
What Breaks the Curse of Dimensionality
in Deep Learning?

Anonymous Author(s)
Affiliation
Address
email

Abstract

Although learning in high dimensions is commonly believed to suffer from the1

curse of dimensionality, modern machine learning methods often exhibit an as-2

tonishing power to tackle a wide range of challenging real-world learning prob-3

lems without using abundant amounts of data. How exactly these methods break4

this curse remains a fundamental open question in the theory of deep learning.5

While previous efforts have investigated this question by studying the data (D),6

model (M), and inference algorithm (I) as independent modules, in this paper7

we analyzes the triple (D, M, I) as an integrated system. We examine the basic8

symmetries of such systems, focusing on four of the main architectures in deep9

learning: fully-connected networks (FCN), locally-connected networks (LCN), and10

convolutional networks with and without pooling (GAP/VEC). By computing an11

eigen-decomposition of the infinite-width limits (aka Neural Kernels) of these12

architectures, we characterize how inductive biases (locality, weight-sharing, pool-13

ing, etc) and the breaking of spurious symmetries can affect the performance of14

these learning systems. Our theoretical analysis shows that for many real-world15

tasks it is locality rather than symmetry that provides the first-order remedy to the16

curse of dimensionality. Empirical results on state-of-the-art models on ImageNet17

corroborate our results.18

1 Introduction19

Statistical problems with high-dimensional data are frequently plagued by the curse of dimensionality,20

in which the number of samples required to solve the problem grows rapidly with the dimensionality21

of the input. Classical theory explains this phenomenon as the consequence of basic geometric and22

algebraic properties of high-dimensional spaces; for example, the number of ε-cubes inside a unit23

cube in Rd grows exponentially like ε−d, and the number of degree r polynomials in Rd grows like a24

power-law dr. Since for real-world problems d is typically in the hundreds or thousands, classical25

wisdom suggests that learning is likely to be infeasible. However, starting from the groundbreaking26

work AlexNet [1], practitioners in deep learning have tackled a wide range of difficult real-world27

learning problems ([2–6]) in high dimensions, once believed by many to be out-of-scope of current28

techniques. The astonishing success of modern machine learning methods clearly contradicts the29

curse of dimensinonality and therefore poses the fundamental question: mathematically, how do30

modern machine learning methods break the curse of dimensionality?31

To answer this question, we must trace back to the most fundamental ingredients of machine learning32

methods. They are the data (D), the model (M), and the inference algorithm (I).33

Data (D) is of course central in machine learning. In the classical learning theory setting, the learning34

objective usually has a power-law decay m−β as the function of the number of training samples35

m. The theoretical bound on β is usually tiny, owing to the curse of dimensionality, and is of36

Submitted to 35th Conference on Neural Information Processing Systems (NeurIPS 2021). Do not distribute.

limited practical utility for high-dimensional data. On the other hand, empirical measurements of37

β in state-of-the-art deep learning models typically reveal values of β that are not at all small (e.g.38

β = 0.43 for ResNet in Fig.S2) even though d is quite large (e.g. d ∼ 105 for ImageNet). This39

example suggests that the learning curve must have important functional dependence onM and I.40

Indeed, as we will observe later, many of the best performing methods exhibit learning curves for41

which β = β(m) actually increases as m becomes larger, i.e. data makes the usage of data more42

efficient. We call this phenomenon DIDE, for data improves data efficiency.43

Designing machine learning models (M) that maximize data-efficiency is critical to the success44

of solving real-world tasks. Indeed, breakthroughs in machine learning are often driven by novel45

architectures LeNet [7], AlexNet[1], Transformer [2], etc. While some of the inductive biases of these46

methods are clear (e.g. translation symmetries of CNNs), others tend to build off of prior empirical47

success and are less well-understood (e.g. the implicit bias of SGD). To build our understanding of48

these biases and how they affect learning, we conduct a theoretical analysis of them in the infinite-49

width setting [8–12], which preserves most salient aspects of the architecture while enabling tractable50

calculations. We classify all phenomena that could be explained by infinite networks alone as the51

consequences of inductive biases.52

The inference procedure (I) is what enables learning in machine learning methods. It is widely53

believed that modern inference methods, specifically gradient descent and variants, ‘implicitly‘ bias54

the solutions of the networks towards those that generalize well and away from those that generalize55

poorly [13–15]. The effects of the inference algorithm are intimately tied to the specifics of the model56

(e.g. weight-sharing) and the data (e.g. augmentation), and might not be fully understood with a57

fixed-data, fixed-model analysis. Indeed, good performance may derive from interactions between58

(M, I), or (D, I), or even (D,M, I). In Sec. 3.1, we demonstrate the DIDE effect for a particular59

choice of (D,M, I) and show that this effect disappears if any one of D,M, or I is altered.60

The above discussion highlights the insufficiency of treating D,M, and I as separate non-interacting61

modules. They must be considered as an integrated system. Throughout this paper, we will refer to62

the triplet (D,M, I) as a (machine) learning system and the tuple (M, I) as the learning algorithm63

of the system that operates on D. We summarize our contributions below.64

1. We surface the basic symmetries of various (D,M, I)associated to four of the main ar-65

chitectures in deep learning FCNn (fully-connected networks), LCNn (locally-connected66

networks), VECn/GAPn (convolution networks with a flattening /a global average pooling67

readout layer), their infinite width counterparts FCN∞/LCN∞/VEC∞/GAP∞. Treating68

FCNn/∞ as the baseline model, we show that the locality from LCNn and the weight-sharing69

from VECn/GAPn break spurious symmetries and lead to better systems. Empirically, we70

examine the relation between the symmetries and the performance of the systems in the71

infinite width setting and finite width setting with various of interventions. Surprisingly,72

we observe that state-of-the-art learning system (EfficientNet[16]) on ImageNet can learn73

almost equally well even the coordinate of the data are transformed by the symmetry group74

defined by LCNn.75

2. We show that although the weight-sharing from VECn provides coordinate information of76

the data to the system, as the width gets larger, it becomes harder for the learning algorithm77

to explore such information and at infinite width, the system restores the symmetry group78

that is identical to LCNn, and is completely unaware of the coordinate information. As a79

consequence, the performance of the network, as a function of width, monotonically decays80

