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ABSTRACT

We study an unsupervised domain adaptation problem where the source domain
consists of subpopulations defined by the binary label Y and a binary background
(or environment) A. We focus on a challenging setting in which one such subpop-
ulation in the source domain is unobservable. Naively ignoring this unobserved
group can result in biased estimates and degraded predictive performance. Despite
this structured missingness, we show that the prediction in the target domain can
still be recovered. Specifically, we rigorously derive both background-specific
and overall prediction models for the target domain. For practical implementation,
we propose the distribution matching method to estimate the subpopulation pro-
portions. We provide theoretical guarantees for the asymptotic behavior of our
estimator, and establish an upper bound on the prediction error. Experiments on
both synthetic and real-world datasets show that our method outperforms the naive
benchmark that does not account for this unobservable source subpopulation.

1 INTRODUCTION

Unsupervised domain adaptation (UDA) (Kouw & Loog, 2019) addresses the challenge of transferring
predictive models from a labeled source domain to an unlabeled target domain under distributional
shifts (Koh et al., 2021; Sagawa et al., 2022). In this area, research methods aim to reduce domain
discrepancy by aligning feature distributions, using statistical measures such as maximum mean
discrepancy (MMD) (Tzeng et al., 2014) and higher-order moment matching (HoMM) (Chen et al.,
2020). Deep adaptation frameworks, such as deep adaptation network (DAN) (Long et al., 2015)
and domain-adversarial neural network (DANN) (Ganin et al., 2016), are also popularly used due
to their strong empirical performance. There are also other approaches that integrate reconstruction
objectives to disentangle domain-invariant and domain-specific components (Ghifary et al., 2016).
These approaches often assume access to a representative and diverse set of source examples.
However, real-world datasets may violate this assumption in systematic and non-random ways.

In this work, we focus on a more challenging and practically relevant UDA setting where a structured
subpopulation is entirely missing from the source domain. Specifically, we consider binary label Y and
a binary background or environment variable A, and study the case where one subpopulation—defined
by a particular combination of Y and A—is unobserved in the source. This structured missingness is
not merely a sampling artifact, but often reflects real-world constraints in data collection. For instance,
in the widely studied Waterbirds dataset (Sagawa et al., 2019), waterbirds (Y = 1) photographed
in water environments (A = 1) can be rare or entirely absent due to the difficulty of capturing
such images in the wild. This issue arises in many other disciplines as well. In healthcare, certain
patient subgroups—defined jointly by disease status and demographics—may be underrepresented or
absent in historical datasets due to restrictive inclusion criteria or changes in clinical practice over
time. When such models are applied to broader populations, unobserved subgroups can suffer from
systematic mispredictions. This structured missingness (Mitra et al., 2023) fundamentally changes
some statistical properties when comparing the source and target domains, and, if unaddressed, can
lead to severely biased estimation and unreliable prediction in the target domain. These structured
gaps pose new challenges that are not adequately addressed by conventional UDA techniques, which
motivates our work.

To tackle this challenge, we develop a theoretical framework that accounts for the structured absence
of a subpopulation, such as (Y = 1, A = 1), in the source domain. Our key idea is to model how

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

prediction in the target domain can still be recovered by relating it to the observable parts of the
source and target data. Under a mild assumption that the distribution of features X given (Y,A) stays
the same across domains, we derive closed-form expressions for making accurate predictions in the
target domain. These expressions depend on the proportions of different subgroups in the target,
which are unknown. To estimate them, we propose a practical method based on distribution matching
that avoids modeling complex feature distributions directly. Specifically, we frame the problem
as estimating finite-dimensional mixture proportions under structured conditional invariance, and
propose a KL-divergence-based objective that can be optimized using only observable quantities. We
also provide theoretical guarantees, showing that our approach yields statistically consistent estimates
and deriving upper bounds on the prediction error of the resulting target-domain classifiers. Overall,
our framework provides the first rigorous characterization of model adaptation under structured
subpopulation absence, and enables robust domain adaptation in such a challenging scenario.

We validate our approach through experiments on both synthetic and real-world datasets. We simulate
domain adaptation scenarios where one subpopulation is systematically excluded from the source
data and evaluate our method against baseline approaches that do not account for this missing
group. Across a range of settings, our method consistently achieves higher accuracy and F1 scores,
particularly on the subpopulation absent from the source. These results highlight the practical value of
explicitly modeling structured missingness and demonstrate that our approach leads to more reliable
predictions in the target domain. To summarize, this paper makes the following novel contributions:

• We consider a new unsupervised domain adaptation setting where an entire label-background
subpopulation is missing from the source domain, a scenario motivated by real-world data
collection constraints.

• We develop a theoretical framework that enables accurate prediction in the target domain
by estimating subpopulation proportions through distribution matching, and we provide
rigorous guarantees and error bounds for our method.

• We demonstrate the effectiveness of our approach on both synthetic and real-world datasets.
Our method outperforms standard baselines that ignore structured missingness, particularly
in recovering performance on the unobserved subpopulation.

2 PROBLEM SETUP AND NOTATION

In our UDA setting, Y ∈ {0, 1} denotes the binary label, which is observed in the source domain
but not in the target. Let A ∈ {0, 1} be a binary background or environment variable and X ∈ Rq a
vector of all other attributes. Let R ∈ {0, 1} be a domain indicator, with R = 1 corresponding to
the source and R = 0 to the target. In our notation, we consistently use the order of (R, Y,A) for
indicator function I{·}, sample size n{·}, and population probability p{·}.

