Bad Habits: Policy Confounding and
Out-of-Trajectory Generalization in RL

Miguel Suau Matthijs T. J. Spaan Frans A. Oliehoek
Delft University of Technology
{m.suaudecastro, m.t.j.spaan, f.a.oliehoek } @tudelft.nl

Abstract

Reinforcement learning agents may sometimes develop habits that are effective
only when specific policies are followed. After an initial exploration phase in which
agents try out different actions, they eventually converge toward a particular policy.
When this occurs, the distribution of state-action trajectories becomes narrower,
and agents start experiencing the same transitions again and again. At this point,
spurious correlations may arise. Agents may then pick up on these correlations
and learn state representations that do not generalize beyond the agent’s trajectory
distribution. In this paper, we provide a mathematical characterization of this
phenomenon, which we refer to as policy confounding, and show, through a series
of examples, when and how it occurs in practice.

1 Introduction

This morning, I went to the kitchen for a coffee. When I arrived,
1 forgot why I was there, so I got myself a coffee—

How often do you do something without paying close attention to your actions? Have you ever caught
yourself thinking about something else while washing the dishes, making coffee, or cycling? Acting
out of habit is a vital human skill as it allows us to concentrate on more important matters while
carrying out routine tasks. You can commute to work while thinking about how to persuade your boss
to give you a salary raise or prepare dinner while imagining your next holidays in the Alps. However,
unlike in the above example, habits can also lead to undesired outcomes when we fail to recognize
that the context has changed. You may hop in your car and start driving towards work even though it
is a Sunday and you actually want to go to the grocery store, or you may flip the light switch when
leaving a room even though the lights are already off.

Here we show how reinforcement learning (RL) agents may also suffer from this phenomenon.
Agents can exploit spurious correlations (Pearl et al., 2016) between observed variables and rewards
to build simple habits that require little effort to carry out. Such correlations are induced by the
agent’s policy and hence can be relied upon so long as said policy is followed consistently. However,
as we shall see, even minor trajectory deviations can result in catastrophic outcomes. Ideally, the
agent should only pick up on correlations that are stable across policies. That is, independently of the
trajectories being followed. We refer to this objective as out-of-trajectory (OOT) generalization.

Contributions This paper characterizes policy confounding, a term we use to name the above-
described phenomenon. To do so, we introduce a mathematical framework that helps us investigate
different types of state representations. Moreover, we provide a series of clarifying examples that
illustrate how, as a result of policy confounding, the agent may learn representations based on spurious
correlations that do not guarantee OOT generalization. Unfortunately, we do not have a complete
answer for how to prevent policy confounding. However, we suggest a few off-the-shelf solutions that

16th European Workshop on Reinforcement Learning (EWRL 2023).

0/@

START

Average Return
°

T
o4 rain env
—e— Evalenv
-0 o 20000 40000 60000 80000 100000
Timesteps

Figure 1: Left: An illustration of the Frozen T-Maze environment. Right: Learning curves when
evaluated in the Frozen T-Maze environment with (blue curve) and without (red curve) ice.

may help mitigate its effects. We hope this paper will create awareness among the RL community
about the risks of policy confounding and inspire further research on this topic.

2 Example: Frozen T-Maze

We now provide an example to illustrate the phenomenon of policy confounding and motivate the
need for careful analysis. The environment shown in Figure 1 is a variant of the popular T-Maze
environment (Bakker, 2001). The agent receives a binary signal, green or purple, at the start location.
Then, it needs to move to the right and reach the correct goal at the end of the maze (ignore the blue
cells and the black vertical arrow in the middle of the maze for now). The agent obtains a reward
of +1 for moving to the green (purple) goal when having received the green (purple) signal and
a reward of —1 otherwise. At first sight, one may think that the only way the agent can solve the
task is if, at every cell along its trajectory, it can recall the initial signal. However, once the agent
figures out the shortest path to each of the two goals (depicted by the green and purple arrows), the
agent may safely forget the initial signal. The agent knows that whenever it is at any of the cells
along the green (purple) path, it must have received the green (purple) signal. Hence, it can simply
move toward the right goal on the basis of its own location. Sticking to this habit is optimal so long
as the agent commits to always taking these two paths.! It is also essential that the environment’s
dynamics remain the same since even the slightest change in the agent’s trajectories may erase the
spurious correlation induced by the agent’s policy between the agent’s location and the correct goal.
To show that this actually occurs in practice, we train agents in the original environment (train env)
and evaluate them on a variant of the same (eval env), where some ice (blue) has appeared in the
middle of the maze. The ice makes the agent slip from the upper cell to the bottom cell and vice
versa. The plot on the right of Figure 1 shows the return averaged over 10 trials. The performance
drop in the evaluation environment (blue curve) suggests that the agents’ policies do not generalize.
The ice confuses the agents, who, after being pushed away from their preferred trajectories, can no
longer select the right goal. More details about this experiment are provided in Section 7.

3 Related Work

The presence of spurious correlations in the training data is a well-studied problem in machine
learning. These correlations often provide convenient shortcuts that a model can exploit to make
predictions (Beery et al., 2018). However, the performance of a model that relies on them may
significantly deteriorate under different data distributions (Quionero-Candela et al., 2009; Arjovsky,
2021). Langosco et al. (2022) show that RL agents may use certain environment features as proxies
for choosing their actions. These features, which show only in the training environments, happen
to be spuriously correlated with the agent’s objectives. In contrast, we demonstrate that, as a result
of policy confounding, agents may directly take part in the formation of spurious correlations. A
few prior works have already reported empirical evidence of particular forms of policy confounding,
showing that in deterministic environments, agents can rely on information that correlates with the
agent’s progress in an episode to determine the optimal actions. This strategy is effective because
under fixed policies, features such as timers (Song et al., 2020), agent’s postures (Lan et al., 2023), or
previous action sequences (Machado et al., 2018) can be directly mapped to the agent’s state. These
works provide various hypotheses to justify their experimental observations. Here, we contribute an
overarching theory that explains the underlying causes and mechanisms behind these results, along
with a series of examples illustrating other types of policy confounding. Please refer to Appendix C
for more details on related work.

"Note that the two paths highlighted in Figure 1 are not the only optimal paths. However, for the agent to be
able to ignore the initial signal, it is important that the paths do not overlap.

4 Preliminaries

Although, as we shall see in the experiments, policy confounding can occur even when states are
fully observable, in order to understand the idea, it is useful to formulate the setting as partially
observable (Kaelbling et al., 1996). Moreover, since we model values and policies using (parametric)
functions rather than tables, we use state variables or state factors to represent the different states of
the environment (Boutilier et al., 1999).

Definition 1 (FPOMDP). A factored partially observable Markov decision process (FPOMDP) is
a tuple (S, X, A, T, R,O), where S is the set of state variables S = {S, ..., S°!} defining the
different states of the environment s = (s', ..., 515} € x; dom(S?), X = {X*!, ..., XIXI} C S'is the
subset of state variables defining the agent’s observations z = (z', ..., zIX!) € x; dom(X?), Ais a
random variable denoting the actions a € dom(A) that are available to the agent, T'(s¢41 | ¢, az) is
the transition probability, R(s¢, a;) is the immediate reward, O(x; | s:) is the observation probability,
with O being an indicator function determining whether or not x; is feasible given s;.

