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ABSTRACT

There has been significant recent progress in the area of unsupervised skill dis-
covery, utilizing various information-theoretic objectives as measures of diversity.
Despite these advances, challenges remain: current methods require significant
online interaction, fail to leverage vast amounts of available task-agnostic data
and typically lack a quantitative measure of skill utility. We address these chal-
lenges by proposing a principled offline algorithm for unsupervised skill discovery
that, in addition to maximizing diversity, ensures that each learned skill imitates
state-only expert demonstrations to a certain degree. Our main analytical contribu-
tion is to connect Fenchel duality, reinforcement learning, and unsupervised skill
discovery to maximize a mutual information objective subject to KL-divergence
state occupancy constraints. Furthermore, we demonstrate the effectiveness of our
method on the standard offline benchmark D4RL and on a custom offline dataset
collected from a 12-DoF quadruped robot for which the policies trained in simu-
lation transfer well to the real robotic system.1

Figure 1: Diverse Offline Imitation (DOI) maximizes a variational lower bound on the mutual information be-
tween latent skills z and states s visited by associated skill-conditioned policies πz , subject to a KL-divergence
constraint to limit the deviation of the state occupancy dz(s) of each latent skill z from that of an expert dE(s).

1 INTRODUCTION

Recent advancements in reinforcement learning (RL) have included substantial progress in unsuper-
vised skill discovery, aiming to empower autonomous agents with the capability to acquire a diverse
set of skills directly from their environment, without relying on predefined human-engineered re-
wards or demonstrations. These methods have the potential to revolutionize the way RL agents
learn to solve complex tasks. The growing interest in unsupervised skill discovery has led to various
approaches, typically rooted in information-theoretic concepts, including empowerment (Klyubin
et al., 2005; Mohamed and Jimenez Rezende, 2015; Eysenbach et al., 2019), information bottle-
neck (Tishby et al., 1999; Goyal et al., 2019; Kim et al., 2021a) and information gain (Houthooft

1Project website with videos: https://tinyurl.com/diversity-via-duality
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et al., 2016; Strouse et al., 2022; Park and Levine, 2023). Despite these advancements, there re-
mains a significant challenge. Current methods demand substantial online interaction with the envi-
ronment, making exploration in high-dimensional state-action spaces inefficient. Although Zahavy
et al. (2022) introduced constraints to enhance skill performance and narrow the exploration space
by incentivizing diverse skills to meet a certain utility measure, their approach does not eliminate
the need for considerable online interaction with the environment. Meanwhile, there have been sig-
nificant recent advances in large-scale data collection (Rob, 2020; Walke et al., 2023; Brohan et al.,
2023) and in the development of scalable and sample-efficient offline RL algorithms that leverage
diverse behaviors of pre-collected experience. However, these approaches struggle with well-known
challenges, including off-policy evaluation and the out-of-distribution problem, which have been
studied extensively in previous work (Levine et al., 2020; Prudencio et al., 2022).

In this work, we address the aforementioned challenges by introducing a novel problem formulation
and complementing it with the first principled “offline” RL algorithm for unsupervised skill discov-
ery that, in addition to maximizing diversity, ensures that each learned skill imitates state-only expert
demonstrations to a certain degree. More specifically, we consider a problem formulation with two
datasets: a large one with diverse state-action demonstrations and another much smaller one with
state-only expert demonstrations. This setting is particularly valuable in robotics scenarios where
expert demonstrations are limited and the domain of the expert may be different from that of the
agent, such as in human demonstrations. Another potential application is to enhance the realism of
computer games by creating an immersive experience of interacting with non-player characters, each
behaving in a slightly different style, while all partially imitating the behavior of a human expert.

We formulate the problem as a Constrained Markov Decision Process (CMDP) (Altman, 1999;
Szepesvári, 2020) that seeks to maximize diversity through a mutual information objective, sub-
ject to Kullback-Leibler (KL) divergence state occupancy constraints ensuring that each skill im-
itates state expert demonstrations to a certain degree. The resulting CMDP has convex objective
and constraints, making the optimization problem intractable. We adopt a tractable relaxation ap-
proach consisting of an alternating scheme that maximizes a variational lower bound on mutual
information, and to handle the constraints it applies Lagrange relaxation. Our method, Diverse Of-
fline Imitation (DOI), overcomes the off-policy evaluation by leveraging the Fenchel-Rockafellar
duality in RL (Nachum and Dai, 2020; Kim et al., 2022; Ma et al., 2022) to connect a dual op-
timal value solution (computed using offline samples) with primal optimal state-action occupancy
ratios. These ratios serve as importance weights for offline training of a skill-conditioned policy,
skill-discriminator, KL-divergence estimators, and Lagrange multipliers. We demonstrate the effec-
tiveness of our method on the standard offline benchmark D4RL (Fu et al., 2020) and on a custom
offline dataset collected from a 12-DoF quadruped robot Solo12 (Léziart et al., 2021). In addition,
we show that DOI on simulation data transfers well to a real robot system.

2 RELATED WORK

In the context of skill discovery Achiam et al. (2018) and Campos et al. (2020) showed that methods
like DIAYN (Eysenbach et al., 2019) can struggle to learn large numbers of skills and have a poor
coverage of the state space. Strouse et al. (2022) observed that when a novel state is visited, the dis-
criminator lacks sufficient training data to accurately classify skills, which results in a low intrinsic
reward for exploration. They address this by introducing an information gain objective (involving
an ensemble of discriminators) as a bonus term. Kim et al. (2021b) gave a skill discovery approach
based on an information bottleneck that leads to disentangled and interpretable skill representations.
Park et al. (2022; 2023) proposed a Lipschitz-constrained skill discovery method based on a distance-
maximizing and controllability-aware distance function to overcome the bias toward static skills and
to allow the agent to learn complex and far-reaching behaviors. Sharma et al. (2020) developed a
method that simultaneously discovers predictable skills and learns their dynamics. In a follow-up
work, Park and Levine (2023) addresses the problem of errors in predictive models by learning a
transformed MDP, whose action space contains only easy to model and predictable actions. These
works provide RL algorithms for unsupervised skill discovery that require online interaction with
the environment and do not impose utility measures on the learned skills. In contrast, DOI gives a
principled offline algorithm for maximizing diversity under imitation constraints.
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A large body of research has focused on successor features (Dayan, 1993; Barreto et al., 2016), a
powerful technique in RL for transfer of knowledge across tasks by capturing environmental dy-
namics, particularly promising for skill discovery when coupled with variational intrinsic motiva-
tion (Gregor et al., 2017; Barreto et al., 2018; Hansen et al., 2020) to enhance feature controllability,
generalization, and task inference. In contrast to our work, these approaches do not impose perfor-
mance constraints on the learned skills. Zahavy et al. (2022) cast the task of learning diverse skills,
each achieving a near-optimal performance with respect to a given reward, into a constrained MDP
setting with a physics-inspired diversity objective based on a minimum ℓ2 distance between the suc-
cessor features of different skills. However, this approach requires significant online interaction with
the environment to learn the skills.

Numerous practical algorithms for offline RL have been proposed (Levine et al., 2020; Prudencio
et al., 2022), including methods based on advantage-weighted behavioral cloning (Nair et al., 2020;
Wang et al., 2020), conservative strategies to stay close to the original data distribution (Kumar et al.,
2020; Cheng et al., 2022) and using only on-data samples (Kostrikov et al., 2022; Xu et al., 2023).
While these methods excel at learning a policy that maximizes a fixed reward, they are not directly
applicable in our setting, which has a non-stationary reward that depends on: i) the log-likelihood of
a skill discriminator, and ii) Lagrange multipliers. In addition, these techniques cannot be used to i)
train a skill discriminator and ii) estimate a KL divergence offline.

