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Abstract001

Hate speech detection on Chinese social me-002
dia platforms poses distinct challenges, partic-003
ularly due to the widespread use of cloaking004
techniques designed to evade conventional text-005
based detection systems. Although large lan-006
guage models (LLMs) have recently improved007
hate speech detection capabilities, the majority008
of existing work has concentrated on English-009
language datasets, with limited attention given010
to multimodal strategies in the Chinese con-011
text. In this study, we propose MMBERT, a012
novel BERT-based multimodal framework that013
integrates textual, speech, and visual modal-014
ities through a Mixture-of-Experts (MoE) ar-015
chitecture. To address the instability associ-016
ated with directly integrating MoE into BERT-017
based models, we develop a progressive three-018
stage training paradigm. MMBERT incorpo-019
rates modality-specific experts, a shared self-020
attention mechanism, and a router-based ex-021
pert allocation strategy to enhance robustness022
against adversarial perturbations. Empirical023
evaluations on multiple Chinese hate speech024
datasets demonstrate that MMBERT substan-025
tially outperforms both fine-tuned BERT-based026
encoder models and prompt-based in-context027
learning with LLMs.028

Disclaimer: This paper includes descriptions and029

analyses of violent and discriminatory language,030

which may be offensive for some readers.031

1 Introduction032

Hate speech poses a persistent threat to online com-033

munities, exacerbated by the anonymity and scale034

of digital platforms (Dixon et al., 2018). While au-035

tomated hate speech detection has advanced signif-036

icantly in recent years, most efforts remain concen-037

trated on English, leaving other major languages038

like Chinese relatively under-resourced and under-039

protected (Davidson et al., 2017, 2019). Some040

researchers have attempted to leverage LLMs for041
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Figure 1: Illustration of MMBERT model structure. Com-
pared to traditional BERT-based model, it leverages the MoE
architecture to scale and effectively handle multiple modali-
ties. A three-stage progressive training strategy is designed to
ensure stable training and prevent performance degradation.

Chinese hate speech detection (Chao et al., 2024; 042

Sun et al., 2021; Zhou et al., 2023). However, on 043

Chinese social media platforms, many hate speech 044

disseminators employ various cloaking perturba- 045

tions to escape detection, making it challenging 046

for existing models to identify such expressions 047

accurately (Xiao et al., 2024b). These subtle ma- 048

nipulations exploit the structural and phonological 049

properties of the Chinese language, making detec- 050

tion especially difficult for text-only models. 051

While LLMs have shown promise in content 052

moderation, BERT-based architectures have con- 053

sistently outperformed decoder-only LLMs in hate 054

speech detection tasks, owing to their deep bidi- 055

rectional encoding and strong capacity for fine- 056

grained semantic understanding (Benayas et al., 057

2024; Ghorbanpour et al., 2025). Their superior 058

performance can be attributed to the ability to gen- 059

erate fine-grained contextualized representations, 060

which are especially well-suited for classification 061

tasks that require discerning subtle semantic dis- 062
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tinctions and interpreting nuanced language—both063

