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ABSTRACT

At the boundary between the known and the unknown, an agent inevitably con-
fronts the dilemma of whether to explore or to exploit. Epistemic uncertainty re-
flects such boundaries, representing systematic uncertainty due to limited knowl-
edge. In this paper, we propose a Bayesian reinforcement learning (RL) algo-
rithm, EUBRL, which leverages epistemic guidance to achieve principled explo-
ration. This guidance adaptively reduces per-step regret arising from estimation
errors. We establish nearly minimax-optimal regret and sample complexity guar-
antees for a specific class of priors in infinite-horizon discounted MDPs. Empiri-
cally, we evaluate EUBRL on tasks characterized by sparse rewards, long horizons,
and stochasticity. Results demonstrate that EUBRL achieves superior sample effi-
ciency, scalability, and consistency.

1 INTRODUCTION

In a completely unknown environment, what compels an agent to seek new knowledge? This drive
is captured by the concept of exploration, which lies at the heart of reinforcement learning, from
e-greedy to Boltzmann exploration (Sutton & Barto, 2018). Yet, these heuristics often fall short in
more challenging environments, particularly those with sparse rewards, long horizons, or stochas-
ticity. Epistemic uncertainty (Der Kiureghian & Ditlevsen, 2009) characterizes the degree of un-
knownness, providing a principled basis for exploration. However, it remains unclear how to most
effectively leverage this uncertainty to guide learning.

Bayesian RL (Duff, 2002) provides a framework for modeling a world of uncertainty. An agent
seeks to maximize cumulative rewards based on its current belief, interact with the environment, and
update that belief—without knowing the true dynamics and rewards. From the agent’s perspective,
the world is epistemically uncertain. It must balance exploration and exploitation to find a near-
optimal solution. By placing a prior over both transitions and rewards, epistemic uncertainty arises
from limited data: the less familiar the agent is with a region of the environment, the more it is
incentivized to explore it. Nonetheless, higher uncertainty also raises the risk of unreliable estimates.
A common approach is to add the uncertainty as a “bonus” directly to the reward, a strategy known
as optimism in the face of uncertainty (Kolter & Ng (2009); Sorg et al. (2012)). However, even
small errors in the reward can propagate into an inaccurate value function, potentially resulting in
unnecessary exploration and slower convergence.

When measuring the efficiency of an algorithm’s exploration, metrics such as regret (L.ai & Robbins,
1985; Auer et al., 2008)—the cumulative difference from the optimal value function—or sample
complexity (Kakade, 2003)—the number of steps that are not e-optimal—are commonly used. An
algorithm is said to be minimax-optimal (Lattimore & Hutter, 2012; Dann & Brunskill, 2015) if its
bounds match the corresponding lower bound up to logarithmic factors. While previous works based
on optimism (Kakade, 2003; Auer et al., 2008; Strehl & Littman, 2008; Kolter & Ng, 2009) or sam-
pling (Strens, 2000; Osband et al., 2013) have been shown to achieve strong theoretical guarantees,
their use of uncertainty quantification and empirical evaluation of exploration capabilities remain
limited, leaving room for improvement in practical problems, particularly those requiring sustained
and efficient exploration.

In this paper, we propose EUBRL, an Epistemic Uncertainty directed Bayesian RL algorithm for
principled exploration. We use probabilistic inference to model epistemic uncertainty as part of the
agent’s objective. This approach guides the agent to explore regions with high epistemic uncertainty
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while mitigating the impact of unreliable reward estimates. Our contributions are both theoretical
and empirical:

* We prove that EUBRL is nearly minimax-optimal in both regret and sample complexity
for infinite-horizon discounted MDPs, with epistemic uncertainty adaptively reducing the
per-step regret.

* We instantiate prior-dependent bounds and demonstrate their applications using conjugate
priors.

* We demonstrate that EUBRL excels across diverse tasks with sparse rewards, long horizons,
and stochasticity, achieving superior sample efficiency, scalability, and consistency.

To the best of our knowledge, our result is the first to achieve nearly minimax-optimal sample
complexity in infinite-horizon discounted MDPs, without assuming the existence of a generative
model (Gheshlaghi Azar et al., 2013).

2 PRELIMINARY

An infinite-horizon discounted Markov Decision Process (MDP) is defined by a tuple M =
(S, A, P,r,v), where S and A are the state and action spaces, both of finite cardinality, denoted
by S and A, respectively, P the transition kernel P(:|s,a), r the expected reward function, and
v € [0,1) the discount factor. We assume the source distribution of rewards has bounded support
in [0, Rmax]- A policy 7 is a mapping from states to actions, whose performance is measured by the

expected return V™ (s) = E {Z Vr(sesr, aser)|se = s, 77]. The goal is to find the optimal policy
=0

7*(s) = argmax, V7 (s), Vs € S, whose value function is V*(s). We denote the maximum value
function as VJ = %’“i; and, whenever applicable, V}TI := H Ry, for its finite-horizon counterpart.

2.1 BAYESIAN RL

We consider the Bayes-adaptive MDP (BAMDP) (Duff, 2002) to model the agent’s learning process.
Given a prior by, the uncertainty over both the transitions and rewards—or equivalently, possible
MDPs—is explicitly modeled. A policy is Bayes-optimal if it maximizes expected return in the
belief-augmented state space (s,b) € S x B, where b is a belief over MDPs. Formally, it solves the
Bellman optimality equation under the posterior predictive transition model P, and posterior pre-
dictive mean reward 7, of the corresponding BAMDP. However, this solution requires full Bayesian
planning (Poupart et al., 2006; Kolter & Ng, 2009; Sorg et al., 2012), which is computationally
expensive and typically intractable because the belief-augmented state space can be too large to
enumerate, and the belief must be recalculated every time a new state is encountered. Consequently,
agents generally must approximate Bayes optimality. One simple yet effective alternative is the
mean MDP (Kolter & Ng, 2009; Sorg et al., 2012), which fixes the belief during planning. This is
essentially equivalent to an MDP (S, A, Py, ry,,y) given a belief b. When indexed by time, b; refers
to the posterior given all data up to time ¢. By solving the corresponding mean MDP, we obtain a
policy 7; derived from the subjective value function V* and its objective evaluation in the underlying
MDP, V™. Our goal is to find the optimal policy 7* by repeatedly solving the mean MDP during
interaction, alternating between posterior learning and policy optimization.

2.2 METRICS FOR EXPLORATION

We define per-step regret as A; = V*(s;) — V™ (s;). Regret and sample complexity are defined
from different angles:

T [eS)
Regret Z Ay, Sample Complexity Z 1(A; > e).
t=1 t=1
Low regret does not imply low sample complexity, and vice versa. Regret, which is more cost-

oriented, focuses on how much you lose while learning, whereas sample complexity cares about
learning efficiency, i.e., the number of samples needed to learn properly.
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A lower bound is best achievable for regret, Q ( (1V_S,Y“)‘f5 ) (He etal., 2021), and for sample complex-

ity, Q ((ﬁ) log %) (Strehl et al., 2009; Lattimore & Hutter, 2012). When an algorithm’s up-

per bound matches these lower bounds up to logarithmic factors, it is considered minimax-optimal; if
it holds only in the asymptotic regime of large 7" or small e, it is considered nearly minimax-optimal.

3 METHODOLOGY

3.1 EPISTEMIC UNCERTAINTY

Learning an imperfect model is of epistemic nature, where the uncertainty arises from a lack of
knowledge and is, in principle, reducible by observing more data. In general, epistemic uncertainty
captures the degree of disagreement in the belief—a distribution over model parameters w, e.g. the
transition probability vector or the reward location and scale. For example, for transitions, we have:

gT(Sv a) = f © g(Pb(S,|87 a)) - ]EWNb(W) [f © g(P(S/‘S, a,w))] ’
for some functions f and g that take a scalar or a distribution as input. Intuitively, it reflects the
likelihoods™ deviation from the “average”. When f(z) = —2?, g(p) = E, ) [x], it corresponds to
the variance Vary.p, (E[s'|s, a, w]) (Kendall & Gal, 2017). When f(p) = H(p), g(p) = p, it corre-
sponds to mutual information MI(s, a) = H (Py(s'|s,a)) — Epw) [H (P(s|s,a, w))] (Hiillermeier
& Waegeman, 2021). A similar argument holds for rewards g (s, a) by substituting s” with r.

We adopt a generalized formulation of epistemic uncertainty to integrate both sources:
gb(sa a’) = h(gT(sv a)a gR(sv a))
In this paper, we consider h(z,y) = n(y/z + \/y), where 7 is a scaling factor.

3.2 PROBABILISTIC INFERENCE AND EPISTEMIC GUIDANCE

Traditionally, RL aims to maximize cumulative reward. A pivotal question is how to account for
epistemic uncertainty in this objective to balance exploration and exploitation. One common ap-
proach is optimism-based methods, modifying rewards with an additive bonus 7 = 7, + N7ponus-
However, this can be misleading when 7, is uncertain. In this regard, we utilize probabilistic infer-
ence to model epistemic uncertainty directly in the objective, disentangling exploration and exploita-
tion and making it more resilient to unreliable reward estimates (see discussion in Appendix A).

Probabilistic inference has a rich history in decision-making (Todorov, 2008; Toussaint, 2009;
Levine, 2018). It has been shown that standard RL can be formulated as an inference problem
by introducing a binary “optimality” random variable O;:

maxEp(;y |log H P (O = 1|st, a¢)
=0
with an exponential transformation P(O; = 1|sy, a;) o< exp (r(s¢, a¢)) and 7 denoting a trajectory.

We introduce the notion of probability of uncertainty, representing the degree of uncertainty, gov-
erned by a binary “uncertainty” variable U;. Marginalizing over this variable, we obtain a lower
bound on per-step likelihood:

IOgP(Of = l\st,at) = IOgEUt [P (Ot = 1|5t,at, Ut) |5t,at]
Z ]EUt [IOgP (Ot = 1|St, Qg, Ut) |St, at] .
Note that since U, is binary, if we adopt the same exponential transformation, which intensifies the
higher uncertainty, we obtain the epistemically guided reward:
rEVBRE (5 a) == (1 — P(U = 1]s,a)) rp(s,a) + P(U = 1]s,a)E(s, a).
Intuitively, when uncertain, EUBRL focuses more on epistemic uncertainty, as an intrinsic reward,
encouraging exploration; when confident, it is more committed to exploiting what has been learned.
We call this kind of behavior epistemic guidance. The probability of uncertainty P(U = 1|s,a)
naturally disentangles the two ends, being more indifferent to reward estimates in the early stage
and becoming more committed as evidence accumulates. Although its definition can vary, P(U =
Ep(s,a)

1 | 5,a) must reflect epistemic uncertainty. For simplicity, we choose P(U =1 | 5,a) = ===,

where &« is typically determined by the prior, and adopt the shorthand Py (s, a) henceforth.
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3.3 ALGORITHM

The full Algorithm 1 is shown below. It alternates between posterior updating and policy learning.
The belief update is in closed form due to conjugacy. Moreover, both epistemic uncertainty and
posterior predictives can be expressed in closed form. Once a belief is updated, we derive the
posterior predictive transition model P, and posterior predictive mean reward rp, from which we
constructan MDP M = (S, A, Py, r;"®*" ~y), where r; V""" is the epistemically guided reward. The
MBDP is solved using value iteration (Sutton & Barto, 2018). For large-scale settings, approximate
methods such as tree search may be required (Guez et al., 2012).

Algorithm 1 EUBRL

Input: prior by, scaling factor n, discount factor ~ or horizon H
Sp ~ P(So)
7o = Solve M = (S, A, Py, 150 0, 7)
fort < O0toT —1do
Act: a; = 7Tt(5t)
Interact: St41,Tt ~ }3(814_17 Tt ‘St, at)
Update belief: bt+1 + Belief Update(st+1, T‘t)
if time to reset then
St+1 < s ~ P(s0)
end if
if time to update policy then
41 < Solve M = (S, A, Pbtﬂ,rfﬁ?,’y)
end if
end for

Notably, our algorithm is a general recipe that depends on the combination of reset and policy update,
and generalizes to both infinite-horizon discounted MDPs and finite-horizon episodic MDPs. For
finite-horizon episodic MDPs, the policy is updated and the episode is reset every H steps. For
infinite-horizon discounted MDPs, the policy is updated at every step and there is no reset.

Unlike prior optimism-based approaches, our method features simplicity, avoiding intricate designs
like knowness (Kakade, 2003; Strehl & Littman, 2008; Sorg et al., 2012) and tailored bonuses (Azar
etal., 2017; Dann et al., 2019), and can, in principle, work with any Bayesian model. Compared to
Bayesian RL (Kolter & Ng, 2009; Sorg et al., 2012), the key difference is our reward formulation.

4 THEORETICAL ANALYSIS

In this section, we aim to answer two key questions: (1) What is the role of epistemic guidance,
and (2) How efficient is the exploration for EUBRL. Theoretically, an algorithm is considered ef-
ficient in exploration if it achieves sublinear regret or polynomial sample complexity, the latter
being known as PAC-MDP (Kakade, 2003; Strehl & Littman, 2008). Many algorithms have been
shown to be efficient in exploration. In particular, (He et al., 2021) has shown that achieving nearly
minimax-optimality for regret is possible in infinite-horizon discounted MDPs. However, it is not
clear whether this holds for sample complexity. We show that EUBRL achieves both nearly minimax-
optimal regret and sample complexity, providing insight into how epistemic guidance adaptively re-
duces per-step regret. Our analysis builds on the concept of quasi-optimism (Lee & Oh, 2025),
which established minimax-optimality in finite-horizon episodic MDPs—yet its applicability to
infinite-horizon MDPs remains unexplored. Unlike finite-horizon episodic MDPs, which feature
clear separation into episodes and allow backward induction over horizons, infinite-horizon MDPs
are more involved due to the coupling of trajectories and the stationarity of value functions.

1
v/ Nt(s,a)
N'(s,a) denotes the number of visits to (s, a) prior to the ¢-th step. Both the transition and reward
are estimated using maximum likelihood estimators, corresponding to the empirical means P and
7. We then extend and instantiate this framework to the Bayesian setting, deriving prior-dependent
bounds for a specific class of priors and examining their applications to commonly used priors'.

We commence our analysis from a frequentist perspective, with &, (s, a) , Where

' All results presented here remain valid for finite-horizon episodic MDPs.
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4.1 REGRET DECOMPOSITION

The per-step regret, a central quantity in both regret and sample complexity, can be decomposed as
follows:

VA(s) = VT (s) = V*(s) = V'(s) + V'(s) = V'(s) + V'(s) = V™,

Quasi-optimism Complexity Accuracy

Each term is defined by its purpose and consequence: Quasi-optimism is a weaker form of optimism
than typically assumed in theoretical works, allowing more relaxed requirements on algorithmic
components. Complexity stems from introducing V*(s), an auxiliary value function that ensures
quasi-optimism and adapts the previous analysis to our framework. Accuracy reflects the extent to
which the agent’s internal model diverges from the true environment, serving as a key indicator of
how effectively an agent explores the environment and builds its model.

We aim to bound these terms individually. To do so, we define an auxiliary sequence {\;}$2,
where \; € (0,1],Vt € N. These values, derived from Freedman’s inequality (Freedman, 1975)
and refined by Lee & Oh (2025), are used to bound quasi-optimism and accuracy. Furthermore, to
bound the accuracy term, we require V(s) = O(VJ ) to ensure the agent’s subjective value function
remains bounded. Without loss of generality, we set the positive multiplicative constant C' = 1. In
addition, for notational simplicity, we denote ®; := Ry A\s.

Consequently, by invoking Corollaries 2—3 and Lemma 14, we bound the terms with respect to the
epistemic uncertainty &, the maximum value function VJ , and the auxiliary sequence {A\;}§2,,
combining them to yield:

Theorem 1 (Bound of Per-step Regret). For infinite-horizon discounted MDPs, with probability at
least 1 — 0, it holds that for all s € S,t € N,

Y

- 9 o,
V*(s) = VT (s) < (2 — i)‘it(s)> )\tVVT + 2ny(s) +0 ((I)t (1 + VT>> ,
where we define the following as Epistemic Resistance

RE(s) = 2P (5, 74(s)) + %P;; (5,7%(5)) .

Here, J,tY (s), a Bellman-like function involving error terms, is bounded in Lemmas 20-21 by ad-
dressing the challenge of trajectory coupling through a simple observation that grouping terms by
time step creates a martingale difference sequence (Durrett, 2019).

Intuitively, epistemic resistance adaptively reduces the per-step regret based on the unfamiliarity of
the actions chosen by the current policy and the optimal policy. The greater the uncertainty of these
actions, the lower the per-step regret, which highlights the critical role of epistemic uncertainty. In
fact, the reduction of total regret is even more pronounced, as indicated by the following bound.

Lemma 1 (Lower Bound of Epistemic Resistance). Given a uniform Ay = A\, Vt € N, it holds that

T
23R 2
RE(s )MV > 2 ( _Z (VT —1)+1) A

2 H MV 2 772755 (sm( )+) ’
foranyT € N.

That is, the regret bound of our method must be no worse than that without epistemic guidance.

