.

990 **Average Return** The cumulative return up to a given time, averaged across all random seeds.

991 **Average Steps / Episodes to Solve Task** The number of steps or episodes required to solve the
 992 task, averaged across all random seeds.

993 **Success Rate** The proportion of successful runs among all runs.

994 An algorithm is considered successful only if it matches the optimal policy exactly for consecutive
 995 episodes, which makes this a stricter condition for task completion. Meanwhile, an algorithm is
 996 halted if it succeeds in solving the task, fails to solve the task completely, or exceeds the maximum
 997 allowable steps T_{\max} . For instance, Chain and Loop are stopped exactly at the specified number of
 998 environment steps. In contrast, for DeepSea, we use a limit of $T_{\max} = 50 \cdot N^2$, where N is the side
 999 length, and for LazyChain, we use $T_{\max} = 1000 \cdot N$, where N is a balanced length. This choice
 1000 both facilitates computational efficiency and allows evaluation of exploration under constraints. In
 1001 other words, this threshold can be viewed as a penalty for any algorithm that fails the task, inflating
 1002 the metric for the average steps or episodes required to solve the task.

1003 In sparse reward environments, we expect an efficient algorithm to achieve faster convergence, as
 1004 indicated by the average number of steps or episodes required to solve the task, and higher con-
 1005 sistency, as reflected by the success rate. However, in practice, algorithms may exhibit a trade-off
 1006 between convergence and consistency.

1012 C.3 HYPERPARAMETERS

1013 To ensure fairness, all hyperparameters are tuned via line search for best performance for each
 1014 method. Moreover, we ensure identical priors and modeling choices across Bayesian methods.
 1015 Scaling factors are adjusted per algorithm, as they are algorithm-dependent.

1016 We model rewards using Normal-Gamma model $\mathcal{N}\mathcal{G}(\mu_0, \lambda_0, \alpha_0, \beta_0)$. We set $\mu_0 = 0$ and $\alpha_0 = 2$.
 1017 Furthermore, we impose $\lambda_0 = \beta_0$, resulting in a single tunable parameter. This configuration leads
 1018 to an initial epistemic uncertainty $\mathcal{E}_R(s, a, s') = 1, \forall (s, a, s') \in \mathcal{S} \times \mathcal{A} \times \mathcal{S}$. In addition, we model
 1019 transitions using Dirichlet-Multinomial model. The Dirichlet prior is parameterized by a single
 1020 parameter α , yielding to a uniform prior $\text{Dir}(1^\top \alpha)$. A higher value of α indicates a stronger prior
 1021 belief, whereas a lower value makes the prior less informative. On top of that, we have a tunable
 1022 scaling factor η . For LazyChain, since the maximum reward scales with the state space size, the
 1023 scaling factor η has to be adaptive.

1024 For Bayesian algorithms like EUBRL, VBRB, PSRL, and BEB, we perform a sweep over Dirichlet
 1025 parameter $\alpha \in \{1.0, 1 \times 10^{-1}, 1 \times 10^{-2}, 1 \times 10^{-3}, 1 \times 10^{-4}, 1 \times 10^{-5}, 1 \times 10^{-6}, 1 \times 10^{-8}\}$ for

1026 transitions, and $\beta_0 \in \{1.0, 5 \times 10^{-1}, 1 \times 10^{-1}, 5 \times 10^{-2}, 1 \times 10^{-2}, 1 \times 10^{-3}, 1 \times 10^{-4}\}$ for rewards.
 1027 All algorithms use the same prior. The scaling factor is tuned individually for each algorithm, in
 1028 proportion to the maximum rewards or the state space size. We find that VBRB and BEB perform
 1029 better when the scaling factor is smaller, whereas EUBRL benefits from a slightly larger value. It
 1030 is worth noting that PSRL does not require a scaling factor; it promotes exploration by repeatedly
 1031 sampling from the belief. However, this sampling mechanism can lead to numerical instability when
 1032 the Dirichlet parameter is too small (e.g. below the threshold 1×10^{-3}). For fairness, we therefore
 1033 clip the Dirichlet parameter at this threshold, which only affects state-action pairs for which no
 1034 observations have been made. Moreover, since BEB does not utilize the posterior to compute the
 1035 reward bonus, it is unnecessary to adopt the reward modeling discussed in the previous section; we
 1036 follow the same practice as in the original paper.
 1037

1038 For the frequentist algorithm RMAX, the maximum reward is assumed to be known to the algorithm,
 1039 and we tune the knownness parameter $m \in \{1, 3, 5, 10, 20\}$. We find that a small knownness parameter
 1040 is generally beneficial in deterministic environment, but not well suited for stochastic environments,
 1041 which require sustained exploration. A moderate value of the knownness parameter performs best in
 1042 stochastic environment; otherwise, the algorithm spends excessive time exploring, which scales as
 $\mathcal{O}(mSA)$.
 1043

1044 The discount factor is kept the same for all algorithms. However, its value may differ across tasks,
 1045 depending on the task horizon. For smaller-scale tasks like Chain and Loop, we choose $\gamma = 0.95$,
 1046 which trades off accuracy and computational efficiency. For long-horizon tasks, we choose $\gamma = 0.99$
 1047 for DeepSea, while $\gamma = 0.999$ for LazyChain, since LazyChain may require more time to explore
 1048 due to the inaction and stronger stochasticity.
 1049

D NOTATIONS AND LOGARITHMIC TERMS

1050 In this section, we summarize the notation and logarithmic terms used exclusively for the analysis
 1051 of both finite- and infinite-horizon settings. To begin with, we denote $PV(s, a) := \mathbb{E}_{P(s'|s, a)}[V(s')]$
 1052 for any distribution P and function V .
 1053

D.1 FINITE-HORIZON EPISODIC MDPs

1054 Whenever we refer to k or h , they denote the episode and a particular step of that episode, respec-
 1055 tively. We define $\Delta_h(V)(s, a) := V_h(s) - PV_{h+1}(s, a)$. Furthermore, we define $\bar{N}^k(s, a)$ as the
 1056 number of visits to (s, a) before the k -th episode, and $n_h^k(s, a)$ as the number of visits up to and
 1057 including the h -th step of the k -th episode. It is useful to define stopping time ν_k as follows:
 1058

$$\nu^k := \begin{cases} \min\{h \in [H] : n_h^k(s_h^k, a_h^k) > 2\bar{N}^k(s_h^k, a_h^k)\}, & \text{if } h \text{ exists.} \\ H + 1, & \text{otherwise.} \end{cases}$$

1059 Intuitively, the stopping time is the first time step within an episode at which the number of visits
 1060 has more than doubled compared to before the episode.
 1061

1062 We define the error terms $\beta^k(s, a)$ associated with $\frac{1}{N^k(s, a)}$:

$$\beta^k(s, a) := P_U^k(s, a)\eta^k\mathcal{E}^k(s, a) + \frac{1}{N^k(s, a)} \left(\frac{(4 - P_U^k(s))V_H^\uparrow\ell_1}{\lambda_k} + 30V_H^\uparrow S\ell_{3,k}(s, a) \right).$$

1063 Based on this, we define a Bellman-like function $J_h^k(s)$, which uses $\beta^k(s, a)$ as rewards while fol-
 1064 lowing the latest policy π_h^k and the true transition P :
 1065

$$\begin{aligned} J_{H+1}^k(s) &:= 0 \\ J_h^k(s) &:= \min \left\{ \beta^k(s, \pi_h^k(s)) + P J_{h+1}^k(s, \pi_h^k(s)), V_H^\uparrow \right\} \text{ for } h \in [H]. \end{aligned}$$

D.2 INFINITE-HORIZON DISCOUNTED MDPs

1066 Whenever we refer to t , it denotes the time step, which is the same as the environment step. Analo-
 1067 gously, we have $\Delta_\gamma(V)(s, a) := V(s) - \gamma PV(s, a)$. In addition, we define $N^t(s, a)$ as the number
 1068

1080 of visits to (s, a) prior to the t -th step², and $n^t(s, a)$ as the number of visits up to and including the
 1081 t -th step.
 1082

1083 The stopping time ν_t is defined as follows:

$$1084 \nu_t := \begin{cases} \min\{\tau \in [t, T] : n^\tau(s_\tau, a_\tau) > 2N^t(s_\tau, a_\tau)\}, & \text{if } \tau \text{ exists.} \\ 1085 T + 1, & \text{otherwise.} \end{cases}$$

1086 The main difference from the finite-horizon setting is that, for every time step t , we look ahead to
 1087 determine a stopping time ν_t , rather than relying on a single stopping time that applies to an entire
 1088 episode.
 1089

1090 Similar to the finite-horizon setting, we define the error terms $\beta^t(s, a)$ associated with $\frac{1}{N^t(s, a)}$:

$$1091 \beta^t(s, a) := P_U^t(s, a) \eta^t \mathcal{E}^t(s, a) + \frac{1}{N^t(s, a)} \left(\frac{(4 - P_U^t(s)) V_\gamma^\uparrow \ell_1}{\lambda_t} + 30 V_H^\uparrow S \ell_{3,t}(s, a) \right). \\ 1092 \\ 1093$$

1094 And $J_\gamma^t(s)$ uses $\beta^t(s, a)$ as rewards while following the latest policy π^t and the true transition P ,
 1095 with discounting:
 1096

$$1097 J_\gamma^t(s) := \min \{ \beta^t(s, \pi^t(s)) + \gamma P J_\gamma^t(s, \pi^t(s)), V_\gamma^\uparrow \}.$$

1098 Table 4: Summary of logarithmic terms and additional notations used in the analysis, with shorthand
 1099 notation. Each term is specialized for finite- and infinite-horizon MDPs, where symbol \square takes
 1100 either episodes or steps as input.
 1101

1102 Shorthand	1103 Finite-horizon episodic MDPs	1104 Infinite-horizon discounted MDPs
1105 ℓ_1	$\log \left(\frac{24HSA}{\delta} \right)$	$\log \left(\frac{24SA}{\delta} \right)$
1106 $\ell_{2,\square}$	$\log \left(1 + \frac{kH}{SA} \right)$	$\log \left(1 + \frac{t}{SA} \right)$
1107 $\ell_{3,\square}$	$\log \left(\frac{12SA(1+\log kH)}{\delta} \right)$	$\log \left(\frac{12SA(1+\log t)}{\delta} \right)$
1108 $\ell_{3,\square}(s, a)$	$\log \left(\frac{12SA(1+\log N^k(s, a))}{\delta} \right)$	$\log \left(\frac{12SA(1+\log N^t(s, a))}{\delta} \right)$
1109 $\ell_{4,\square}$	$\log \frac{12H}{\delta}$	$\log \frac{12t}{\delta}$
1110 $\ell_{5,\epsilon}$	$\log (1 + 280B(\epsilon)H)$	$\log (1 + 140B(\epsilon))$
1111 $\ell_{6,\epsilon}$	$\log \log \frac{V_H^\uparrow e}{\epsilon}$	$\log \log \frac{V_\gamma^\uparrow e}{\epsilon(1-\gamma)}$
1112 $B(\epsilon)$	$\frac{R_{\max}^2 H^2 \ell_1}{\epsilon^2} + \frac{R_{\max} H S (2\ell_1 + \ell_{6,\epsilon})}{\epsilon}$	$\frac{R_{\max}^2 \ell_1}{\epsilon^2 (1-\gamma)^3} + \frac{R_{\max} S (2\ell_1 + \ell_{6,\epsilon})}{\epsilon (1-\gamma)^2}$
1113 m_\square	$\frac{V_H^\uparrow 2}{R_{\max}^2 \lambda_k^2}$	$\frac{V_\gamma^\uparrow 2}{R_{\max}^2 \lambda_t^2}$
1114 m	$\frac{V_H^\uparrow}{R_{\max}^2 \lambda}$	$\frac{V_\gamma^\uparrow}{R_{\max}^2 \lambda}$
1115 Υ^\square	$\frac{7V_H^\uparrow \ell_1}{\lambda_k}$	$\frac{7V_\gamma^\uparrow \ell_1}{\lambda}$
1116 Υ	$\frac{7V_H^\uparrow \ell_1}{\lambda}$	$\frac{7V_\gamma^\uparrow \ell_1}{\lambda}$
1117 η^\square	$\mathcal{E}_{\max} \Upsilon^k + R_{\max} \sqrt{m_k}$	$\mathcal{E}_{\max} \Upsilon^t + R_{\max} \sqrt{m_t}$
1118 η	$\mathcal{E}_{\max} \Upsilon + R_{\max} \sqrt{m}$	$\mathcal{E}_{\max} \Upsilon + R_{\max} \sqrt{m}$

1126 E HIGH PROBABILITY EVENTS

1127 In this section, we outline high probability events that are basis of the analysis henceforth. Let
 1128 $\{\lambda_k\}_{k=1}^\infty$ be a sequence of real numbers with $\lambda_k \in (0, 1]$, $\forall k \in \mathbb{N}$ for finite-horizon episodic MDPs.
 1129 Analogously, we have $\{\lambda_t\}_{t=1}^\infty$ for infinite-horizon discounted MDPs. They arise from Freedman's
 1130 inequality (Freedman, 1975), and has been enhanced recently by (Lee & Oh, 2025).
 1131

1132 ²Although at first sight this definition differs from the standard visit count $n^t(s, a)$, they are essentially
 1133 equivalent up to a one-step shift.

1134 E.1 REGRET ANALYSIS
11351136 E.1.1 FINITE-HORIZON EPISODIC MDPs
1137

$$\begin{aligned}
\mathbf{A}_1 &:= \left\{ \left| (\hat{P}^k - P)V_{h+1}^*(s, a) \right| \leq \frac{\lambda_k}{4V_H^\uparrow} \text{Var}(V_{h+1}^*)(s, a) + \frac{3V_H^\uparrow \ell_1}{\lambda_k N^k(s, a)}, \forall (s, a) \in \mathcal{S} \times \mathcal{A}, h \in [H], k \in \mathbb{N} \right\} \\
\mathbf{A}_2 &:= \left\{ (P - \hat{P}^k)(V_{h+1}^*)^2(s, a) \leq \frac{1}{2} \text{Var}(V_{h+1}^*)(s, a) + \frac{6V_H^\uparrow \ell_1^2}{N^k(s, a)}, \forall (s, a) \in \mathcal{S} \times \mathcal{A}, h \in [H], k \in \mathbb{N} \right\} \\
\mathbf{A}_3 &:= \left\{ \left| \hat{P}^k(s' \mid s, a) - P(s' \mid s, a) \right| \leq 2 \sqrt{\frac{2P(s' \mid s, a)\ell_{3,k}(s, a)}{N^k(s, a)}} + \frac{2\ell_{3,k}(s, a)}{3N^k(s, a)}, \forall (s, a) \in \mathcal{S} \times \mathcal{A}, s' \in \mathcal{S}, k \in \mathbb{N} \right\} \\
\mathbf{A}_4 &:= \left\{ \left| \hat{r}^k(s, a) - r(s, a) \right| \leq \lambda_k r(s, a) + \frac{R_{\max} \ell_1}{\lambda_k N^k(s, a)}, \forall (s, a) \in \mathcal{S} \times \mathcal{A}, k \in \mathbb{N} \right\} \\
\mathbf{A}_5 &:= \left\{ \sum_{k=1}^K \sum_{h=1}^{\nu^k-1} (P J_{h+1}^k(s_h^k, a_h^k) - J_{h+1}^k(s_{h+1}^k)) \leq \frac{1}{4V_H^\uparrow} \sum_{k=1}^K \sum_{h=1}^{\nu^k-1} \text{Var}(J_{h+1}^k)(s_h^k, a_h^k) + 3V_H^\uparrow \log \frac{6}{\delta}, \forall K \in \mathbb{N} \right\} \\
\mathbf{A}_6 &:= \left\{ \sum_{k=1}^K \sum_{h=1}^{\nu^k-1} (P(J_{h+1}^k)^2(s_h^k, a_h^k) - (J_{h+1}^k)^2(s_{h+1}^k)) \leq \frac{1}{2} \sum_{k=1}^K \sum_{h=1}^{\nu^k-1} \text{Var}(J_{h+1}^k)(s_h^k, a_h^k) + 6V_H^\uparrow \log \frac{6}{\delta}, \forall K \in \mathbb{N} \right\}.
\end{aligned}$$

1158 E.1.2 INFINITE-HORIZON DISCOUNTED MDPs
1159

$$\begin{aligned}
\mathbf{A}_1^\gamma &:= \left\{ \left| (\hat{P}^t - P)V^*(s, a) \right| \leq \frac{\lambda_t}{4V_\gamma^\uparrow} \text{Var}(V^*)(s, a) + \frac{3V_\gamma^\uparrow \ell_1}{\lambda_t N^t(s, a)}, \forall (s, a) \in \mathcal{S} \times \mathcal{A}, t \in \mathbb{N} \right\} \\
\mathbf{A}_2^\gamma &:= \left\{ (P - \hat{P}^t)(V^*)^2(s, a) \leq \frac{1}{2} \text{Var}(V^*)(s, a) + \frac{6V_\gamma^\uparrow \ell_1^2}{N^t(s, a)}, \forall (s, a) \in \mathcal{S} \times \mathcal{A}, t \in \mathbb{N} \right\} \\
\mathbf{A}_3^\gamma &:= \left\{ \left| \hat{P}^t(s' \mid s, a) - P(s' \mid s, a) \right| \leq 2 \sqrt{\frac{2P(s' \mid s, a)\ell_{3,k}(s, a)}{N^t(s, a)}} + \frac{2\ell_{3,k}(s, a)}{3N^t(s, a)}, \forall (s, a) \in \mathcal{S} \times \mathcal{A}, s' \in \mathcal{S}, t \in \mathbb{N} \right\} \\
\mathbf{A}_4^\gamma &:= \left\{ \left| \hat{r}^t(s, a) - r(s, a) \right| \leq \lambda_t r(s, a) + \frac{R_{\max} \ell_1}{\lambda_t N^t(s, a)}, \forall (s, a) \in \mathcal{S} \times \mathcal{A}, t \in \mathbb{N} \right\} \\
\mathbf{A}_5^\gamma &:= \left\{ \sum_{t=1}^T \sum_{l=0}^{\nu_t-1} \gamma^{l+1} (P J^t(s_{t+l}, a_{t+l}) - J^t(s_{t+l+1})) \leq \frac{(1-\gamma)}{8V_\gamma^\uparrow} \sum_{t=1}^T \text{Var}(Y^t(s_{t+1})) (s_t, a_t) + \frac{6V_\gamma^\uparrow}{1-\gamma} \log \frac{6}{\delta}, \forall T \in \mathbb{N} \right\} \\
\mathbf{A}_6^\gamma &:= \left\{ \sum_{t=1}^T \left(P(Y^t(s_{t+1}))^2(s_t, a_t) - (Y^t(s_{t+1}))^2 \right) \leq \frac{1}{4} \sum_{t=1}^T \text{Var}(Y^t(s_{t+1})) (s_t, a_t) + \frac{12V_\gamma^\uparrow \ell_1^2}{(1-\gamma)^2} \log \frac{6}{\delta}, \forall T \in \mathbb{N} \right\}.
\end{aligned}$$

1179 For the definition of $Y^t(s_{t+1})$, please refer to the proof of Lemma 20.
11801182 E.2 SAMPLE COMPLEXITY
11831184 To analyze sample complexity, we consider modifying the last two events using an indicator function
1185 that only accounts for a subset of episodes or time steps deemed “bad”. Since the resulting bound is
1186 almost identical, except that these “bad” indices replace the full summation, we denote such events
1187 as $\mathbf{A}_7, \mathbf{A}_8$ for finite-horizon episodic MDPs, and $\mathbf{A}_7^\gamma, \mathbf{A}_8^\gamma$ for infinite-horizon discounted MDPs.
1188

1188 E.3 PUTTING ALL TOGETHER
1189

1190 Each undesirable event is assigned probability at most $\frac{\delta}{6}$. By the union bound, the probability of
1191 their intersection is at least $1 - \delta$. Therefore, we have the following events spanning different results:
1192

$$\begin{aligned}\mathcal{A} &:= \cap_{i=1}^6 \mathbf{A}_i \\ \mathcal{B} &:= \cap_{i=1}^6 \mathbf{A}_i^\gamma \\ \mathcal{C} &:= (\cap_{i=1}^4 \mathbf{A}_i) \cap (\mathbf{A}_7 \cap \mathbf{A}_8) \\ \mathcal{D} &:= (\cap_{i=1}^4 \mathbf{A}_i^\gamma) \cap (\mathbf{A}_7^\gamma \cap \mathbf{A}_8^\gamma).\end{aligned}$$

1198 F PROOFS FOR FINITE-HORIZON EPISODIC MDPs
1199

1200 Our proof starts with finite-horizon episodic MDPs, which are simple to illustrate and play a vital
1201 role in bridging to the infinite-horizon case.
1202

1203 F.1 PRELIMINARY CONSTRUCTIONS
1204

1205 Since our formulation decays more aggressively than $\frac{1}{N^k}$, we need to introduce an auxiliary value
1206 function \tilde{V}^k that behaves the same as the original before a critical point m , however, after which
1207 the error should be manageable. That is, it is the value function of the MDP $(\mathcal{S}, \mathcal{A}, \hat{P}^k, \tilde{r}^k, H)$,
1208 where only the reward is different compared to V^k of $(\mathcal{S}, \mathcal{A}, \hat{P}^k, r_{\text{EUBRL}}^k, H)$. The modified reward
1209 is defined as $\tilde{r}^k = (1 - P_U^k)\hat{r}^k + b^k$, where the bonus term b^k is defined as:
1210

$$b^k = \begin{cases} P_U^k \eta^k \mathcal{E}^k, & \text{if } N^k < m. \\ P_U^k R_{\max} + \frac{\Upsilon^k}{N^k}, & \text{otherwise.} \end{cases}$$

1211 Here $\eta^k = \mathcal{E}_{\max} \Upsilon^k + R_{\max} \sqrt{m_k}$, for which more details can be found in Lemma 33.
1212

1213 The reward is increased to a degree that decays at least as fast as $\frac{1}{N^k}$, ensuring an advantage over
1214 the complexity arising from the reciprocal of visits. Although this advantage holds for an arbitrary
1215 m , we need to control the error between the two value functions thereafter. For this reason, we set
1216 $m_k = \frac{V_H^{\uparrow 2}}{R_{\max}^2 \Upsilon^2}$, which yields a sufficiently small error.
1217

1218 F.2 QUASI-OPTIMISM WITH EPISTEMIC RESISTANCE
1219

1220 **Lemma 2.** *For finite-horizon episodic MDPs, under high-probability event $\mathbf{A}_1 \cap \mathbf{A}_2$, it holds that
1221 for all $s \in \mathcal{S}, h \in [H + 1], k \in \mathbb{N}$,*

$$\tilde{V}_h^k(s) + \left(\frac{3}{2} - P_U^{k,*}(s) \right) \lambda_k H \geq V_h^*(s)$$

1222 *Proof.* Since we want to bound the error between $V^*(s)$ and $V^k(s)$ for any $s \in \mathcal{S}$. The auxiliary
1223 function is served as a bridge to achieve that. Let us decompose the error $V^*(s) - V^k(s)$ as follows:
1224

$$V^*(s) - V^k(s) = \underbrace{V^*(s) - \tilde{V}^k(s)}_{\text{Quasi-optimism}} + \underbrace{\tilde{V}^k(s) - V^k(s)}_{\text{Complexity}}.$$

1225 The complexity can be bounded by Lemma 3, and its proof will be given later. We now focus on the
1226 other part.
1227

1228 The proof follows the procedure of Lemma 2 in (Lee & Oh, 2025), with modifications to fit our
1229 formulation. The epistemic uncertainty guidance allows us to establish a refined induction hypothesis,
1230 thereby tightening the bound in proportion to the degree of uncertainty.
1231

1232 To simplify notations, we write $P_U^{k,*}(s) := P_U^k(s, \pi^*(s))$ and $P_U^k(s) := P_U^k(s, \pi^k(s))$. Furthermore,
1233 let $a^* := \pi^*(s)$, $a := \pi^k(s)$, and $\tilde{a} := \tilde{\pi}^k(s)$ denote the actions under the optimal policies
1234 corresponding to V^* , V^k , and \tilde{V}^k , respectively.
1235

1242 We prove by backward induction on h :

$$1244 \quad V_h^*(s) - \tilde{V}_h^k(s) \leq \lambda_k \left(\left(2 - P_U^{k,*}(s) \right) V_h^*(s) - \frac{1}{2V_H^\uparrow} (V_h^*)^2(s) \right).$$

1247 For the base case $h = H + 1$, both sides are 0, therefore the inequality holds. Assume it holds for
1248 $h + 1$, we will show it holds for h . If $\tilde{V}_h^k = V_H^\uparrow$, then left-hand side will be no positive, therefore the
1249 inequality trivially holds. Suppose $\tilde{V}_h^k < V_H^\uparrow$, by definition we have

$$1251 \quad \tilde{V}_h^k(s) = \tilde{r}^k(s, \tilde{a}) + \hat{P}^k \tilde{V}_{h+1}^k(s, \tilde{a}).$$

1252 With this, we obtain:

$$1254 \quad V_h^*(s) - \tilde{V}_h^k(s) = (r(s, a^*) + PV_{h+1}^*(s, a^*)) - \left(\tilde{r}^k(s, \tilde{a}) + \hat{P}^k \tilde{V}_{h+1}^k(s, \tilde{a}) \right)$$

$$1255 \quad \stackrel{(a)}{\leq} (r(s, a^*) + PV_{h+1}^*(s, a^*)) - \left(\tilde{r}^k(s, a^*) + \hat{P}^k \tilde{V}_{h+1}^k(s, a^*) \right)$$

$$1256 \quad = r(s, a^*) - \tilde{r}^k(s, a^*) + \left(PV_{h+1}^*(s, a^*) - \hat{P}^k \tilde{V}_{h+1}^k(s, a^*) \right)$$

$$1257 \quad = r(s, a^*) - \left((1 - P_U^{k,*}(s)) \hat{r}^k(s, a^*) + b^k(s, a^*) \right) + \left(PV_{h+1}^*(s, a^*) - \hat{P}^k \tilde{V}_{h+1}^k(s, a^*) \right)$$

$$1258 \quad \stackrel{(b)}{=} (1 - P_U^{k,*}(s)) (r(s, a^*) - \hat{r}^k(s, a^*)) + \left(P_U^{k,*}(s) r(s, a^*) - b^k(s, a^*) \right)$$

$$1259 \quad + \left(PV_{h+1}^*(s, a^*) - \hat{P}^k \tilde{V}_{h+1}^k(s, a^*) \right),$$

1260 where (a) is due to the optimality of \tilde{a} and (b) by noting $r(s, a^*) = (1 - P_U^{k,*}(s)) + P_U^{k,*}(s) r(s, a^*)$.