of which are common in adversarial or implicitly064

encoded hate speech (Liu et al., 2024). The archi-065

tecture optimized for discriminative tasks enables066

more efficient and accurate detection of toxic con-067

tent across various hate speech detection bench-068

marks (Deng et al., 2022; Xiao et al., 2024b).069

To address the challenge of detecting cloaked070

hate speech in Chinese, we propose MMBERT, a071

novel multimodal BERT-based architecture that in-072

corporates visual and speech modalities alongside073

text, depicted in Figure 1. To enhance scalability074

and specialization, MMBERT integrates the MoE075

mechanism, enabling dynamic routing of repre-076

sentations to modality-specific experts. However,077

naïvely inserting MoE into BERT leads to severe078

training instability and degraded performance, par-079

ticularly in the multimodal setting (Zhang et al.,080

2021). To overcome this, we introduce a progres-081

sive three-stage training strategy. In the first stage,082

we pretrain modality aligners using synthetic mul-083

timodal data to map visual and auditory inputs into084

the BERT language space. In the second stage,085

we train modality-specific experts and continue re-086

fining aligners using task-specific supervision. In087

the final stage, we jointly fine-tune the full MoE-088

augmented architecture on real multimodal hate089

speech data. This phased design ensures stable090

optimization and effective cross-modal integration.091

To overcome this, we introduce a progressive092

three-stage training strategy. In the first stage, we093

pretrain modality aligners using synthetic multi-094

modal data to map visual and auditory inputs into095

the BERT language space. In the second stage,096

we train modality-specific experts and continue re-097

fining aligners using task-specific supervision. In098

the final stage, we jointly fine-tune the full MoE-099

augmented architecture on real multimodal hate100

speech data. This phased design ensures stable101

optimization and effective cross-modal integration.102

Our experiments across three benchmark Chi-103

nese hate speech datasets demonstrate that MM-104

BERT achieves state-of-the-art performance, signif-105

icantly outperforming both fine-tuned BERT-based106

baselines and LLMs with in-context learning. In107

particular, MMBERT shows superior robustness in108

detecting cloaked adversarial content, highlighting109

the value of multimodal modeling and progressive110

training for Chinese hate speech detection.111

We summarize the main contribution of this pa-112

per as follows:113

• We propose MMBERT, a novel multimodal 114

BERT-based framework for Chinese hate 115

speech detection that integrates textual, visual, 116

and speech modalities through a Mixture-of- 117

Experts (MoE) architecture, enhancing robust- 118

ness against cloaking-based adversarial per- 119

turbations. 120

• We design a progressive three-stage train- 121

ing strategy that first aligns multimodal in- 122

puts to the BERT language space, then special- 123

izes modality-specific experts, and finally fine- 124

tunes the complete model. This approach en- 125

sures stable training and effective cross-modal 126

representation learning. 127

• We conduct extensive experiments on three 128

benchmark datasets, comparing MMBERT 129

against fine-tuned BERT-based baselines 130

and LLMs with in-context learning. Re- 131

sults demonstrate that MMBERT consistently 132

achieves superior performance, particularly in 133

detecting cloaking perturbed hate speech. 134

2 Related Work 135

2.1 Cloaking Perturbations in Chinese Hate 136

Speech 137

Cloaking perturbations in Chinese online discourse 138

represent a growing challenge for automated hate 139

speech detection systems, as users employ various 140

linguistic strategies to obfuscate offensive content 141

while preserving its intended meaning (Xiao et al., 142

2024b,a). These perturbations can be mainly cate- 143

gorized into several types: 144

Deformation. As Chinese characters are logo- 145

graphic, their meanings can be altered by decom- 146

posing or reconfiguring individual components, of- 147

ten imparting specific emotional or ideological con- 148

notations (Lan, 2006). For example, the character 149

"默" (meaning "silence") comprises the radicals 150

"黑" (meaning "black") and "犬" (meaning "dog"), 151

which in certain contexts have been used to convey 152

derogatory implications toward the Black commu- 153

nity. 154

Homophonic Substitution. Similar to En- 155

glish, words with similar pronunciations are fre- 156

quently substituted to generate alternative seman- 157

tics (Tien et al., 2021). For instance, Chinese inter- 158

net users often replace the character "满" (meaning 159

"Manchu") with "蛮" (meaning "barbarian"), as 160

both share a phonetic resemblance to "man". 161
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Abbreviation. The contraction of sensitive162