4.2 FREQUENTIST BOUNDS

Theorem 2. For infinite-horizon discounted MDPs, for any fixed T € N, with probability at least
1 — 9, it holds that

N 2
Regret(T) < O ( SAT 5°A ) .

= =7
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Note that when T" > fi—’;‘, the regret matches the lower bound, implying nearly minimax-optimality.
This result improves the state-of-the-art frequentist bound from (He et al., 2021).
Theorem 3. Let e € (0, VJ] 5 €(0,1), and M = (S, A, P,r,7y) be any MDP. There exists an input
1N = Enax T + Ripax/m, such that if EUBRL is executed on MDP M, with probability at least 1 — 6,
V™ (sy) > V*(s¢) — € is true for all but 9] ((8(&47)3 + E(fi‘;‘)g) log %) steps.

Here, T is a function of (5, 4, §, A, VJ ), and m a critical point where the complexity term is suf-

ficiently bounded (see Table 4). Note that when € € [0, ﬁ] , the sample complexity matches

the lower bound, implying nearly minimax-optimality. This result, to the best of our knowledge,
is the first online algorithm to achieve such a bound without assuming a generative model (Ghesh-
laghi Azar et al., 2013).

4.3 FROM FREQUENTIST TO BAYESIAN

In this section, we instantiate prior-dependent bounds and demonstrate their applications using con-
jugate priors, building upon the frequentist results. To bridge the gap between the frequentist and
Bayesian settings, we formalize key properties of priors that ensure expressivity while facilitating
the analysis of regret and sample complexity.

Due to space limitations, we only outline the conceptual ideas here and defer the details to Defi-
nitions 13—16. A prior is decomposable if the difference between the posterior predictive and the
ground truth can be decomposed into a frequentist bound and a prior bias; a prior is weakly informa-
tive if the posterior predictive is close to the empirical mean. If the prior is uniform, the prior bias
admits a universal constant, and if bounded, the prior predictive mean of the reward is bounded.

Definition 1. Let € be defined by the class of decomposable or weakly informative priors whose
rate of epistemic uncertainty is © (%)

This class can be quite expressive, as it can be either correlated or independent over state-actions,
including hierarchical priors (Neal, 2012).

Theorem 4. Let M = (S, A, P,r,~y) be any MDP. For any prior by € €, there exists an instance
of EUBRL such that, when executed on M, it achieves, with probability at least 1 — §, a prior-
dependent bound on regret, or alternatively, on sample complexity, depending on the choice of 0. If,
Sfurthermore, b is assumed to be uniform and bounded, these bounds are nearly minimax-optimal.

The significance of this result is that, depending on the priors, we can achieve even tighter bounds.
In addition, it can be nearly minimax-optimal despite dependence on the prior. We demonstrate
its applications with the two most commonly used priors: Dirichlet for transitions and Normal or
Normal-Gamma for rewards.

Corollary 1. Let by denote the joint distribution consisting of a Dirichlet prior Dir(algx1) on
the transition probability vector and a Normal prior N (po, %) on the mean reward with known
precision T for all (s,a) € S x A. Then by € € and is uniform and bounded, and hence achieves
nearly minimax-optimality when used with EUBRL.

To the best of our knowledge, this is the first nearly minimax-optimality result in the Bayesian
setting. Nevertheless, we also find that EUBRL can fail in certain special cases.

Proposition 1. For a Normal-Gamma prior N'G(uo, Mo, o, Bo), there exists a parameterization
and an MDP such that 3t € N for which quasi-optimism does not hold.

Intuitively, since the epistemic uncertainty of the Normal-Gamma depends on the sample variance,
when the environment is deterministic or nearly deterministic, this term can be zero, leading to a de-
generate rate of epistemic uncertainty that violates the requirement of quasi-optimism. Nonetheless,
this issue can be alleviated by using sufficiently small prior parameters to control prior bias.

When the prior is misspecified such that the initial epistemic uncertainty is very low, the method
may also encounter difficulties and could fail to converge.
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Table 2: Summary of tasks. For Loop, we denote
L as the number of loops and Ly, as the k-th loop;
for DeepSea, N is the side length; for LazyChain,
N is the balanced length. “D” stands for deter-
ministic and “S” stochastic.

Table 1: Results on Chain environment. The
average return and standard error are com-
puted across 500 random seeds, with each
run consisting of 1000 steps.

Algorithm  Average Return SE Task 5 A r TYPE
CHAIN 5 2 101(9— S

PSRL 3158 31 (s'=5)

RMAX 3090 36 Loor etz 2 (1</s/1:1ANZL1)) + D

BEETLE 1754 - /=1 AND Ljsq

BOSS 3003 B DEEPSEA NxN 2 iES/:(N’]\;Rg - D

a=RIGHT N

Mean-MDP 3078 49 DEEPSEA N D vy + S

BEB 3430 ) N(Ov 1)1(5’:(N,1)) -

MBIE-EB 3462 - Lomon 201

VBRS 3465 20 ~ 50 LAZYCHAIN 2N +1 3 (2N—-1)1(y—eun+ S,D

EUBRL 3473 16 (N - 1) 1(5’:LEFT) +

0 1(a=D0 NOTHING)

11 (OTHERWISE)

Theorem 5 (Prior Misspecification). Let 7 = 1. There exists an MDP M, a prior by, an accuracy
level €g > 0, and a confidence level &y € (0, 1] such that, with probability greater than 1 — §,

V7 (st) < V*(s¢) — €

will hold for an unbounded number of time steps.

We construct a two-armed bandit with a misspecified prior such that the prior is confidently wrong
and produces low epistemic uncertainty, leading to repeated commitment to the suboptimal arm with
high probability.

In other words, this counterexample highlights the vital importance of the scaling factor  and the
priors in enabling efficient exploration.

5 EXPERIMENTS

In this section, we aim to measure the exploration capabilities of EUBRL on tasks with sparse re-
wards, long horizons, and stochasticity. We focus on sample efficiency, scalability, and consistency,
as reflected by metrics such as the number of steps or episodes required to fully solve a task, scal-
ability with respect to problem size, and success rate. We find that EUBRL generally matches or
outperforms previous principled algorithms, with the advantage increasing as problem size grows.
We compare EUBRL with both frequentist and Bayesian methods. Our benchmarks include well-
known standard tasks in the Bayesian literature, Chain and Loop (Strens, 2000)—the former highly
stochastic, the latter deterministic and emphasizing state-space structure—as well as more complex
environments: we study DeepSea (Osband et al., 2019b;a) and design LazyChain, both featuring
sparse rewards, long horizons, and deterministic and stochastic variants. A concise summary is
provided in Table 2, with detailed descriptions available in Appendix C.1.

Baselines Frequentist algorithms based on optimism include RMAX (Brafman & Tennenholtz,
2002), which assigns unknown state-action pairs the maximum possible reward, and MBIE-EB
(Strehl & Littman, 2008), which uses Hoeffding’s inequality to derive a reward bonus 7{_ . =
\/ﬁ, where n'(s,a) is the number of visits up to and including the ¢-th step. Bayesian meth-
ods are flexible in incorporating prior knowledge. Sampling-based methods include PSRL (Strens,
2000; Osband et al., 2013), which acts optimally with respect to a model sampled from the belief,
and BOSS, which samples multiple models and solves a merged MDP. Optimism-based Bayesian
methods includelBEB (Kolter & Ng, 2009), which is based on the mean-MDP with an additive bonus

PR . s R .
Thonus = TFnf(s.a)F1T e where o are the prior parameters of the Dirichlet distribution; however, it
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Loop Scaling

—4— EUBRL
-4+- RMAX
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Table 3: Results on Loop environment of 2
Loops. The average return and standard error

X
8
()]
£
2
&
are computed across 500 random seeds, with §_30°
each run consisting of 1000 steps. =
€ 250
o
Algorithm  Average Return SE & 200
PSRL 377 1 &
RMAX 394 0 g 150
Mean-MDP 233 3.4 < 24 8 #1L6 32
BEB 386 0 oops
EUBRL 395 0.04 Figure 1: Scaling of number of loops, leading to

more sparsity and structural difficulty. Averaged
over 500 random seeds.

assumes the reward function is known, and VBRB (Sorg et al., 2012), which is based on the vari-
ance in the belief over both reward and transition. VBRB is similar to ours but, being tailored only
to variance, does not include epistemic guidance. Moreover, classic Bayesian methods are worth
comparing: BEETLE (Poupart et al.,, 2006) provides an analytic solution to BAMDP, where the
Bayes-optimal policy implicitly trades off exploration and exploitation, and Mean-MDP (Poupart
et al., 2006; Kolter & Ng, 2009; Sorg et al., 2012) approximates BAMDP without any reward bonus.

Results As shown in Table | and 3, in Chain and Loop, EUBRL not only outperforms all rele-
vant baselines but also exhibits low variability. Notably, Mean-MDP consistently performs subpar,
highlighting the importance of a reward bonus for sustained and efficient exploration. Furthermore,
we evaluated EUBRL against RMAX—whose inductive bias favors deterministic environments—on
Loop by increasing the number of loops, which leads to more sparsity in the state space; surpris-
ingly, even with a perfect prior—so that RMAX knows the transitions and rewards after experiencing
them—it scales less favorably than EUBRL. This suggests that the priors in Bayesian methods may
have a smoothing effect, enabling more scalable performance in sparse environments.

Another standard benchmark is DeepSea, a hard-exploration problem where a dithering strategy
may require an exponentially large amount of data, and the success probability decays exponentially
as the problem size increases (Osband et al., 2019b). As depicted in Figure 2, for the deterministic
variant, most methods are able to solve the task. Surprisingly, PSRL (or Thompson sampling in
the bandit setting)—despite being an effective sampling strategy for exploration—does not scale
well as the problem size increases, likely because their sampling is excessively frequent, causing
unnecessary exploration and fluctuations near convergence. Additionally, BEB, a Bayesian method,
also based on the mean MDP, does not leverage any posterior information in the reward bonus,
making it less flexible across different environments and resulting in slower convergence. On the
other hand, the stochastic variant is a harder problem, with stochastic rewards, additional competing
sources, and randomized transitions. We consider two priors for EUBRL: one more conservative and
the other more exploratory, denoted as EUBRL+. We find that our method is more sample-efficient,
requiring fewer steps to solve the task, and more scalable and consistent. Notably, EUBRL+ perfectly
solves the task without failure—a result not observed in previous works.

Lastly, we introduce a new environment called LazyChain, which involves long horizons, sparse
rewards, and myopia. The only positive rewards are at the two ends, with the left end being subop-
timal. Starting from the middle of the chain, the agent can move at a per-step cost or choose to do
nothing, incurring no cost but making it impossible to obtain higher rewards. Even upon reaching
the left end, the agent receives a positive immediate reward, yet the cumulative reward remains zero,
hindering effective credit assignment. To succeed, the agent must sufficiently explore the chain to
reach both ends and overcome the myopia. Results in Figure 3 show that EUBRL consistently out-
performs other methods, exhibiting better sample efficiency and scalability, even under heavy noise
injection in the transitions. A comparison with DeepSea is provided in Remark 1.
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Figure 2: Success rate and average episodes to solve task, reported for both deterministic and
stochastic variants over different problem sizes (S = IV x IN). Averaged over 20 random seeds.

Prior Selection We discuss the selection and incorporation of priors. We use independent Dirich-
let (Dearden et al., 1999) and Normal-Gamma priors for transitions and rewards. Although Propo-
sition 4 suggests that Normal-Gamma may be degenerate, we find that it adapts more smoothly to
changes. Since we have diverse stochastic environments, the sample variance can help inform epis-
temic uncertainty. In contrast, Normal-Normal assumes the precision 7 (the reciprocal of variance)
is fixed, entirely disregarding variability.

Moreover, in practice—for example, in navigation tasks where per-step transitions are similar across
different states—it is beneficial to use a tied prior, maintaining a single global Dirichlet prior that is
aggregated and shared among all states. As shown in Figure 3, EUBRL (Tied Prior) indeed
reduces the number of samples required for convergence and achieves a higher overall success rate.

From Section 3.1, we know that the definition of epistemic uncertainty is not unique. Beyond
variance, one information-theoretic measure is mutual information, which quantifies the reduction in
uncertainty after collecting additional evidence. We find that mutual information is more exploratory
than variance. As shown in Figure 3, EUBRL (MI), although taking slightly more steps, achieves
the highest overall success rate.

6 RELATED WORKS

Bayesian RL. Bayesian RL maintains a posterior over uncertain quantities and uses this uncer-
tainty to guide policy selection. From bandits (Thompson, 1933; Kaufmann et al., 2012) to MDPs
(Dearden et al., 1999; Strens, 2000; Kolter & Ng, 2009), this idea enables effective exploration
strategies that are otherwise impossible with simple dithering. BAMDP (Duff, 2002) formally
represents uncertainty over MDPs by augmenting the state with beliefs, allowing derivation of a
Bayes-optimal policy, though it is generally intractable. Approximate methods include mean-MDP
(Poupart et al., 20006), sparse sampling (Wang et al., 2005), and approximate inference (Wang et al.,
2012). Despite being Bayesian, most of these works make limited use of uncertainty quantification,
without fully leveraging the posterior. VBRB (Sorg et al., 2012) employs variance similar to ours;
however, it is motivated by Chebyshev’s inequality and lacks epistemic guidance.
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Figure 3: Success rate and average steps to solve task, reported for both deterministic and stochastic
variants over different problem sizes (S = 2N + 1). Averaged over 20 random seeds.

Provably Efficient RL. The idea of knownness (Kakade, 2003), combined with Hoeffding’s in-
equality, underlies the PAC-MDP (Strehl & Littman, 2008; Strehl et al., 2009) and PAC-BAMDP
(Kolter & Ng, 2009; Araya-Lopez et al., 2012) guarantees, though these bounds are loose compared
to our frequentist results. He et al. (2021) shows that nearly minimax-optimal regret is achievable in
infinite-horizon discounted MDPs, but whether similar sample complexity guarantees hold remains
unclear. Although several works achieve nearly minimax-optimal regret (Azar et al., 2017) or sam-
ple complexity (Dann & Brunskill, 2015; Dann et al., 2019) in the finite-horizon setting using refined
concentration bounds (Lee & Oh, 2025), the infinite-horizon setting is generally more challenging
due to trajectory coupling and value function stationarity.

Uncertainty Quantification Epistemic uncertainty—arising from knowledge gaps—has deep
roots in cognition: it elicits curiosity (Kidd & Hayden, 2015) and enhances memory for surpris-
ing information (Kang et al., 2009). Mathematically, this manifests as surprise or disagreement in
one’s belief, captured by mutual information (Hiillermeier & Waegeman, 202 1) or variance (Kendall
& Gal, 2017). Despite this rich foundation, formal study of epistemic uncertainty in Bayesian RL
remains limited. As an intrinsic motivation emerging naturally from Bayesian inference, epistemic
uncertainty offers a versatile, principled approach to learning—yet a critical open question remains:
how to capture it across multiple hierarchies, minimizing the need of hand-crafted rewards.

7 CONCLUSION

In this paper, we introduce EUBRL, a Bayesian RL algorithm that leverages epistemically guided
rewards for principled exploration. The epistemic guidance naturally disentangles exploration and
exploitation and adaptively reduces per-step regret. Theoretically, we prove that EUBRL achieves
nearly minimax-optimal regret and sample complexity for a class of sufficiently expressive priors,
with concrete instantiations for the two most commonly used priors. Empirical results demon-
strate the strong exploration capabilities of EUBRL on tasks with sparse rewards, long horizons, and
stochasticity, achieving superior sample efficiency, scalability, and consistency. Scalable epistemic
uncertainty estimation and efficient Bayesian planning with function approximation remain open
and promising directions for future research. See discussion in Appendix B.3.
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Standard RL

0=0

Figure 4: Comparison between standard RL and our formulation as represented by probabilistic
graphical models (PGMs). We introduce the variable of “uncertainty” U, which partitions the opti-
mality O into distinct cases: one is when certain, the other is when uncertain.

A  CONTROL AS INFERENCE

In this section, we expand the discussion on the motivation for using probabilistic inference to in-
corporate epistemic uncertainty into the agent’s learning objective. In decision-making problems,
an agent seeks to accumulate knowledge through interactions with the environment. Standard RL
achieves this by maximizing accumulated rewards; however, this approach often becomes overly ex-
ploitative of known rewards and ignorant of unknown potential rewards. Consequently, the learning
process is not truly active, as it is driven primarily by observed rewards rather than by the uncertainty
surrounding them.

By contrast, UCB-based bonuses introduce a proxy for “uncertainty,” such as the inverse of visit
counts, to promote more active exploration. However, these methods often fail to distinguish
whether a reward estimate is reliable or not when the uncertainty is high. This limitation moti-
vates us to disentangle exploration from exploitation via epistemically guided rewards, which are
anchored in probabilistic inference.

Specifically, probabilistic graphical models provide a principled framework to condition on addi-
tional hidden variables (e.g., U). As illustrated in Figure 4, this conditioning allows us to partition
optimality (O) into two cases (or more, depending on modeling choices): one in which the agent is
uncertain, corresponding to epistemic uncertainty, and one in which it is certain, corresponding to
reward estimates. This mechanism thereby focuses more on exploration when epistemic uncertainty
is high, while shifting to exploitation when the agent is confident in its existing knowledge.