1261 Since $r \leq R_{\max}$, we have:

$$1262 \quad P_U^{k,*}(s) r(s, a^*) - b^k(s, a^*) \leq P_U^{k,*}(s) R_{\max} - b^k(s, a^*).$$

1263 At this point, we note that the intermediate steps are identical to those in (Lee & Oh, 2025); therefore,
1264 we omit them here and state the resulting expression. Denote $\Upsilon^k := \frac{7V_H^\uparrow \ell_{1,k}}{\lambda_k}$, we obtain:

$$1265 \quad V_h^*(s) - \tilde{V}_h^k(s) \leq -(b^k(s, a^*) - P_U^{k,*}(s) R_{\max}) + \frac{(7 - P_U^{k,*}(s)) V_H^\uparrow \ell_{1,k}}{\lambda_k N^k(s, a^*)}$$

$$1266 \quad + \lambda_k (2 - P_U^{k,*}(s)) (r(s, a^*) + PV_{h+1}^*(s, a^*)) - \frac{\lambda_k}{2V_H^\uparrow} (V_h^*)^2(s)$$

$$1267 \quad = -(b^k(s, a^*) - P_U^{k,*}(s) R_{\max}) + \frac{(7 - P_U^{k,*}(s)) V_H^\uparrow \ell_{1,k}}{\lambda_k N^k(s, a^*)} + \lambda_k \left(\left(2 - P_U^{k,*}(s) \right) V_h^*(s) - \frac{1}{2V_H^\uparrow} (V_h^*)^2(s) \right)$$

$$1268 \quad \leq -(b^k(s, a^*) - P_U^{k,*}(s) R_{\max}) + \frac{\Upsilon^k}{N^k(s, a^*)} + \lambda_k \left(\left(2 - P_U^{k,*}(s) \right) V_h^*(s) - \frac{1}{2V_H^\uparrow} (V_h^*)^2(s) \right)$$

$$1269 \quad \stackrel{(a)}{\leq} \lambda_k \left(\left(2 - P_U^{k,*}(s) \right) V_h^*(s) - \frac{1}{2V_H^\uparrow} (V_h^*)^2(s) \right) \quad (1)$$

1270 where (a) is due to the fact of Lemma 33. Moreover, note that for $s \in \mathcal{S}$, we have $1 \leq 2 - P_U^{k,*}(s) \leq 2$, therefore the function $f(x) = (2 - P_U^{k,*}(s)) x - \frac{1}{2V_H^\uparrow} x^2$, $x \in [0, V_H^\uparrow]$ is bounded by $\left(\frac{3}{2} - P_U^{k,*}(s) \right) V_H^\uparrow$. Substituting this for Eq. 1 completes the proof. \square

F.3 BOUNDEDNESS OF COMPLEXITY

1271 **Lemma 3.** For all $s \in \mathcal{S}, h \in [H + 1], k \in \mathbb{N}$, it holds that

$$1272 \quad \tilde{V}_h^k(s) - V_h^k(s) \leq R_{\max} \lambda_k := \Phi_k.$$

1296 We first introduce the the following elementary lemma:

1297 **Lemma 4.** *For any $n > \max\{m, \frac{1}{\epsilon^2}\}$, we have*

$$\frac{1}{\sqrt{n}} - \frac{\sqrt{m}}{n} = \frac{\sqrt{n} - \sqrt{m}}{n} < \epsilon.$$

1302 *Proof.* Since $n > m$, $\frac{1}{\sqrt{n}} - \frac{\sqrt{m}}{n} \geq 0$. To require ϵ -accuracy, it needs $\frac{1}{\sqrt{n}} < \frac{\sqrt{m}}{n} + \epsilon$. If we have $\frac{1}{\sqrt{n}} < \epsilon \Leftrightarrow n > \frac{1}{\epsilon^2}$, then the result is desired, which is because:

$$\frac{1}{\sqrt{n}} < \epsilon < \frac{\sqrt{m}}{n} + \epsilon$$

□

1311 *Proof of Lemma 3.* The following will bound the complexity term $\tilde{V}^k(s) - V^k(s)$. Since the two
1312 terms differ only in rewards, we first bound the difference in rewards $\Delta_r^k = |\tilde{r}^k - r_{\text{EUBRL}}^k|$.

1313 Without loss of generality, we bound the reward for finite-horizon episodic MDPs. We set $\epsilon_k =$
1314 $\frac{R_{\max} \lambda_k}{V_H^\uparrow}$, thereby $m_k = \frac{V_H^\uparrow}{R_{\max}^2 \lambda_k^2}$.

1315 If $N^k < m_k$, the reward \tilde{r}^k of \tilde{V}^k is the same as r_{EUBRL}^k , therefore $\Delta_r^k = 0$; otherwise, we have

$$\begin{aligned} \Delta_r^k &= \left| \left(P_U^k R_{\max} + \frac{\Upsilon^k}{N^k} \right) - (P_U^k \eta^k \mathcal{E}^k) \right| \\ &= \left| \left(P_U^k R_{\max} + \frac{\Upsilon^k}{N^k} \right) - \left(\left(\Upsilon^k + \frac{R_{\max}}{\mathcal{E}_{\max}} \sqrt{m_k} \right) \frac{1}{N^k} \right) \right| \\ &= \left| P_U^k R_{\max} - \frac{\frac{R_{\max}}{\mathcal{E}_{\max}} \sqrt{m_k}}{N^k} \right| \\ &= \left| \frac{1}{\sqrt{N^k}} \frac{R_{\max}}{\mathcal{E}_{\max}} - \frac{\frac{R_{\max}}{\mathcal{E}_{\max}} \sqrt{m_k}}{N^k} \right| \\ &= \left| \frac{R_{\max}}{\mathcal{E}_{\max}} \left(\frac{1}{\sqrt{N^k}} - \frac{\sqrt{m_k}}{N^k} \right) \right| \\ &= \frac{R_{\max}}{\mathcal{E}_{\max}} \left| \frac{\sqrt{N^k} - \sqrt{m_k}}{N^k} \right| \\ &= \frac{R_{\max}}{\mathcal{E}_{\max}} \left(\frac{\sqrt{N^k} - \sqrt{m_k}}{N^k} \right) \\ &\leq \frac{R_{\max}}{\mathcal{E}_{\max}} \frac{R_{\max} \lambda_k}{V_\gamma^\uparrow} \\ &= \frac{R_{\max}}{\mathcal{E}_{\max}} \frac{\lambda_k}{H} \\ &\leq R_{\max} \frac{\lambda_k}{H}, \end{aligned}$$

1344 where the second to last is because of Lemma 4, and the last is because of the assumption that
1345 $\mathcal{E}_{\max} \geq 1$.

1346 By Simulation Lemma (Kearns & Singh, 2002), we know that the value functions differ at most
1347 $R_{\max} \lambda_t$.

1348 For infinite-horizon discounted MDPs, the proof is similar, except that we need to replace the time
1349 index with t and the maximum value function with V_γ^\uparrow . □

1350 F.4 BOUNDEDNESS OF ACCURACY
13511352 **Lemma 5.** For finite-horizon episodic MDPs, under high-probability event $\cap_{i=1}^4 \mathbf{A}_i$, it holds that
1353 for all $s \in \mathcal{S}, h \in [H+1], k \in \mathbb{N}$,

1354
$$1355 V_h^k(s) - V_h^{\pi^k}(s) \leq \left(3 - 2P_U^k(s) - \frac{2}{7}P_U^{k,*}(s)\right) \lambda_k H + 2J^k(s) + \mathcal{O}\left(\frac{\Phi_k^2}{V_H^\uparrow} + \lambda_k \Phi_k\right).$$

1356

1357 It is convenient to define the following quantities for the analysis.
13581359 **Definition 2.** Let $D_h^k(s)$ be defined by
1360

1361
$$D_h^k(s) := \lambda_k \left((3 - 2P_U^k(s))V_h^*(s) - \frac{1}{2V_H^\uparrow}(V_h^*)^2(s) \right) + \frac{1}{7V_H^\uparrow} \left((S_k)^2 - (\widehat{V}_h(s) + S_k)^2 \right),$$

1362

1363 where $\beta^k(s, a)$:
1364

1365
$$\beta^k(s, a) = P_U^k(s, a)\eta^k \mathcal{E}^k(s, a) + \beta_1^k(s, a) + (1 - P_U^k(s))\frac{V_H^\uparrow \ell_{1,k}}{\lambda_k N^k(s, a)}$$

1366
1367
$$\widehat{V}_h(s) := V_h^k(s) - V_h^*(s)$$

1368
1369
$$S_k := \left(\frac{3}{2} - P_U^{k,*}(s)\right) \lambda_k V_H^\uparrow + \Phi_k,$$

1370

1371 in which

1372
$$\beta_1^k(s, a) := \frac{1}{N^k(s, a)} \left(\frac{3V_H^\uparrow \ell_{1,k}}{\lambda_k} + 30V_H^\uparrow S \ell_{3,k}(s, a) \right).$$

1373
1374

1375 *Proof of Lemma 5.* The key to bound the accuracy term $V_h^k(s) - V_h^{\pi^k}(s)$ is to decompose it into
1376 differences:
1377

1378
$$V_h^k(s) - V_h^{\pi^k}(s) = \underbrace{\Delta_h(V^k - V^{\pi^k})(s, a)}_{I_1} + P(V_{h+1}^k - V_{h+1}^{\pi^k})(s, a).$$

1379

1380 By Lemma 35, we know that
1381

1382
$$I_1 \leq (\Delta_h(D^k)(s, a) + 2\beta^k(s, a)),$$

1383 Denote
1384

1385
$$I_2 := (3 - 2P_U^k(s))V_h^*(s) - \frac{1}{2V_H^\uparrow}(V_h^*)^2(s)$$

1386
1387
$$I_3 := \left(S_k^2 - (\widehat{V}_h(s) + S_k)^2\right),$$

1388

1389 we have $D_h^k(s) = \lambda_k I_2 + \frac{1}{7V_H^\uparrow} I_3$.
13901391 We now bound I_2 and I_3 individually.
13921393 **Bounding I_2**
1394

1395
$$I_2 \leq \left(\frac{5}{2} - 2P_U^k(s)\right) V_H^\uparrow \tag{2}$$

1396

1397 **Bounding I_3**
1398

1399
$$I_3 = -\widehat{V}_h(s)^2 - 2S_k \widehat{V}_h(s) \leq S_k^2, \quad \widehat{V}_h(s) \in [-V_H^\uparrow, V_H^\uparrow] \tag{3}$$

1400
$$S_k = \left(\frac{3}{2} - P_U^{k,*}(s)\right) \lambda_k V_H^\uparrow + \Phi_k \tag{4}$$

1401

1402
$$S_k^2 \leq \left(\frac{3}{2} - P_U^{k,*}(s)\right)^2 \lambda_k^2 V_H^{\uparrow 2} + \Phi_k^2 + (3 - 2P_U^{k,*}(s)) \lambda_k V_H^\uparrow \Phi_k \tag{5}$$

1403

1404 Therefore,

1405

$$1406 D_h^k(s) = \lambda_k I_2 + \frac{1}{7V_H^\uparrow} I_3 \quad (6)$$

1407

1408

$$1409 \leq \left(\frac{5}{2} - 2P_U^k(s) \right) \lambda_k V_H^\uparrow + \frac{1}{7} \left(\frac{3}{2} - P_U^{k,*}(s) \right)^2 \lambda_k^2 V_H^\uparrow + \mathcal{O} \left(\frac{\Phi_k^2}{V_H^\uparrow} \right) + \mathcal{O}(\lambda_k \Phi_k) \quad (7)$$

1410

1411

$$1412 \leq \left(3 - 2P_U^k(s) - \frac{2}{7} P_U^{k,*}(s) \right) \lambda_k V_H^\uparrow + \mathcal{O} \left(\frac{\Phi_k^2}{V_H^\uparrow} + \lambda_k \Phi_k \right). \quad (8)$$

1413

1414 Furthermore, by backward induction on h , we have

1415

$$V_h^k(s) - V_h^{\pi_k}(s) = D_h^k(s) + 2J_h^k(s).$$

1416

1417 Combining this with the upper bound of $D_h^k(s)$ completes the proof. \square

1418 F.5 BOUNDEDNESS OF J_1^k

1419 **Lemma 6.** For finite-horizon episodic MDPs, under high-probability event $\mathbf{A}_5 \cap \mathbf{A}_6$, it holds that

1420

$$1421 \sum_{k=1}^K J_1^k(s_1^k) \leq 2 \sum_{k=1}^K \sum_{h=1}^{\nu^k-1} \beta^k(s_h^k, a_h^k) + 6V_H^\uparrow SA \log \frac{12H}{\delta},$$

1422

1423 for all $K \in \mathbb{N}$.

1424 **Lemma 7.** For finite-horizon episodic MDPs, under high-probability event $\mathbf{A}_5 \cap \mathbf{A}_6$, denote $\mathcal{Y}^{(K)} := \frac{12V_H^\uparrow \ell_{1,K}}{\lambda_K} + 30V_H^\uparrow S \ell_{3,K}$, it holds that

1425

$$1426 \sum_{k=1}^K J_1^k(s_1^k) \leq 4\mathcal{Y}^{(K)} SA \log \left(1 + \frac{KH}{SA} \right) + 6V_H^\uparrow SA \log \frac{12H}{\delta},$$

1427

1428 for all $K \in \mathbb{N}$.

1429 F.6 LOWER BOUND OF EPISTEMIC RESISTANCE

1430 **Lemma 8** (Lower Bound of Epistemic Resistance). Given a uniform $\lambda_k = \lambda, \forall k \in \mathbb{N}$, it holds that

1431

$$1432 \sum_{k=1}^K \mathfrak{R}^k(s_1^k) \lambda_k V_H^\uparrow \geq \frac{23R_{\max}}{7} \left(\frac{2}{\mathcal{E}_{\max}} \left(\sqrt{HK} - \sqrt{H} \right) + H \right) \lambda,$$

1433

1434 for any $K \in \mathbb{N}$.

1435 *Proof.*

1436

$$1437 \sum_{k=1}^K P_U^k(s_1^k, a_1^k) = 1 + \frac{1}{\mathcal{E}_{\max}} \sum_{k=2}^K \frac{1}{\sqrt{N^k(s_1^k, a_1^k)}}$$

1438

$$1439 \geq 1 + \frac{1}{\mathcal{E}_{\max}} \sum_{k=2}^K \frac{1}{\sqrt{(k-1)H}}$$

1440

$$1441 = 1 + \frac{1}{\mathcal{E}_{\max} \sqrt{H}} \sum_{k=1}^{K-1} \frac{1}{\sqrt{k}}$$

1442

$$1443 \geq 1 + \frac{1}{\mathcal{E}_{\max} \sqrt{H}} \int_k^{k+1} \frac{1}{\sqrt{x}} dx$$

1444

$$1445 = 1 + \frac{1}{\mathcal{E}_{\max} \sqrt{H}} (2\sqrt{K} - 2),$$

1446

1447 Note, this also holds for $P_U^{k,*}(s_1^k, \pi_1^*(s_1^k))$. Therefore, multiplying with $\frac{23}{7} \lambda V_H^\uparrow$ completes the proof. \square

1458 F.7 REGRET ANALYSIS
1459

1460 Combining the results of Lemmas 2–5, we obtain the per-step regret:

1461 **Theorem 6.** *Under high-probability event \mathcal{A} , it holds that for all $s \in \mathcal{S}, h \in [H+1], k \in \mathbb{N}$,*

1463
$$V^*(s) - V^{\pi^k}(s) \leq \left(\frac{9}{2} - \mathfrak{R}^k(s) \right) \lambda_k V_H^\uparrow + 2J^k(s) + \mathcal{O} \left(\Phi_k \left(1 + \frac{\Phi_k}{V_H^\uparrow} \right) \right),$$

1464
1465

1466 where we define the following as **Epistemic Resistance**

1467
$$\mathfrak{R}^k(s) := 2P_U^k(s) + \frac{9}{7}P_U^{k,*}(s).$$

1468

1469 **Theorem 7.** *For finite-horizon episodic MDPs, for any fixed $K \in \mathbb{N}$, with probability at least $1 - \delta$,
1470 it holds that*

1471
$$\text{Regret}(K) \leq \tilde{\mathcal{O}}(H\sqrt{SAK} + HS^2A).$$

1472

1473 *Proof.* From Theorem 6, we have:

1474
$$\text{Regret}(K) \leq \frac{9V_H^\uparrow}{2} \sum_{k=1}^K \lambda_k - V_H^\uparrow \sum_{k=1}^K \mathfrak{R}^k(s_1^k) \lambda_k + 2 \sum_{k=1}^K J^k(s_1^k) + \sum_{k=1}^K \mathcal{O} \left(\Phi_k \left(1 + \frac{\Phi_k}{V_H^\uparrow} \right) \right).$$

1475
1476
1477

1478 Choose $\lambda_k = \min\{1, 4\sqrt{\frac{SA\ell_1\ell_{2,K}}{K}}\}$, $\forall k \in [K]$ and denote $\Psi(K) := \frac{2 \sum_{k=1}^K \mathfrak{R}^k(s)}{9K}$, we have
1479
1480

1481
$$\begin{aligned} \frac{9V_H^\uparrow}{2} \sum_{k=1}^K \lambda_k - V_H^\uparrow \sum_{k=1}^K \mathfrak{R}^k(s_1^k) \lambda_k &= \frac{9V_H^\uparrow}{2} \left(1 - \frac{2 \sum_{k=1}^K \mathfrak{R}^k(s_1^k)}{9K} \right) K \min\{1, 4\sqrt{\frac{SA\ell_1\ell_{2,K}}{K}}\} \\ &\leq 18V_H^\uparrow (1 - \Psi(K)) K \sqrt{\frac{SA\ell_1\ell_{2,K}}{K}} \\ &= 18V_H^\uparrow (1 - \Psi(K)) \sqrt{SAK\ell_1\ell_{2,K}}. \end{aligned}$$

1481
1482
1483
1484
1485
1486
1487
1488
1489

1490 From Lemma 7, we know that

1491
$$\begin{aligned} 2 \sum_{k=1}^K J^k(s_1^k) &\leq 8\mathcal{Y}^{(K)} SA \log \left(1 + \frac{KH}{SA} \right) + 12V_H^\uparrow SA \log \frac{12H}{\delta} \\ &\leq \frac{96V_H^\uparrow SA\ell_{1,K}\ell_{2,K}}{\lambda_K} + 240V_H^\uparrow S^2 A\ell_{2,K}\ell_{3,K} + 12V_H^\uparrow SA \log \frac{12H}{\delta} \\ &\leq 96V_H^\uparrow SA\ell_{1,K}\ell_{2,K} \max \left\{ 1, \frac{1}{4} \sqrt{\frac{K}{SA\ell_{1,K}\ell_{2,K}}} \right\} + 240V_H^\uparrow S^2 A\ell_{2,K}\ell_{3,K} + 12V_H^\uparrow SA \log \frac{12H}{\delta} \\ &\leq 96V_H^\uparrow SA\ell_{1,K}\ell_{2,K} + 24V_H^\uparrow \sqrt{SAK\ell_1\ell_{2,K}} + 240V_H^\uparrow S^2 A\ell_{2,K}\ell_{3,K} + 12V_H^\uparrow SA \log \frac{12H}{\delta} \\ &\leq 24V_H^\uparrow \sqrt{SAK\ell_1\ell_{2,K}} + 336V_H^\uparrow S^2 A\ell'_{1,K}(1 + \ell_{2,K}), \end{aligned}$$

1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502

1503 where we denote $\ell'_{1,K} := \log \frac{24HSA(1+\log KH)}{\delta}$ as an upper bound of both $\ell_{1,K}$ and $\ell_{3,K}$, and merge
1504 into the non-leading term.

