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Abstract

Hate speech detection on Chinese social me-
dia platforms poses distinct challenges, partic-
ularly due to the widespread use of cloaking
techniques designed to evade conventional text-
based detection systems. Although large lan-
guage models (LLMs) have recently improved
hate speech detection capabilities, the majority
of existing work has concentrated on English-
language datasets, with limited attention given
to multimodal strategies in the Chinese con-
text. In this study, we propose MMBERT, a
novel BERT-based multimodal framework that
integrates textual, speech, and visual modal-
ities through a Mixture-of-Experts (MoE) ar-
chitecture. To address the instability associ-
ated with directly integrating MoE into BERT-
based models, we develop a progressive three-
stage training paradigm. MMBERT incorpo-
rates modality-specific experts, a shared self-
attention mechanism, and a router-based ex-
pert allocation strategy to enhance robustness
against adversarial perturbations. Empirical
evaluations on multiple Chinese hate speech
datasets demonstrate that MMBERT substan-
tially outperforms both fine-tuned BERT-based
encoder models and prompt-based in-context
learning with LLMs.

Disclaimer: This paper includes descriptions and
analyses of violent and discriminatory language,
which may be offensive for some readers.

1 Introduction

Hate speech poses a persistent threat to online com-
munities, exacerbated by the anonymity and scale
of digital platforms (Dixon et al., 2018). While au-
tomated hate speech detection has advanced signif-
icantly in recent years, most efforts remain concen-
trated on English, leaving other major languages
like Chinese relatively under-resourced and under-
protected (Davidson et al., 2017, 2019). Some
researchers have attempted to leverage LLMs for
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Figure 1: Illustration of MMBERT model structure. Com-
pared to traditional BERT-based model, it leverages the MoE
architecture to scale and effectively handle multiple modali-
ties. A three-stage progressive training strategy is designed to
ensure stable training and prevent performance degradation.

Chinese hate speech detection (Chao et al., 2024;
Sun et al., 2021; Zhou et al., 2023). However, on
Chinese social media platforms, many hate speech
disseminators employ various cloaking perturba-
tions to escape detection, making it challenging
for existing models to identify such expressions
accurately (Xiao et al., 2024b). These subtle ma-
nipulations exploit the structural and phonological
properties of the Chinese language, making detec-
tion especially difficult for text-only models.

While LLMs have shown promise in content
moderation, BERT-based architectures have con-
sistently outperformed decoder-only LLMs in hate
speech detection tasks, owing to their deep bidi-
rectional encoding and strong capacity for fine-
grained semantic understanding (Benayas et al.,
2024; Ghorbanpour et al., 2025). Their superior
performance can be attributed to the ability to gen-
erate fine-grained contextualized representations,
which are especially well-suited for classification
tasks that require discerning subtle semantic dis-



tinctions and interpreting nuanced language—both
of which are common in adversarial or implicitly
encoded hate speech (Liu et al., 2024). The archi-
tecture optimized for discriminative tasks enables
more efficient and accurate detection of toxic con-
tent across various hate speech detection bench-
marks (Deng et al., 2022; Xiao et al., 2024b).

To address the challenge of detecting cloaked
hate speech in Chinese, we propose MMBERT, a
novel multimodal BERT-based architecture that in-
corporates visual and speech modalities alongside
text, depicted in Figure 1. To enhance scalability
and specialization, MMBERT integrates the MoE
mechanism, enabling dynamic routing of repre-
sentations to modality-specific experts. However,
naively inserting MoE into BERT leads to severe
training instability and degraded performance, par-
ticularly in the multimodal setting (Zhang et al.,
2021). To overcome this, we introduce a progres-
sive three-stage training strategy. In the first stage,
we pretrain modality aligners using synthetic mul-
timodal data to map visual and auditory inputs into
the BERT language space. In the second stage,
we train modality-specific experts and continue re-
fining aligners using task-specific supervision. In
the final stage, we jointly fine-tune the full MoE-
augmented architecture on real multimodal hate
speech data. This phased design ensures stable
optimization and effective cross-modal integration.

To overcome this, we introduce a progressive
three-stage training strategy. In the first stage, we
pretrain modality aligners using synthetic multi-
modal data to map visual and auditory inputs into
the BERT language space. In the second stage,
we train modality-specific experts and continue re-
fining aligners using task-specific supervision. In
the final stage, we jointly fine-tune the full MoE-
augmented architecture on real multimodal hate
speech data. This phased design ensures stable
optimization and effective cross-modal integration.