Naive importance sampling approaches for off-policy estimation are known to suffer from un-
bounded variance in the infinite horizon setting, a problem known in the literature as “the curse of
horizon”. Liu et al. (2018); Mousavi et al. (2020) addressed this challenge by providing theoretical
foundations and a principled off-policy algorithm, using a backward Bellman operator, that avoids
exploding variance by applying importance sampling to state-visitation distributions, and by provid-
ing practical solutions in Reproducing Kernel Hilbert Spaces. An alternative research direction in
off-policy estimation, referred to as “Distribution Correction Estimation (DICE)”, has introduced
innovative techniques, with Nachum et al. (2019a) mitigating variance with importance sampling,
Nachum et al. (2019b) enabling policy gradient from off-policy data without importance weighting,
Kim et al. (2022) stabilizing offline imitation learning with imperfect demonstrations, Zhang et al.
(2020) improving density ratio estimation, Dai et al. (2020) providing high-confidence off-policy
evaluation. Subsequently, Xu et al. (2021) applied this approach to offline RL and demonstrated its
effectiveness in continuous control tasks. Our work uses a DICE-based off-policy approach similar
to OptiDICE (Lee et al., 2021; 2022) for estimating importance ratios, while considering a con-
strained formulation with a mutual information objective and KL-divergence imitation constraints.

3 PRELIMINARIES

We utilize the framework of Markov decision processes (MDPs) (Puterman, 2014), where an MDP
is defined by the tuple (S,A,R,P, ρ0, γ) denoting the state space, action space, reward mapping
R : S × A 7→ R, stochastic transition kernel P(s′|s, a), initial state distribution ρ0(s) and discount
factor γ. A policy π : S 7→ ∆(A) defines a probability distribution over the action space A
conditioned on the state, where ∆(·) stands for the probability simplex.

Given a policy π, the corresponding state-action occupancy measure dπ(s, a) is defined by (1 −
γ)

∑∞
t=0 γ

tPr[st = s, at = a | s0 ∼ ρ0, at ∼ π(·|st), st+1 ∼ P(·|st, at)] and its associated state
occupancy dπ(s) is given by marginalizing over the action space

∑
a∈A d

π(s, a).

In the skill discovery setting, z ∼ p(Z) denotes a fixed latent skill on which we condition a policy
πz : S × Z 7→ ∆(A). We will treat p(Z) as a categorical distribution over a discrete set Z of |Z|
many distinct indicator vectors in R|Z|. The skill-conditioned policy πz induces a state occupancy
denoted by dz(s) := dπz (s), and when it is clear from the context we will refer to dz(s) as a “skill”.

We consider an offline setting with access to the following datasets: i) DE sampled from an expert
state occupancy dE(S); and ii) DO sampled from a state-action occupancy dO(S,A) generated by
a mixture of behaviors. Our analysis makes use of the following coverage assumption on state
occupancies.

Assumption 3.1 (Expert coverage). We assume that dE(s) > 0 implies dO(s) > 0.
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4 METHOD

Given an expert and a coverage dataset as above, we aim to solve offline the constrained optimization
problem

max
{dz(S)}z∈Z

I(S;Z) (1)

subject to DKL (dz(S)||dE(S)) ≤ ϵ ∀z, (2)

where I(S;Z) denotes the mutual information between states and skills. Henceforth, we shall make
use of color coding to highlight the diversity signal in blue and the imitation signal in orange. The
preceding problem formulation and our algorithmic framework can be easily extended to capture:
i) objectives in (1) that combine conditional mutual information (c.f. DADS in (Sharma et al.,
2020)) and information gain (c.f. DISDAIN in (Strouse et al., 2022)); and ii) general f -divergence
constraints in (2), see Nachum and Dai (2020); Ma et al. (2022). We leave the study of these variants
for future work.

Since maximizing the mutual information is generally intractable, in line with previous work (Eysen-
bach et al., 2019) we assume that the latent skills are sampled uniformly at random, i.e., p(z) = 1

|Z| ,
and as a trackable surrogate we consider instead the following variational lower bound

I (S;Z) ≥ Ep(z),dz(s) [log q(z|s)] +H (p(z)) =
∑
z

Edz(s)

[
log (|Z|q(z|s))

|Z|

]
. (3)

Here with q(z|s) we denote a skill-discriminator tasked with distinguishing between latent skills.

Ma et al. (2022) proposed an offline algorithm (SMODICE) that on input an expert dataset DE ∼
dE(S) and a coverage dataset DO ∼ dO(S,A) such that DE ⊂ States[DO], trains a policy πẼ
which optimizes the problem

min
π

DKL (d
π(S)||dE(S)) , (4)

and also outputs ratios ηẼ(s, a) = dπẼ
(s, a)/dO(s, a) for every state-action pair (s, a) ∈ DO.

An important observation is that the state constraints (2) can be reduced to state-action constraints,
by training an expert policy πẼ , which optimizes eq. (4). More specifically, for each latent skill z
we replace the state constraint (2) with the following state-action constraint

DKL

(
dz(S,A)||dẼ(S,A)

)
≤ ϵ, (5)

where dẼ(s, a) denotes the state-action occupancy dπẼ
(s, a) induced by the expert policy πẼ .

We focus on a reduction of CMDPs to MDPs using gradient-based techniques, known as Lagrangian
methods (Borkar, 2005; Bhatnagar and Lakshmanan, 2012; Tessler et al., 2019). In contrast to prior
work on CMDP, which has focused primarily on linear objectives and constraints, we consider the
nonlinear setting with convex objectives and constraints. More specifically, we seek to maximize
the right-hand side of eq. (3) subject to eq. (5). Solving this problem is equivalent to

max
dz(s,a)
q(z|s)

min
λ≥0

∑
z

Edz(s)

[
log (|Z|q(z|s))

|Z|

]
+
∑
z

λz
[
ϵ−DKL

(
dz(S,A)||dẼ(S,A)

)]
, (6)

where with λz we denote the Lagrange multiplier corresponding to latent skill z.

4.1 APPROXIMATION SCHEME

We use a popular heuristic, known in the literature as alternating optimization, to approximately
compute a local optimum of Problem (6). More precisely, the method alternates between optimizing
each model while holding all others fixed, and iteratively refines the solution until convergence
is reached or a stopping criterion is met. Furthermore, as we can guarantee in practice that the
Lagrange multipliers λ are always positive, we consider Problem (6) with λ > 0, that is

max
dz(s,a)
q(z|s)

min
λ>0

∑
z

λz

{
ϵ+ Edz(s,a)

[
Rλ

z (s, a)
]
−DKL (dz(S,A)||dO(S,A))

}
, (7)
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Figure 2: Illustration of Algorithm 1. We compute expert importance ratios ηẼ(s, a) by running SMODICE
on the offline datasets DE and DO . These expert ratios are then used in the alternating scheme described in
Subsec. 4.1 to obtain the importance ratios ηz(s, a) (with support in DO) for each skill z. Specifically, the skill-
ratios ηz(s, a) are computed by a DICE-like offline policy evaluation algorithm on input a rewardRµ

z (s, a) that
balances skill diversity (skill-discriminator q(z|s)) and expert imitation (importance ratios ηẼ(s, a)).

where

Rλ
z (s, a) :=

1

λz︸︷︷︸
Constraint Violation

log (q(z|s)|Z|)
|Z|︸ ︷︷ ︸

Skill Diversity

+ log ηẼ(s, a)︸ ︷︷ ︸
Expert Imitation

. (8)

The reward in (8) is derived in Supp. B and relies on the following equality (see Supp. C.3)
DKL(dz(S,A)||dẼ(S,A)) = DKL(dz(S,A)||dO(S,A)) − Edz(s,a)[ log

dẼ(s,a)

dO(s,a) ] and the definition
of ηẼ(s, a) = dẼ(s, a)/dO(s, a).