1505 Combining these two together, we get:

1506
$$\begin{aligned} \text{Regret}(K) &\leq (42 - 18\Psi(K)) V_H^\uparrow \sqrt{SAK\ell_1\ell_{2,K}} + 336V_H^\uparrow S^2 A\ell'_{1,K}(1 + \ell_{2,K}) + \sum_{k=1}^K \mathcal{O} \left(\Phi_k \left(1 + \frac{\Phi_k}{V_H^\uparrow} \right) \right) \\ &\leq (42 - 18\Psi(K)) R_{\max} H \sqrt{SAK\ell_1\ell_{2,K}} + 336R_{\max} HS^2 A\ell'_{1,K}(1 + \ell_{2,K}) + \sum_{k=1}^K \mathcal{O} \left(\Phi_k \left(1 + \frac{\Phi_k}{V_H^\uparrow} \right) \right), \end{aligned}$$

1507
1508
1509
1510
1511

1512 where only the last part left to resolve.
 1513

1514 Given $\Phi_k = R_{\max} \lambda_k$, we have one additional source of $\mathcal{O}(\lambda K)$, which will be merged into the
 1515 leading term. In addition, note that

$$\begin{aligned} \sum_{k=1}^K \mathcal{O}\left(\frac{\Phi_k^2}{V_H^\uparrow}\right) &= \sum_{k=1}^K \tilde{\mathcal{O}}\left(\frac{R_{\max}^2 S A}{K V_H^\uparrow}\right) \\ &= \tilde{\mathcal{O}}\left(\frac{R_{\max}^2 S A}{V_H^\uparrow}\right) \\ &\leq \tilde{\mathcal{O}}(R_{\max} S A), \end{aligned}$$

1523 which only increases the non-leading term by some constants. So overall, we have:
 1524

$$\text{Regret}(K) = \tilde{\mathcal{O}}\left(H\sqrt{SAK} + HS^2A\right).$$

1525 \square
 1526

1528 F.8 SAMPLE COMPLEXITY

1530 **Theorem 8.** *For finite-horizon episodic MDPs, with probability at least $1 - \delta$, the sample complexity
 1531 is bounded by*

$$\tilde{\mathcal{O}}\left(\left(\frac{H^2 S A}{\epsilon^2} + \frac{H S^2 A}{\epsilon}\right) \log \frac{1}{\delta}\right).$$

1535 For finite-horizon episodic MDPs, the sample complexity of an algorithm is defined as the number
 1536 of non- ϵ -optimal episodes taken over the course of learning (Dann & Brunskill, 2015; Dann et al.,
 1537 2017). If this sample complexity can be bounded by a polynomial function $f(|S|, |A|, \frac{1}{\epsilon}, \frac{1}{\delta}, H)$,
 1538 then the algorithm is PAC-MDP.

1539 The proof is analogous to that of the infinite-horizon case in Appendix G.7; therefore, we only
 1540 provide a sketch.

1541 From Theorem 6, we know that the per-step regret can be bounded as follows:
 1542

$$\begin{aligned} V^*(s_1^k) - V^k(s_1^k) &\leq \left(\frac{9}{2} - \mathfrak{R}^k(s_1^k)\right) \lambda_k V_H^\uparrow + 2J^k(s_1^k) + \Phi_k \left(1 + \left(3 - 2P_U^{k,*}(s_1^k)\right) \lambda_k + \frac{\Phi_k}{V_H^\uparrow}\right) \\ &\leq \underbrace{\left(\frac{9}{2} - \mathfrak{R}^k(s_1^k)\right) \lambda_k V_H^\uparrow}_{:=L_{1,k}} + \underbrace{2J^k(s_1^k)}_{:=L_{2,k}} + \underbrace{\Phi_k \left(4 + \frac{\Phi_k}{V_H^\uparrow}\right)}_{:=L_{3,k}} \end{aligned}$$

1551 We choose $\lambda_k = \frac{\epsilon}{18V_H^\uparrow}$, so that we have $L_{1,k} \leq \frac{\epsilon}{4}$ and $L_{3,k} \leq \frac{\epsilon}{4}$. So the remaining step is to prove
 1552 that majority of episodes satisfy $J^k(s_1^k) \leq \frac{\epsilon}{4}$, which implies $L_{2,k} \leq \frac{\epsilon}{2}$.
 1553

1554 The following notations are to connect the number of non-optimal episodes with $J^k(s_1^k)$.
 1555

1556 Let the set of non-optimal episodes within K total episodes be defined as $\Gamma_K := \{k \in [K] : J^k(s_1^k) > \frac{\epsilon}{4}\}$, and its cardinality $|\Gamma_K|$. We overload the definition of visits that occur only in Γ_K .
 1557

$$\begin{aligned} n_h^k(s, a) &:= \sum_{\kappa \in \Gamma_k} \sum_{\tau=1}^H \mathbf{1}((s_\tau^\kappa, a_\tau^\kappa) = (s, a), (\kappa < k \text{ or } \tau \leq h)) \\ N^k(s, a) &:= \sum_{\kappa \in \Gamma_{k-1}} \sum_{\tau=1}^H \mathbf{1}((s_\tau^\kappa, a_\tau^\kappa) = (s, a)) \\ \nu^k &:= \begin{cases} \min\{h \in [H] : n_h^k(s_h^k, a_h^k) > 2N^k(s_h^k, a_h^k)\}, & \text{if } h \text{ exists.} \\ H + 1, & \text{otherwise.} \end{cases} \end{aligned}$$

1566 Akin to Lemma 26, we can bound $|\Gamma_K|$ using the fact that $J^k(s_1^k) > \frac{\epsilon}{4}$.
 1567
 1568

Definition 3. Let $W(K)$ be defined by

1569
$$W(K) := \frac{3456R_{\max}^2 H^2 S A \ell_{1,K} \ell_{2,K}}{\epsilon^2} + \frac{480R_{\max} H S^2 A \ell_{2,K} \ell_{3,K}}{\epsilon} + \frac{24R_{\max} H S A \ell_{1,K}}{\epsilon}.$$

 1570
 1571

1572 **Lemma 9.** For finite-horizon episodic MDPs, under high-probability event \mathbf{C} , it holds that

1573
$$|\Gamma_K| \leq W(|\Gamma_K|),$$

 1574

1575 for all $K \in \mathbb{N}$.

1576 **Proposition 2.** For finite-horizon episodic MDPs, let K_0 be defined as

1577
$$K_0 := \left\lceil \frac{6920R_{\max}^2 H^2 S A \ell_1 \ell_{5,\epsilon}}{\epsilon^2} + \frac{480R_{\max} H S^2 A (2\ell_1 + \ell_{6,\epsilon}) \ell_{5,\epsilon}}{\epsilon} \right\rceil.$$

 1578
 1579

1580 Then the sample complexity of EUBRL is at most K_0 with probability at least $1 - \delta$.
 1581
 1582

1583 Before proving this result, we need to bound the the other way around i.e. $W(K_0) < K_0$.
 1584

Lemma 10. It holds that

1585
$$W(K_0) < K_0.$$

 1586

1587 *Proof of Proposition 2.* From Lemmas 9 and 10, we know that $|\Gamma_K| \leq W(|\Gamma_K|)$ and $W(K_0) < K_0$.
 1588 It implies that $|\Gamma_K| \neq K_0$ for all $K \in \mathbb{N}$. Since $|\Gamma_K|$ increases by at most 1 starting from
 1589 $|\Gamma_0| = 0$, that is, $|\Gamma_{K+1}| \leq |\Gamma_K| + 1$ for all $K \in \mathbb{N}$, we conclude that $|\Gamma_K| < K_0$ for all $K \in \mathbb{N}$.
 1590 Otherwise, there exists K' such that $|\Gamma_{K'}| > K_0$. Assume K' is the minimal such index. Then it
 1591 follows that $|\Gamma_{K'-1}| = K_0$, which leads to a contradiction. \square
 1592

1593 G PROOFS FOR INFINITE-HORIZON DISCOUNTED MDPs

1594 The difficulty in proving quasi-optimism and bounding accuracy is that we can no longer use back-
 1595 ward induction on the horizon, since the value function is time-independent. To resolve this, we
 1596 construct Bellman-like operators to bridge this gap.
 1597

1599 G.1 QUASI-OPTIMISM WITH EPISTEMIC RESISTANCE

1600 **Lemma 11.** For infinite-horizon discounted MDPs, under high-probability event $\mathbf{A}_1^\gamma \cap \mathbf{A}_2^\gamma$, it holds
 1601 that for all $s \in \mathcal{S}, t \in \mathbb{N}$,

1602
$$V^*(s) - \tilde{V}^t(s) \leq \lambda_t \left((2 - P_U^{t,*}(s)) V^*(s) - \frac{1}{2V_\gamma^\uparrow} (V^*)^2(s) \right).$$

 1603
 1604

1605 **Corollary 2.** For infinite-horizon discounted MDPs, under high-probability event $\mathbf{A}_1^\gamma \cap \mathbf{A}_2^\gamma$, it holds
 1606 that for all $s \in \mathcal{S}, t \in \mathbb{N}$,

1607
$$V^*(s) - \tilde{V}^t(s) \leq \lambda_t \left(\frac{3}{2} - P_U^{t,*}(s) \right) V_\gamma^\uparrow.$$

 1608
 1609

1610 To prove Lemma 11, we need a define a Bellman-like operator that is a contraction mapping and
 1611 monotone.

1612 **Definition 4.** Let operator \mathcal{T}_1 be defined by

1613
$$(\mathcal{T}_1 V)(s) := (P_U^{t,*}(s) R_{\max} - b^t(s, \pi^*(s))) + (1 - P_U^{t,*}(s)) (r(s, \pi^*(s)) - \hat{r}^t(s, \pi^*(s)))$$

 1614
 1615
$$+ \gamma \left(P - \hat{P}^t \right) V^*(s, \pi^*(s)) + \gamma \hat{P}^t V(s, \pi^*(s)).$$

 1616
 1617

1618 **Lemma 12.** \mathcal{T}_1 is a contraction mapping and monotone.
 1619

1620

1621 *Proof.* Denote

1622

$$M(s) := (P_U^{t,*}(s)R_{\max} - b^t(s, \pi^*(s))) + (1 - P_U^{t,*}(s)) (r(s, \pi^*(s)) - \hat{r}^t(s, \pi^*(s))) \\ + \gamma \left(P - \hat{P}^t \right) V^*(s, \pi^*(s))$$

1625

1626

For any $U, V \in [0, V_\gamma^\uparrow]^S$, we have

1627

1628

$$\|\mathcal{T}_1 U - \mathcal{T}_1 V\|_\infty = \sup_s \left| \left(M(s) + \gamma \hat{P}^t U(s, \pi^*(s)) \right) - \left(M(s) + \gamma \hat{P}^t V(s, \pi^*(s)) \right) \right| \\ = \gamma \sup_s \left| \hat{P}^t (U - V)(s, \pi^*(s)) \right| \\ \leq \gamma \|U - V\|_\infty.$$

1632

Therefore, \mathcal{T}_1 is a contraction mapping under ∞ -norm.

1634

1635

On the other hand, given $U, V \in [0, V_\gamma^\uparrow]^S$ such that $U(s) \leq V(s), \forall s \in \mathcal{S}$, we have

1636

1637

$$(\mathcal{T}_1 U - \mathcal{T}_1 V)(s) = \hat{P}^t (U - V)(s, \pi^*(s)) \\ \leq 0.$$

1638

Thus, \mathcal{T}_1 is monotone as well. \square

1639

1640

Lemma 13. Denote $f(s) = \lambda_t \left((2 - P_U^{t,*}(s)) V^*(s) - \frac{1}{2V_\gamma^\uparrow} (V^*)^2(s) \right)$, under high-probability event $\mathbf{A}_1^\gamma \cap \mathbf{A}_2^\gamma$, it holds that

1641

$$\mathcal{T}_1 f \leq f$$

1642

1643

1644

Proof. This follows the same procedure as the proof of Lemma 2, except that we use the boundedness of the discounted value function and the inequalities stated in the events \mathbf{A}_1^γ and \mathbf{A}_2^γ . \square

1645

Now we prove Lemma 11.

1646

Proof of Lemma 11. Denote $\Delta V := V^* - \tilde{V}^t$.

1647

1648

Since \mathcal{T}_1 is a contraction mapping, by the Banach fixed-point theorem, there exists a fixed point \bar{V} such that $\bar{V} = \lim_{k \rightarrow \infty} (\mathcal{T}_1)^k g$ from an arbitrary initial point g .

1649

1650

Note, $\Delta V \leq \mathcal{T}_1 \Delta V$. By monotonicity and contraction of \mathcal{T}_1 from Lemma 12, we have $\Delta V \leq \mathcal{T}_1 \Delta V \leq \lim_{k \rightarrow \infty} (\mathcal{T}_1)^k \Delta V = \bar{V}$. By Lemma 13, we have $\mathcal{T}_1 f \leq f$, by monotonicity and contraction again, we have $\bar{V} = \lim_{k \rightarrow \infty} (\mathcal{T}_1)^k f \leq \mathcal{T}_1 f \leq f$. Combining two sides, we conclude that $\Delta V \leq f$, which completes the proof. \square

1651

1652

G.2 BOUNDEDNESS OF COMPLEXITY

1653

1654

Lemma 14. For all $s \in \mathcal{S}, t \in \mathbb{N}$, it holds that

1655

1656

1657

$$\tilde{V}^t(s) - V^t(s) \leq R_{\max} \lambda_t := \Phi_t.$$

1658

1659

Proof. See the proof of Lemma 3. \square

1660

1661

G.3 BOUNDEDNESS OF ACCURACY

1662

1663

1664

In this section, we bound the accuracy term. Although it is tempting to use the same logic as in the previous section, it is worth noting that the nuance in the definition of J prevents this, as we no longer have an argument analogous to $\mathcal{T}_1 f \leq f$. We summarize the main results in advance.

1665

1666

Lemma 15. For infinite-horizon discounted MDPs, under high-probability event $\cap_{i=1}^4 \mathbf{A}_i^\gamma$, it holds that for all $s \in \mathcal{S}, t \in \mathbb{N}$,

1667

1668

1669

1670

1671

1672

1673

$$V^t(s) - V^{\pi_t}(s) \leq D_\gamma^t(s) + 2J_\gamma^t(s).$$

1674
1675 **Corollary 3.** For infinite-horizon discounted MDPs, under high-probability event $\cap_{i=1}^4 \mathbf{A}_i^\gamma$, it holds
1676 that for all $s \in \mathcal{S}, t \in \mathbb{N}$,

1677
$$V^t(s) - V^{\pi_t}(s) \leq \left(3 - 2P_U^t(s) - \frac{2}{7}P_U^{t,*}(s)\right) \lambda_t V_\gamma^\uparrow + 2J_\gamma^t(s) + \mathcal{O}\left(\frac{\Phi_t^2}{V_\gamma^\uparrow} + \lambda_t \Phi_t\right).$$

1680 Putting all together, we obtain

1681 **Theorem 9.** For infinite-horizon discounted MDPs, under high-probability event \mathcal{B} , it holds that
1682 for all $s \in \mathcal{S}, t \in \mathbb{N}$,

1683
$$V^*(s) - V^{\pi_t}(s) \leq \left(\frac{9}{2} - \mathfrak{R}^t(s)\right) \lambda_t V_\gamma^\uparrow + 2J_\gamma^t(s) + \mathcal{O}\left(\Phi_t \left(1 + \frac{\Phi_t}{V_\gamma^\uparrow}\right)\right).$$

1687 Before we dive into details, we define the following relevant quantities.

1688 **Definition 5.** Let $D_\gamma^t(s)$ be defined by

1689
$$D_\gamma^t(s) := \lambda_t \left((3 - 2P_U^t(s)) V^*(s) - \frac{1}{2V_\gamma^\uparrow} (V^*)^2(s) \right) + \frac{1}{7V_\gamma^\uparrow} \left((S_t)^2 - (\widehat{V}(s) + S_t)^2 \right),$$

1693 where $\beta^t(s, a)$:

1694
$$\beta^t(s, a) = P_U^t(s, a) \eta^t \mathcal{E}^t(s, a) + \beta_1^t(s, a) + (1 - P_U^t(s)) \frac{V_\gamma^\uparrow \ell_1}{\lambda_t N^t(s, a)}$$

1695
$$\widehat{V}(s) := V^t(s) - V^*(s)$$

1696
$$S_t := \left(\frac{3}{2} - P_U^{t,*}(s)\right) \lambda_t V_\gamma^\uparrow + \Phi_t,$$

1697 in which

1698
$$\beta_1^t(s, a) := \frac{1}{N^t(s, a)} \left(\frac{3V_\gamma^\uparrow \ell_1}{\lambda_t} + 30V_\gamma^\uparrow S \ell_{3,t}(s, a) \right).$$

1699 **Definition 6.** Let operator \mathcal{T}_2 be defined by

1700
$$(\mathcal{T}_2 V)(s) := \Delta_\gamma(D_\gamma^t)(s, \pi_t(s)) + 2\beta^t(s, \pi_t(s)) + \gamma P(V)(s, \pi_t(s)).$$

1701 **Definition 7.** \mathcal{T} is affine if, for any vector V and E

1702
$$\mathcal{T}(V + E) = \mathcal{T}V + \gamma PE.$$

1703 **Lemma 16.** \mathcal{T}_2 is a contraction mapping, monotone, and affine.

1704 *Proof.* The argument for contraction and monotonicity is similar to that of proof of Lemma 12. For
1705 the affine part, we observe:

1706
$$\begin{aligned} \mathcal{T}_2(V + E) &= \Delta_\gamma(D_\gamma^t) + 2\beta^t + \gamma P(V + E) \\ 1707 &= \Delta_\gamma(D_\gamma^t) + 2\beta^t + \gamma PV + \gamma PE \\ 1708 &= \mathcal{T}_2 V + \gamma PE. \end{aligned}$$

1709 \square

1710 **Lemma 17.** Under high-probability event $\cap_{i=1}^4 \mathbf{A}_i^\gamma$, it holds that

1711
$$\Delta_\gamma(V^t - V^{\pi_t})(s, \pi_t(a)) \leq \Delta_\gamma(D_\gamma^t)(s, \pi_t(a)) + 2\beta^t(s, \pi_t(a)).$$

1712 *Proof.* The proof is completed by applying the procedure of Lemma 13 in (Lee & Oh, 2025), except
1713 using $\widehat{V}_h(s) + S_k \geq 0$ from Lemmas 2–3 for variance decomposition and boundedness of the
1714 discounted value, together with an adjustment of some constants under event \mathbf{A}_3^γ . \square

1715 Now we prove Lemma 15.

1728 *Proof of Lemma 15.* Denote $\Delta V := V^t - V^{\pi_t}$.

1729 Note, $\Delta V(s) = \Delta_\gamma(\Delta V)(s, \pi_t(s)) + \gamma P(\Delta V)(s, \pi_t(s))$. By Lemma 17, we have

$$1731 \quad \Delta V \leq \mathcal{T}_2 \Delta V. \quad \text{Condition 1}$$

1733 For brevity, we denote $g := \beta^t + \gamma P J^t$, $f := \min\{g, V_\gamma^\uparrow\}$, and $D := D_\gamma^t$. We observe

$$1735 \quad \mathcal{T}_2(D + 2f) = D + 2g. \quad \text{Condition 2}$$

1736 Moreover, since $D \geq -\frac{6}{7}V_\gamma^\uparrow$ and $\Delta V \leq V_\gamma^\uparrow$, we have

$$1738 \quad \Delta V \leq D + 2V_\gamma^\uparrow. \quad \text{Condition 3}$$

1740 Now, we claim $\Delta V \leq D + 2f$ is true. We consider two cases:

1742 **Case 1:** $g(s) \geq V_\gamma^\uparrow$ For any state s where $g(s) \geq V_\gamma^\uparrow$, the function $f(s)$ is defined as $f(s) = V_\gamma^\uparrow$.
1743 The inequality we want to prove becomes $\Delta V(s) \leq D(s) + 2V_\gamma^\uparrow$, which is true by **Condition 3**.
1744

1745 **Case 2:** $g(s) < V_\gamma^\uparrow$ For states where $g(s) < V_\gamma^\uparrow$, the function $f(s)$ is now defined as $f(s) = g(s)$.
1746 We prove by contradiction. Assume there is at least one state s where $g(s) < V_\gamma^\uparrow$ and the desired
1747 inequality is false.

1749 We define an “error” function $E := \Delta V - (D + 2f)$. By the assumption, the set of states $\Xi := \{s \in$
1750 $\mathcal{S} : E(s) > 0\}$ is non-empty. Let $E^* := \sup_{s \in \Xi} E(s)$, then $E^* > 0$.

1751 We start with **Condition 1**, that is, $\Delta V \leq \mathcal{T}_2 \Delta V$, and substitute $\Delta V = E + (D + 2f)$, we get

$$1753 \quad E + (D + 2f) \leq \mathcal{T}_2(E + D + 2f)$$

1755 By the affinity in Lemma 16, we can write $\mathcal{T}_2(E + D + 2f) = \mathcal{T}_2(D + 2f) + \gamma P E$. By **Condition**
1756 **2**, we have $\mathcal{T}_2(D + 2f) = D + 2g$. Combining this with Equation G.3, we obtain:

$$1757 \quad E + (D + 2f) \leq (D + 2g) + \gamma P E.$$

1759 Rearranging it, we get:

$$1760 \quad E \leq 2(g - f) + \gamma P E.$$

1761 Now, let us consider a state s^* where the error is maximal, i.e. $E(s^*) = E^*$. It must hold that:

$$1763 \quad E(s^*) \leq 2(g(s^*) - f(s^*)) + \gamma P E(s^*)$$

$$1764 \quad \leq 2(g(s^*) - f(s^*)) + \gamma E(s^*).$$

1765 Thus, we get

$$1766 \quad (1 - \gamma)E(s^*) \leq 2(g(s^*) - f(s^*)).$$

1767 Since $g(s) = f(s)$ whenever $g(s) < V_\gamma^\uparrow$, the above equals to zero, implying $E(s^*) \leq 0$. This leads
1768 to a contradiction. Therefore we conclude that $\Delta V \leq D + 2f$. \square
1769

1770 G.4 BOUNDEDNESS OF J_γ^t

1772 **Lemma 18** ((Lee & Oh, 2025)). *Let $C > 0$ be a constant and $\{X_t\}_{t=1}^\infty$ be a martingale difference
1773 sequence with respect to a filtration $\{\mathcal{F}_t\}_{t=0}^\infty$ with $X_t \leq C$ almost surely for all $t \in \mathbb{N}$. Then, for
1774 any $\lambda \in (0, 1]$ and $\delta \in (0, 1]$, the following inequality holds for all $n \in \mathbb{N}$ with probability at least
1775 $1 - \delta$:*

$$1776 \quad \sum_{t=1}^n X_t \leq \frac{3\lambda}{4C} \sum_{t=1}^n \mathbb{E}[X_t^2 | \mathcal{F}_{t-1}] + \frac{C}{\lambda} \log \frac{1}{\delta}.$$

1779 **Lemma 19.** *For any time T , we have*

$$1780 \quad \sum_{t=1}^T \mathbf{1}(t + \nu_t \neq T + 1) \leq S A \log_2 2T.$$

1782 *Proof.* The general idea is similar to the proof of Lemma 30 in (Lee & Oh, 2025), but unlike the
 1783 episodic setting, where episodes exhibit monotonicity, the infinite-horizon setting requires special
 1784 consideration to handle coupled trajectories. By focusing on each individual state-action pair, we
 1785 get:

$$\begin{aligned} \sum_{t=1}^T \mathbf{1}(t + \nu_t \neq T + 1) &= \sum_{t=1}^T \sum_{(s,a) \in \mathcal{S} \times \mathcal{A}} \mathbf{1}(t + \nu_t \neq T + 1, (s_{t+\nu_t}, a_{t+\nu_t}) = (s, a)) \\ &= \sum_{(s,a) \in \mathcal{S} \times \mathcal{A}} \sum_{t=1}^T \mathbf{1}(t + \nu_t \neq T + 1, (s_{t+\nu_t}, a_{t+\nu_t}) = (s, a)). \end{aligned}$$

1793 If $t + \nu_t \neq T + 1$, then $t + \nu_t$ is the first time step more than double the anchor t . Therefore, we
 1794 have $n^{(t+\nu_t)}(s_{t+\nu_t}, a_{t+\nu_t}) \geq 2N^t(s_{t+\nu_t}, a_{t+\nu_t}) + 1$. Since any step that is greater than $t + \nu_t$ is
 1795 an inclusion of $n^{(t+\nu_t)}$, we have $N^{(t+\nu_t+c)}(s_{t+\nu_t}, a_{t+\nu_t}) \geq 2N^t(s_{t+\nu_t}, a_{t+\nu_t}) + 1$ for any $c \in \mathbb{N}$.
 1796 Based on this condition, we denote $M_T(s, a)$ as the number of steps $t \in \{1, 2, \dots, T\}$ such that
 1797 $N^{(t+\nu_t+c)}(s, a) \geq 2N^t(s, a) + 1$, then, we have:

$$\sum_{t=1}^T \mathbf{1}(t + \nu_t \neq T + 1, (s_{t+\nu_t}, a_{t+\nu_t}) = (s, a)) \leq M_T(s, a).$$

1801 We aim to bound the right-hand side above by finding contradiction between a upper and lower
 1802 bound of $N^{(t+\nu_t+c)}(s, a)$. First, since there are at most $(T - t + 1)$ time steps left from the anchor
 1803 t , we have $N^{(t+\nu_t+c)}(s, a) \leq N^t(s, a) + (T - t + 1) \leq N^t(s, a) + T$. Combining this with
 1804 $N^{(t+\nu_t+c)}(s, a) \geq 2N^t(s, a) + 1$, we know that it occurs only if $N^t(s, a) < T$. Next, we prove by
 1805 induction that

$$P(t) : N^t(s, a) \geq 2^{M_{t-1}(s, a)} - 1.$$

1806 To verify this, let $c = 1$ and define a sequence of “checkpoints” that starts with t :

$$t_0 := t, \quad t_{k+1} := t_k + \nu_{t_k} + 1.$$

1810 Because $\nu_{t_k} \geq 0$, we have $t_{k+1} \geq t_k + 1$. Also $\nu_{t_k} \leq T - t_k + 1$ and $t_k \geq t \geq 1$ give $t_{k+1} \leq T$.
 1811 Hence $\{t_k\}$ is a strictly increasing sequence bounded above by T , so after at most $T - t_0$ steps
 1812 we reach $t_K = T$. If the induction statement holds for any step $t \in [t_k, t_{k+1}]$, then, by the above
 1813 progress and termination argument, it follows that all steps are covered.

