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Abstract

The joint progress of artificial neural networks (ANNs) and domain specific hardware
accelerators such as GPUs and TPUs took over many domains of machine learning
research. This development is accompanied by a rapid growth of the required com-
putational demands for larger models and more data. Concurrently, emerging properties
of foundation models such as in-context learning drive new opportunities for machine
learning applications. However, the computational cost of such applications is a limiting
factor of the technology in data centers, and more importantly in mobile devices and
edge systems. To mediate the energy footprint and non-trivial latency of contemporary
systems, neuromorphic computing systems deeply integrate computational principles
of neurobiological systems by leveraging low-power analog and digital technologies.
SpiNNaker2 is a digital neuromorphic chip developed for scalable machine learning.
The event-based and asynchronous design of SpiNNaker2 allows the composition of
large-scale systems involving thousands of chips. This work features the operating
principles of SpiNNaker2 systems, outlining the prototype of novel machine learning
applications. These applications range from ANNs over bio-inspired spiking neural
networks to generalized event-based neural networks. With the successful development
and deployment of SpiNNaker2, we aim to facilitate the advancement of event-based
and asynchronous algorithms for future generations of machine learning systems.

1 Introduction

Progress in machine learning and the availability of computational resources are tightly coupled. Especially,
the breakthrough of deep learning can be attributed to the successful acceleration of deep neural network
(DNN) training on large-scale data with graphics processing units (GPUs) [Krizhevsky et al., 2012]. Deep
learning models continue to improve their task performance with the number of floating-point operations
spent on training on a wide variety of tasks. Therefore, deep learning models have been scaled up at unprece-
dented speed up to the limit of compute availability [Sevilla et al., 2022, Thompson et al., 2022]. How far
can we take the joint scaling of model parameters and hardware accelerators? Since the 90s, the peak hard-
ware floating-point operations per second (FLOPS) grew by an average rate of 60000 per 20 years. However,
the DRAM bandwidth and interconnect bandwidth only grew by an average rate of 100 and 30 per 20 years,
respectively Gholami et al. [2021]. This development changes the requirements on algorithms and accelera-
tors, with the focus shifting to a reduction of the overall communication in future machine learning systems.

Considering the highly scalable computational substrate of biological nervous systems, we observe that
communication in the brain is a) locally dense but globally very sparse, b) temporally very sparse via
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binary spike communication, and c) asynchronous. The field of neuromorphic computing develops
algorithms and accelerators that leverage these principles to devise efficient and scalable systems. The core
algorithmic concept to deliver these goals are spiking neural networks (SNNs). Although, many works
promise high savings in energy consumption, achieving state-of-the-art performance on machine learning
benchmarks proves to be difficult with SNNs [Tavanaei et al., 2019, Taherkhani et al., 2020, Yamazaki
et al., 2022]. Recent works aim to bridge the performance gap between SNNs and DNNs. In particular,
Woźniak et al. [2020] and Subramoney et al. [2023] combine deep neural network architectures with
discontinuous step functions and state resets to avoid communication in their networks. We are in favor
of broader research efforts on communication avoiding learning systems.

While accelerators propel deep learning research forward, this research in turn channels unprecedented
investments into the development of accelerators tailored to the needs of the deep learning community. Such
interplay between deep learning and accelerators creates a path dependency: The performance of dense
DNNs drives investments in dense accelerators, which subsequently boosts the performance of dense DNNs,
leading to further investment in these accelerators [Barham and Isard, 2019, Hooker, 2021]. This dynamic
prompts the question of whether alternative paths exist. Are there fundamentally different combinations
of algorithms and hardware that yield more efficient learning machines, assuming they benefit from the
same technological advancements that dense DNNs and GPUs have experienced over the past decades?

To address the previous challenges, we present SpiNNaker2, a versatile accelerator for event-based and
asynchronous machine learning (ML). SpiNNaker2 is a highly parallel system composed of asynchronously
operating processing elements (PEs) interconnected by an efficient network on chip [Höppner et al., 2022].
Model designers working with SpiNNaker2 are neither limited by highly structured thread execution (com-
pared to GPUs), constrained by procedural architectures lacking event-based awareness (e.g., pure DNN
platforms [Prabhakar et al., 2022, Ignjatović et al., 2022]) nor do they have to restrict themselves to specific
neuron implementations (compared to pure neuromorphic systems [Davies et al., 2018, Pehle et al., 2022]).
More than 35k SpiNNaker2 chips were manufactured and are assembled into the world’s largest brain-like
supercomputer with about 5 million processing elements, which will be remotely available to interested
researchers around the world. With this workshop contribution, we aim to accelerate the exploration of
event-based and synchronous machine learning models as an alternative path to GPU-centric models.