B MODEL SPECIFICATION

B.1 HIERARCHICAL REWARD MODEL

In our setting, (s, a) denotes the expected reward, which is a deterministic function. The source
distribution can be modeled as either P(r|s,a) or P(r|s, a, s'). Notably, the former is independent
of the outcome following the action, making it less expressive and potentially misrepresenting the
underlying generative process. For example, in many scenarios, the reward is meaningful only when
feedback is received, which depends on the next state s’. In such cases, the reward distribution
P(r|s, a) effectively becomes a mixture distribution:

P(T|Saa) = ]EP(s’|s,a)[P(r|Svaa 5/)]'

If we were to use simple distributions e.g. Normal distribution to model P(r|s,a), then it will
underrepresent the more complex true mixture distribution. On the other hand, if P(r|s,a) can be
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sufficiently represented by a class of distributions, its feedback-dependent counterpart P(r|s, a, s)
must be representable with similar complexity. Moreover, learning P(r|s, a, s’) and the transition
model P(s|s,a) is disentangled, allowing computation to be appropriately allocated. In contrast,
learning P(r|s, a) implicitly learns P(s’|s,a), which makes learning more difficult and prevents
reuse of existing knowledge. Therefore, we adopt modeling P(r|s, a, s’) in our implementation and
aggregate epistemic uncertainty in reward as follows:

SR(S7 CL) = IEPb(s’|s,a) [gR(Sv a, sl)] .
B.2 EPISTEMIC UNCERTAINTY

Variance-based epistemic uncertainty involves evaluating the expectation of either the transition
model or the reward model. However, unlike real-valued distributions, it is meaningless to take an
expectation over a categorical distribution, since the numeric representation does not correspond
to the actual categories. To address this, we encode the state using one-hot encoding when calcu-
lating epistemic uncertainty for the Dirichlet distribution. The exact formulations are provided in
Section H.2.

The maximum epistemic uncertainty Eyax, as required by the epistemically guided reward, is fully
determined by the priors and therefore does not introduce any additional degrees of freedom. Al-
though epistemic uncertainty is generally non-increasing, for certain priors it may not be strictly
so—for example, the Normal-Gamma prior for the reward, which incorporates the sample variance.
Therefore, it is safer to track the maximum epistemic uncertainty throughout learning, ensuring that
Py remains well-defined.

For mutual information-based epistemic uncertainty, it is worth noting that a closed-form solution
exists for the Dirichlet distribution. By leveraging the known moments of the Dirichlet, we obtain:

MIy(s,a) = Epw) Dk (P(s'[s,a, w)||Py(s']s, a))]
_y [w<ai+1>—¢<ao+1>—log% ,
. Qo Qo
where 1 is the digamma function.

B.3 DISCUSSION ON FUNCTION APPROXIMATION

Although our work is not intended for immediate deployment with deep function approximators, we
believe that the conceptual idea of epistemically guided reward could inspire future research. The
main barriers we foresee are the efficiency and quality of both epistemic uncertainty estimation and
Bayesian planning. Furthermore, we discuss how our theoretical results could be extended beyond
the current setting.

Epistemic Uncertainty Estimation Existing approximate Bayesian methods can be leveraged for
this purpose, e.g., deep ensembles (Lakshminarayanan et al., 2017), Bayes by Backprop (Blundell
et al., 2015), MC dropout (Gal & Ghahramani, 2016), or Bayesian hypernets (Krueger et al., 2017;
Dwaracherla et al., 2020). However, these methods typically require multiple models or samples,
which can significantly hinder computational efficiency, particularly when integrated with Bayesian
planning. Meanwhile, some efforts (Fan & Ming, 2021; Sasso et al., 2023) have been made to scale
PSRL to continuous state and action spaces using Bayesian linear regression, offering a lighter-
weight alternative. When epistemic uncertainty is quantified via mutual information, active learning
(Gal et al., 2017) and Bayesian experimental design (Rainforth et al., 2024) provide tractable esti-
mators. In particular, Sukhija et al. (2023) model the dynamics with Gaussian processes (Williams
& Rasmussen, 2006), deriving a tractable upper bound on mutual information, which demonstrates
strong zero-shot capability on novel tasks. Nevertheless, a key open question remains: can we
construct a well-calibrated epistemic uncertainty estimator that does not rely heavily on sampling?

Bayesian Planning One can leverage sparse and smart sampling strategies, such as employing
lazy sampling (Guez et al., 2012) or reusing a set of pre-sampled models (Wang et al., 2012; Lu
& Van Roy, 2017). Additionally, trajectories can be simulated in latent space using Monte Carlo
estimates, similar to Dreamer (Hafner et al., 2020), while policy optimization can be performed

16



Under review as a conference paper at ICLR 2026

via reparameterized policy gradients (Heess et al., 2015). Despite these advances, computational
efficiency remains suboptimal, and the accuracy of the solution is unclear.

Approximation Error When approximation is involved, a natural question arises: do the theo-
retical results in the paper still hold? We argue that our theoretical results remain meaningful in
the approximate setting. For example, when an exact MDP solver is not available, we may need
to resort to an approximate one, whose solution we denote by 7;. The per-step regret can then be
re-expressed as follows:

V*(s) = VTt (s) = V*(s) — V™ (s) + V™ (s) — Vt(s).
—_————
Approximation Error

As shown, the per-step regret can be decomposed into two components: the first part corresponds
to the results established in the paper, while the second part captures the quality of the approximate
solver. If a reasonably good approximation is available, we can derive similar regret and sample
complexity bounds, albeit with an additional term reflecting the approximation error.

This property is appealing because, given the same solver, our method will always outperform alter-
native approaches. It also implies that EUBRL can be integrated with existing solvers, such as tree
search-based or rollout-based methods, as discussed previously.

Overall, scalable epistemic uncertainty estimation and efficient Bayesian planning with function
approximation remain open and promising directions for future research, providing a fundamen-
tal basis for enabling active exploration in increasingly complex environments. Moreover, a more
comprehensive theoretical analysis of the approximate setting is another direction worth pursuing.

C EXPERIMENTAL SETUP

C.1 ENVIRONMENTS

Our benchmarks include standard tasks from the Bayesian literature, Chain and Loop, originally
introduced by (Strens, 2000) as testbeds for smart exploration. These tasks are challenging due to the
presence of multiple suboptimal policies and the fact that the optimal policy produces rewards that
are distant. The two tasks differ in their characteristics: in Chain, transitions are highly stochastic
and actions may not always have the intended effect, whereas Loop, although deterministic, has a
state-space structure that makes exploration difficult.

In addition to these, we evaluate more complex and larger-scale tasks. In particular, DeepSea (Os-
band et al., 2019b), as implemented in Bsuite (Osband et al., 2020), requires deep exploration as a
core capability for RL agents. It has been shown that dithering strategies such as e-greedy or Boltz-
mann exploration fail to achieve deep exploration and may require exponentially many episodes to
learn anything meaningful. In contrast, optimistic or randomized strategies can solve the task in the
optimal number of episodes (Osband et al., 2019b). DeepSea has two variants: one deterministic,
where both transitions and rewards are predictable, and one stochastic, which introduces noise to
transitions and rewards and includes competing reward sources, making it more challenging. No-
tably, no algorithm has been shown to consistently succeed across different problem sizes in the
stochastic setting.

Furthermore, we introduce a new environment called LazyChain, where effective credit assignment
is bottlenecked by exploration, and efficient exploration is hindered by myopia. In this environ-
ment, seemingly promising immediate rewards may not provide meaningful feedback for learning
the value function. LazyChain also has deterministic and stochastic variants. Details of all these
environments are provided below.

Chain (Strens, 2000) is a five-state problem with two abstract actions, {left, right}. Each action
has a probability of “slipping”, which causes it to produce the opposite effect. The optimal behavior
is to always choose the action right; however, if the other action is chosen, the agent will be reset to
the leftmost state.

Loop (Strens, 2000) was originally proposed as a two-loop problem jointly connected at a single
start state. It is a deterministic environment consisting of nine states and two actions, {a, b}. Repeat-
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Figure 5: Visualization of DeepSea.

edly taking action a causes traversal of the right loop, yielding a reward of 1 when the agent returns
to the start state, while repeatedly taking action b traverses the left loop, yielding a reward of 2. If
a single step is missed in the left loop, the agent is immediately sent back to the start state, while
all other actions taken within the right loop continue the traversal. This problem makes exploration
difficult due to the structure of state-space and sparse rewards.

We generalize this environment to more than two loops, with only one loop yielding the optimal
reward. The size of the action space expands to match the number of loops, with each action corre-
sponding to entering a specific loop. Similarly, any incorrect action taken within the optimal loop
causes a reset to the start state, while the other loops continue their traversal.

Deep Sea (Osband et al., 2019b;a) consists of S = N x N states and two actions, {left, right},
which move the agent diagonally and terminate exactly after IV steps per episode (see Figure 5).
In the deterministic variant, there is only one positive reward at the bottom-right cell, representing
a treasure. However, there is a per-step cost of r = —% to discourage the agent from moving
in that direction, while no cost is incurred when moving the other way. In the stochastic variant,
a “bad” transition is generated with probability % when moving toward the treasure, introducing a
high degree of uncertainty from which the agent may not recover. Moreover, additive noise A/(0, 1)

is applied to the rewards at both the treasure cell and the bottom-left cell.

Lazy Chain is a balanced chain, with the initial state in the middle and the two halves of equal
length (see Figure 6). The only positive rewards are at the two ends; however, the left end is sub-
optimal. The per-step cost for moving along the chain is 7 = —1. To test the exploration capability
of an algorithm, we introduce another action, do nothing, which leaves the agent in the current
state with no cost incurred. Notably, although the left end gives a positive reward, accounting for the
cost to reach it, the cumulative reward will be zero. This makes credit assignment even harder, as it
fails to distinguish between “worth nothing because nothing happened” and “worth nothing because
a lot of bad things and one good thing happened.” Without proper exploration, an agent may either
converge confidently on the suboptimal path or be unable to receive any positive rewards, eventually
leading to a myopic solution—remaining in the same state. There are two variants of this environ-
ment: the deterministic version, in which transitions are fully predictable, and the stochastic version,
in which actions may be flipped at each time step with probability p = 0.2. In addition, the agent is
reset to the middle of the chain whenever either end is reached.

Remark 1. Notably, unlike DeepSea, where the probability of error decays and is limited to the
“right” action with no adverse effect, LazyChain maintains a constant error probability, affects all
movement actions, and produces opposite effects, making larger problem sizes increasingly chal-
lenging, potentially exponentially so. Additionally, DeepSea is episodic, terminating exactly in N
steps, whereas LazyChain may take an arbitrarily long time to explore the chain, even indefinitely,
if one keeps choosing do nothing. Moreover, LazyChain has more suboptimal solutions, since
DeepSea is isomorphic to the right half of the chain of LazyChain, where any action that does not
head toward the treasure is considered a failure.
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Do Nothing r=0
r=-1 r=-1
Turn Left Turn Right

» Optimal Direction

Figure 6: Visualization of LazyChain.

C.2 METRICS

The metrics we choose reflect the key aspects of interest: sample efficiency, scalability, and consis-
tency. These are measured by the number of steps or episodes required to solve a task, scalability
with respect to problem size, and consistency in terms of success rate. Additionally, we report the
average return whenever applicable.

Average Return The cumulative return up to a given time, averaged across all random seeds.

Average Steps / Episodes to Solve Task The number of steps or episodes required to solve the
task, averaged across all random seeds.

Success Rate The proportion of successful runs among all runs.

An algorithm is considered successful only if it matches the optimal policy exactly for consecutive
episodes, which makes this a stricter condition for task completion. Meanwhile, an algorithm is
halted if it succeeds in solving the task, fails to solve the task completely, or exceeds the maximum
allowable steps Tix. For instance, Chain and Loop are stopped exactly at the specified number of
environment steps. In contrast, for DeepSea, we use a limit of Tp,x = 50 - N 2, where N is the side
length, and for LazyChain, we use Tp,x = 1000 - N, where IV is a balanced length. This choice
both facilitates computational efficiency and allows evaluation of exploration under constraints. In
other words, this threshold can be viewed as a penalty for any algorithm that fails the task, inflating
the metric for the average steps or episodes required to solve the task.

In sparse reward environments, we expect an efficient algorithm to achieve faster convergence, as
indicated by the average number of steps or episodes required to solve the task, and higher con-
sistency, as reflected by the success rate. However, in practice, algorithms may exhibit a trade-off
between convergence and consistency.

C.3 HYPERPARAMETERS

To ensure fairness, all hyperparameters are tuned via line search for best performance for each
method. Moreover, we ensure identical priors and modeling choices across Bayesian methods.
Scaling factors are adjusted per algorithm, as they are algorithm-dependent.

We model rewards using Normal-Gamma model NG (110, Ao, o, B0). We set pg = 0 and ag = 2.
Furthermore, we impose Ao = [, resulting in a single tunable parameter. This configuration leads
to an initial epistemic uncertainty Eg(s,a,s’) = 1,VY(s,a,s’) € S x A x S. In addition, we model
transitions using Dirichlet-Multinomial model. The Dirichlet prior is parameterized by a single
parameter c, yielding to a uniform prior Dir(1 " «). A higher value of « indicates a stronger prior
belief, whereas a lower value makes the prior less informative. On top of that, we have a tunable
scaling factor 1. For LazyChain, since the maximum reward scales with the state space size, the
scaling factor 7 has to be adaptive.

For Bayesian algorithms like EUBRL, VBRB, PSRL, and BEB, we perform a sweep over Dirichlet
parameter o € {1.0,1 x 1075, 1 x 1072, 1 x 1072,1 x 107%,1 x 1075,1 x 107%,1 x 108} for
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transitions, and By € {1.0,5x 1071, 1x 107, 5x 1072,1 x 1072,1 x 1073, 1 x 10~*} for rewards.
All algorithms use the same prior. The scaling factor is tuned individually for each algorithm, in
proportion to the maximum rewards or the state space size. We find that VBRB and BEB perform
better when the scaling factor is smaller, whereas EUBRL benefits from a slightly larger value. It
is worth noting that PSRL does not require a scaling factor; it promotes exploration by repeatedly
sampling from the belief. However, this sampling mechanism can lead to numerical instability when
the Dirichlet parameter is too small (e.g. below the threshold 1 x 10~3). For fairness, we therefore
clip the Dirichlet parameter at this threshold, which only affects state—action pairs for which no
observations have been made. Moreover, since BEB does not utilize the posterior to compute the
reward bonus, it is unnecessary to adopt the reward modeling discussed in the previous section; we
follow the same practice as in the original paper.

For the frequentist algorithm RMAX, the maximum reward is assumed to be known to the algorithm,
and we tune the knowness parameter m € {1, 3,5, 10,20}. We find that a small knowness parameter
is generally beneficial in deterministic environment, but not well suited for stochastic environments,
which require sustained exploration. A moderate value of the knowness parameter performs best in
stochastic environment; otherwise, the algorithm spends excessive time exploring, which scales as

O(mSA).

The discount factor is kept the same for all algorithms. However, its value may differ across tasks,
depending on the task horizon. For smaller-scale tasks like Chain and Loop, we choose v = 0.95,
which trades off accuracy and computational efficiency. For long-horizon tasks, we choose v = 0.99
for DeepSea, while v = 0.999 for LazyChain, since LazyChain may require more time to explore
due to the inaction and stronger stochasticity.

D NOTATIONS AND LOGARITHMIC TERMS

In this section, we summarize the notation and logarithmic terms used exclusively for the analysis
of both finite- and infinite-horizon settings. To begin with, we denote PV (s, a) := Ep(y/5,4)[V (5')]
for any distribution P and function V.

D.1 FINITE-HORIZON EPISOoDIC MDPs

Whenever we refer to k or h, they denote the episode and a particular step of that episode, respec-
tively. We define A, (V)(s,a) = Vi (s) — PVj,41(s,a). Furthermore, we define N*(s,a) as the
number of visits to (s, a) before the k-th episode, and nf (s, a) as the number of visits up to and
including the h-th step of the k-th episode. It is useful to define stopping time v, as follows:

k. | min{h € [H] sy (s ap) > 2N*(sy,af)}, if hexists.
H+1, otherwise.

Intuitively, the stopping time is the first time step within an episode at which the number of visits
has more than doubled compared to before the episode.

We define the error terms 3% (s, a) associated with m

_ pk i
Bk (s,a) = Pl(s,a)n*E"(s,a) + w7 (18&) <(4 PUA(:))VH& +3ov;5£3,k(s,a)>.

Based on this, we define a Bellman-like function .J¥(s), which uses 3%(s, a) as rewards while fol-
lowing the latest policy W,’j and the true transition P:

JI]fIH(s) =0
J¥(s) := min {ﬁk(s, 7k () + PJE, (5,78 (5)), V,I,} for h € [H].

D.2 INFINITE-HORIZON DISCOUNTED MDPs

Whenever we refer to t, it denotes the time step, which is the same as the environment step. Analo-
gously, we have A, (V)(s,a) = V(s) — vPV (s, a). In addition, we define N’(s, a) as the number
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of visits to (s, a) prior to the ¢-th step’, and n‘(s, a) as the number of visits up to and including the
t-th step.

