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ABSTRACT

Deep Neural Networks (DNNs) have been shown to be vulnerable to adversarial
examples. While numerous successful adversarial attacks have been proposed,
defenses against these attacks remain relatively understudied. Existing defense
approaches either focus on negating the effects of perturbations caused by the at-
tacks to restore the DNNs’ original predictions or use a secondary model to detect
adversarial examples. However, these methods often become ineffective due to
the continuous advancements in attack techniques. We propose a novel univer-
sal and lightweight method to detect adversarial examples by analyzing the layer
outputs of DNNs. Through theoretical justification and extensive experiments, we
demonstrate that our detection method is highly effective, compatible with any
DNN architecture, and applicable across different domains, such as image, video,
and audio.

1 INTRODUCTION

Goodfellow et al. (2014) demonstrated that deep neural networks (DNNs) are vulnerable to adver-
sarial examples and proposed the Fast Gradient Sign Method (FGSM) to craft these adversarial
examples by adding perturbations to the model inputs, leveraging the linear nature of DNNs. After
the initial introduction of FGSM, various adversarial attacks were proposed across different do-
mains. However, compared to the vast diversity among attack techniques, existing defense methods
are built on a few different strategies.

The most commonly used defense strategy is trying to remove the perturbations or altering the
inputs to reduce their effects. Another and the oldest defense strategy is adversarial training where
the training set of model contains adversarial examples.Both strategies do not generalize well to
unseen attacks as they are tailored for a specific set of attacks. On the other hand, a recent defense
strategy suggests to use a baseline method and compare its output with the main model to detect
attacks. This strategy makes the defense vulnerable to the limitations of the baseline model and the
potential mismatches between the main and baseline models for clean samples.

As opposed to the existing defense strategies which either analyze the model inputs or outputs,
we propose Layer Regression (LR), a universal lightweight adversarial example detector, which
analyzes the changes in the DNN’s internal layer outputs. LR is highly effective for defending
various DNN models against a wide range of attacks in different data domains such as image, video,
and audio. LR utilizes the difference between the impacts of adversarial samples on early and final
layers by performing regression among them. We present the following contributions:

• We propose the first universal defense strategy against adversarial examples, which take
advantage of the sequential layer-based nature of DNNs and the common objectives of
attacks.

• We conduct extensive experiments with 672 distinct attack-dataset-model-defense com-
binations for image recognition, and show that LR outperforms existing methods with a
97.6% average detection performance while the next best performance achieved by the ex-
isting defenses is 82.9%. Universality of LR is shown with its superior performance in
detecting action recognition attacks and speech recognition attacks.

• In addition to its high performance across a wide range of domains, models, and attacks,
LR is also the most lightweight defense method. It is orders of magnitude faster than the
existing defenses, making it ideal for real-time attack detection.
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2 RELATED WORKS

2.1 ADVERSARIAL ATTACKS

The robustness of deep neural networks and their vulnerability against adversarial examples have
been investigated since the introduction of FGSM (Goodfellow et al., 2014). Numerous adversarial
attacks have been proposed to generate effective adversarial examples in recent years (Madry et al.,
2017; Croce & Hein, 2020; Kurakin et al., 2018; Chen et al., 2017; Ilyas et al., 2018; Mumcu
& Yilmaz, 2024a; Wang & He, 2021; Fang et al., 2024; Gao et al., 2020). There are two main
adversarial attack settings, namely white-box and black-box. While it is assumed that the attacker
has access to the target model in the white-box setting, in the black-box setting, the attacker does
not have any prior information about the target model.

White box attacks, including FGSM (Goodfellow et al., 2014), PGD (Madry et al., 2017), APGD
(Croce & Hein, 2020), generate adversarial examples by maximizing the target model’s loss function
and they are usually referred as gradient-based attacks. BIM (Kurakin et al., 2018) tries to improve
gradient-based attack by applying perturbations iteratively. Transferability based black-box attacks,
which is introduced in Papernot et al. (2017), are one of the most common black-box approach. The
idea is to use an attack on a substitute model for generating adversarial examples for unknown target
models, utilizing the transferability of adversarial examples to different DNNs. While adversarial
examples generated by these attacks are most effective when the substitute model exactly matches
the target model as in a white-box attack setting, their success is shown to be transferable even when
there is significant architectural differences between the substitute and target models. Wang & He
(2021) introduced VMI and VNI to further extend iterative gradient-based attacks and try to achieve
high transferability by considering the gradient variance of the previous iterations. PIF (Gao et al.,
2020) uses patch-wise iterations to achieve transferability. ANDA (Fang et al., 2024) aims to achieve
strong transferability by avoiding the overfitting of adversarial examples to the substitute model.

2.2 ADVERSARIAL DEFENSES

Attempting to make changes on the input data for removing the effects of perturbations from adver-
sarial examples is the most common defense strategy. JPEG compression is studied in several works
(Cucu et al., 2023; Aydemir et al., 2018; Das et al., 2018), and it is shown that compressing and
decompressing helps to remove of adversarial effects on input images. Xie et al. (2017) uses ran-
dom resizing and padding on the inputs to eliminate the adversarial effects. Xu (2017b) introduces
feature squeezing where they use bit reduction, spatial smoothing, and non-local means denoising
to detect adversarial examples. Several denoising methods (Liao et al., 2018; Xiong et al., 2022;
Salman et al., 2020) were proposed to remove adversarial perturbations from the inputs. Mustafa
et al. (2019) uses wavelet denoising and image super resolution as pre-processing steps to create
a defense pipeline against adversarial attacks. Prakash et al. (2018) tries to eliminate adversarial
effects by redistributing the pixel values via a process called pixel deflection. Adversarial training is
another method which is studied to increase robustness of DNNs, however adversarial training often
fails to perform well especially under various attack configurations (Bai et al., 2021). In addition, a
recent defense strategy which utilizes a baseline model, e.g., Vision Language Models (VLMs), with
the assumption that the output of target model and baseline model are close to each other for clean
input, but are far away from each other for adversarital input. A recent example is demonstrated by
Mumcu & Yilmaz (2024c) where they used CLIP (Radford et al., 2021) to detect adversarial video
examples.