[12]. This is in stark contrast to recent finding that the performance of network is positively81

correlated to its width. We show that this phenomenon continues to hold even with various82

interventions (larger learning rate and l2 regularization) to the training procedures. However,83

with more data (e.g. data augmentation) VECn can be on par with GAPn.84

3. The function space defined by LCNn is a super set of that defined by VECn. We prove the85

opposite is true. Therefore, VECn is able to express functions in the space with a stronger86

inductive bias GAPn (translation invariance) and functions in a seemingly much larger87

class LCNn. We hypothesize that as the dataset grows, the learned functions using VECn is88

transitioned away from those learned using LCNn and become closer to those learned using89

GAPn. This suggests, even though the prior (provided by human) is not 100% correct, with90

the help of more data, gradient descent might be able to correct it, a possible explanation of91

DIDE.92

2

4. When the input space is the product of hyperspheres, we eigendecompose the kernels93

associated to one-hidden layer infinite width network, FCN∞, VEC∞ = LCN∞ and GAP∞.94

We treat FCN∞ as the baseline, whose order r eigenspace has dimension of order dr95

and eigenvalues of order d−r for r ≥ 0 [17]. We show that locality alone (i.e. VEC∞)96

dramatically reduces the dimension of the r-eigenspace for r ≥ 2 and the spectral gap97

between all r-eigenspaces but r = 0 and r = 1, making learning of higher order eigenspaces98

feasible with dramatically fewer samples and gradient steps. In addition, pooling (i.e.99

GAP∞) reduces the dimension of r-eigenspace for r ≥ 1 by a factor equal to the size of the100

pooling window, but it does not change the spectra in an essential way.101

Our empirical and theoretical results surface the importance of locality which, we believe, provides102

the first-order remedy to the curse of dimensionality for many real-world tasks and which has been103

largely overlooked.104

2 Preliminary and Notation105

2.1 Neural Networks106

We focus our presentation on the supervised learning setting and more concretely, on image107

recognition. Let D ⊆ (Rd)3 × Rk ≡ R3d × Rk denote the data set (training and test) and108

X = {x : (x, y) ∈ D} and Y = {y : (x, y) ∈ D} denote the input space (images) and label space,109

respectively. Here d is the spatial dimension (e.g. d = 32× 32 for CIFAR-10) of the images and 3 is110

the total number of channels (i.e. RGB). We use FCNn to denote a L-hidden layer fully-connected111

network with identical hidden widths nl = n ∈ N for l = 1, ..., L and with readout width nL+1 = k112

(the number of logits). For each x ∈ R3d = (Rd)3, we use hl(x), xl(x) ∈ Rnl to represent the pre-113

and post-activation functions at layer l with input x. The recurrence relation FCN is given by114 {
hl+1 = xlW l+1

xl+1 = φ
(
hl+1

) and W l
i,j =

1
√
nl
ωlij , ωlij ∼ N (0, 1) (1)

where φ is a point-wise activation function, W l+1 ∈ Rnl×nl+1 are the weights and ωlij are the115

trainable parameters, drawn i.i.d. from a standard Gaussian∼ N (0, 1) at initialization. For simplicity116

of the presentation, the bias terms and the hyperparameters (the variances of the weights) are omitted.117

Adding them back won’t affect the conclusion of the paper.118

For convolutional networks or locally-connected networks, the inputs are treated as tensors in (Rd)3.119

The recurrent relation of convolutional networks can be written as120

xl+1
α,j = φ(hl+1

α,j) and hl+1
α,j ≡

1√
(2k + 1)nl

nl∑
j=1

k∑
β=−k

xlα+β,iω
l
ij,β (2)

Here α ∈ [d] denote the spatial location, i/j ∈ [n] denotes the fanin/fanout channel indices. For121

notational convenience, we assume circular padding and stride equal to 1 for all layers. The features122

of the penultimate layer are 2D tensors and there are two commonly used approaches to map them123

to the logit layer: stack a dense layer after either vectorizing the 2D tensor to a 1D vector or124

applying a global average pooling layer to each channel. We use VECn/GAPn to denote the network125

obtain from the former/latter, which are known to be equipped with the inductive biases translation126

equivariant/invariant. The readout layer of VECn/GAPn could be written as127

xL+1
j =

1√
dn

∑
α∈[d]

xLα,iw
L+1
α,ij , xL+1

j =
1√
n

∑
i∈[n]

1

d

∑
α∈[d]

xLα,i

wL+1
ij (3)

We briefly remark the the key difference between the two. In VECn, each pixel in the penultimate128

layer has its own (independent random) variable while pixels within the same channel shared the129

same (random) variable in GAPn. It is clear that the function space of VECn contains that of GAPn.130

Locally Connected Networks LCNn [18, 19] are convolutional network without weight sharing131

between spatial locations. LCNn preserve the connectivity pattern, and thus topology, of a convnet.132

Mathematically, the current formula is defind as in Equation 2 with all the shared parameters ωlij,β133

replaced by unshared ωlij,α,β ∼ N (0, 1)134

3

In this note, we assume that the LCNn are always associated with a vectorization readout layer and it135

is clear, as a function space, LCNn is a super set of VECn. Interestingly,the opposite is also true.136

Theorem 2.1 (Sec. B). Let VECn/LCNn/GAPn denote the set of functions that can be represented137

by L-hidden layer VECn/LCNn/GAPn networks with hidden width n. Then138

GAPn ⊆ VECn ⊆ LCNn ⊆ VECdn (4)

The significance of this theorem is that if we consider the function space VECn as a soft prior,139

gradient descent could move it closer to a better prior GAPn (translation invariance) if the average140

pooling is (approximately) learned in the readout layer or it might remain close to LCNn.141

2.2 Gradient Descent Training142

We use f to denote any functions defined by the architectures above and θ to denote the collection143

of all parameters. Denote by θt the time-dependence of the parameters and by θ0 their initial144

values. We use ft(x) ≡ f(x, θt) ∈ Rk to denote the output (or logits) of the neural network at145

time t. Let `(ŷ, y) : Rk × Rk → R denote the loss function where the first/second argument is146

the prediction/true label. By applying continuous time gradient descent to minimize the objective147

L =
∑

(x,y)∈D `(ft(x, θ), y), the evolution of the parameters θ and the logits f can be written as148