terms enhances conciseness while maintaining se-163

mantic clarity (Lan, 2006). A notable example is164

"txl," where each letter corresponds to the pinyin165

initials of "同", "性", and "恋", collectively denot-166

ing "homosexuality."167

Code-Mixing. To intensify expressive tone168

and circumvent automated content moderation,169

Chinese social media users frequently incorpo-170

rate non-Chinese linguistic elements—such as En-171

glish vocabulary, pinyin transliterations, and emo-172

jis—into online discourse (Li et al., 2020). These173

code-mixed constructs not only obscure seman-174

tic intent from detection systems but also rein-175

force the emotive or derogatory force of the mes-176

sage. For instance, the term "ni哥" (meaning "ni177

brother") phonetically approximates the English178

racial slur "n*gger". Similarly, in the phrase179

("舔狗"), the addition of an emoji amplifies the pe-180

jorative undertone, characterizing individuals per-181

ceived as excessively submissive in relationship182

contexts—analogous to the English term "simp".183

These perturbations exploit the unique structural184

and phonological characteristics of the Chinese185

language to conceal offensive intent (Lu et al.,186

2023). For instance, visually altering character rad-187

icals can introduce ideological connotations, while188

homophones and abbreviations obscure meanings189

through phonetic similarity or reduction. Code-190

mixing with foreign words, pinyin, or emojis fur-191

ther complicates semantic interpretation. Text-only192

models often fail to capture these manipulations193

due to their limited capacity to disambiguate subtle194

visual and phonological cues (Xiao et al., 2024a;195

Raza Ur Rehman et al., 2025).196

2.2 Enhancing Chinese Language Modeling197

through Multimodal Pretraining198

Text-only approaches in Chinese language mod-199

eling often face limitations in capturing the full200

linguistic complexity of the language, particularly201

with respect to character homographs, tonal am-202

biguity, and the lack of explicit word boundaries.203

These challenges hinder the model’s ability to ac-204

curately interpret semantic and phonetic nuances205

inherent in Chinese.206

To address these limitations, several studies207

have explored the integration of additional modali-208

ties, such as visual and phonetic information, into209

the pretraining process. For instance, Chinese-210

BERT (Sun et al., 2021) integrates both glyph and211

pinyin embeddings, enriching the representation212

of Chinese characters by capturing visual features 213

through multiple font variations and phonetic infor- 214

mation to resolve the heteronym phenomenon. This 215

dual-embedding approach has shown significant 216

improvements in various Chinese natural language 217

processing tasks, such as named entity recogni- 218

tion and sentiment analysis. Similarly, models like 219

ERNIE-M (Ouyang et al., 2020) and GlyphBERT 220

(Li et al., 2021) have demonstrated the benefits of 221

incorporating external modalities, such as entity 222

knowledge and visual cues, to enhance language 223

understanding. 224

However, existing multimodal approaches pre- 225

dominantly rely on embedding-level fusion of het- 226

erogeneous input modalities within a fixed BERT 227

encoder architecture. While such integration en- 228

hances input representations, the processing and in- 229

teraction of multimodal information remain largely 230

static and inflexible. Specifically, the fixed fusion 231

mechanism in standard BERT layers may limit the 232

model’s capacity to dynamically adapt to context- 233

dependent linguistic challenges, such as homo- 234

graphs and tonal ambiguity in Chinese. This rigid- 235

ity restricts the model’s ability to effectively lever- 236

age the complementary strengths of each modality 237

in a nuanced and input-sensitive manner. 238

2.3 Scaling Multimodal Language Models 239

with MoE Architectures 240

Recent advancements in large MLLMs have in- 241

creasingly explored the use of MoE (Eigen et al., 242

2013) architectures to enhance scalability, effi- 243

ciency, and specialization across modalities. Early 244

generations of MLLMs, such as Flamingo (Alayrac 245

et al., 2022) and GPT-4V (Yang et al., 2023), are 246

grounded in dense architectural paradigms that 247

encounter scalability limitations as data volume 248

and modality complexity increase. To address 249

this, MoE-based frameworks such as CuMo (Li 250

et al., 2024) and Uni-MoE (Li et al., 2025) in- 251

troduce sparsely-activated expert modules, allow- 252

ing modality-specific processing while maintain- 253

ing low inference overhead. CL-MoE (Huai et al., 254

2025) further extends MoE for continual learning 255

in vision-language tasks, employing dual routers to 256

balance generalization and retention. Furthermore, 257

MoExtend (Zhong et al., 2024) introduces modular 258

extension mechanisms that facilitate the adaptation 259

of pretrained models to new tasks and modalities, 260

thereby significantly reducing the computational 261

cost associated with full model retraining. 262

These approaches illustrate that MoE architec- 263
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tures not only enhance computational efficiency but264