The stopping time v is defined as follows:

_ f min{r € [t,T]: n"(sr,a,;) > 2N*(s;,a,)}, if T exists.
Ve T+, otherwise.

The main difference from the finite-horizon setting is that, for every time step ¢, we look ahead to
determine a stopping time v, rather than relying on a single stopping time that applies to an entire
episode.

Similar to the finite-horizon setting, we define the error terms 3°(s, a) associated with (

1 <(4 — Ph(s)VIt

sa)

B'(s,a) = Pj(s,a)n'E"(s,a) +

4
Ni(s,q) N + 30V 503 4(s, a)) .

And J!(s) uses (3'(s,a) as rewards while following the latest policy 7" and the true transition P,
with discounting:

JL(s) == min {5(s, 7" (s)) + v PJL (s, 7 (s)), VJ} .

Table 4: Summary of logarithmic terms and additional notations used in the analysis, with shorthand
notation. Each term is specialized for finite- and infinite-horizon MDPs, where symbol [ takes
either episodes or steps as input.

Shorthand Finite-horizon episodic MDPs Infinite-horizon discounted MDPs

‘0 log (24HSA) log (24SA)
20 log (1 + %) log (1 + <)
lyry log (125’A(1—glog kH) log (12SA(2+logt)
53,5(8, a) log (IQSA(I-H%g Nk(s,a))) log (IZSA(I-H(()Sg Nf(s,a)))
E4,|:| IOg 12H log 12t
Us,e log (1 + 280B(6)H) log (1 + 1403(6))
Lo, log log o :)
mMH ¢ Ruax HS(201+06..) R2 0, RunaxS(201+46.)
B(e) = + Ea— FEE T T )T
V)2 VT2
mD RQ )\2 Rz )\2
v v
m R RZX
0 Ve A
T /\k : )\
T 7v§,z1 7V£21
77D gmaka + Rmax\/ mg gmath + Rmax\/ myg
(c/‘maxT + Rmax\/ﬁ gmax’.r + }%max\/H

E HIGH PROBABILITY EVENTS

In this section, we outline high probability events that are basis of the analysis henceforth. Let
{\k}32, be a sequence of real numbers with A, € (0, 1], Vk € N for finite-horizon episodic MDPs.
Analogously, we have {; }$2, for infinite-horizon discounted MDPs. They arise from Freedman’s
inequality (Freedman, 1975), and has been enhanced recently by (Lee & Oh, 2025).

2Although at first sight this definition differs from the standard visit count n’(s,a), they are essentially
equivalent up to a one-step shift.
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E.1 REGRET ANALYSIS

E.1.1 FINITE-HORIZON EPisoDIC MDPs

. AL 3VT£1
Ay = ‘P’up (s, ‘<— * V(s a) + —HL gy he[H]k
1 { ( Wia(s,a)| < 4V$Var(vh+l)(s a) + NN (s, a) V(s,a) € S x A h € [H] k€ N}
. 1 . 6V20
Ay = (P = PF)(Vii)2(s,0) < ivar(vh-&-l)(saa) mvv(&a) €SxAhe[H,keN
- 2P(s" | s,a)ls k(s,a) = 203 5(s,a)
An — k.t -p / < ) s ) s ) /
3 {P (s' ] s,a) (s s,a)‘_Q\/ NE(s,a) +3Nk(s’a),V(s,a)€S><A,s €S, keN
Ay = | (s,a) —r(s a)| < Apr(s,a) + MV(S a) eSx A keN
) ) — ) )\ Nk(s a) ) )
K vh—1 1 K vF—1
As =D (PIR(sh,af) = Thpa(shiy) < T > Var(JE,1)(sh,af) + 3V 10.?; 5 VK EN
k=1 h=1 H k=1 h=1
K vk-1 1K vh—1 6
Ag = Z (P(J1)?(shs af) = (Jis1)2(shyn) < 3 Z Var(Jfy,)(sk, af) + 6V} log 57VK eN
k=1 h=1 k=1 h=1
E.1.2 INFINITE-HORIZON DISCOUNTED MDPs
3VT€1

>
—o
I

(Pt — P)V*(&a)‘ < %V&r(V*)(s, a) + V(s,a) € S x At € N}
v

AeNt(s,a)’

o 9 1 6VT2£1
A =< (P —P")(V*)?(s,a) < §Var(V*)(s, a) + Ni(s.a)’ V(s,a) e Sx A teN
- 2P(s" | s,a)ls3 k (s, a) 23 1(s,a)
Al = |Pi(s — P(s <2 : !
3 { (s" ] s,a) (s |s,a)’_ \/ Nt(s,a) 3Nt(s,a)’v<s’a)ESXA’s €S,teN
Al =S| (s,a) —r(s,a)| < N\r(s,a) + MV( a)eSx A teN
4 ’ B ’ MNt(s,a)’
T v—1 (1 6V 6
Al = {Z Z A (PT (841, ar1) — T (804141)) < s ;Var (Y (s141)) (s, a0) + : _77 log E’VT € N}
T
12v12 6
Ag — {Z( St+1 2(St7at)_(y 8t+1 ) ZV&T 3t+1 )(st,at)—&-Wlogé VTEN}
t=1

For the definition of Y?(s;, 1), please refer to the proof of Lemma 20.

E.2 SAMPLE COMPLEXITY

To analyze sample complexity, we consider modifying the last two events using an indicator function
that only accounts for a subset of episodes or time steps deemed “bad”. Since the resulting bound is
almost identical, except that these “bad” indices replace the full summation, we denote such events
as A7, Ag for finite-horizon episodic MDPs, and A7, A{ for infinite-horizon discounted MDPs.
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E.3 PUTTING ALL TOGETHER
Each undesirable event is assigned probability at most g. By the union bound, the probability of
their intersection is at least 1 — d. Therefore, we have the following events spanning different results:
A=n°_ A,
B:=n_,A]
C = ( i:1Ai) N (A7 N Asg)
D= (N_,A))N(ATNAY).

F PROOFS FOR FINITE-HORIZON EPISODIC MDPS

Our proof starts with finite-horizon episodic MDPs, which are simple to illustrate and play a vital
role in bridging to the infinite-horizon case.

F.1 PRELIMINARY CONSTRUCTIONS

Since our formulation decays more aggressively than ﬁ, we need to introduce an auxiliary value

function V* that behaves the same as the original before a critical point m, however, after which
the error should be manageable. That is, it is the value function of the MDP (S, A, P* ik H ),
where only the reward is different compared to V* of (S, A, P, 7k gp. , H). The modified reward
is defined as 7% = (1 — PE)#* + b¥, where the bonus term b” is defined as:

B Plnkek, if NF < m.
PE Ripax + ]%, otherwise.
Here n* = Enax ¥ + Rumaxy/Mk, for which more details can be found in Lemma 33.

The reward is increased to a degree that decays at least as fast as ﬁ, ensuring an advantage over
the complexity arising from the reciprocal of visits. Although this advantage holds for an arbitrary
m, we need to control the error between the two value functions thereafter. For this reason, we set

V2 . . .
mg = ﬁ, which yields a sufficiently small error.

F.2 QUASI-OPTIMISM WITH EPISTEMIC RESISTANCE

Lemma 2. For finite-horizon episodic MDPs, under high-probability event A1 N Ao, it holds that
foralls € S;h € [H+ 1],k €N,
3

V) + (5 - P Mt 20

Proof. Since we want to bound the error between V*(s) and V*(s) for any s € S. The auxiliary
function is served as a bridge to achieve that. Let us decompose the error V*(s) — V¥(5s) as follows:

V*(s) — VE(s) = V*(s) = VF(s) + VF(s) — VF(s).

Quasi-optimism Complexity

The complexity can be bounded by Lemma 3, and its proof will be given later. We now focus on the
other part.

The proof follows the procedure of Lemma 2 in (Lee & Oh, 2025), with modifications to fit our for-
mulation. The epistemic uncertainty guidance allows us to establish a refined induction hypothesis,
thereby tightening the bound in proportion to the degree of uncertainty.

To simplify notations, we write Py*(s) == PE(s,n*(s)) and PE(s) = Pk(s,7"(s)). Further-
more, let a* = 7*(s), a == 7"(s), and @ := 7¥(s) denote the actions under the optimal policies
corresponding to V*, V¥ and V¥, respectively.
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We prove by backward induction on h:
1

Vit () = V() < M ((2 - BEE) Vi) - r
H

(Vh*)z('o’)> :

For the base case h = H + 1, both sides are 0, therefore the inequality holds. Assume it holds for
h + 1, we will show it holds for h. If V,f = V;I, then left-hand side will be no positive, therefore the
inequality trivially holds. Suppose V¥ < VIE, by definition we have

VE(s) = 7 (s,a) + P*VE, (s, a).
With this, we obtain:
Vir () = ViE(s) = (r(s, %) + PV (s,0%) = (7(s,0) + PPV (5,0))

(2) ~ * Dk *
< (r(s,a*) + PV{H(S,Q*)) — (rk(s,a )+ PkV}ﬁ_l(s,a ))

= r(s,a*) — (s, a*) + (PVh*H(s, a*) — ka,fﬂ(s,a*))
=r(s,a*) — ((1 - Pg’*(s))fk(s, a*) + ¥ (s, a*)) + (PV,;‘H(S, a*) — ka,fﬂ(s,a*))
® (1-— PLk,*(s)) (r(s,a*) — #*(s,a*)) + (Pg’*(s)r(s, a*) —b¥(s, a*))
+ (PV{H(s,a*) - pkfffﬂ(s,a*)) ,
where (a) is due to the optimality of a and (b) by noting r(s,a*) =
(=P () + P () r(s, ).
Since r < Rpax, we have:

Py (s)r(s,a*) — b¥(s,a*) < Py (s) Rmax — b (s, 0%).

At this point, we note that the intermediate steps are identical to those in (Lee & Oh, 2025); therefore,

. . . Ve .
we omit them here and state the resulting expression. Denote YT* = I/{ikl’k, we obtain:

Vit (s) = T(s) € (0¥ (s.0%) — P (s) R) + L= L0 (Vi

A NF (s, a*)
+ M2 = Py (9)(r(s,a%) + PVifya(s,a%) - Q%Wh*)%s)
H
B . N (T— PE*(s))Vh oy, N . 1
= —(b*(s,a*) — Pg () Rmax) + )\k[jka(s7a*l){ LE 4y, <<2 B Pg (s)) Ve(s) - ﬂ v
* Sk Tk ok * 1 *
< — (0" (s,a") = Py (5) ) + gy + M ((2 — P s)) Vii(s) - A >2<s>)
(@) * * 1 *\2
< ((2 ~ P5(s)) Virls) - v ) <s>> (1)

where (a) is due to the fact of Lemma 33. Moreover, note that for s € S, we have 1 < 2 —

P[]j’*(s) < 2, therefore the function f(z) = (2 - P[]}*(s)) x — #12, x € [0, V;I] is bounded by
H

(% - Pg*(s)) VFTI. Substituting this for Eq. 1 completes the proof. O

F.3 BOUNDEDNESS OF COMPLEXITY

Lemma 3. Foralls € S,h € [H + 1],k € N, it holds that
‘A}izlc(s) - V}f(s) < Rpax i = O
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We first introduce the the following elementary lemma:

Lemma 4. For any n > max{m, %}, we have

L vm_vn-vm _

n

B

Proof. Since n > m, ﬁ — ‘/f > 0. To require e-accuracy, it needs ﬁ < \/nj + €. If we have

ﬁ <esn > E% then the result is desired, which is because:

1 vm

<e< €
\/ﬁ n
D

Proof of Lemma 3. The following will bound the complexity term V* gcs) — VE(s). Since the two

terms differ only in rewards, we first bound the difference in rewards AF = |7F — 7k oo .

Without loss of generality, we bound the reward for finite-horizon episodic MDPs. We set ¢, =
12

R’;’;ijf"“, thereby my = ﬁ&.

If N* < my, the reward 7% of V'* is the same as 7 pr, » therefore A* = 0; otherwise, we have
k

T
Aﬁ = (P[I;Rmax + ]Vk> - (P(’}Wkgk)

T+ Rinax 1
| (s 52) = (74 v )|

VNk  NF

_ Riax VNE — Vg
B Emax Nk
_Rmax VNk_\/mk
B gmax Nk

Rmax Rmax)\k
<

gmax V«j
_ Rinax ﬁ

gmax H

A

< Rmaxﬁka

where the second to last is because of Lemma 4, and the last is because of the assumption that
gmax 2 ]-'

By Simulation Lemma (Kearns & Singh, 2002), we know that the value functions differ at most
Rmax)\t~

For infinite-horizon discounted MDPs, the proof is similar, except that we need to replace the time
index with ¢ and the maximum value function with VJ . [
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F.4 BOUNDEDNESS OF ACCURACY

Lemma 5. For finite-horizon episodic MDPs, under high-probability event N_, A;, it holds that
foralls € S;h € [H+ 1],k €N,

2

i) - i o) < (3 2m0 - 2

@2
H

It is convenient to define the following quantities for the analysis.
Definition 2. Let Df(s) be defined by

1 1 ~ 2
D(s) = A ((3 ~ 2PE(s)Vi (s) - lems)) t T <<sk>2 — (Vals) + ) ) :
where 3% (s, a):
§5(s,0) = PE(s, a0 €5 (s.a) + B (s.) + (1~ P(s)) VALE
) - U 9 T] 9 1 9 U )\ka(S,a)
Vin(s) = ViF(s) — Vi¥(s)

S = <2 ~ P{j’*(s)) AV + @y,

in which .
1 3Vt
Bi(s,a) = N (s, a) < I;,:’k +30V$553,k(87a)> :

Proof of Lemma 5. The key to bound the accuracy term V/*(s) — V;™(s) is to decompose it into
differences:

ViE(s) = Vi (s) = A (VE = V™) (s,a) +P (Vify, — Vi) (s, a).

I

By Lemma 35, we know that
I < (An(D)(s,a) + 26(s.a))

Denote
1
Iy = (3= 2P} () Vi (s) — = (Vi)*(s)
2Vy
) . 2
I3 = (Sk — (Vh(s) + Sk) ) ,
we have DF(s) = A\ I + #13.
H
We now bound /5 and I3 individually.
Bounding [,
5
I, < (2 - 2P{j(s)> Vi 2)
Bounding /5
Iy = —Vi(5)? — 28, Vi(s) < SZ, Vi(s) € [~V Vi 3)
3
Sy, = <2 - P{j’*(s)) eV + @y, 4)
2
3 . *
Sk < (2 - Py (s)) NVEE + @ + (3 —2Pf (s)) AV @ )
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Therefore,
1
Df(s) = MLz + @13 (6)
5 1/3 2 P2
< (2 - 2P5(5)> MV + = <2 - P{j’*(s)) ANV +0 (V’;> +ONe®i) (7
H
k 2 kox + @;
< (3—2Pk(s) — = (s)) MV + 0 o + 0D | (8)
H

Furthermore, by backward induction on h, we have
Vi (s) = Vi (s) = Dji(s) + 2J5(s).
Combining this with the upper bound of D,’j (s) completes the proof. O
F.5 BOUNDEDNESS OF Jf
Lemma 6. For finite-horizon episodic MDPs, under high-probability event A5 N Ag, it holds that
K K vh-1 19H
JE(sh) <2 R(sk,af) + 6V SAl
; 1(s7) < ZZB(Shaah)+ 4108 ==,

k=1 h=1

forall K € N.

Lemma 7. For finite-horizon episodic MDPs, under high-probability event As N Ag, denote
T

YU = UK 430V S0 e, it holds that

12H
5 b

K KH
> Jf(sh) <4y S Alog (1 + SA) + 6V, SAlog
k=1

forall K € N.

F.6 LOWER BOUND OF EPISTEMIC RESISTANCE

Lemma 8 (Lower Bound of Epistemic Resistance). Given a uniform A\, = \,Vk € N, it holds that

K 23R 2
S ORF(sHNVE > ( (\/HK —~ Jﬁ) + H) A,
k=1

7 gmax
forany K € N.

Proof.
K

X 1 1
Zpg(slf’ak):1+g Z F ok

k
1 max ; — o N (S

M=

—_— d
N gmax \% H /k \/'E

:1+ﬁ(2\/7(—2),

Note, this also holds for Py*(s¥, 7% (s})). Therefore, multiplying with 22 \V,} completes the prooé.]
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F.7 REGRET ANALYSIS

Combining the results of Lemmas 2—5, we obtain the per-step regret:
Theorem 6. Under high-probability event A, it holds that for all s € S,h € [H + 1],k € N,

V*(s) = V™ (s) < (g - mk(s)> eV +205(s) + O (@k (1 + i’;)) :

where we define the following as Epistemic Resistance
9
RE(s) == 2PE(s) + 713{;7*(5).
Theorem 7. For finite-horizon episodic MDPs, for any fixed K € N, with probability at least 1 — 6,
it holds that _
Regret(K) < O(HVSAK + HS?A).