θ̇t = −∇θft(XT)
T∇ft(XT)L , ḟt(XT) = ∇θft(XT) θ̇t = − Θ̂t(XT ,XT)∇ft(XT)L (5)

where ft(XT) = vec
(
[ft (x)]x∈XT

)
, the k|D|× 1 vector of concatenated logits for all examples, and149

∇ft(XT)L is the gradient of the loss with respect to the model’s output, ft(XT). Θ̂t ≡ Θ̂t(XT ,XT)150

is the tangent kernel at time t, which is a k|D| × k|D| kernel matrix151

Θ̂t = ∇θft(XT)∇θft(XT)
T (6)

One can define the tangent kernel for general arguments, e.g. Θ̂t(x,XT) where x is test input. At152

finite-width, Θ̂ will depend on the specific random draw of the parameters and evolve with time. As153

such, for a test point x the prediction ft(x) depends on the random initalization and is also stochastic.154

Note that the parameters are initialized randomly and the randomness will be carried out through the155

training procedure. As a consequence, the prediction functions are stochastic.156

2.3 Infinite Network: Gaussian Processes and the Neural Tangent Kernels157

Neural Networks as Gaussian Processes (NNGP). As the width n → ∞, at initialization the158

output f0(X) forms a Gaussian Process f0(X) ∼ GP(0,K(X ,X)), known as the NNGP [8, 20, 21].159

HereK is the GP kernel and can be computed in closed form for a variety of architectures. By treating160

this infinite width network as a Bayesian model (aka Bayesian Neural Networks) and applying161

Bayesian inference, the posterior is also a GP162

N
(
K(X∗,XT)K−1(XT ,XT)YT ,K(X∗,X∗)−K(X∗,X)K(X ,X)−1K(X∗,X)T

)
(7)

Neural Tangent Kernelss(NTK). Recent advance in global convergence theory of over-163

parameterized networks [22–25, 12] has shown that under certain assumptions, the tangent kernels is164

almost stationary over the course of training and is concentrated on its infinite width limit Θ in the165

sense there is a constant C independent of t and the network’s width n such that166

sup
t≥0
‖Θ̂t(XT ,XT)−Θ(XT ,XT)‖F + ‖Θ̂t(XT ,X∗)−Θ(XT ,X∗)‖F ≤

C√
n
. (8)

where is the infinite width limit of Θ at initialization, whose existence has been proved in [22, 26].167

As such, when the loss is the mean squared error (MSE), the mean prediction (marginarized over168

random initialization) has the following closed form169

f(X∗) = Θ (X∗,XT) Θ−1(XT ,XT)
(
I − e−ηΘ(XT ,XT)t

)
Y , (9)

Letting t → ∞, the above solution is the same as that of the kernel ridgeless regression using the170

infinite width tangent kernel Θ. We use FCN∞(x), LCN∞(x), VEC∞(x) and GAP∞(x) to denote171

the infinite width solutions (either the GP inference or the NTK regression) for the corresponding172

architectures, where we have suppressed the dependence on the training data (XT ,YT).173

4

3 Symmetries of Machine Learning Systems174

Symmetry is fundamental in physical systems. So is it in machine learning systems. We explore175

symmetries of various machine learning systems in this section. Given D = (X ,Y) and a transforma-176

tion on the input space τ : R3d → R3d, we set τ(D) = (τ(X),Y). Let O(3d) denote the orthogonal177

group on the flatten input space R3d. The subgroup O(3)d ≤ O(3d) operates on the un-flattened178

input (Rd)3, whose element rotates each pixel xα ∈ R3 by an independent element τα ∈ O(3). The179

smaller subgroup O(3)⊗ Id ≤ O(3)d applies the shared rotation (i.e. τα = τ to all xα for α ∈ [d]).180

We use P(3d) to denote the permutation group on R3d and P(3)d and P(3)⊗ Id are defined similarly.181

Note that rotating X by τ is equivalent to transfer the original coordinate system by the adjoint182

tranformation τ∗ = τ−1.183

For a deterministic (stochastic) learning algorithmA = (M, I), we useA(DT) to denote the learned184

function (distribution of the learned functions) using training set DT . We use Aτ (DT) to denote185

the learned function(s) using τ(DT) and makes prediction on the transformed test point τ(X∗). In186

another word, the learning algorithm is conducted in the input space whose coordinate system is187

transformed by τ−1.188

Definition 1. Let G be a group of transformations R3d → R3d. We say a deterministic (stochastic)189

learning algorithm A = (M, I) is g-invariant if A = Ag (A =d Ag). In this case, we say the190

system (D,M, I) is g-invariant and use the notation (D,M, I) = (gD,M, I). If this holds for all191

g ∈ G, then we say the algorithm and the system are G-invariant.192

If (M, I) is the algorithm of minimum norm linear regressor, then (D,M, I) is O(3)d-invariant;193

see Sec.G for more details. Note that the symmetry (invariance) in our definition is a property of a194

system and is different from the notion of symmetry that are commonly used in the machine learning195

community, which is a property of a function (e.g. translation invariance).196

Theorem 3.1 (Sec.C). If the parameters of the networks are initialized with iid N (0, 1), then197

• FCNn/∞ are O(3d)-invariant.198

• LCNn/∞ are O(3)d-invariant.199

• VECn is O(3)⊗Id-invariant and VEC∞200

is O(3)d-invariant.201

• GAPn/∞ are O(3)⊗ Id-invariant.202

The O(3d)-invariant of FCN∞ is because the NTK/NNGP kernel is an inner product kernel, namely,203

there is a function k such that the kernels have the form k(〈x, x′〉). The O(3d)-invariant of finite204

width FCNn is due to the Gaussian initialization of the first layer which was first observed and205

proved in [27]. Rotating the input by τ ∈ O(3d) is equivalent to rotating the weight matrix ω of206

the first layer by τ∗. Since for ω ∈ N (0, 1)3d τ∗ω =d ω, at random initialization, the distribution207

of the output functions (the prior) are unchanged if all inputs are rotated by the same element in208

O(3d). This property continues to hold throughout the course of (continue/discrete) gradient descent209

training with/without L2-regularization and Bayesian posterior inference. For the same reason, LCNn210

is O(3)d-invariant because each patch of the image uses independent Gaussian random variables.211