Our experiments across three benchmark Chi-
nese hate speech datasets demonstrate that MM-
BERT achieves state-of-the-art performance, signif-
icantly outperforming both fine-tuned BERT-based
baselines and LLMs with in-context learning. In
particular, MMBERT shows superior robustness in
detecting cloaked adversarial content, highlighting
the value of multimodal modeling and progressive
training for Chinese hate speech detection.

We summarize the main contribution of this pa-
per as follows:

* We propose MMBERT, a novel multimodal
BERT-based framework for Chinese hate
speech detection that integrates textual, visual,
and speech modalities through a Mixture-of-
Experts (MoE) architecture, enhancing robust-
ness against cloaking-based adversarial per-
turbations.

* We design a progressive three-stage train-
ing strategy that first aligns multimodal in-
puts to the BERT language space, then special-
izes modality-specific experts, and finally fine-
tunes the complete model. This approach en-
sures stable training and effective cross-modal
representation learning.

* We conduct extensive experiments on three
benchmark datasets, comparing MMBERT
against fine-tuned BERT-based baselines
and LLMs with in-context learning. Re-
sults demonstrate that MMBERT consistently
achieves superior performance, particularly in
detecting cloaking perturbed hate speech.

2 Related Work

2.1 Cloaking Perturbations in Chinese Hate
Speech

Cloaking perturbations in Chinese online discourse
represent a growing challenge for automated hate
speech detection systems, as users employ various
linguistic strategies to obfuscate offensive content
while preserving its intended meaning (Xiao et al.,
2024b,a). These perturbations can be mainly cate-
gorized into several types:

Deformation. As Chinese characters are logo-
graphic, their meanings can be altered by decom-
posing or reconfiguring individual components, of-
ten imparting specific emotional or ideological con-
notations (Lan, 2006). For example, the character
"BX" (meaning "silence") comprises the radicals
"H" (meaning "black") and "R" (meaning "dog"),
which in certain contexts have been used to convey
derogatory implications toward the Black commu-
nity.

Homophonic Substitution. Similar to En-
glish, words with similar pronunciations are fre-
quently substituted to generate alternative seman-
tics (Tien et al., 2021). For instance, Chinese inter-
net users often replace the character "J#" (meaning
"Manchu") with "#5" (meaning "barbarian"), as
both share a phonetic resemblance to "man".



Abbreviation. The contraction of sensitive
terms enhances conciseness while maintaining se-
mantic clarity (Lan, 2006). A notable example is
"tx]," where each letter corresponds to the pinyin
initials of "[F]", "P4", and "7%", collectively denot-
ing "homosexuality."

Code-Mixing. To intensify expressive tone
and circumvent automated content moderation,
Chinese social media users frequently incorpo-
rate non-Chinese linguistic elements—such as En-
glish vocabulary, pinyin transliterations, and emo-
jis—into online discourse (Li et al., 2020). These
code-mixed constructs not only obscure seman-
tic intent from detection systems but also rein-
force the emotive or derogatory force of the mes-
sage. For instance, the term "niF}" (meaning "ni
brother") phonetically approximates the English
racial slur "n*gger". Similarly, in the phrase W%
("HMf"), the addition of an emoji amplifies the pe-
jorative undertone, characterizing individuals per-
ceived as excessively submissive in relationship
contexts—analogous to the English term "simp".

These perturbations exploit the unique structural
and phonological characteristics of the Chinese
language to conceal offensive intent (Lu et al.,
2023). For instance, visually altering character rad-
icals can introduce ideological connotations, while
homophones and abbreviations obscure meanings
through phonetic similarity or reduction. Code-
mixing with foreign words, pinyin, or emojis fur-
ther complicates semantic interpretation. Text-only
models often fail to capture these manipulations
due to their limited capacity to disambiguate subtle
visual and phonological cues (Xiao et al., 2024a;
Raza Ur Rehman et al., 2025).

2.2 Enhancing Chinese Language Modeling
through Multimodal Pretraining

Text-only approaches in Chinese language mod-
eling often face limitations in capturing the full
linguistic complexity of the language, particularly
with respect to character homographs, tonal am-
biguity, and the lack of explicit word boundaries.
These challenges hinder the model’s ability to ac-
curately interpret semantic and phonetic nuances
inherent in Chinese.