Proof. From Theorem 6, we have:
Dy,
Regret(K ZAk—VTka )\k+2ZJ’“ o +Zo<q>k< w))
H

2ka()

Choose A, = min{1,4 %}, Vk € [K] and denote U(K —=57— we have
_ 0V ’ E (s SAE 0
HZ)\ —VTZERIC - 1- K min{1,4 %}
SA&EQ K
<18V (1 -
i K

=18V (1 - U(K )),/SAKMZK.

From Lemma 7, we know that

12H
)

X KH
2; JF(sh) < 8y S Alog <1 + SA> + 12V, SAlog

_ 96V, SAly klo i 12H

: + 240V}, S? Aly g ls i + 12V, SAlog
K

1| K 12H
< 96V} S Al by i max {1, 1 m} + 240V} Al b i + 12V} S Alog ——.
1£2,

12H
< 96V SALy el jc + 24V /SAK s g + 240V} S? Aly i ls i + 12V SAlog -

< 24V \/SAK by i + 336V, S? Al 1 (1+ o ),

24HSA(1+log K H
where we denote /] ;- = log %

into the non-leading term.

as an upper bound of both ¢; i and /3 g, and merge

Combining these two together, we get:

K
(0]
Regret(K) < (42 — IS\P(K)) VI_TI\/ SAK€1€27K + 336VT52A€ (1 + EZK) + Z O (‘I)k (1 + k))
k=1
K
< (42 — 18\I/(K)) Ryax H+/ SAKElgz,K + 336RmaXHSQA£ILK(1 + 827}() + Z @ (Cbk (1 +
k=1
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where only the last part left to resolve.

Given ®;, = Rp.xAk, we have one additional source of O(AK), which will be merged into the
leading term. In addition, note that

foli) £
— Vi — KVT
_ 5 [ BawSA
o)
< O(RumuxSA),

which only increases the non-leading term by some constants. So overall, we have:

Regret(K) = O (H\/SAK + HSQA) :

F.8 SAMPLE COMPLEXITY

Theorem 8. For finite-horizon episodic MDPs, with probability at least 1 —§, the sample complexity
is bounded by
~ ((H?SA HS?’A 1
@) + log = | .
€2 € 0

For finite-horizon episodic MDPs, the sample complexity of an algorithm is defined as the number
of non-e-optimal episodes taken over the course of learning (Dann & Brunskill, 2015; D mn L.t al.,
2017). If this sample complexity can be bounded by a polynomial function f (5], |A\ H),
then the algorithm is PAC-MDP.

(AP 57
The proof is analogous to that of the infinite-horizon case in Appendix G.7; therefore, we only
provide a sketch.

From Theorem 6, we know that the per-step regret can be bounded as follows:

V*(st) = VF(sh) < (z - 9%’“(#{)) eV + 2J5(sF) + @y (1 + (3 — 2P} *(51)> Ak + i’;)

H

o
< (9 - %k(s’f)> NeVip + 275 (s8) + @y, (4 + ’;)
2 —_—— V.
N———

=La g
=Lk =L3,k

We choose A\, = so that we have L; j, < £ ¢ and L3, < {. So the remaining step is to prove

18VT ’
that majority of episodes satisfy J*(s}) < £, Wthh implies L27k <s.

The following notations are to connect the number of non-optimal episodes with J*(s%).

Let the set of non-optimal episodes within K total episodes be defined as I'x = {k € [K] :
JE(sk) > £}, and its cardinality IT' i |. We overload the definition of visits that occur only in I' k.

ny(s,a) = Z Z star) = (s,a),(k < kort < h))

kel =1
Nk(S7CL) = Z Z 'r? 'r S?a))
KEDN 1 7=1
o min{h € [H] : nf(sk,af) > 2N*(sF, ak)}, if hexists.
H+1, otherwise.
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Akin to Lemma 26, we can bound |T' x| using the fact that J*(s}) > <.
Definition 3. Let W (K) be defined by

_ B456RHSAL Kby | A80Rma HS? Al kel i 24Rna HS AL i
- k ,

W(K) :

€ € €

Lemma 9. For finite-horizon episodic MDPs, under high-probability event C, it holds that
Tk <W(Tk]),

forall K € N.
Proposition 2. For finite-horizon episodic MDPs, let Ky be defined as

6O20R2, H2SAl b, ASORuarHS?A(201 + lo.0)0ls.c
Ko = €2 + €

Then the sample complexity of EUBRL is at most K with probability at least 1 — §.

Before proving this result, we need to bound the the other way around i.e. W (K) < Kj.

Lemma 10. It holds that
W(Ko) < K.

Proof of Proposition 2. From Lemmas 9 and 10, we know that |Tx| < W(|T'k|) and W (Kj) <
Ky. It implies that [I'x| # Ky for all K € N. Since |I'k| increases by at most 1 starting from
[To| = 0, thatis, |I'x4+1] < |T'x| + 1 for all K € N, we conclude that |I'c| < K for all K € N.
Otherwise, there exists K’ such that [T'x/| > K. Assume K’ is the minimal such index. Then it
follows that |T' /1| = Ko, which leads to a contradiction. O

G PROOFS FOR INFINITE-HORIZON DISCOUNTED MDPs

The difficulty in proving quasi-optimism and bounding accuracy is that we can no longer use back-
ward induction on the horizon, since the value function is time-independent. To resolve this, we
construct Bellman-like operators to bridge this gap.

G.1 QUASI-OPTIMISM WITH EPISTEMIC RESISTANCE

Lemma 11. For infinite-horizon discounted MDPs, under high-probability event AT N A3, it holds
that forall s € §,t € N,

V*(s) — Vi(s) < A ((z — P (s)) V*(s) — 2;T(v*ﬁ(s)) .

Corollary 2. For infinite-horizon discounted MDPs, under high-probability event A7 N A3, it holds
that forall s € §,t € N,

Vi - T <0 (5 - P Vi

To prove Lemma 11, we need a define a Bellman-like operator that is a contraction mapping and
monotone.

Definition 4. Let operator 77 be defined by
(T1V) (s) = (P (8) Bmnax — U (5,7*(5))) + (L = Pi"(s)) (r(s,7*(5)) — 75,7 (s)))
+ (P — Pt> V*(s, 7% (s)) + PV (s,7*(s)).

Lemma 12. 77 is a contraction mapping and monotone.
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Proof. Denote
M(s) = (Pf(3) Rmax — V(5,7 (5))) + (1 = P (9)) (r(s,7*(5)) = 7 (5,7 (5))
+y (P - Pt) V*(s,7*(s))
Forany U,V € [0,V]]%, we have
ITi = TiVlloo = sup | (M(s) + yPU (s, 7*(5))) = (M(s) + vV (5.7°(s))) |
= ysup [P (U = V) (.7 (s))|
<ANU = Vs

Therefore, 77 is a contraction mapping under co-norm.

On the other hand, given U, V' € [0, V./]¥ such that U(s) < V (s),Vs € S, we have

(WU = TaV)(s) = P (U = V) (s,7"(s))
<0.

Thus, 77 is monotone as well. O

Lemma 13. Denote f(s) = A ((2 - Plt]*(s)) V*(s) — 2‘1/T (V*)Q(s)), under high-probability
event A1 N A3, it holds that
Tf<f

Proof. This follows the same procedure as the proof of Lemma 2, except that we use the bounded-
ness of the discounted value function and the inequalities stated in the events A] and AJ. O

Now we prove Lemma 11.

Proof of Lemma 11. Denote AV = V* — V.

Since 77 is a contraction mapping, by the Banach fixed-point theorem, there exists a fixed point V'
such that V' = limy_, o, (71)"* g from an arbitrary initial point g.

Note, AV < T7AV. By monotonicity and contraction of 7; from Lemma 12, we have AV <
TIAV < limk_mj(Tl)kiAV = V. By Lemma 13, we have 71 f < f, by monotonicity and con-
traction again, we have V' = limy_, (7])’“ f < Tif < f. Combining two sides, we conclude that
AV < f, which completes the proof. O

G.2 BOUNDEDNESS OF COMPLEXITY
Lemma 14. Forall s € S,t € N, it holds that

Vt(s) - Vt(s) < RmaxAt = (I)t~
Proof. See the proof of Lemma 3. O

G.3 BOUNDEDNESS OF ACCURACY

In this section, we bound the accuracy term. Although it is tempting to use the same logic as in
the previous section, it is worth noting that the nuance in the definition of J prevents this, as we no
longer have an argument analogous to 71 f < f. We summarize the main results in advance.

Lemma 15. For infinite-horizon discounted MDPs, under high-probability event N}_; A, it holds
that forall s € S,t € N,
Vi(s) — V™ (s) < Di(s) + 2ny(3).
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Corollary 3. For infinite-horizon discounted MDPs, under high-probability event N}_, A7, it holds
that forall s € S,t € N,

2 P2
Vi(s) —V™i(s) < (3 —2P4(s) — 7P[tj*(s)) MV +2J0(s) + 0O <V§ + )\t@t> .
Y

Putting all together, we obtain

Theorem 9. For infinite-horizon discounted MDPs, under high-probability event B, it holds that
foralls € S,t €N,

V*(s) — V™ (s) < (g — mt(s)) )\tvj +2J.(s)+ O (fI% (1 + ;I;)) .

Before we dive into details, we define the following relevant quantities.
Definition 5. Let D! (s) be defined by

Di(s) = A ((3 — 2P} (s)) V*(s) - 2;T<V*>2<s>> + % ((Stf ~ (V) + st)z) ,

where 3%(s,a):

t t tot t t Vﬂl
6 (Sva) = PU(Sva)n g (8,&) + 51(S,a) + (1 - PU(S>)W
Vi(s) == V(s) = V*(s)
St = <3 — P(t],*(s)) /\fV,YT + q)t,

in which
Bis.0) = é’a) (3‘1{61 +3ovj553,t(s,a)> .
Definition 6. Let operator 75 be defined by
(T2V) (5) = Ay (D3)(s,me(5)) + 26" (s, mi(s)) + P (V)(s, me(5))-
Definition 7. 7T is affine if, for any vector V' and F
T(V+E)=TV +~PE.

Lemma 16. 75 is a contraction mapping, monotone, and affine.

Proof. The argument for contraction and monotonicity is similar to that of proof of Lemma 12. For
the affine part, we observe:

To(V+ E) = Ay(DL) + 28" +yP(V + E)
= A, (D}) 428" + PV ++PE
=T,V +~PE.

Lemma 17. Under high-probability event N}_; A], it holds that

i
A, (VE=V™) (s,m(a)) < AW(DQ)(S, mi(a)) + 28" (s, mi(a)).

Proof. The proof is completed by applying the procedure of Lemma 13 in (Lee & Oh, 2025), except

using Vj,(s) + Sr > 0 from Lemmas 2-3 for variance decomposition and boundedness of the

discounted value, together with an adjustment of some constants under event AJ. O

Now we prove Lemma 15.
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Proof of Lemma 15. Denote AV =V — V™,
Note, AV (s) = A, (AV) (s, m(s)) +vP (AV) (s,m(s)). By Lemma 17, we have
AV < TLAV. Condition 1

For brevity, we denote g := 3¢ + vPJ¢, f := min{g, V,YT} and D = ny. We observe
T2(D+2f) =D+ 2g. Condition 2
Moreover, since D > fgvj and AV < VJ , we have

AV < D +2V]. Condition 3
Now, we claim AV < D + 2f is true. We consider two cases:

Case 1: g(s) > V| Forany state s where g(s) > V.I, the function f(s) is defined as f(s) = V.
The inequality we want to prove becomes AV (s) < D(s) + QVJ , which is true by Condition 3.

Case 2: g(s) < VI For states where g(s) < V., the function f(s) is now defined as f(s) = g(s).
¥ ¥

We prove by contradiction. Assume there is at least one state s where g(s) < VJ and the desired
inequality is false.

We define an “error” function E := AV — (D + 2f). By the assumption, the set of states = := {s €
S : E(s) > 0} is non-empty. Let E* := sup, .= E(s), then E* > 0.

We start with Condition 1, that is, AV < TAV, and substitute AV = E + (D + 2f), we get

E+ (D+2f) <Ta(E+ D +2f)
By the affinity in Lemma 16, we can write To(E + D +2f) = T2(D 4 2f) + vPE. By Condition
2, we have To(D + 2f) = D + 2g. Combining this with Equation G.3, we obtain:

E+ (D+2f)<(D+2g)+~PE.
Rearranging it, we get:

E<2(g- f)+~PE.
Now, let us consider a state s* where the error is maximal, i.e. E(s*) = E*. It must hold that:
BE(s*) <2(g(s*) — f(s*)) + v(PE)(s¥)
< 2(g(s*) — f(s7)) +vE(s").

Thus, we get

(1 =7)E(s*) <2(g(s*) — f(5)).

Since g(s) = f(s) whenever g(s) < V.I, the above equals to zero, implying E(s*) < 0. This leads
to a contradiction. Therefore we conclude that AV < D + 2f. O

G.4 BOUNDEDNESS OF .J}
Lemma 18 ((Lee & Oh, 2025)). Let C > 0 be a constant and { X}, be a martingale difference
sequence with respect to a filtration {F;}32, with X; < C almost surely for all t € N. Then, for
any A € (0,1] and § € (0, 1], the following inequality holds for all n € N with probability at least
— 4
n 3A n C 1
X < -5 E[XPFiq] + ~ log —.

Lemma 19. For any time T, we have

D A(t+w #T+1) < SAlog, 2T.

t=1
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Proof. The general idea is similar to the proof of Lemma 30 in (Lee & Oh, 2025), but unlike the
episodic setting, where episodes exhibit monotonicity, the infinite-horizon setting requires special
consideration to handle coupled trajectories. By focusing on each individual state-action pair, we
get:

NAt+u#T+1) =" > Ut+n#T+1,(s140,,01,) = (s,0))

t=1 t=1 (s,a)ESxA

T
= Z Zl(t+ Vi 7é T+1, (St+Vt7at+Vt) = (s,a)).

(s,a)eSxAt=1

Ift+ vy # T + 1, then t 4 1, is the first time step more than double the anchor ¢. Therefore, we
have n(*t0) (s44 . agyy,) > 2N (8144, G140, ) + 1. Since any step that is greater than ¢ + v; is
an inclusion of n(***), we have N(+ve+e) (s, a0 ,,) > 2N (s44y,,a14,,) + 1 forany ¢ € N.
Based on this condition, we denote My (s, a) as the number of steps ¢t € {1,2,...,7T} such that
Nttte) (5 ) > 2Nt (s, a) + 1, then, we have:
T
S At + v # T+ 1, (S0, aeg,) = (5,0)) < Mr(s, a).
t=1
We aim to bound the right-hand side above by finding contradiction between a upper and lower
bound of N(*+¥:+¢) (s q). First, since there are at most (7' — ¢ + 1) time steps left from the anchor
t, we have N(H7+9) (s q) < N'(s,a) + (T —t + 1) < N'(s,a) + T. Combining this with
NEHvit+e) (s, a) > 2Nt (s,a) + 1, we know that it occurs only if N*(s,a) < T. Next, we prove by
induction that
P(t) : N'(s,a) > 2M—1(s0) 1,
To verify this, let ¢ = 1 and define a sequence of “checkpoints” that starts with ¢:
t() = t, tk+1 = tk + Vit + 1.
Because 14, > 0, we have tj41 >t + 1. Alsory, <T —tp+1landty >t > 1givetpy <T.
Hence {t)} is a strictly increasing sequence bounded above by T', so after at most T — ¢, steps
we reach t = T. If the induction statement holds for any step ¢ € [ty,tx+1], then, by the above
progress and termination argument, it follows that all steps are covered.

Let’s first verity the base case P(1), for which we have My = 0 and N M) = 0, there-
fore the inequality holds. Then assume P(ty) holds, there are two cases to consider. If
N4 (5 q) > 2N'(s,a) + 1, it implies that (s,a) is the first time step that triggers the
stopping of vy, leading to N+t (s q) > 2Mei(s0)+l _ 1 — 9Mitw,(5:09) _ 1 More-
over, for each intermediate step [ with 1 < [ < v, P(to + ) holds; On the other hand,
if (s,a) is not the pair that triggers 14, this means that it has not been doubled yet, imply-
ing Myy,,(s,a) = M;_1(s,a). However, there may still be some increments, and therefore
N(t+’/t+1)(s,a) > Ni(s,a) > oMi—1(s,a) _ 1 = 9Mitv,(s:0) _ 1 Thus, we conclude that the
induction holds.

This gives us a lower bound, suggesting M;_1(s,a) cannot grow faster than logarithmically in
T. Formally, once M;_1(s,a) reaches |log, T'| + 1 for some ¢, it cannot increase further, since
N'(s,a) < T. Therefore, we conclude that Mr(s,a) < |log, T'| + 1 < log, 2T, which completes
the proof. O

Lemma 20. For infinite-horizon discounted MDPs, under high-probability event A} N Al it holds
that
T vi—1 1
13V, 12T
iji(st) < Z > VB (841 arsr) + 1 7;5/110% =

t=1 t=1 =

forall T € N.