However, weight-sharing in VECn and GAPn breaks the O(3)d symmetry, reducing it to O(3)⊗ Id.212

For infinite networks, LCN∞ = VEC∞ [28–31]. The kernels of VEC∞ and GAP∞ are of the forms213

ΘVEC(x, x′) = k({〈xα, x′α〉}α∈[d]) and ΘGAP(x, x′) = k({〈xα, x′α′〉}α,α′∈[d]), (10)

resp. The former depends only on the inner product between pixels in the same spatial location,214

breaking the O(3d) symmetry and reducing it to O(3)d. In addition, the latter depends also on the215

inner products of pixels across different spatial locations due to pooling, which breaks the O(3)d216

symmetry and reduces it to O(3)⊗ Id.217

Note that dim(O(3d)) = 3d(3d− 1)/2, dim(O(3)d) = 3d and dim(O(3)⊗ Id) = 3. LCNn/VEC∞218

dramatically reduces the dimension of the symmetry group. It is worth mentioning that while219

dim(O(3d)) many pairs of rotated and unrotated images are needed to recover the exact rotation in220

O(3d), only 3 pairs are sufficient for O(3)d, same as that of O(3) ⊗ Id. The results of the paper221

are presented in the most vanilla setting. Our methods can easily extend to more complicated222

architectures like ResNet[32], MLP-Mixer[33] and etc. The symmetry groups of such systems223

need to be computed in a case-by-case manner by identifying the invariant group of the random224

initialization and training procedures.225

5

O(3d) P(3d) P(d) I3 O(3)d O(3) Id I
0.55

0.60

0.65

0.70

0.75

NTK

FCN

VEC

LAP4

LAP8

GAP

O(3d) P(3d) P(d) I3 O(3)d O(3) Id I
0.4

0.5

0.6

0.7

0.8

0.9
NN

O(3d) P(3d) P(d) I3 O(3)d O(3) Id I
0.4

0.5

0.6

0.7

0.8

0.9
NN+

FCNn
VECn
LAP4

n

LAP8
n

GAPn
LCNn

O(3d) P(3d) P(d) I3 O(3)d O(3) Id I
0.4

0.5

0.6

0.7

0.8

0.9
NN++

FCNn
VECn

GAPn
LCNn

Figure 1: Performance vs Symmetry. Machine learning systems are equipped with various kinds of
symmetries. Transforming the system by the associated symmetry does not affect the performance
of the system. However, injecting spurious symmetries beyond the associated symmetries could
dramatically degrade their performance for both finite and infinite networks.

0.0 0.2 0.4 0.6 0.8 1.0
Strength of O(3)d-Rotation

0.65

0.70

0.75

0.80

Ac
cu

ra
cy

Accuracy vs Strength of Rotation

n=64
n=128
n=256
n=512

0.0 0.2 0.4 0.6 0.8 1.0
Strength of O(3)d-Rotation

0.005

0.010

0.015

||V
E
C

t n
-G

A
P

Id n
||2 2

Distance between VEC tn and GAPn

0.0 0.2 0.4 0.6 0.8 1.0
Strength of O(3)d-Rotation

0.005

0.010

0.015

||V
E
C

t n
-V

E
C

||2 2

Distance between VEC tn and VEC

Figure 2: Even in the NN+ setting, VECn is closer to GAPn for small n and moves towards VEC∞
with more symmetries and/or larger n and accuracy drops.

3.1 Empirical Supports and Observations226

Performance under Rotations. We examinate the performance of: FCN,VEC, LCN,GAP and227

LAP4/8, when the coordinates of the data are transformed by six different groups (x-axis in Fig.1)228

using the standard dataset CIFAR-10. , Here LAP4/8 is the same as GAP except the readout layer is229

replaced by the Local Average Pooling with window size 4×4/8×8. We consider 4 types of training230

methods: (1) NTK, i.e. infinite networks (2)NN, our baseline for finite width neural network which231

is trained with momemtum using a small learning rate and without L2 regularizer and the network232

is centered (+C) to reduce the variance from random initialization (3)NN+= NN+LR+L2−C, i.e.233

using a larger learning rate (+LR), adding L2 regularization (+L2)) and removing the centering (−C)234

(4) NN++=NN++DA, adding MixUp[34] data augmentation (+DA) to NN+. Overall, we observe235

that, for most of the cases in NTK/NN/NN+, adding spurious symmetry to a system (D,M, I)236

degrades the performance towards that of the system invariant to that symmetry. Surprisingly, in the237

baseline NN, performance of VECn+ O(3)⊗ Id rotation is slightly worse than that of VECn+ O(3)d238

and than that of LCNn, indicating that the system with M = VECn is likely operating closely239

on the O(3)d symmetry. The interventions −C+L2+LR in NN+ distinguishes the performance of240

VECn + O(3)⊗ Id from VECn + O(3)d and +DA eventually closes the performance gap between241

VECn + O(3)⊗ Id and GAPn + O(3)⊗ Id, helping the system to be aware of the smaller symmetry242

O(3)⊗ Id, escaping from the O(3)d symmetry.243

Symmetry Breaking of VECn. Assuming Equation 8, namely, the network is in the NTK regime,244

lim
n→∞

|EVECn(x)− VEC∞(x)|+ lim
n→∞

|EVECn(x)− EVECτn(x)| ≤ Cn− 1
2 (11)

where the expectation E is over random initialization and VECn(x) is the prediction of the test point245

x when t = ∞, i.e. training loss is 0. VECτn is the prediction of the τ -rotated system, τ ∈ O(3)d.246

The O(3)d symmetry is restored as n→∞. As such, for large n, the system is approximately O(3)d-247

invariant. We randomly sample τ ∈ O(3)d and use the exponential map to construct a continuous248

interpolation τt ∈ O(3)d with τ0 = Id and τ1 = τ . We train the network as in NN++ (+LR+L2−C)249

using different n and τt and average the predictions over 10 random initialization as an approximation250

of EVECτtn (x). Not surprisingly, as n increases and/or t increases, (1) test performance decays251

monotonically (left panel in Fig.2), (2) the distance to EGAPn increases monotonically (middle252

panel) and (3) distance to VEC∞ decrease monotonically (right panel). Clearly, the coordinate253

information from the data is utilized by smaller width VECn.254

6

26 29 211 215

Training Set Size

2-6

2-5

2-4

M
SE

+FlipUnaugmented

GAPn
GAP

VECn

VEC

LCNn

Figure 3: Data Bends Learning Curve of VECn. We
study the effect of training set size to the network’s perfor-
mance for various models. In the small dataset regime, the
slope of the learning curve (in the log-log plot) of VECn
is similar to that of VEC∞ and FCNn. However, as the
dataset gets larger, the slope increases significantly. This
is hinted by Theorem 2.1.