To address these limitations, several studies
have explored the integration of additional modali-
ties, such as visual and phonetic information, into
the pretraining process. For instance, Chinese-
BERT (Sun et al., 2021) integrates both glyph and
pinyin embeddings, enriching the representation

of Chinese characters by capturing visual features
through multiple font variations and phonetic infor-
mation to resolve the heteronym phenomenon. This
dual-embedding approach has shown significant
improvements in various Chinese natural language
processing tasks, such as named entity recogni-
tion and sentiment analysis. Similarly, models like
ERNIE-M (Ouyang et al., 2020) and GlyphBERT
(Li et al., 2021) have demonstrated the benefits of
incorporating external modalities, such as entity
knowledge and visual cues, to enhance language
understanding.

However, existing multimodal approaches pre-
dominantly rely on embedding-level fusion of het-
erogeneous input modalities within a fixed BERT
encoder architecture. While such integration en-
hances input representations, the processing and in-
teraction of multimodal information remain largely
static and inflexible. Specifically, the fixed fusion
mechanism in standard BERT layers may limit the
model’s capacity to dynamically adapt to context-
dependent linguistic challenges, such as homo-
graphs and tonal ambiguity in Chinese. This rigid-
ity restricts the model’s ability to effectively lever-
age the complementary strengths of each modality
in a nuanced and input-sensitive manner.

2.3 Scaling Multimodal Language Models
with MoE Architectures

Recent advancements in large MLLMs have in-
creasingly explored the use of MoE (Eigen et al.,
2013) architectures to enhance scalability, effi-
ciency, and specialization across modalities. Early
generations of MLLMs, such as Flamingo (Alayrac
et al., 2022) and GPT-4V (Yang et al., 2023), are
grounded in dense architectural paradigms that
encounter scalability limitations as data volume
and modality complexity increase. To address
this, MoE-based frameworks such as CuMo (Li
et al., 2024) and Uni-MoE (Li et al., 2025) in-
troduce sparsely-activated expert modules, allow-
ing modality-specific processing while maintain-
ing low inference overhead. CL-MoE (Huai et al.,
2025) further extends MoE for continual learning
in vision-language tasks, employing dual routers to
balance generalization and retention. Furthermore,
MoExtend (Zhong et al., 2024) introduces modular
extension mechanisms that facilitate the adaptation
of pretrained models to new tasks and modalities,
thereby significantly reducing the computational
cost associated with full model retraining.

These approaches illustrate that MoE architec-



tures not only enhance computational efficiency but
also offer increased flexibility in handling hetero-
geneous multimodal inputs, thereby establishing
MOoE as a compelling framework for scaling BERT-
based models to complex multimodal tasks.

3 Methodology

3.1 Overview

As shown in Figure 1, the MMBERT framework
consists of a text tokenizer, word embedding layer,
vision and speech encoders, modality aligners,
MoE-scaled BERT blocks, and a classification
head. Modality aligners project non-text inputs
into a shared linguistic space, enabling effective
multimodal fusion. The MoE layers are integrated
into the BERT encoder to dynamically route repre-
sentations across modalities, improving detection
accuracy. MMBERT is trained in three sequential
stages: Modality aligner training, modality-specific
expert training, and MMBERT tuning using a di-
verse collection of multimodal Chinese hate speech
data.. The detailed architectural and training set-
tings are provided in Appendix A

3.2 MMBERT Architecutre

Multimodal data generation. To synthesize the vi-
sual and audio data of corresponding text input, we
employ the Kokoro text-to-speech model (Kaneko
et al., 2022) to generate speech data corresponding
to the input text. For the visual modality, we render
a sequence of word-level font images representing
each token in the text, thereby producing a visual
analogue of the input.

Aligners. To enable the effective transformation
of heterogeneous modality inputs into a unified lin-
guistic representation space, MMBERT leverages
the pretrained visual-language framework LLaVA
(Liu et al., 2023) and the speech-language frame-
work SpeechT5 (Ao et al., 2021). Specifically, for
visual encoding, we adopt the CLIP-base-Chinese
model (Yang et al., 2022), followed by a linear pro-
jection layer that maps the extracted visual features
into soft image tokens compatible with the embed-
ding space of BERT (Devlin et al., 2019). For
speech, we utilize the encoder from the Whisper-
base-Chinese speech recognition model (Radford
et al., 2023), likewise augmented with a linear pro-
jection layer to project speech features into the
same shared linguistic space. The alignment pro-

cess is formally defined as follows:

X =AT{L,...,I+},S} (1)
T = WordEmbedding(Tokenizer(T")) (2)
S = SpeechAligner(Whisper(.5)) 3)
I; = VisionAligner(CLIP(;)) 4)
V=[0,..., I (5)

where {T,{li,...,Iy},S} represents the text,
images and speech inputs respectively. The
Speech Aligner and Vision Aligner modules are
implemented as learnable linear projections that
transform modality-specific features into a shared
language embedding space. The sequence of word-
level font image embeddings is concatenated to
form the final visual token sequence.