also offer increased flexibility in handling hetero-265

geneous multimodal inputs, thereby establishing266

MoE as a compelling framework for scaling BERT-267

based models to complex multimodal tasks.268

3 Methodology269

3.1 Overview270

As shown in Figure 1, the MMBERT framework271

consists of a text tokenizer, word embedding layer,272

vision and speech encoders, modality aligners,273

MoE-scaled BERT blocks, and a classification274

head. Modality aligners project non-text inputs275

into a shared linguistic space, enabling effective276

multimodal fusion. The MoE layers are integrated277

into the BERT encoder to dynamically route repre-278

sentations across modalities, improving detection279

accuracy. MMBERT is trained in three sequential280

stages: Modality aligner training, modality-specific281

expert training, and MMBERT tuning using a di-282

verse collection of multimodal Chinese hate speech283

data.. The detailed architectural and training set-284

tings are provided in Appendix A285

3.2 MMBERT Architecutre286

Multimodal data generation. To synthesize the vi-287

sual and audio data of corresponding text input, we288

employ the Kokoro text-to-speech model (Kaneko289

et al., 2022) to generate speech data corresponding290

to the input text. For the visual modality, we render291

a sequence of word-level font images representing292

each token in the text, thereby producing a visual293

analogue of the input.294

Aligners. To enable the effective transformation295

of heterogeneous modality inputs into a unified lin-296

guistic representation space, MMBERT leverages297

the pretrained visual-language framework LLaVA298

(Liu et al., 2023) and the speech-language frame-299

work SpeechT5 (Ao et al., 2021). Specifically, for300

visual encoding, we adopt the CLIP-base-Chinese301

model (Yang et al., 2022), followed by a linear pro-302

jection layer that maps the extracted visual features303

into soft image tokens compatible with the embed-304

ding space of BERT (Devlin et al., 2019). For305

speech, we utilize the encoder from the Whisper-306

base-Chinese speech recognition model (Radford307

et al., 2023), likewise augmented with a linear pro-308

jection layer to project speech features into the309

same shared linguistic space. The alignment pro-310

cess is formally defined as follows: 311

X = {T, {I1, . . . , Ik}, S} (1) 312

T = WordEmbedding(Tokenizer(T )) (2) 313

S = SpeechAligner(Whisper(S)) (3) 314

Ii = VisionAligner(CLIP(Ii)) (4) 315

V = [I1, . . . , Ik] (5) 316

where {T, {I1, . . . , Ik}, S} represents the text, 317

images and speech inputs respectively. The 318

SpeechAligner and V isionAligner modules are 319

implemented as learnable linear projections that 320

transform modality-specific features into a shared 321

language embedding space. The sequence of word- 322

level font image embeddings is concatenated to 323

form the final visual token sequence. 324

MMBERT blocks. By the above aligners, we 325

could obtain the encoded embedding of different 326

modalities aligned in unified language domain. We 327

concatenate the different modality embeddings as 328

the final input to the MMBERT blocks. We de- 329

note the text, speech, vision embedding represen- 330

tations to T = {T1, . . . , Tn}, S = {S1, . . . , Sm} 331

V = {V1, . . . , Vk} respectively, where n, m, and 332

k correspond to the respective sequence lengths of 333

each modality. The MMBERT block computation 334

proceeds as follows: 335

Xl0 = [T1, . . . , Tn; S1, . . . , Sm; V1, . . . , Vk] (6) 336

Xa
lj
= Self-Atten(LN(Xlj−1

)) +Xlj−1
(7) 337

Xlj = MoE(LN(Xa
lj
)) +Xa

lj
(8) 338

where LN(·) refers to layer normalization, the Xa
lj

339

represents the output latent of the self attention 340

layer in the j th MMBERT block, Xlj represents 341

the output latent of j the MMBERT block. The 342

MoE mechanism incorporates a set of experts E = 343

{ET , ES , EV } each implemented as a feedforward 344

neural network. A lightweight routing module, 345

implemented as a linear transformation, computes 346

the routing weights that determine the contribution 347

of each modality-specific expert. The process is 348

formally defined as: 349

P (Xa
l )T =

ef(X
a
l )T∑

i={T,S,V } e
f(Xa

l )i
(9) 350

P (Xa
l )S =

ef(X
a
l )S∑

i={T,S,V } e
f(Xa

l )i
(10) 351

P (Xa
l )V =

ef(X
a
l )V∑

i={T,S,V } e
f(Xa

l )i
(11) 352
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353

MoE(Xa
l ) =

∑
i={T,S,V }

(P (Xa
l )i · Ei(X

a
l )) (12)354

where the f(·) denotes the routing function of dif-355

ferent modalities implemented as a linear layer, the356

output weight logits are normalized by a softmax357

function. The final MoE output is weighted com-358

bination of the different modality-specific expert359

outputs.360

3.3 MMBERT three-stage training strategy361

To capitalize on the effectiveness of multi-expert362

collaboration—where each expert possesses dis-363

tinct capabilities—while retaining the rich contex-364

tual and syntactic knowledge encoded in the orig-365

inal BERT model through large-scale pretraining,366

we propose a three-stage progressive training strat-367

egy to facilitate the incremental development of368

MMBERT. As shown in Figure 2, the training pro-369

cess is structured into three progressive stages to370

enhance the efficacy of multi-expert collaboration371

through an incremental learning strategy.372

Stage 1: Aligner Training. The primary objec-373

tive of the initial stage is to establish effective inter-374

operability between heterogeneous modalities and375

linguistic representations. Modality-specific MLPs376

serve as aligners that project inputs from speech377

and vision into soft token embeddings. These align-378

ers are trained by minimizing the mean squared379

error between the modality embeddings and the380

BERT-encoded textual representations. To improve381

the model’s sensitivity to perturbed speech samples,382

speech and image representations generated from383

the perturbed text are aligned with those derived384

from the corresponding unperturbed text represen- 385

tations during the training process. 386

Stage 2: Expert Training. In this stage, 387

modality-specific experts are trained independently 388

using cross-modal data to specialize in their re- 389

spective domains. Training continues to be guided 390

by the minimization of cross-entropy loss, while 391

the trained aligners weights in the first stage are 392

adapted and further trained to better capture and 393

represent the unique characteristics inherent to their 394

respective modalities on the Chinese hate speech 395

classification task. To facilitate the projection of 396

heterogeneous modality data into a unified linguis- 397

tic representation space by both the aligners and 398

experts, the classification head originally trained 399

on textual input is shared across other modalities. 400

Stage 3: MMBERT Tuning. The final stage 401

integrates the trained experts into the MoE layers 402

of MMBERT. A context-aware routing mechanism 403

dynamically assigns input representations to ap- 404

propriate experts based on semantic relevance. To 405

prevent unbalanced expert weight distribution, an 406

auxiliary loss is applied to encourage uniform ex- 407

pert utilization: 408

Ltotal = Lcross-entropy + α · Laux (13) 409

Laux = N ·
N∑
i=1

pi · fi (14) 410

where N denotes the total number of experts, α rep- 411

resents the weighting coefficient pi represents the 412

proportion of sequences routed to expert i, and fi 413

is the average gating probability assigned to expert 414

i. The classification head is fine-tuned jointly, to 415

improve multimodal fusion and generate the final 416

prediction. 417
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Model
ToxiCloakCN ToxiCN COLD