0.70 0.72 0.74 0.76 0.78 0.80 0.82 0.84
ImageNet Top-1 Accuracy(%)

0.60

0.64

0.68

0.72

0.76

0.80

0.84

O
(3

)d -I
m

ag
eN

et
 T

op
-1

 A
cc

ur
ac

y(
%

)

B0

B1

B3

B5
B7

ResNet18

ResNet34

ResNet50

ResNet101
ResNet200

O(3)d Images

Clean Images

f(x) = x

105 106

Training Set Size

1

2

3

4
5
6

Cr
os

s E
nt

ro
py

= 0.43
= 0.32
= 0.49

ResNet50 + Clean Images
ResNet50 + O(3)d-Images

105 106

Training Set Size

1

2

3

4

5
6

Cr
os

s E
nt

ro
py

= 0.45
= 0.36
= 0.17
= 0.08

ResNet101 + Clean Images
ResNet101 + O(3)d-Images
MixerSmall + Clean Images
MixerSmall + O(3)d-Images

Figure 4: With coordinate of the input data rotated by O(3)d, state of the art models learn as good as
without rotation. middle/right: slopes of the learning curves increases due to more data. DIDE

DIDE for VECn. To understand the role of data, we vary the training set size of Cifar10 from about255

26 to 50k (the whole un-augmented training set) and to 100k (adding left-right flip augmentation) and256

plot the learning curves in Fig.3. We observe dramatic speedup of learning for VECn in the larger257

data set regime, which isn’t the case for VEC∞ (kernel), LCNn, GAP∞ and even for GAPn after258

m = 212. We argue that this is due to the prior (the function space defined by the model) is too large259

(and not optimal) for the task and the coupled effect of more data together with inference procedures260

corrects the prior, as it is suggested by Theorem 2.1.261

DIDE for SOTA models. In the middle and right panels of Fig.S2, we provide additional evidence262

in a larger scale setting. We generate learning curves of ImageNet using ResNet50 and MLP-Mixer,263

a very recent architecture that contains no convolution layers except the first layer, which is a264

convolution with filter size and stride equal to (16, 16) (patches are disjoint). The symmetry group265

associated to ResNet is similar to that of GAPn which is relatively small. However, the symmetry266

group induced by the first layer of the Mixer is O(3× 162)⊗I142 , where 3×162 is number of entries267

in the (16, 16, 3) patch (RGB channels) and 142 = 2242/162 is the number of patches. Although268

the dimension of O(3× 162) ⊗ I142 is quite large (about (3 × 162)2/2), it is still dramatically269

smaller than that of applying a fully-connected layer to the flatten images, which O(3× 2242) (about270

(3× 2242)2/2). In the middle panel of Fig.S2, we observe an almost perfect power-law scaling for271

the learning curve for the ResNet50 system with unrotated images. When the images are rotated by272

O(3)d (d = 2242), the learning curve is relatively flat in the smaller data regime (green dashed line).273

However, the data set grows, it eventually catches up (purple dashed line) as that of the unrotated274

setting; see Sec.E for ResNet34/101. In the third panel, we see the learning curves are much flatter275

(red) for the Mixer and even more so for the rotated images (green). Again, these curves are bent276

towards that of ResNet50 with unrorated images as data increases, indicating the prior was being277

corrected.278

Finally, in the left panel of Fig.S2, we compare the accuracy of state-of-the-art models trained on both279

unrotated and O(3)d rotated images. Surprisingly, the gap between the two are not large and becomes280

smaller for better performant models. For EfficientNet B7 1, the top-1 accuracy of the rotated system281

is only 1.2% off from the unroated one.282

4 Eigenecomposition of Neural Kernels283

To get insights into the inductive biases, we eigendecompose the kernels using spherical harmon-284

ics. We assume the input space X = {ξ = (ξ0, . . . , ξp−1) ∈ (
√
d0S(d0−1))p} ⊆ Rd0p, i.e.285

1Still under training

7

the p-product of (d0 − 1)-sphere with radius
√
d0. We call ξi ∈

√
d0S(d0−1) a mini-patch and286

(ξi, ξi+1, . . . , ξi+s−1) ∈ (
√
d0S(d0−1))s} a patch for i ∈ [p], where circular boundary condition is287

assumed. We consider the asymptotic limit when d0 = dα, p = d1−α and d = pd0 →∞ and treat288

0 < α < 1 and s as fixed constant. The input space X is associated with the product measure289

µ ≡ σpd0 , where σd0 is the normalized uniform measure on
√
d0S(d0−1). The kernels associated to290

the one-hidden layer infinite networks (either NNGP or NTK) has the following general forms291

k

1

p

∑
i∈[p]

ξTi ηi/d0

 1

p

∑
i∈[p]

k

1

s

∑
b∈[s]

ξTi+bηi+b/d0

 1

p2

∑
i,j∈[p]

k

1

s

∑
b∈[s]

ξTi+bηj+b/d0

 ,

(12)

although that exact form of the (positive definite) kernel function k : R→ R depends on the kernel292

types (NNGP vs NTK), activations, hyperparameters and etc. We assume the kernel is sufficiently293

smooth in (−1, 1) and the Tayor expansion of k(r) converges uniformly in [−1, 1] for sufficiently294

many r ∈ N. We use the notation that A ∼ B if there are positive constants c and C such that295

cA ≤ B ≤ CA for d sufficiently large. We use K to represent any kernels above and consider it as a296

Hilbert–Schmidt operator on L2(X , µ)297

Kf(ξ) =

∫
X
K(ξ, η)f(η)dµ , f ∈ L2(X , µ), (13)

which is well-defined since µ is a probability measure and k is bounded. Let ~r = (r0, . . . , rp−1) ∈ Np,298

τ the shifting operator τ~r = (rp−1, r0, . . . , rp−2). The s-banded subset of Np is defined to be299