In this setting, the agent must keep track of past actions and observations to make the right action
choices (Singh et al., 1994). Policies are therefore mappings from the past action-observation history,
hy = (21,41, ...,at—1,x+), to a probability distribution over actions A, 7 : H — A(A), where H is
the set of all possible histories of any length. We use the random variable 7 = (z1, a1, ...,ar—1, Tk)
to denote the agent’s trajectory in an episode, with K being the episode’s horizon. Knowing that the
full history constitutes a Markov representation, we can reformulate the FPOMDP into a factored
history MDP (FHMDP).

Definition 2 (FHMPD). A factored history Markov decision process (FHMDP) is a tuple
(H,0,A, Ty, Rp,), where H is the set of all possible histories of any length, © denotes the set
of history variables, with ©, denoting the set of actions A and observation variables X in a history
of length t, ©; = {X71, ..., X{X‘,Al, ey Xy sy Xt‘X‘, A;}, such that the set of histories of length ¢
is defined as H; = x,; dom(©%), A is a random variable denoting the actions a € dom(A) that are
available to the agent,

Th(heyr = (he,a, @eg1) | heyar) 2 Z O(xt41 | s141)T (st41 | 8¢, a0) Pr(se | he)

St41,5¢€S
is the history transition probability,” and
Ry (heyae) > R(st,a0) Pr(se | ha)

StES

is the history reward.

This formulation is convenient because it allows solving the POMDP using MDP methods. Yet, due
to combinatorial explosion, learning a policy that conditions on the full history is generally infeasible.
Fortunately, in many problems, not all the information is strictly relevant; the agent can usually find
compact representations of the history, that are sufficient for solving the task (McCallum, 1995).

5 History representations

Factored representations are useful because they readily define relationships between (states) histories.
Histories can be compared to one another by looking at the individual values the different variables
take. Removing some of the variables in O, has the effect of grouping together those histories that
share the same values for the remaining ones. Thus, in contrast with most of the theoretical work in
RL, which treats histories (states) as independent entities, we can define history (state) abstractions at
the variable level instead of doing so at the history (state) level (Li et al., 2006).

Definition 3 (History representation). A history representation is a function ® : H; — H;, with
Ht = xidom(@i), Ht = xidom(@;), and @t - @t.

Intuitively a history representation ®(h;) is a context-specific projection of a history h;, € H; =
x; dom(©7}) onto a lower dimensional space H; = x; dom(O}) defined by a subset of its variables,
O; C ©;. Weuse {h¢}* = {h} € H; : ®(h}) = ®(h;)} to denote h;’s equivalence class under ®.

2Note that we sum over St+1 because multiple states may emit the same observation 1.

5.1 Markov history representations

As noted in Section 4, the agent should strive for history representations with few variables. Yet, not
all history representations will be sufficient to learn the optimal policy; some may exclude variables
that contain useful information for the task at hand.

Definition 4 (Markov history representation). A history representation ®(h,) is said to be Markov if,
for all ht, ht+1 S H, a; € A,

Rh(ht,at) = Rh(¢(ht)7at) and Z Th(h:g_‘_l | hhat) = Pr(q)(ht+1) | @(ht),at),

}L/t+1€{ht+1}q>

where Ry, (®(hy), ar) = {R(h}, ar) }nye(n,yo is the reward at any h; € {h,}®.

The above definition is equivalent to the notion of bisimulation (Dean and Givan, 1997; Givan
et al., 2003) or model-irrelevance state abstraction (Li et al., 2006). Representations satisfying these
conditions are guaranteed to be equivalent to the original representation. That is, for any given policy
and initial history, the expected return (i.e., cumulative reward; Sutton and Barto, 2018) is the same
when conditioning on the full history or on the Markov history representation. Note that a history
representation ® such that ®(h;) = hy, for all hy € H, is, in itself, Markov.

Definition 5 (Minimal history representation). A history representation ®* : H; — H with
Hf = x; dom(@“) is said to be minimal, if all other history representations <I> Hy — Ht with
H;, = x; dom(@’) and |©,| C |©;/, for at least one h; € H, are not Markov.

In other words, @} (h:) is minimal when none of the remaining variables can be removed while the
representation remains Markov. Hence, we say that a minimal history representation ®; (h;) is a
sufficient statistic of the full history.

Definition 6 (Superfluous variable). Let {O; } ¢~ be the union of variables in all possible minimal
history representations. A variable ©} € ©, is said to be superfluous, if O} ¢ {O} }ya-.

5.2 m-Markov history representations

Considering that the agent’s policy will rarely visit all possible histories, the notion of Markov
history representation seems excessively strict. We now define a relaxed version that guarantees the
representation to be Markov when a specific policy 7 is followed.

Definition 7 (7-Markov history representation). A history representation ®7(h;) is said to be
m-Markov if, for all hy, hyyq € H™, ar € supp(w(- | ht)),

Ry (hi,at) = Ry (®7 (ht),ar) and Z Th(higq | heyar) = Pr7 (@7 (her) | @7 (he), at),
Ry €{het1} e
where H™ C H denotes the histories visited under 7, R} (®7 (ht),at) = {Rn(hy, ai)bnieqn oo
{h:}® = {h, € HF : ®(h}) = ®"(h;)}, and Pr™ is probability under 7.
Definition 8 (7-minimal history representation). A history representation ®™* : H — H[™* with

HT* = x; dom(@“*’_) is said to be - mlmmal if all other history representations <I> HF — HF
w1th Ht = x;dom(©%) and |©;| C |©F*|, for at least one h; € H™, are not 7-Markov.

6 Policy Confounding

We are now ready to describe how and when policy confounding occurs, as well as why we should
care, and how we should go about preventing it. The proofs for all theoretical results are deferred to
Appendix A.

Policy confounding arises naturally as the agent improves its policy. Normally, at the beginning of
training, the agent takes exploratory actions to determine which ones yield high rewards. It is only
after the agent has committed to a particular policy that we start seeing how some of the variables in
its history become irrelevant for predicting future states and rewards. The agent may then choose to
ignore these variables and exclude them from its representation if keeping them takes extra ‘effort’.

The next result demonstrates that a m-Markov history representation ®™ requires at most the same
variables, and in some cases fewer, than a minimal history representation ®*, while still satisfying
the Markov conditions for those histories visited under 7w, hy, € H™.

Figure 2: Two DBNs representing the dynamics of the Frozen T-Maze environment, when actions are
sampled at random (left), and when they are determined by the optimal policy (right).

Proposition 1. Let ®* be the set of all possible minimal history representations, where every
O* € ®* is defined as ®* : Hy — H; with H} = x;dom(0}"). For all w and all ®* € ®*, there
exists a w-Markov history representation ®™ : HT — HT with Hf = x; dom(OF?) such that for all
he € H™, ©F C ©f. Moreover, there exist cases for which ©F is a proper subset, ©F # O7.

Although the result above seems intuitive, its truth may appear incidental. While it is clear that ™
will never require more variables than the corresponding minimal history representation ®*, whether
or not ®™ will require fewer, seems just an arbitrary consequence of the policy being followed.
Moreover, since the variables in O are all strictly relevant for predicting transitions and rewards,
one may think that a policy 7 inducing representations such that ©F C O} can never be optimal.
However, as shown by the following example, it turns out that the histories visited by a particular
policy, especially if it is the optimal policy, tend to contain a lot of redundant information. This is
particularly true in environments where future observations are heavily influenced by past actions and
observations. In such cases, the current observation often reveals a lot about the agent’s trajectory.