We define π = pr(R = 1). For y = 1, 0, a = 1, 0, we define αya = pr(Y = y,A = a | R = 1), and
βya = pr(Y = y,A = a | R = 0). For clarity, the total source sample size is n1 = n101+n110+n100,
and the target sample size is n0 = n0·1 + n0·0, so that the total sample size is n = n1 + n0. Table 1
summarizes the observed data structure and key notation.

Table 1: Data structure and key notation used throughout the paper.
R Y A X Sample Size Proportion Prediction Models

Source
1
1
1

0
1
0

1
0
0

✓
✓
✓

n101

n110

n100

p101 = α01π
p110 = α10π
p100 = α00π

ξ1(x) = pr(Y = 1 | X = x, A = 1, R = 1)
ξ0(x) = pr(Y = 1 | X = x, A = 0, R = 1)

ξ(x) = pr(Y = 1 | X = x, R = 1)

Target

0 ? 1 ✓
n0·1 p0·1 = (β11 + β01)(1− π) η1(x) = pr(Y = 1 | X = x, A = 1, R = 0)

η0(x) = pr(Y = 1 | X = x, A = 0, R = 0)
η(x) = pr(Y = 1 | X = x, R = 0)

0 ? 1 ✓

0 ? 0 ✓
n0·0 p0·0 = (β10 + β00)(1− π)0 ? 0 ✓

In our context, we have α10 + α01 + α00 = 1, α11 = 0, and 0 < α10, α01, α00 < 1. The
parameters can be consistently estimated by

α̂10 = n110/n1, α̂01 = n101/n1, α̂00 = n100/n1, π̂ = n1/n. (1)
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More formally, α11 = 0 is the following structured missingness condition:

pr(Y = 1, A = 1 | R = 1) = 0. (2)

Note that this assumption is made without loss of generality, as alternative combinations–such as
(Y = 0, A = 1), (Y = 1, A = 0), or (Y = 0, A = 0)–can be similarly assumed to have zero
probability. To characterize the distributional connection between the two domains, we impose a
structured conditional invariance assumption:

p(X | Y,A,R = 1) = p(X | Y,A,R = 0) = p(X | Y,A) ≡ pya(X), (3)

that is, the conditional distribution of features X given (Y,A) remains the same across domains.
This can be regarded as a conditional version, or, more nuanced version, of label shift where
the marginal distribution of labels (now, the combination of both label and background) varies
across domains (e.g., Du Plessis & Sugiyama, 2014; Garg et al., 2020; Iyer et al., 2014; Lipton
et al., 2018; Nguyen et al., 2016; Tasche, 2017; Tian et al., 2023; Zhang et al., 2013). It indicates,
conditional on background A, the label shift assumption holds. Mathematically, it states that
p(X|Y,A,R = 1) = p(X|Y,A,R = 0). It is equivalent to p(R|X, Y, A) = p(R|Y,A), the
independence between R and X, conditional on (Y,A). In practice, this assumption may be suitable
in many applications. Below we give two examples to illustrate the rationality of this assumption.
For instance, we aim to predict user clicks on advertisements for a new batch of users (target domain,
R = 0) using historical data (source domain, R = 1). Conditional on the advertisement type A and
whether the user clicks Y , the distribution of browsing behavior features X is assumed to remain
stable across time periods. This is because user clicks are fundamentally determined by ad content
and user interests, not by the time period in which data are collected. As another example, suppose we
have datasets from two hospitals (R = 1 indicates the source hospital and R = 0 indicates the target
hospital). Here, X represents imaging features, Y is the disease type, and A denotes patient attributes
such as gender or age group. Then, conditional on the disease type Y and demographic attributes
A, the distribution of imaging features X is expected to remain the same across hospitals. This is
because imaging characteristics for a given disease and demographic group are not systematically
altered by the hospital. The main difference between hospitals lies in sampling proportions rather
than in conditional distributions.

This framework captures real-world scenarios in which a certain label-background subpopulation
is absent from the source domain. For example, in the Waterbirds dataset, waterbirds on water
backgrounds (label Y = 1, background A = 1) are rarely observed–or even completely absent–in
the training set, making the adaptation to target domains particularly challenging. For illustration
purposes, Table 2 below shows the three observed subpopulations in the source as well as the four
subpopulations in the target in two real-world datasets.

Table 2: Illustrations in Waterbirds and CelebA datasets. Note that the (Y = 1, A = 1) combination
does not exist in the source domain but does in the target domain.

Dataset Source Data Target Data

(Y,A) (0, 1) (1, 0) (0, 0) (1, 1) (0, 1) (1, 0) (0, 0)

Waterbirds

Y=0:Landbird
A=1:Water background

Y=1:Waterbird
A=0:Land background

Y=0:Landbird
A=0:Land background

Y=1:Waterbird
A=1:Water background

Y=0:Landbird
A=1:Water background

Y=1:Waterbird
A=0:Land background

Y=0:Landbird
A=0:Land background

CelebA

Y=0:Blond hair
A=1:Male

Y=1:Dark hair
A=0:Female

Y=0: Blond hair
A=0:Female

Y=1:Dark hair
A=1:Male

Y=0:Blond hair
A=1:Male

Y=1: Dark hair
A= 0:Female

Y=0:Blond hair
A=0:Female

3 PROPOSED METHODOLOGY

Our goal in this work is to correctly identify and successfully implement, under our UDA setting, the
two background-specific prediction models η1(x) and η0(x) and the overall prediction model η(x),
in the target domain. All of the three models were precisely defined in Table 1.
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3.1 THE NAIVE BENCHMARK

As the benchmark, one may naively apply the three source domain prediction models ξ1(x), ξ0(x),
and ξ(x) to the target. First, one can use the observed data to implement the overall source domain
prediction model ξ(x) and one background-specific prediction model ξ0(x) as

ξ(x) = pr(Y = 1 | x, R = 1), and ξ0(x) = pr(Y = 1 | x, R = 1, A = 0). (4)
Afterwards, even though the subpopulation (Y = 1, A = 1) is entirely absent in the source, still one
can compute the other background-specific prediction model

ξ1(x) =
ξ(x)− ξ0(x){1− τ1(x)}

τ1(x)
, where (5)

τ1(x) = pr(A = 1 | X = x, R = 1), (6)
can also be implemented using the observed data.