B(Np, s) = {~r ∈ Np : dist(argmaxjrj 6= 0, argminjrj 6= 0) ≤ s− 1} (14)

which is a quantifier used to restrict the support of a function on a patch. Here dist(i, j) = min{|i−300

j|, p− |i− j|}, a distance defined on the cyclic group [p] = Z/pZ. The quotient space B(Np, s)/τ301

denotes a subset of B(Np, s) by identifying ~v = ~v′ as the same element if ~v = τa~r′ for some a ∈ [p].302

Finally, Yrj ,lj (ξj) is used to denote the lj-th spherical harmonic of degree rj in the unit sphere303

S(d0−1) and has unit norm under the normalized measure on S(d0−1). As such Yrj ,lj (ξj/
√
d0) ∈304

L2(
√
d0S(d0−1), σd0) has unit norm. Recall that the total number of spherical harmonic of degree305

rj in S(d0−1) is N(d0, rj) = (2rj + d0 − 2)
(
d0+rj−3
rj−1

)
∼ d

rj
0 /rj ! as d0 →∞. We use N(d0, ~r) =306 ∏

j∈[p]N(d0, rj) and [N(d0, ~r)] =
∏
j∈[p][N(d0, rj)], resp. Let307

~Y~r,~l(ξ) =
∏
j∈[p]

Yrj ,lj (ξj) (15)

The following theorem shows that locality (VEC∞) dramatically reduces both the dimensions of308

Eigendecomposition r ≥ 1 eigenspaces and the spectral gap between them. In addition, pooling309

(i.e. translation symmetry of GAPn) reduces their dimensions by a factor of p. See Sec.E for the310

implication of this theorem to learning.311

Theorem 4.1. [Sec.D] We have the following eigendecomposition for the integral operator K312

H =
⋃
r∈N

H(r) =
⋃
r∈N

⋃
~r∈Q(K,r)

H(~r), (16)

where Q(K, r) is a quantifier defined below. If r = 0, H(0) is the space of constant functions and the313

eigenvalue is ∼ k(0). For r ≥ 1,314

1. if K = KFCN, then Q(K, r) = {~r ∈ Np : |~r| = r} and the unit eigenfunctions are315 H(~r) = span
{
Y~r,~l

}
~l∈[B(d0,~r)]

dim(H(r)) ∼ dr and λ(H(~r)) ∼ d−rδ(k(r)(0))
(17)

2. if K = KVEC, Q(K, r) = {~r ∈ B(Np, s) : |~r| = r} the unit eigenfunctions are316 H
(~r)
VEC = span

{
Y~r,~l

}
~l∈[B(d0,~r)]

dim(H
(r)
VEC) ∼ p(sd0)r = srd1−α+rα and λ(H

(~r)
VEC) ∼ p−1(sd0)−rδ(k(r)(0))

(18)

8

100 101 102 103 104

Rank

10 8

10 6

10 4

10 2

100

Ei
ge

nv
al

ue

FCN : d=24
FCN : d=96
FCN : d=384

100 101 102 103 104

Rank

10 8

10 6

10 4

10 2

100

Ei
ge

nv
al

ue

VEC : d=24
VEC : d=96
VEC : d=384

100 101 102 103 104

Rank

10 8

10 6

10 4

10 2

100

Ei
ge

nv
al

ue

GAP : d=24
GAP : d=96
GAP : d=384

Figure 5: Eigenvalue Decay of Relu NTK of FCN∞, VEC∞ and GAP∞. d0 = s = 3. The
eigenvalues of GAP∞ decays faster because with m = 15k many samples, higher order eigenspace
can be covered by GAP∞ but not FCN∞/VEC∞ due to Theorem 4.1.

3. and finally, if K = KGAP, then Q(K, r) = {~r ∈ B(Np, s)/τ : |~r| = r}, the unit eigenfunc-317

tions are318 H
(~r)
GAP = span

{
1√
p

∑
τ∈[p] Y~r,~l(τξ)

}
~l∈[B(d0,~r)]

dim(H
(r)
GAP) ∼ (sd0)r = srdrα and λ(H

(~r)
GAP) ∼ p−1(sd0)−rδ(k(r)(0))

(19)

5 Related Work319

The study of infinite networks dates back to seminal work by Neal [8] who showed the convergence of320

single hidden-layer networks to Gaussian Processes (GPs). Recently, there has been renewed interest321

in studying random, infinite, networks starting with concurrent work on “conjugate kernels” [10, 35]322

and “mean-field theory” [9, 36], taking a statistical learning and statistical physics view of points,323

resp. Since then this analysis has been extended to include a wide range for architectures [20, 21, 37,324

29, 26, 38]. The inducing kernel is often referred to as the Neural Network Gaussian Process (NNGP)325

kernel. The neural tangent kernel (NTK), first introduced in Jacot et al. [22], along with followup326

work [12, 39] showed that the distribution of functions induced by gradient descent for infinite-width327

networks is a Gaussian Process with NTK as the kernel.328

The study of implicit bias (regularization) of gradient descent has received considerable interests.329

The work [15, 40–43] demonstrate the convergence of SGD to the maximal margin solution for330

logistic-type of losses during late time training. [44–50] study the early-time SGD dynamics, spectral331

biases of neural networks. These results aim to explain the order of learning of neural networks:332

functions of less complexity are usually learned before more complex functions.333

[27] is the first to show that the prediction functions obtained from training FCN depend, in addition334

on the labels, only on the covariance of the input data. This implies our result regarding the O(3d)335

invariance of FCN. By utilizing this symmetry, recent work [51] constructs a particular task where336

the label function is a second order polynomial of the inputs and show that orthogonal invariance337

algorithm requires sample size of order d2 while there is a convnet requires only O(1) samples. Their338

convnet essentially corresponds to the d0 = s = 1 and r = 2 case of Theorem 4.1, in which the339

dimension of this eigenspace (and indeed of all r-eigenspace by treating r as a finite constant as340

d→∞) of GAP∞ is O(1) while the dimension of the 2-eigenspace of FCN∞ is of order d2.341