Intuitively, the reward Rλ
z (s, a) balances between diversity and KL-closeness to the expert state-

action occupancy. The Lagrange multiplier λz scales down the log-likelihood of the skill-
discriminator q(z|s), effectively reducing the diversity signal, when the state-action occupancy
dz(S,A) violates the KL-divergence constraint (5), and vice versa. Each term in the reward (8)
involves a separate optimization procedure, which will be described in the next section.

4.2 APPROXIMATION PHASES

Using the alternating optimization scheme, Algorithm 1 decomposes into the following three opti-
mization phases. In PHASE 1, we train a value function V ⋆

z , ratios ηz(s, a) and a skill-conditioned
policy πz . In PHASE 2, we train a skill-discriminator q(z|s). Then in PHASE 3, we compute a KL
constraint estimator ϕz and update accordingly the Lagrange multipliers λz . In addition, we perform
a preprocessing phase to compute the expert ratios ηẼ(s, a) by invoking the SMODICE algorithm.

4.2.1 PHASE 1

With fixed skill-discriminator q(z|s) and Lagrange multipliers λ > 0, Problem (7) becomes

max
{dz(s,a)}z∈Z

∑
z

λz

{
Edz(s,a)

[
Rλ

z (s, a)
]
−DKL (dz(S,A)||dO(S,A))

}
, (9)

or equivalently for every skill z:
max

dz(s,a)≥0
Edz(s,a)

[
Rλ

z (s, a)
]
−DKL (dz(S,A)||dO(S,A))

subject to
∑

a dz(s, a) = (1− γ)ρ0(s) + γT d(s) ∀s, (10)
where we denote with T the transition operator: T d(s′) =

∑
s,a P(s′|s, a)d(s, a).

Assumption 4.1 (Strict Feasibility). We assume there exists a solution such that the constraints (10)
are satisfied and d(s, a) > 0 for all states-action pairs (s, a) ∈ S ×A.

Using Lagrange duality, Assum. 4.1 (which implies strong duality) and the Fenchel conjugate (see
Supp. A), Nachum and Dai (2020, Sec. 6) and Ma et al. (2022, Theorem 2) showed that Problem 10
shares the same optimal value as the following optimization problem

V ⋆ = argmin
V (s)

(1− γ)Es∼ρ0
[V (s)] + logEdO(s,a) exp

{
Rλ

z (s, a) + γT V (s, a)− V (s)
}
, (11)
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where T V (s, a) := EP(s′|s,a)V (s′). Moreover, the primal optimal solution is given by

ηz(s, a) :=
d⋆z(s, a)

dO(s, a)
= softmax

(
Rλ

z (s, a) + γT V ⋆
z (s, a)− V ⋆

z (s)
)
. (12)

These ratios ηz(s, a) are then used to design an offline importance-weighted sampling procedure
that, for an arbitrary function f , satisfies

Ep(z)Ed⋆
z(s,a)

[f(s, a, z)] = Ep(z)EdO(s,a)[ηz(s, a)f(s, a, z)]. (13)

Afterwards, the optimal skill-conditioned policy π⋆
z is trained offline using a weighted behavioral

cloning, which is obtained by setting f(s, a, z) = log(πz(a|s)) and maximizing the RHS of eq. (13)
over all skill-conditioned policies πz . In practice, gradient descent is used for optimization.

4.2.2 PHASE 2

We now give an offline procedure for training a skill-discriminator q(z|s), which takes as input ratios
ηz(s, a) of a skill-conditioned policy π⋆

z . The proof is presented in Supp. C.2.
Lemma 4.2. Given ratios ηz(s, a), using eq. (13) applied with f(s, a, z) = log(q(z|s)), we can
compute offline an optimal skill-discriminator q⋆(z|s). In particular, we optimize by gradient de-
scent the following optimization problem maxq(z|s) Ep(z)EdO(s,a) [ηz(s, a) log (q(z|s))].

The skill-conditioned policy π⋆
z (PHASE 1) and the skill-discriminator q⋆ (PHASE 2), allow us to

maximize offline the variational lower bound in eq. (3) and thus skill diversity. It remains to estimate
possible constraint violations in eq. (5) and to update the Lagrange multipliers accordingly.

4.2.3 PHASE 3

With fixed skill-discriminator q⋆(z|s) and skill-conditioned policy π⋆
z(s), Problem (7) reduces to

minλ>0

∑
z λz

[
ϵ−DKL

(
d⋆z(S,A)||dẼ(S,A)

)]
. We will optimize the Lagrange multipliers by

gradient descent. To this end, we now give an offline estimator of the KL-divergence term. The
proof is presented in Supp. C.3.
Lemma 4.3. Given skill-conditioned policy ratios ηz(s, a) and expert ratios ηẼ(s, a), using
eq. (13) applied with f(s, a, z) = log(ηz(s, a)/ηẼ(s, a)), we can compute offline an estimator
of DKL

(
d⋆z(S,A)||dẼ(S,A)

)
which is given by ϕz := EdO(s,a)[ηz(s, a) log(ηz(s, a)/ηẼ(s, a))].

We note that the ratios ηz(s, a) and ηẼ(s, a) are computed only on state-action pairs within the
offline dataset DO. Furthermore, in practice, we ensure that these ratios are strictly positive, so that
the KL estimator ϕz is well defined and bounded.

5 ALGORITHM

Our optimization method consists of three phases, each of which optimizes a specific model and
fixes the remaining ones. It is important to emphasize that in contrast to prior work, our problem
formulation considers an optimization problem with constraints. Furthermore, the reward function in
eq. (8) is non-stationary, since it depends on the bounded Lagrange multipliers that balance diversity
(log q(z|s)) and expert imitation (log ηẼ(s, a)). This has significant algorithmic implications, as it
requires solving a sequence of standard RL problems, each of which admits offline policy evaluation.

To smooth the transition of the reward signal between successive iterations, we enforce a slow
change of the Lagrange multipliers. More specifically, we use the technique of bounded Lagrange
multipliers (Stooke et al., 2020; Zahavy et al., 2022), which applies a Sigmoid transformation
λ = σ(µ) component-wise to unbounded variables µ ∈ R|Z|, so that the effective reward is a
convex combination of a diversity term and an expert imitation term. In practice, this transformation
ensures that λ > 0. Hence, the reward for each latent skill z becomes

Rµ
z (s, a) := (1− σ(µz))

log (q⋆(z|s)|Z|)
|Z|

+ σ(µz) log ηẼ(s, a). (14)

We now present the resulting multi-phase optimization procedure in Algorithm 1. For a practical
implementation, we leverage the power of neural networks and deep learning techniques for accurate
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function approximation. More specifically, we train an expert policy πẼ , a skill-conditioned policy
{πz}z∈Z and a value function {Vz}z∈Z . While practically convenient, this means that each phase
of Algorithm 1 is only approximately solved. In practice, we do not solve the optimization problem
to optimality in each phase, but rather perform a few gradient descent steps.