1814 Let's first verify the base case $P(1)$, for which we have $M_0 = 0$ and $N^{(1)} = 0$, therefore the
 1815 inequality holds. Then assume $P(t_0)$ holds, there are two cases to consider. If
 1816 $N^{(t+\nu_t+1)}(s, a) \geq 2N^t(s, a) + 1$, it implies that (s, a) is the first time step that triggers the
 1817 stopping of ν_t , leading to $N^{(t+\nu_t+1)}(s, a) \geq 2^{M_{t-1}(s, a)+1} - 1 = 2^{M_{t+\nu_t}(s, a)} - 1$. More-
 1818 over, for each intermediate step l with $1 \leq l \leq \nu_t$, $P(t_0 + l)$ holds; On the other hand,
 1819 if (s, a) is not the pair that triggers ν_t , this means that it has not been doubled yet, implying
 1820 $M_{t+\nu_t}(s, a) = M_{t-1}(s, a)$. However, there may still be some increments, and therefore
 1821 $N^{(t+\nu_t+1)}(s, a) \geq N^t(s, a) \geq 2^{M_{t-1}(s, a)} - 1 = 2^{M_{t+\nu_t}(s, a)} - 1$. Thus, we conclude that the
 1822 induction holds.

1824 This gives us a lower bound, suggesting $M_{t-1}(s, a)$ cannot grow faster than logarithmically in
 1825 T . Formally, once $M_{t-1}(s, a)$ reaches $\lfloor \log_2 T \rfloor + 1$ for some t , it cannot increase further, since
 1826 $N^t(s, a) < T$. Therefore, we conclude that $M_T(s, a) \leq \lfloor \log_2 T \rfloor + 1 \leq \log_2 2T$, which completes
 1827 the proof. \square

1829 **Lemma 20.** *For infinite-horizon discounted MDPs, under high-probability event $\mathbf{A}_5^\gamma \cap \mathbf{A}_6^\gamma$, it holds
 1830 that*

$$\sum_{t=1}^T J_\gamma^t(s_t) \leq \sum_{t=1}^T \sum_{l=0}^{\nu_t-1} \gamma^l \beta^t(s_{t+l}, a_{t+l}) + \frac{13V_\gamma^\uparrow}{1-\gamma} SA \log \frac{12T}{\delta},$$

1834 for all $T \in \mathbb{N}$.

1835 *Proof.*

1836 **Bounding $J_\gamma^t(s_t)$** Given a T -path $(s_1, a_1, r_1, \dots, s_T, a_T, r_T, s_{T+1})$ where actions are chosen
 1837 from $\pi_t(s_t)$ at each time step, we decompose $J_\gamma^t(s_t)$ as follows:
 1838

1839

1840

$$\begin{aligned}
 1841 \quad J_\gamma^t(s_t) &\leq \beta^t(s_t, a_t) + \gamma P J^t(s_t, a_t) \\
 1842 &= \beta^t(s_t, a_t) + \gamma P J^t(s_t, a_t) - \gamma J^t(s_{t+1}) + \gamma J^t(s_{t+1}) \\
 1843 &\quad \vdots \\
 1844 &\leq \sum_{l=0}^{\nu_t-1} \underbrace{\gamma^l \beta^t(s_{t+l}, a_{t+l})}_{\mathbf{S}_{1,l}} + \underbrace{\gamma^{l+1} (P J^t(s_{t+l}, a_{t+l}) - J^t(s_{t+l+1}))}_{\mathbf{S}_{2,l}} + \gamma^{\nu_t} J^t(s_{t+\nu_t}).
 \end{aligned}$$

1845

1846

1847

1848

1849

1850

1851 Then, we take summation over T steps:

1852

1853

$$1854 \quad \sum_{t=1}^T J_\gamma^t(s_t) \leq \underbrace{\sum_{t=1}^T \sum_{l=0}^{\nu_t-1} \mathbf{S}_{1,l}}_{I_1} + \underbrace{\sum_{t=1}^T \sum_{l=0}^{\nu_t-1} \mathbf{S}_{2,l}}_{I_2} + \underbrace{\sum_{t=1}^T \gamma^{\nu_t} J^t(s_{t+\nu_t})}_{I_3}.$$

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

$$\begin{aligned}
 1868 \quad I_3 &= \sum_{t=1}^T \gamma^{\nu_t} J^t(s_{t+\nu_t}) \\
 1869 &= \sum_{t=1}^T (\mathbf{1}(t + \nu_t \neq T + 1) + \mathbf{1}(t + \nu_t = T + 1)) \gamma^{\nu_t} J^t(s_{t+\nu_t}) \\
 1870 &= \sum_{t=1}^T \mathbf{1}(t + \nu_t \neq T + 1) \gamma^{\nu_t} J^t(s_{t+\nu_t}) + \sum_{t=1}^T \mathbf{1}(t + \nu_t = T + 1) \gamma^{\nu_t} J^t(s_{t+\nu_t}) \\
 1871 &= \sum_{t=1}^T \mathbf{1}(t + \nu_t \neq T + 1) \gamma^{\nu_t} J^t(s_{t+\nu_t}) + \sum_{t=1}^T \mathbf{1}(t + \nu_t = T + 1) \gamma^{T-t+1} J^t(s_{T+1}) \\
 1872 &\leq \sum_{t=1}^T \mathbf{1}(t + \nu_t \neq T + 1) \gamma^{\nu_t} J^t(s_{t+\nu_t}) + \frac{V_\gamma^\uparrow}{1 - \gamma} \\
 1873 &\leq V_\gamma^\uparrow \sum_{t=1}^T \mathbf{1}(t + \nu_t \neq T + 1) + \frac{V_\gamma^\uparrow}{1 - \gamma} \\
 1874 &\leq V_\gamma^\uparrow S A \log_2 2T + \frac{V_\gamma^\uparrow}{1 - \gamma}
 \end{aligned}$$

1885

1886

1887

1888

1889

1890
1891**Bounding I_2** 1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908

$$\begin{aligned}
I_2 &= \sum_{t=1}^T \sum_{l=0}^{\nu_t-1} \mathbf{S}_{2,l} \\
&= \sum_{t=1}^T \sum_{l=0}^{T-t} \mathbf{1}(l \leq \nu_t - 1) \mathbf{S}_{2,l} \\
&= \sum_{t=1}^T \sum_{l=0}^{T-t} \mathbf{1}(l \leq \nu_t - 1) \gamma^{l+1} (P J^t(s_{t+l}, a_{t+l}) - J^t(s_{t+l+1})) \\
&\stackrel{(a)}{=} \sum_{\tau=1}^T \sum_{t=1}^{\tau} \mathbf{1}(\tau - t \leq \nu_t - 1) \gamma^{\tau-t+1} (P J^t(s_{\tau}, a_{\tau}) - J^t(s_{\tau+1})) \\
&\stackrel{(b)}{=} \sum_{t=1}^T \underbrace{\sum_{\tau=1}^t \mathbf{1}(t - \tau \leq \nu_{\tau} - 1) \gamma^{t-\tau+1} (P J^{\tau}(s_t, a_t) - J^{\tau}(s_{t+1}))}_{:= X_t},
\end{aligned}$$

1909

where (a) is due to the exchange of rows and columns and (b) to the reverse of the roles of indexes.

1910

1911 Note that in the final step, we make a bag of martingale differences with the same time index;
1912 therefore, it is not hard to verify that X_t is a martingale difference sequence, with $E[X_t | \mathcal{F}_t] =$ 1913 0 , $E[(X_t)^2 | \mathcal{F}_t] = \text{Var} \left(\sum_{\tau=1}^t \mathbf{1}(t - \tau \leq \nu_{\tau} - 1) \gamma^{t-\tau+1} J^{\tau}(s_{t+1}) \right) (s_t, a_t)$ and bounded as $|X_t| \leq$ 1914 $\frac{\gamma V_{\gamma}^{\uparrow}}{1-\gamma} \leq \frac{V_{\gamma}^{\uparrow}}{1-\gamma}$. Denoting $Y^t(s_{t+1}) := \sum_{\tau=1}^t \mathbf{1}(t - \tau \leq \nu_{\tau} - 1) \gamma^{t-\tau+1} J^{\tau}(s_{t+1})$ and applying Lemma 181915 to $\{X_t\}_{t=1}^{\infty}$ with $\lambda = \frac{1}{6}$, we get the following:

1916

1917
1918
1919
1920
1921
1922
1923
1924
1925
1926

$$\begin{aligned}
I_2 &= \sum_{t=1}^T X_t \\
&\leq \frac{(1-\gamma)}{8V_{\gamma}^{\uparrow}} \underbrace{\sum_{t=1}^T \text{Var}(Y^t(s_{t+1})) (s_t, a_t)}_{:= L} + \frac{6V_{\gamma}^{\uparrow}}{1-\gamma} \log \frac{6}{\delta}.
\end{aligned} \tag{9}$$

1927

Next, we will bound the sum of variances L . First, we look at each individual variance.

1928

1929
1930
1931
1932
1933
1934
1935
1936
1937
1938

$$\begin{aligned}
L_t &:= \text{Var}(Y^t(s_{t+1})) (s_t, a_t) = P(Y^t(s_{t+1}))^2 (s_t, a_t) - (PY^t(s_{t+1})(s_t, a_t))^2 \\
&= P(Y^t(s_{t+1}))^2 (s_t, a_t) - (Y^t(s_{t+1}))^2 + (Y^t(s_{t+1}))^2 - (PY^t(s_{t+1})(s_t, a_t))^2 \\
&= P(Y^t(s_{t+1}))^2 (s_t, a_t) - (Y^t(s_{t+1}))^2 \\
&\quad + (Y^t(s_{t+1}) + PY^t(s_{t+1})(s_t, a_t)) \cdot (Y^t(s_{t+1}) - PY^t(s_{t+1})(s_t, a_t)) \\
&\leq \underbrace{P(Y^t(s_{t+1}))^2 (s_t, a_t) - (Y^t(s_{t+1}))^2}_{:= Z_t} + \frac{2V_{\gamma}^{\uparrow}}{1-\gamma} (Y^t(s_{t+1}) - PY^t(s_{t+1})(s_t, a_t)).
\end{aligned}$$

1939

Akin to the previous argument, the second term is a martingale difference sequence, therefore, we
1940 obtain:

1941

1942
1943

$$\sum_{t=1}^T Y^t(s_{t+1}) - PY^t(s_{t+1})(s_t, a_t) \leq \frac{1-\gamma}{8V_{\gamma}^{\uparrow}} \sum_{t=1}^T \text{Var}(Y^t(s_{t+1})) (s_t, a_t) + \frac{6V_{\gamma}^{\uparrow}}{1-\gamma} \log \frac{6}{\delta}.$$

1944 Based on this, we can simplify the bounding on L :
 1945

$$\begin{aligned}
 1946 \quad L &= \sum_{t=1}^T L_t \\
 1947 \\
 1948 \quad &\leq \sum_{t=1}^T Z_t + \frac{2V_\gamma^\uparrow}{1-\gamma} \sum_{t=1}^T (Y^t(s_{t+1}) - PY^t(s_{t+1})(s_t, a_t)) \\
 1949 \\
 1950 \quad &\leq \sum_{t=1}^T Z_t + \frac{2V_\gamma^\uparrow}{1-\gamma} \left(\frac{1-\gamma}{8V_\gamma^\uparrow} \sum_{t=1}^T \text{Var}(Y^t(s_{t+1}))(s_t, a_t) + \frac{6V_\gamma^\uparrow}{1-\gamma} \log \frac{6}{\delta} \right) \\
 1951 \\
 1952 \quad &= \sum_{t=1}^T Z_t + \frac{1}{4} \sum_{t=1}^T \text{Var}(Y^t(s_{t+1}))(s_t, a_t) + \frac{12V_\gamma^\uparrow 2}{(1-\gamma)^2} \log \frac{6}{\delta} \\
 1953 \\
 1954 \quad &= \sum_{t=1}^T Z_t + \frac{1}{4} L + \frac{12V_\gamma^\uparrow 2}{(1-\gamma)^2} \log \frac{6}{\delta} \\
 1955 \\
 1956 \quad &\leq \sum_{t=1}^T Z_t + \frac{1}{4} L + \frac{12V_\gamma^\uparrow 2}{(1-\gamma)^2} \log \frac{6}{\delta}. \tag{10}
 \end{aligned}$$

1963 It is not difficult to check that $\{Z_t\}_{t=1}^\infty$ is a martingale difference sequence, with $E[Z_t | \mathcal{F}_t] = 0$,
 1964 $E[(Z_t)^2 | \mathcal{F}_t] = \text{Var}((Y^t(s_{t+1}))^2)(s_t, a_t)$ and bounded as $|Z_t| \leq \frac{V_\gamma^\uparrow 2}{(1-\gamma)^2}$. Moreover, by applying
 1965 Lemma 9 in (Lee & Oh, 2025) to the second-order moment, we have:
 1966

$$1967 \quad \text{Var}((Y^t(s_{t+1}))^2)(s_t, a_t) \leq \frac{4V_\gamma^\uparrow 2}{(1-\gamma)^2} \text{Var}(Y^t(s_{t+1}))(s_t, a_t).$$

1968 Combining this with Lemma 18 with $\lambda = \frac{1}{12}$, we get the following.
 1969

$$\begin{aligned}
 1970 \quad \sum_{t=1}^T Z_t &\leq \frac{1}{4} \sum_{t=1}^T \text{Var}(Y^t(s_{t+1}))(s_t, a_t) + \frac{12V_\gamma^\uparrow 2}{(1-\gamma)^2} \log \frac{6}{\delta} \\
 1971 \\
 1972 \quad &= \frac{1}{4} L + \frac{12V_\gamma^\uparrow 2}{(1-\gamma)^2} \log \frac{6}{\delta}
 \end{aligned}$$

1973 Substituting this into Eq. 10, we obtain:
 1974

$$\begin{aligned}
 1975 \quad L &\leq \sum_{t=1}^T Z_t + \frac{1}{4} L + \frac{12V_\gamma^\uparrow 2}{(1-\gamma)^2} \log \frac{6}{\delta} \\
 1976 \quad &\leq \frac{1}{4} L + \frac{12V_\gamma^\uparrow 2}{(1-\gamma)^2} \log \frac{6}{\delta} + \frac{1}{4} L + \frac{12V_\gamma^\uparrow 2}{(1-\gamma)^2} \log \frac{6}{\delta} \\
 1977 \quad &= \frac{1}{2} L + \frac{24V_\gamma^\uparrow 2}{(1-\gamma)^2} \log \frac{6}{\delta},
 \end{aligned}$$

1978 which has a recursive structure, leading to:
 1979

$$1980 \quad L \leq \frac{48V_\gamma^\uparrow 2}{(1-\gamma)^2} \log \frac{6}{\delta}.$$

1981 Substituting this into 9, we have:
 1982

$$\begin{aligned}
 1983 \quad I_2 &\leq \frac{(1-\gamma)}{8V_\gamma^\uparrow} L + \frac{6V_\gamma^\uparrow}{1-\gamma} \log \frac{6}{\delta} \\
 1984 \quad &\leq \frac{(1-\gamma)}{8V_\gamma^\uparrow} \frac{48V_\gamma^\uparrow 2}{(1-\gamma)^2} \log \frac{6}{\delta} + \frac{6V_\gamma^\uparrow}{1-\gamma} \log \frac{6}{\delta} \\
 1985 \quad &\leq \frac{12V_\gamma^\uparrow}{1-\gamma} \log \frac{6}{\delta}.
 \end{aligned}$$

1998

Finally, we conclude that

1999

2000

2001

2002

2003

2004

2005

$$\begin{aligned}
\sum_{t=1}^T J_\gamma^t(s_t) &\leq I_1 + I_2 + I_3 \\
&\leq I_1 + \frac{12V_\gamma^\uparrow}{1-\gamma} \log \frac{6}{\delta} + \left(V_\gamma^\uparrow SA \log_2 2T + \frac{V_\gamma^\uparrow}{1-\gamma} \right) \\
&\leq I_1 + \frac{13V_\gamma^\uparrow}{1-\gamma} \log \frac{6}{\delta} + V_\gamma^\uparrow SA \log_2 2T \\
&\leq I_1 + \frac{13V_\gamma^\uparrow}{1-\gamma} \log \frac{6}{\delta} + \frac{V_\gamma^\uparrow}{1-\gamma} SA \log_2 2T \\
&\leq I_1 + \frac{13V_\gamma^\uparrow}{1-\gamma} SA \log \frac{6}{\delta} + \frac{2V_\gamma^\uparrow}{1-\gamma} SA \log 2T \\
&\leq I_1 + \frac{13V_\gamma^\uparrow}{1-\gamma} SA \log \frac{6}{\delta} + \frac{13V_\gamma^\uparrow}{1-\gamma} SA \log 2T \\
&= I_1 + \frac{13V_\gamma^\uparrow}{1-\gamma} SA \log \frac{12T}{\delta}.
\end{aligned}$$

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

which completes the proof. \square

2023

2024

2025

2026

2027

2028

2029

2030

Lemma 21. For infinite-horizon discounted MDPs, under high-probability event $\mathbf{A}_5^\gamma \cap \mathbf{A}_6^\gamma$, it holds that

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

$$\sum_{t=1}^T J_\gamma^t(s_t) \leq \frac{2\mathcal{Y}^{(T)}}{1-\gamma} SA \log \left(1 + \frac{T}{SA} \right) + \frac{13V_\gamma^\uparrow}{1-\gamma} SA \log \frac{12T}{\delta},$$

for all $T \in \mathbb{N}$.

Proof. Based on Lemma 20, we only need to bound I_1 , which is a series of discounted sum of β^t . By the definition of the stopping time ν_t , we know that for any t that satisfies $t - \tau \leq \nu_t - 1$, we have $n^t(s_t, a_t) \leq 2N^\tau(s_t, a_t)$ looking back at a previous anchor τ . Moreover, we infer that $n^t(s_t, a_t) \geq 2$ must hold, otherwise it cannot satisfy the condition. We denote the set $\mathcal{I}(s, a) \subseteq \{1, 2, \dots, T\}$ as

2052 the time steps at which the pair (s, a) is encountered.
 2053

$$\begin{aligned}
 I_1 &= \sum_{t=1}^T \sum_{l=0}^{\nu_t-1} \gamma^l \beta^t(s_{t+l}, a_{t+l}) \\
 &= \sum_{t=1}^T \sum_{l=0}^{T-t} \mathbf{1}(l \leq \nu_t - 1) \gamma^l \beta^t(s_{t+l}, a_{t+l}) \\
 &= \sum_{\tau=1}^T \sum_{t=1}^{\tau} \mathbf{1}(\tau - t \leq \nu_t - 1) \gamma^{\tau-t} \beta^t(s_{\tau}, a_{\tau}) \\
 &= \sum_{t=1}^T \sum_{\tau=1}^t \mathbf{1}(t - \tau \leq \nu_{\tau} - 1) \gamma^{t-\tau} \beta^{\tau}(s_t, a_t) \\
 &= \sum_{t=1}^T \sum_{\tau=1}^t \mathbf{1}(t - \tau \leq \nu_{\tau} - 1) \gamma^{t-\tau} \frac{\mathcal{Y}^{\tau}}{N^{\tau}(s_t, a_t)} \\
 &\leq \mathcal{Y}^{(T)} \sum_{t=1}^T \sum_{\tau=1}^t \mathbf{1}(t - \tau \leq \nu_{\tau} - 1) \gamma^{t-\tau} \frac{1}{N^{\tau}(s_t, a_t)} \\
 &\leq \mathcal{Y}^{(T)} \sum_{t=1}^T \sum_{\tau=1}^t \mathbf{1}(t - \tau \leq \nu_{\tau} - 1) \gamma^{t-\tau} \frac{2}{n^t(s_t, a_t)} \\
 &\stackrel{(a)}{=} \mathcal{Y}^{(T)} \sum_{t=1}^T \sum_{\tau=1}^t \mathbf{1}(t - \tau \leq \nu_{\tau} - 1) \mathbf{1}(n^t(s_t, a_t) \geq 2) \gamma^{t-\tau} \frac{2}{n^t(s_t, a_t)} \\
 &\leq 2\mathcal{Y}^{(T)} \sum_{t=1}^T \mathbf{1}(n^t(s_t, a_t) \geq 2) \frac{1}{n^t(s_t, a_t)} \sum_{\tau=1}^t \mathbf{1}(t - \tau \leq \nu_{\tau} - 1) \gamma^{t-\tau} \\
 &\leq \frac{2\mathcal{Y}^{(T)}}{1-\gamma} \sum_{(s,a) \in \mathcal{S} \times \mathcal{A}} \sum_{t \in \mathcal{I}(s,a)} \mathbf{1}(n^t(s, a) \geq 2) \frac{1}{n^t(s, a)} \\
 &\leq \frac{2\mathcal{Y}^{(T)}}{1-\gamma} \sum_{(s,a) \in \mathcal{S} \times \mathcal{A}} \sum_{n=2}^{N^{T+1}(s,a)} \frac{1}{n} \\
 &\leq \frac{2\mathcal{Y}^{(T)}}{1-\gamma} \sum_{(s,a) \in \mathcal{S} \times \mathcal{A}} \log(1 + N^{T+1}(s, a)) \\
 &\leq \frac{2\mathcal{Y}^{(T)}}{1-\gamma} SA \log\left(1 + \frac{T}{SA}\right),
 \end{aligned}$$

2093 where (a) holds because we can distinguish two cases:

- 2094 • If $t - \tau > \nu_{\tau} - 1$, then the indicator $\mathbf{1}(t - \tau \leq \nu_{\tau} - 1)$ is zero, so the product vanishes
 2095 regardless of the other indicator;
- 2096 • If $t - \tau \leq \nu_{\tau} - 1$, then, as shown earlier, we have $n^t(s_t, a_t) \geq 2$.