6 Conclusion342

In this paper, we consider machine learning methods as an integrated system of data, models and343

inference algorithms and study the basic symmetries of various machine learning systems. We surface344

the importance of locality in modern machine learning systems through large scale empirical study345

and through an eigendecomposition of one-layer infinite networks. However, we haven’t addressed346

the two import questions (1) theoretical characterization of the effect of composing locality and (2)347

the mathematical understanding of DIDE and how the prior is corrected by the coupled effect of data348

and gradient descent. We leave them to future work.349

9

Checklist350

The checklist follows the references. Please read the checklist guidelines carefully for information on351

how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or352

[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing353

the appropriate section of your paper or providing a brief inline description. For example:354

• Did you include the license to the code and datasets? [Yes] See Section ??.355

• Did you include the license to the code and datasets? [No] The code and the data are356

proprietary.357

• Did you include the license to the code and datasets? [N/A]358

Please do not modify the questions and only use the provided macros for your answers. Note that the359

Checklist section does not count towards the page limit. In your paper, please delete this instructions360

block and only keep the Checklist section heading above along with the questions/answers below.361

1. For all authors...362

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s363

contributions and scope? [Yes]364

(b) Did you describe the limitations of your work? [Yes]365

(c) Did you discuss any potential negative societal impacts of your work? [N/A]366

(d) Have you read the ethics review guidelines and ensured that your paper conforms to367

them? [Yes]368

2. If you are including theoretical results...369

(a) Did you state the full set of assumptions of all theoretical results? [Yes]370

(b) Did you include complete proofs of all theoretical results? [Yes]371

3. If you ran experiments...372

(a) Did you include the code, data, and instructions needed to reproduce the main experi-373

mental results (either in the supplemental material or as a URL)? [No]374

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they375

were chosen)? [No]376

(c) Did you report error bars (e.g., with respect to the random seed after running experi-377

ments multiple times)? [Yes]378

(d) Did you include the total amount of compute and the type of resources used (e.g., type379

of GPUs, internal cluster, or cloud provider)? [No]380

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...381

(a) If your work uses existing assets, did you cite the creators? [TODO]382

(b) Did you mention the license of the assets? [TODO]383

(c) Did you include any new assets either in the supplemental material or as a URL?384

[TODO]385

(d) Did you discuss whether and how consent was obtained from people whose data you’re386

using/curating? [TODO]387

(e) Did you discuss whether the data you are using/curating contains personally identifiable388

information or offensive content? [TODO]389

5. If you used crowdsourcing or conducted research with human subjects...390

(a) Did you include the full text of instructions given to participants and screenshots, if391

applicable? [TODO]392

(b) Did you describe any potential participant risks, with links to Institutional Review393

Board (IRB) approvals, if applicable? [TODO]394

(c) Did you include the estimated hourly wage paid to participants and the total amount395

spent on participant compensation? [TODO]396

10

References397

[1] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional398

neural networks. In Advances in neural information processing systems, pages 1097–1105, 2012.399

[2] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz400

Kaiser, and Illia Polosukhin. Attention is all you need. arXiv preprint arXiv:1706.03762, 2017.401

[3] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirec-402

tional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.403

[4] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche, Julian404

Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering the game of go405

with deep neural networks and tree search. Nature, 529(7587):484–489, 2016.406

[5] Andrew W Senior, Richard Evans, John Jumper, James Kirkpatrick, Laurent Sifre, Tim Green, Chongli407

Qin, Augustin Žídek, Alexander WR Nelson, Alex Bridgland, et al. Improved protein structure prediction408

using potentials from deep learning. Nature, 577(7792):706–710, 2020.409

[6] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott Gray,410

Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models. arXiv preprint411

arXiv:2001.08361, 2020.412

[7] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to413

document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.414

[8] Radford M. Neal. Priors for infinite networks (tech. rep. no. crg-tr-94-1). University of Toronto, 1994.415

[9] Ben Poole, Subhaneil Lahiri, Maithra Raghu, Jascha Sohl-Dickstein, and Surya Ganguli. Exponential416

expressivity in deep neural networks through transient chaos. In Advances In Neural Information Processing417

Systems, 2016.418

[10] Amit Daniely, Roy Frostig, and Yoram Singer. Toward deeper understanding of neural networks: The419

power of initialization and a dual view on expressivity. In Advances In Neural Information Processing420

Systems, 2016.421

[11] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and generalization422

in neural networks. arXiv preprint arXiv:1806.07572, 2018.423

[12] Jaehoon Lee, Lechao Xiao, Samuel S. Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl-Dickstein,424

and Jeffrey Pennington. Wide neural networks of any depth evolve as linear models under gradient descent.425

In Advances in Neural Information Processing Systems, 2019.426

[13] Behnam Neyshabur. Implicit regularization in deep learning. arXiv preprint arXiv:1709.01953, 2017.427

[14] Suriya Gunasekar, Jason Lee, Daniel Soudry, and Nathan Srebro. Implicit bias of gradient descent on428

linear convolutional networks. arXiv preprint arXiv:1806.00468, 2018.429

[15] Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan Srebro. The implicit bias430

of gradient descent on separable data, 2018.431

[16] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural networks. In432

International Conference on Machine Learning, pages 6105–6114. PMLR, 2019.433

[17] Alex J Smola, Zoltan L Ovari, Robert C Williamson, et al. Regularization with dot-product kernels.434

Advances in neural information processing systems, pages 308–314, 2001.435

[18] Kunihiko Fukushima. Cognitron: A self-organizing multilayered neural network. Biological cybernetics,436

20(3-4):121–136, 1975.437

[19] Yann Lecun. Generalization and network design strategies. In Connectionism in perspective. Elsevier,438

1989.439

[20] Jaehoon Lee, Yasaman Bahri, Roman Novak, Sam Schoenholz, Jeffrey Pennington, and Jascha Sohl-440

dickstein. Deep neural networks as gaussian processes. In International Conference on Learning Repre-441

sentations, 2018.442

[21] Alexander G. de G. Matthews, Jiri Hron, Mark Rowland, Richard E. Turner, and Zoubin Ghahramani.443

Gaussian process behaviour in wide deep neural networks. In International Conference on Learning444

Representations, 2018.445

11

[22] Arthur Jacot, Franck Gabriel, and Clement Hongler. Neural tangent kernel: Convergence and generalization446

in neural networks. In Advances in Neural Information Processing Systems, 2018.447