2 The SpiNNaker2 System

SpiNNaker2 is a massively parallel compute system that can be scaled up from one standalone chip with 152
ARM Cortex M4F cores (e.g., complex edge systems as in Fig. 1) to millions of cores (e.g., supercomputer
levels as in Fig. 1). Compared to conventional multiprocessing systems, there is no operating system that
dynamically schedules compute tasks to cores with shared virtual memory. Instead, each core runs a small
pre-compiled program on 128kB SRAM that executes simple tasks upon reception of events. Technically,
the event-based processing is handled through ARM’s interrupt controller that starts, pauses and resumes
user functions depending on interrupts (IRQs), while utilizing a core sleep mode to save energy.

There are different means on how applications on different cores can communicate with each other. Within
a SpiNNaker2 chip, the Network-on-Chip (NoC) offers high-speed point-to-point communication between
cores and access to the off-chip DRAM. DMA (direct memory access) units in each core and the DRAM
interfaces enable bulk transfer without stopping the cores. For scalable, system-wide communication, each
chip has a dedicated SpiNNaker2 packet router, containing configurable routing tables, and 6 links to
neighbour chips. On SpiNNaker2, different packet types with up to 128-bit payload allow the efficient
communication between PEs, chips and boards. As an example, in SNN simulation multi-cast packets
are used for the transmission of spikes where a 32-bit key represents the ID of the spiking neuron.

As the SpiNNaker2 system aims to speed up SNNs, DNNs or hybrid approaches, each core provides selected
operation acceleration. These include exponential, logarithm, true and pseudo random number generation,
as well as energy-efficient low-precision 8-bit/16-bit integer matrix multiplication and 2-dimensional
convolution. The event-based nature of the system encourages autonomous and asynchronous execution
between cores. We leverage this by dynamically adapting clock frequency and supply voltage of individual
cores to further save energy. This power switching can be automated by being coupled to the application
[Höppner et al., 2019, 2022, 2017, Yan, 2022]. Each chip has 2GB of DRAM to form a node and support
memory-intensive DNN execution. PCBs with 48 of those nodes are used to build the 5-million core large-
scale system. The chip connectivity in those boards rely on a hexagonal grid, assembling a torus-shaped
network at a system level, which reduces the number of node hops compared to mesh interconnects.
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Figure 1: Overview of SpiNNaker2 architecture for the ”SpiNNcloud” cloud system and edge systems.

The main advantages of the SpiNNaker2-based systems then include its event-based nature, its native
support for hybrid models beyond pure DNNs or SNNs (e.g., including symbolic models [Hammer, 2022]),
and its high-speed infrastructure to scale toward arbitrary large systems without losing real-time capabilities.
However, programming and operating those massively parallel systems is challenging. Compute problems
such as SNNs, DNNs, graphical models, or sensor processing pipelines require small task partitioning,
mapping, setting up event-based communication, data loading and result readings. In the following section
we will show operating examples on single-chip SpiNNaker2 systems. Larger applications are planned
via the operating principle from SpiNNaker1 ([Brown et al., 2014, Rowley et al., 2019]).

3 Applications

The first generation SpiNNaker system [Painkras et al., 2013, Furber et al., 2014] is used in 23 countries
by more than 60 research groups ranging from neuromorphic computing to neuroscience [spi, 2023,
Furber and Bogdan, 2020]. The SpiNNaker2 project expands the scope of algorithmic research to cover
models from neuromorphic computing up to conventional machine learning models. In the following
section, we present how ANNs and SNNs are mapped to SpiNNaker2, concluding with our initial work
on event-based ANNs for both inference and training. Such hybrid approach takes the best of both worlds:
The numerical simplicity and scalability of ANNs, combined with the ability of biology to reduce data
flow and computation to the minimum necessary for a given task.

3.1 Artificial Neural Networks

A major use case of the SpiNNaker2 platform is the energy-efficient training and inference of ANNs,
for which two approaches will be presented in sections 3.1.1 and 3.1.2.

3.1.1 Scheduling Operations for ANNs

Considering the large dimensions of current ANN architectures, the mapping of ANN layers onto PEs
with limited storage and local accelerators becomes a challenge. Therefore, a scheduling approach for
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Figure 2: Control (red) and Data (green) flow of the graph execution with a host, scheduler and worker PEs.