Algorithm 1 Diverse Offline Imitation (DOI)
Input: a state-only expert dataset DE ∼ dE(S) and a state-action offline dataset DO ∼ dO(S,A)
Pre-compute a state-discriminator c⋆ : S → (0, 1) via optimizing the following objective with the gradient
penalty in (Gulrajani et al., 2017) minc EdE(s)[log c(s)] + EdO(s)[log(1− c(s))]

Apply Phase 1 with reward R(s, a) = log c⋆(s)
1−c⋆(s)

to compute ratios ηẼ(s, a) :=
d
Ẽ
(s,a)

dO(s,a)
for all s, a ∈ DO

Repeat until convergence:
Phase 1. (Fixed Lagrange multipliers σ(µ) and skill-discriminator values q⋆(z|s))
For each latent skill z:

compute a value function V ⋆
z optimizing eq. (11) with reward Rµ

z (s, a) in eq. (14)
compute ratios ηz(s, a) :=

d⋆z(s,a)

dO(s,a)
= softmax (Rµ

z (s, a) + γT V ⋆
z (s, a)− V ⋆

z (s)) for all s, a ∈ D
train a skill-conditioned policy π⋆

z = argmaxπz EdO(s,a)[ηz(s, a) log πz(a|s)]

Phase 2. (Fixed ratios ηz(s, a) and bounded Lagrange multipliers σ(µ))
Train a skill-discriminator q⋆ = argmaxq(·|s) Ep(z)EdO(s,a)[ηz(s, a) log q(z|s)]

Phase 3. (Fixed ratios ηẼ(s, a) and ηz(s, a))
Compute for each latent skill z an estimator ϕz := EdO(s,a)[ηz(s, a) log(ηz(s, a)/ηẼ(s, a))]
Optimize the loss minµ

∑
z σ(µz)(ϵ− ϕz)

6 EXPERIMENTS

For evaluation of our method we consider 12 degree-of-freedom quadruped robot, SOLO12 (Grim-
minger et al., 2020), on a simple locomotion task in both simulation and the real system. We provide
further evaluation on the ANT, WALKER2D, HALFCHEETAH and HOPPER environments from the
D4RL benchmark (Fu et al., 2020).

For the SOLO12 evaluation we collected domain-randomized offline and expert data from simulation
in the Isaac Gym (Makoviychuk et al., 2021) using saved checkpoints obtained by training the robot
to track a certain velocity of the base with a version of DOMiNO (Zahavy et al., 2022). We defer
the training procedure of the policies used for data collection to the Supp. E. The expert dataset
was collected by using the best deterministic skill-conditioned policy from the last checkpoint of the
training procedure, which was trained to track forward velocity only. In contrast, the offline dataset
was acquired by employing stochastic policies gathered from various checkpoints throughout the
training of the expert, featuring multiple latent skills. More than half of the offline dataset was
collected by a random Gaussian policy. In line with previous approaches by Kim et al. (2022) and
Ma et al. (2022), our practical implementation aims to fulfill the expert coverage Assum. 3.1. To
achieve this, we create the coverage dataset DO by adding a small number of expert trajectories to
the offline dataset, resulting in an (unlabeled) expert fraction of 1/160 in DO. To ensure that our
algorithm does not have access to labeled expert actions, we discard them from the expert dataset.
The resulting expert dataset DE is used to learn a state classifier, in order to compute the ratios
ηẼ(s, a). We trained the policy for 350 steps, where each step involves the stages described in
Sec. 5. In each stage, we execute 200 epochs of batched training over the data. For the computation
of the skill-ratios ηz(s, a), we choose a projection Π of the expert state (see Supp. I) that yields
3-dimensional planar and angular velocities of the robot’s base in the base frame.

We have found that fitting the skill-discriminator q(z|s) is prone to collapse to the uniform distri-
bution. To alleviate this issue, in addition to the variational lower bound objective (3), we add the
DISDAIN information gain term, proposed in (Strouse et al., 2022). This bonus term is an entropy-
based disagreement penalty that estimates the epistemic uncertainty of the skill-discriminator, and
is implemented in practice by an ensemble of randomly initialized skill-discriminators. Due to the
high initial disagreement on unvisited states, this intrinsic reward provides a strong exploration sig-
nal and leads to the discovery of more diverse behaviors. Intuitively, for states with small epistemic
uncertainty, the skill-discriminator (averaged over the ensemble members) should reliably discrimi-
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nate between latent skills, thus making the intrinsic reward of the skill-discriminator’s log-likelihood
more accurate. In all figures, we denote with DOIϵ the different constraint levels. We defer further
experiment details to Supp. K.

Skills

(a)

DOI4 DOI2 DOI1 SMODICE†

0 50 100 150 200 250 300 350

# steps

0.0

0.5

1.0

1.5

2.0

E‖
η z

1
−
η z

2
‖ 1

(b)

Figure 3: Data points separation by importance ratios ηz(s, a), given different levels of ϵ in SOLO12. (a)
Distribution of importance ratios ηz(s, a) over the offline dataset DO for different skills with DOI4 (ϵ = 4)
(upper) and a skill-conditioned variant of SMODICE (lower). (b) Average ℓ1 distance of ratios ηz belonging to
different skills, depending on ϵ. The higher the value of ϵ, the greater the ℓ1 distance.

As a baseline, we consider a skill-conditioned variant of (Ma et al., 2022), denoted SMODICE†,
which does not have access to the skill-discriminator q(z|s). This is equivalent to DOI with fixed
σ(µz) = 1 in the reward eq. (14). In Figure 3, we measure the state-action occupancy dz(s, a)
for each latent skill z through the proxy of importance ratios ηz(s, a), for different values of ϵ. As
expected, a higher value of ϵ increases diversity, resulting in different importance ratios per skill for
individual data points. We aggregate this difference by computing an average across different skills
ℓ1 norm of the importance ratios E‖ηzi − ηzj‖1 and report it in Figure 3. We note that the looser the
constraint (lighter color), the easier it is to “diversify” in the sense of ηz . In Figure 3a, we observe
diversification across the dataset assignment to skills when using DOI, whereas training an ensemble
of skills with only expert imitation reward (i.e., σ(µz) = 1) collapses to nearly the same importance
per skill per data point. Figure 3b shows the average ℓ1 distance between skill importance vectors ηz
over the dataset for ϵ ∈ {0.0, 1.0, 2.0, 4.0} (lighter color indicates higher ϵ). Moreover, the tighter
the constraint (smaller ϵ), the smaller the difference between the different skill importance ratios.

We have further evaluated diversity on the Monte Carlo estimates of the expected successor feature
of the initial state, based on 30 policy rollouts per skill. The γ-discounted successor features (SFs)
for state s are defined as ψz(s) = Edz(s)[ϕ(s)], where dz(s) is the γ-discounted state occupancy for
a skill policy πz . With slight abuse of notation, we define ψz = Eρ0(s)[ψz(s)], the expected SFs over
the initial state distribution. As a diversity metric, we take the average over different skills ℓ2 norm
between SFs, i.e., E‖ψz1 − ψz2‖2. The results are presented in Figure 4 and show an alignment
with the proxy diversity metric, i.e. the separation of the data indicated by the importance ratios
ηz shows a higher distance between the expected SFs ψz . In terms of performance, DOI is able to
achieve a forward velocity comparable to the expert (see Figure 4a) while diversifying the behavior
in terms of base height h (Figure 4b). We also observed that the multipliers σ(µz) are non-zero for
all skills, indicating that the constraint is active. In addition, they stabilize at reasonable levels as
training progresses, which we show in Supp. G for both the SOLO12 and ANT.