3.2 MODEL ADAPTATION FROM SOURCE TO TARGET

The most challenging aspect of this work is to adapt the model for the A = 1 background since the
component (Y = 1, A = 1) is entirely absent in the source. Nevertheless, we can still correctly
derive the three prediction models for the target domain, as shown below.
Proposition 3.1. Define the model τ0(x) = pr(A = 1 | X = x, R = 0) and the model

κ(x) = pr(R = 1 | x, A = 1), (7)
both of which can be implemented using the observed data in our UDA setting. Then the three
prediction models in the target domain are given by:

η1(x) = 1− β01

α01
· 1− π

π
· κ(x)

1− κ(x)
, η0(x) =

β10

α10
ξ0(x)

β10

α10
ξ0(x) +

β00

α00
{1− ξ0(x)}

, and

η(x) = η1(x)τ0(x) + η0(x){1− τ0(x)}.
(8)

The proof of this result is provided in Appendix A.1. Proposition 3.1 illustrated that, in general,
the naive method presented in Section 3.1 fails. There are no explicit relations between η1(x) and
ξ1(x) or between η(x) and ξ(x). For the relation between η0(x) and ξ0(x), they coincide only in
the special case that β10/α10 = β00/α00, which corresponds to a proportionality condition between
the class-conditional densities across domains. Outside of this narrow scenario, the naive approach
systematically misestimates the target posterior, leading to biased predictions.

This result also implies that model adaptation fundamentally relies on estimating the proportions
of key subgroups in the target population. In particular, for individuals with A = 1, one only
needs to estimate β01, while for those with A = 0, it suffices to estimate the ratio β10/β00. Denote
β = (β10, β00)

T. It can be seen that, accurate estimation of the parameter β in the target domain
enables valid model adaptation across domains. Before developing methods for estimating β in
Section 3.4, we first present some model identification considerations.

3.3 MODEL IDENTIFICATION CONSIDERATIONS

The identifiability structure of our problem closely resembles that of the open set label shift (OSLS)
framework (Garg et al., 2022). Note that our target distribution consists of a mixture over four joint
distributions: pr(Y = 1, A = 1), pr(Y = 1, A = 0), pr(Y = 0, A = 0), and pr(Y = 0, A = 1).
By treating the joint label (Y,A) as the response, this setting can be viewed as a special case of the
OSLS framework. However, our setup is considerably simpler due to the availability of the auxiliary
variable A in the target domain. As a result, we can restrict attention to the subset A = 1, thereby
discarding the A = 0 portion of the distribution. This reduction simplifies the problem to recovering
pr(Y = 1, A = 1) from a mixture of pr(Y = 1, A = 1) and pr(Y = 0, A = 1), given direct access
to pr(Y = 0, A = 1). This is a canonical positive-unlabeled (PU) learning problem. Identifiability in
this setting is governed by the standard anchor set condition (see Definition 8 of Ramaswamy et al.
(2016)): there exists a measurable subset xanchor ∈ X such that

p(X ∈ xanchor|Y = 0, A = 1) > 0 and
p(X ∈ xanchor|Y = 1, A = 1)

p(X ∈ xanchor|Y = 0, A = 1)
= 0.
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This condition ensures that the positive class (Y = 1, A = 1) has no support on a subset of the feature
space that is occupied by the negative class (Y = 0, A = 1), which is necessary for identifiability.
Under the assumption (3), the primary difficulty arises from the fact that the component p11(x),
corresponding to the subgroup (Y = 1, A = 1), is not directly observable in either the source or
target domain.

To elucidate this observation, we denote p0(x) = {p10(x), p00(x)}T, and then the observed data
log-likelihood of one generic observation in our UDA setting is proportional to:

I110logp10(x) + I101logp01(x) + I100logp00(x)

+I0·1log
{
β11p11(x) + (1− β11 − β⊤1)p01(x)

}
+ I0·0log

{
β⊤p0(x)

}
.

In this formulation, the parameter with finite dimension is β. The model involves four nonparametric
nuisance components: p11(x), p10(x), p01(x), and p00(x).
Lemma 3.2. Assume β11 = 0 and p10(x) ̸= p00(x), then all components except p11(x) are
identifiable. Assume 0 < β11 < 1 and is known, and p10(x) ̸= p00(x), then all components in the
model are identifiable.

The proof of Lemma 3.2 is provided in Appendix A.1. The identification conditions in Lemma 3.2 are
intuitive and reasonable. If β11 = 0, it degenerates to the situation that the source and target domains
have the same support on both label Y and background A, then the component p11(x) is no longer
relevant. Also, if p10(x) = p00(x), the subpopulations of (Y = 1, A = 0) and (Y = 0, A = 0)
become indistinguishable, and hence the individual probabilities β10 and β00 are not separately
identifiable. Overall, these conditions are natural to ensure the problem is well-posed.