Proof.
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Bounding Jﬁ(st) Given a T-path (s1,a1,71,...,S7,ar, 77, S7+1) Where actions are chosen
from 7;(s;) at each time step, we decompose J (s;) as follows:

JE(s1) < B (s, a0) +yPJI (51, ar)
= B'(st,a) + YPT (stya) — v (s441) + 7 (8¢41)

ve—1

< B et ai) +4" (PT (sepn aipt) — T (sivig)) +97 T (st40,)-
=0

Si1, Sa,

Then, we take summation over 71" steps:

T ve—1 T vi—1 T
PIFACOIED DD BETED DD DETED BUACTA)
t=1 t=1 [=0 t=1 [=0 t=1

11 Iz 13

Bounding /3 By Lemma 19 and J!(s7,1) < VJ, we get:

I3 YT (st40,)

Il
B

o
Il

1

Il
=

(Lt +v #T+1) + 1t + v =T+ 1) 7" T (St40,)

&
Il
-

T
Lt v # T+ 1)y T (se4w,) + 3 1+ =T + 10" T (5114,
t=1

Il
M=

o~
I
-

T
Lt + v # T+ 17" T (s040) + ) Lt v =T + 1)y T (s741)
1 t=1

v
Ut # T+ 100 T ) + 722
1
.

V.
T v
Vvtgl(t—&-l/t#T—i-l)—&-l_fy

I
E

~
I

B

<

~
Il

IN

—

v

< V'SAlog, 2T + .
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Bounding /5

S
I
[~
&S
|
wn
N

~
Il
-
N o~
o
«+ O

I
=

1(l S V¢ — 1)8271

~+
Il
_
T I
-+~ ©

Il
[M]=
]

1 < v — DY (PI (5040, aegr) — ' (Se4141))

~+

16
M-I
M- T

Lr—t < v — D)y (P (sr,ar) — T (8741))

3
I
—
~
I
—

G
[M]=
Mﬂ

1t—7<v, — 1)'yt_T'H (PJ7 (styar) — I (8¢41)),

~
Il
-
3
Il

1

=X

where (a) is due to the exchange of rows and columns and (b) to the reverse of the roles of indexes.

Note that in the final step, we make a bag of martingale differences with the same time index;
therefore, it is not hard to verify that X; is a martingale difference sequence, with E[X;|F;] =

t
0, B[(X;)?|F] = Var (Z 1(t—7<v, — 1)fyt_7+1JT(st+1)) (st,at) and bounded as | X;| <
T=1
VT %) . t i ,
— < = t(st_H) = > 1(t—7 < v, —1)y*"7"1J7(s441) and applying Lemma 18
T=1
to {X;}2, with A = =, we get the following:

—

I = E X
t=1
T 1
(1-7) . 6V, 6
< Var (Y*(s St,ap) + lo . 9
= e ;:1 (Y (s141)) (s¢,a0) -, 085 )]

=L

Next, we will bound the sum of variances L. First, we look at each individual variance.

Li == Var(Y'(s¢11))(s¢,a¢) = P (Yt(st+1))2 (st,a¢) — (PY"(s5441)( 8t7flt))2
=P (Yt(5t+1))2 (sesae) = (Y (5041))% 4+ (Y (5041))° — (PYt(SH—l)(Staat))Q
=P (Yt(8t+1))2 (st;a) = (Y'(s141))°
+ (Y'(st41) + PY (s041) (se,a¢)) - (Y (s041) — PY " (5141) (¢, a¢))
T
< P (V' (5001))” (50, 0) — (Ve (5041))? 4o

— (Yt(8t+1) PYt(StH)(st,at)) .

=7
Akin to the previous argument, the second term is a martingale difference sequence, therefore, we
obtain:

T

t t d GVT 6
Y - PY < l .
; (St+1) (st41)(s¢,a¢) < ; “(s141))(8e, ar) + = 0g — 5
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Based on this, we can simplify the bounding on L:

T
L:ZLt

ZT: (Y (8t41) — Pyt(5t+1)(5t7at))
7=
< éZt + 2VT (18VT ZVar (s¢41))(se,a8) + 16?/; log ?)
:tzf: lezf:\/ar (st4+1))(s¢,ap) + ﬁ‘g;logg
t:iZt+leL+(12_Vi;logg
SiZt+éllL+(1_Vleog§. (10)

o~
Il

1

It is not difficult to check that {Z;}$°, is a martingale difference sequence with E[Z;|F:] = 0,

E[(Z:)?|F] = Var ((Yt(st+1)) ) (s¢,at) and bounded as | Z;| < {i=5y2- Moreover, by applying
Lemma 9 in (LL.ee & Oh, 2025) to the second-order moment, we have
t 2 V'YTQ
Var ((Y (St+1)) ) (St,(lt) S m

Combining this with Lemma 18 with A = 12 , we get the following.

Var (Yt(5t+1)) (St, at).

12V.12 6
5
ZZt < - ZV&I' St+1 ) (st,at) —+ W logg
1 12v12 6
=-L 71
TR SRR
Substituting this into Eq. 10, we obtain:
T
1 12vIi2 6
L< Zy+ =L 71
tzl ¢+ 1 +< )2 og6
1 12V.12 6 1 12V12 6
<-L 771 —+-L+—"—log~
BN e I RN (R el
1 24V12 6
==L 71
2 T a2 8
which has a recursive structure, leading to:
48V 12
< —7 log §
1—)? %3

Substituting this into 9, we have:
(1-=7), 6V 6

I, < L log =

2= gyl T 1= %5
1—~) 48V12 6 6V 6
(73)77210g7+7710g7
sVl (1—1) d 1—v 790
12VT 6

S1
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Finally, we conclude that

T

ZJfY(St) <Li+1,+1I3

t=1

6

12V
<L+ 5

1-

log

5
o1 13VT1 6
S K

13v7
< i g SAlog

SAI

13V.
Sfl—i- V

3VT

which completes the proof.

vT
+ VTSA10g22T+ -
-

+V7

2T
4

SAlog, 2T

5.
6

13V!
g + 1 SAlogQT

12T

Lemma 21. For infinite-horizon discounted MDPs, under high-probability event A} N A{, it holds

that

ZJt

forall T € N.

g (14—
SA 1- 5

3VT 12T

Proof. Based on Lemma 20, we only need to bound I, which is a series of discounted sum of 3.

By the definition of the stopping time v, we know that for any ¢ that satisfies ¢t —

T < vy —1, we have

nt(s,a;) < 2N7 (s, a;) looking back at a previous anchor 7. Moreover, we infer that n'(s;, a;) >

2 must hold, otherwise it cannot satisfy the condition. We denote the set Z(s,a) C {1,2,...

38
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the time steps at which the pair (s, a) is encountered.

T vi—1
L= 4B (str1,ae41)
t=1 [=0
T T-—t
= Z 1( < v — D' B (s141, ar)
t=1 =0

T
= Z 1(r —t <vy— 1)y 'B(sr,0a,)

T=11t=1
T ¢
= Z Z 1t —7 <vy — 1)y 7B (8¢, a4)
t=171=1
T ¢
_ T
= 1t—7<v, — 1)y T——
22 " N o

—
3
Il
—
—
»
-+
s
-
~

t=1r=1 (51, 1)
(2) S 2
2) (1) 1(t—7 < vy — 1)1(nf(se,ar) > 27"
;Tﬂ ( N1, o) " nt(se, ar)
T 1 t
< 2™ N1 (nt > 9 1t—7<v,— 1)y
YO " 1(nf (s, ar) )nt(shat)z (t—7<wv.—1)y

- t
7 (s,a)ESX ALEL(s,a) n'(s,a)
(1) NT*(s,0)
<2 3 1
1—7v n

(s,a)eSx A n=2

oP(T)
< 13) Z log (1 + N"*!(s,a))
- (s,a)eSxA

2Y(T) T
< Alog [ 1+ —
_1_75’ og(+SA),

where (a) holds because we can distinguish two cases:

o If t — 7 > v; — 1, then the indicator 1(t — 7 < v, — 1) is zero, so the product vanishes
regardless of the other indicator;

e Ift — 7 < v, — 1, then, as shown earlier, we have n(s;, a;) > 2.

39



Under review as a conference paper at ICLR 2026

G.5 LOWER BOUND OF EPISTEMIC RESISTANCE

Proof.
S Aan=1s Ly
=1 gmax t—2 Nt(St, at)
T
1 1
>1+
o 51]13)( ; t - 1
=1+ Ly
gmax =1 \/7?
T-1 at41
1 1
>1+ / — dx
gmax t=1 t ﬁ
1 (T
=1+ — dx
gmax 1 \/E
1
14 (2\/T - 2) .
5max

Note, this also holds for P{;* (s, 7*(s;)). Therefore, multiplying with ?AVJ completes the proof.

O
G.6 REGRET ANALYSIS
G.6.1 PROOF OF THEOREM 2
Prior to deriving the regret, we state the following lemma.
Lemma 22. It holds that
Ly <l + b,
forall T € N.
Proof. Expand ¢4 1 and relate it to {5 7, we get:
12T
Ly = log 5
12(SA+T)
< log — 5
125A(1 + L
= log —( * 54)
0
1 1254 +1 1+ r
=log | —— o} —
A & SA
<l + Ll
O

Proof. From Lemma 9, we have:

oyt T T T T P
t
Regret(T') < TV ) 1: A=V 1: Ri(s)h +2) 1j Ji(s)+ ) 0 ((In (1 + VJ))
t= t= t=

t=1
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2 3 9 (s)

Choose A\, = min{1, 3 SA?%)T }, Vt € [T] and denote ¥(T') := —=5=—, we have

2 Z R (s
Wi & d oVt SAz l
el t t _ 2y 1l
5 g sz::%(s))\t— 5 T min{1,3 T = )}
< 14 2tmax Rmax 1 _ SA£1£2 T
- 1- 'y T(1—7)
Rmax

= 14(1 — U(T)) mw/mmew

From Lemma 21, we know that

26V
22Jt ) < LSAlog (1 + ;) 12T

ABVIS ALy ply 120V 26V. 127
i o Al 10 g Alog ——.
(1—’7)/\T +1_ 52 2T3T+ S og 5
48V IS Al rlo 1 1 [T(1—7) 120VT 26V 127
oy mI T e - 2A
1-7) ax SAlly 1 1— S forlsr

48-Rmax51461,T‘€2,T 16Rmdx

12 max max 2T
=/ SATl b 1 + 0% S2A£2T€3T+ 268 SAlog

< +
R G R=E (S ERC
(@) 16 R 120 Rax 2 ASR. SAl 2lor  26Rm
< (1 — ~\1.5 ) )
S T-is SAT€1€2T+<(1 )2 55 Al Tls T + 1= e 5 SA(lr + lar)
(b) 16Rmax 120Rmax 2 48RmaxSA£/1 T€2,T 26Rmax
S A5 s
Y SAT€1€2T+((1 )2 SAZQTE 1—7)? +(1_,y) SA(€1T+£2T)>
16Rmax 120Rmax 2 48RmaXSA€/1 T(l —|— 62,T) 26Rmax
S A ais 5
ST—)is SATC by 7 + <(1 )2 S= AL, Tﬁ =2 + (177)25A€2,T
105 120R A8 Rax SAL, (1 + bo.7)
< & AT max 2A 1 , ’
S-)is S €1€2T—|—<(1 )2 SPAl r(1+ 45 ) + T >
16 Rnax 168 Rinax
= 1—7)15 SAThbr + (1— )2 SQA(l + 0. 7)(1+ b)),

where (a) uses the Lemma 22, and (b) £} 1 is denoted as log w, therein ¢} ;- > /; and
Uy p 2l

Combining these two together, we get:
/SAT S2A = ®
Regret(T) < (30 — 14\1/(T))1w3m7(1 - 7;1;” + 168an7(1 —7 A+6 )0+ br)+> 00 [1+—]],
t=1
where only the last part left to resolve.

Given ®; = Rpax s, we have one additional source of O(A\T'), which will be merged into the leading
term. In addition, note that
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which only increases the non-leading term by some constants. So overall, we have:

~ AT ZA
Regret(T) = O ( S 5 )

= " T

G.6.2 STATE-ACTION DEPENDENT \:(s, a)

Definition 8. Let G be defined by

g = Z ( 1—;l§PU(s,a)>,

(s,a)eSx.A

where

P{(s,a) = min{Pj(s,a), P (s)} )

Py(s,a) = min min Pl (s,a
( ? ) 2§TLSNT+1(S)G')1S7§t(sﬁa)(n) U( ? )

Notably, we have the property of G that é—;SA < G < SA. The maximum is attained only if
Py(s,a) =0,Y(s,a) € S x A.

If the epistemic uncertainty is non-increasing, then Py (s, a) is corresponding to exactly the epis-

temic uncertainty at the end of learning, that is, 155 *1(s, a), reflecting the systematic uncertainty of
a particular state-action.

Vv 2-Nt(s,a)l1,e .
Lemma 23. Denote pt(s,a) = L2 NDT(,E ;))61, , it holds that

T vi—1

¢ 320 T
Z Vol (8141, angr) < #glog (1 + > .
t=1 1=0 (1=7) g
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T vi—1
Proof. Denote I == > > ~'pt(s¢41,a:11), we have
t=1 (=0
I < ¢ 9
I= 1t—1<v, — 1y 7T—2" (/2 _%r
;; (f-r<v " N7 (st,at) ( 2 (Shat))
T ¢
201 , 9
< 1t —7 <y, — 1y 7T—0 = — R7 (s,
< ;Tz::l ( TV )Y nt(se, ar) < 9 (s¢ at))
(3)25 3 tlt < Ayt L ) RT
= I’TZZ ( —TXVr— )’Y m 5— (St,at)
t=171=1
T t 1
< 3V20 1(t—7<v, =147 \/1 — P7(st,
3v2 LT;; t—7<wv ) nt(se, ar) ( 63 0 (st at))
T ¢
= T;T:1 W=7 <or = Dlnse a) 2 2)715_771 S¢, g <\/1 63P (St’at)>
d 1 46
t t—1 B
< 3\@31?; 1(nt(sy, ar) > Q)W ; 1(t—7<v,—1)y <\/1 - 63PU(st,at)>
d 1 16
t t—1
< 3\/§ELT; 1(n'(s¢,ar) > 2)m <\/l 63 1r<nT1n Py (st,at)) ; 1t—7<v;—1)y

< V2l r il(nt(st,at) > Q)L <\/1 8 in Py (Staat))

63 1<r<t

IN

3\/§€17T <\/1 — m1n1<T<t PU(s a))
> D W'(sa)22) (o a)
(s,a)eSxXAteL(s,a)

3\5£1,T NT+(s.q) (\/1 — % minlé.,.gt(sw(n) PE(S, a))
(eI YD "

(s,a)eSxA n=2

NT+1(5,0)
3v2¢ B )
f : T 1- min min  Pj(s,a) E il
- (s, a)eSxA 63 2Sn<NTHi(s,0) 1ST<t(s,0) () n

= 3(\1[—ng (\/IPU s a)) log (1 + NT*1(s,a))

(s, a)ESX.A

— p S,a T+1sa
Wb (V1= 8BPu(s,0)) (14 NT+(s,0))
(=) g

(s,a)eSx.A

IN

IN

IN

( 1— 46, (s, a)) (NT+1(s,q))
G

3v/2¢
= fl’Tglog TS

(1 _'7) (s,a)eSx.A

3\/5@1 T NT+1(37CL)
: 1+ Z —_—

< gl

(1_7) > (s,a)ESx A g
(¢) 3\@61’1“ ( T)
< — Gl 14—
=a-y9e\ltg)

where we have used the following facts:
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(a) Monotonicity of ¢; ,

(b) K7 (s, a:) > ZPf(se, ar)

(¢) Jensen’s inequality
O
N
Lemma 24. Forany T € Nand x € [a,b]", 0 < a < b, define function G(x) = . \/z,, and
n=1
f(x) = G(x)log (1 + G(x)) we have that
f(1a) < f(x) < f(10).

Proof. Using the elementary fact that g(u) = ulog (1 + %) , u > 0 is nondecreasing on (0, 00)
completes the proof. O

Proof. From Lemma 9, we have:

C SAl Tl T
I _t(s) T(1—v)

T
9 9 C SAl 7
T 2 _ it —_yt Y _ ot 1,72, T
V,YZ<2 9%(5)))\,5 VAYZ(2 %())mm{l T(l—y)}
BRiax < [ ]9 SAl é
max 1T2T
< il
-01_72(\/2 ) Srter
/SAEITEQT
T(1—~

CRmax
S(:[-WJ( T th )SAElTEQT

} , Vt € [T], we have

=71 (tili)‘i (s)
Given
12V, ,
t _ B
= # + 30V, S03.,
V5 —Ri(s) |
2 T(1 —
= ]-QVJELI max {1, C SA<£1 Tez)T + 30V$S€3’t
9 T(1—7)
=12V, + = W 2 R(s)y | ——T + 30V Sl .
. AN R i () SAl plyp 273
yi A%

Vs
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From Lemmas 20 and 23, we get

T T vi—1 0
26V 12T
2§ :Jf{(sﬁ) <2 § E V' B (St41, arr) + 1 _L 08—~
t=1 t=1 1=0

T t
B yT 26V 12T
<2 1(t—7<v, — 1)y 7 SAlog
a ;Tz; o=y 1 NT(Stvat)+1— El

1 T T T 26V’)T 12T
< QZZ (t =7 < v = D37 s T 95 4+ 35) + T SAlog =

1)
t=171=1
ABVISAly 1ty
(1—9)Ar
72\/§V$€1,T T(1—7) (Gt 1)
Cll—9) | SAlzlyr ™"
=72(9)
120V
= S Aly 7ls 1
6VT 12T
+ = SAI 5

72f 2Rmax o , 168Rmax oo
S ﬁ SATEl TZQT WS A[l)T(l +€2’T)

Combining everything together, we get:
168 Rmax P
Regret(T) < Jy (Z%t )-i—Jz Gg)+ (l_m)d S2A€1T(1—|—£2T +ZO<<I>t <1+V$>>.
t=1 ¥

T
So, depending on the contribution of > R!(s) and G, we can get different bounds. In what will
=1

follow, we choose C' = 3\/g .