For D4RL environments, we consider the case where we have offline data generated from a random
policy mixed with a small amount of expert trajectories.2. Figure 5 shows the results for both the
expected average SFs distance (Figure 5a) and the average importance ratio ηz distance across skills
(Figure 5b). We normalize the state feature ϕ(s) when comparing ψz across environments in Fig-
ure 5a. As expected, there is a trade-off between the average skill return and the respective diversity
metric across skills in most cases. Furthermore, the diversity distance that is more controllable by
ϵ corresponds to the importance ratios ηz . This observation is in line with expectations, since ηz is
part of the constraint. Nonetheless, in Figure 5a we show that ϵ retains some controllability over

2The same setting was considered by Ma et al. (2022).
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Figure 4: Average ℓ2 distance between MC estimated successor features ψz of different skills (a), return r as
% of expert return and standard deviation of base height stdz(h) (b), depending on ϵ for the SOLO12.

diversity. The WALKER2D is particularly sensitive to relaxation of the occupancy constraint with
respect to performance. We hypothesize that this is due to the fact that the space of policies that
achieve a stable gait is very restrictive, resulting in a significant loss of task return for even slight
skill diversification. In contrast, the ANT exhibits high stability, with multiple clusters achieving
close to expert performance in terms of r. These results are also consistent with SMODICE expert
policies used for computing ηẼ (see Supp. F).
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Figure 5: Results on D4RL environments with offline data collected from a random policy for ϵ = 0.0, 0.5,
1.0, 2.0, 4.0. In figure (a) we observe the tradeoff between average skill return and average successor features
distance over skills. In figure (b), we report the tradeoff w.r.t. average ℓ1 distance of importance ratios ηz .

7 CONCLUSION

We proposed DOI, a principled offline RL algorithm for unsupervised skill discovery that, in addition
to maximizing diversity, ensures that each learned skill imitates state-only expert demonstrations to
a certain degree. Our main analytical contribution is to connect Fenchel duality, reinforcement
learning, and unsupervised skill discovery to maximize a mutual information objective subject to
KL-divergence state occupancy constraints. We have shown that DOI can diversify offline policies
for a 12-DoF quadruped robot (in simulation and in reality) and for several environments from the
standard D4RL benchmark in terms of both ℓ2 distance of expected successor features and ℓ1 dis-
tance of importance ratios, which is visible from the data separation induced by ηz(s, a) amongst
skills. The importance ratio distance, computed offline, is a robust indicator of diversity, which
aligns with the online Monte Carlo diversity metric of expected successor features. The resulting
skill diversity naturally entails a trade-off in task performance. We can control the amount of di-
versity via a KL constraint level ϵ, which ensures that different skills remain close to the expert in
terms of state-action occupancy, which also indirectly controls task performance loss. A promising
direction for future research is to impose constraints on the value function of each skill to ensure
near-optimal task performance.
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8 REPRODUCIBILITY

For implementation of DOI we have used the PyTorch autograd framework. For the SOLO12 train-
ing we made use of Isaac Gym for data collection and evaluation of the learned skill policies. For
the D4RL experiments we evaluated the policies using the Mujoco v2.1 rigid body simulator. The
training of the skill policies with evaluation and pre-training of the SMODICE expert ratios takes
about 4 hours on an NVIDIA GeForce RTX 4080 graphics card with a batch size of 512. We plan
on opensourcing the code and the SOLO12 data post conference acceptance. The SOLO12 robot has
been developed as part of the Open Dynamic Robot Initiative (Grimminger et al., 2020), and a full
assembly kit is available at a cheap price in order to reproduce the real system experiments from
Supp. H.
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Supplementary for Diverse Offline Imitation
Learning

A FENCHEL CONJUGATE

The Fenchel conjugate f⋆ of a function f : Ω → R is given by

f⋆(y) = sup
x∈Ω

〈x, y〉 − f(x), (S1)

where 〈·, ·〉 denotes the inner product defined on a space Ω. For any proper, convex and lower
semi-continuous function f the following duality statement holds f⋆⋆ = f , that is

f(x) = sup
y∈Ω⋆

〈x, y〉 − f⋆(y), (S2)

where Ω⋆ denotes the domain of f⋆. For any probability distributions p, q ∈ ∆(S) with p(s) > 0
implying q(s) > 0, we define for convex continuous functions f the family of f -divergences

Df (p||q) = Eq

[
f

(
p(x)

q(x)

)]
. (S3)

The Fenchel conjugate of an f divergence Df (p||q) at a function y(s) = p(s)/q(s) is, under certain
conditions3, given by

D⋆,f (y) = Eq(s) [f⋆(y(s))] . (S4)
Furthermore, its maximizer satisfies

p⋆(s) = q(s)f ′⋆(y(s)). (S5)

In the important special case where f(x) = x log(x), we obtain the well-known Kullback-Leibler
(KL) divergence

DKL(p||q) =
∑
s

p(s) log
p(s)

q(s)
. (S6)

The Fenchel conjugate D⋆,KL of the KL-divergence at a function y(s) = p(s)/q(s) has a closed-
form (Boyd and Vandenberghe, 2004, Example 3.25)

D⋆,KL(y) = logEq(s)[exp y(s)], (S7)

and its maximizer p⋆ satisfies
p⋆(s) = q(s)softmax(y(s)). (S8)

B LAGRANGE RELAXATION

The Lagrange relaxation is given by

max
dz(s,a),q(z|s)

min
λ>0

∑
z

Edz(s)

[
log (|Z|q(z|s))

|Z|

]
+
∑
z

λz
[
ϵ−DKL

(
dz(S,A)||dẼ(S,A)

)]
.

By combining Lem. C.5 and the definition of ηẼ(s, a) =
dẼ(s,a)

dO(s,a) , we have

DKL

(
dz(S,A)||dẼ(S,A)

)
= DKL (dz(S,A)||dO(S,A))− Edz(s,a)

[
log ηẼ(s, a)

]
and thus

max
dz(s,a),q(z|s)

min
λ>0

∑
z

λz
[
ϵ+ Edz(s,a)

[
Rλ

z (s, a)
]
−DKL (dz(S,A)||dO(S,A))

]
, (S9)

where the reward is given by

Rλ
z (s, a) :=

log (|Z|q(z|s))
λz|Z|

+ log ηẼ(s, a).

3f needs to satisfy certain regularity conditions (Dai et al., 2017)
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C ALGORITHMIC PHASES

C.1 VALUE FUNCTION TRAINING

With fixed skill-discriminator q(z|s) and Lagrange multipliers λ > 0, the Problem S9 becomes:

max
{dz(s,a)}z∈Z

∑
z

λz
{
Edz(s,a)

[
Rλ

z (s, a)
]
−DKL (dz(s, a)||dO(s, a))

}
or equivalently for every skill z:

max
dz(s,a)≥0

Edz(s,a)

[
Rλ

z (s, a)
]
−DKL (dz(S,A)||dO(S,A))

s.t.
∑

a dz(s, a) = (1− γ)ρ0(s) + γT d(s) ∀s.
(S10)

We note that the preceding problem formulation involves state-action occupancy.

The strict feasibility in Assumption 4.1 implies strong duality, and thus Problem (S10) shares the
same optimal value as the following dual minimization problem (for details see (Nachum and Dai,
2020, Section 6) and (Ma et al., 2022, Theorem 2)):

V ⋆ = argminV (s)(1− γ)Es∼ρ0
[V (s)]

+ logEdπO (s,a) exp
{
Rλ

z (s, a) + γT V (s, a)− V (s)
}
,

(S11)

where
T V (s, a) = EP(s′|s,a)V (s′).