MMBERT blocks. By the above aligners, we
could obtain the encoded embedding of different
modalities aligned in unified language domain. We
concatenate the different modality embeddings as
the final input to the MMBERT blocks. We de-
note the text, speech, vision embedding represen-
tations to ' = {T1,..., T}, S = {S1,...,Sm}
V = {Wy,..., Vi} respectively, where n, m, and
k correspond to the respective sequence lengths of
each modality. The MMBERT block computation
proceeds as follows:

Xlo:[Tl,...,Tn;Sl,...,Sm;%,...,Vk] (6)
X[, = Self-Atten(LN(Xy; _,)) + X, _, 7
X), = MoE(LN(X}")) + X' (8)

where LN (-) refers to layer normalization, the X L
represents the output latent of the self attention
layer in the j th MMBERT block, X;, represents
the output latent of 5 the MMBERT block. The
MoE mechanism incorporates a set of experts £ =
{Er, Eg, Ey } each implemented as a feedforward
neural network. A lightweight routing module,
implemented as a linear transformation, computes
the routing weights that determine the contribution
of each modality-specific expert. The process is
formally defined as:

) of (X7
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Figure 2: Illustration of MMBERT Training strategy. (a) Stage 1: Aligner training, (b) Stage 2: Expert training, (c) Stage 3:

MMBERT tuning

MOE(X{") = Y (P(X{)i- Ei(X{)) (12)

Z:{T757V}

where the f(-) denotes the routing function of dif-
ferent modalities implemented as a linear layer, the
output weight logits are normalized by a softmax
function. The final MoE output is weighted com-
bination of the different modality-specific expert
outputs.

3.3

To capitalize on the effectiveness of multi-expert
collaboration—where each expert possesses dis-
tinct capabilities—while retaining the rich contex-
tual and syntactic knowledge encoded in the orig-
inal BERT model through large-scale pretraining,
we propose a three-stage progressive training strat-
egy to facilitate the incremental development of
MMBERT. As shown in Figure 2, the training pro-
cess is structured into three progressive stages to
enhance the efficacy of multi-expert collaboration
through an incremental learning strategy.

Stage 1: Aligner Training. The primary objec-
tive of the initial stage is to establish effective inter-
operability between heterogeneous modalities and
linguistic representations. Modality-specific MLPs
serve as aligners that project inputs from speech
and vision into soft token embeddings. These align-
ers are trained by minimizing the mean squared
error between the modality embeddings and the
BERT-encoded textual representations. To improve
the model’s sensitivity to perturbed speech samples,
speech and image representations generated from
the perturbed text are aligned with those derived

MMBERT three-stage training strategy

from the corresponding unperturbed text represen-
tations during the training process.

Stage 2: Expert Training. In this stage,
modality-specific experts are trained independently
using cross-modal data to specialize in their re-
spective domains. Training continues to be guided
by the minimization of cross-entropy loss, while
the trained aligners weights in the first stage are
adapted and further trained to better capture and
represent the unique characteristics inherent to their
respective modalities on the Chinese hate speech
classification task. To facilitate the projection of
heterogeneous modality data into a unified linguis-
tic representation space by both the aligners and
experts, the classification head originally trained
on textual input is shared across other modalities.

Stage 3: MMBERT Tuning. The final stage
integrates the trained experts into the MoE layers
of MMBERT. A context-aware routing mechanism
dynamically assigns input representations to ap-
propriate experts based on semantic relevance. To
prevent unbalanced expert weight distribution, an
auxiliary loss is applied to encourage uniform ex-
pert utilization:

»Ctotal = »Ccross—entropy +a- ['aux (13)
N

Lax=N-Y pi-fi (14)
=1

where IV denotes the total number of experts, « rep-
resents the weighting coefficient p; represents the
proportion of sequences routed to expert ¢, and f;
is the average gating probability assigned to expert
1. The classification head is fine-tuned jointly, to
improve multimodal fusion and generate the final
prediction.