Disregarding G Even ignoring the first part, we can obtain a tigher bound where the leading term

T
is offset by the sum of epistemic resistance > R’ (s) as follows:

t=1
5> 9t (s)
2 Rt(s
— R, 168R,
R V< |16+14 | |1 - =L max AT X G2 Al (1
egret( )_ 6+ 9T (1_7) S £1T£2T+(1 ) S €1T( +€2T)

+;O<c1>t <1+ i}))

Considering Both Let N = SA,a = £, b = 1, by Lemma 24, we know that

63’

1 T T
o = \/lSAlog 1+ < gty » < SAlog (1—|—)
’ 63 \/ESA : SA
63
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with this, at best, we can achieve:

* 17 él* max 168Rlﬂax 2
Regret (T) < — | 16 + 14+/45 T SATY, T+ ———S° Al T(l + 4y T)
63 52 T (1—9)?

+éo<@t (H;))

If the ratio s ~ s large, then A o & o~ {5 7. Therefore, the overall reduction is by a factor of 4 J1T ~

3
0.519. In this case, we can improve the constant in the leading term by roughly one-half.

Lastly, the treatment of the part of ®, is similar to that in the uniform case. Therefore, we ultimately
have

Regret(T) = O <( SAT 524 ) .

1= 1=

G.7 SAMPLE COMPLEXITY

For infinite-horizon discounted MDPs, the sample complexity of an algorithm is defined as the
number of non—e—optimal steps such that V™ (s;) < V*(s;) — € taken over the course of learning
(Kakade, 2003; Stre 11 2\ Llllman 2008). If this sample complexity can be bounded by a polynomlal
function f (|S | |A], 1,1, 17 ), then the algorithm is PAC-MDP. We are interested in proving PAC-

MDP for the full range € € (0, V.].

From Theorem 9, we know that the per-step regret can be bounded as follows:

V*(se) = V™ (s¢) < (Z — mf@)) AV 4205 (s¢) + @ (1 (3 2P () A + 3)

9 P
<= = R(se) ) MV +2 (s) + By [ 4+ —
2 Y Y V’r
——r y
=Lo —————
=Ly =La,
For L, ;, we can choose \; = svT’ so that we have L; ; < £. In addition, note that ®; = Ry A+
and )\f = ﬁ < W’ substituting it into L3 ;, we have:
€ e(l1—7) €
P, = Rmax)\ == Rmax == S -5
K ! 18VT 18 18
(I)% 1nan(/\2 1 Rrgﬂax 6(1 - 7)2 €
e < —.
v, v — 18 Vy2 18 18

Therefore, we obtain Lz, < (75 + 13z) € < <.

If we can prove that Ly ; < ;, or equivalently, J,’i(st) < < 5 then the time step ¢ can be said to be

optimal. To achieve thls we introduce a set of new notations that explicitly connect the number of
non-optimal steps with .J! (s;).

We define the set of non-optimal steps within 7T total steps as I'r := {t € [T] : J!(s;) > §}, and
its cardinality |T'r|. Then we want to prove that |['7| is polynomially bounded for all T € N.

46



Under review as a conference paper at ICLR 2026

For analyzing non-e-optimal steps, it is useful to overload the definition of visits so that it only
includes those occurring in I'p.

n'(s,a) = Z 1((st,a¢) = (s,0a))

tel:
Nf’(s,a) = Z 1((8,3,0,,3) = (57a))
tel'y 1
min{7 € [t,T] : n"(s,,a,) > 2N'(s,,a,)}, if T exists.
e { T+1, otherwise.

Next, we bound the sum of .J! (s;) but only for the steps in T'z..

Lemma 25. For infinite-horizon discounted MDPs, under high-probability event A7 N A{, it holds
that

2Y(IT7 ) r 13V 12|7
D (s < Y SAlog <1+ |T|> + —2SAlog | T',

o 1—x SA 1—x 1
forallT € N.
Proof. The proof follows the same procedure as in Lemma 19 20 and 21, except adding the indicator
function 1(¢ € I'r) to each time step. O
Based on the above result and Lemma 22, we can bound |TI'z| using the fact that J (s;) > §.
Definition 9. Let W (T') be defined by
W(T) = 1780R2 SAl 7lor  240RunaxS?Aly 7l3 1 52RpnaxSALl 1
el e(1—7)? e(1—7)?
Lemma 26. For infinite-horizon discounted MDPs, under high-probability event D, it holds that
Pz| < W([Tz)),
forall T € N.

Proof. From Lemmas 25 and 22, we get
SYTMSAly p 52VISA( 7 + o)
€(1—1) e(1—1)

Substituting the definition of YT into the above, we have

Tr| <

|F ‘ < 1728R[2naxSA€1,|FT|€27‘FT| + 240RmaxS2A‘€27|FT|‘€3,|FT| + 52RmaxSA(‘€1,|FT| + 62»‘FT|)
e E(1—7)? (1 -7)? e(1-7)?
(z) 1780Rr2naxSA€1,‘FT|€2,‘FT| n 240Rmax52A€2,|FT|€3,|FT| n 52RmaxSA£17\FT|
- (1 —n)? e(1—7)? (-2
T
where (a) uses the facts that V% > 1 and El’lr‘T‘ > 1, therefore concludes the proof. O

Proposition 3. For infinite-horizon discounted MDPs, let Ty be defined as

. 3670R,2”MSA€1€576 480RmaXS2A(261 + £67e)€5,e
L et (1=

Then the sample complexity of EUBRL is at most Ty with probability at least 1 — 0.

Before proving this result, we need to bound the the other way around i.e. W (Tp) < Tp.

Lemma 27. It holds that
W(To) < Tp.
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— _Bnb RunanS(261 446 )
Proof. Denote B = =y + e

U5 ¢ =log (14 140B) < 5B. Then we have:

To
fam = s (14 5

, therefore we have Ty < 3670BSA¢5 . where

<205 .
Moreover, we have:
0 < 45 A
=
\VAl
‘€6,e S X
€(1—7)
Therefore, we get:
8SA 1740}
2 +bg < —— i
FTReET T )
9VISA
< —
~ de(l—7)

‘We use this to bound B as follows:

Rr2nax£1 RmaxS(2£1 + 56 e)
B= :
e2(1—7)3 e(l —v)?
4R2 SA 9RZ . S%A

=517 a1 )t
 13R2,5%A

— max
de2(1— )t
With this, we now bound log T}, which is a part of /3 ;.
log Ty < log 18350B2S A

169R%,, S A°
< max
< log 1835055 A5 4

4 4 A2
18350 x 160 ; RpnS'4%
p 52e4(1 — )8

568005° A3 ViZet
<log s +log m.
—_— ———
Z:Ll

= log

‘We now bound L.
568005° A3
g 2
56800.5° A°
55
0595 A5
55
9SA
)

L1=10

< log

< log

= b5log

SA
<11—.
- ]

Therefore
SA Ve
logTy < 11— + 41 t
e
o 1594, Vie
ST d-y
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Then, substitute this into /3 1,, we get:
1)

125A
= log 1254 + log (1 + log Tp)

1
1554 Vie
5 el —)

(a) 165 A Ve
< 1 +1 1 "
>~ t1 + og ( 5 0og 6(1 _ 7))

Ve

€(1—7)

637To = 10g

< /{1 +log <1+

16SA
</{; +log <5> + log log

<201 + g e,

Te

where for (a) we have used the facts that 22 > 1 and log V% > 1.
J e(1—7)

Now, we prove W (Ty) < Tp. Since B > 1, therefore 5 . > log141 > 1. This leads to Ty >

T
36705 A, henceforce {5 7, > 1. Along with VTV > 1, we have:
1780R2 S Al Tol2,1, 240Rmax5’2A€2,T0€37T0 52Rmax SAl 1,

W) = a0 (1) (1)
1780R2,SAl 1 loy  240RmaS?Als 1031,  52R2, SAly 102 13,
SRR (172 2(1—)?
1832R2, SAl 1 lo,  240RmaS* Als 1,03 1,
G (1)
=W'(Ty)
Substituting the bounds on logarithmic terms, we obtain:
W (To) < W'(Tp)
- 3664R2, SAl 5.  A80RmaxS?Als (201 + {6..)
T eld=y)p e(1-7)°
3666 R2, SAl1l5 . A80RmaxS?Als (201 + {6 () _g
(1 —7)? e(1—7)?
3670R2, SAl 105 .  A80RmaxS?Als (201 + {g.() _ g
(1 —7)° e(1-7)?
3670R2, SAlls .  A80RumaS?Als (201 + ls.c)
< : —~ | +1-2
{ 21— (1) J
3670R2, SAl U5 480RumaxS?Als (201 + lg c)
€ 4 <l
{ 21— (1) J
=Tp—1
< Tp.

Now, we formally prove Proposition 3.

Proof. From Lemmas 26 and 27, we know that |T'z| < W(|T'r|) and W(Ty) < Tp. It implies
that [T'p| # Tp for all T € N. Since |I'r| increases by at most 1 starting from |[T'g| = 0, that is,
ITr41] < |T'p|+1forall T € N, we conclude that |I'r| < Tp for all T € N. Otherwise, there exists
T’ such that |T'r+| > Ty. Assume 77 is the minimal such index. Then it follows that |T'r/_1| = T,

which leads to a contradiction.
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H POSTERIOR PREDICTIVE AND EPISTEMIC UNCERTAINTY

In this section, we will give backgrounds necessary to relate the Bayes estimator to the MLE esti-
mator.

H.1 POSTERIOR PREDICTIVE

H.1.1 TRANSITION

Lemma 28. Let by := Dir(a) be a Dirichlet prior over transition for a fixed (s,a) € S x A, and
define o = 1" cv as the sum of prior parameters. Let n denote the total number of visits to (s, a).
Then, the following decomposition holds:

n ~ (%))
Py —P— (P—P) P, — P),
b n + ag +n+ao( b )

for any posterior b and n € N.

Proof. Note P,, = o%, we get:

p-p=2t* _p
n + o
nP+aono< n N o >P
n + oo n + oo n + ao
n ~ (%))
- (P—P) + (Py, — P).
n + og n+ ogp

H.1.2 REWARD

Lemma 29. Let by == N (10, %) be a Normal prior over mean of reward for a fixed (s,a) € S X A,
and T the precision of the data distribution, which is assumed to be known. Let n denote the total
number of visits to (s, a). Then, the following decomposition holds:
T0 nrt

To +nT (o = 7(s,0)) + To +nT

rp(s,a) —r(s,a) = (7(s,a) — r(s,a)),
for any posterior b and n € N.

Proof. By definition, we have the posterior predictive mean of the reward:

n
Topo +7T . T
i=1

ro(s,a) = To+nT
The difference to the ground truth reward is:
Topo +T 2 T

- =1

Tb(S, Cl) T(S, a) - To +nr T(S, a)
_ (Topo +n7i(s,a)) — (10 +n7)r(s,a)
B To +NT
o TO(:UO - ’I"(S, a’)) + ’I’LT(’F(S, CL) — T(Sa a))
B To + N7
- T0 . nrt N .
= (o —r(s,a)) + e (7(s,a) — r(s,a)).
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Corollary 4. Let by = NG(po, Mo, 0, Bo0) be a Normal-Gamma prior over reward for a fixed
(s,a) € 8§ x A. Let n denote the total number of visits to (s, a). Then, the following decomposition
holds:

Ao

Ao+ n

rb(S’ a) —r(s, a) = (o — T(S7 a)) + (f‘(sva) - r(s,a)),

Ao+ n
for any posterior b and n € N.

H.2 EPISTEMIC UNCERTAINTY

The definition of variance-based epistemic uncertainty for both transition and reward is:

Er(s,a) = Vary~s (E[s'|s, a, w])
Er(s,a) = Vary.p (E[r]s, a, w])

And we consider a generalized form of epistemic uncertainty to combine the two sources together:
E'(s,a) = f(Er(s,a),Er(s,a)).
In this paper, we consider f(z,y) = n(v/z + \/y).

H.2.1 BOUNDS FOR TRANSITION

Since it is meaningless to take expectation over categories for a categorical distribution, we instead
choose some feature vector for each component. One of the sensible choices is the basis function
=(0,0,...,4,...,0), which leads to the following formulation.

Definition 10. The variance-based epistemic uncertainty of Dirichlet-Multinomial model is defined
as follows:

Z (ag +ni)(o +n — ap — ng)
(s,a) =

Pt (g +n)?(ag+n+1)

Lemma 30. For Dirichlet prior, the epistemic uncertainty in transition follows that

ers)=0(5) el =0 ().

n n?

forany (s,a) € S x Aandn € N.

Proof. LetT = ag + n, then we have:

S

T2 — 3 (0w + ny)?
< _ k=1
r(s,0) T2(T + 1)
We will derive its upper and lower bound. We start with the upper bound.
S
Note Y (ag + ng)? > 0, therefore we have:
k=1
T2
&
T(Saa) Tz(T—f—l)
B 1
- (T+1)
B 1
n4 ap+1
1
< —.
n

So &r(s,a) = O(+) with constant Cy = 1
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Now, we focus on the lower bound. Consider the worse case, where we have only one state being
visited, denote its index as j, we have

5
T? — Z(ak +n)? = (ap+1)? — (n+a;)* + Za?
k=1 k#j
s
= (n® + 2a0n + af) — (n® + 2a;n + Z a?)
j=1
= (20 — 2aj)n + (af — Za?)
j=1
> (20 — 2a;)n.
Therefore
Er(s,a) S (209 — 2a5)n
= X1
w (5)
- (20[0 — 20éj)
" m( e
(2&0 — 20[j)
T (I+a0)?(2+ag)
So &r(s,a) = Q%) with constant C; = % This corresponds to the case where the
transition is deterministic or near-deterministic. O

H.2.2 BOUNDS FOR REWARD

Definition 11 (Normal-Normal). The variance-based epistemic uncertainty of Normal-Normal

model is defined as follows: )

To+1n

Er(s,a) =

Definition 12 (Normal-Gamma). The variance-based epistemic uncertainty of Normal-Gamma
model is defined as follows: 8

Erls ) = N1y
where
A=X+n

n
a:a0+§

- 1 R )\On(f - /J())2
B="60+3 <n02—|—>.

Ao +1n

Lemma 31. For Normal prior, the epistemic uncertainty in reward follows that

Enls,a) = © (1>

n

Sforany (s,a) € S x Aandn € N.

1

Proof. Note by choosing C; = - for lower bound and Cy = % for upper bound concludes. [
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Lemma 32. For Normal-Gamma prior, the epistemic uncertainty in reward follows that
Enls,a) =0 (L) and En(s,a)=0 (=
r(s,a) = - an r(s,a) = 7

Sforany (s,a) € S x Aandn € N.

Proof. The upper bound is trivial. For the lower bound, consider the deterministic case, leading to
sample variance being zero. Therefore the numerator is ©(1) whereas the denominator O(n?). [

I FROM FREQUENTIST TO BAYESIAN

1.1 PROPERTIES OF PRIORS

Definition 13 (Decomposable). A prior by parameterized by 0 is said to be decomposable if there
exist functions f(n, @), g(n, @) for transitions and h(n, ), s(n, @) for rewards such that
Pb*P: f(n’e)(P—P) +g(n70)(Pbo 7P)7
ry — 7 = h(n,0)(F —r) + s(n, 0)(rp, — 1),

with the constraints

F,0) <1, h(n,0)<1 YneN;, g(n0) = o(i) L s(n,) = o<1> ,

n

for some positive multiplicative constant C,(0) and C(8).

Note, when indexed by a particular (s, a), all the quantities above can depend on it.

Definition 14 (Weakly Informative). A prior by parameterized by 0 is said to be weakly informative

if
1 .
[ o(> and ||P, — P, o(s>.
n n

Definition 15 (Uniform). A prior by parameterized by 0 is said to be uniform if there exist positive
constants Cy and C such that

Cy(0)(s,a) <C, and Cs(0)(s,a) < C

for any (s,a) € S x A.

Definition 16 (Bounded). A prior by parameterized by 0 is said to be bounded if there exists R > 0
such that |y, (s,a)| < R for any (s,a) € S x A.

Definition 17. Let € be defined by the class of decomposable or weakly informative priors whose
rate of epistemic uncertainty is © (%)

Theorem 10. Let M = (S, A, P,r,v) be any MDP. For any prior by € €, there exists an instance
of EUBRL such that, when executed on M, it achieves, with probability at least 1 — §, a prior-
dependent bound on regret, or alternatively, on sample complexity, depending on the choice of n. If,
Sfurthermore, b is assumed to be uniform and bounded, these bounds are nearly minimax-optimal.