Moreover, the optimal primal solution reads

d⋆z(s, a)

dO(s, a)
= softmax

(
Rλ

z (s, a) + γT V ⋆
z (s, a)− V ⋆

z (s)
)
. (S12)

C.2 SKILL DISCRIMINATOR TRAINING

With fixed skill-conditioned policy π⋆
z and Lagrange multipliers λ > 0, the Problem S9 becomes

max
q(z|s)

∑
z

{
Edz(s,a)

[
Rλ

z (s, a)
]
−DKL (dz(S,A)||dO(S,A))

}
and reduces to

max
q(z|s)

Ep(z)Edz(s,a) log q(z|s).

Lemma C.1. Given ratios ηz(s, a), using weighted-importance sampling, we can train offline an
optimal skill-discriminator q(z|s). In particular, we optimize by gradient descent the following
optimization problem

max
q(z|s)

Ep(z)EdO(s,a) [ηz(s, a) log q(z|s)] .

Proof. The statement follows by combining Lem. C.2 and Lem. C.3.

Lemma C.2 (Discriminator Gradient). It holds that

∇ϕEp(s) [DKL (p(Z|s)||qϕ(Z|s))] = −Ep(z)Ep(s|z) [∇ϕ log qϕ(z|s)] .

Proof. Observe that

∇ϕDKL (p(Z|s)||q(Z|s)) = ∇ϕEp(z|s) log
p(z|s)
qϕ(z|s)

= −Ep(z|s)∇ϕ log qϕ(z|s),
where the second equality follows by

∇ϕ log
p(z|s)
qϕ(z|s)

= −qϕ(z|s)
p(z|s)

p(z|s)∇ϕqϕ(z|s)
[qϕ(z|s)]2

= −∇ϕqϕ(z|s)
qϕ(z|s)

= −∇ϕ log qϕ(z|s).
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Lemma C.3 (Importance Sampling). Given ratios ηz(s, a), it holds for any function f(s) that

Ed⋆
z(s)

[f(s)] = EdO(s) [ηz(s, a)f(s)] .

Proof. Observe that

Ed⋆
z(s)

[f(s)] = Ed⋆
z(s)π

⋆
z (a|s) [f(s)] = Ed⋆

z(s,a)
[f(s)]

= EdO(s,a) [ηz(s, a)f(s)] .

C.3 ESTIMATING STATE KL CONSTRAINT VIOLATION

Lemma C.4 (State-Action KL Estimator). Suppose we are given offline datasets DO(S,A) ∼ dO,
DE(S) ∼ dE and optimal ratios ηz(s, a) = dz(s,a)

dO(s,a) and ηẼ(s, a) =
dẼ(s,a)

dO(s,a) for all (s, a) ∈ DO,
where the state-action occupancy dẼ is induced by a policy πẼ agreeing on the state occupancy of
an expert πE , i.e.

πẼ ∈ argmin
π

DKL (dπ(S)||dE(S)) .

Then, we can compute offline an estimator of DKL

(
dz(S,A)||dẼ(S,A)

)
which is given by

ϕz = EdO(s,a)

[
ηz(s, a) log

ηz(s, a)

ηẼ(s, a)

]
.

Proof. By Lemma C.5 we have

DKL

(
dz(S,A)||dẼ(S,A)

)
= DKL (dz(S,A)||dO(S,A))− Edz(s,a)

[
log

dẼ(s, a)

dO(s, a)

]
.

For the first term, we have

DKL (dz(S,A)||dO(S,A)) = Edz(s,a) log
dz(s, a)

dO(s, a)

= EdO(s,a) [ηz(s, a) log ηz(s, a)] .

The second term reduces to

Edz(s,a)

[
log

dẼ(s, a)

dO(s, a)

]
= EdO(s,a)

[
ηz(s, a) log ηẼ(s, a)

]
.

Lemma C.5 (Structural). Suppose 0 < ηz(s, a), ηẼ(s, a) <∞ for all (s, a) ∈ DO. Then, we have

DKL

(
dz(S,A)||dẼ(S,A)

)
= DKL (dz(S,A)||dO(S,A))− Edz(s,a)

[
log

dẼ(s, a)

dO(s, a)

]
.

Proof. By definition of KL-divergence, we have

DKL

(
dz(S,A)||dẼ(S,A)

)
= Edz(s,a)

[
log

(
dz(s, a)

dO(s, a)
· dO(s, a)
dẼ(s, a)

)]
= DKL (dz(S,A)||dO(S,A))− EdZ(s,a)

[
log

dẼ(s, a)

dO(s, a)

]
.
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D UNCONSTRAINED FORMULATION

SMODICE (Ma et al., 2022) minimizes a KL-divergence between the policy state occupancy and
the expert state occupancy, expressed as

min
d(S)

DKL (d(S)||dE(S)) . (S13)

A naive approach to extend the above problem formulation to the unsupervised skill discovery set-
ting, is to consider an additional diversity term in the objective. In particular, adding a scaled mu-
tual information term I(S;Z) and maximizing over a set of skill-conditioned state occupancies
{dz(S)}z∈Z , namely

max
{dz(S)}z∈Z

αI(S;Z)−
∑
z∈Z

DKL (dz(S)||dE(S)) . (S14)

Here, the level of diversity is controlled by a hyperparameter α. However, α is arbitrary, and no
constraint on closeness to the expert state occupancy is enforced. We proceed by using the varia-
tional lower bound in eq. (3) and assuming a categorical uniform distribution p(z) over the set of
latent skills Z, which consists of |Z| distinct indicator vectors in R|Z|. This reduce the optimization
problem to

max
dz(s),q(z|s)

∑
z∈Z

{
αEdz(s)

[
log (q(z|s)|Z|)

|Z|

]
−DKL (dz(S)||dE(S))

}
. (S15)

Theorem D.1. (Ma et al., 2022) Suppose Assum. 3.1 holds. Then, we have

DKL (dz(S)‖dE(S)) ≤ Edz(s)

[
log

dO(s)

dE(s)

]
+DKL(dz(S,A)‖dO(S,A)).

By Thm. D.1 and linearity of the objective, Problem (S15) reduces to optimizing separately for each
latent skill z the following optimization problem

max
dz(s),q(z|s)

Edz(s) [R
α
z (s, a)]−DKL(dz(S,A)‖dO(S,A)), (S16)

where Rα
z (s, a) is defined as

Rα
z (s, a) := log

dE(s)

dO(s)︸ ︷︷ ︸
Expert Imitation

+α
log (q(z|s)|Z|)

|Z|︸ ︷︷ ︸
Skill Diversity

. (S17)

The ratios dE(s)
dO(s) can be computed by training a discriminator c(s) tasked to distinguish between

samples from dE(s) and dO(s). More specifically, since the optimal Bayesian discriminator satisfies
c⋆(s) = dE(s)/(dE(s) + dO(s)), in practice we can use an estimator c(s)/(1− c(s)) ≈ dE(s)

dO(s) .

Similar to the DOI, we can apply the alternating optimization scheme, here with two phases:(i) fixed
skill-discriminator (similarly to Subsec. 4.2.1); and (ii) fixed importance ratios and policy π⋆

z , where
we train the skill-discriminator q(z|s) (see Supp. C.2). For the first phase, we use the importance
ratios ηz(s, a) computed by optimizing the dual-value problem and then applying softmax to the
corresponding TD error terms (see eq. (12) and Nachum and Dai (2020); Ma et al. (2022)).
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E SOLO-12 DATASET COLLECTION

Figure S1: Solo-12 datasets are collected with 4000 environments in parallel using IsaacGym.