3.4 ESTIMATING PARAMETERS OF INTEREST

To estimate the parameter β, we consider the distribution of attributes x in the subpopulation defined
by (R = 0, A = 0). By the law of total probability, we have

p(x | R = 0, A = 0)pr(R = 0, A = 0) = p10(x)β10(1− π) + p00(x)β00(1− π), (9)

subject to the constraint

pr(R = 0, A = 0) = β10(1− π) + β00(1− π). (10)

Note that the distribution p(x | R = 0, A = 0) is identifiable from the target population. The
distributions p10(x) and p00(x) can be consistently estimated from the source population subgroups
(R = 1, Y = 1, A = 0) and (R = 1, Y = 0, A = 0), respectively. Thus, the parameters
β = (β00, β10)

T can be estimated by minimizing a suitable discrepancy measure between the two
sides of equation (9), such as an L2 norm or a divergence-based criterion (e.g., Kullback–Leibler
divergence), subject to the constraint in equation (10). Therefore, we reformulate the estimation of β
as a constrained distribution matching problem:

β̂ = argminβD {p̂(x | R = 0, A = 0)∥{p̂10(x)β10 + p̂00(x)β00}/p̂r(A = 0|R = 0)} , (11)

subject to p̂r(A = 0|R = 0) = β10 + β00, where D denotes a discrepancy measure between
probability distributions over the covariate space X . Among various choices for D, we adopt the
Kullback–Leibler (KL) divergence due to its favorable analytical and computational properties. To
facilitate optimization, we relax the constraint in (11) and reformulate the objective under KL
divergence, as summarized in the following lemma.

Lemma 3.3. Let D be the Kullback–Leibler divergence. Then the solution β̂10 to the minimization
problem (11) is given by

argmaxβ10
Ê
(
log[ξ̂0(X)̂b−1

1 β10 + {1− ξ̂0(X)}(1− b̂1)
−1(ϱ̂− β10)]

∣∣∣R = 0, A = 0
)
, (12)

where, for simplicity, b1 = pr(Y = 1|R = 1, A = 0), ϱ = pr(A = 0|R = 0) and Ê represents the
empirical average.

The proof of Lemma 3.3 is provided in Appendix A.1. A key advantage of minimizing the KL
divergence is that it circumvents the need to explicitly estimate the generative models p10(x) and
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p00(x), which are often difficult to model accurately in high dimensions. Instead, it suffices to
estimate one background-specific prediction model ξ0(x) using standard classification techniques on
the source domain restricted to A = 0.

The above method adopts the idea of distribution matching. Alternatively, one may consider matching
only certain moments rather than the full distribution. Due to space constraints, we defer the details
to Appendix A.1.

Algorithm 1 Implementation details of our proposed method.
Input: Observed source domain data {(Xi, Yi, Ai, Ri = 1)}n1

i=1 and target domain data
{(Xi, Ai, Ri = 0)}n0

i=1.
Output: Estimated benchmark prediction models ξ̂(x), ξ̂1(x) and ξ̂0(x), proposed prediction models

for the target η̂(x), η̂1(x) and η̂0(x); and subpopulation proportions α̂ya, β̂ya.
1: Estimate ξ(x) (defined in (4)) using data {(Xi, Yi, Ri = 1) : i = 1, · · · , n1}, as ξ̂(x);
2: Estimate ξ0(x) (defined in (4)) using data {(Xi, Yi, Ai = 0, Ri = 1) : i = 1, · · · , n1}, as

ξ̂0(x);
3: Estimate τr(x) (defined in (6)) using data {(Xi, Ai, Ri = r) : i = 1, · · ·nr}, r = 0, 1, as

τ̂r(x);
4: Estimate ξ1(x) following equation (5), as ξ̂1(x);
5: Estimate κ(x) (defined in (7)) using data {(Xi, Ri, Ai = 1) : i = 1, · · ·n}, as κ̂(x);
6: Estimate β and αy,a following equations (12) and (1), as β̂ and α̂ya for (y, a) ∈ {0, 1};
7: Estimate η1(x), η0(x) and η(x) following equation (8), as η̂1(x), η̂0(x) and η̂(x).

Finally, based on all of the above discussions, we summarize the implementation details of our
proposed method in Algorithm 1.

3.5 DOWNSTREAM TASKS

With any loss function ℓ(·), for the background-specific prediction model with A = 0, the conditional
risk is

E[ℓ{h(X), Y } | R = 0, A = 0] = E[ℓ{h(X), Y }w(Y ) | R = 1, A = 0], (13)

where, for simplicity, we write w(y) = pr(y|R=0,A=0)
pr(y|R=1,A=0) . One can derive that w(1) = β10(α00+α10)

α10(β00+β10)
and

w(0) = β00(α00+α10)
α00(β00+β10)

. To evaluate the performance of the prediction model, it can be approximated

as Ê[ℓ{h(X), Y } ŵ(Y ) | R = 1, A = 0]. Furthermore, the model can be fine-tuned specifically for
the target subgroup by minimizing the reweighted empirical risk:

ĥŵ ∈ argmin
h∈F

Ê[ℓ{h(X), Y } ŵ(Y ) | R = 1, A = 0], (14)

where F is a suitable function class.

For the interest of space, for the other two prediction models, we only present the relations analogous
to (13) without elaborations. For the background-specific prediction model with A = 1, one can
derive E[ℓ{h(X), Y }|R = 0, A = 1] as

E[ℓ{h(X), Y = 1}|R = 0, A = 1]

−E ([ℓ{h(X), Y = 1} − ℓ{h(X), Y = 0}] |Y = 0, A = 1)
β01

β01 + β11
.

For the overall prediction model, the conditional risk E[ℓ{h(X), Y }|R = 0] is

E[ℓ{h(X), Y }w(Y ) | R = 1, A = 0](β10 + β00)

+E[ℓ{h(X), Y = 1}|R = 0, A = 1](β01 + β11)

−E ([ℓ{h(X), Y = 1} − ℓ{h(X), Y = 0}] |Y = 0, A = 1)β01.