2101
 2102
 2103
 2104
 2105

□

2106 G.5 LOWER BOUND OF EPISTEMIC RESISTANCE
21072108 *Proof.*

2109

$$\begin{aligned}
2110 \quad \sum_{t=1}^T P_U^t(s_t, a_t) &= 1 + \frac{1}{\mathcal{E}_{\max}} \sum_{t=2}^T \frac{1}{\sqrt{N^t(s_t, a_t)}} \\
2111 \quad &\geq 1 + \frac{1}{\mathcal{E}_{\max}} \sum_{t=2}^T \frac{1}{\sqrt{t-1}} \\
2112 \quad &= 1 + \frac{1}{\mathcal{E}_{\max}} \sum_{t=1}^{T-1} \frac{1}{\sqrt{t}} \\
2113 \quad &\geq 1 + \frac{1}{\mathcal{E}_{\max}} \sum_{t=1}^{T-1} \int_t^{t+1} \frac{1}{\sqrt{x}} dx \\
2114 \quad &= 1 + \frac{1}{\mathcal{E}_{\max}} \int_1^T \frac{1}{\sqrt{x}} dx \\
2115 \quad &= 1 + \frac{1}{\mathcal{E}_{\max}} (2\sqrt{T} - 2).
\end{aligned}$$

2116 Note, this also holds for $P_U^{t,\star}(s_t, \pi^\star(s_t))$. Therefore, multiplying with $\frac{23}{7} \lambda V_\gamma^\uparrow$ completes the proof. \square

2117

2118

2119 G.6 REGRET ANALYSIS
2120

2121 G.6.1 PROOF OF THEOREM 2

2122

2123 Prior to deriving the regret, we state the following lemma.

2124

2125 **Lemma 22.** *It holds that*

2126

2127
$$\ell_{4,T} \leq \ell_1 + \ell_{2,T},$$

2128

2129 for all $T \in \mathbb{N}$.

2130

2131

2132 *Proof.* Expand $\ell_{4,T}$ and relate it to $\ell_{2,T}$, we get:

2133

2134

$$\begin{aligned}
2135 \quad \ell_{4,T} &= \log \frac{12T}{\delta} \\
2136 \quad &< \log \frac{12(SA + T)}{\delta} \\
2137 \quad &= \log \frac{12SA(1 + \frac{T}{SA})}{\delta} \\
2138 \quad &= \log \left(\frac{12SA}{\delta} \right) + \log \left(1 + \frac{T}{SA} \right) \\
2139 \quad &\leq \ell_1 + \ell_{2,T}.
\end{aligned}$$

2140

2141

2142 *Proof.* From Lemma 9, we have:

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

$$\text{Regret}(T) \leq \frac{9V_\gamma^\uparrow}{2} \sum_{t=1}^T \lambda_t - V_\gamma^\uparrow \sum_{t=1}^T \mathfrak{R}^t(s) \lambda_t + 2 \sum_{t=1}^T J_\gamma^t(s) + \sum_{t=1}^T \mathcal{O} \left(\Phi_t \left(1 + \frac{\Phi_t}{V_\gamma^\uparrow} \right) \right)$$

2160
2161 Choose $\lambda_t = \min\{1, 3\sqrt{\frac{SAT\ell_1\ell_{2,T}}{T(1-\gamma)}}\}$, $\forall t \in [T]$ and denote $\Psi(T) := \frac{2 \sum_{t=1}^T \mathfrak{R}^t(s)}{9T}$, we have
2162

$$\begin{aligned} 2163 \quad & \frac{9V_\gamma^\uparrow}{2} \sum_{t=1}^T \lambda_t - V_\gamma^\uparrow \sum_{t=1}^T \mathfrak{R}^t(s) \lambda_t = \frac{9V_\gamma^\uparrow}{2} \left(1 - \frac{2 \sum_{t=1}^T \mathfrak{R}^t(s)}{9T} \right) T \min\{1, 3\sqrt{\frac{SAT\ell_1\ell_{2,T}}{T(1-\gamma)}}\} \\ 2164 \quad & \leq 14 \frac{R_{\max}}{1-\gamma} (1 - \Psi(T)) T \sqrt{\frac{SAT\ell_1\ell_{2,T}}{T(1-\gamma)}} \\ 2165 \quad & = 14 (1 - \Psi(T)) \frac{R_{\max}}{(1-\gamma)^{1.5}} \sqrt{SAT\ell_1\ell_{2,T}}. \\ 2166 \end{aligned}$$

2167 From Lemma 21, we know that
2168

$$\begin{aligned} 2169 \quad & 2 \sum_{t=1}^T J_\gamma^t(s_1^t) \leq \frac{4\mathcal{Y}^{(T)}}{1-\gamma} SA \log \left(1 + \frac{T}{SA} \right) + \frac{26V_\gamma^\uparrow}{1-\gamma} SA \log \frac{12T}{\delta} \\ 2170 \quad & \leq \frac{48V_\gamma^\uparrow SAT\ell_1\ell_{2,T}}{(1-\gamma)\lambda_T} + \frac{120V_\gamma^\uparrow}{1-\gamma} S^2 A \ell_{2,T} \ell_{3,T} + \frac{26V_\gamma^\uparrow}{1-\gamma} SA \log \frac{12T}{\delta}. \\ 2171 \quad & \leq \frac{48V_\gamma^\uparrow SAT\ell_1\ell_{2,T}}{(1-\gamma)} \max \left\{ 1, \frac{1}{3} \sqrt{\frac{T(1-\gamma)}{SAT\ell_1\ell_{2,T}}} \right\} + \frac{120V_\gamma^\uparrow}{1-\gamma} S^2 A \ell_{2,T} \ell_{3,T} + \frac{26V_\gamma^\uparrow}{1-\gamma} SA \log \frac{12T}{\delta}. \\ 2172 \quad & \leq \frac{48R_{\max} SAT\ell_1\ell_{2,T}}{(1-\gamma)^2} + \frac{16R_{\max}}{(1-\gamma)^{1.5}} \sqrt{SAT\ell_1\ell_{2,T}} + \frac{120R_{\max}}{(1-\gamma)^2} S^2 A \ell_{2,T} \ell_{3,T} + \frac{26R_{\max}}{(1-\gamma)^2} SA \log \frac{12T}{\delta}. \\ 2173 \quad & \stackrel{(a)}{\leq} \frac{16R_{\max}}{(1-\gamma)^{1.5}} \sqrt{SAT\ell_1\ell_{2,T}} + \left(\frac{120R_{\max}}{(1-\gamma)^2} S^2 A \ell_{2,T} \ell_{3,T} + \frac{48R_{\max} SAT\ell_1\ell_{2,T}}{(1-\gamma)^2} + \frac{26R_{\max}}{(1-\gamma)^2} SA(\ell_{1,T} + \ell_{2,T}) \right) \\ 2174 \quad & \stackrel{(b)}{\leq} \frac{16R_{\max}}{(1-\gamma)^{1.5}} \sqrt{SAT\ell_1\ell_{2,T}} + \left(\frac{120R_{\max}}{(1-\gamma)^2} S^2 A \ell_{2,T} \ell'_{1,T} + \frac{48R_{\max} SAT\ell'_{1,T}\ell_{2,T}}{(1-\gamma)^2} + \frac{26R_{\max}}{(1-\gamma)^2} SA(\ell'_{1,T} + \ell_{2,T}) \right) \\ 2175 \quad & \leq \frac{16R_{\max}}{(1-\gamma)^{1.5}} \sqrt{SAT\ell_1\ell_{2,T}} + \left(\frac{120R_{\max}}{(1-\gamma)^2} S^2 A \ell_{2,T} \ell'_{1,T} + \frac{48R_{\max} SAT\ell'_{1,T}(1+\ell_{2,T})}{(1-\gamma)^2} + \frac{26R_{\max}}{(1-\gamma)^2} SA\ell_{2,T} \right) \\ 2176 \quad & \leq \frac{16R_{\max}}{(1-\gamma)^{1.5}} \sqrt{SAT\ell_1\ell_{2,T}} + \left(\frac{120R_{\max}}{(1-\gamma)^2} S^2 A \ell_{2,T}(1+\ell'_{1,T}) + \frac{48R_{\max} SAT\ell'_{1,T}(1+\ell_{2,T})}{(1-\gamma)^2} \right) \\ 2177 \quad & \leq \frac{16R_{\max}}{(1-\gamma)^{1.5}} \sqrt{SAT\ell_1\ell_{2,T}} + \frac{168R_{\max}}{(1-\gamma)^2} S^2 A(1+\ell'_{1,T})(1+\ell_{2,T}), \\ 2178 \end{aligned}$$

2179 where (a) uses the Lemma 22, and (b) $\ell'_{1,T}$ is denoted as $\log \frac{24SA(1+\log T)}{\delta}$, therein $\ell'_{1,T} \geq \ell_1$ and
2180 $\ell'_{1,T} \geq \ell_{3,T}$.
2181

2182 Combining these two together, we get:
2183

$$2184 \quad \text{Regret}(T) \leq (30 - 14\Psi(T))R_{\max} \frac{\sqrt{SAT\ell_1\ell_{2,T}}}{(1-\gamma)^{1.5}} + 168R_{\max} \frac{S^2 A}{(1-\gamma)^2} (1 + \ell'_{1,T})(1 + \ell_{2,T}) + \sum_{t=1}^T \mathcal{O} \left(\Phi_t \left(1 + \frac{\Phi_t}{V_\gamma^\uparrow} \right) \right),$$

2185 where only the last part left to resolve.
2186

2187 Given $\Phi_t = R_{\max} \lambda_t$, we have one additional source of $\mathcal{O}(\lambda T)$, which will be merged into the leading
2188 term. In addition, note that
2189

$$\begin{aligned} 2190 \quad & \sum_{t=1}^T \mathcal{O} \left(\frac{\Phi_t^2}{V_\gamma^\uparrow} \right) = \sum_{t=1}^T \tilde{\mathcal{O}} \left(\frac{R_{\max}^2 SA}{TV_\gamma^\uparrow} \right) \\ 2191 \quad & = \tilde{\mathcal{O}} \left(\frac{R_{\max}^2 SA}{V_\gamma^\uparrow} \right) \\ 2192 \quad & \leq \tilde{\mathcal{O}}(R_{\max} SA), \\ 2193 \end{aligned}$$

2214 which only increases the non-leading term by some constants. So overall, we have:
 2215
 2216
 2217

$$2218 \quad \text{Regret}(T) = \tilde{\mathcal{O}} \left(\frac{\sqrt{SAT}}{(1-\gamma)^{1.5}} + \frac{S^2 A}{(1-\gamma)^2} \right).$$

$$2219$$

$$2220$$

$$2221$$

$$2222$$

$$2223 \quad \square$$

$$2224$$

$$2225$$

$$2226$$

$$2227$$

$$2228$$

$$2229$$

$$2230$$

$$2231$$

$$2232$$

$$2233 \quad \text{G.6.2 STATE-ACTION DEPENDENT } \lambda_t(s, a)$$

$$2234$$

$$2235 \quad \text{Definition 8. Let } \mathcal{G} \text{ be defined by}$$

$$2236$$

$$2237$$

$$2238$$

$$2239$$

$$2240$$

$$2241 \quad \mathcal{G} = \sum_{(s,a) \in \mathcal{S} \times \mathcal{A}} \left(\sqrt{1 - \frac{46}{63} \bar{P}_U(s, a)} \right),$$

$$2242$$

$$2243$$

$$2244 \quad \text{where}$$

$$2245$$

$$2246$$

$$2247$$

$$2248$$

$$2249 \quad \bar{P}_U^\tau(s, a) := \min\{P_U^\tau(s, a), P_U^{\tau,*}(s)\}$$

$$2250 \quad \bar{P}_U(s, a) := \min_{2 \leq n \leq N^{T+1}(s, a)} \min_{1 \leq \tau \leq t_{(s,a)}(n)} \bar{P}_U^\tau(s, a)$$

$$2251$$

$$2252$$

$$2253$$

$$2254 \quad \text{Notably, we have the property of } \mathcal{G} \text{ that } \frac{17}{63} SA \leq \mathcal{G} \leq SA. \text{ The maximum is attained only if}$$

$$2255 \quad \bar{P}_U(s, a) \equiv 0, \forall (s, a) \in \mathcal{S} \times \mathcal{A}.$$

$$2256$$

$$2257 \quad \text{If the epistemic uncertainty is non-increasing, then } \bar{P}_U(s, a) \text{ is corresponding to exactly the epis-}$$

$$2258 \quad \text{temic uncertainty at the end of learning, that is, } \bar{P}_U^{T+1}(s, a), \text{ reflecting the systematic uncertainty of}$$

$$2259 \quad \text{a particular state-action.}$$

$$2260$$

$$2261$$

$$2262 \quad \text{Lemma 23. Denote } \rho^t(s, a) := \frac{\sqrt{\frac{9}{2} - \mathfrak{R}^t(s, a)} \ell_{1,t}}{N^t(s, a)}, \text{ it holds that}$$

$$2263$$

$$2264$$

$$2265$$

$$2266 \quad \sum_{t=1}^T \sum_{l=0}^{\nu_t-1} \gamma^l \rho^t(s_{t+l}, a_{t+l}) \leq \frac{3\sqrt{2}\ell_{1,T}}{(1-\gamma)} \mathcal{G} \log \left(1 + \frac{T}{\mathcal{G}} \right).$$

$$2267$$

2268
2269 *Proof.* Denote $I := \sum_{t=1}^T \sum_{l=0}^{\nu_t-1} \gamma^l \rho^t(s_{t+l}, a_{t+l})$, we have
2270

2271
2272 $I = \sum_{t=1}^T \sum_{\tau=1}^t \mathbf{1}(t-\tau \leq \nu_\tau - 1) \gamma^{t-\tau} \frac{\ell_{1,\tau}}{N^\tau(s_t, a_t)} \left(\sqrt{\frac{9}{2} - \mathfrak{R}^\tau(s_t, a_t)} \right)$
2273
2274 $\leq \sum_{t=1}^T \sum_{\tau=1}^t \mathbf{1}(t-\tau \leq \nu_\tau - 1) \gamma^{t-\tau} \frac{2\ell_{1,\tau}}{n^t(s_t, a_t)} \left(\sqrt{\frac{9}{2} - \mathfrak{R}^\tau(s_t, a_t)} \right)$
2275
2276
2277 $\stackrel{(a)}{\leq} 2\ell_{1,T} \sum_{t=1}^T \sum_{\tau=1}^t \mathbf{1}(t-\tau \leq \nu_\tau - 1) \gamma^{t-\tau} \frac{1}{n^t(s_t, a_t)} \left(\sqrt{\frac{9}{2} - \mathfrak{R}^\tau(s_t, a_t)} \right)$
2278
2279
2280 $\stackrel{(b)}{\leq} 3\sqrt{2}\ell_{1,T} \sum_{t=1}^T \sum_{\tau=1}^t \mathbf{1}(t-\tau \leq \nu_\tau - 1) \gamma^{t-\tau} \frac{1}{n^t(s_t, a_t)} \left(\sqrt{1 - \frac{46}{63} \bar{P}_U^\tau(s_t, a_t)} \right)$
2281
2282
2283 $= 3\sqrt{2}\ell_{1,T} \sum_{t=1}^T \sum_{\tau=1}^t \mathbf{1}(t-\tau \leq \nu_\tau - 1) \mathbf{1}(n^t(s_t, a_t) \geq 2) \gamma^{t-\tau} \frac{1}{n^t(s_t, a_t)} \left(\sqrt{1 - \frac{46}{63} \bar{P}_U^\tau(s_t, a_t)} \right)$
2284
2285
2286 $\leq 3\sqrt{2}\ell_{1,T} \sum_{t=1}^T \mathbf{1}(n^t(s_t, a_t) \geq 2) \frac{1}{n^t(s_t, a_t)} \sum_{\tau=1}^t \mathbf{1}(t-\tau \leq \nu_\tau - 1) \gamma^{t-\tau} \left(\sqrt{1 - \frac{46}{63} \bar{P}_U^\tau(s_t, a_t)} \right)$
2287
2288
2289 $\leq 3\sqrt{2}\ell_{1,T} \sum_{t=1}^T \mathbf{1}(n^t(s_t, a_t) \geq 2) \frac{1}{n^t(s_t, a_t)} \left(\sqrt{1 - \frac{46}{63} \min_{1 \leq \tau \leq t} \bar{P}_U^\tau(s_t, a_t)} \right) \sum_{\tau=1}^t \mathbf{1}(t-\tau \leq \nu_\tau - 1) \gamma^{t-\tau}$
2290
2291
2292 $\leq \frac{3\sqrt{2}\ell_{1,T}}{(1-\gamma)} \sum_{t=1}^T \mathbf{1}(n^t(s_t, a_t) \geq 2) \frac{1}{n^t(s_t, a_t)} \left(\sqrt{1 - \frac{46}{63} \min_{1 \leq \tau \leq t} \bar{P}_U^\tau(s_t, a_t)} \right)$
2293
2294
2295 $\leq \frac{3\sqrt{2}\ell_{1,T}}{(1-\gamma)} \sum_{(s,a) \in \mathcal{S} \times \mathcal{A}} \sum_{t \in \mathcal{I}(s,a)} \mathbf{1}(n^t(s, a) \geq 2) \frac{\left(\sqrt{1 - \frac{46}{63} \min_{1 \leq \tau \leq t} \bar{P}_U^\tau(s, a)} \right)}{n^t(s, a)}$
2296
2297
2298 $\leq \frac{3\sqrt{2}\ell_{1,T}}{(1-\gamma)} \sum_{(s,a) \in \mathcal{S} \times \mathcal{A}} \sum_{n=2}^{N^{T+1}(s,a)} \frac{\left(\sqrt{1 - \frac{46}{63} \min_{1 \leq \tau \leq t_{(s,a)}(n)} \bar{P}_U^\tau(s, a)} \right)}{n}$
2299
2300
2301 $\leq \frac{3\sqrt{2}\ell_{1,T}}{(1-\gamma)} \sum_{(s,a) \in \mathcal{S} \times \mathcal{A}} \left(\sqrt{1 - \frac{46}{63} \min_{2 \leq n \leq N^{T+1}(s,a)} \min_{1 \leq \tau \leq t_{(s,a)}(n)} \bar{P}_U^\tau(s, a)} \right) \sum_{n=2}^{N^{T+1}(s,a)} \frac{1}{n}$
2302
2303
2304
2305 $= \frac{3\sqrt{2}\ell_{1,T}}{(1-\gamma)} \sum_{(s,a) \in \mathcal{S} \times \mathcal{A}} \left(\sqrt{1 - \frac{46}{63} \bar{P}_U(s, a)} \right) \log(1 + N^{T+1}(s, a))$
2306
2307
2308 $\leq \frac{3\sqrt{2}\ell_{1,T}}{(1-\gamma)} \mathcal{G} \log \left(\sum_{(s,a) \in \mathcal{S} \times \mathcal{A}} \frac{\left(\sqrt{1 - \frac{46}{63} \bar{P}_U(s, a)} \right) (1 + N^{T+1}(s, a))}{\mathcal{G}} \right)$
2309
2310
2311
2312 $= \frac{3\sqrt{2}\ell_{1,T}}{(1-\gamma)} \mathcal{G} \log \left(1 + \sum_{(s,a) \in \mathcal{S} \times \mathcal{A}} \frac{\left(\sqrt{1 - \frac{46}{63} \bar{P}_U(s, a)} \right) (N^{T+1}(s, a))}{\mathcal{G}} \right)$
2313
2314
2315
2316 $\leq \frac{3\sqrt{2}\ell_{1,T}}{(1-\gamma)} \mathcal{G} \log \left(1 + \sum_{(s,a) \in \mathcal{S} \times \mathcal{A}} \frac{N^{T+1}(s, a)}{\mathcal{G}} \right)$
2317
2318
2319 $\stackrel{(c)}{\leq} \frac{3\sqrt{2}\ell_{1,T}}{(1-\gamma)} \mathcal{G} \log \left(1 + \frac{T}{\mathcal{G}} \right),$
2320
2321

where we have used the following facts:

2322 (a) Monotonicity of $\ell_{1,\tau}$

2323 (b) $\mathfrak{R}^\tau(s_t, a_t) \geq \frac{23}{7} \bar{P}_U^\tau(s_t, a_t)$

2324 (c) Jensen's inequality

2325

2326 \square

2327 **Lemma 24.** For any $T \in \mathbb{N}$ and $\mathbf{x} \in [a, b]^N$, $0 < a < b$, define function $G(\mathbf{x}) = \sum_{n=1}^N \sqrt{x_n}$ and
2328 $f(\mathbf{x}) = G(\mathbf{x}) \log \left(1 + \frac{T}{G(\mathbf{x})}\right)$, we have that

2329
$$f(\mathbf{1}a) \leq f(\mathbf{x}) \leq f(\mathbf{1}b).$$

2330 *Proof.* Using the elementary fact that $g(u) = u \log \left(1 + \frac{T}{u}\right)$, $u > 0$ is nondecreasing on $(0, \infty)$
2331 completes the proof. \square

2332 *Proof.* From Lemma 9, we have:

$$\begin{aligned} \text{Regret}(T) &\leq \frac{9V_\gamma^\uparrow}{2} \sum_{t=1}^T \lambda_t - V_\gamma^\uparrow \sum_{t=1}^T \mathfrak{R}^t(s) \lambda_t + 2 \sum_{t=1}^T J_\gamma^t(s) + \sum_{t=1}^T \mathcal{O} \left(\Phi_t \left(1 + \frac{\Phi_t}{V_\gamma^\uparrow} \right) \right) \\ &= V_\gamma^\uparrow \sum_{t=1}^T \left(\frac{9}{2} - \mathfrak{R}^t(s) \right) \lambda_t + 2 \sum_{t=1}^T J_\gamma^t(s) + \sum_{t=1}^T \mathcal{O} \left(\Phi_t \left(1 + \frac{\Phi_t}{V_\gamma^\uparrow} \right) \right). \end{aligned}$$

2340 Choosing $\lambda_t = \min \left\{ 1, \frac{C}{\sqrt{\frac{9}{2} - \mathfrak{R}^t(s)}} \sqrt{\frac{SA\ell_{1,T}\ell_{2,T}}{T(1-\gamma)}} \right\}$, $\forall t \in [T]$, we have

$$\begin{aligned} V_\gamma^\uparrow \sum_{t=1}^T \left(\frac{9}{2} - \mathfrak{R}^t(s) \right) \lambda_t &= V_\gamma^\uparrow \sum_{t=1}^T \left(\frac{9}{2} - \mathfrak{R}^t(s) \right) \min \left\{ 1, \frac{C}{\sqrt{\frac{9}{2} - \mathfrak{R}^t(s)}} \sqrt{\frac{SA\ell_{1,T}\ell_{2,T}}{T(1-\gamma)}} \right\} \\ &\leq C \frac{R_{\max}}{1-\gamma} \sum_{t=1}^T \left(\sqrt{\frac{9}{2} - \mathfrak{R}^t(s)} \right) \sqrt{\frac{SA\ell_{1,T}\ell_{2,T}}{T(1-\gamma)}} \\ &\leq C \frac{R_{\max}}{1-\gamma} \sqrt{T \left(\frac{9}{2}T - \sum_{t=1}^T \mathfrak{R}^t(s) \right)} \sqrt{\frac{SA\ell_{1,T}\ell_{2,T}}{T(1-\gamma)}} \\ &\leq \underbrace{\frac{CR_{\max}}{(1-\gamma)^{1.5}} \sqrt{\left(\frac{9}{2}T - \sum_{t=1}^T \mathfrak{R}^t(s) \right) SA\ell_{1,T}\ell_{2,T}}}_{:= \mathcal{J}_1 \left(\sum_{t=1}^T \mathfrak{R}^t(s) \right)}. \end{aligned}$$