As shown in Figure S1, both expert dataset and offline dataset are collected using locomotion poli-
cies trained to track certain velocity in Isaac Gym (Makoviychuk et al., 2021). The policies are
trained using an on-policy version of DOMiNO (Zahavy et al., 2022) to exhibit diverse behaviors
while maintaining a certain level of tracking. Even trained with randomly sampled velocity, the
policies are fed with forward velocity of 1 m/s when collecting both datasets. Both datasets contain
4000 trajectories with an episode length of 250 steps, or 1 million transitions each.

We summarize the main ideas of the training procedure, for details see (Zahavy et al., 2022). Using
DOMiNO, we train policies that are conditioned on discrete skill latents and present different be-
haviors across different skills. Each skill-conditioned policy has a designated skill which is trained
with only extrinsic reward and is maintained as the target in the constraint formulation in (Zahavy
et al., 2022). We use this target skill from the last training checkpoint (iteration 2000) as the expert
of our method. For each skill-conditioned policy, all skills except the target, are trained to balance
between extrinsic and intrinsic reward, so as to generate diverse behaviours while being aligned to
some degree to the target skill, i.e., maintaining a certain level of tracking velocity. The intrinsic
reward is designed to maximize the ℓ2 distance of the successor features (Barreto et al., 2016) be-
tween different skills, where in our setting the feature space includes: the base height velocity, base
roll and pitch velocities, and feet height velocities.

We collected the offline dataset using these skill-conditioned policy from different checkpoints dur-
ing training. The offline dataset is composed of 1/2 data from checkpoint 0, 1/4 data from checkpoint
50, 1/8 data from checkpoint 100, 1/16 data from checkpoint 500, 1/32 data from checkpoint 1500
and 1/32 data from checkpoint 2000. For each policy checkpoint, we collect data from the 5 corre-
sponding skills, including the target skill. It is worth noting that more than half of the data from the
offline dataset comes from the nearly random policies from the start of the training (checkpoint 0
and 50).

Furthermore, in the data collection process, we use a deterministic policy for the expert dataset,
while for the offline dataset we use a stochastic policy. Randomizing the action selection in the
latter case, results in more diverse interactions with the environment. In addition, we use domain
randomization during training and data collection, in order to tackle the sim-to-real transfer and to
simulate more diverse environment interaction. Specifically, we randomize the friction coefficient
between [0.5, 1.5] and additional base mass between [−0.5, 0.5] kg, as well as simulate the observa-
tion noise and an actuator lag of 15 ms.

F SMODICE EXPERT RETURN

In table S1 we show the performance of the evaluated policies trained by SMODICE(Ma et al., 2022)
on the WALKER2D and HALFCHEETAH. The results are consistent with the performance that we
obtain with DOI in Figure 5. We also note here the importance of having expert state coverage in
the offline data that is reflected in the performance of the policies.
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Environment dataset N r

halfcheetah medium-expert 25 81.25
50 80.47
200 73.56

medium-replay 25 29.28
50 36.73
200 60.67

random 25 10.89
50 27.71
200 78.94

walker2d medium-expert 25 3.98
50 19.22
200 4.10

medium-replay 25 15.09
50 3.60
200 0.95

random 25 52.62
50 103.52
200 108.20

Table S1: Expected return for SMODICE-learned expert policies in the WALKER2D and ANT envi-
ronments for N expert trajectories mixed-in.

G LAGRANGE MULTIPLIER STABILITY

In Figure S2 we observe the behavior of the Lagrange multipliers for different levels of ϵ for a
specific skill z in the SOLO12 experiment. In case of ϵ ∈ {1.0, 2.0}, the multipliers fluctuate
around a specific level that strikes the balance between diversity and expert imitation. This can
also be validated when observing the violation level in Figure S2b of the constraint given estimator
ϕz , which is for ϵ ∈ {1.0, 2.0} around 0. On the other hand, if we introduce a strong constraint
on the KL-divergence (ϵ = 0.0), which is constantly violated, hence σ(µz) = 1. Similarly, if the
constraint is too weak, only diversity is optimized, in which case there is a significant degradation
in performance (see figure Figure 4).
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Figure S2: Behavior of Lagrange multipliers. (a) Evolution of σ(λz) for one skill (z = 1 chosen arbitrarily),
(b) violation of the constraint for different ϵ. Negative ϕz − ϵ indicates no violation. Means and standard
deviation across restarts.

In Figure S3 we show the bounded lagrange multiplier values for three skills and the resulting
violations for different ϵ levels for the ANT experiment. Again, the multiplier values fluctuate around
appropriate levels ensuring the the violation of the constraint remains close to 0.
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Figure S3: Behavior of Lagrange multipliers. (a) Evolution of σ(λz) for one skill (z = 1 chosen arbitrarily),
(b) violation of the constraint for different ϵ. Negative ϕz − ϵ indicates no violation. Means and standard
deviation across restarts.
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H REAL ROBOT DEPLOYMENT

We successfully deployed policies exhibiting diverse skills extracted from the offline dataset while
being able to track a certain velocity similar to the expert on real hardware. Our skill-conditioned
policy exhibits different walking behaviors with diverse base motions. Snapshots of these diverse
behaviors can be seen in Figure S4.

(a) Trot locomotion with wave trunk motion and low base height.

(b) Trot locomotion with middle base height.

(c) Trot locomotion with high base height.

Figure S4: Snapshots of the trained policy exhibiting different skills on hardware. From above to bottom, the
policy has low, middle and high base positions while moving forward.

I OBSERVATION PROJECTION

Imitation learning is of particular interest when the agent’s and the target expert policy’s state spaces
do not necessarily match, but overlap in certain parts, as is often the case when learning from demon-
strations. Our framework naturally accounts for this. If we consider S ′ to be the state space of the
expert and S the state space of the agent, we assume that there exists a simple projection mapping
Π : S ′ 7→ O, where O := {o : o ⊂ s, s ∈ S} is the power set of observations, allowing us to
potentially imitate beyond expert policies with the same state space as the agent. Note that the agent
still observes its full state s, however the projected state Π(s) is observed by the expert classifier and
skill discriminator. The projection Π can be selected to specify which parts of the state we want to
diversify and constrain in terms of occupancy, depending on the task at hand.

J LIMITATIONS

The DOI method also comes with certain caveats. Maximizing the mutual information, as a diver-
sity objective, poses a hard optimization problem due to its convexity. Thus, designing alternative
diversity objectives can be beneficial. Furthermore, closeness in state-action occupancy can be quite
restrictive in terms of availability of diverse behaviors that satisfy the constraint. Replacing this
with constraints on the return of the policy would allow more freedom to optimize diversity in cases
where the optimal policy may be multimodal. The above challenges are promising directions for
future work.
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K ADDITIONAL EXPERIMENTS

Instead of learning the Lagrange multipliers λz via KL estimators ϕz , we can also fix λz at a certain
level, making it a hyperparameter. In our setting, this also works well, and we demonstrate a tradeoff
between diversity and task reward optimization, see Figures S5 and S6. However, in this case we
lose the possiblity to enforce a certaint constraint on the KL-divergence between the skill state-action
occupancy and expert state-action occupancy.