Adversarial training suffers from the increasing number of adversarial attacks which makes this
strategy ineffective against adversarial examples which are not represented in the training set. Sim-
ilarly, developing a universal perturbation removal method that is effective against every attack is
not feasible due to continuous advancements in attack techniques. Additionally, since the defender
cannot always know whether the input has been attacked, there is a risk of degrading clean inputs
and causing false alarms. The baseline methods, which involve using a secondary model, such as
VLMs, to detect adversarial examples, rely on the assumption that the secondary model will not
be affected by the adversarial samples that are designed against the primary model. However, even
without an attack, a mismatch between the models’ predictions may trigger false alarms. Moreover,
an attack that compromises both models can easily bypass this defense strategy.
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3 DETECTING ADVERSARIAL EXAMPLES

Consider a Deep Neural Network (DNN) model g(·) that takes an input x and predicts the target
variable y with g(x). As discussed in Section 2.2, there are three main defense strategies against
adversarial attacks: adversarial training, modifying input, and detecting adversarial samples by mon-
itoring changes in output with respect to a baseline. While the former two focuses on the changes in
the input (x vs. xadv), the latter utilizes the changes in the output (g(x) vs. g(xadv)). Our approach
differs from these existing approaches by leveraging the changes within the DNN activations. In-
stead of analyzing the input xadv or the output g(xadv), the proposed defense method analyzes the
intermediate steps between xadv and g(xadv).

To develop a universal detector that work with any DNN and against any attack, we start with
the following generic observation. Although there are numerous attacks with different approaches
to generate adversarial examples, all attacks essentially aim to change the model’s prediction by
maximizing the loss L (e.g., cross-entropy loss) between prediction g(xadv) and the ground truth y
while limiting the perturbation Fang et al. (2024):

max
xadv
L(g(xadv), y) s.t. ∥xadv − x∥∞ ≤ ϵ. (1)

Considering this common aim of attack methods and the sequential nature of DNNs, in the following
theorem, we show that the impact of adversarial examples on the final layer is much higher than the
initial layer. Let us first define a generic DNN g(·) consisting of n layers a = {a1, a2, ..., an}. In
DNNs, including CNNs, transformers, etc., layers incrementally process the information from the
previous layers to compute their respective outputs to the next layer. For example, for a model g
where each layer is connected to the previous one, the final output of the model can be formulated
as follows:

g(x) = an(an−1(. . . a1(x))). (2)
For simplicity, we will denote a layer’s output vector with ai(x). Note that, the output of last layer
an(x) = g(x) is typically the class probability vector in classification, and an−1(x) is referred as
the feature vector of the model.
Theorem 1. Assuming a loss function L(g(x), y) that is monotonic with ∥g(x) − y∥∞, for n > 1,
we have

dn = ∥an(xadv)− an(x)∥∞ > d1 = ∥a1(xadv)− a1(x)∥∞. (3)

Proof. Since the model g is trained by optimizing the weights w to minimize the loss L(gw(x), y),
i.e.,

g(x) = argmin
w
L(gw(x), y), (4)

we can rewrite Eq. 1 as

max
xadv
L(g(xadv), g(x)) s.t. ∥xadv − x∥∞ ≤ ϵ. (5)

Note that an(x) = g(x) and an(x
adv) = g(xadv) and L(g(xadv), g(x)) is monotonic with

∥g(xadv) − g(x)∥∞. Hence, ∥an(xadv) − an(x)∥∞ is maximized while limiting ∥xadv − x∥∞
by a small number. Finally, the perturbation aligned with DNN weights is amplified as it sequen-
tially moves through the DNN layers Goodfellow et al. (2014),

∥xadv − x∥∞ < ∥a1(xadv)− a1(x)∥∞ < ∥an(xadv)− an(x)∥∞, n > 1.

Having shown that the impact of an adversarial sample is higher on the final layer output than the
first layer output, we next present how to utilize this fact for detecting adversarial samples.
Corollary 1. Consider a function f which maps a1(x) to an(x) and is stable in the sense that
∥f(a1(x))− f(a1(x+ ϵ))∥∞ ≤ δ for small ϵ and δ. Then,

ea = ∥f(a1(xadv))− an(x
adv)∥∞ > ec = ∥f(a1(x))− an(x)∥∞. (6)

Proof. Since ∥xadv − x∥∞ ≤ ϵ from Eq. 1, f(a1(xadv)) is close to f(a1(x)) due to the stability of
f . From Theorem 1, an(xadv) is far away from an(x) compared to the distance between a1(x) and
a1(x

adv). Thus, the estimation error for adversarial samples ea = ∥f(a1(xadv)) − an(x
adv)∥∞ is

larger than the error for clean samples ec = ∥f(a1(x))− an(x)∥∞.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 1: (Left) Theorem 1 shows that the impact of adversarial samples is higher on the final layer
than the first layer. Corollary 1 uses this result to prove that the error of a stable estimator is higher
for adversarial samples compared to clean samples. (Right) The performance of approximations in
proposed detector to Corollary 1 depend on two conflicting objectives: proximity of input vectors
for clean and adversarial samples, and training an accurate and stable estimator. (Table) Empirical
confirmation of the agreement between the proposed detector with approximations and the theoreti-
cal results.