2365 Given

$$\begin{aligned} \mathcal{Y}^t &= \frac{12V_\gamma^\uparrow \ell_{1,t}}{\lambda_t} + 30V_\gamma^\uparrow S \ell_{3,t} \\ &= 12V_\gamma^\uparrow \ell_{1,t} \max \left\{ 1, \frac{\sqrt{\frac{9}{2} - \mathfrak{R}^t(s)}}{C} \sqrt{\frac{T(1-\gamma)}{SA\ell_{1,T}\ell_{2,T}}} \right\} + 30V_\gamma^\uparrow S \ell_{3,t} \\ &= \underbrace{12V_\gamma^\uparrow \ell_{1,t}}_{\mathcal{Y}_1^t} + \underbrace{\frac{12}{C} V_\gamma^\uparrow \ell_{1,t} \sqrt{\frac{9}{2} - \mathfrak{R}^t(s)} \sqrt{\frac{T(1-\gamma)}{SA\ell_{1,T}\ell_{2,T}}}}_{\mathcal{Y}_2^t} + \underbrace{30V_\gamma^\uparrow S \ell_{3,t}}_{\mathcal{Y}_3^t}. \end{aligned}$$

2376 From Lemmas 20 and 23, we get
 2377

$$\begin{aligned}
 2378 \quad 2 \sum_{t=1}^T J_\gamma^t(s_1^t) &\leq 2 \sum_{t=1}^T \sum_{l=0}^{\nu_t-1} \gamma^l \beta^t(s_{t+l}, a_{t+l}) + \frac{26V_\gamma^\uparrow}{1-\gamma} S A \log \frac{12T}{\delta} \\
 2381 \quad &\leq 2 \sum_{t=1}^T \sum_{\tau=1}^t \mathbf{1}(t-\tau \leq \nu_\tau - 1) \gamma^{t-\tau} \frac{\mathcal{Y}^\tau}{N^\tau(s_t, a_t)} + \frac{26V_\gamma^\uparrow}{1-\gamma} S A \log \frac{12T}{\delta} \\
 2384 \quad &\leq 2 \sum_{t=1}^T \sum_{\tau=1}^t \mathbf{1}(t-\tau \leq \nu_\tau - 1) \gamma^{t-\tau} \frac{1}{N^\tau(s_t, a_t)} (\mathcal{Y}_1^\tau + \mathcal{Y}_2^\tau + \mathcal{Y}_3^\tau) + \frac{26V_\gamma^\uparrow}{1-\gamma} S A \log \frac{12T}{\delta} \\
 2387 \quad &\leq \frac{48V_\gamma^\uparrow S A \ell_{1,T} \ell_{2,T}}{(1-\gamma) \lambda_T} \\
 2389 \quad &+ \underbrace{\frac{72\sqrt{2}V_\gamma^\uparrow \ell_{1,T}}{C(1-\gamma)} \sqrt{\frac{T(1-\gamma)}{S A \ell_{1,T} \ell_{2,T}}} (\mathcal{G} \ell'_{2,T})}_{:= \mathcal{J}_2(\mathcal{G})} \\
 2394 \quad &+ \frac{120V_\gamma^\uparrow}{1-\gamma} S^2 A \ell_{2,T} \ell_{3,T} \\
 2396 \quad &+ \frac{26V_\gamma^\uparrow}{1-\gamma} S A \log \frac{12T}{\delta} \\
 2399 \quad &\leq \frac{72\sqrt{2}R_{\max}}{C(1-\gamma)^{1.5}} \sqrt{S A T \ell_{1,T} \ell_{2,T}} + \frac{168R_{\max}}{(1-\gamma)^2} S^2 A \ell_{1,T} (1 + \ell_{2,T})
 \end{aligned}$$

2401 Combining everything together, we get:
 2402

$$\text{Regret}(T) \leq \mathcal{J}_1 \left(\sum_{t=1}^T \mathfrak{R}^t(s) \right) + \mathcal{J}_2(\mathcal{G}) + \frac{168R_{\max}}{(1-\gamma)^2} S^2 A \ell_{1,T} (1 + \ell_{2,T}) + \sum_{t=1}^T \mathcal{O} \left(\Phi_t \left(1 + \frac{\Phi_t}{V_\gamma^\uparrow} \right) \right).$$

2407 So, depending on the contribution of $\sum_{t=1}^T \mathfrak{R}^t(s)$ and \mathcal{G} , we can get different bounds. In what will
 2408 follow, we choose $C = 3\sqrt{\frac{9}{2}}$.
 2409

2412 **Disregarding \mathcal{G}** Even ignoring the first part, we can obtain a tighter bound where the leading term
 2413 is offset by the sum of epistemic resistance $\sum_{t=1}^T \mathfrak{R}^t(s)$ as follows:
 2414

$$\begin{aligned}
 2416 \quad \text{Regret}(T) &\leq \left(16 + 14 \sqrt{\left(1 - \frac{2 \sum_{t=1}^T \mathfrak{R}^t(s)}{9T} \right)} \right) \frac{R_{\max}}{(1-\gamma)^{1.5}} \sqrt{S A T \ell_{1,T} \ell_{2,T}} + \frac{168R_{\max}}{(1-\gamma)^2} S^2 A \ell_{1,T} (1 + \ell_{2,T}) \\
 2419 \quad &+ \sum_{t=1}^T \mathcal{O} \left(\Phi_t \left(1 + \frac{\Phi_t}{V_\gamma^\uparrow} \right) \right),
 \end{aligned}$$

2425 **Considering Both** Let $N = S A$, $a = \frac{17}{63}$, $b = 1$, by Lemma 24, we know that
 2426

$$\ell'_{2,T} \coloneqq \sqrt{\frac{17}{63}} S A \log \left(1 + \frac{T}{\sqrt{\frac{17}{63}} S A} \right) \leq \mathcal{G} \ell'_{2,T} \leq S A \log \left(1 + \frac{T}{S A} \right),$$

2430 with this, at best, we can achieve:
2431

$$\begin{aligned}
2432 \quad \text{Regret}^*(T) &\leq \sqrt{\frac{17}{63}} \left(16 \sqrt{\frac{\ell_{2,T}^{\star 2}}{\ell_{2,T}}} + 14 \sqrt{\ell_{2,T}} \right) \frac{R_{\max}}{(1-\gamma)^{1.5}} \sqrt{SAT\ell_{1,T}} + \frac{168R_{\max}}{(1-\gamma)^2} S^2 A \ell_{1,T} (1 + \ell_{2,T}) \\
2433 \\
2434 \\
2435 \\
2436 \\
2437 \\
2438
\end{aligned}$$

2439 If the ratio $\frac{T}{SA}$ is large, then $\ell_{2,T}^{\star} \simeq \ell_{2,T}$. Therefore, the overall reduction is by a factor of $\sqrt{\frac{17}{63}} \approx$
2440 0.519. In this case, we can improve the constant in the leading term by roughly one-half.
2441

2442 Lastly, the treatment of the part of Φ_t is similar to that in the uniform case. Therefore, we ultimately
2443 have

$$2444 \quad \text{Regret}(T) = \tilde{\mathcal{O}} \left(\frac{\sqrt{SAT}}{(1-\gamma)^{1.5}} + \frac{S^2 A}{(1-\gamma)^2} \right).$$

2447 \square
2448

2449 G.7 SAMPLE COMPLEXITY

2450 For infinite-horizon discounted MDPs, the sample complexity of an algorithm is defined as the
2451 number of non- ϵ -optimal steps such that $V^{\pi_t}(s_t) \leq V^*(s_t) - \epsilon$ taken over the course of learning
2452 (Kakade, 2003; Strehl & Littman, 2008). If this sample complexity can be bounded by a polynomial
2453 function $f(|S|, |A|, \frac{1}{\epsilon}, \frac{1}{\delta}, \frac{1}{1-\gamma})$, then the algorithm is PAC-MDP. We are interested in proving PAC-
2454 MDP for the full range $\epsilon \in (0, V_{\gamma}^{\uparrow}]$.
2455

2456 From Theorem 9, we know that the per-step regret can be bounded as follows:
2457

$$\begin{aligned}
2458 \quad V^*(s_t) - V^{\pi_t}(s_t) &\leq \left(\frac{9}{2} - \mathfrak{R}^t(s_t) \right) \lambda_t V_{\gamma}^{\uparrow} + 2J_{\gamma}^t(s_t) + \Phi_t \left(1 + (3 - 2P_U^{t,\star}(s)) \lambda_t + \frac{\Phi_t}{V_{\gamma}^{\uparrow}} \right) \\
2459 \\
2460 \\
2461 \\
2462 \\
2463 \\
2464 \\
2465 \\
2466
\end{aligned}$$

$$\begin{aligned}
2467 \quad &\leq \underbrace{\left(\frac{9}{2} - \mathfrak{R}^t(s_t) \right) \lambda_t V_{\gamma}^{\uparrow}}_{:=L_{1,t}} + \underbrace{2J_{\gamma}^t(s_t)}_{:=L_{2,t}} + \underbrace{\Phi_t \left(4 + \frac{\Phi_t}{V_{\gamma}^{\uparrow}} \right)}_{:=L_{3,t}}
\end{aligned}$$

2468 For $L_{1,t}$, we can choose $\lambda_t = \frac{\epsilon}{18V_{\gamma}^{\uparrow}}$, so that we have $L_{1,t} \leq \frac{\epsilon}{4}$. In addition, note that $\Phi_t = R_{\max} \lambda_t$
2469 and $\lambda_t^2 = \frac{\epsilon^2}{18^2 V_{\gamma}^{\uparrow 2}} \leq \frac{\epsilon}{18^2 V_{\gamma}^{\uparrow}}$, substituting it into $L_{3,t}$, we have:
2470

$$\begin{aligned}
2471 \quad \Phi_t &= R_{\max} \lambda_t = R_{\max} \frac{\epsilon}{18V_{\gamma}^{\uparrow}} = \frac{\epsilon(1-\gamma)}{18} \leq \frac{\epsilon}{18} \\
2472 \quad \frac{\Phi_t^2}{V_{\gamma}^{\uparrow}} &= \frac{R_{\max}^2 \lambda_t^2}{V_{\gamma}^{\uparrow}} \leq \frac{1}{18^2} \frac{R_{\max}^2 \epsilon}{V_{\gamma}^{\uparrow 2}} = \frac{\epsilon(1-\gamma)^2}{18^2} \leq \frac{\epsilon}{18^2}.
\end{aligned}$$

2473 Therefore, we obtain $L_{3,t} \leq \left(\frac{4}{18} + \frac{1}{18^2} \right) \epsilon \leq \frac{\epsilon}{4}$.
2474

2475 If we can prove that $L_{2,t} \leq \frac{\epsilon}{2}$, or equivalently, $J_{\gamma}^t(s_t) \leq \frac{\epsilon}{4}$, then the time step t can be said to be
2476 optimal. To achieve this, we introduce a set of new notations that explicitly connect the number of
2477 non-optimal steps with $J_{\gamma}^t(s_t)$.
2478

2479 We define the set of non-optimal steps within T total steps as $\Gamma_T := \{t \in [T] : J_{\gamma}^t(s_t) > \frac{\epsilon}{4}\}$, and
2480 its cardinality $|\Gamma_T|$. Then we want to prove that $|\Gamma_T|$ is polynomially bounded for all $T \in \mathbb{N}$.
2481

2484 For analyzing non- ϵ -optimal steps, it is useful to overload the definition of visits so that it only
 2485 includes those occurring in Γ_T .

$$\begin{aligned} 2487 \quad n^t(s, a) &:= \sum_{t \in \Gamma_t} \mathbf{1}((s_t, a_t) = (s, a)) \\ 2488 \\ 2489 \quad N^t(s, a) &:= \sum_{t \in \Gamma_{t-1}} \mathbf{1}((s_t, a_t) = (s, a)) \\ 2490 \\ 2491 \quad \nu_t &:= \begin{cases} \min\{\tau \in [t, T] : n^\tau(s_\tau, a_\tau) > 2N^t(s_\tau, a_\tau)\}, & \text{if } \tau \text{ exists.} \\ T + 1, & \text{otherwise.} \end{cases} \\ 2492 \\ 2493 \\ 2494 \end{aligned}$$

2495 Next, we bound the sum of $J_\gamma^t(s_t)$ but only for the steps in Γ_T .
 2496

2497 **Lemma 25.** *For infinite-horizon discounted MDPs, under high-probability event $\mathbf{A}_7^\gamma \cap \mathbf{A}_8^\gamma$, it holds
 2498 that*

$$2499 \quad \sum_{t \in \Gamma_T} J_\gamma^t(s_t) \leq \frac{2\mathcal{Y}^{(|\Gamma_T|)}}{1-\gamma} SA \log \left(1 + \frac{|\Gamma_T|}{SA}\right) + \frac{13V_\gamma^\uparrow}{1-\gamma} SA \log \frac{12|\Gamma_T|}{\delta}, \\ 2500$$

2501 for all $T \in \mathbb{N}$.
 2502

2503 *Proof.* The proof follows the same procedure as in Lemma 19 20 and 21, except adding the indicator
 2504 function $\mathbf{1}(t \in \Gamma_T)$ to each time step. \square
 2505

2506 Based on the above result and Lemma 22, we can bound $|\Gamma_T|$ using the fact that $J_\gamma^t(s_t) > \frac{\epsilon}{4}$.
 2507

2508 **Definition 9.** Let $W(T)$ be defined by

$$2509 \quad W(T) := \frac{1780R_{\max}^2 SA \ell_{1,T} \ell_{2,T}}{\epsilon^2(1-\gamma)^3} + \frac{240R_{\max} S^2 A \ell_{2,T} \ell_{3,T}}{\epsilon(1-\gamma)^2} + \frac{52R_{\max} SA \ell_{1,T}}{\epsilon(1-\gamma)^2}. \\ 2510$$

2512 **Lemma 26.** *For infinite-horizon discounted MDPs, under high-probability event \mathbf{D} , it holds that*

$$2513 \quad |\Gamma_T| \leq W(|\Gamma_T|), \\ 2514$$

2515 for all $T \in \mathbb{N}$.
 2516

2517 *Proof.* From Lemmas 25 and 22, we get

$$2518 \quad |\Gamma_T| \leq \frac{8\mathcal{Y}^{(T)} SA \ell_{2,T}}{\epsilon(1-\gamma)} + \frac{52V_\gamma^\uparrow SA(\ell_{1,T} + \ell_{2,T})}{\epsilon(1-\gamma)}. \\ 2519$$

2521 Substituting the definition of $\mathcal{Y}^{(T)}$ into the above, we have

$$\begin{aligned} 2522 \quad |\Gamma_T| &\leq \frac{1728R_{\max}^2 SA \ell_{1,|\Gamma_T|} \ell_{2,|\Gamma_T|}}{\epsilon^2(1-\gamma)^3} + \frac{240R_{\max} S^2 A \ell_{2,|\Gamma_T|} \ell_{3,|\Gamma_T|}}{\epsilon(1-\gamma)^2} + \frac{52R_{\max} SA(\ell_{1,|\Gamma_T|} + \ell_{2,|\Gamma_T|})}{\epsilon(1-\gamma)^2} \\ 2523 \\ 2524 \quad &\stackrel{(a)}{\leq} \frac{1780R_{\max}^2 SA \ell_{1,|\Gamma_T|} \ell_{2,|\Gamma_T|}}{\epsilon^2(1-\gamma)^3} + \frac{240R_{\max} S^2 A \ell_{2,|\Gamma_T|} \ell_{3,|\Gamma_T|}}{\epsilon(1-\gamma)^2} + \frac{52R_{\max} SA \ell_{1,|\Gamma_T|}}{\epsilon(1-\gamma)^2}, \\ 2525 \\ 2526 \end{aligned}$$

2527 where (a) uses the facts that $\frac{V_\gamma^\uparrow}{\epsilon} \geq 1$ and $\ell_{1,|\Gamma_T|} \geq 1$, therefore concludes the proof. \square
 2528

2529 **Proposition 3.** *For infinite-horizon discounted MDPs, let T_0 be defined as*

$$2531 \quad T_0 := \left\lceil \frac{3670R_{\max}^2 SA \ell_{1,5,\epsilon}}{\epsilon^2(1-\gamma)^3} + \frac{480R_{\max} S^2 A(2\ell_1 + \ell_{6,\epsilon}) \ell_{5,\epsilon}}{\epsilon(1-\gamma)^2} \right\rceil. \\ 2532$$

2534 Then the sample complexity of EUBRL is at most T_0 with probability at least $1 - \delta$.

2535 Before proving this result, we need to bound the the other way around i.e. $W(T_0) < T_0$.
 2536

2537 **Lemma 27.** *It holds that*

$$W(T_0) < T_0.$$

2538 Denote $B := \frac{R_{\max}^2 \ell_1}{\epsilon^2 (1-\gamma)^3} + \frac{R_{\max} S (2\ell_1 + \ell_{6,\epsilon})}{\epsilon (1-\gamma)^2}$, therefore we have $T_0 \leq 3670 B S A \ell_{5,\epsilon}$ where
 2539 $\ell_{5,\epsilon} = \log(1 + 140B) \leq 5B$. Then we have:
 2540

$$\begin{aligned} \ell_{2,T_0} &= \log \left(1 + \frac{T_0}{SA} \right) \\ &\leq 2\ell_{5,\epsilon}. \end{aligned}$$

2544 Moreover, we have:
 2545

$$\begin{aligned} \ell_1 &\leq \frac{4SA}{\delta} \\ \ell_{6,\epsilon} &\leq \frac{V_\gamma^\uparrow}{\epsilon(1-\gamma)}. \end{aligned}$$

2550 Therefore, we get:
 2551

$$\begin{aligned} 2\ell_1 + \ell_{6,\epsilon} &\leq \frac{8SA}{\delta} + \frac{V_\gamma^\uparrow}{\epsilon(1-\gamma)} \\ &\leq \frac{9V_\gamma^\uparrow SA}{\delta\epsilon(1-\gamma)}. \end{aligned}$$

2556 We use this to bound B as follows:
 2557

$$\begin{aligned} B &= \frac{R_{\max}^2 \ell_1}{\epsilon^2 (1-\gamma)^3} + \frac{R_{\max} S (2\ell_1 + \ell_{6,\epsilon})}{\epsilon (1-\gamma)^2} \\ &\leq \frac{4R_{\max}^2 SA}{\delta\epsilon^2 (1-\gamma)^3} + \frac{9R_{\max}^2 S^2 A}{\delta\epsilon^2 (1-\gamma)^4} \\ &= \frac{13R_{\max}^2 S^2 A}{\delta\epsilon^2 (1-\gamma)^4}. \end{aligned}$$

2564 With this, we now bound $\log T_0$, which is a part of ℓ_{3,T_0} .
 2565

$$\begin{aligned} \log T_0 &\leq \log 18350 B^2 SA \\ &\leq \log 18350 \frac{169 R_{\max}^4 S^4 A^2}{\delta^2 \epsilon^4 (1-\gamma)^8} SA \\ &= \log \frac{18350 \times 169}{\epsilon^4} \frac{R_{\max}^4 S^4 A^2}{\delta^2 \epsilon^4 (1-\gamma)^8} SA \\ &\leq \underbrace{\log \frac{56800 S^5 A^3}{\delta^2}}_{:= L_1} + \log \frac{V_\gamma^\uparrow e^4}{\epsilon^4 (1-\gamma)^4}. \end{aligned}$$

2575 We now bound L_1 .
 2576

$$\begin{aligned} L_1 &= \log \frac{56800 S^5 A^3}{\delta^2} \\ &\leq \log \frac{56800 S^5 A^5}{\delta^5} \\ &\leq \log \frac{9^5 S^5 A^5}{\delta^5} \\ &= 5 \log \frac{9 S A}{\delta} \\ &\leq 11 \frac{S A}{\delta}. \end{aligned}$$

2587 Therefore
 2588

$$\begin{aligned} \log T_0 &\leq 11 \frac{S A}{\delta} + 4 \log \frac{V_\gamma^\uparrow e}{\epsilon (1-\gamma)} \\ &\leq \frac{15 S A}{\delta} \log \frac{V_\gamma^\uparrow e}{\epsilon (1-\gamma)}. \end{aligned}$$

2592 Then, substitute this into ℓ_{3,T_0} , we get:
 2593

$$\begin{aligned}
 2594 \quad \ell_{3,T_0} &= \log \frac{12SA(1 + \log T_0)}{\delta} \\
 2595 &= \log \frac{12SA}{\delta} + \log(1 + \log T_0) \\
 2596 &\leq \ell_1 + \log \left(1 + \frac{15SA}{\delta} \log \frac{V_\gamma^\uparrow e}{\epsilon(1-\gamma)} \right) \\
 2597 &\stackrel{(a)}{\leq} \ell_1 + \log \left(\frac{16SA}{\delta} \log \frac{V_\gamma^\uparrow e}{\epsilon(1-\gamma)} \right) \\
 2600 &\leq \ell_1 + \log \left(\frac{16SA}{\delta} \right) + \log \log \frac{V_\gamma^\uparrow e}{\epsilon(1-\gamma)} \\
 2601 &\leq 2\ell_1 + \ell_{6,\epsilon},
 \end{aligned}$$

2602 where for (a) we have used the facts that $\frac{SA}{\delta} \geq 1$ and $\log \frac{V_\gamma^\uparrow e}{\epsilon(1-\gamma)} \geq 1$.
 2603

2604 Now, we prove $W(T_0) < T_0$. Since $B \geq 1$, therefore $\ell_{5,\epsilon} \geq \log 141 > 1$. This leads to $T_0 \geq$
 2605 $3670SA$, henceforce $\ell_{2,T_0} \geq 1$. Along with $\frac{V_\gamma^\uparrow}{\epsilon} \geq 1$, we have:
 2606

$$\begin{aligned}
 2607 \quad W(T_0) &= \frac{1780R_{\max}^2 SA \ell_{1,T_0} \ell_{2,T_0}}{\epsilon^2(1-\gamma)^3} + \frac{240R_{\max} S^2 A \ell_{2,T_0} \ell_{3,T_0}}{\epsilon(1-\gamma)^2} + \frac{52R_{\max} SA \ell_{1,T_0}}{\epsilon(1-\gamma)^2} \\
 2608 &\leq \frac{1780R_{\max}^2 SA \ell_{1,T_0} \ell_{2,T_0}}{\epsilon^2(1-\gamma)^3} + \frac{240R_{\max} S^2 A \ell_{2,T_0} \ell_{3,T_0}}{\epsilon(1-\gamma)^2} + \frac{52R_{\max}^2 SA \ell_{1,T_0} \ell_{2,T_0}}{\epsilon^2(1-\gamma)^3} \\
 2609 &= \frac{1832R_{\max}^2 SA \ell_{1,T_0} \ell_{2,T_0}}{\epsilon^2(1-\gamma)^3} + \frac{240R_{\max} S^2 A \ell_{2,T_0} \ell_{3,T_0}}{\epsilon(1-\gamma)^2} \\
 2610 &:= W'(T_0)
 \end{aligned}$$