6
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4 THEORETICAL RESULTS

For the interest of space, we only present the results for the background-specific prediction model with
A = 0. The results for the other two prediction models are parallel and can be similarly developed.
To facilitate the analysis, we begin by formally defining the population-level (expected) objective
function:

L(ξ0, b1, β10, ϱ) = E
(
log[ξ0(X)b−1

1 β10 + {1− ξ0(X)}(1− b1)
−1(ϱ− β10)]

∣∣R = 0, A = 0
)
,

with its empirical version L̂(ξ0, b1, β10, ϱ).

Assumption 4.1. Define f(x) = {f0(x), f1(x)}T, where f0(x) = log{ξ0(x)} − 1
2 [log{ξ0(x)} +

log{1 − ξ0(x)}] and f1(x) = log{1 − ξ0(x)} − 1
2 [log{ξ0(x)} + log{1 − ξ0(x)}], and the corre-

sponding estimate is {f̂k(x)}1k=0. There exist a constant c > 0 and a sequence rn1·0 → 0 such that,
for almost every x, we have

pr
(
∥f̂(x)− f(x)∥2 > t

)
≤ exp

{
−t2/(c2r2n1·0

)
}
, ∀ t > 0.

Theorem 4.2. Suppose Assumption 4.1 holds. Define χn = rn1·0

√
log(n0·0) + n

−1/2
1·0 + n

−1/2
0·0 .

Then, there exists a constant c10 > 0 such that for any δ > 0, with probability at least 1 − 6δ, we
have

∥β̂ − β∥1 ≤ c10χn

√
log(1/δ).

The proof of Theorem 4.2 is provided in Appendix A.2. Theorem 4.2 establishes the consistency of
the estimator β̂, provided that rn1·0

√
log(n0·0) → 0 as n1·0, n0·0 → ∞.

Next, we establish a generalization bound for the fitted model (14), which is obtained via weighted
empirical risk minimization over the source subgroup. Let F denote the hypothesis class of classifiers.
For any h ∈ F and a weight function w(y) : y → R, we define the population-level weighted loss
and its empirical counterpart based on the source subgroup data as follows:

L1(h,w) = E
[
ℓ{h(X), Y }w(Y )

∣∣A = 0, R = 1
]
,

L̂1(h,w) = Ê
[
ℓ{h(X), Y }w(Y )

∣∣A = 0, R = 1
]
.

We also define the population loss on the target subgroup as: L0(h) =
E
[
ℓ{h(X), Y }

∣∣R = 0, A = 0
]
. Clearly, L1(h,w) = L0(h).

To establish our generalization bound, we utilize the concept of Rademacher complexity (Bartlett
& Mendelson, 2002), denoted as Rn(G) (see Appendix A.2 for details), and impose the following
assumption on the loss function:

Assumption 4.3. The loss function ℓ is uniformly bounded; that is, there exists a constant B > 0
such that

|ℓ{h(x), y}| ≤ B for any h ∈ F ,x ∈ X ⊂ Rq, and y ∈ {0, 1}.

We now present the generalization bound for the learned model, with its proof provided in Ap-
pendix A.2.

Proposition 4.4. Under Assumptions 4.1 and 4.3, let ĥŵ = argminh∈F L̂1(h, ŵ) be the classifier
obtained by minimizing the reweighted empirical risk on the source subgroup. Then, there exist
constants c, d > 0 such that, with probability at least 1 − 7δ, the following generalization bound
holds:

L0(ĥŵ)−min
h∈F

L0(h) ≤ 2Rn1·0(G) + dB∥β̂ − β∥1 + c


√

log(1/δ)

n1·0
+

√
log(1/δ)

n0

 ,

where G = {w(y)ℓ{h(x), y} : h ∈ F}, and Rn1·0(G) denotes its Rademacher complexity as defined
in Appendix A.2.
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5 EXPERIMENTS

We conduct extensive experiments on both synthetic and real-world datasets. Due to space limitations,
we present the results on the Waterbirds dataset here and provide additional results in Appendix A.3.

The Waterbirds dataset (Sagawa et al., 2019) consists of 11,788 images. The label Y = 1 denotes
a waterbird and Y = 0 landbird. The background A = 1 corresponds to a water background and
A = 0 a land background. It yields four label–background subpopulations, as summarized in Table 3.

Table 3: Empirical joint distribution of (Y,A) in the Waterbirds dataset, with varied values of a, b
and c, 0 < a, b, c < 1.
Y A Description Count Total Proportion Proportion in Source Proportion in Target

1 1 Waterbird on water 1832 0.155 0 0.155
0 1 Landbird on water 2905 0.246 0.246a 0.246(1− a)
1 0 Waterbird on land 831 0.071 0.071b 0.071(1− b)
0 0 Landbird on land 6220 0.528 0.528c 0.528(1− c)

To construct a structured domain adaptation problem, we partition the full dataset into a source
domain (R = 1) and a target domain (R = 0). Specifically, we allocate samples from three
subgroups—(Y = 0, A = 1), (Y = 1, A = 0), and (Y = 0, A = 0)—into the source domain,
with allocation rates denoted by parameters a, b, and c, respectively. The remaining subgroup,
(Y = 1, A = 1), is deliberately excluded from the source domain and appears only in the target
domain. This setting reflects real-world scenarios in which a specific combination of label and
background is structurally missing from labeled datasets due to systematic data collection biases or
constraints. In the target domain, all four subgroups are retained, but the label variable Y is treated as
unobserved.