ToxiCloakCN ToxiCN COLD
Model
Acc Pre Rre F1 Acc Pre Rre F1 Acc Pre Rre F1
Finetuned Models
BERT 80.6 80.5 80.7 86.6 87.8 88.0 877 878 81.2 80.7 82.1 809
BERT-wwm 80.0 80.4 80.3 879 88.0 88.1 889 880 820 81.6 832 81.8
RoBERTa 81.1 824 813 826 888 889 895 896 826 81.9 837 825
ChineseBERT 86.3 87.5 86.2 86.8 90.8 894 903 906 824 81.3 83.1 822
MMBERT (ours) 94.3 944 957 952 933 914 932 922 842 84.1 863 858
LLM APIs (Prompt template with examples)

GPT3.5 555 60.5 555 495 60.7 6377 60.7 585 652 736 649 61.3
GPT4-0 645 688 0646 624 781 799 781 778 715 734 7T71.5 709
LLAMA-3-8B 68.2 682 68.1 681 742 742 74.1 741 706 70.8 70.6 70.6
Qwen2.5-7B 66.0 667 66.0 656 764 713 764 762 747 76.1 747 74.3
DeepSeek-v3 646 723 645 612 729 775 728 71.7 73.1 754 73.1 725

Table 1: Performance comparison across models and datasets, including accuracy, macro precision, macro recall,

and macro F1 Score.

4 Experiment

4.1 Baselines

To establish a comprehensive evaluation frame-
work, we consider both encoder-based and decoder-
based language models as baselines. Specifically,
we adopt several BERT-based models with a fully
connected classification layer as encoder-based
baselines, and utilize LLLMs with structured task-
specific prompts as decoder-based baselines.

Encoder-Based BERT Models. As representa-
tive encoder-based BERT models, we select three
widely adopted Chinese pretrained BERT-based
encoders: BERT'! (Devlin et al., 2019), BERT-
wwm? (Sun et al., 2019) and RoBERTa® (Liu etal.,
2019). Each model is fine-tuned by attaching a
fully connected layer on top of the pooled output
from the encoder to perform classification. In addi-
tion, we include ChineseBERT (Sun et al., 2021),
a recently proposed model that integrates lexicon
and phonological features into the standard BERT
architecture, to examine its performance under the
same experimental settings.

Decoder-Based LLMs. For LLM baselines,
we assess the performance of several state-of-
the-art LLMs, including GPT-3.5 (Brown et al.,
2020), GPT-40 (OpenAl, 2024), LLaMA-3-8B
(Meta Al 2024), Qwen2.5-7B (Alibaba, 2024),
and DeepSeek-v3 (DeepSeek, 2024). These mod-

"https://huggingface.co/bert-base-chinese
*https://huggingface.co/hfl/chinese-bert-wwm-base
*https://huggingface.co/hfl/chinese-roberta-wwm-ext

els are evaluated under a unified prompt-based in-
ference framework. This setup ensures consistency
across different models and enables a fair compar-
ison with encoder-based models, particularly in
light of the substantial differences in model scales.

4.2 Dataset

To evaluate the proposed MMBERT framework, we
conduct experiments on three Chinese hate speech
datasets that collectively support comprehensive
and robust assessment. ToxiCN (Lu et al., 2023)
provides 12,011 samples of standard hate speech
annotations for naturally occurring Chinese text,
serving as a baseline for evaluating classification
performance. ToxiCloakCN (Xiao et al., 2024b)
introduces 4,582 cloaking perturbed examples in
code-mixing and homophonic substitution, specif-
ically designed to evade text-only detectors while
preserving hateful intent, making it essential for
testing model robustness against cloaking strate-
gies. Finally, COLD (Deng et al., 2022) extends
evaluation to a wider spectrum of offensive con-
tent with 37,480 samples, offering insight into a
model’s generalizability across various forms of
online toxicity. Together, these datasets form a
diverse and challenging benchmark suite for as-
sessing both accuracy and adversarial resilience in
Chinese hate speech detection.