2611 Substituting the bounds on logarithmic terms, we obtain:
 2612

$$\begin{aligned}
 2613 \quad W(T_0) &\leq W'(T_0) \\
 2614 &\leq \frac{3664R_{\max}^2 SA \ell_1 \ell_{5,\epsilon}}{\epsilon^2(1-\gamma)^3} + \frac{480R_{\max} S^2 A \ell_{5,\epsilon} (2\ell_1 + \ell_{6,\epsilon})}{\epsilon(1-\gamma)^2} \\
 2615 &\leq \frac{3666R_{\max}^2 SA \ell_1 \ell_{5,\epsilon}}{\epsilon^2(1-\gamma)^3} + \frac{480R_{\max} S^2 A \ell_{5,\epsilon} (2\ell_1 + \ell_{6,\epsilon})}{\epsilon(1-\gamma)^2} - 2 \\
 2616 &\leq \frac{3670R_{\max}^2 SA \ell_1 \ell_{5,\epsilon}}{\epsilon^2(1-\gamma)^3} + \frac{480R_{\max} S^2 A \ell_{5,\epsilon} (2\ell_1 + \ell_{6,\epsilon})}{\epsilon(1-\gamma)^2} - 2 \\
 2617 &\leq \left[\frac{3670R_{\max}^2 SA \ell_1 \ell_{5,\epsilon}}{\epsilon^2(1-\gamma)^3} + \frac{480R_{\max} S^2 A \ell_{5,\epsilon} (2\ell_1 + \ell_{6,\epsilon})}{\epsilon(1-\gamma)^2} \right] + 1 - 2 \\
 2618 &\leq \left[\frac{3670R_{\max}^2 SA \ell_1 \ell_{5,\epsilon}}{\epsilon^2(1-\gamma)^3} + \frac{480R_{\max} S^2 A \ell_{5,\epsilon} (2\ell_1 + \ell_{6,\epsilon})}{\epsilon(1-\gamma)^2} \right] - 1 \\
 2619 &= T_0 - 1 \\
 2620 &< T_0.
 \end{aligned}$$

□

2621 Now, we formally prove Proposition 3.
 2622

2623 *Proof.* From Lemmas 26 and 27, we know that $|\Gamma_T| \leq W(|\Gamma_T|)$ and $W(T_0) < T_0$. It implies
 2624 that $|\Gamma_T| \neq T_0$ for all $T \in \mathbb{N}$. Since $|\Gamma_T|$ increases by at most 1 starting from $|\Gamma_0| = 0$, that is,
 2625 $|\Gamma_{T+1}| \leq |\Gamma_T| + 1$ for all $T \in \mathbb{N}$, we conclude that $|\Gamma_T| < T_0$ for all $T \in \mathbb{N}$. Otherwise, there exists
 2626 T' such that $|\Gamma_{T'}| > T_0$. Assume T' is the minimal such index. Then it follows that $|\Gamma_{T'-1}| = T_0$,
 2627 which leads to a contradiction. □

2646 H POSTERIOR PREDICTIVE AND EPISTEMIC UNCERTAINTY 2647

2648 In this section, we will give backgrounds necessary to relate the Bayes estimator to the MLE esti-
2649 mator.
2650

2651 H.1 POSTERIOR PREDICTIVE 2652

2653 H.1.1 TRANSITION 2654

2655 **Lemma 28.** Let $b_0 := \text{Dir}(\boldsymbol{\alpha})$ be a Dirichlet prior over transition for a fixed $(s, a) \in \mathcal{S} \times \mathcal{A}$, and
2656 define $\alpha_0 := \mathbf{1}^\top \boldsymbol{\alpha}$ as the sum of prior parameters. Let n denote the total number of visits to (s, a) .
2657 Then, the following decomposition holds:

$$2658 P_b - P = \frac{n}{n + \alpha_0} (\hat{P} - P) + \frac{\alpha_0}{n + \alpha_0} (P_{b_0} - P),$$

2660 for any posterior b and $n \in \mathbb{N}$.
2661

2662 *Proof.* Note $P_{b_0} = \frac{\boldsymbol{\alpha}}{\alpha_0}$, we get:
2663

$$\begin{aligned} 2664 P_b - P &= \frac{\mathbf{n} + \boldsymbol{\alpha}}{n + \alpha_0} - P \\ 2665 &= \frac{n\hat{P} + \alpha_0 P_{b_0}}{n + \alpha_0} - \left(\frac{n}{n + \alpha_0} + \frac{\alpha_0}{n + \alpha_0} \right) P \\ 2666 &= \frac{n}{n + \alpha_0} (\hat{P} - P) + \frac{\alpha_0}{n + \alpha_0} (P_{b_0} - P). \\ 2667 \\ 2668 \\ 2669 \\ 2670 \end{aligned}$$

2671 \square
2672

2673 H.1.2 REWARD 2674

2675 **Lemma 29.** Let $b_0 := \mathcal{N}(\mu_0, \frac{1}{\tau_0})$ be a Normal prior over mean of reward for a fixed $(s, a) \in \mathcal{S} \times \mathcal{A}$,
2676 and τ the precision of the data distribution, which is assumed to be known. Let n denote the total
2677 number of visits to (s, a) . Then, the following decomposition holds:
2678

$$2679 r_b(s, a) - r(s, a) = \frac{\tau_0}{\tau_0 + n\tau} (\mu_0 - r(s, a)) + \frac{n\tau}{\tau_0 + n\tau} (\hat{r}(s, a) - r(s, a)),$$

2680 for any posterior b and $n \in \mathbb{N}$.
2681

2682 *Proof.* By definition, we have the posterior predictive mean of the reward:
2683

$$2684 r_b(s, a) = \frac{\tau_0 \mu_0 + \tau \sum_{i=1}^n r_i}{\tau_0 + n\tau}.$$

2685 The difference to the ground truth reward is:
2686

$$\begin{aligned} 2687 r_b(s, a) - r(s, a) &= \frac{\tau_0 \mu_0 + \tau \sum_{i=1}^n r_i}{\tau_0 + n\tau} - r(s, a) \\ 2688 &= \frac{(\tau_0 \mu_0 + n\tau \hat{r}(s, a)) - (\tau_0 + n\tau) r(s, a)}{\tau_0 + n\tau} \\ 2689 &= \frac{\tau_0 (\mu_0 - r(s, a)) + n\tau (\hat{r}(s, a) - r(s, a))}{\tau_0 + n\tau} \\ 2690 &= \frac{\tau_0}{\tau_0 + n\tau} (\mu_0 - r(s, a)) + \frac{n\tau}{\tau_0 + n\tau} (\hat{r}(s, a) - r(s, a)). \\ 2691 \\ 2692 \\ 2693 \\ 2694 \\ 2695 \\ 2696 \\ 2697 \\ 2698 \\ 2699 \end{aligned}$$

\square

2700 **Corollary 4.** Let $b_0 := \mathcal{NG}(\mu_0, \lambda_0, \alpha_0, \beta_0)$ be a Normal-Gamma prior over reward for a fixed
 2701 $(s, a) \in \mathcal{S} \times \mathcal{A}$. Let n denote the total number of visits to (s, a) . Then, the following decomposition
 2702 holds:

$$2703 \quad r_b(s, a) - r(s, a) = \frac{\lambda_0}{\lambda_0 + n} (\mu_0 - r(s, a)) + \frac{n}{\lambda_0 + n} (\hat{r}(s, a) - r(s, a)),$$

2705 for any posterior b and $n \in \mathbb{N}$.

2707 H.2 EPISTEMIC UNCERTAINTY

2709 The definition of variance-based epistemic uncertainty for both transition and reward is:

$$2711 \quad \mathcal{E}_T(s, a) := \text{Var}_{\mathbf{w} \sim b} (\mathbb{E}[s'|s, a, \mathbf{w}])$$

$$2712 \quad \mathcal{E}_R(s, a) := \text{Var}_{\mathbf{w} \sim b} (\mathbb{E}[r|s, a, \mathbf{w}])$$

2714 And we consider a generalized form of epistemic uncertainty to combine the two sources together:

$$2715 \quad \mathcal{E}'(s, a) := f(\mathcal{E}_T(s, a), \mathcal{E}_R(s, a)).$$

2717 In this paper, we consider $f(x, y) = \eta(\sqrt{x} + \sqrt{y})$.

2719 H.2.1 BOUNDS FOR TRANSITION

2721 Since it is meaningless to take expectation over categories for a categorical distribution, we instead
 2722 choose some feature vector for each component. One of the sensible choices is the basis function
 2723 $\mathbf{e}_i = (0, 0, \dots, i, \dots, 0)$, which leads to the following formulation.

2724 **Definition 10.** The variance-based epistemic uncertainty of Dirichlet-Multinomial model is defined
 2725 as follows:

$$2726 \quad \mathcal{E}_T(s, a) = \sum_{k=1}^S \frac{(\alpha_k + n_k)(\alpha_0 + n - \alpha_k - n_k)}{(\alpha_0 + n)^2(\alpha_0 + n + 1)}.$$

2728 **Lemma 30.** For Dirichlet prior, the epistemic uncertainty in transition follows that

$$2730 \quad \mathcal{E}_T(s, a) = \mathcal{O}\left(\frac{1}{n}\right) \quad \text{and} \quad \mathcal{E}_T(s, a) = \Omega\left(\frac{1}{n^2}\right),$$

2732 for any $(s, a) \in \mathcal{S} \times \mathcal{A}$ and $n \in \mathbb{N}$.

2734 *Proof.* Let $T := \alpha_0 + n$, then we have:

$$2736 \quad \mathcal{E}_T(s, a) = \frac{T^2 - \sum_{k=1}^S (\alpha_k + n_k)^2}{T^2(T + 1)}.$$

2740 We will derive its upper and lower bound. We start with the upper bound.

2742 Note $\sum_{k=1}^S (\alpha_k + n_k)^2 \geq 0$, therefore we have:

$$2745 \quad \mathcal{E}_T(s, a) \leq \frac{T^2}{T^2(T + 1)}$$

$$2746 \quad = \frac{1}{(T + 1)}$$

$$2747 \quad = \frac{1}{n + \alpha_0 + 1}$$

$$2748 \quad \leq \frac{1}{n}.$$

2753 So $\mathcal{E}_T(s, a) = \mathcal{O}(\frac{1}{n})$ with constant $C_2 = 1$

Now, we focus on the lower bound. Consider the worse case, where we have only one state being visited, denote its index as j , we have

$$\begin{aligned}
 T^2 - \sum_{k=1}^S (\alpha_k + n_k)^2 &= (\alpha_0 + n)^2 - (n + \alpha_j)^2 + \sum_{k \neq j} \alpha_j^2 \\
 &= (n^2 + 2\alpha_0 n + \alpha_0^2) - (n^2 + 2\alpha_j n + \sum_{j=1}^S \alpha_j^2) \\
 &= (2\alpha_0 - 2\alpha_j)n + (\alpha_0^2 - \sum_{j=1}^S \alpha_j^2) \\
 &\geq (2\alpha_0 - 2\alpha_j)n.
 \end{aligned}$$

Therefore

$$\begin{aligned}
 \frac{\mathcal{E}_T(s, a)}{\frac{1}{n^2}} &\geq \frac{(2\alpha_0 - 2\alpha_j)n}{\frac{T^2}{n}(T+1)} \\
 &\geq \frac{(2\alpha_0 - 2\alpha_j)}{\frac{T^2}{n}(\frac{T+1}{n})} \\
 &= \frac{(2\alpha_0 - 2\alpha_j)}{(1 + \frac{\alpha_0}{n})^2(1 + \frac{\alpha_0+1}{n})} \\
 &\geq \frac{(2\alpha_0 - 2\alpha_j)}{(1 + \alpha_0)^2(2 + \alpha_0)}.
 \end{aligned}$$

So $\mathcal{E}_T(s, a) = \Omega(\frac{1}{n^2})$ with constant $C_1 = \frac{(2\alpha_0 - 2\alpha_j)}{(1 + \alpha_0)^2(2 + \alpha_0)}$. This corresponds to the case where the transition is deterministic or near-deterministic. \square

H.2.2 BOUNDS FOR REWARD

Definition 11 (Normal-Normal). The variance-based epistemic uncertainty of Normal-Normal model is defined as follows:

$$\mathcal{E}_R(s, a) = \frac{1}{\tau_0 + \tau n}.$$

Definition 12 (Normal-Gamma). The variance-based epistemic uncertainty of Normal-Gamma model is defined as follows:

$$\mathcal{E}_R(s, a) = \frac{\beta}{\lambda(\alpha - 1)},$$

where

$$\begin{aligned}
 \lambda &= \lambda_0 + n \\
 \alpha &= \alpha_0 + \frac{n}{2} \\
 \beta &= \beta_0 + \frac{1}{2} \left(n\hat{\sigma}^2 + \frac{\lambda_0 n(\bar{x} - \mu_0)^2}{\lambda_0 + n} \right).
 \end{aligned}$$

Lemma 31. For Normal prior, the epistemic uncertainty in reward follows that

$$\mathcal{E}_R(s, a) = \Theta\left(\frac{1}{n}\right)$$

for any $(s, a) \in \mathcal{S} \times \mathcal{A}$ and $n \in \mathbb{N}$.

Proof. Note by choosing $C_1 = \frac{1}{\tau_0 + \tau}$ for lower bound and $C_2 = \frac{1}{\tau}$ for upper bound concludes. \square

2808 **Lemma 32.** For Normal-Gamma prior, the epistemic uncertainty in reward follows that
 2809

$$2810 \quad \mathcal{E}_R(s, a) = \mathcal{O}\left(\frac{1}{n}\right) \quad \text{and} \quad \mathcal{E}_T(s, a) = \Omega\left(\frac{1}{n^2}\right),$$

2812 for any $(s, a) \in \mathcal{S} \times \mathcal{A}$ and $n \in \mathbb{N}$.
 2813

2814 *Proof.* The upper bound is trivial. For the lower bound, consider the deterministic case, leading to
 2815 sample variance being zero. Therefore the numerator is $\Theta(1)$ whereas the denominator $\mathcal{O}(n^2)$. \square
 2816

2817 **I FROM FREQUENTIST TO BAYESIAN**

2819 **I.1 PROPERTIES OF PRIORS**

2821 **Definition 13** (Decomposable). A prior b_0 parameterized by θ is said to be *decomposable* if there
 2822 exist functions $f(n, \theta), g(n, \theta)$ for transitions and $h(n, \theta), s(n, \theta)$ for rewards such that
 2823

$$2824 \quad P_b - P = f(n, \theta)(\hat{P} - P) + g(n, \theta)(P_{b_0} - P),$$

$$2825 \quad r_b - r = h(n, \theta)(\hat{r} - r) + s(n, \theta)(r_{b_0} - r),$$

2826 with the constraints
 2827

$$2828 \quad f(n, \theta) \leq 1, \quad h(n, \theta) \leq 1 \quad \forall n \in \mathbb{N}; \quad g(n, \theta) = \mathcal{O}\left(\frac{S}{n}\right), \quad s(n, \theta) = \mathcal{O}\left(\frac{1}{n}\right),$$

2829 for some positive multiplicative constant $C_g(\theta)$ and $C_s(\theta)$.
 2830

2832 Note, when indexed by a particular (s, a) , all the quantities above can depend on it.
 2833

2834 **Definition 14** (Weakly Informative). A prior b_0 parameterized by θ is said to be *weakly informative*
 2835 if
 2836

$$|r_b - \hat{r}| = \mathcal{O}\left(\frac{1}{n}\right) \quad \text{and} \quad \|P_b - \hat{P}\|_1 = \mathcal{O}\left(\frac{S}{n}\right).$$

2837 **Definition 15** (Uniform). A prior b_0 parameterized by θ is said to be *uniform* if there exist positive
 2838 constants C_g and C_s such that
 2839

$$2840 \quad C_g(\theta)(s, a) \leq C_g \quad \text{and} \quad C_s(\theta)(s, a) \leq C_s$$

2841 for any $(s, a) \in \mathcal{S} \times \mathcal{A}$.
 2842

2843 **Definition 16** (Bounded). A prior b_0 parameterized by θ is said to be *bounded* if there exists $\bar{R} \geq 0$
 2844 such that $|r_{b_0}(s, a)| \leq \bar{R}$ for any $(s, a) \in \mathcal{S} \times \mathcal{A}$.
 2845

2846 **Definition 17.** Let \mathfrak{C} be defined by the class of *decomposable* or *weakly informative* priors whose
 2847 rate of epistemic uncertainty is $\Theta\left(\frac{1}{\sqrt{n}}\right)$.
 2848

2849 **Theorem 10.** Let $\mathcal{M} = (\mathcal{S}, \mathcal{A}, P, r, \gamma)$ be any MDP. For any prior $b_0 \in \mathfrak{C}$, there exists an instance
 2850 of EUBRL such that, when executed on \mathcal{M} , it achieves, with probability at least $1 - \delta$, a prior-
 2851 dependent bound on regret, or alternatively, on sample complexity, depending on the choice of η . If,
 2852 furthermore, b is assumed to be uniform and bounded, these bounds are nearly minimax-optimal.
 2853

2854 *Proof of Theorem 10.* Note, by either weak informativeness or decomposability, the additional com-
 2855 plexity is at most $\mathcal{O}\left(\frac{S}{n}\right)$ for transitions and $\mathcal{O}\left(\frac{1}{n}\right)$ for reward. This applies to the events, e.g. $\mathbf{A}_{1:4}^\gamma$,
 2856 which involve bounding the distance between the posterior predictive and the ground truth. Without
 2857 loss of generality, we assume b is weakly informative. We bound $|(P_{b_t} - P)V^*(s, a)|$ as follows:
 2858

$$2859 \quad |(P_{b_t} - P)V^*(s, a)| = \left| f(N^t(s, a), \theta)(\hat{P}^t - P)V^*(s, a) + g(N^t(s, a), \theta)(P_{b_0} - P)V^*(s, a) \right|$$

$$2860 \quad \leq \underbrace{|\hat{P}^t - P|V^*(s, a)}_{\text{Frequentist Bound}} + \underbrace{\left(C_g(\theta)(s, a) \|P_{b_0} - P\|_1 V_\gamma^\uparrow \right) \frac{S}{N^t(s, a)}}_{\text{Prior Bias}},$$

where the first term is simply the original bound derived in the analysis of MLE estimators, while the second term captures the complexity arising from prior misspecification. If the prior is correctly specified, there is no additional overhead; otherwise, this term must be accounted for in the final bound.

Similarly, we have the decomposition for the reward

$$|r_{b_t}(s, a) - r(s, a)| \leq |\hat{r}^t(s, a) - r(s, a)| + (C_s(\boldsymbol{\theta})(s, a) |r_{b_0}(s, a) - r(s, a)|) \frac{1}{N^t(s, a)}.$$

By merging all the quantities of the same order of $\frac{1}{N^t}$, we can overload the definition of Υ^t , \mathcal{Y}^t , and β^t , respectively. For brevity, we drop the dependency on (s, a) for each term.

$$\begin{aligned} \text{Quasi-optimism} \quad \Upsilon^t &\leftarrow \Upsilon^t + (C_g(\boldsymbol{\theta}) \|P_{b_0} - P\|_1 V_\gamma^\uparrow) \frac{S}{N^t} + (C_s(\boldsymbol{\theta}) |r_{b_0} - r|) \frac{1}{N^t} \\ \text{Accuracy} \quad \beta_1^t &\leftarrow \beta_1^t + 2 (C_g(\boldsymbol{\theta}) \|P_{b_0} - P\|_1 V_\gamma^\uparrow) \frac{S}{N^t} \\ \beta^t &\leftarrow P_U^t \eta^t \mathcal{E}^t + \beta_1^t + (1 - P_U^t(s)) \frac{V_\gamma^\uparrow \ell_1}{\lambda_t N^t} + (1 - P_U^t(s)) (C_s(\boldsymbol{\theta}) |r_{b_0} - r|) \frac{1}{N^t} \\ \text{Bounding } J_\gamma^t(s_t) \quad \mathcal{Y}^t &\leftarrow \frac{12 V_\gamma^\uparrow \ell_1}{\lambda_t} + 30 V_\gamma^\uparrow S \ell_{3,t} + 3 (C_g(\boldsymbol{\theta}) \|P_{b_0} - P\|_1 V_\gamma^\uparrow S) + 2 (C_s(\boldsymbol{\theta}) |r_{b_0} - r|). \end{aligned}$$

In addition, since the rate of the epistemic uncertainty is $\Theta\left(\frac{1}{\sqrt{N^t}}\right)$, a scaling factor η can be chosen appropriately such that $P_U^t(s, a) \eta^t \mathcal{E}^t(s, a) - P_U^t(s, a) R_{\max} \geq \frac{\Upsilon^t}{N^t(s, a)}$, akin to that of the proof of Lemma 33, with which we are guaranteed the quasi-optimism to hold.

Since

$$\begin{aligned} \|P_{b_0}(\cdot | s, a) - P(\cdot | s, a)\|_1 &\leq 2 \\ |r_{b_0}(s, a) - r(s, a)| &\leq |r_{b_0}(s, a)| + R_{\max}, \end{aligned}$$

we denote

$$\begin{aligned} \Lambda_T(\boldsymbol{\theta}) &:= \max_{(s, a) \in \mathcal{S} \times \mathcal{A}} \{C_g(\boldsymbol{\theta})(s, a)\} \\ \Lambda_R(\boldsymbol{\theta}) &:= \max_{(s, a) \in \mathcal{S} \times \mathcal{A}} \{C_s(\boldsymbol{\theta})(s, a) (|r_{b_0}(s, a)| + R_{\max})\}. \end{aligned}$$

Following the same procedure for analyzing regret and sample complexity, we obtain prior-dependent bounds as follows:

$$\begin{aligned} \text{Regret} \quad \tilde{\mathcal{O}} &\left(\frac{\sqrt{SAT}}{(1-\gamma)^{1.5}} + (1 + \Lambda_T(\boldsymbol{\theta})) \frac{S^2 A}{(1-\gamma)^2} + \Lambda_R(\boldsymbol{\theta}) \frac{SA}{1-\gamma} \right) \\ \text{Sample Complexity} \quad \tilde{\mathcal{O}} &\left(\left(\frac{SA}{\epsilon^2(1-\gamma)^3} + (1 + \Lambda_T(\boldsymbol{\theta}) + \Lambda_R(\boldsymbol{\theta})) \frac{S^2 A}{\epsilon(1-\gamma)^2} \right) \log \frac{1}{\delta} \right). \end{aligned}$$

If the prior b_0 is furthermore assumed to be uniform and bounded, both $\Lambda_T(\boldsymbol{\theta})$ and $\Lambda_R(\boldsymbol{\theta})$ will reduce to constants that do not depend on the state-action pairs, thus leading to a bound similar to that in the frequentist case. \square

Remark 2. Since the epistemic uncertainty is additive across both reward and transition sources, it suffices for either source to satisfy an order of $\Theta\left(\frac{1}{\sqrt{n}}\right)$. The other source may decay faster.

In the following sections, we will instantiate specific priors.