To implement the proposed method, we apply the distribution matching approach to estimate the
subclass proportions in the target domain. For feature extraction, we embed each image into a
512-dimensional feature vector using a ResNet-18 model (He et al., 2016) pre-trained on ImageNet
(Deng et al., 2009), without additional fine-tuning. These embeddings serve as covariates X ∈ R512

in our downstream analysis. Based on these feature vectors, we fit logistic regression models with
L2-regularization to estimate five key conditional probabilities required by both our proposed method
and benchmark procedures: ξ0(x), ξ(x), τ0(x), τ1(x) and κ(x).
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Figure 1: Performance comparison of our proposed estimators η1(x), η(x), and the benchmark
method ξ1(x), ξ(x) under the setting a = 0.5 with either c = 0.5 and varying b or b = 0.5 and
varying c.

For empirical evaluation, we fix the subclass sampling rate at a = 0.5 in the source domain and
systematically vary the remaining subclass inclusion rates by setting either b = 0.5 with c ∈
{0.1, 0.2, . . . , 0.9}, or c = 0.5 with b ∈ {0.1, 0.2, . . . , 0.9}. For each configuration, the data
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generation process is repeated 50 times to account for sampling variability. We assess performance
using two widely adopted classification metrics: accuracy and F1 score. Figure 1 presents boxplots
summarizing the distribution of these metrics across repetitions for our proposed estimators η̂1(x)
and η̂(x), alongside benchmark estimators ξ̂1(x) and ξ̂(x). The results demonstrate that the proposed
methods consistently outperform the benchmarks in both accuracy and F1 score, suggesting enhanced
robustness to structured subpopulation missingness in the unsupervised domain adaptation setting.
Due to the space limitations, additional results are provided in Appendix A.4.

6 RELATED WORK

Out-of-distribution (OOD) generalization OOD generalization refers to the ability of a prediction
model to perform well on test data drawn from a distribution that differs from the training data. In
our context, the subpopulation (Y = 1, A = 1) in the target can be regarded as the OOD data while
the other three subpopulations are in-distribution data. For a comprehensive overview of OOD gener-
alization, we refer the readers to the excellent survey (Liu et al., 2021), which reviewed real-world
datasets, evaluation protocols, and key challenges in this area. In the OOD generalization literature,
different methods were proposed with different emphases: (Arjovsky et al., 2019) emphasized the
need to minimize invariant risk across different environments to ensure consistent model performance,
whereas (Sagawa et al., 2019) underscored the importance of distributionally robust optimization
(DRO) and various regularization techniques in reducing performance disparities across subgroups.
In addition, (Bahng et al., 2020) introduced adversarial training as a method for learning de-biased
representations, which is critical for promoting fairness in machine learning models, and (Sohoni
et al., 2020) examined the issue of robustness in classification tasks involving coarse classes that
contain finer subclasses, enhancing model performance across all subclasses.

OOD detection OOD detection is the task of identifying inputs at test time that do not come from
the same distribution as the training data. Its goal is to prevent a model from making confident but
incorrect predictions on unfamiliar or anomalous inputs by flagging them as OOD. There are a variety
of techniques developed for OOD detection in the literature. For example, (Hendrycks & Gimpel,
2017) introduced a simple yet effective method for detecting both misclassified and OOD inputs in
neural networks. Liang et al. (2018) (ODIN) proposed an improved method for detecting OOD inputs
by applying temperature scaling to the softmax outputs and adding small input perturbations during
inference. ODIN significantly outperformed previous baseline methods, including the maximum
softmax probability approach, and set a new standard for OOD detection in classification tasks. Other
techniques include but not limited to, outlier exposure (Hendrycks et al., 2018; Papadopoulos et al.,
2021), ConfGAN (Sricharan & Srivastava, 2018) and OodGAN (Marek et al., 2021). In addition,
Fort et al. (2021) provided an extensive empirical study of OOD detection methods across a wide
range of datasets, architectures, and training regimes.

Spurious correlation Spurious correlation is a major obstacle to OOD generalization, where
models often rely on non-causal features that can degrade performance, particularly when these
correlations do not generalize across domains. For example, a model trained to classify cows might
rely on green pastures (background) instead of the cow itself. On a desert background, it fails.
This is also the case in the Waterbirds dataset where the spurious correlation exists between label
Y and background A. Different learning strategies were proposed to discover and mitigate the
impact of spurious correlation on model performance, as well as to improve model robustness. For
example, (Wu et al., 2023) introduced an attention-based approach to automatically identify spurious
concepts and apply adversarial training to reduce reliance on them. Another approach proposed
by (Kumar et al., 2023) used causal regularization to detect and discourage spurious dependencies,
allowing for scalable robustness across shifts. In addition, (Sagawa et al., 2020) investigated why
overparameterization exacerbates spurious correlations, and (Kirichenko et al., 2022) found that
retraining only the final layer on a small, balanced dataset can restore robustness against spurious
correlations. Also, (Wang & Wang, 2024) developed a theoretical model to analyze the influence of
spurious correlation strength, sample size, and feature noise on learning. Spurious correlations were
also investigated in feature learning (Izmailov et al., 2022; Qiu et al., 2024), reinforcement learning
(Ding et al., 2023), OOD detection (Ming et al., 2022), and text classification (Wang & Culotta, 2020).
One can also resort to a comprehensive survey paper (Ye et al., 2024) on this topic.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Ethics statement

We confirm that all authors of this manuscript have thoroughly read and strictly adhered to the ICLR
Code of Ethics (available at: https://iclr.cc/public/CodeOfEthics). Our commitment
to ethical research practices has been maintained throughout this study. The datasets utilized in this
research are publicly available benchmark datasets. To the best of our knowledge, this work poses no
foreseeable societal risks and is free from any potential conflicts of interest.