4.3 Evaluation method

We employ the widely used metrics of accuracy
(Acc), macro precision (Pre), macro recall (Rre)
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and macro F}-score (F1) to evaluate the classifica-
tion performance of models. For the BERT-based
models in the baselines, we fine-tune and reserve
the best performing models and hyperparameters
on the test set. The models are trained using the
cross-entropy loss function and optimized with the
AdamW optimizer. An early stopping strategy is
implemented to prevent overfitting during train-
ing. All datasets are partitioned into training and
test sets using an 8:2 split ratio. For the LLMs in
the baselines, we perform few-shot learning with
a basic prompt including task definitions, output
formats and specific prediction requirements for
all elements, with a hate speech example and a
non-hate speech example, details can be found in
appendix B. All experiments are conducted using a
NVIDIA H100 Tensor Core GPU.

4.4 Result and Discussion
4.4.1 Main result

Table 1 presents a comprehensive evaluation,
MMBERT consistently outperforms the finetuned
BERT-based baseline models and LLMs with in-
context learning across three benchmarks, demon-
strating superior performance and robustness in
both standard and adversarial settings.

On ToxiCloakCN, which features cloaking per-
turbed hate speech, MMBERT achieves a macro F1
score of 95.2, substantially outperforming the best
finetuned baseline, ChineseBERT, which reaches
86.8. Other BERT-based models such as RoOBERTa
and BERT-wwm show a further drop in perfor-
mance. The strong results on ToxiCloakCN indi-
cate that MMBERT is particularly effective at han-
dling cloaking strategies such as character defor-
mation, homophonic substitution, and code-mixing.
Performance on ToxiCN, a standard hate speech
benchmark, follows a similar trend. MMBERT
achieves an F1 score of 92.2, improving upon Chi-
neseBERT by 1.6 points and RoBERTa by 2.6
points. The gains are consistent across accuracy,

precision, and recall, indicating MMBERT’s well-
rounded classification ability. On COLD, a more
diverse and open-domain dataset, MMBERT again
achieves the highest macro F1 score of 85.8. While
ChineseBERT and RoBERTa remain competitive,
they fail to match MMBERT’s performance, partic-
ularly in recall, which is crucial for detecting subtle
or implicit hate speech.

In contrast, LLM APIs perform significantly
worse across all benchmarks. Even with prompting
and examples, GPT-40 and DeepSeek-v3 achieve
only 62.4 and 61.2 F1 on ToxiCloakCN, respec-
tively. LLAMA-3 and Qwen2.5 models show simi-
lar limitations, especially in the presence of cloaked
content. These results underscore the limitations
of few-shot prompting approaches for domain-
specific, adversarial tasks, and highlight the effec-
tiveness of MMBERT’s task-specific, multimodal
training.

Overall, the results confirm that MMBERT not
only outperforms existing baselines in Chinese hate
speech detection but also exhibits strong resilience
against cloaking perturbed samples, validating the
importance of multimodal integration for the Chi-
nese hate speech detection.

4.4.2 Routing distribution analysis

We analyze the average routing weight distribution
of different experts in MMBERT 12 MoE layers
under three hate speech perturbation categories in
the ToxiCloakCN dataset as shown in Figure 3.

In the non-perturbed setting, the model primar-
ily routes to the text expert, especially in middle
layers, reflecting the dominance of textual seman-
tics. Speech and image experts contribute con-
sistently, with image usage slightly increasing in
deeper layers. Under homophonic perturbation, the
model shifts toward the speech expert in early and
middle layers, leveraging phonetic cues to resolve
ambiguities introduced by homophones. Vision
expert assigned weight decreases slightly, while
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Figure 4: Ablation study evaluating the impact of each stage
in the proposed three-stage training strategy

text routing remains stable. In the code-mixing
scenario, image experts dominate across most lay-
ers, indicating reliance on visual context to address
multilingual inconsistencies. Text experts are also
more engaged in earlier layers, while speech expert
weight declines.

These patterns demonstrate MMBERT adaptive
routing behavior, where expert activation is dy-
namically adjusted based on input characteristics,
enhancing robustness against modality-specific per-
turbations.

4.4.3 Ablation study

Training strategy. We conduct an ablation study
to evaluate the effectiveness of the progressive
three-stage training strategy for integrating MoE
into MMBERT. Specifically, we compare the full
pipeline with three variants: without aligner train-
ing stage (stage 1), without expert training stage
(stage 2), and without both stages. All models are
trained for 50 epochs on the ToxiCloakCN dataset
under identical settings.