Acc Pre Rre F1 Acc Pre Rre F1 Acc Pre Rre F1

Finetuned Models

BERT 80.6 80.5 80.7 86.6 87.8 88.0 87.7 87.8 81.2 80.7 82.1 80.9
BERT-wwm 80.0 80.4 80.3 87.9 88.0 88.1 88.9 88.0 82.0 81.6 83.2 81.8
RoBERTa 81.1 82.4 81.3 82.6 88.8 88.9 89.5 89.6 82.6 81.9 83.7 82.5
ChineseBERT 86.3 87.5 86.2 86.8 90.8 89.4 90.3 90.6 82.4 81.3 83.1 82.2
MMBERT (ours) 94.3 94.4 95.7 95.2 93.3 91.4 93.2 92.2 84.2 84.1 86.3 85.8

LLM APIs (Prompt template with examples)

GPT3.5 55.5 60.5 55.5 49.5 60.7 63.7 60.7 58.5 65.2 73.6 64.9 61.3
GPT4-o 64.5 68.8 64.6 62.4 78.1 79.9 78.1 77.8 71.5 73.4 71.5 70.9
LLAMA-3-8B 68.2 68.2 68.1 68.1 74.2 74.2 74.1 74.1 70.6 70.8 70.6 70.6
Qwen2.5-7B 66.0 66.7 66.0 65.6 76.4 77.3 76.4 76.2 74.7 76.1 74.7 74.3
DeepSeek-v3 64.6 72.3 64.5 61.2 72.9 77.5 72.8 71.7 73.1 75.4 73.1 72.5

Table 1: Performance comparison across models and datasets, including accuracy, macro precision, macro recall,
and macro F1 Score.

4 Experiment418

4.1 Baselines419

To establish a comprehensive evaluation frame-420

work, we consider both encoder-based and decoder-421

based language models as baselines. Specifically,422

we adopt several BERT-based models with a fully423

connected classification layer as encoder-based424

baselines, and utilize LLMs with structured task-425

specific prompts as decoder-based baselines.426

Encoder-Based BERT Models. As representa-427

tive encoder-based BERT models, we select three428

widely adopted Chinese pretrained BERT-based429

encoders: BERT1 (Devlin et al., 2019), BERT-430

wwm2 (Sun et al., 2019) and RoBERTa3 (Liu et al.,431

2019). Each model is fine-tuned by attaching a432

fully connected layer on top of the pooled output433

from the encoder to perform classification. In addi-434

tion, we include ChineseBERT (Sun et al., 2021),435

a recently proposed model that integrates lexicon436

and phonological features into the standard BERT437

architecture, to examine its performance under the438

same experimental settings.439

Decoder-Based LLMs. For LLM baselines,440

we assess the performance of several state-of-441

the-art LLMs, including GPT-3.5 (Brown et al.,442

2020), GPT-4o (OpenAI, 2024), LLaMA-3-8B443

(Meta AI, 2024), Qwen2.5-7B (Alibaba, 2024),444

and DeepSeek-v3 (DeepSeek, 2024). These mod-445

1https://huggingface.co/bert-base-chinese
2https://huggingface.co/hfl/chinese-bert-wwm-base
3https://huggingface.co/hfl/chinese-roberta-wwm-ext

els are evaluated under a unified prompt-based in- 446

ference framework. This setup ensures consistency 447

across different models and enables a fair compar- 448

ison with encoder-based models, particularly in 449

light of the substantial differences in model scales. 450

4.2 Dataset 451

To evaluate the proposed MMBERT framework, we 452

conduct experiments on three Chinese hate speech 453

datasets that collectively support comprehensive 454

and robust assessment. ToxiCN (Lu et al., 2023) 455

provides 12,011 samples of standard hate speech 456

annotations for naturally occurring Chinese text, 457

serving as a baseline for evaluating classification 458

performance. ToxiCloakCN (Xiao et al., 2024b) 459

introduces 4,582 cloaking perturbed examples in 460

code-mixing and homophonic substitution, specif- 461

ically designed to evade text-only detectors while 462

preserving hateful intent, making it essential for 463

testing model robustness against cloaking strate- 464

gies. Finally, COLD (Deng et al., 2022) extends 465

evaluation to a wider spectrum of offensive con- 466

tent with 37,480 samples, offering insight into a 467

model’s generalizability across various forms of 468

online toxicity. Together, these datasets form a 469

diverse and challenging benchmark suite for as- 470

sessing both accuracy and adversarial resilience in 471

Chinese hate speech detection. 472

4.3 Evaluation method 473

We employ the widely used metrics of accuracy 474

(Acc), macro precision (Pre), macro recall (Rre) 475
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Figure 3: Distribution of expert loading with different input perturbation types, left: non perturbation, middle: homophonic
perturbation, right: code-mixing perturbation