3.1 LAYER REGRESSION

While Theorem 1 provides the theoretical motivation, the result in Corollary 1 provides a mecha-
nism to detect adversarial samples if we can train a suitable function f (Figure 1). We make four
approximations to obtain a practical algorithm based on Corollary 1. First, we propose to use a
multi-layer perceptron (MLP) to approximate f . Second, since an(x) denotes the predicted class
probabilities, we choose the feature vector an−1, which takes unconstrained real values, as the target
to train MLP as a regression model. Third, we approximate non-differentiable ∥ · ∥∞ with ∥ · ∥2
to train the MLP using the differentiable mean squared error (MSE) loss. To empirically check the
validity of Theorem 1 under these three approximations, we use the ImageNet validation dataset,
ResNet-50 He et al. (2015) as target model, and PGD attack Madry et al. (2017) to compute the
mean and standard deviation of normalized change in layer 1 d̃1 = ∥a1(x

adv)−a1(x)∥2

∥a1(xadv)∥2+∥a1(x)∥2
and layer

n− 1 d̃n−1 = ∥an−1(x
adv)−an−1(x)∥2

∥an−1(xadv)∥2+∥an−1(x)∥2
.

In deep neural networks with n≫ 1, training an suitable f to estimate the feature vector an−1 using
the first layer output a1 as the input is a challenging task due to the highly nonlinear mapping in
n − 2 layers. To develop a lightweight detector via MLP, as the fourth approximation, we propose
selecting a mixture of early layer outputs as the input to the regression model instead of using only
the first layer. Using a mixture of 5th, 8th, and 13th convolutional layers in ResNet-50 as the input,
we empirically check Corollary 1 under the same setting used for d̃1 and d̃n−1 by computing the
mean and standard deviation of MSE ẽc = ∥f(a1(x)) − an−1(x)∥2 for clean images and ẽa =
∥f(a1(xadv)) − an−1(x

adv)∥2 for adversarial images, where an MLP with two hidden layers is
used for f . Results shown in Figure 1 corroborate Theorem 1 and Corollary 1 under the three
approximations. Input selection for MLP is further discussed in this section and ablation study in
Section 5.2.

Utilizing the four approximations to Corollary 1 discussed above, we propose a universal and
lightweight detection algorithm with the following steps: (i) select a subset of the first n − 2 layer
vectors and generate a new vector v from the selected subset, (ii) feed v into a regression model m
to predict the feature vector an−1(x), (iii) train m by minimizing the mean squared error (MSE) loss
ℓ(m(v), an−1(x)) in the clean training set devoid of adversarial samples, (iv) decide a test sample is
adversarial if the prediction loss is greater than a threshold, ℓ(m(v), an−1(x)) > h. A pseudo-code
of LR is given in Appendix D.

The formation of vector v can be done in various ways, such as using only the ith layer vector
v = ai(x) or mixture of several layer vectors. To enable larger estimation error ea for adversarial
samples than estimation error ec for clean samples, the choice for v should strike a balance between
two competing goals, as illustrated in Figure 1: proximity of clean v(x) and adversarial v(xadv),
and accuracy and stability of estimation function f . While training an accurate and stable regression

4
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Figure 2: (Left) Layer selection and slicing operations to form the input vector. (Right) Training
and testing procedures of the proposed detector.

model is more feasible when v is selected from the layers closer to the target layer n − 1, e.g.,
v = an−2(x), such a detector might be less sensitive to adversarial samples since both an−2(x)
and an−1(x) are expected to be impacted significantly by the attack, i.e., an−2(x) and an−2(x

adv)
will not be proximal. On the other hand, while selecting v = a1(x) ensures a reasonably small
perturbation in v, it also makes obtaining an accurate and stable estimator more challenging. As a
result, we propose to select a subset of layer vectors

ar = {ar1(x), ar2(x), ..., arm(x)} (7)

where ar ∈ a and m < n is the number of selected layers. From the selected layer vectors, we aim
to generate a new vector v. However, since the layer vectors are often large due to the operations
like convolutions or attentions, to get a specific portion of the selected layer vectors, we define a
unique slicing function s = {s1, s2, ..., sm} for each layer vector in ar. Then, each slicing function
is applied to the corresponding layer vector in ar to get the sliced vectors

sr = {s1(ar1(x)), s2(ar2(x)), ..., sm(arm(x))}. (8)

Finally, the vector v is generated by concatenating the vectors in sr:

v = [s1(ar1(x)), s2(ar2(x)), . . . , sm(arm(x))]. (9)

The proposed layer selection and slicing process is summarized in Figure 2.

During the training, only the clean input samples are used. After the training, the loss is expected to
be low for clean inputs and high for adversarial inputs. Thus, an adversarial example can be detected
by comparing the loss ℓ(m(v), an−1(x)) with a threshold h:

d =

{
x is adversarial if ℓ > h

x is not adversarial if ℓ ≤ h,
(10)

The threshold h is determined by calculating the loss for a set of clean inputs β = {ℓ1, . . . , ℓK},
where the losses in β are sorted in ascending order, i.e., ℓ1 ≤ ℓ2 ≤ · · · ≤ ℓK . h is selected as the
θth percentile of the clean training losses: h = β[⌊Kθ/100⌋] where ⌊·⌋ denotes the floor operator,
and β[i] denotes the ith element of β.

4 EXPERIMENTS AND ANALYSES

In this section, we evaluate the performance of our method and compare it against 7 existing defense
methods. Our extensive experiments are conducted on 2 widely used image datasets, with 6 image
classification models and 7 adversarial attacks.

Defenses: The following defense methods are used in the experiments: JPEG compression (JPEG)
(Das et al., 2018), Randomization (Random)(Xie et al., 2017), Deflection (Deflect) (Prakash et al.,
2018), VLAD (Mumcu & Yilmaz, 2024c), Feature Squeezing (FS) Xu (2017a), Wavelet denoising
(Denoise) and super resolution (WDSR) (Mustafa et al., 2019). Since VLAD and FS were proposed
as detectors in their respective papers, we use their official implementations. The remaining methods
were proposed to increase robustness by altering the inputs to remove perturbations. For this reason,
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Figure 3: Histogram of AUC values for LR and VLAD on (Left) ImageNet (Right) CIFAR-100.

we obtain a detection method from them by comparing the predictions after and before the methods
are applied. The case the predictions match indicates no attack and a mismatch indicates an attack.