Example 1. (Frozen T-Maze) Let us consider the Frozen T-Maze again (Section 2). Figure 3 shows
a dynamic Bayesian network (DBN; Dean and Kanazawa, 1989; Murphy, 2002) describing the
dynamics of the environment. Observation variables are denoted by X, while hidden variables are
denoted by Y. The nodes labeled as X? represent the agent’s location from ¢t = 0 to ¢t = 8. All
intermediate nodes between ¢t = 0 and ¢ = 7 are omitted for simplicity. The nodes labeled as Y
indicate whether the goal is to go to the green or the purple cell (see Figure 1). Note that Y always
takes the same value at all timesteps within an episode (either green or purple). The information in ¥’
is hidden and only passed to the agent at the start location through the node X¢}. On the one hand, if
actions are not specified by any particular policy, but simply sampled at random (left diagram), to
determine the reward Rg at t = 8, one needs to know the signal X} received at ¢ = 0 and the agent’s
current location X2. These are highlighted by the green circles in the left DBN. This is because
the actions (Ay, ..., A7) appear as exogenous variables and can take any possible value. Hence, the
reward could be either —0.1, (per timestep penalty), —1 (wrong goal), or +1 (correct goal) depending
on the actual values of X; and XZ2. On the other hand, when actions are sampled from the optimal
policy 7* (right DBN), knowing X3 (green circle) is sufficient to determine rg. In this second case,
7* makes the action A, and thus all future agent locations, dependent on the initial signal X&. This
occurs because, under the optimal policy (green and purple paths in Figure 1), the agent always takes
the action ‘move up’ when receiving the green signal or ‘move down’ when receiving the purple
signal, and then follows the shortest path towards each of the goals. As such, we have that, from
t = 1 onward, ® (h;) = X? is a m-Markov history representation since it constitutes a sufficient
statistic of the history H; under 7*. Finally, note that, for the same reason, from ¢ = 1, actions may
also condition only on X2,

The phenomenon highlighted by the previous example is the
result of a spurious correlation induced by the optimal policy
between the agent’s locations (X2, ..., X2) and the reward
Rg. Generally speaking, this occurs because policies act as
confounders, opening backdoor paths between future histories
O¢+1 and the variables in the current history O, (Pearl, 2000).
This is shown by the DBN depicted in Figure 3, where we see
that the policy influences both the current history variables and Figure 3: A DBN illustrating the
also future history variables, hence potentially affecting their Phenomenon of policy confounding.
conditional relationships. For instance, in the above example, The policy opens backdoor path that
R™ (X2 = ‘green goal’) = +1 when following 7*, while for €0 affect conditional relations be-

3

an arbitrary 7, R(X2 = ‘green goal’) = 1. tween the variables in h; and Ay

Definition 9 (Policy Confounding). A history representation ® : H, — H; is said to be confounded
by a policy « if, for some hy, hi11 € H, a; € A,

R™(®(he), az) # R (do(®(hs)), ar) or Pr™(®(hit1) | ©(he), ar) # Pri(®(hesa) | do(@(he)), ar)

The operator do(-) is known as the do-operator, and it is used to represent physical interventions
in a system (Pearl, 2000). These interventions are meant to distinguish cause-effect relations from
mere statistical associations. In our case, do(®(h;)) means setting the variables forming the history
representation ®(h;) to a particular value and considering all possible histories in the equivalence
class, h} € {h;}®. That is, independently of what policy is being followed.

It is easy to show that the underlying reason why a m-Markov history representation may require fewer
variables than the minimal history representation (as in Example 1) is indeed policy confounding.

Theorem 1. Let ®* : H, — H} with H} = x;dom(0}") be a minimal history representation. If,
for some T, there is a T-Markov history representation ®™ : H] — H[with H = x; dom(©]"),
such that ©F C O for some hy € H, then ®™ is confounded by policy .

Finally, to conclude this section, we demonstrate that even though, in Example 1, the variables
included in the 7-minimal history representation are a subset of the variables in the minimal history
representation, O7* C ©fF, this is not always the case, as ©] * may contain superfluous variables
(Definition 6). An example illustrating this situation is provided in Appendix B (Example 4).

Proposition 2. Let {O} }q- be the union of variables in all possible minimal history representations.
There exist cases where, for some 7, there is a w-minimal history representation ®™* : H] — H[™*
with HT* = x,; dom(O7*") such that ©7* \ {O} }uer # 0.

6.1 Why should we care about policy confounding?

Leveraging spurious correlations to develop simple habits can be advantageous when resources such
as memory, computing power, or data are limited. Agents can disregard and exclude from their
representation those variables that are redundant under their policies. However, the challenge is
that some of these variables may be crucial to ensure that the agent behaves correctly when the
context changes. In the Frozen T-Maze example from Section 2, we observed how the agent could
no longer find the correct goal when the ice pushed it away from the optimal trajectory. This is a
specific case of a well-researched issue known as out-of-distribution (OOD) generalization (Quionero-
Candela et al., 2009; Arjovsky, 2021). We refer to it as out-of-trajectory (OOT) generalization to
highlight that the problem arises due to repeatedly sampling from the same policy and thus following
the same trajectories. In contrast to previous works (Kirk et al., 2023) that address generalization
to environments that differ from the training environment, our objective here is to generalize to
trajectories the agent never (or only rarely) takes.’

Ideally, the agent should aim to learn representations that enable it to predict future rewards and tran-
sitions even when experiencing slight variations in its trajectory. Based on Definition 4, we know that,
in general, only a Markov history representation satisfies these requirements. However, computing
such representations is typically intractable (Ferns et al., 2006), and thus most standard RL methods
usually learn representations by maximizing an objective function that depends on the distribution of
trajectories P°(7) visited under a behavior policy b (e.g., expected return, E., pi () [G(7)]; Sutton
and Barto, 2018). The problem is that b may favor certain trajectories over others, which may lead to
the exploitation of spurious correlations in the learned representation.

6.2 When should we worry about OOT generalization in practice?

The previous section highlighted the generalization failures of representations that depend on spurious
correlations. Now, let us delve into the circumstances in which policy confounding is most prone to
cause problems.

3Note that in the Frozen T-Maze environment, the ice does change the environment dynamics. However, its
purpose is to compel the agent to take trajectories different from the optimal ones. The way we implemented it,
the effect of the ice would be equivalent to forcing the agent to move down twice when in the top cell or move
up twice when in the bottom cell. These trajectories are feasible in the original environment.

Function approximation Function approximation has enabled traditional RL methods to scale to
high-dimensional problems with long-term memory dependencies, where storing values in lookup
tables is infeasible. Using parametric functions (e.g., neural networks) to model policies and value
functions, agents can learn abstractions by grouping together histories if these yield the same
transitions and rewards. As mentioned before, abstractions occur naturally when histories are
represented by a set of variables since the functions simply need to ignore some of these variables.
However, this also implies that value functions and policies are exposed to spurious correlations. If a
particular variable becomes irrelevant due to policy confounding, the function may learn to ignore
it and remove it from its representation (Example 1). This is in contrast to tabular representations,
where, every history takes a separate entry, and even though there exist algorithms that perform
history (state) abstractions in tabular settings (Andre and Russell, 2002; Givan et al., 2003), these
abstractions are normally formed offline before learning (computing) the policy, hence avoiding the
risk of policy confounding.