SpiNNaker2 has been developed to distribute and efficiently compute layers across a multitude of PEs.
The current scheduling approach (see Fig. 2) defines a single scheduler that coordinates the state transitions
of workers using a finite state machine (FSM). After an initial interrupt request (IRQ) by the host, the
asynchronous schedule execution is completely orchestrated on-chip by the scheduler PE to avoid slow chip-
to-host communication via Ethernet. The schedule is executed statically (i.e. assignment of tasks to PEs
and task execution sequence are pre-defined a-priori by host). The data exchange is organized decentrally
and locally between PEs to avoid communication bottlenecks via the scheduler, while the control flow of
status words is organized centralistically and hierarchically from the scheduler to the workers (see Fig. 2).

As an example, a distributed matrix-matrix multiplication requires the tiling of each input matrix into
submatrices, the calculation of partial results by multiplication of the respective submatrices, the transfer
of these partial results, and the accumulation of the corresponding partial results. The tiled input matrices
will be transferred from the host to the workers. After an initial IRQ by the scheduler, the workers will
start executing the multiplication of the submatrices. Having finished, each worker will write its updated
flags to the scheduler’s SRAM. In a loop, the scheduler is checking whether the state of any worker PE
changed, and if positive, perform a state update. If a worker finished the matrix multiplication, it will
either terminate, or fetch and locally accumulate the partial results of another worker within a pre-defined
accumulation group. After the status update, the scheduler will send an IRQ towards the accumulating
worker to initiate the fetching from another worker’s SRAM. Once the updated operation flags are sent
to the scheduler, the FSM update loop registers a flag change, updating the internal state of the specific
worker, and triggering an IRQ combined with a flag update to the worker.

Future scheduling approaches will tailor full state-of-the-art ANNs such as large language models (LLMs)
into the supercomputer fabric to reduce power consumption via the energy-proportional SpiNNaker2
features (e.g., event-based). Simulation frameworks such as Kelber et al. [2020] will be extended, including
other scheduler-worker interactions (e.g., subgroup scheduling), as well as dynamic scheduling strategies.

3.1.2 Sparse-to-Sparse Training: Deep Rewiring

The sampling behavior observed in biology Kappel et al. [2018], Yan et al. [2019] demonstrates
memory-efficient learning. Analogously, a learning algorithm known as deep rewiring maintains a
consistent level of sparsity by dynamically disconnecting insignificant synapses and randomly establishing
connections elsewhere throughout the entire training process. This approach facilitates learning in
memory-constrained environments, particularly on edge devices.

The application of deep rewiring to SpiNNaker2 prototype chip Liu et al. [2018] showcases a highly sparse
stochastic gradient descent (SGD) training from scratch. Remarkably, it achieves a 96.6% accuracy on the
MNIST dataset for handwritten digits with 3 dense layers involving 410 neurons, while operating within
a tight memory constraint of 64 kB and maintaining a connectivity of 1.3%. Time profiling reveals that the
rewiring step dominates the computation time. This impact is mitigated by adjusting the rewiring frequency
across iterations and leveraging the exponential accelerator and random number generator integrated
in SpiNNaker2. The training time of the 4-core deep rewiring on SpiNNaker2 is on par with that of a
standard X86 CPU (Intel i5-6500), while the energy consumption is substantially reduced by two orders of
magnitude. These findings underscore the potential of incorporating bio-inspired learning algorithms, such
as deep rewiring, into SpiNNaker2, signaling a paradigm shift towards a more energy-efficient computation.
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3.2 Spiking Neural Networks

Despite SpiNNaker2 innovating with event-based ANNs, its performance in bio-inspired SNNs remains
being unique as it operates at scales that are not reachable by other neuromorphic systems. SNNs have the
potential to be more efficient than conventional ANNs because they mimic the brain mechanism of sparse
communication between neurons and only transmit spikes when necessary, which greatly reduces the
energy footprint. In general, a series of transformation steps, such as parsing and preprocessing SNN model
information, are required to build the bridge between the trained SNN model and inference execution
on SpiNNaker2. The transformation steps start from the specifically trained SNN model (see section 3.3)
or from an ANN-converted SNN model (e.g. using SNN toolbox Rueckauer et al. [2017]). Then the SNN
model is interpreted into an application graph, presenting the spike flow path among neuron populations.
Each population is further split into one or several sub-populations to fit the SRAM resource of each PE.
All the sub-populations and the corresponding projections form a machine graph. The connection relations
of these sub-populations contribute to the generation of a routing table. Finally, these transformed results
are presented with c files to be loaded on SpiNNaker2 along with an input spike train before execution.
This mapping framework enables large-scale SNN simulation on multiple PEs of SpiNNaker2.