and macro F1-score (F1) to evaluate the classifica-476

tion performance of models. For the BERT-based477

models in the baselines, we fine-tune and reserve478

the best performing models and hyperparameters479

on the test set. The models are trained using the480

cross-entropy loss function and optimized with the481

AdamW optimizer. An early stopping strategy is482

implemented to prevent overfitting during train-483

ing. All datasets are partitioned into training and484

test sets using an 8:2 split ratio. For the LLMs in485

the baselines, we perform few-shot learning with486

a basic prompt including task definitions, output487

formats and specific prediction requirements for488

all elements, with a hate speech example and a489

non-hate speech example, details can be found in490

appendix B. All experiments are conducted using a491

NVIDIA H100 Tensor Core GPU.492

4.4 Result and Discussion493

4.4.1 Main result494

Table 1 presents a comprehensive evaluation,495

MMBERT consistently outperforms the finetuned496

BERT-based baseline models and LLMs with in-497

context learning across three benchmarks, demon-498

strating superior performance and robustness in499

both standard and adversarial settings.500

On ToxiCloakCN, which features cloaking per-501

turbed hate speech, MMBERT achieves a macro F1502

score of 95.2, substantially outperforming the best503

finetuned baseline, ChineseBERT, which reaches504

86.8. Other BERT-based models such as RoBERTa505

and BERT-wwm show a further drop in perfor-506

mance. The strong results on ToxiCloakCN indi-507

cate that MMBERT is particularly effective at han-508

dling cloaking strategies such as character defor-509

mation, homophonic substitution, and code-mixing.510

Performance on ToxiCN, a standard hate speech511

benchmark, follows a similar trend. MMBERT512

achieves an F1 score of 92.2, improving upon Chi-513

neseBERT by 1.6 points and RoBERTa by 2.6514

points. The gains are consistent across accuracy,515

precision, and recall, indicating MMBERT’s well- 516

rounded classification ability. On COLD, a more 517

diverse and open-domain dataset, MMBERT again 518

achieves the highest macro F1 score of 85.8. While 519

ChineseBERT and RoBERTa remain competitive, 520

they fail to match MMBERT’s performance, partic- 521

ularly in recall, which is crucial for detecting subtle 522

or implicit hate speech. 523

In contrast, LLM APIs perform significantly 524

worse across all benchmarks. Even with prompting 525

and examples, GPT-4o and DeepSeek-v3 achieve 526

only 62.4 and 61.2 F1 on ToxiCloakCN, respec- 527

tively. LLAMA-3 and Qwen2.5 models show simi- 528

lar limitations, especially in the presence of cloaked 529

content. These results underscore the limitations 530

of few-shot prompting approaches for domain- 531

specific, adversarial tasks, and highlight the effec- 532

tiveness of MMBERT’s task-specific, multimodal 533

training. 534

Overall, the results confirm that MMBERT not 535

only outperforms existing baselines in Chinese hate 536

speech detection but also exhibits strong resilience 537

against cloaking perturbed samples, validating the 538

importance of multimodal integration for the Chi- 539

nese hate speech detection. 540

4.4.2 Routing distribution analysis 541

We analyze the average routing weight distribution 542

of different experts in MMBERT 12 MoE layers 543

under three hate speech perturbation categories in 544

the ToxiCloakCN dataset as shown in Figure 3. 545

In the non-perturbed setting, the model primar- 546

ily routes to the text expert, especially in middle 547

layers, reflecting the dominance of textual seman- 548

tics. Speech and image experts contribute con- 549

sistently, with image usage slightly increasing in 550

deeper layers. Under homophonic perturbation, the 551

model shifts toward the speech expert in early and 552

middle layers, leveraging phonetic cues to resolve 553

ambiguities introduced by homophones. Vision 554

expert assigned weight decreases slightly, while 555
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Figure 4: Ablation study evaluating the impact of each stage
in the proposed three-stage training strategy