Narrow trajectory distributions In practice, agents are less prone to policy confounding when the
trajectory distribution P°(7) is broad (i.e., when b encompasses a wide set of trajectories) than when
it is narrow. This is because the spurious correlations present in certain trajectories are less likely to
have an effect on the learned representations. On-policy methods (e.g., SARSA, Actor-Critic; Sutton
and Barto, 2018) are particularly troublesome for this reason since the same policy being updated
must also be used to collect the samples. Yet, even when the trajectory distribution is narrow, there
is no reason why the agent should pick up on spurious correlations while its policy is still being
updated. Only when the agent commits to a particular policy should we start worrying about policy
confounding. At this point, lots of the same trajectories are being used for training, and the agent
may ‘forget’ (French, 1999) that, even though certain variables may no longer be needed to represent
the current policy, they were important under previous policies. This generally occurs at the end of
training when the agent has converged to a particular policy. However, if policy confounding occurs
earlier during training, it may prevent the agent from further improving its policy (Nikishin et al.,
2022; please refer to Appendix C for more details).

6.3 What can we do to improve OOT generalization?

As mentioned in the introduction, we do not have a complete answer to the problem of policy
confounding. Yet, here we offer a few off-the-shelf solutions that, while perhaps limited in scope, can
help mitigate the problem in some situations. These solutions revolve around the idea of broadening
the distribution of trajectories so as to dilute the spurious correlations introduced by certain policies.

Off-policy methods We already explained in Section 6.2 that on-policy methods are particularly
prone to policy confounding since they are restricted to using samples coming from the same policy.
A rather obvious solution is to instead use off-policy methods, which allow using data generated from
previous policies. Because the samples belong to a mixture of policies it is less likely that the model
will pick up the spurious correlations present on specific trajectories. However, as we shall see in
the experiments, this alternative works only when replay buffers are large enough. This is because
standard replay buffers are implemented as queues, and hence the first experiences coming in are the
first being removed. This implies that a replay buffer that is too small will contain samples coming
from few and very similar policies. Since there is a limit on how large replay buffers are allowed to
be, future research could explore other, more sophisticated, ways of deciding what samples to store
and which ones to remove (Schaul et al., 2016).

Exploration and domain randomization When allowed, exploration may mitigate the effects
of policy confounding and prevent agents from overfitting their preferred trajectories. Exploration
strategies have already been used for the purpose of generalization; to guarantee robustness to
perturbations in the environment dynamics (Eysenbach and Levine, 2022), or to boost generalization
to unseen environments (Jiang et al., 2022). The goal for us is to remove, to the extent possible,
the spurious correlations introduced by the current policy. Unfortunately, though, exploration is not
always without cost. Safety-critical applications require the agent to stay within certain boundaries
(Altman, 1999; Garcia and Fernandez, 2015). When training on a simulator, an alternative to
exploration is domain randomization (Tobin et al., 2017; Peng et al., 2018; Machado et al., 2018).
The empirical results reported in the next section suggest that agents become less susceptible to policy
confounding when adding enough stochasticity to the environment or to the policy. Yet, there is a

\ i

GOAL

<

KEY_ | START START START
< o
>
train eval

Figure 4: Illustrations of the Key2Door (left) and Diversion (right) environments.

limit on how much noise can be added to the environment or the policy without altering the optimal
policy (Sutton and Barto, 2018, Example 6.6: Cliff Walking).

7 Experiments

The goal of the experiments is to: (1) demonstrate that the phenomenon of policy confounding
described by the theory does occur in practice, (2) uncover the circumstances under which agents are
most likely to suffer the effects of policy confounding and fail to generalize, and (3) evaluate how
effective the strategies proposed in the previous section are in mitigating these effects.

7.1 Experimental setup

Agents are trained with an off-policy method, DQN (Mnih et al., 2015) and an on-policy method, PPO
(Schulman et al., 2017). To be able to analyze the learned representations more easily, we represent
policies and value functions as feedforward neural networks and use a stack of past observations as
input in the environments that require memory. We report the mean return as a function of the number
of training steps. Training is interleaved with periodic evaluations on the original environments and
variants thereof used for validation. The results are averaged over 10 random seeds. Please refer to
Appendix F for more details about the experimental setup.

7.2 Environments

We ran our experiments on three grid-world environments: the Frozen T-Maze from Section 2, and
the below described Key2Door, and Diversion environments. We use these as pedagogical examples
to clarify the ideas introduced by the theory. Nonetheless, in Appendix C, we refer to previous works
showing evidence of particular forms of policy confounding in high dimensional domains.

Example 2. Key2Door. Here, the agent needs to collect a key placed at the beginning of the corridor
in Figure 4 (left) and then open the door at the end. The observations do not show whether the key
has already been collected. Thus, to solve the task in the minimum number of steps, the agent must
remember that it already got the key when going to the door. Yet, since during training, the agent
always starts the episode at the first cell from the left, when moving towards the door, the agent can
forget about the key once it has reached the third cell. As in the Frozen T-Maze example, the agent
can build the habit of using its own location to tell whether it has or has not got the key yet. This,
can only occur when the agent consistently follows the optimal policy, depicted by the purple arrow.
Otherwise, if the agent moves randomly through the corridor, it is impossible to tell whether the key
has or has not been collected. In contrast, in the evaluation environment, the agent always starts at
the second to last cell, this confuses the agent, which is used to already having the key by the time it
reaches said cell. A DBN describing the dynamics of the environment is provided in Appendix D.

Example 3. Diversion. Here, the agent must move from the start state to the goal state in Figure
4 (right). The observations are length-8 binary vectors. The first 7 elements indicate the column
where the agent is located. The last element indicates the row. This environment aims to show that
policy confounding can occur not only when the environment is partially observable, as was the case
in the previous examples, but also in fully observable scenarios. After the agent learns the optimal
trajectory depicted by the green arrow, it can disregard the last element in the observation vector. This
is because, if the agent does not deviate, the bottom row is never visited. Rather than forgetting past
information, the agent ignores the last element in the current observation vector for being irrelevant
when following the optimal trajectory. We train the agent in the original environment and evaluate it
in a version with a yellow diversion sign in the middle of the maze that forces the agent to move to
the bottom row. A DBN describing the dynamics of the environment is provided in Appendix D.

5

s

& PPO train
—e— PPO eval
= - DON train
—=— DON eval

& - PPO train
—e— PPO eval

= - DON train
—=— DON eval

- PPOtrain
—e— PPO eval
= - DON train
—=— DON eval

Average Return
Average Return
Average Return

Average Return
L
)

Average Return
|

—e— DON eval, BS=200 —»— PPO eval, eps=.2

—=— DON eval, BS=20K 1] —»— DON eval, BS=200, eps=.1
-o.

G 20000 40600 60000 80000100000 020000 40000 60000 80600100000 °G 5000 10600 15000 20000 0 20600 40600 60000 80000 100000 G 20000 40000 60600 80000 100000
Timesteps Timesteps Timesteps Timesteps Timesteps

Figure 5: DQN vs. PPO in the train and evaluation Figure 6: Frozen T-Maze. Left: DQN
variants of Frozen T-Maze (left), Key2Door (middle), small vs. large buffer sizes. Right: PPO
and Diversion (right). and DQN when adding stochasticity.