Attacks: BIM (Kurakin et al., 2018), PGD (Madry et al., 2017), PIF (Gao et al., 2020), APGD
(Croce & Hein, 2020), ANDA (Fang et al., 2024), VMI and VNI (Wang & He, 2021) attacks are
used to generate adversarial examples during the experiments. We consider the most challenging
case for the detector, the white-box attack scenario, in which the attacker has full access to the
classification model, i.e., no mismatch between the surrogate model and actual model.

Models: To represent the different architectures we used three CNN-based image classification
models, VGG19 Simonyan & Zisserman (2014), ResNet50 He et al. (2015), Inceptionv3 Szegedy
et al. (2015); and three transformers-based models, ViT Dosovitskiy (2020), DeiT Touvron et al.
(2021), LeViT Graham et al. (2021).

Datasets: The experiments are conducted using the validation set of ImageNet dataset (Russakovsky
et al., 2015) and the CIFAR-100 dataset (Krizhevsky et al., 2009). For testing, the clean set com-
prises all images that are correctly classified by the target models. An adversarial set is formed for
each attack-target model combination by gathering the attack’s adversarial images misclassified by
target model.

LR training: For each model, an MLP with 2 hidden layers is trained as the LR detector. The
details of the chosen ar subsets, detectors, sr slicing functions, and training parameters are detailed
in Appendix C.

Evaluation: The commonly used the Area Under Curve (AUC) metric from the Receiver Operating
Characteristic (ROC) curve is used to evaluate the attack detection performance of defense methods.
ROC curve shows the trade-off between true positive rate (i.e., ratio of successfully detected adver-
sarial samples to all adversarial samples) and false positive rate (i.e., ratio of false alarms to all clean
samples).

4.1 AUC RESULTS

In Table 1, we report the AUC scores for JPEG, Random, Deflect, VLAD, Denoise, WDSR, FS
and our method, LR, against the BIM, PGD, PIF, APGD, ANDA, VMI and VNI attacks targeting 7
models, namely Vgg19, ResNet50, Inceptionv3, ViT, DeiT, LeViT, on two datasets, ImageNet and
CIFAR-100. In every experimental setting, with different attacks, target models, and datasets, our
proposed method outperforms the existing defense methods by a wide margin. Compared to LR’s
average AUC of 0.976 over ImageNet and CIFAR, the best performance among the existing methods
remains at 0.829. More importantly, our method is robust to changing targets and attacks, as indi-
cated by its small standard deviation. While the other defense methods are effective against certain
target-attack combinations, they fail to generalize this to a wide range of settings. For instance, on
ImageNet, JPEG, Random, and FS perform better with the transformer models, however they rarely
exceed the random guess performance with the CNN models. While VLAD consistently achieves
good performance on ImageNet, its performance significantly drops on CIFAR-100, possibly due to
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19
BIM 0.424 0.427 0.482 0.950 0.451 0.393 0.130 0.999 0.468 0.314 0.490 0.687 0.481 0.411 0.006 0.999
PGD 0.496 0.457 0.482 0.950 0.454 0.463 0.222 0.998 0.483 0.313 0.490 0.752 0.482 0.439 0.018 0.999
PIF 0.328 0.443 0.482 0.952 0.450 0.314 0.078 0.999 0.466 0.314 0.490 0.867 0.481 0.408 0.005 0.999

APGD 0.530 0.463 0.482 0.964 0.454 0.487 0.229 0.998 0.482 0.316 0.490 0.837 0.481 0.423 0.023 0.998
ANDA 0.392 0.474 0.491 0.946 0.467 0.380 0.264 0.949 0.482 0.359 0.492 0.666 0.487 0.425 0.113 0.994
VMI 0.356 0.418 0.482 0.940 0.451 0.342 0.111 0.999 0.467 0.322 0.490 0.667 0.482 0.409 0.007 0.999
VNI 0.405 0.448 0.484 0.956 0.461 0.382 0.190 0.997 0.474 0.318 0.491 0.740 0.483 0.415 0.022 0.999

R
es

N
et

50

BIM 0.670 0.633 0.493 0.839 0.482 0.546 0.293 0.989 0.820 0.687 0.455 0.778 0.618 0.728 0.387 0.981
PGD 0.771 0.745 0.493 0.846 0.485 0.676 0.533 0.984 0.874 0.707 0.452 0.774 0.714 0.821 0.399 0.994
PIF 0.510 0.644 0.493 0.841 0.482 0.465 0.288 0.963 0.725 0.715 0.449 0.756 0.477 0.609 0.626 0.967

APGD 0.746 0.703 0.493 0.856 0.485 0.640 0.467 0.968 0.838 0.646 0.457 0.782 0.616 0.778 0.435 0.961
ANDA 0.450 0.484 0.494 0.787 0.484 0.444 0.135 0.959 0.556 0.530 0.448 0.675 0.478 0.448 0.068 0.994
VMI 0.493 0.519 0.493 0.815 0.484 0.445 0.140 0.990 0.613 0.581 0.451 0.718 0.497 0.499 0.231 0.992
VNI 0.531 0.536 0.494 0.826 0.491 0.470 0.212 0.967 0.616 0.549 0.453 0.737 0.499 0.513 0.277 0.965
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nV
3

BIM 0.549 0.534 0.496 0.882 0.492 0.768 0.235 0.981 0.877 0.802 0.428 0.904 0.735 0.806 0.363 1.000
PGD 0.615 0.576 0.497 0.876 0.494 0.796 0.356 0.965 0.861 0.662 0.425 0.898 0.764 0.807 0.324 0.999
PIF 0.484 0.518 0.496 0.881 0.488 0.667 0.107 0.993 0.821 0.889 0.443 0.901 0.574 0.721 0.344 1.000