As shown in Figure 4, the full three-stage strat-
egy achieves the best overall performance, with the
lowest training loss and highest validation accu-
racy. It enables stable convergence and strong gen-
eralization, indicating that gradual modality align-
ment and expert specialization are both essential
for effective multimodal learning. Without aligner
pretraining, convergence is slower and validation
performance is less stable, suggesting suboptimal
cross-modal mapping. Removing expert special-
ization also leads to reduced accuracy and higher
loss, showing that expert-specific representation
learning is crucial. The worst performance is ob-
served when both stages are removed, as the model
quickly overfits and fails to generalize. These re-
sults demonstrate that each stage of the proposed

Text&Speech Text& Vision
Dataset

Acc F1 Acc F1
ToxiCloakCN 91.2 91.1 877 86.6
ToxiCN 90.1 909 889 893
COLD 83.1 838 827 819

Table 2: Ablation study evaluating the impact of each
modality in the MMBERT framework

training strategy plays a critical role in enabling
MMBERT to effectively detect cloaked hate speech
across modalities.

Modality. To assess the contribution of each
modality in the MMBERT framework, we perform
an ablation study by evaluating model performance
by scaling with single modality, using text paired
with either speech or vision. As shown in Table
2, the text and speech combination consistently
outperforms the text and vision setting across all
three datasets. On the ToxiCloakCN dataset, the
F1 score reaches 91.1 when using speech com-
pared to 86.6 when using vision, indicating that
speech features are more effective in capturing ad-
versarial cues introduced by cloaking perturbations.
This trend is also observed on ToxiCN and COLD,
where the text and speech setting yields stronger
results. These findings suggest that speech con-
tributes more complementary information than vi-
sion and plays a critical role in improving robust-
ness in Chinese hate speech detection.

5 Conclusion

We presents MMBERT, a multimodal framework
for Chinese hate speech detection that effectively
incorporates text, speech, and vision using the MoE
architecture. To ensure stable integration of het-
erogeneous modalities, we introduce a progressive
training strategy that proves critical for effective op-
timization. Empirical results across multiple bench-
marks show that MMBERT achieves strong perfor-
mance, particularly under adversarial conditions
involving cloaked perturbations. Ablation studies
confirm the importance of both the training strategy
and modality fusion, with speech contributing most
significantly to robustness. Our findings highlight
the potential of task-specific multimodal modeling
for addressing complex language understanding
challenges, particularly in safety-critical domains
like Chinese hate speech detection.



Limitation

While MMBERT demonstrates strong performance
in detecting cloaked hate speech, several limita-
tions remain. First, the current evaluation relies on
a limited set of Chinese datasets, which does not
fully capture the breadth and complexity of obfus-
cation strategies used in real-world settings. The
dataset is constrained in both scale and diversity,
covering only a subset of character-level, phonetic,
and visual perturbations commonly found in adver-
sarial discourse. This restricts the model’s ability
to generalize to more nuanced, creative, or evolv-
ing forms of cloaked hate speech. Expanding the
dataset to include a wider variety of perturbation
types, sociolinguistic contexts, and user-generated
adversarial patterns would be essential for advanc-
ing robustness.

Second, the current study is limited to Chinese
language data, and it remains unclear how well the
similar method would transfer to other languages
or cultural environments where obfuscation strate-
gies may differ significantly in structure and in-
tent. Cloaking techniques can be highly language-
specific, depending on orthographic systems, pho-
netics, and sociocultural norms.

Future work should consider explore cross-
lingual adaptations and evaluate the generalizabil-
ity of similar method in multilingual or multicul-
tural settings

Ethical Statement

This work focuses on detecting hate speech on Chi-
nese social media platforms using a multimodal
framework. Given the sensitive nature of hate
speech detection, we took several ethical precau-
tions throughout the research process. All datasets
used in this study are publicly available or released
under terms that permit academic use. No person-
ally identifiable information is included in the data.

We acknowledge the potential risks associated
with misuse of automated hate speech detection sys-
tems, such as censorship or the marginalization of
certain user groups. To mitigate this, our model is
designed for research purposes only and we do not
advocate its direct deployment without thorough
evaluation by domain experts and consideration of
social and legal implications.

We also recognize that hate speech is a socially
and culturally contextual phenomenon. While our
model is tailored for Chinese-language content, we
emphasize the importance of local expertise when

interpreting results or extending this work to other
languages or communities.