During runtime, the event-based synapse processing, time-triggered neuron state update and spike-based
communication are applied to SNN execution. An event is a spike from a pre-synaptic neuron of another
PE, and this spike triggers the synapses in the current PE to start processing it. The neuron states of the
current PE are updated by programmable neuron models at a predefined regular time interval. Then the
generated spikes are sent to the PEs with the post-synaptic neurons. This process has been showcased with
synfire chain model, bursting network, an asynchronous irregular firing network from Höppner et al. [2019]
and radar gesture recognition demonstration from Huang et al. [2022b] Huang et al. [2022a] as examples.
Besides, such process can be accelerated by exploiting the MAC array on SpiNNaker2, with the spatial-
temporal performance improved to some extent Huang et al. [2023b] Huang et al. [2023a]. Very recently,
the neuromorphic intermediate representation (NIR, Pedersen et al. [2023]) was introduced offering an
exchange format for SNN. Currently NIR is supported by 7 neuromorphic simulators and 4 hardware
platforms. It allows to train deep SNN in frameworks like snnTorch Eshraghian et al. [2023] or Norse
[Pehle and Pedersen, 2021] and deploy them on SpiNNaker2 using py-spinnaker2 Vogginger et al. [2023].

3.3 Event-Based Artificial Neural Networks

3.3.1 Event-Based Gated Recurrent Unit

Subramoney et al. [2023] propose the Event-based Gated Recurrent Unit (EGRU) to combine the energy
efficiency of SNNs and the performance of ANNs. Therefore, EGRU employs a bio-inspired activity
sparsity mechanism that allows the units to emit discrete and sparse-in-time events for communication.
Since events are sent sparingly, this leads to substantial computational savings during training and inference.
To validate these claims, a 2 layer EGRU model is implemented and distributed it over 128 PEs on a single
SpiNNaker2 chip. The model is trained on a GPU similar to Subramoney et al. [2023] on the DVS gesture
recognition task [Amir et al.] and the weights are transferred to the SpiNNaker2 PE memory. A CNN head
is used to preprocess the dataset that is stored on the DRAM to be loaded onto local memory for every
sample. Fig. 3 shows the energy-per-timestep measurements, normalized over 18 samples of DVS gestures.
The comparison is made with inference on 2 GPUs (Nvidia A100 & GTX1070Ti), noticing a lower energy
consumption on SpiNNaker2 compared to GPU inference. SpiNNaker2 displays a remarkable performance
at batch-one or real-time conditions, but its energy remains constant for larger batches. In terms of EGRU
training, Subramoney et al. [2023] also shows an event-based learning rule similar to EventProp in the
limit of continuous time. The cell state equation of the GRU can be viewed as the Euler discretization of a
continuous time dynamical system. Based on the theory of adjoint sensitivity analysis in EventProp (see
section 3.3.2), Subramoney et al. [2023] derives the adjoint equations for a GRU system under discrete state
transitions triggered by input events. Such a system is similarly suited for a SpiNNaker2 implementation.

3.3.2 EventProp: Event-Based Backpropagation

EventProp Wunderlich and Pehle [2021] is a learning algorithm for event-based backpropagation that
computes exact gradients in SNNs while retaining the temporal sparsity of spike-based communication
during the backward pass. In a proof-of-concept demonstration, we show that SpiNNaker2 can implement
EventProp for multi-layer feed-forward SNNs. Every SpiNNaker2 core implements a clock-driven
simulation of a layer of leaky integrate-and-fire neurons. During the forward pass, spike events are

5



Figure 3: Energy per timestep for EGRU. Figure 4: SRNN used in the e-prop algorithm.

distributed across cores using multi-cast packets routed by the network-on-chip. During the backward
pass, spike events are distributed in reverse and carry error signals contained in the 128-bit payload of
the multi-cast packets. After the backward pass, a designated control core collects gradients from cores and
computes weight updates using the Adam optimizer Kingma and Ba [2015]. This allows for batch-parallel
processing by accumulating gradients from different copies of the same layer, computed on different cores.
The viability of this approach is demonstrated with a time-to-first-spike loss function, a single hidden
layer network, and by achieving latency-encoded parallel training. The results show that SpiNNaker2
supports event-based backpropagation through multi-cast event routing, along with batch execution.