APGD 0.604 0.564 0.497 0.894 0.496 0.794 0.361 0.955 0.880 0.817 0.434 0.895 0.771 0.806 0.376 0.999
ANDA 0.490 0.499 0.498 0.841 0.493 0.515 0.228 0.920 0.713 0.571 0.427 0.811 0.504 0.591 0.292 0.999
VMI 0.483 0.502 0.496 0.867 0.489 0.671 0.117 0.984 0.848 0.783 0.424 0.877 0.496 0.799 0.346 1.000
VNI 0.519 0.527 0.497 0.886 0.498 0.703 0.249 0.958 0.860 0.787 0.434 0.884 0.600 0.806 0.311 1.000

V
iT

BIM 0.872 0.896 0.533 0.940 0.640 0.817 0.928 0.996 0.500 0.657 0.499 0.721 0.499 0.492 0.287 0.980
PGD 0.850 0.867 0.527 0.911 0.602 0.790 0.911 0.988 0.494 0.670 0.499 0.692 0.496 0.484 0.272 0.967
PIF 0.790 0.824 0.517 0.891 0.512 0.669 0.865 0.996 0.489 0.532 0.499 0.697 0.494 0.476 0.150 0.982

APGD 0.856 0.897 0.529 0.925 0.625 0.800 0.923 0.990 0.504 0.707 0.499 0.749 0.500 0.498 0.317 0.949
ANDA 0.717 0.678 0.519 0.846 0.557 0.638 0.823 0.972 0.493 0.517 0.499 0.587 0.495 0.481 0.262 0.846
VMI 0.766 0.811 0.513 0.908 0.572 0.701 0.857 0.995 0.489 0.575 0.499 0.691 0.494 0.477 0.153 0.991
VNI 0.776 0.826 0.524 0.906 0.605 0.727 0.909 0.991 0.499 0.595 0.499 0.701 0.499 0.489 0.268 0.947

D
ei

T

BIM 0.859 0.889 0.524 0.955 0.575 0.784 0.884 0.998 0.496 0.637 0.499 0.669 0.494 0.481 0.359 0.915
PGD 0.863 0.877 0.528 0.947 0.583 0.801 0.900 0.997 0.499 0.655 0.499 0.674 0.494 0.484 0.344 0.867
PIF 0.774 0.835 0.512 0.926 0.504 0.711 0.620 0.999 0.484 0.520 0.498 0.654 0.491 0.473 0.158 0.972

APGD 0.853 0.896 0.522 0.947 0.570 0.776 0.882 0.997 0.499 0.653 0.499 0.675 0.496 0.484 0.359 0.908
ANDA 0.766 0.755 0.530 0.914 0.577 0.701 0.752 0.985 0.489 0.512 0.498 0.568 0.492 0.477 0.257 0.914
VMI 0.785 0.837 0.509 0.946 0.528 0.685 0.797 0.999 0.488 0.562 0.499 0.627 0.493 0.477 0.299 0.957
VNI 0.804 0.853 0.518 0.944 0.549 0.719 0.849 0.997 0.494 0.574 0.498 0.631 0.495 0.483 0.281 0.944

L
eV

iT

BIM 0.679 0.731 0.501 0.888 0.502 0.621 0.640 0.993 0.929 0.834 0.684 0.891 0.884 0.855 0.995 0.999
PGD 0.694 0.736 0.497 0.868 0.493 0.622 0.661 0.990 0.926 0.839 0.569 0.913 0.841 0.850 0.862 0.934
PIF 0.537 0.647 0.497 0.878 0.486 0.489 0.508 0.991 0.855 0.817 0.495 0.831 0.533 0.800 0.620 0.934

APGD 0.748 0.797 0.500 0.914 0.508 0.687 0.759 0.976 0.929 0.832 0.680 0.891 0.878 0.855 0.986 0.993
ANDA 0.494 0.506 0.499 0.776 0.492 0.485 0.429 0.936 0.838 0.705 0.524 0.876 0.574 0.814 0.646 0.931
VMI 0.527 0.586 0.496 0.840 0.487 0.482 0.387 0.997 0.925 0.833 0.658 0.891 0.661 0.856 0.995 0.999
VNI 0.595 0.661 0.500 0.881 0.505 0.540 0.588 0.986 0.921 0.827 0.666 0.895 0.714 0.856 0.992 0.998

Average 0.629 0.655 0.502 0.893 0.511 0.609 0.495 0.982 0.653 0.619 0.496 0.765 0.565 0.602 0.353 0.970
Std 0.160 0.159 0.014 0.048 0.049 0.146 0.296 0.018 0.183 0.168 0.064 0.100 0.119 0.168 0.274 0.037

Table 1: Comparison between 8 defenses in terms of detection AUC against 7 attack methods tar-
geting 6 models using ImageNet and CIFAR-100 datasets.

its dependency on CLIP. When CLIP is fooled by the attacks, VLAD also fails. Moreover, VLAD
is orders of magnitude slower than LR, as shown in Figure 4 and Table 2.

The histogram of AUC values for LR in Figure 3 clearly demonstrate the robustness of
our method compared to its main competitor, VLAD. ANDA, which is the most recent
and state-of-the-art attack method in the literature, troubles our detector the most. How-
ever, LR still maintains an average AUC of 0.954 and 0.946 against ANDA over the six
target models on ImageNet and CIFAR-100, respectively. The average AUC values of LR
against BIM, PGD, PIF, APGD, VMI, and VNI on (ImageNet, CIFAR-100) are as follows:
(0.993, 0.979), (0.987, 0.960), (0.990, 0.976), (0.981, 0.968), (0.994, 0.990), (0.983, .976).
Interestingly, InceptionV3 is the easiest model for LR to defend against attacks
trained on CIFAR-100 with a perfect detection score while the average AUC of
LR for InceptionV3 with ImageNet is 0.965. The average AUC of LR values for
Vgg19, ResNet50, ViT, DeiT, and LeViT with (ImageNet, CIFAR-100) are as follows:
(0.991, 0.998), (0.974, 0.979), (0.990, 0.952), (0.996, 0.925), (0.981, 0.970).