[23] Simon S Du, Jason D Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent finds global448

minima of deep neural networks. arXiv preprint arXiv:1811.03804, 2018.449

[24] Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-450

parameterization. In International Conference on Machine Learning, 2018.451

[25] Difan Zou, Yuan Cao, Dongruo Zhou, and Quanquan Gu. Gradient descent optimizes over-parameterized452

deep relu networks. Machine Learning, 109(3):467–492, 2020.453

[26] Greg Yang. Scaling limits of wide neural networks with weight sharing: Gaussian process behavior,454

gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760, 2019.455

[27] Neha S. Wadia, Daniel Duckworth, Samuel S. Schoenholz, Ethan Dyer, and Jascha Sohl-Dickstein.456

Whitening and second order optimization both destroy information about the dataset, and can make457

generalization impossible. arxiv preprint arXiv:2008.07545, 2020.458

[28] Lechao Xiao, Yasaman Bahri, Jascha Sohl-Dickstein, Samuel Schoenholz, and Jeffrey Pennington. Dy-459

namical isometry and a mean field theory of cnns: How to train 10,000-layer vanilla convolutional neural460

networks. In International Conference on Machine Learning, pages 5393–5402, 2018.461

[29] Roman Novak, Lechao Xiao, Jaehoon Lee, Yasaman Bahri, Greg Yang, Jiri Hron, Daniel A. Abolafia,462

Jeffrey Pennington, and Jascha Sohl-Dickstein. Bayesian deep convolutional networks with many channels463

are gaussian processes. In International Conference on Learning Representations, 2019.464

[30] Adrià Garriga-Alonso, Laurence Aitchison, and Carl Edward Rasmussen. Deep convolutional networks as465

shallow gaussian processes. In International Conference on Learning Representations, 2019.466

[31] Roman Novak, Lechao Xiao, Jiri Hron, Jaehoon Lee, Alexander A Alemi, Jascha Sohl-Dickstein, and467

Samuel S Schoenholz. Neural tangents: Fast and easy infinite neural networks in python. arXiv preprint468

arXiv:1912.02803, 2019.469

[32] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.470

In Conference on Computer Vision and Pattern Recognition, pages 770–778, 2016.471

[33] Ilya Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas Unterthiner,472

Jessica Yung, Daniel Keysers, Jakob Uszkoreit, Mario Lucic, et al. Mlp-mixer: An all-mlp architecture for473

vision. arXiv preprint arXiv:2105.01601, 2021.474

[34] Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and David Lopez-Paz. mixup: Beyond empirical475

risk minimization. In International Conference on Learning Representations, 2018. URL https://476

openreview.net/forum?id=r1Ddp1-Rb.477

[35] Amit Daniely. SGD learns the conjugate kernel class of the network. In Advances in Neural Information478

Processing Systems 30. 2017.479

[36] Samuel S Schoenholz, Justin Gilmer, Surya Ganguli, and Jascha Sohl-Dickstein. Deep information480

propagation. International Conference on Learning Representations, 2017.481

[37] Lechao Xiao, Yasaman Bahri, Jascha Sohl-Dickstein, Samuel Schoenholz, and Jeffrey Pennington. Dy-482

namical isometry and a mean field theory of CNNs: How to train 10,000-layer vanilla convolutional neural483

networks. In International Conference on Machine Learning, 2018.484

[38] Jiri Hron, Yasaman Bahri, Jascha Sohl-Dickstein, and Roman Novak. Infinite attention: Nngp and ntk for485

deep attention networks, 2020.486

[39] Lenaic Chizat, Edouard Oyallon, and Francis Bach. On lazy training in differentiable programming. In487

Advances in Neural Information Processing Systems, pages 2937–2947, 2019.488

[40] Kaifeng Lyu and Jian Li. Gradient descent maximizes the margin of homogeneous neural networks. In489

International Conference on Learning Representations, 2020. URL https://openreview.net/forum?490

id=SJeLIgBKPS.491

[41] Ziwei Ji and Matus Telgarsky. The implicit bias of gradient descent on nonseparable data. In Conference492

on Learning Theory, pages 1772–1798, 2019.493

[42] Ziwei Ji and Matus Jan Telgarsky. Gradient descent aligns the layers of deep linear networks. In 7th494

International Conference on Learning Representations, ICLR 2019, 2019.495

12

[43] Lénaïc Chizat and Francis Bach. Implicit bias of gradient descent for wide two-layer neural networks496

trained with the logistic loss. In Jacob Abernethy and Shivani Agarwal, editors, Proceedings of Thirty497

Third Conference on Learning Theory, volume 125 of Proceedings of Machine Learning Research, pages498

1305–1338. PMLR, 09–12 Jul 2020. URL http://proceedings.mlr.press/v125/chizat20a.html.499

[44] Preetum Nakkiran, Gal Kaplun, Dimitris Kalimeris, Tristan Yang, Benjamin L Edelman, Fred Zhang,500

and Boaz Barak. Sgd on neural networks learns functions of increasing complexity. arXiv preprint501

arXiv:1905.11604, 2019.502

[45] Wei Hu, Lechao Xiao, Ben Adlam, and Jeffrey Pennington. The surprising simplicity of the early-time503

learning dynamics of neural networks. arXiv preprint arXiv:2006.14599, 2020.504

[46] Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred Hamprecht, Yoshua505

Bengio, and Aaron Courville. On the spectral bias of neural networks. In International Conference on506

Machine Learning, pages 5301–5310. PMLR, 2019.507

[47] Zhiqin John Xu. Understanding training and generalization in deep learning by fourier analysis. arXiv508

preprint arXiv:1808.04295, 2018.509

[48] Zhi-Qin John Xu, Yaoyu Zhang, Tao Luo, Yanyang Xiao, and Zheng Ma. Frequency principle: Fourier510

analysis sheds light on deep neural networks. arXiv preprint arXiv:1901.06523, 2019.511

[49] Lili Su and Pengkun Yang. On learning over-parameterized neural networks: A functional approximation512

perspective. arXiv preprint arXiv:1905.10826, 2019.513

[50] Greg Yang and Hadi Salman. A fine-grained spectral perspective on neural networks. arXiv preprint514

arXiv:1907.10599, 2019.515

[51] Zhiyuan Li, Yi Zhang, and Sanjeev Arora. Why are convolutional nets more sample-efficient than516

fully-connected nets? arXiv preprint arXiv:2010.08515, 2020.517

13