7.3 Results

On-policy vs. off-policy The results in Figure 5 reveal the same pattern in all three environments.
PPO fails to generalize outside the agent’s preferred trajectories. After an initial phase where the
average returns on the training and evaluation environments increase (‘PPO train” and ‘PPO eval’),
the return on the evaluation environments (‘PPO eval’) starts decreasing when the agent commits to a
particular trajectory, as a result of policy confounding. In contrast, since the training samples come
from a mixture of policies, DQN performs optimally in both variants of the environments (‘DQN
train’ and ‘DQN eval’) long after converging to the optimal policy.* A visualization of the history
representations learned with PPO, showing that the policy does ignore variables that are necessary
for generalization, is provided in Appendix E.1.

Large vs. small replay buffers We mentioned in Section 6.3 that the effectiveness of off-policy
methods against policy confounding depends on the size of the replay buffer. The results in Figure 6
(left) confirm this claim. The plot shows the performance of DQN in the Frozen T-Maze environment
when the size of the replay buffer contains 100K experiences and when it only contains the last 10K
experiences. We see that in the second case, the agents performance in the evaluation environment
decreases (red curve left plot). This is because, after the initial exploration phase, the distribution of
trajectories becomes too narrow, and the spurious correlations induced by the latest policies dominate
the replay buffer. Similar results for the other two environments are provided in Appendix E.2.

Exploration and domain randomization The last experiment shows that if sufficient exploration
is allowed, DQN may still generalize to different trajectories, even when using small replay buffers
(blue curve right plot Figure 6). In the original configuration, the exploration rate e for DQN starts at
€ = 1 and decays linearly to e = 0.0 after 20K steps. For this experiment, we set the final exploration
rate ¢ = 0.1. In contrast, since exploration in PPO is normally controlled by the entropy bonus,
which makes it hard to ensure fixed exploration rates, we add noise to the environment instead. The
red curve in Figure 6 (right) shows that when we train in an environment where the agent’s actions
are overridden by a random action with 20% probability, the performance of PPO in the evaluation
environment does not degrade after the agent has converged to the optimal policy. This suggests that
the added noise prevents the samples containing spurious correlations from dominating the training
batches. However, it may also happen that random noise is not sufficient to remove the spurious
correlations. As shown in Figure 13 (Appendix E.2), in the Key2Door environment, neither forcing
the agent to take random actions 20% of the time nor setting ¢ = 0.1, solves the OOT generalization
problem. Similar results for Diversion are provided in Appendix E.2.

8 Conclusion

This paper described the phenomenon of policy confounding. We showed both theoretically and em-
pirically how as a result of following certain trajectories, agents may pick up on spurious correlations,
and build habits that are not robust to trajectory deviations. We also uncovered the circumstances
under which policy confounding is most likely to occur in practice and suggested a few ad hoc
solutions that may mitigate its effects. We conceive this paper as a stepping stone to explore more
sophisticated solutions. An interesting avenue for future research is the integration of tools from the
field of causal inference (Pearl et al., 2016; Peters et al., 2017) to aid the agent in forming history
representations that are grounded on causal relationships rather than mere statistical associations (Lu
et al., 2018; Zhang et al., 2020; Sontakke et al., 2021; Saengkyongam et al., 2023).

“The small gap between ‘DQN train’ and ‘DQN eval’ is due to the —0.1 penalty per timestep. In all three
environments, the shortest path is longer in the evaluation environment than in the training environment.

Acknowledgements

This project received funding from the European Research Council Rt

(ERC) under the European Union’s Horizon 2020 research and inno- B

vation program (grant agreement No. 758824 —INFLUENCE) e e
References

Altman, E. (1999). Constrained Markov decision processes, volume 7. CRC press.

Andre, D. and Russell, S. J. (2002). State abstraction for programmable reinforcement learning
agents. In Proceedings of the Eighteenth National Conference on Artificial Intelligence, pages
119-125.

Arjovsky, M. (2021). Out of distribution generalization in machine learning. arXiv preprint
arXiv:2103.02667.

Bakker, B. (2001). Reinforcement learning with long short-term memory. Advances in neural
information processing systems, 14.

Beery, S., Van Horn, G., and Perona, P. (2018). Recognition in terra incognita. In Proceedings of the
European conference on computer vision (ECCV), pages 456-473.

Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M. (2013). The Arcade Learning Environment:
An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:253-279.

Boutilier, C., Dean, T., and Hanks, S. (1999). Decision-theoretic planning: Structural assumptions
and computational leverage. Journal of Artificial Intelligence Research, 11:1-94.

Castro, P. S. (2020). Scalable methods for computing state similarity in deterministic markov decision
processes. In Proceedings of the AAAI Conference on Artificial Intelligence.

Dean, T. and Givan, R. (1997). Model minimization in Markov decision processes. In Proc. of the
National Conference on Artificial Intelligence, pages 106—111.

Dean, T. and Kanazawa, K. (1989). A model for reasoning about persistence and causation. Compu-
tational intelligence, 5(2):142-150.

Eysenbach, B. and Levine, S. (2022). Maximum entropy RL (provably) solves some robust RL
problems. In International Conference on Learning Representations.

Ferns, N., Castro, P. S., Precup, D., and Panangaden, P. (2006). Methods for computing state similarity
in markov decision processes. In Proceedings of the Twventy-Second Conference on Uncertainty in
Artificial Intelligence, UAI’ 06, page 174-181.

French, R. M. (1999). Catastrophic forgetting in connectionist networks. Trends in cognitive sciences,
3(4):128-135.

Garcfa, J. and Ferndndez, F. (2015). A comprehensive survey on safe reinforcement learning. Journal
of Machine Learning Research, 16(1):1437-1480.

Givan, R., Dean, T., and Greig, M. (2003). Equivalence notions and model minimization in Markov
decision processes. Artificial Intelligence, 14(1-2):163-223.

Higgins, 1., Pal, A., Rusu, A., Matthey, L., Burgess, C., Pritzel, A., Botvinick, M., Blundell, C.,
and Lerchner, A. (2017). Darla: Improving zero-shot transfer in reinforcement learning. In
International Conference on Machine Learning, pages 1480-1490. PMLR.

Jiang, Y., Kolter, J. Z., and Raileanu, R. (2022). Uncertainty-driven exploration for generalization in
reinforcement learning. In Deep Reinforcement Learning Workshop NeurlPS 2022.

Kaelbling, L. P., Littman, M., and Moore, A. (1996). Reinforcement learning: A survey. Journal of
Al Research, 4:237-285.

10

Kirk, R., Zhang, A., Grefenstette, E., and Rocktéschel, T. (2023). A survey of zero-shot generalisation
in deep reinforcement learning. Journal of Artificial Intelligence Research, 76:201-264.

Lan, L.-C., Zhang, H., and Hsieh, C.-J. (2023). Can agents run relay race with strangers? gener-
alization of RL to out-of-distribution trajectories. In The Eleventh International Conference on
Learning Representations.

Langosco, L., Koch, J., Sharkey, L. D., Pfau, J., and Krueger, D. (2022). Goal misgeneralization in
deep reinforcement learning. In International Conference on Machine Learning, pages 12004—
12019. PMLR.

Lazaric, A. (2012). Transfer in reinforcement learning: a framework and a survey. Reinforcement
Learning: State-of-the-Art, pages 143-173.

Li, L., Walsh, T. J., and Littman, M. L. (2006). Towards a unified theory of state abstraction for
MDPs. In International Symposium on Artificial Intelligence and Mathematics (ISAIM 2006).