4.2 REAL-TIME DETECTION PERFORMANCE

Real-time performance is a crucial aspect of an attack detection method. A detection mechanism
must always run alongside the DNN model to ensure timely detection of adversarial examples. Here,
we compare the real-time performance of the defense methods used in the experiments. For each
defense method, we processed 1,000 samples from ImageNet with the defense methods and took
the average of processing times. In Table 2, for each defense method, we show the processing time
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Figure 4: The proposed detector is both universal
(high AUC across all scenarios) and lightweight
(fastest among all existing defenses).

Defenses PTS (sec)
JPEG 0.0029

Random 0.0026
Deflect 0.0035
VLAD 0.1431
Denoise 0.0057
WDSR 0.2611

FS 0.0382
Ours 0.0004

Table 2: Processing time
per sample in seconds for
defense methods.

per sample (PTS) in seconds. Our method is significantly faster than the others with only 0.0004
seconds. WDSR and VLAD are the slowest methods with 0.2611 and 0.1431 seconds respectively.
Figure 4 demonstrates the trade-off between PTS and average accuracy of the existing defense meth-
ods. Our method exhibits an outlying performance by significantly beating the existing methods in
both PTS and average detection AUC. The processing times are measured using a computer with an
NVIDIA 4090 GPU, AMD Ryzen 9 7950X CPU, and 64 GB RAM.

5 ABLATION STUDY

5.1 EFFECT OF ATTACK STRENGTH

Adversarial attacks often use a designated parameter ϵ to adjust the amount of perturbation on ad-
versarial examples. For the experiments in Section 4, we used the default attack settings that are
proposed by the authors. In this ablation study, we investigate the performance of defense methods
against PGD and BIM attacks with different ϵ values. In the original implementation of PGD and
BIM, attack strength parameter ϵ is set to 0.03. In addition to the original ϵ, we also generated
attacks by setting ϵ to 0.01, 0.09, 0.12, 0.15 and 0.3 and attacked ResNet and ViT.

Figure 5 plots the performances of defense methods for ResNet-PGD, ResNet-BIM, ViT-PGD and
ViT-BIM model-attack pairs. We noticed a small performance drop in our method when the attack
strength has the smallest value of 0.01. However, higher ϵ values resulted in higher AUC in every
case. This is an expected behaviour since our method depends on the effects of the perturbation on
DNN layers. In other defense methods, while VLAD and Deflect experience only small changes
under stronger attacks, remaining methods are greatly affected by the ϵ value, especially while de-
fending ResNet.

5.2 EFFECTS OF LAYER VECTOR CHOICE

For the experiments in Section 4, we used three layer vectors to form v, i.e., m = 3 in Eq. 9.
Since the number of combinations for layer selection and slicing yields an intractable search space
for extensive optimization, we performed optimization over a limited set of representative options.
Table 3 summarizes the results of a preliminary experiment on CIFAR-100, which is conducted
with DeiT as the target model and PGD and PIF as the adversarial attacks. In this experiment, we
considered 25 attention layers of the model and trained our detectors by forming v in four different
ways: (1) using only the first attention layer vector a1, (2) using only the last attention layer vector
a25, (3) combining the vectors from fifth, sixth, and seventh attention vectors [a5, a6, a7], (4) and
combining the vectors from eighth, thirteenth, and seventeenth attention vectors [a8, a13, a17]. The
best strategy turns out to combining vectors from early layers [a5, a6, a7] as it strikes a good balance
in the trade-off between the two conflicting goals (Figure 1): proximity of v(x) and v(xadv), and
accuracy and stability of estimator f . Additionally, having multiple layers and slicing functions
can create randomness in each LR implementation, which makes developing an attack against our
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(a) ResNet & PGD (b) ResNet & BIM

(c) ViT & PGD (d) ViT & BIM

Figure 5: Impact of attack strength on detection performance.

Attack a1 [a5, a6, a7] [a8, a13, a17] an−2

PGD 0.697 0.867 0.751 0.567
PIF 0.744 0.972 0.746 0.521

Table 3: Impact of layer selection on detection AUC.

detection system harder. The layer selection and slicing strategies that gave the best results reported
in Table 1 are listed in Appendix C.

6 APPLICABILITY IN OTHER DOMAINS

LR is applicable in every domain where DNNs are used. In this section we demonstrate its perfor-
mance in two other domains, video action recognition and speech recognition. In Appendices A and
G, we provide more information about experimental details that are used in this section. Moreover,
we provide additional results on another application, traffic sign recognition, in Appendix F.

6.1 LR FOR VIDEO ACTION RECOGNITION

In this section, we implement LR against video action recognition attacks and compare its perfor-
mance with existing defenses designed for action recognition models, namely Advit (Xiao et al.,
2019), Shuffle (Hwang et al., 2023), and VLAD (Mumcu & Yilmaz, 2024c). In the experiments,
PGD-v attack (Mumcu & Yilmaz, 2024c) and Flick attack (Pony et al., 2021) are used to target
MVIT (Fan et al., 2021) and X3D (Feichtenhofer, 2020). The experimental settings in Mumcu &
Yilmaz (2024c) on Kinetics-400 (Kay et al., 2017) dataset are followed. The results in Table 4 show
that LR outperforms the other defenses with an average AUC of 0.93%, followed by VLAD which
achieves 0.91%.
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Advit Shuffle VLAD LR (ours)

MVIT PGD-v 0.93 0.98 0.93 0.99
Flick 0.34 0.65 0.87 0.89

X3D PGD-v 0.92 0.76 0.97 0.95
Flick 0.54 0.59 0.90 0.92

Average 0.68 0.74 0.91 0.93

Table 4: Comparison between defense methods in terms of detection AUC against attack methods
targeting video action recognition models.

Figure 6: Clean and adversarial samples for speech recognition with ground truth in box, recognized
text, word error rate (WER), and MSE of proposed LR.