text routing remains stable. In the code-mixing556

scenario, image experts dominate across most lay-557

ers, indicating reliance on visual context to address558

multilingual inconsistencies. Text experts are also559

more engaged in earlier layers, while speech expert560

weight declines.561

These patterns demonstrate MMBERT adaptive562

routing behavior, where expert activation is dy-563

namically adjusted based on input characteristics,564

enhancing robustness against modality-specific per-565

turbations.566

4.4.3 Ablation study567

Training strategy. We conduct an ablation study568

to evaluate the effectiveness of the progressive569

three-stage training strategy for integrating MoE570

into MMBERT. Specifically, we compare the full571

pipeline with three variants: without aligner train-572

ing stage (stage 1), without expert training stage573

(stage 2), and without both stages. All models are574

trained for 50 epochs on the ToxiCloakCN dataset575

under identical settings.576

As shown in Figure 4, the full three-stage strat-577

egy achieves the best overall performance, with the578

lowest training loss and highest validation accu-579

racy. It enables stable convergence and strong gen-580

eralization, indicating that gradual modality align-581

ment and expert specialization are both essential582

for effective multimodal learning. Without aligner583

pretraining, convergence is slower and validation584

performance is less stable, suggesting suboptimal585

cross-modal mapping. Removing expert special-586

ization also leads to reduced accuracy and higher587

loss, showing that expert-specific representation588

learning is crucial. The worst performance is ob-589

served when both stages are removed, as the model590

quickly overfits and fails to generalize. These re-591

sults demonstrate that each stage of the proposed592

Dataset
Text&Speech Text&Vision

Acc F1 Acc F1

ToxiCloakCN 91.2 91.1 87.7 86.6
ToxiCN 90.1 90.9 88.9 89.3
COLD 83.1 83.8 82.7 81.9

Table 2: Ablation study evaluating the impact of each
modality in the MMBERT framework

training strategy plays a critical role in enabling 593

MMBERT to effectively detect cloaked hate speech 594

across modalities. 595

Modality. To assess the contribution of each 596

modality in the MMBERT framework, we perform 597

an ablation study by evaluating model performance 598

by scaling with single modality, using text paired 599

with either speech or vision. As shown in Table 600

2, the text and speech combination consistently 601

outperforms the text and vision setting across all 602

three datasets. On the ToxiCloakCN dataset, the 603

F1 score reaches 91.1 when using speech com- 604

pared to 86.6 when using vision, indicating that 605

speech features are more effective in capturing ad- 606

versarial cues introduced by cloaking perturbations. 607

This trend is also observed on ToxiCN and COLD, 608

where the text and speech setting yields stronger 609

results. These findings suggest that speech con- 610

tributes more complementary information than vi- 611

sion and plays a critical role in improving robust- 612

ness in Chinese hate speech detection. 613

5 Conclusion 614

We presents MMBERT, a multimodal framework 615

for Chinese hate speech detection that effectively 616

incorporates text, speech, and vision using the MoE 617

architecture. To ensure stable integration of het- 618

erogeneous modalities, we introduce a progressive 619

training strategy that proves critical for effective op- 620

timization. Empirical results across multiple bench- 621

marks show that MMBERT achieves strong perfor- 622

mance, particularly under adversarial conditions 623

involving cloaked perturbations. Ablation studies 624

confirm the importance of both the training strategy 625

and modality fusion, with speech contributing most 626

significantly to robustness. Our findings highlight 627

the potential of task-specific multimodal modeling 628

for addressing complex language understanding 629

challenges, particularly in safety-critical domains 630

like Chinese hate speech detection. 631

8



Limitation632

While MMBERT demonstrates strong performance633

in detecting cloaked hate speech, several limita-634

tions remain. First, the current evaluation relies on635

a limited set of Chinese datasets, which does not636

fully capture the breadth and complexity of obfus-637

cation strategies used in real-world settings. The638

dataset is constrained in both scale and diversity,639

covering only a subset of character-level, phonetic,640

and visual perturbations commonly found in adver-641

sarial discourse. This restricts the model’s ability642

to generalize to more nuanced, creative, or evolv-643

ing forms of cloaked hate speech. Expanding the644

dataset to include a wider variety of perturbation645

types, sociolinguistic contexts, and user-generated646

adversarial patterns would be essential for advanc-647

ing robustness.648

Second, the current study is limited to Chinese649

language data, and it remains unclear how well the650

similar method would transfer to other languages651

or cultural environments where obfuscation strate-652

gies may differ significantly in structure and in-653

tent. Cloaking techniques can be highly language-654

specific, depending on orthographic systems, pho-655

netics, and sociocultural norms.656

Future work should consider explore cross-657

lingual adaptations and evaluate the generalizabil-658

ity of similar method in multilingual or multicul-659

tural settings660

Ethical Statement661

This work focuses on detecting hate speech on Chi-662

nese social media platforms using a multimodal663

framework. Given the sensitive nature of hate664

speech detection, we took several ethical precau-665

tions throughout the research process. All datasets666

used in this study are publicly available or released667

under terms that permit academic use. No person-668

ally identifiable information is included in the data.669

We acknowledge the potential risks associated670

with misuse of automated hate speech detection sys-671

tems, such as censorship or the marginalization of672

certain user groups. To mitigate this, our model is673

designed for research purposes only and we do not674

advocate its direct deployment without thorough675

evaluation by domain experts and consideration of676

social and legal implications.677

We also recognize that hate speech is a socially678

and culturally contextual phenomenon. While our679

model is tailored for Chinese-language content, we680

emphasize the importance of local expertise when681

interpreting results or extending this work to other 682

languages or communities. 683

Bias mitigation and fairness were considered in 684

model evaluation. To address this, we adopt diverse 685

and representative datasets covering different forms 686

of hate speech related to race, gender, region, and 687

LGBTQ+ communities. 688
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A MMBERT setting884