Reproducibility statement

We confirm the reproducibility of our work and will release a complete source code implementation
along with detailed setup instructions upon acceptance of this paper. The implementation details of
our proposed method are systematically outlined in Algorithm 1. All datasets used in this study are
publicly accessible. For our theoretical contributions, we provide rigorous proofs in the Appendix,
along with a detailed discussion of the underlying assumptions.

10

https://iclr.cc/public/CodeOfEthics


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES
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A APPENDIX

A.1 PROOFS AND MORE DETAILS IN SECTION 3

Proof of Proposition 3.1. For A = 1 case, note that

p(x | R = 0, A = 1)pr(R = 0, A = 1)

= p(x | R = 0, Y = 1, A = 1)p011 + p(x | R = 0, Y = 0, A = 1)p001.

Thus,

p11(x) =
p(x | R = 0, A = 1)pr(R = 0, A = 1)− p01(x)p001

p011
.
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Then,

pr(Y = 1 | x, R = 0, A = 1) =
p11(x)p011

p(x, R = 0, A = 1)

=
p(x | R = 0, A = 1)pr(R = 0, A = 1)− p01(x)p001

p(x | R = 0, A = 1)pr(R = 0, A = 1)

=
p(x | R = 0, A = 1)p0·1 − p01(x)β01(1− π)

p(x | R = 0, A = 1)p0·1

Note that

pr(R = 1 | x, A = 1) =
p01(x)α01π

p01(x)α01π + p(x | R = 0, A = 1)p0·1

gives

p01(x)

p(x | R = 0, A = 1)p0·1
=

pr(R = 1 | x, A = 1)

α01π{1− pr(R = 1 | x, A = 1)}
.

Hence,

pr(Y = 1 | x, R = 0, A = 1) = 1− β01(1− π)

α01π

pr(R = 1 | x, A = 1)

1− pr(R = 1 | x, A = 1)
.

Note that

pr(R = 1 | x, A = 1) =
p(x | R = 1, A = 1)α01π

p(x | R = 1, A = 1)α01π + p(x | R = 0, A = 1)p0·1

gives

p(x | R = 1, A = 1)

p(x | R = 0, A = 1)p0·1
=

pr(R = 1 | x, A = 1)

α01π{1− pr(R = 1 | x, A = 1)}
.

Hence,

pr(Y = 1 | x, R = 0, A = 1) = 1− β01(1− π)

α01π

pr(R = 1 | x, A = 1)

1− pr(R = 1 | x, A = 1)

{
p(x|Y = 0, A = 1)

p(x|R = 1, A = 1)

}
.

For A = 0 case, note that

pr(Y = 1 | x, R = 0, A = 0) =
pr(Y = 1,x, R = 0, A = 0)

pr(Y = 1,x, R = 0, A = 0) + pr(Y = 0,x, R = 0, A = 0)

=
pr(x, Y = 1, R = 1, A = 0)

pr(Y=1,R=0,A=0)
pr(Y=1,R=1,A=0)

pr(x, Y = 1, R = 1, A = 0)
pr(Y=1,R=0,A=0)
pr(Y=1,R=1,A=0) + pr(x, Y = 0, R = 1, A = 0)

pr(Y=0,R=0,A=0)
pr(Y=0,R=1,A=0)

=

β10

α10
ξ0(x)

β10

α10
ξ0(x) +

β00

α00
{1− ξ0(x)}

.

By Bayes’ rule, we obtain the following equation

η(x) = η1(x)τ0(x) + η0(x){1− τ0(x)}.

Proof of Lemma 3.2. It is easy to see that, π, α10, α01, p10(x), p01(x) and p00(x) are all identifiable.
Now suppose that there are two different sets p11(x), β10, β00 and p̃11(x), β̃10, β̃00 such that

β11p11(x) + (1− β11 − β10 − β00)p01(x) = β11p̃11(x) + (1− β11 − β̃10 − β̃00)p01(x),

β10p10(x) + β00p00(x) = β̃10p10(x) + β̃00p00(x). (15)

Now taking the integral with respect to x on both sides of the second equation above, it is clear that

β10 + β00 = β̃10 + β̃00.

14
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Plugging in back to the first equation above, we obtain

β11{p11(x)− p̃11(x)} = 0.

Since β11 > 0, we obtain p11(x) = p̃11(x). Finally, (15) leads to (β10 − β̃10)p10(x) = (β̃00 −
β00)p00(x), which can only hold if β10 = β̃10 and β̃00 = β00 since p10(x) ̸= p00(x). This completes
the proof.

Proof of Lemma 3.3.

D

{
p(x|R = 0, A = 0)

∥∥∥∥∥
1∑

k=0

p(x|Y = k,A = 0)βk0
1− π

pr(R = 0, A = 0)

}

=

∫
p(x|R = 0, A = 0)log

p(x|R = 0, A = 0)∑1
k=0 p(x|Y = k,A = 0)βk0

1−π
pr(R=0,A=0)

dx

=

∫
p(x|R = 0, A = 0)log

p(x|R = 0, A = 0)∑1
k=0 p(x|Y = k,A = 0)βk0

1−π
pr(R=0,A=0)

dx

=

∫
p(x|R = 0, A = 0)log

p(x|R = 0, A = 0)

p(x|R = 1, A = 0)
dx

−
∫

p(x|R = 0, A = 0)log

∑1
k=0 p(x|Y = k,A = 0)βk0

1−π
pr(R=0,A=0)

p(x|R = 1, A = 0)
dx

=

∫
p(x|R = 0, A = 0)log

p(x|R = 0, A = 0)

p(x|R = 1, A = 0)
dx

−
∫

p(x|R = 0, A = 0)log

1∑
k=0

pr(Y = k|x, R = 1, A = 0)βk0(1− π)pr(R = 1, A = 0)

pr(R = 1, Y = k,A = 0)pr(R = 0, A = 0)
dx.