Proof of Theorem 10. Note, by either weak informativeness or decomposability, the additional com-
plexity is at most O (£) for transitions and O () for reward. This applies to the events, e.g. A,
which involve bounding the distance between the posterior predictive and the ground truth. Without

loss of generality, we assume b is weakly informative. We bound ’(pt — P)V*(s, a)’ as follows:

(B, = P)V*(5,0)| = | £(N'(s,0), 0)(P' = P)V*(s,0) + g(N'(5,0),0) (Py, — P) V*(s,0)

< ‘(Pt - P)V*(S,CL)‘ + (Cg(e)(87a) HPbo - P”l V’J) ]\]tf%a)’

Frequentist Bound Prior Bias

53



Under review as a conference paper at ICLR 2026

where the first term is simply the original bound derived in the analysis of MLE estimators, while
the second term captures the complexity arising from prior misspecification. If the prior is correctly
specified, there is no additional overhead; otherwise, this term must be accounted for in the final
bound.

Similarly, we have the decomposition for the reward
1

76, (s,0) —7(s,a)] < [i'(s,0) — r(s,a)| + (Cs(0)(s,a) [ro, (s,a) — (s, 0)]) Ni(s,a)’

By merging all the quantities of the same order of ﬁ, we can overload the definition of Y*, ), and
B¢, respectively. For brevity, we drop the dependency on (s, a) for each term.

. . S 1
Quasi-optimism T T+ (Cy(0) | P, — Pl VJ) ~i T (Cs(0) |16y — 7)) Nt
S
Accuracy B+ Bl +2 (C’g(a) | Py, — Pl VJ) N
T 1

v
B Pi €' + By + (1= Pi(s))

NN (1 — Pf(5)) (Cs(8) vy — 1)

Nt
12V71¢
Bounding J!(s) Vo Tﬂ + 30V Sls s + 3 (Cy(0) | Py, — Pl VIS) +2(Cs(6) [, — 7).
t

In addition, since the rate of the epistemic uncertainty is © (ﬁ) , a scaling factor 7 can be chosen
appropriately such that P} (s, a)n'E' (s, a) — Ph(s,a)Rmax > ﬁga), akin to that of the proof of
Lemma 33, with which we are guaranteed the quasi-optimism to hold.

Since
[Py, (-[s,a) — P(:|s,a)[|; <2
|Tb0 (S’ a’) - 7"(87 a’)| S |rb() (87 a)| + Rmax»
we denote
Ar(0) = max (C,(0)(s,0)
AR(B) = max {CS(B)(S7 a’) (|Tbo (5, a)‘ + Rmax)} .
(s,a)ESX.A

Following the same procedure for analyzing regret and sample complexity, we obtain prior-
dependent bounds as follows:

~ SAT S2A SA
. ~ SA S2A 1
Sample Complexity @) ((62(1’7)3 + (1+Ar(0) + Ag(0)) 6(17)2) log 5) .

If the prior by is furthermore assumed to be uniform and bounded, both Ar(€) and Ar(0) will
reduce to constants that do not depend on the state-action pairs, thus leading to a bound similar to
that in the frequentist case. O

Remark 2. Since the epistemic uncertainty is additive across both reward and transition sources, it
suffices for either source to satisfy an order of © (ﬁ) The other source may decay faster.

In the following sections, we will instantiate specific priors.

1.2 DIRICHLET AND NORMAL PRIORS

Corollary 5. Let by denote the joint distribution consisting of a Dirichlet prior Dir(algx1) on
the transition probability vector and a Normal prior N (po, %) on the mean reward with known

precision T for all (s,a) € S x A. Then by € € and is uniform and bounded.
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Proof. By Lemma 31, we know that (s, a) = © (ﬁ) . By Lemma 30, we know that £/.(s,a) =

(@] (ﬁ) and &}.(s,a) = Q (1). By Remark 2, this makes the final epistemic uncertainty £'(s, a) =

S} (ﬁ) In addition, Lemmas 28 and 29 imply that the prior is decomposable. All together, we
have by € €.

In addition, we can find Cy = o and C's = " as required by the uniformality in Definition 15. And
note that |y, (s, a)| = |uol, V(s,a) € S x A, therefore the boundedness in Definition 16 is satisfied
as well. O

1.3 DIRICHLET AND NORMAL-GAMMA PRIORS

Proposition 4. For a Normal-Gamma prior, there exists a parameterization and an MDP such that
3t € N for which quasi-optimism does not hold.

This follows from the fact that the epistemic uncertainty under a Normal-Gamma prior depends on
the sample variance, which multiplies the number of visits n in the numerator (Definition 12). In
deterministic or nearly deterministic MDPs, the sample variance can be zero, yielding a lower bound

on the epistemic uncertainty:
1
6 9 = Q 5 |
f (S a) < n2 >

which is insufficient to guarantee quasi-optimism, especially when a prior bias is present. Even the
frequentist bound may vanish.

J  HELPER LEMMAS

Lemma 33. It holds that

Tk
k k

b (87(1) — PU(Sya)Rmax 2 m,

forany (s,a) € S x Aand k € N.

Proof. For N¥(s,a) > m, the inequality trivially holds. For N*(s,a) < m, note by choosing
77k = gmaka + Rmax\/m , We have:

frk

k k _ k k ok

(0" (s,a) — Py (s,a) Rmax) — No(s.a) (P (s,a)n*E"(s,a) — Pk(s,a )Rmax) — N’“
_ 1 Rmdx
B gmax Nk(s a) gmax S, a) Nk

1 R Tk
— Tk max — max
(( Emax 1tk Nk(&a) Emax N’“(s a)) Nk(s,a)

_ Rmax vV mg 1
B Emax Nk(sva) Nk(s,a
_ Rmax Vg — Nk(sv CL)
T Emax NE(s,a)
> 0,

which is as desired. O

The following Lemma is helpful in proving both the quasi-optimism and accuracy for finite-horizon
discounted MDPs.
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Lemma 34. Let C' > 0 be a constant and y € (0,1). Let V' be a function such thatV : S — [0, C].
For any (s,a) € S X A, the variance of V under P(-|s, a) is bounded as follows:

Var(V)(s,a) < —A,(V?)(s,a) + (1 + v)C max{A,(V)(s,a),0}.
Equivalently, the following inequality holds:
YVar(V)(s,a) — yP(V)?(s,a) < —(V(s))* + (1 +v)C max{A,(V)(s,a),0}.

Proof. Adding and subtracting (V (s))? to yVar(V)(s, a), we get

( (
yVar(V)(s,a) = vP(V)*(s,a) = y(PV(s,a))*
= WP( )*(s,a) = (V(5)* + (V(5))* = 4(PV(s,a))?

< YP(V)?(s,a) = (V(5)* + (V(5))* = 7*(PV(s,a))®
=vP(V)*(s,a) = (V(5))* + (V(s) + 7PV (s,a)) (V(s) = 7PV (s,a))
< PV)2(5,) — (V(5))? + (147)C (V(s) 7PV (5,0)
= —2,(V?)(s,a) + (L +7)C (V(s) = 7PV (s,a))
—A,(V2)(s,a) + (1 +7)C max{A, (V)(s,a), 0},
where (a) is due to the fact that ¥ > 2 and (b) by the boundedness of value functions. O

—~~

Lemma 35. Let V¥ denote the value function of the approximate MDP under its derived policy
. Let V™ denote the value function of the true MDP under the same policy. Then the difference
between V¥ and V™" is bounded as follows:

Ay (VF=V™) (s,a) < (An(D")(s,a) +28%(s,a)) .

Proof. The proof is completed by applying the procedure of Lemma 13 in (Lee & Oh, 2025), except

using Vi (s) + Sk > 0 from Lemmas 2-3 for variance decomposition, together with an adjustment
of some constants.

O
K PRIOR MISSPECIFICATION
Problem Setting Given a two-armed bandit:
ai : P(rla1) = Bern(u1) (11)
ay : P(r|as) = Bern(uz) (12)
with p11 > 1o (13)

We use Beta distribution to model the belief over the parameter of the underlying Bernoulli dis-
tribution. We have independent prior b(w|a;) = Beta(a;, 8;) over each arm with parameters
a; > 0,8; > 0,i € {1,2}. Since Beta distribution is the conjugate prior of the Bernoulli dis-
tribution, after observing the number of success S; and failures F;, we can get the posterior in a
closed-from, i.e.

b(Wl(L“SZ,Fz) = Beta(ai -I—S“ﬂz —l—FZ) (14)
— Beta(a), 4)),i € {1,2}. (15)
Then the EUBRL reward will be:
rEUBRL — (1 — Py) # + Py &;, where (16)
TAZ’ = Eb(w\ai,Si,Fi),P(ﬂai,w) [7‘} (17)
a; + S;

= 18
(o +5;) + (Bi + Fi) (%)

o
_ i 19
o + pi (19)
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The epistemic uncertainty can also be expressed in a closed form:

E(a;) = Varyiwla;,s:.7) [EP(r|as,w) [7]] (20)
= Vary(wla;,s,,7,) [W] (21)
_ o3 22)

(o + B)*(af + B + 1)

If we assume that the parameters of the prior are equal, we can show that epistemic uncertainty is
non-increasing. This result is formalized in the following lemma:

Lemma 36. Given a Beta prior distribution Beta(a, 5) with o = > 0 for the parameter of a
Bernoulli distribution, the variance of the posterior distribution decreases monotonically with the
number of observations.

Proof. Let denote the by as the Beta prior before observing any outcome from the Bernoulli dis-
tribution. It has a variance Var(by) = m. After observing one sample from the Bernoulli

distribution, whether it is success or failure, we will have an updated posterior b; with the variance:

«

Var(b;) = Pt 1)

(23)
By examining the difference between the two, we have Var(by) — Var(b;) = m > 0. There-
fore, the variance of the posterior is decreasing after observing one outcome. However, since this

result will hold for the next posterior compared to the current posterior as well, we can conclude that
the variance of the posterior is monotonically decreasing. O

We will prove the following theorem:

Theorem 11 (Prior Misspecification). Let p = 1. There exists an MDP M, a prior by, an accuracy
level g > 0, and a confidence level &y € (0, 1] such that, with probability greater than 1 — &,

V7 (st) < V*(st) — € (24)

will hold for an unbounded number of time steps.

Proof. Before any new observation, both 7EUBRL = £ . therefore breaking the tie leads to a half

probability to choose either arm. Consider choosing the second arm, it will lead to some reduction
of the epistemic uncertainty because of the new observation.

We aim to force the agent to repeatedly select this arm, thereby preventing it from ever reaching the
optimal one. To achieve this, we need to ensure that (to simplify notation, we will henceforth drop
the dependency of the epistemic uncertainty on the action; £ will refer to the epistemic uncertainty
of the second arm whenever it is considered):

r];UBRL _ ,rlliUBRL — ((1 _ PU)f 4 PUE) _ gmax (25)
= ((1 - Py)r+ Py€) — ((1 — Py)&max + Pumax) (26)
=(1-=Py)(F —Emax) + Pu (€ — Emax) 27)
> 0. (28)

Note, the second term in the penultimate line is a quadratic function; therefore, we can obtain its
minimum as follows:

min (82 - Smaxg) (29)
SHIHX
=T h (30)

Therefore, as long as we ensure that Eq. 27 with substitution of this lower bound is non-negative,
we can guarantee Eq. 28 to hold. That being said, we require the following condition to be satisfied:

8max > 0

(1_PU)(f_5maX)_ 4 =

€Y
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which is equivalent to:

gmax
P> —————— + Emax- 32
r = 4(1 — PU) + a ( )
By Lemma 36, we know that P is decreasing. Therefore, it suffices to ensure that:
Smax
P> —————— + Emaxs 33
r= 4(1 _PU,l) + Cma (33)

where Py 1 denotes the probability of uncertainty after observing the first outcome from the second
arm.

Moreover, the right-hand side can be expressed as:
gmax
s(a) 1 = ——F"——~
(a) 41— Pya)
1 1

= 35
16 " 12a+ )

+ gmax (34)

1)’
Since a € (0, 00), we can bound s(a) within the interval (%, 1%) , which will be useful in our later
analysis.

We now aim to show that, under certain priors, the probability of the agent sticking to the second
arm is high. In other words, it suffices to show that the probability of not pulling the second arm is
small. To that end, let us focus on the event #* < s(a).

To proceed, we consider the following decomposition of the reward estimate:

po 0T (36)
20+ n
n - « 37)

- 2a—|—nr 200+ n’

where n is the total number of occurrences of the outcome from the second arm, and S,, is the total
number of successes among these n occurrences.

Notably, we can factor out the empirical mean 7, resulting in a new inequality:

S(G) - Qain

. (38)
2a+n
2 -1
_ a( s(a) ) +s (39)
n

=g(a,n) (40)

Next, we apply Hoeffding’s inequality to the expression above:
P(r<g(a,n)) = P(ua — 7 > p2 — g(a,n)) 41
<exp (—2n(p2 — 5(a))2) . (42)

This provides an upper bound on the probability of not pulling the second arm over n samples. By
applying the union bound at each step, we can bound the probability that the second arm is not
pulled at least once, and refer to this event as “Omission™:

P(Omission) = P (U2, (T < g(a,n))) (43)
< Z P(r < g(a,n)) (44)
n=1
la] o)
=Y PF<glan)+ »  P@F<glan), (45)
=1 n=(lal+1)
S1 S

where we split the sum into two parts based on the floor of a, which we will analyze individually.
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Bounding S; We denote k = % Since n > |a], we know that k € [0, 1). Therefore, we can
rewrite g(a,n) as:
gla,n) =k(2s—1)+ s,k €[0,1). (46)

For every fixed n, we want to find both the lower and upper bound of g(a, n). Since we know s €

(35, %) and g(a, n) is linear in s, we can solve for the range of g(a,n) as A, = ({5 — Lk, & — 2k).
13 5

In addition, since £ € [0, 1), we can solve for a superset A = (—35, 75) that contains every set
A, ¥n > |a]. We then analyze the squared term (us — g(a,n))?. This is a quadratic function
with axis of symmetry of 5. There are two possible cases for the relationship between jo and A:
either po < % or fig > 1%. For the first case, the minimum of the quadratic function will be zero,

which cancels out the effect of n and results in the largest probability—an outcome we want to avoid.

Therefore, we consider the second case, po > 1575’ where the minimum of the quadratic function
occurs at g = 1%. We denote this minimum as C' := (2 — 1%.)2. Then we can bound the second
term in the probability of omission as follows:
Sp= Y P(F<g(a,n)) (47)
n=(la]+1)
< Z exp(—2Cn) (48)
n=(la]+1)
= exp(—2C1la]) Z exp(—2Cn) (49)
n=1
exp(—2C)
= -2C —_— 50
exp( La]) 1 — exp(—2C) (50)
_ exp(—2C(|a] + 1)) 1)
1 —exp(—2C)
n
<= 52
<5 (52)

where i € (0, 1) is arbitrary confidence level.

We solve for the above and obtain [a] > & log(
other term.

W) — 1 := ay. Next, we will bound the

Bounding S; The goal is to isolate the parameter a and make it dominant. We expand the exponent

as:
_ 2 _ 2 . _ (25 =1)* ,
2n(pue — g(a,n))* =2 | n(uz — $)*+2 ((u2 — s)(1 — 2s)) a+ ——a” |. (53)
Iy I, \—I/—/
3
Since 2 > 15—6 and s € (%, 1—56), therefore Io > 0. And the remaining two terms are also positive.
Based on this observation, we provide a lower bound for the exponent as follows:
9
2n (e — g(a,n))? > 2I3 > 3242 (54)
n

Next, we use this result to bound S :

la)
S < Zexp (_n2 Laj2> (55)

9
< 2 exp (—32 LaJ) (56)
9
~ Lafexp (~ 5 lal) 57)
n
<5 (58)
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which unfortunately has no closed-form solution. However, we can leverage the Lambart W function

to obtain an analytical solution. Denote u = — 35 | a], then Eq. 57 can be rewritten as — 32w exp(u).
We instead bound it as follows:
32
—gu exp(u) < g (59)
9
& > ——n, 60
wexp(u) > il (60)

which matches to the Lambart W function. Since there are two branches Wy (x) and W_; (x) of the
Lambart W function when z € [—1,0), and W_1 (z) < Wy(z) < 0. We can get u < W_1(—Zn),

therefore [a| > —32W_y(—&n) = as.

Combining the two bounds together, as long as we choose |a| > max{aj,as}, the probability of
omission will be bounded as follows:

P(Omission) < 51452 < g—l—g =. (61)
Therefore, if we denote the event of sticking to the second arm as St icky, its probability will be:
P(sticky)=P (m;‘;l(f < g(a, n))) (62)
=1-P(U3Z, (T <gla,n))) (63)
=1— P(Omission) (64)
>1-—n, (65)

Therefore, we can conclude that with probability greater than §y = % - (1 — n), the second arm will
be always pulled, leading to suboptimality. More formally, for any ey < p1 — o, we have:

Ve (St) < V*(St) — €0, (66)

where V7™ (s;) = ug and V*(s¢) = p1, which completes our proof. O
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