MMBERT is built upon the BERT-base-chinese4885

encoder, which serves as the backbone for textual886

representation. For modality-specific feature ex-887

traction, we employ a vision encoder based on888

chinese-clip-vit-base-patch165 and a speech889

4https://huggingface.co/bert-base-chinese
5https://huggingface.co/OFA-Sys/chinese-clip-vit-base-

patch16

encoder based on whisper-base6. Each modal- 890

ity is passed through a dedicated aligner, imple- 891

mented as a lightweight two-layer MLP, to project 892

the modality-specific features into the BERT em- 893

bedding space, thereby forming unified token rep- 894

resentations. These representations are processed 895

by modified BERT layers in which the original 896

feed-forward networks are replaced by Mixture- 897

of-Experts (MoE) layers. Each MoE layer con- 898

tains modality-specific experts and a shared self- 899

attention mechanism, with a context-aware routing 900

function that dynamically assigns token sequences 901

to appropriate experts. A classification head is ap- 902

plied to the final output to produce predictions. 903

Training is performed in three progressive stages. 904

In stage 1, modality aligners are pretrained using 905

synthetic parallel data to align visual and speech 906

features with their corresponding textual embed- 907

dings. The learning rate in this stage is set to 1e-3. 908

In stage 2, modality-specific experts are trained in- 909

dependently using cross-modal supervision, while 910

aligners continue to adapt. During this phase, the 911

learning rate for the aligners is maintained at 1e-3, 912

the text expert at 5e-6, and the speech and vision 913

experts at 5e-5. In stage 3, all components are 914

jointly fine-tuned on the multimodal Chinese hate 915

speech detection task using a cross-entropy loss. 916

The learning rate in this final stage is set to 5e-4. 917

To promote balanced utilization across experts, we 918

incorporate an auxiliary load-balancing loss into 919

the MoE layers, with a weighting coefficient of 920

1e-2. The model is trained for 50 epochs using the 921

AdamW optimizer and a linear learning rate de- 922

cay schedule. All experiments are conducted using 923

PyTorch on NVIDIA A100 GPUs. 924

B LLM evaluation prompt template 925

The basic prompt of LLM for Chinese hate speech 926

detection is shown in Figure 5 927

6https://huggingface.co/openai/whisper-base
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任务定义：
您的任务是将中文文本分类为“仇恨言论”或“非仇恨言论”。仇恨言论的定义是基于种族、民族、国籍、宗教、性取
向、性别、残疾或严重疾病等属性，攻击或贬低某个群体的语言。
输出格式：
请只输出以下标签之一：`仇恨言论` 或 `非仇恨言论`。
预测要求：
仔细分析提供的中文文本，判断其是否符合仇恨言论的定义。考虑语言针对的对象以及攻击或贬低内容的性质。
示例：
     示例 1 (仇恨言论)：
          输入：这群人真是社会的败类，应该被清除！
          输出：仇恨言论
     示例 2 (非仇恨言论)：
          输入：今天天气真好。
          输出：非仇恨言论
现在，请对以下文本进行分类：
      输入：[在此插入待分类的中文文本] 
      输出：

Chinese Prompt Template

Task Definition

Your task is to classify a Chinese text as either "Hate Speech" or "Non-Hate Speech". Hate speech is defined as 

language that attacks or degrades a group based on attributes such as race, ethnicity, nationality, religion, sexual 

orientation, gender, disability, or serious illness.

Output Format

Please output only one of the following labels: Hate Speech or Non-Hate Speech.

Prediction Instructions

Carefully analyze the given Chinese text and determine whether it meets the definition of hate speech. Consider 

the target of the language and the nature of any attacking or degrading content.

Examples

     Example 1 (Hate Speech):

          Input: 这群人真是社会的败类，应该被清除！
          Output: Hate Speech

     Example 2 (Non-Hate Speech):

          Input: 今天天气真好。
          Output: Non-Hate Speech

Now, please classify the following text:

     Input: [Insert Chinese text to be classified here]

     Output:

English Prompt Template

Figure 5: Chinese and English version of the LLM Chinese hate speech detection evaluation template

12


	Introduction
	Related Work
	Cloaking Perturbations in Chinese Hate Speech
	Enhancing Chinese Language Modeling through Multimodal Pretraining
	Scaling Multimodal Language Models with MoE Architectures

	Methodology
	Overview
	MMBERT Architecutre
	MMBERT three-stage training strategy

	Experiment
	Baselines
	Dataset
	Evaluation method
	Result and Discussion
	Main result
	Routing distribution analysis
	Ablation study


	Conclusion
	MMBERT setting
	LLM evaluation prompt template