I.2 DIRICHLET AND NORMAL PRIORS

Corollary 5. *Let b_0 denote the joint distribution consisting of a Dirichlet prior $\text{Dir}(\alpha \mathbf{1}_{S \times 1})$ on the transition probability vector and a Normal prior $\mathcal{N}(\mu_0, \frac{1}{\tau_0})$ on the mean reward with known precision τ for all $(s, a) \in \mathcal{S} \times \mathcal{A}$. Then $b_0 \in \mathfrak{C}$ and is uniform and bounded.*

2916 *Proof.* By Lemma 31, we know that $\mathcal{E}'_R(s, a) = \Theta\left(\frac{1}{\sqrt{n}}\right)$. By Lemma 30, we know that $\mathcal{E}'_T(s, a) =$
 2917 $\mathcal{O}\left(\frac{1}{\sqrt{n}}\right)$ and $\mathcal{E}'_T(s, a) = \Omega\left(\frac{1}{n}\right)$. By Remark 2, this makes the final epistemic uncertainty $\mathcal{E}'(s, a) =$
 2918 $\Theta\left(\frac{1}{\sqrt{n}}\right)$. In addition, Lemmas 28 and 29 imply that the prior is *decomposable*. All together, we
 2919 have $b_0 \in \mathfrak{C}$.
 2920

2921 In addition, we can find $C_g = \alpha$ and $C_s = \frac{\tau_0}{\alpha}$ as required by the uniformality in Definition 15. And
 2922 note that $|r_{b_0}(s, a)| = |\mu_0|, \forall (s, a) \in \mathcal{S} \times \mathcal{A}$, therefore the boundedness in Definition 16 is satisfied
 2923 as well. \square
 2924

2925 **I.3 DIRICHLET AND NORMAL-GAMMA PRIORS**
 2926

2927 **Proposition 4.** *For a Normal-Gamma prior, there exists a parameterization and an MDP such that*
 2928 $\exists t \in \mathbb{N}$ *for which quasi-optimism does not hold.*

2929 This follows from the fact that the epistemic uncertainty under a Normal-Gamma prior depends on
 2930 the sample variance, which multiplies the number of visits n in the numerator (Definition 12). In
 2931 deterministic or nearly deterministic MDPs, the sample variance can be zero, yielding a lower bound
 2932 on the epistemic uncertainty:
 2933

$$\mathcal{E}_R(s, a) = \Omega\left(\frac{1}{n^2}\right),$$

2934 which is insufficient to guarantee quasi-optimism, especially when a prior bias is present. Even the
 2935 frequentist bound may vanish.
 2936

2937 **J HELPER LEMMAS**
 2938

2939 **Lemma 33.** *It holds that*

$$b^k(s, a) - P_U^k(s, a)R_{\max} \geq \frac{\Upsilon^k}{N^k(s, a)},$$

2940 for any $(s, a) \in \mathcal{S} \times \mathcal{A}$ and $k \in \mathbb{N}$.
 2941

2942 *Proof.* For $N^k(s, a) \geq m$, the inequality trivially holds. For $N^k(s, a) < m$, note by choosing
 2943 $\eta^k = \mathcal{E}_{\max} \Upsilon^k + R_{\max} \sqrt{m_k}$, we have:
 2944

$$\begin{aligned} (b^k(s, a) - P_U^k(s, a)R_{\max}) - \frac{\Upsilon^k}{N^k(s, a)} &= (P_U^k(s, a)\eta^k \mathcal{E}^k(s, a) - P_U^k(s, a)R_{\max}) - \frac{\Upsilon^k}{N^k(s, a)} \\ &= \left(\frac{\eta^k}{\mathcal{E}_{\max}} \frac{1}{N^k(s, a)} - \frac{R_{\max}}{\mathcal{E}_{\max}} \frac{1}{\sqrt{N^k(s, a)}} \right) - \frac{\Upsilon^k}{N^k(s, a)} \\ &= \left(\left(\Upsilon^k + \frac{R_{\max}}{\mathcal{E}_{\max}} \sqrt{m_k} \right) \frac{1}{N^k(s, a)} - \frac{R_{\max}}{\mathcal{E}_{\max}} \frac{1}{\sqrt{N^k(s, a)}} \right) - \frac{\Upsilon^k}{N^k(s, a)} \\ &= \frac{R_{\max}}{\mathcal{E}_{\max}} \left(\frac{\sqrt{m_k}}{N^k(s, a)} - \frac{1}{\sqrt{N^k(s, a)}} \right) \\ &= \frac{R_{\max}}{\mathcal{E}_{\max}} \left(\frac{\sqrt{m_k} - \sqrt{N^k(s, a)}}{N^k(s, a)} \right) \\ &> 0, \end{aligned}$$

2945 which is as desired. \square
 2946

2947 The following Lemma is helpful in proving both the quasi-optimism and accuracy for finite-horizon
 2948 discounted MDPs.
 2949

2970 **Lemma 34.** Let $C \geq 0$ be a constant and $\gamma \in (0, 1)$. Let V be a function such that $V : \mathcal{S} \rightarrow [0, C]$.
 2971 For any $(s, a) \in \mathcal{S} \times \mathcal{A}$, the variance of V under $P(\cdot|s, a)$ is bounded as follows:
 2972

$$2973 \gamma \text{Var}(V)(s, a) \leq -\Delta_\gamma(V^2)(s, a) + (1 + \gamma)C \max\{\Delta_\gamma(V)(s, a), 0\}.$$

2974 Equivalently, the following inequality holds:
 2975

$$2976 \gamma \text{Var}(V)(s, a) - \gamma P(V)^2(s, a) \leq -(V(s))^2 + (1 + \gamma)C \max\{\Delta_\gamma(V)(s, a), 0\}.$$

2977 *Proof.* Adding and subtracting $(V(s))^2$ to $\gamma \text{Var}(V)(s, a)$, we get
 2978

$$\begin{aligned} 2979 \gamma \text{Var}(V)(s, a) &= \gamma P(V)^2(s, a) - \gamma(PV(s, a))^2 \\ 2980 &= \gamma P(V)^2(s, a) - (V(s))^2 + (V(s))^2 - \gamma(PV(s, a))^2 \\ 2981 &\stackrel{(a)}{\leq} \gamma P(V)^2(s, a) - (V(s))^2 + (V(s))^2 - \gamma^2(PV(s, a))^2 \\ 2982 &= \gamma P(V)^2(s, a) - (V(s))^2 + (V(s) + \gamma PV(s, a))(V(s) - \gamma PV(s, a)) \\ 2983 &\stackrel{(b)}{\leq} \gamma P(V)^2(s, a) - (V(s))^2 + (1 + \gamma)C(V(s) - \gamma PV(s, a)) \\ 2984 &= -\Delta_\gamma(V^2)(s, a) + (1 + \gamma)C(V(s) - \gamma PV(s, a)) \\ 2985 &\leq -\Delta_\gamma(V^2)(s, a) + (1 + \gamma)C \max\{\Delta_\gamma(V)(s, a), 0\}, \end{aligned}$$

2986 where (a) is due to the fact that $\gamma > \gamma^2$ and (b) by the boundedness of value functions. \square
 2987

2988 **Lemma 35.** Let V^k denote the value function of the approximate MDP under its derived policy
 2989 π_k . Let V^{π_k} denote the value function of the true MDP under the same policy. Then the difference
 2990 between V^k and V^{π_k} is bounded as follows:
 2991

$$2992 \Delta_h(V^k - V^{\pi_k})(s, a) \leq (\Delta_h(D^k)(s, a) + 2\beta^k(s, a)).$$

2993 *Proof.* The proof is completed by applying the procedure of Lemma 13 in (Lee & Oh, 2025), except
 2994 using $\widehat{V}_h(s) + S_k \geq 0$ from Lemmas 2–3 for variance decomposition, together with an adjustment
 2995 of some constants. \square
 2996

3001 K PRIOR MISSPECIFICATION

3002 **Problem Setting** Given a two-armed bandit:

$$3003 a_1 : P(r|a_1) = \mathbf{Bern}(\mu_1) \quad (11)$$

$$3004 a_2 : P(r|a_2) = \mathbf{Bern}(\mu_2) \quad (12)$$

$$3005 \text{with } \mu_1 > \mu_2 \quad (13)$$

3006 We use Beta distribution to model the belief over the parameter of the underlying Bernoulli dis-
 3007 tribution. We have independent prior $b(\mathbf{w}|a_i) = \mathbf{Beta}(\alpha_i, \beta_i)$ over each arm with parameters
 3008 $\alpha_i > 0, \beta_i > 0, i \in \{1, 2\}$. Since Beta distribution is the conjugate prior of the Bernoulli dis-
 3009 tribution, after observing the number of success S_i and failures F_i , we can get the posterior in a
 3010 closed-form, i.e.

$$3011 b(\mathbf{w}|a_i, S_i, F_i) = \mathbf{Beta}(\alpha_i + S_i, \beta_i + F_i) \quad (14)$$

$$3012 = \mathbf{Beta}(\alpha'_i, \beta'_i), i \in \{1, 2\}. \quad (15)$$

3013 Then the EUBRL reward will be:

$$3014 r_i^{\text{EUBRL}} = (1 - P_U) \hat{r}_i + P_U \mathcal{E}_i, \text{ where} \quad (16)$$

$$3015 \hat{r}_i = \mathbb{E}_{b(\mathbf{w}|a_i, S_i, F_i), P(r|a_i, \mathbf{w})} [r] \quad (17)$$

$$3016 = \frac{\alpha_i + S_i}{(\alpha_i + S_i) + (\beta_i + F_i)} \quad (18)$$

$$3017 = \frac{\alpha'_i}{\alpha'_i + \beta'_i} \quad (19)$$

3024 The epistemic uncertainty can also be expressed in a closed form:
 3025

$$\mathcal{E}(a_i) = \text{Var}_{b(\mathbf{w}|a_i, S_i, F_i)} [\mathbb{E}_{P(r|a_i, \mathbf{w})} [r]] \quad (20)$$

$$= \text{Var}_{b(\mathbf{w}|a_i, S_i, F_i)} [\mathbf{w}] \quad (21)$$

$$= \frac{\alpha'_i \beta'_i}{(\alpha'_i + \beta'_i)^2 (\alpha'_i + \beta'_i + 1)} \quad (22)$$

3031 If we assume that the parameters of the prior are equal, we can show that epistemic uncertainty is
 3032 non-increasing. This result is formalized in the following lemma:
 3033

Lemma 36. *Given a Beta prior distribution $\text{Beta}(\alpha, \beta)$ with $\alpha = \beta > 0$ for the parameter of a
 3034 Bernoulli distribution, the variance of the posterior distribution decreases monotonically with the
 3035 number of observations.*

3037 *Proof.* Let denote the b_0 as the Beta prior before observing any outcome from the Bernoulli dis-
 3038 tribution. It has a variance $\text{Var}(b_0) = \frac{1}{4(2\alpha+1)}$. After observing one sample from the Bernoulli
 3039 distribution, whether it is success or failure, we will have an updated posterior b_1 with the variance:
 3040

$$\text{Var}(b_1) = \frac{\alpha}{2(2\alpha+1)^2} \quad (23)$$

3043 By examining the difference between the two, we have $\text{Var}(b_0) - \text{Var}(b_1) = \frac{1}{4(2\alpha+1)^2} > 0$. There-
 3044 fore, the variance of the posterior is decreasing after observing one outcome. However, since this
 3045 result will hold for the next posterior compared to the current posterior as well, we can conclude that
 3046 the variance of the posterior is monotonically decreasing. \square
 3047

3048 We will prove the following theorem:
 3049

Theorem 11 (Prior Misspecification). *Let $\eta = 1$. There exists an MDP \mathcal{M} , a prior b_0 , an accuracy
 3050 level $\epsilon_0 > 0$, and a confidence level $\delta_0 \in (0, 1]$ such that, with probability greater than $1 - \delta_0$,*

$$V^{\pi_t}(s_t) < V^*(s_t) - \epsilon_0 \quad (24)$$

3053 will hold for an unbounded number of time steps.
 3054

3055 *Proof.* Before any new observation, both $r_i^{\text{EUBRL}} = \mathcal{E}_{\max}$, therefore breaking the tie leads to a half
 3056 probability to choose either arm. Consider choosing the second arm, it will lead to some reduction
 3057 of the epistemic uncertainty because of the new observation.
 3058

3059 We aim to force the agent to repeatedly select this arm, thereby preventing it from ever reaching the
 3060 optimal one. To achieve this, we need to ensure that (to simplify notation, we will henceforth drop
 3061 the dependency of the epistemic uncertainty on the action; \mathcal{E} will refer to the epistemic uncertainty
 3062 of the second arm whenever it is considered):
 3063

$$r_2^{\text{EUBRL}} - r_1^{\text{EUBRL}} = ((1 - P_U)\hat{r} + P_U\mathcal{E}) - \mathcal{E}_{\max} \quad (25)$$

$$= ((1 - P_U)\hat{r} + P_U\mathcal{E}) - ((1 - P_U)\mathcal{E}_{\max} + P_U\mathcal{E}_{\max}) \quad (26)$$

$$= (1 - P_U)(\hat{r} - \mathcal{E}_{\max}) + P_U(\mathcal{E} - \mathcal{E}_{\max}) \quad (27)$$

$$\geq 0. \quad (28)$$

3068 Note, the second term in the penultimate line is a quadratic function; therefore, we can obtain its
 3069 minimum as follows:
 3070

$$\min_{\mathcal{E}} \frac{1}{\mathcal{E}_{\max}} (\mathcal{E}^2 - \mathcal{E}_{\max}\mathcal{E}) \quad (29)$$

$$= -\frac{\mathcal{E}_{\max}}{4} \quad (30)$$

3074 Therefore, as long as we ensure that Eq. 27 with substitution of this lower bound is non-negative,
 3075 we can guarantee Eq. 28 to hold. That being said, we require the following condition to be satisfied:
 3076

$$(1 - P_U)(\hat{r} - \mathcal{E}_{\max}) - \frac{\mathcal{E}_{\max}}{4} \geq 0, \quad (31)$$

3078 which is equivalent to:

$$3079 \quad 3080 \quad 3081 \quad \hat{r} \geq \frac{\mathcal{E}_{\max}}{4(1 - P_U)} + \mathcal{E}_{\max}. \quad (32)$$

3082 By Lemma 36, we know that P_U is decreasing. Therefore, it suffices to ensure that:

$$3083 \quad 3084 \quad \hat{r} \geq \frac{\mathcal{E}_{\max}}{4(1 - P_{U,1})} + \mathcal{E}_{\max}, \quad (33)$$

3085 where $P_{U,1}$ denotes the probability of uncertainty after observing the first outcome from the second
3086 arm.

3087 Moreover, the right-hand side can be expressed as:

$$3088 \quad 3089 \quad 3090 \quad s(a) := \frac{\mathcal{E}_{\max}}{4(1 - P_{U,1})} + \mathcal{E}_{\max} \quad (34)$$

$$3091 \quad 3092 \quad 3093 \quad = \frac{1}{16} + \frac{1}{4(2\alpha + 1)}. \quad (35)$$

3094 Since $\alpha \in (0, \infty)$, we can bound $s(a)$ within the interval $(\frac{1}{16}, \frac{5}{16})$, which will be useful in our later
3095 analysis.

3096 We now aim to show that, under certain priors, the probability of the agent sticking to the second
3097 arm is high. In other words, it suffices to show that the probability of not pulling the second arm is
3098 small. To that end, let us focus on the event $\hat{r} < s(a)$.

3099 To proceed, we consider the following decomposition of the reward estimate:

$$3100 \quad 3101 \quad 3102 \quad \hat{r} = \frac{\alpha + S_n}{2\alpha + n} \quad (36)$$

$$3103 \quad 3104 \quad = \frac{n}{2\alpha + n} \bar{r} + \frac{\alpha}{2\alpha + n}, \quad (37)$$

3105 where n is the total number of occurrences of the outcome from the second arm, and S_n is the total
3106 number of successes among these n occurrences.

3107 Notably, we can factor out the empirical mean \bar{r} , resulting in a new inequality:

$$3108 \quad 3109 \quad 3110 \quad \bar{r} < \frac{s(a) - \frac{\alpha}{2\alpha+n}}{\frac{n}{2\alpha+n}} \quad (38)$$

$$3111 \quad 3112 \quad 3113 \quad = \frac{a(2s(a) - 1)}{n} + s \quad (39)$$

$$3114 \quad := g(a, n) \quad (40)$$

3115 Next, we apply Hoeffding's inequality to the expression above:

$$3116 \quad 3117 \quad P(\bar{r} < g(a, n)) = P(\mu_2 - \bar{r} > \mu_2 - g(a, n)) \quad (41)$$

$$3118 \quad \leq \exp(-2n(\mu_2 - g(a, n))^2). \quad (42)$$

3119 This provides an upper bound on the probability of not pulling the second arm over n samples. By
3120 applying the union bound at each step, we can bound the probability that the second arm is not
3121 pulled at least once, and refer to this event as "Omission":

$$3122 \quad 3123 \quad P(\text{Omission}) = P(\bigcup_{n=1}^{\infty} (\bar{r} < g(a, n))) \quad (43)$$

$$3124 \quad 3125 \quad \leq \sum_{n=1}^{\infty} P(\bar{r} < g(a, n)) \quad (44)$$

$$3126 \quad 3127 \quad 3128 \quad = \underbrace{\sum_{n=1}^{\lfloor a \rfloor} P(\bar{r} < g(a, n))}_{S_1} + \underbrace{\sum_{n=\lfloor a \rfloor + 1}^{\infty} P(\bar{r} < g(a, n))}_{S_2}, \quad (45)$$

3129 3130 3131 where we split the sum into two parts based on the floor of a , which we will analyze individually.

3132 **Bounding S_2** We denote $k = \frac{\lfloor a \rfloor}{n}$. Since $n > \lfloor a \rfloor$, we know that $k \in [0, 1)$. Therefore, we can
 3133 rewrite $g(a, n)$ as:

$$3134 \quad g(a, n) = k(2s - 1) + s, k \in [0, 1]. \quad (46)$$

3135 For every fixed n , we want to find both the lower and upper bound of $g(a, n)$. Since we know $s \in$
 3136 $(\frac{1}{16}, \frac{5}{16})$ and $g(a, n)$ is linear in s , we can solve for the range of $g(a, n)$ as $A_n = (\frac{1}{16} - \frac{7}{8}k, \frac{5}{16} - \frac{3}{8}k)$.
 3137 In addition, since $k \in [0, 1)$, we can solve for a superset $A = (-\frac{13}{16}, \frac{5}{16})$ that contains every set
 3138 $A_n, \forall n > \lfloor a \rfloor$. We then analyze the squared term $(\mu_2 - g(a, n))^2$. This is a quadratic function
 3139 with axis of symmetry of μ_2 . There are two possible cases for the relationship between μ_2 and A :
 3140 either $\mu_2 \leq \frac{5}{16}$ or $\mu_2 > \frac{5}{16}$. For the first case, the minimum of the quadratic function will be zero,
 3141 which cancels out the effect of n and results in the largest probability—an outcome we want to avoid.
 3142 Therefore, we consider the second case, $\mu_2 > \frac{5}{16}$, where the minimum of the quadratic function
 3143 occurs at $g = \frac{5}{16}$. We denote this minimum as $\bar{C} := (\mu_2 - \frac{5}{16})^2$. Then we can bound the second
 3144 term in the probability of omission as follows:

$$3145 \quad S_2 = \sum_{n=(\lfloor a \rfloor+1)}^{\infty} P(\bar{r} < g(a, n)) \quad (47)$$

$$3146 \quad \leq \sum_{n=(\lfloor a \rfloor+1)}^{\infty} \exp(-2Cn) \quad (48)$$

$$3147 \quad = \exp(-2C\lfloor a \rfloor) \sum_{n=1}^{\infty} \exp(-2Cn) \quad (49)$$

$$3148 \quad = \exp(-2C\lfloor a \rfloor) \frac{\exp(-2C)}{1 - \exp(-2C)} \quad (50)$$

$$3149 \quad = \frac{\exp(-2C(\lfloor a \rfloor + 1))}{1 - \exp(-2C)} \quad (51)$$

$$3150 \quad \leq \frac{\eta}{2}, \quad (52)$$

3151 where $\eta \in (0, 1)$ is arbitrary confidence level.

3152 We solve for the above and obtain $\lfloor a \rfloor \geq \frac{1}{2C} \log\left(\frac{2}{\eta(1 - \exp(-2C))}\right) - 1 := a_1$. Next, we will bound the
 3153 other term.

3154 **Bounding S_1** The goal is to isolate the parameter a and make it dominant. We expand the exponent
 3155 as:

$$3156 \quad 2n(\mu_2 - g(a, n))^2 = 2 \left(\underbrace{n(\mu_2 - s)^2}_{I_1} + \underbrace{2((\mu_2 - s)(1 - 2s))a}_{I_2} + \underbrace{\frac{(2s - 1)^2}{n}a^2}_{I_3} \right). \quad (53)$$

3157 Since $\mu_2 > \frac{5}{16}$ and $s \in (\frac{1}{16}, \frac{5}{16})$, therefore $I_2 > 0$. And the remaining two terms are also positive.
 3158 Based on this observation, we provide a lower bound for the exponent as follows:

$$3159 \quad 2n(\mu_2 - g(a, n))^2 \geq 2I_3 \geq \frac{9}{32}a^2. \quad (54)$$

3160 Next, we use this result to bound S_1 :

$$3161 \quad S_1 \leq \sum_{n=1}^{\lfloor a \rfloor} \exp\left(-\frac{9}{32} \lfloor a \rfloor^2\right) \quad (55)$$

$$3162 \quad \leq \sum_{n=1}^{\lfloor a \rfloor} \exp\left(-\frac{9}{32} \lfloor a \rfloor\right) \quad (56)$$

$$3163 \quad = \lfloor a \rfloor \exp\left(-\frac{9}{32} \lfloor a \rfloor\right) \quad (57)$$

$$3164 \quad \leq \frac{\eta}{2}, \quad (58)$$

3186 which unfortunately has no closed-form solution. However, we can leverage the Lambert W function
 3187 to obtain an analytical solution. Denote $u = -\frac{9}{32}\lfloor a \rfloor$, then Eq. 57 can be rewritten as $-\frac{32}{9}u \exp(u)$.
 3188 We instead bound it as follows:

$$3189 \quad -\frac{32}{9}u \exp(u) \leq \frac{\eta}{2} \quad (59)$$

$$3190 \quad \Leftrightarrow u \exp(u) \geq -\frac{9}{64}\eta, \quad (60)$$

3191 which matches to the Lambert W function. Since there are two branches $W_0(x)$ and $W_{-1}(x)$ of the
 3192 Lambert W function when $x \in [-\frac{1}{e}, 0]$, and $W_{-1}(x) < W_0(x) < 0$. We can get $u \leq W_{-1}(-\frac{9}{64}\eta)$,
 3193 therefore $\lfloor a \rfloor \geq -\frac{32}{9}W_{-1}(-\frac{9}{64}\eta) := a_2$.

3194 Combining the two bounds together, as long as we choose $\lfloor a \rfloor > \max\{a_1, a_2\}$, the probability of
 3195 omission will be bounded as follows:

$$3196 \quad P(\text{Omission}) \leq S_1 + S_2 \leq \frac{\eta}{2} + \frac{\eta}{2} = \eta. \quad (61)$$

3197 Therefore, if we denote the event of sticking to the second arm as `Sticky`, its probability will be:
 3198

$$3199 \quad P(\text{Sticky}) = P\left(\bigcap_{n=1}^{\infty} \overline{(\bar{r} < g(a, n))}\right) \quad (62)$$

$$3200 \quad = 1 - P\left(\bigcup_{n=1}^{\infty} (\bar{r} < g(a, n))\right) \quad (63)$$

$$3201 \quad = 1 - P(\text{Omission}) \quad (64)$$

$$3202 \quad > 1 - \eta, \quad (65)$$

3203 Therefore, we can conclude that with probability greater than $\delta_0 = \frac{1}{2} \cdot (1 - \eta)$, the second arm will
 3204 be always pulled, leading to suboptimality. More formally, for any $\epsilon_0 < \mu_1 - \mu_2$, we have:

$$3205 \quad V^{\pi_t}(s_t) < V^*(s_t) - \epsilon_0, \quad (66)$$

3206 where $V^{\pi_t}(s_t) = u_2$ and $V^*(s_t) = \mu_1$, which completes our proof. \square
 3207