Bias mitigation and fairness were considered in
model evaluation. To address this, we adopt diverse
and representative datasets covering different forms
of hate speech related to race, gender, region, and
LGBTQ+ communities.
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A MMBERT setting

MMBERT is built upon the BERT-base-chinese*
encoder, which serves as the backbone for textual
representation. For modality-specific feature ex-
traction, we employ a vision encoder based on
chinese-clip-vit-base-patch16® and a speech

“https://huggingface.co/bert-base-chinese
Shttps://huggingface.co/OFA-Sys/chinese-clip-vit-base-
patch16
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encoder based on whisper-base®. Each modal-
ity is passed through a dedicated aligner, imple-
mented as a lightweight two-layer MLP, to project
the modality-specific features into the BERT em-
bedding space, thereby forming unified token rep-
resentations. These representations are processed
by modified BERT layers in which the original
feed-forward networks are replaced by Mixture-
of-Experts (MoE) layers. Each MoE layer con-
tains modality-specific experts and a shared self-
attention mechanism, with a context-aware routing
function that dynamically assigns token sequences
to appropriate experts. A classification head is ap-
plied to the final output to produce predictions.

Training is performed in three progressive stages.
In stage 1, modality aligners are pretrained using
synthetic parallel data to align visual and speech
features with their corresponding textual embed-
dings. The learning rate in this stage is set to 1le-3.
In stage 2, modality-specific experts are trained in-
dependently using cross-modal supervision, while
aligners continue to adapt. During this phase, the
learning rate for the aligners is maintained at le-3,
the text expert at 5e-6, and the speech and vision
experts at Se-5. In stage 3, all components are
jointly fine-tuned on the multimodal Chinese hate
speech detection task using a cross-entropy loss.
The learning rate in this final stage is set to Se-4.
To promote balanced utilization across experts, we
incorporate an auxiliary load-balancing loss into
the MoE layers, with a weighting coefficient of
le-2. The model is trained for 50 epochs using the
AdamW optimizer and a linear learning rate de-
cay schedule. All experiments are conducted using
PyTorch on NVIDIA A100 GPUs.

B LLM evaluation prompt template

The basic prompt of LLM for Chinese hate speech
detection is shown in Figure 5

®https://huggingface.co/openai/whisper-base



Chinese Prompt Template

EFEX:
BRESRRPXXAD LA NRER T ENRFE. MREFRNEXEZETHR. Rik. BE. FH. MR
. MAl. BEITERARERM, REIRBEENEHENES.

W

BEREEMUTHREZ—: "MRER L ENREE .

FUME R :

FRDFHRENP XK, HMERESHFANRESRHNEX . ZERIBESHYHMRURBHRREATHMER.
Al :

B 1 (IRER):
WA XBEARRMSHBEE, NIZB0ER!
mi: MIRER

61 2 FEMIRER):
WA\ SRRXSAEF.
W ERIRFR

BE, AT XER#ITHK:
EQZE%ﬁA%ﬁ%%¢Yik
il

English Prompt Template

Task Definition
Your task is to classify a Chinese text as either "Hate Speech" or "Non-Hate Speech". Hate speech is defined as
language that attacks or degrades a group based on attributes such as race, ethnicity, nationality, religion, sexual
orientation, gender, disability, or serious illness.
Output Format
Please output only one of the following labels: Hate Speech or Non-Hate Speech.
Prediction Instructions
Carefully analyze the given Chinese text and determine whether it meets the definition of hate speech. Consider
the target of the language and the nature of any attacking or degrading content.
Examples
Example 1 (Hate Speech):
Input: XEEARZHRAMESE, NiZHIER!
Output: Hate Speech
Example 2 (Non-Hate Speech):
Input: > RRSEIF .
Output: Non-Hate Speech
Now, please classify the following text:
Input: [Insert Chinese text to be classified here]
Output:

Figure 5: Chinese and English version of the LLM Chinese hate speech detection evaluation template

12




	Introduction
	Related Work
	Cloaking Perturbations in Chinese Hate Speech
	Enhancing Chinese Language Modeling through Multimodal Pretraining
	Scaling Multimodal Language Models with MoE Architectures

	Methodology
	Overview
	MMBERT Architecutre
	MMBERT three-stage training strategy

	Experiment
	Baselines
	Dataset
	Evaluation method
	Result and Discussion
	Main result
	Routing distribution analysis
	Ablation study


	Conclusion
	MMBERT setting
	LLM evaluation prompt template