Lu, C., Scholkopf, B., and Herndndez-Lobato, J. M. (2018). Deconfounding reinforcement learning
in observational settings. arXiv preprint arXiv:1812.10576.

Machado, M. C., Bellemare, M. G., Talvitie, E., Veness, J., Hausknecht, M., and Bowling, M. (2018).
Revisiting the arcade learning environment: Evaluation protocols and open problems for general
agents. Journal of Artificial Intelligence Research, 61:523-562.

Mandlekar, A., Zhu, Y., Garg, A., Fei-Fei, L., and Savarese, S. (2017). Adversarially robust
policy learning: Active construction of physically-plausible perturbations. In 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 3932-3939. IEEE.

McCallum, A. K. (1995). Reinforcement Learning with Selective Perception and Hidden State. PhD
thesis, University of Rochester.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A.,
Riedmiller, M., Fidjeland, A. K., Ostrovski, G., et al. (2015). Human-level control through deep
reinforcement learning. Nature, 518(7540):529.

Muller-Brockhausen, M., Preuss, M., and Plaat, A. (2021). Procedural content generation: Better
benchmarks for transfer reinforcement learning. In 2021 IEEE Conference on games (CoG), pages
01-08. IEEE.

Murphy, K. P. (2002). Dynamic Bayesian Networks: Representation, Inference and Learning. PhD
thesis, UC Berkeley, Computer Science Division.

Nikishin, E., Schwarzer, M., D’Oro, P., Bacon, P.-L., and Courville, A. (2022). The primacy
bias in deep reinforcement learning. In International Conference on Machine Learning, pages
16828-16847. PMLR.

Ornia, D. J., Romao, L., Hammond, L., Mazo Jr, M., and Abate, A. (2022). Observational ro-
bustness and invariances in reinforcement learning via lexicographic objectives. arXiv preprint
arXiv:2209.15320.

Pearl, J. (2000). Causality: Models, Reasoning, and Inference. Cambridge University Press.

Pearl, J., Glymour, M., and Jewell, N. P. (2016). Causal inference in statistics: A primer. 2016.
Internet resource.

Peng, X. B., Andrychowicz, M., Zaremba, W., and Abbeel, P. (2018). Sim-to-real transfer of robotic
control with dynamics randomization. In 2018 IEEE international conference on robotics and
automation (ICRA), pages 3803-3810. IEEE.

Peters, J., Janzing, D., and Scholkopf, B. (2017). Elements of causal inference: foundations and
learning algorithms. The MIT Press.

Quionero-Candela, J., Sugiyama, M., Schwaighofer, A., and Lawrence, N. D. (2009). Dataset shift in
machine learning. The MIT Press.

11

Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus, M., and Dormann, N. (2021). Stable-
baselines3: Reliable reinforcement learning implementations. Journal of Machine Learning
Research, 22(268):1-8.

Saengkyongam, S., Thams, N., Peters, J., and Pfister, N. (2023). Invariant policy learning: A causal
perspective. IEEE Transactions on Pattern Analysis and Machine Intelligence.

Schaul, T., Quan, J., Antonoglou, I., and Silver, D. (2016). Prioritized experience replay. In
International Conference on Learning Representations.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017). Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347.

Singh, S. P, Jaakkola, T., and Jordan, M. I. (1994). Learning without state-estimation in partially
observable Markovian decision processes. In Proc. of the International Conference on Machine
Learning, pages 284-292.

Song, X., Jiang, Y., Tu, S., Du, Y., and Neyshabur, B. (2020). Observational overfitting in reinforce-
ment learning. In International Conference on Learning Representations.

Sontakke, S. A., Mehrjou, A., Itti, L., and Scholkopf, B. (2021). Causal curiosity: Rl agents
discovering self-supervised experiments for causal representation learning. In International
conference on machine learning, pages 9848-9858. PMLR.

Stone, A., Ramirez, O., Konolige, K., and Jonschkowski, R. (2021). The distracting control suite—a
challenging benchmark for reinforcement learning from pixels. arXiv preprint arXiv:2101.02722.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

Taylor, M. E. and Stone, P. (2009). Transfer learning for reinforcement learning domains: A survey.
Journal of Machine Learning Research, 10(7).

Tobin, J., Fong, R., Ray, A., Schneider, J., Zaremba, W., and Abbeel, P. (2017). Domain randomization
for transferring deep neural networks from simulation to the real world. In 2017 IEEE/RSJ
international conference on intelligent robots and systems (IROS), pages 23-30. IEEE.

Zhang, A., Ballas, N., and Pineau, J. (2018a). A dissection of overfitting and generalization in
continuous reinforcement learning. arXiv preprint arXiv:1806.07937.

Zhang, A., Lyle, C., Sodhani, S., Filos, A., Kwiatkowska, M., Pineau, J., Gal, Y., and Precup, D.
(2020). Invariant causal prediction for block mdps. In International Conference on Machine
Learning, pages 11214-11224. PMLR.

Zhang, C., Vinyals, O., Munos, R., and Bengio, S. (2018b). A study on overfitting in deep reinforce-
ment learning. arXiv preprint arXiv:1804.06893.

Zhao, W., Queralta, J. P., and Westerlund, T. (2020). Sim-to-real transfer in deep reinforcement
learning for robotics: a survey. In 2020 IEEE symposium series on computational intelligence
(SSCI), pages 737-744. 1IEEE.

12

A Proofs

Lemma 1. Let ®™** be the set of all possible w-minimal history representations under w1, where
every ®™* € ®™1* is defined as P™* : H;* — H;*" and H'* = x; dom(©7*™"), and let 73 be
a second policy such that for all hy € H* N H]™?,

supp (m2(- | he)) S supp (ma(- | 7)) -

For all D™* € ®™*, there exists a w-Markov history representation under policy ma, ®™2 : H*> —
H™ with H® = x; dom(07?"), such that ©7* C ©7*" for all hy € H;"* N H;"*. Moreover, there
exist cases where ©7% # ©7'*.

Proof. First, it is easy to show that

Vhy € H,supp (ma2(- | hy)) € supp (m1(- | be)) <= H™ C H™,
and

Vhe € H,supp (ma(- | he)) = supp (m1(- [he)) <= H™ = H™.
In particular, H™ C H™ if there is at least one history h; € H™ N H™ such that

supp (m2(- | ;) C supp (m1(- | hi))
while

supp (m2(- | b)) = supp (1 (- | he))
for all other hy € H™ N H™2,
In such cases, we know that there is at least one action o’ for which m5(a} | h}) = 0 but 7 (a} |
hy) # 0. Hence, since h},, = (hy,a;) ¢ HJ but i, € HT, we have that ™ C H™. Note
that, in some cases, having m(a; | h;) = 0 may not only remove A}, from HJ but possibly also
subsequent histories that can only be reached from h;_ ;.

Further, since H™ C H™, we know that, for every ®™* € ®71*, there must be a $™** that requires,
at most, the same number of variables, ©72 C ©7'* and, in some cases, fewer, O] '* # 072" (e.g.,
Frozen T-Maze example).

O

Proposition 1. Let ®* be the set of all possible minimal _history representations, where every
O* € ®* is defined as ®* : H, — H; with H} = x; dom(©}*). For all w and all ®* € ®*, there
exists a w-Markov history representation ®™ : HT — H] with HF = x,; dom(OZ") such that for all
he € H™, ©F C ©f. Moreover, there exist cases for which ©F is a proper subset, ©F # O.