0.0 0.4 0.2 0.8 1.0

0 100 200 300 400

# steps

200

400

600

800

1000

1200

1400

E‖
ψ
z 1
−
ψ
z 2
‖ 2

(a)

0 50 100 150 200 250 300 350 400

# steps

50

75

100

r

0 50 100 150 200 250 300 350 400

# steps

0.00

0.01

0.02

st
d

(h
)

(b)

Figure S5: (a) Average ℓ2 distance between Monte Carlo estimated successor representations ψz of different
skills, (b) return r as % of expert return and standard deviation of base height stdz(h), depending on a fixed
σ(λz) (see legend).

0.0 0.4 0.2 0.8 1.0

0 50 100 150 200 250 300 350 400

# steps

0

1

2

3

4

φ
z

(a)

0 50 100 150 200 250 300 350 400

# steps

0.0

0.5

1.0

1.5

2.0

E‖
η z

1
−
η z

2
‖ 1

(b)

Figure S6: Divergence estimate and ηz distance for the case of fixed σ(λz). (a) Value of divergence estimator
ϕz for a specific skill over the course of training (z = 1 chosen arbitrarily), (b) average ℓ1 distance of ηz’s of
skills. Means and standard deviation across restarts.

We further provide results of applying DOI to different levels of expert trajectory mix-in to the
medium-replay and random datasets of WALKER2D and HALFCHEETAH in tables S2 and S3.
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dataset # expert mixin ϵ E‖ηz1 − ηz2‖ r E‖ψz1 − ψz2‖
medium-replay 25 0.0 0.00 ± 0.00 46.00 ± 1.46 6.16 ± 0.30

0.5 0.21 ± 0.08 0.33 ± 0.48 3.54 ± 2.14
1.0 1.40 ± 0.05 2.33 ± 0.51 6.09 ± 2.40
2.0 1.30 ± 0.03 0.64 ± 0.11 7.67 ± 4.27
4.0 1.54 ± 0.08 2.30 ± 1.64 19.26 ± 2.29

50 0.0 0.00 ± 0.00 54.29 ± 2.13 5.53 ± 0.14
0.5 0.82 ± 0.28 31.31 ± 7.03 14.13 ± 1.86
1.0 1.21 ± 0.15 4.33 ± 0.75 0.42 ± 0.05
2.0 1.37 ± 0.03 1.61 ± 0.41 13.85 ± 2.50
4.0 1.48 ± 0.12 1.11 ± 0.36 22.02 ± 1.33

200 0.0 0.00 ± 0.00 98.33 ± 0.44 2.67 ± 0.26
0.5 0.45 ± 0.11 74.59 ± 8.96 6.22 ± 1.17
1.0 1.20 ± 0.09 2.52 ± 1.50 12.97 ± 4.33
2.0 1.30 ± 0.03 2.07 ± 0.65 3.23 ± 2.02
4.0 1.59 ± 0.06 1.43 ± 0.64 19.48 ± 1.43

random 25 0.0 0.00 ± 0.00 36.49 ± 11.54 15.70 ± 0.48
0.5 0.93 ± 0.02 20.48 ± 7.90 16.81 ± 3.14
1.0 1.30 ± 0.12 3.72 ± 1.38 8.16 ± 5.43
2.0 1.45 ± 0.09 1.22 ± 0.32 20.47 ± 3.08
4.0 1.27 ± 0.05 0.60 ± 0.26 20.60 ± 4.17

50 0.0 0.00 ± 0.00 103.16 ± 0.69 3.32 ± 0.07
0.5 1.03 ± 0.13 33.60 ± 6.64 18.27 ± 2.50
1.0 1.37 ± 0.09 5.05 ± 2.66 20.16 ± 3.05
2.0 1.46 ± 0.06 0.77 ± 0.29 10.46 ± 3.77
4.0 1.23 ± 0.09 0.26 ± 0.11 14.33 ± 1.97

200 0.0 0.00 ± 0.00 107.43 ± 0.26 1.84 ± 0.08
0.5 1.29 ± 0.07 103.29 ± 1.38 6.75 ± 0.77
1.0 1.26 ± 0.22 2.43 ± 0.30 7.30 ± 4.86
2.0 1.46 ± 0.10 0.47 ± 0.15 15.39 ± 1.56
4.0 1.29 ± 0.01 1.91 ± 0.57 19.66 ± 3.36

Table S2: WALKER2D metrics across random and medium-replay variants with varying number of mixed-in
trajectories of the expert to satisfy the coverage assumption.
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dataset # expert mixin ϵ E‖ηz1 − ηz2‖ r E‖ψz1 − ψz2‖
medium-replay 25 0.0 0.00 ± 0.00 37.64 ± 0.30 3.22 ± 0.06

0.5 0.83 ± 0.12 36.95 ± 0.63 3.02 ± 0.10
1.0 1.36 ± 0.09 24.30 ± 6.28 13.34 ± 4.84
2.0 1.44 ± 0.06 6.73 ± 3.65 22.09 ± 8.15
4.0 1.27 ± 0.09 2.68 ± 0.72 21.68 ± 1.87

50 0.0 0.01 ± 0.01 45.40 ± 0.22 3.26 ± 0.27
0.5 1.14 ± 0.02 42.89 ± 0.19 2.94 ± 0.12
1.0 1.41 ± 0.12 37.28 ± 2.41 6.18 ± 1.21
2.0 1.32 ± 0.11 8.60 ± 4.66 13.66 ± 1.97
4.0 1.24 ± 0.16 1.72 ± 0.18 28.74 ± 7.84

200 0.0 0.00 ± 0.00 73.60 ± 0.39 3.65 ± 0.09
0.5 1.16 ± 0.08 69.91 ± 1.14 3.67 ± 0.10
1.0 1.28 ± 0.13 23.74 ± 12.94 13.47 ± 1.73
2.0 1.49 ± 0.10 15.52 ± 4.29 32.03 ± 0.56
4.0 1.42 ± 0.07 2.16 ± 0.04 11.92 ± 2.28

random 25 0.0 0.00 ± 0.00 2.80 ± 0.36 5.55 ± 1.18
0.5 1.12 ± 0.04 3.03 ± 0.28 4.30 ± 0.85
1.0 1.14 ± 0.12 2.24 ± 0.09 10.45 ± 3.30
2.0 1.24 ± 0.08 1.73 ± 0.33 25.01 ± 8.78
4.0 1.44 ± 0.03 1.60 ± 0.30 35.08 ± 8.27

50 0.0 0.00 ± 0.00 31.89 ± 1.14 9.97 ± 0.58
0.5 1.14 ± 0.11 10.29 ± 3.13 17.90 ± 6.01
1.0 1.42 ± 0.15 6.45 ± 2.95 23.30 ± 0.96
2.0 1.41 ± 0.08 2.73 ± 0.43 23.91 ± 6.98
4.0 1.68 ± 0.06 1.44 ± 0.27 35.07 ± 8.08

200 0.0 0.00 ± 0.00 68.35 ± 1.25 5.20 ± 0.31
0.5 1.30 ± 0.08 50.85 ± 17.30 9.80 ± 3.68
1.0 1.21 ± 0.12 15.06 ± 5.58 29.57 ± 4.26
2.0 1.03 ± 0.10 2.10 ± 1.99 10.84 ± 7.57
4.0 1.20 ± 0.20 2.16 ± 0.05 16.90 ± 5.95

Table S3: HALFCHEETAH metrics across random and medium-replay variants with varying number of mixed-
in trajectories of the expert to satisfy the coverage assumption.
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