6.2 LR FOR SPEECH RECOGNITION

To demonstrate LR’s wide applicability, in addition to computer vision, we also demonstrate its
performance against a speech recognition attack. As target model, we use Wav2vec (Schneider et al.,
2019) model, which is trained on LibriSpeech (Panayotov et al., 2015) dataset. Model is attacked
with FGSM (Goodfellow et al., 2014). LR achieves an average AUC of 0.99. Figure 6 illustrates
some attacked and clean samples from LibriSpeech, along with the MSE values of LR. As shown in
the figure, LR can even detect stealthy attacks which do not raise the word error rate (WER) much
while distorting the recognized speech. Remarkably, while the WER of the first adversarial example
in the figure is lower than the WER of the second clean example (0.4 vs. 0.5), the LR loss for this
stealthy adversarial sample is more than ten folds greater than that of the second clean example (1.6
vs 0.13).

7 CONCLUSION

Although there are effective defense methods for specific model-attack combinations, their success
do not generalize to all popular models and attacks. In this work, we filled this gap by introducing
Layer Regression (LR), the first universal method for detecting adversarial examples. In addition
to its universality, LR is much more lightweight and faster than the existing defense methods. By
analyzing the common objectives of attacks and the sequential layer-based nature of DNNs, we
proved that the impact of adversarial samples is more on the final layer than the first layer. Motivated
by this fact, LR trains a multi-layer perceptron (MLP) on clean samples to estimate the feature vector
using a combination of outputs from early layers. The estimation error of LR for adversarial samples
is typically much higher than the error for clean samples, which enables an average AUC of 0.982
and 0.970 on the ImageNet and CIFAR-100 datasets across 6 models and 7 attacks. With extensive
experiments, we showed that LR outperforms the existing defenses in image recognition by a wide
margin and also provides highly effective detection performance in distinct domains, namely video
action recognition and speech recognition. One caveat that needs to be studied in future works is the
possibility of training an attack model that can learn to fool the target model and LR together.
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8 REPRODUCIBILITY STATEMENT

We provide detailed information about our experimental settings and training methods in Section 4
and Appendix C. In section 3.1 we offer a step-by-step explanation of our detection algorithm, In
Appendix D, a PyTorch-like pseudo code is provided. Furthermore, at the time of paper submission,
we also anonymously provide one trained detector for a specific target model, along with the code
and instructions for reproducing the results for that model on ImageNet. All trained models, code,
and the project page will be shared publicly after the double-blind review period.
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A MORE RELATED WORKS FROM OTHER DOMAINS

Adversarial examples are studied on several other domains including video action recognition Pony
et al. (2021), traffic sign recognition Hsiao et al. (2024), object detection Zhao et al. (2019), video
anomaly detection Mumcu et al. (2022), and speech recognition. (Żelasko et al., 2021). For instance,
flickering attack (Flick) Pony et al. (2021) tries to attack action recognition models by changing the
RGB stream of the input videos. Hsiao et al. (2024) investigates the effects of natural light on traffic
signs and use it to generate adversarial examples.

Advit Xiao et al. (2019) is a detection method introduced for videos. It generates pseudo frames
using optical flow and evaluates the consistency between the outputs for original inputs and pseudo
frames to detect attacks. Another defense method, Shuffle Hwang et al. (2023), tries to increase the
robustness of action recognition models by randomly shuffling the input frames. Mumcu & Yilmaz
(2024b) proposed to train a lightweight VLM and use it for adversarial traffic sign detection. In
speech recognition, defenses like denoising or smoothing are studied against adversarial examples
(Żelasko et al., 2021).

B MORE DETAILS ON EXPERIMENTAL SETTINGS

From the validation set of ImageNet (Russakovsky et al., 2015), we used 40,000 images to train the
detectors and the remaining 10,000 for testing. For CIFAR-100 (Krizhevsky et al., 2009) has 100
classes and there are 500 training images and 100 testing images per class, resulting in a total of
50,000 training and 10,000 test images. During the tests, only the correctly classified images by the
target models were used. Total number for test images for each specific model and dataset is given
in Table 5.

Vgg19 ResNet50 Inceptionv3 ViT DeiT LeViT
ImageNet 4257 7701 7410 8457 7907 7639

CIFAR-100 7045 8315 8089 8544 8667 8359

Table 5: Number of test images used for each model.

VLAD (Mumcu & Yilmaz, 2024c) was originally proposed for video recognition attacks, with the
initial implementation designed for videos consisting of 30 frames. In the experiments conducted
in Section 4, we used the official VLAD implementation. However, instead of averaging the scores
across 30 frames, we applied it to a single image.

C SELECTED SUBSET VECTORS DURING LR TRAINING

A specific subset of layer vectors ar, as described in equation 7, is chosen for each target model
that is used during the experiments in Section 4. For the models, Pytorch Image Models (timm)
(Wightman, 2019) is used.

Then, For

1. Resnet50: Layers have the name conv2 were filtered, then among 15 conv2 layers, 5th, 8th
and 13th layers, for all ImageNet and CIFAR-100 tests

2. InceptionV3: Layers have the name conv were filtered, then among 94 conv layers, 15th,
25th and 35th layers, for all ImageNet and CIFAR-100 tests

3. Vgg19: Layers which have the name features were filtered, then among 37 features layers,
8th, 13th and 17th layers, for all ImageNet and CIFAR-100 tests

4. ViT: Layers which have the name attn.proj were filtered, then among 23 attn.proj layers,
8th, 13th and 17th layers, for all ImageNet and CIFAR-100 tests

5. DeiT: Layers which have the name attn.proj were filtered, then among 24 attn.proj layers,
8th, 13th and 17th layers for ImageNet tests, 5th, 6th, 7th layers for CIFAR-100 tests