Proof. The proof follows from Lemma 1. We know that, in general, H™ C H, and if w(a}|h}) =0
for at least one pair a, € A h, € H, then H™ C H. Hence, for every ®* there is a ®™ such
that ©F C ©O7, and in some cases, when H™ C H, we may have O] # Oj (e.g., Frozen T-Maze
example).

O

Theorem 1. Let ®* : H, — H} with H} = x;dom(0}") be a minimal history representation. If,
for some T, there is a w-Markov history representation ®™ : H] — HT with H = x; dom(©7"),
such that ©F C O for some hy € H, then ®™ is confounded by policy .

Proof. Proof by contradiction. Let us assume that ©F C O}, and yet there is no policy confounding.
Le., forall hy, hyy1 € H, ay € A,
Ry (@7 (he), ar) = Ry (do(®7 (he)), ar) (1
and
Pr(®7 (heg1) | @7 (he), ar) = Pr (@7 (hey1) | do(@™ (he)), ar) 2

First, note that the do-operator implies that the equality must hold for @/l h} in h;’s equivalence class
under ®™, h} € {h:}* = {h} € H; : ®(h}) = ®(h;)}, i.e., not just those h} that are visited under 7,

R (D7 (he), ar) = Rj(do(®7 (he)), ar) = {R(hi, ar)bnje iy S

13

which is precisely the first condition in Definition 4,

Rp(®™(ht),at) = Rp(he, ar), “)
forall h; € H and a; € A.
Analogously, we have that,

Pr™ (@™ (htt1) | @7 (he), ar) = Pr7(@7 (hey1) | do(@™ (ht)), ar)
= Pr(®7(he41) | D7 (he), ar)

where the second equality reflects that the above must hold independently of 7. Hence, we have that
for all k¢, hyy1 € H and B, € {h;}®,

Pr(®7(het1) | @7 (he), ar) = Pr(®7 (het1) | @7 (hy), ar), (6)
which means that, for all hy, hy11 € H and a; € A,
Pr(@7 (hiy1) | 7 (he), ar) = Pr(®7 (husa) | by, ar)
= S Tu(hyy | hesar), (M

by €{het1}®7

(&)

which is the second condition in Definition 4.

Equations (4) and (7) reveal that if the assumption is true (i.e., ™ is not confounded by the policy),
then ®7 is not just m-Markov but actually strictly Markov (Definition 4). However, we know that
®*(h;) is the minimal history representation, which contradicts the above statement, since, according
to Definition 5, there is no proper subset of ©F, for all h; € H, such that the representation remains
Markov. Hence, ©] C ©F implies policy confounding. O

Proposition 2. Let {O}} g« be the union of variables in all possible minimal history representations.
There exist cases where, for some w, there is a w-minimal history representation ®™* : H] — H[™*
with H* = x; dom(OF*%) such that ©7* \ {©} } o~ # 0.

Proof (sketch). Consider a deterministic MDP with a deterministic policy. Imagine there exists a
variable X' that is perfectly correlated with the episode’s timestep ¢, but that is generally irrelevant
to the task. The variable X! would constitute in itself a valid 7-Markov history representation since
it can be used to determine transitions and rewards so long as a deterministic policy is followed. At

the same time, X! would not enter the minimal Markov history representation because it is useless
under stochastic policies. Example 4 below illustrates this situation. O

B Example: Watch the Time

Figure 7: An illustration of the watch-the-time environment.

OO,
S-S0

10

O— ——®

()

Figure 8: Two DBNs representing the dynamics of the watch-the-time environment, when actions are
sampled at random (left), and when they are determined by the optimal policy (right).

14

Example 4. (Watch the Time) This example is inspired by the empirical results of Song et al. (2020).
Figure 7 shows a grid world environment., The agent must go from the start cell to the goal cell. The
agent must avoid the pink cells; stepping on those yields a —0.1 penalty. There is a is +1 reward for
reaching the goal. The agent can observe its own location within the maze X and the current timestep
t. The two diagrams in Figure 8 are DBNs describing the environment dynamics. When actions are
considered exogenous random variables (left diagram), the only way to estimate the reward at ¢ = 10
is by looking at the agent’s location. In contrast, when actions are determined by the policy (right
diagram), t becomes a proxy for the agent’s location X1. This is because the start location and the
sequence of actions are fixed. This implies that ¢ is a perfectly valid m-Markov history representation
under 7*. Moreover, as shown by the DBN on the right, the optimal policy may simply rely on ¢ to
determine the optimal action.

C Further Related Work

Early evidence of policy confounding Although to the best of our knowledge, we are the first to
bring forward and describe mathematically the idea of policy confounding, a few prior works have
reported evidence of particular forms of policy confounding. In their review of the Arcade Learning
Environment (ALE; Bellemare et al., 2013), Machado et al. (2018) explain that because the games are
fully deterministic (i.e., initial states are fixed and transitions are deterministic), open-loop policies
that memorize good action sequences can achieve high scores in ALE. Clearly, this can only occur if
the policies themselves are also deterministic. In such cases, policies, acting as confounders, induce a
spurious correlation between the past action sequences and the environment states. Similarly, Song
et al. (2020) showed, by means of saliency maps, how agents may learn to use irrelevant features of
the environment that happen to be correlated with the agent’s progress, such as background clouds or
the game timer, as clues for outputting optimal actions. In this case, the policy is again a confounder
for all these, a priori irrelevant, features. Zhang et al. (2018b) provide empirical results showing how
large neural networks may overfit their training environments and, even when trained on a collection
of procedurally generated environments, memorize the optimal action for each observation. Zhang
et al. (2018a) shows how, when trained on a small subset of trajectories, agents fail to generalize
to a set of test trajectories generated by the same simulator. Lan et al. (2023) report evidence of
well-trained agents failing to perform well on Mujoco environments when starting from trajectories
(states) that are out of the distribution induced by the agent’s policy. We conceive this as a simple
form of policy confounding. Since the Mujoco environments are also deterministic, agents following
a fixed policy can memorize the best actions to take for each state instantiation, potentially relying
on superfluous features. Hence, they can overfit to unnatural postures that would not occur under
different policies. Finally, Nikishin et al. (2022) describe a phenomenon named ‘primacy bias’,
which prevents agents trained on poor trajectories from further improving their policies. The authors
show that this issue is particularly relevant when training relies heavily on early data coming from a
fixed random policy. We hypothesize that one of the causes for this is also policy confounding. The
random policy may induce spurious correlations that lead to the formation of rigid history (state)
representations that are hard to recover from.

Generalization Generalization is a hot topic in machine learning. The promise of a model perform-
ing well in contexts other than those encountered during training is undoubtedly appealing. In the
realm of reinforcement learning, the majority of research focuses on generalization to environments
that, despite sharing a similar structure, differ somewhat from the training environment (Kirk et al.,
2023). These differences range from small variations in the transition dynamics (e.g., sim-to-real
transfer; Higgins et al., 2017; Tobin et al., 2017; Peng et al., 2018; Zhao et al., 2020), changes
in the observations (i.e., modifying irrelevant information, such as noise: Mandlekar et al., 2017;
Ornia et al., 2022, or background variables: Zhang et al., 2020; Stone et al., 2021), to alterations
in the reward function, resulting in different goals or tasks (Taylor and Stone, 2009; Lazaric, 2012;
Muller-Brockhausen et al., 2021). Instead, we focus on the problem of OOT generalization. Keeping
the environment unchanged, we aim to ensure that agents perform effectively when confronted with
situations that differ from those encountered along their preferred trajectories.