3.3.3 E-prop: Biologically-Inspired Learning

Eligibility propagation (e-prop), a biologically-inspired online learning rule for Spiking Recurrent Neural
Networks (SRNNs), serves as an alternative to Back Propagation Through Time (BPTT) [Bellec et al., 2020].
The e-prop gradient at any given time step is independent of subsequent step information, enhancing memory
efficiency and suitability for online learning. As validation, a 3-layer neural network (Fig. 4) classifying
the 12-category Google Speech Command dataset was implemented in Rostami et al. [2022]. While BPTT
required 859KB of memory, e-prop used only 682KB (20% less). For parallelization, synapses were evenly
distributed across the PEs, allowing for local gradient computation at each time step and requiring only
the spike transmission. Nevertheless, in the last time step, the output error is broadcast to other PEs for
weight updating. The results show that SpiNNaker2 enables efficient spike transmission in algorithms such
as e-prop, along with high test accuracies (i.e., 91.12%) under real-time (batch-one) conditions.

4 Discussion and Outlook

The proposed SpiNNaker2 system enables large-scale simulation of event-based and asynchronous machine
learning systems, two essential properties of scalable computational systems. The system deviates from
the major direction focused by the deep learning community with the perspective to allow gains in energy
efficiency and latency at scale. Turning from mostly dense and synchronous processing to event-based
and asynchronous processing sets significantly different requirements for the development of learning
algorithms. Despite the programming challenges, SpiNNaker2 paves the path for future fully event-based
supercomputers with a neglectable Amdahl limit and an energy-proportional operation beyond DNNs.

Among the projects described in this paper, EventProp and the event-based learning rule for EGRU demon-
strate error propagation in event-based and potentially asynchronous neural networks. E-prop shows the
utilization of locally restricted error signals to save communication and hence energy during training. In ad-
dition, sparse-to-sparse training in the Deep Rewiring approach shows how to improve further the efficiency.

With the aim of driving research in this algorithmic front, the 5-million core system in Dresden, Germany,
will grant access to researchers keen on exploring these challenges with us. Such supercomputer finds
applications in energy-efficient LLMs by leveraging for example event-based recurrent structures in
the recent resurgence of RNNs against transformers at language modeling tasks [Dao et al., 2022, Peng
et al., 2023, Sun et al., 2023]. Furthermore, the applications also include but are not limited to the new
development of event-based ML, the large-scale deployment of hybrid models such as NARS [Hammer,
2022], complex brain simulation, the utilization of the massive parallelism in probabilistic computing
and distributed drug discovery. Systems with arbitrary sizes are also commercially available in [Spi, 2023].
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Efficient recurrent architectures through activity sparsity and sparse back-propagation through
time. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=lJdOlWg8td.

Yutao Sun, Li Dong, Shaohan Huang, Shuming Ma, Yuqing Xia, Jilong Xue, Jianyong Wang, and Furu
Wei. Retentive network: A successor to transformer for large language models, 2023.

Aboozar Taherkhani, Ammar Belatreche, Yuhua Li, Georgina Cosma, Liam P. Maguire, and T.M.
McGinnity. A review of learning in biologically plausible spiking neural networks. Neural Networks,
122:253–272, 2020. ISSN 0893-6080. doi: https://doi.org/10.1016/j.neunet.2019.09.036. URL
https://www.sciencedirect.com/science/article/pii/S0893608019303181.

Amirhossein Tavanaei, Masoud Ghodrati, Saeed Reza Kheradpisheh, Timothée Masquelier,
and Anthony Maida. Deep learning in spiking neural networks. Neural Networks, 111:
47–63, 2019. ISSN 0893-6080. doi: https://doi.org/10.1016/j.neunet.2018.12.002. URL
https://www.sciencedirect.com/science/article/pii/S0893608018303332.

9

https://doi.org/10.5281/zenodo.4422025
https://www.frontiersin.org/articles/10.3389/fnins.2022.1018006
https://www.frontiersin.org/articles/10.3389/fnins.2017.00682
https://openreview.net/forum?id=lJdOlWg8td
https://www.sciencedirect.com/science/article/pii/S0893608019303181
https://www.sciencedirect.com/science/article/pii/S0893608018303332


Neil C. Thompson, Kristjan Greenewald, Keeheon Lee, and Gabriel F. Manso. The computational limits
of deep learning, 2022.

Bernhard Vogginger, Florian Kelber, Matthias Jobst, Yexin Yan, Pascal Gerhards, Martin Weih, and Mah-
moud Akl. py-spinnaker2, November 2023. URL https://doi.org/10.5281/zenodo.10202110.
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