6. LeViT: Layers which have the name attn.proj were filtered, then among 12 attn.proj layers,
3th, 5th and 7th layers for ImageNet tests, 5th, 6th, 7th layers for CIFAR-100 tests
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were used as ar subsets. Before concatenating the ar vectors, a specific slicing function for each
vector is applied as described in equation 8. The specific slicing functions for each corresponding
ar are detailed below:

1. Resnet50: [: 5, : 28, : 28], [: 50, : 7, : 7] and [: 10, : 14, : 14].
2. InceptionV3: [: 3, : 35, : 35], [3 :, 35 :, 35] and [: 3, : 17, : 17].
3. Vgg19: [: 5, : 25, : 25], [: 5, : 25, : 25] and [: 5, : 25, : 25].
4. ViT: [:, : 4 : 200], [:, : 4 : 200] and [:, : 4 :, 200].
5. DeiT: [:, : 4, : 200], [:, : 4, : 200] and [:, : 4, : 200].
6. LeViT [: 4, : 14 :, 14], [: 14, : 7, : 7] and [: 14, : 7, : 7].

The vector v is generated by concatenating the sliced ar vectors as described in equation 9. After
acquiring v for a model, an MLP with two hidden layers trained to minimize the MSE loss between
v and the feature vector an−1. Adam optimizer with 3 · 10−4 learning rate is used for the training.

D PSEUDO-CODE FOR LR

In section 3.1, we explain our detection algorithm in details. Here, in Algorithm 1, we also provide
a PyTorch Paszke et al. (2017) like pseudo code for LR.

Algorithm 1: Linear Regression (LR)

Input: input x, selected subset of vector layers ar, slicing functions s, DNN model g, feature vector
an−1, LR detector m, threshold h.

Output: detection result d.
1: DNN g takes the input x as g(x)
2: Each layer vector ar, process with corresponding slicing function in s
3: for ai in ar do
4: sr ← si(ai(x))
5: end for
6: v ← torch.cat(sr)
7: feed v into a detection model m, such that: m(v)
8: calculate the MSE loss between m(v) and an−1:
9: l←MSE(m(v), an−1)

10: if training then:
11: l.backward()
12: optimizer.step()
13: else
14: if l > h then
15: d← adversarial
16: else
17: d← not adversarial
18: end if
19: return d
20: end if
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E VISUALIZED ADVERSARIAL EXAMPLES

Figure 7: Adversarial examples generated with BIM Kurakin et al. (2018), PGD Madry et al. (2017),
PIF Gao et al. (2020), APGD Croce & Hein (2020), ANDA Fang et al. (2024), VMI and VNI Wang
& He (2021) by attacking target model ResNet50 He et al. (2015). First column represents the clean
samples.

Figure 8: Visualization perturbations generated with BIM Kurakin et al. (2018), PGD Madry et al.
(2017), PIF Gao et al. (2020), APGD Croce & Hein (2020), ANDA Fang et al. (2024), VMI and
VNI Wang & He (2021) by attacking target model ResNet50 He et al. (2015). First row shows the
clean sample and corresponding adversairal example for each attack. Second row demonstrates the
noises added to the clean sample by each attack.

.
Figure 9: Effects of different attack strength values on a sample. The attack strength parameter ϵ is
increased in the direction of the arrow. In the first sample, there is no attack. Samples are generated
with adversarial attack PGD Madry et al. (2017) and target model ResNet50 He et al. (2015)

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

FGSM PGD Patch Light Average
LR 0.97 0.99 0.95 0.94 0.96

Table 6: Detection AUC of LR against four attacks targeting ResNet50 in the traffic sign recognition
task.

F ADDITIONAL ABLATION STUDY: LR IN TRAFFIC SIGN DETECTION

As an additional experiment, we implement LR against attacks that target traffic sign recognition.
In this study, ResNet50 is used as target model and attacked with FGSM(Goodfellow et al., 2014),
PGD(Madry et al., 2017), Light(Hsiao et al., 2024) and Patch (Ye et al., 2021) attacks. In Table 6,
we show that LR achieves an average AUC score of 96%, which further proves the applicability and
success of our detection method across different domains.

G DETAILS OF ABLATION STUDY & OTHER DOMAIN EXPERIMENTS

For Section 6.1, the experimental settings detailed in Mumcu & Yilmaz (2024c) is followed: ”A
subset of Kinetics-400 Kay et al. (2017) is randomly selected for each target model from the videos
that are correctly classified by the respective model. For each subset, the total number of the videos
are between 7700 and 8000 and each class has at least 3, at most 20 instances. An adversarial version
of the remaining 20% portion is generated with each adversarial attack, in a way that they cannot be
correctly classified by the models. Then the adversarial set is used for evaluation along with the clean
versions.” Similarly to main experiments, we trained an MLP with 2 hidden layers with the same
training hyper-parameters described in Appendix C. For MVIT (Fan et al., 2021) and CSN (Tran
et al., 2019) models, layers which have the name conv a and attn.proj were filtered respectively.
While for both of the models 3th 5th and 7th layers used to form subset ar, for CSN (Tran et al.,
2019) additional layers 4th, 6th and 8th were also used. [:, : 4, : 200] and [:, : 4, : 3, : 7, : 7] were
used as slicing functions for MVIT (Fan et al., 2021) and CSN (Tran et al., 2019) respectively.

For Section 6.2, an MLP with 2 hidden layers with the same training hyper-parameters described
in Appendix C is trained. For Wav2vec Schneider et al. (2019) model, layers which have the name
attention.dropout were filtered, and 3th layer used to form ar. As slicing function [:, : 4, : 20, : 10]
is selected. While 500 sound clips from LibriSpeech dataset used for experiments, 2000 sound clips
saved for training.

For Appendix F, we use the experimental settings as demonstrated in Mumcu & Yilmaz (2024b) and
use the GTSRB Stallkamp et al. (2012) dataset which includes 43 classes of traffic signs, split into
39,209 176 training images and 12,630 test images. LR detector is trained with the same settings
that are specified for Resnet50 in Appendix C.
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