State abstraction State abstraction is concerned with removing from the representation all that
state information that is irrelevant to the task. In contrast, we are worried about learning representa-
tions containing too little information, which can lead to state aliasing. Nonetheless, as argued by

15

McCallum (1995), state abstraction and state aliasing are two sides of the same coin. That is why we
borrowed the mathematical frameworks of state abstraction to describe the phenomenon of policy
confounding. Li et al. (2006) provide a taxonomy of the types of state abstraction and how they relate
to one another. Givan et al. (2003) introduce the concept of bisimulation, which is equivalent to our
definition of Markov history representation (Definition 4) but for states instead of histories. Ferns
et al. (2006) proposes a method for measuring the similarity between two states. Castro (2020) notes
that this metric is prohibitively expensive and suggests using a relaxed version that computes state
similarity relative to a given policy. This is similar to our notion of 7m-Markov history representation
(Definition 7). While the end goal of this metric is to group together states that are similar under a
given policy, here we argue that this may lead to poor OOT generalization.

D Dynamic Bayesian Networks

Figure 9: Two DBNS representing the dynamics of the Key2Door environment, when actions are
sampled at random (left), and when they are determined by the optimal policy (right). The nodes
labeled as X represent the agent’s location, while the nodes labeled as Y represent whether or not the
key has been collected. The agent can only see X . Hence, when actions that are sampled are random
(left), the agent must remember its past locations to determine the reward R;. Note that only X3
and X7 are highlighted in the left DBN. However, other variables in (X5, ..., X) might be needed,
depending on when the key is collected. In contrast, when following the optimal policy, only X7 is
needed. In this second case, knowing the current location is sufficient to determine whether the key
has been collected.

Figure 10: Two DBNSs representing the dynamics of the Diversion environment, when actions are
sampled at random (left), and when they are determined by the optimal policy (right). The nodes
labeled as X! indicate the row where the agent is located; the nodes labeled as X 2 indicate the
column. We see that when actions are sampled at random, both X é and X2 are necessary to determine
R¢. However, when actions are determined by the optimal policy, X§ is sufficient, as the agent
always stays at the top row.

E Experimental Results

E.1 Learned history representations

The results reported in Section 7 show that the OOT generalization problem exists. However, some
may still wonder if the underlying reason is truly policy confounding. To confirm this, we compare
the outputs of the policy at every state in the Frozen T-Maze when being fed the same histories
(observation stack) but two different signals. That is, we permute the variable containing the signal
(«! in the diagram of Figure 2) and leave the rest of the variables in the observation stack unchanged.
We then feed the two versions to the policy network and measure the KL divergence between the two
output probabilities. This metric is a proxy for how much the agent attends to the signal in every state.

16

The heatmaps in Figure 11 show the KL divergences at various points during training (0, 10K, 30K,
and 100K timesteps) when the true signal is ‘green’ and we replace it with ‘purple’. We omit the two
goal states since no actions are taken there. We see that initially (top left heatmap), the signal has
very little influence on the policy (note the scale of the colormap is 10~), after 10K steps, the agent
learns that the signal is very important when at the top right state (top right heatmap). After this, we
start seeing how the influence of the signal at the top right state becomes less strong (bottom left
heatmap) until it eventually disappears (bottom right heatmap). In contrast, the influence of the signal
at the initial state becomes more and more important, indicating that after taking the first action, the
agent ignores the signal and only attends to its own location. The results for the alternative case,
purple signal being replaced by green signal, are shown in Figure 12.

0.15
0.10

0.05

10

0

0 1 2 3 4 5 6

Figure 11: A visualization of the learned history representations. The heatmaps show the KL
divergence between the action probabilities when feeding the policy network a stack of the past
10 observations and when feeding the same stack but with the value of the signal being switched
from green to purple, after O (top left), 10K (top right), 30K (bottom left), and 100K (bottom right)
timesteps of training.

m0.20
0.15
0.10

0.05

[f10

1

0 0

0 1 2 3 4 5 6 0 1 2 3 4 5 6

Figure 12: A visualization of the learned history representations. The heatmaps show the KL
divergence between the action probabilities when feeding the policy network a stack of the past
10 observations and when feeding the same stack but with the value of the signal being switched
from purple to green, after O (top left), 10K (top right), 30K (bottom left), and 100K (bottom right)
timesteps of training.

E.2 Buffer size and exploration/domain randomization

Figures 13 and 14 report the results of the experiments described in Section 7 (paragraphs 2 and 3)
for Key2Door and Diversion. We see how the buffer size also affects the performance of DQN in the
two environments (left plots). We also see that exploration/domain randomization does improve OOT
generalization in Diversion but not in Key2Door.

17

1.0

c c

“ 05 f—

=] >

- -

] 9]

-4 lod

o 00 ©

o o

© ©

o o

> 705 > ‘

< —e— DQN eval, BS=200 < —e— PPO eval, eps=.2

_1.0 —»— DQN eval, BS=20K 1.0 / —— DQN eval, BS=200, eps=.1
0 20000 40000 60000 80000 100000 0 20000 40000 60000 80000 100000

Timesteps Timesteps

Figure 13: Key2Door. Left: DQN small vs. large buffer sizes. Right: PPO and DQN when adding
stochasticity.

1.0
0.8
0.6
0.4
0.2
0.0

-0.2

Average Return
Average Return

_04 —e— DQN eval, BS=200 —04 —e— PPO eval, eps=.2

—»— DQN eval, BS=20K b« —»— DQN eval, BS=200, eps=.1

_0'60 5000 10000 15000 20000 _0'60 5000 10000 15000 20000

Timesteps Timesteps

Figure 14: Diversion. Left: DQN small vs. large buffer sizes. Right: PPO and DQN when adding
stochasticity.

F Further Experimental Details

We ran our experiments on an Intel i17-8650U CPU with 8 cores. Agents were trained with Stable
Baselines3 (Raffin et al., 2021). Most hyperparameters were set to their default values except for the
ones reported in Tables 1 (PPO) and 2 (DQN), which seemed to work better than the default values.

Table 1: PPO hyperparameters.

Rollout steps 128
Batch size 32
Learning rate 2.5¢e-4
Number epoch 3
Entropy coefficient 1.0e-2
Clip range 0.1
Value coefficient 1
Number Neurons 1st layer 128
Number Neurons 2nd layer 128

18

Table 2: DQN hyperparameters.

Buffer size

Learning starts

Learning rate

Batch size

Initial exploration bonus
Final exploration bonus
Exploration fraction

Train frequency

Number Neurons 1st layer
Number Neurons 2nd layer

19

1.0e5
1.0e3
2.5¢-4
256
1.0
0.0
0.2

5

128
128

	Introduction
	Example: Frozen T-Maze
	Related Work
	Preliminaries
	History representations
	Markov history representations
	bold0mu mumu -Markov history representations

	Policy Confounding
	Why should we care about policy confounding?
	When should we worry about OOT generalization in practice?
	What can we do to improve OOT generalization?

	Experiments
	Experimental setup
	Environments
	Results

	Conclusion
	Proofs
	Example: Watch the Time
	Further Related Work
	Dynamic Bayesian Networks
	Experimental Results
	Learned history representations
	Buffer size and exploration/domain randomization

	Further Experimental Details