Minimizing the above equation is equivalent to maximizing

argmaxβE

{
log

1∑
k=0

pr(Y = k|x, R = 1, A = 0)
βk0

pr(Y = k|R = 1, A = 0)

∣∣∣∣∣R = 0, A = 0

}
,

subject to pr(R = 0, A = 0) = β10(1− π) + β00(1− π).

We enforce this restriction as a constraint in the distribution matching problem: where D is a
discrepancy between probability distributions on X .

Define

L(ξ0, b1, β10, ϱ) = E
(
log[ξ0(X)b−1

1 β10 + {1− ξ0(X)}(1− b1)
−1(ϱ− β10)]

∣∣R = 0, A = 0
)
.

Its empirical version is

L̂(ξ0, b1, β10, ϱ) = Ê
(
log[ξ0(X)b−1

1 β10 + {1− ξ0(X)}(1− b1)
−1(ϱ− β10)]

∣∣R = 0, A = 0
)
.

AN ALTERNATIVE APPROACH FOR ESTIMATING β

In the main text, we explore the use of distribution matching for estimating β. Alternatively, it is
sufficient to only consider some moments instead of the whole distribution. For any measurable
function m(x), the law of total expectation yields the identity:

E{m(x) | R = 0, A = 0}pr(R = 0, A = 0)

= E{m(x) | 1, 0}β10(1− π) + E{m(x) | 0, 0}β00(1− π). (16)

Rewriting equation (16), we obtain the following linear system:

(1− π)p−1
0·0 [E{m(x) | 1, 0}, E{m(x) | 0, 0}]β = E{m(x) | R = 0, A = 0},

15
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which leads to the expression

β = (1− π)−1p0·0 [E{m(x) | 1, 0}, E{m(x) | 0, 0}]−1
E{m(x) | R = 0, A = 0},

provided that the 2 × 2 matrix [E{m(x) | 1, 0}, E{m(x) | 0, 0}] is invertible. To use the idea of
moment matching, one has the flexibility of choosing different moments m(x). Certainly, a further
research question of interest is to identify the optimal choice of this moment function, say, mopt(x),
by borrowing the semiparametric techniques (Bickel et al., 1993; Tsiatis, 2006).

A.2 PROOFS AND MORE DETAILS IN SECTION 4

Firstly, note that the tail bound described in Assumption 4.1 is intended to hold uniformly for every
n1·0 when estimating f̂k for k = 0, 1. In other words, for each subsample size n1·0, we have a rn10̇

such that the corresponding estimators f̂k for k = 0, 1 are required to satisfy the stated concentration
inequality. This inequality is analogous to Hoeffding’s inequality and provides a non-asymptotic
concentration bound on the estimation error. Similar assumptions have also been adopted in recent
work (e.g., Maity et al. (2022), Tsybakov & Audibert (2007)).

We next define the Rademacher complexity (Bartlett & Mendelson, 2002) that has been frequently
used in machine learning literature to establish a generalization bound. Instead of considering the
Rademacher complexity on F we define the class of weighted losses G(ℓ,F) = [w(x, y)ℓ{g(x), y} :
g ∈ F ] and n ∈ N we define its Rademacher complexity measure as

Rn(G) := Eui,vi

(
Eξi

[
sup
h∈F

1

n

n∑
i=1

ξiw(ui, vi)ℓ{g(ui), vi}

])
,

where {ξi}ni=1 are i.i.d. Rademacher random variables, taking values ±1 with equal probability 1/2.

Proof of Theorem 4.2. For a probabilistic classifier: {ξ0(x), 1−ξ0(x)} : X → ∆2, and the parameter
βT = (β10, β00) and b1 = pr(Y = 1|R = 1, A = 0), we define the centered logit function
f : X → R2 as f0(x) = logξ0(x)− 1

2 [logξ0(x) + log{1− ξ0(x)}] and f1(x) = log{1− ξ0(x)}−
1
2 [logξ0(x)+log{1−ξ0(x)}]. We define the functions µ(f0, b1) = ξ0(x)b

−1
1 −{1−ξ0(x)}(1−b1)

−1

and ω(f0, b1, β10, ϱ) = ξ0(x)b
−1
1 β10+{1−ξ0(x)}(1−b1)

−1(ϱ−β10), and notice that the objective
is

L̂(f0, b1, β10, ϱ) = Ê {logω(f0, b1, β10, ϱ)|R = 0, A = 0} ,

whereas the true objective is

L(f0, b1, β10, ϱ) = E {logω(f0, b1, β10, ϱ)|R = 0, A = 0} ,

We see that the first-order optimality conditions in estimating β̂10 are

0 = ∂β10L̂(f̂0, b̂1, β̂10, ϱ̂) (17)

= ∂β10

[
Ê
{
logω(f̂0, b̂1, β̂10, ϱ̂)

∣∣∣R = 0, A = 0
}]

= Ê

[
∂β10

{ω(f̂0, b̂1, β̂10, ϱ̂)}
ω(f̂0, b̂1, β̂10, ϱ̂)

∣∣∣∣∣R = 0, A = 0

]
.

Similarly, the first order optimality condition at truth (for β10) are

0 = ∂β10
L(f0, b1, β10, ϱ)

= ∂β10 [E {logω(f0, b1, β10, ϱ)|R = 0, A = 0}]

= E

[
∂β10

{ω(f0, b1, β10, ϱ)}
ω(f0, b1, β10, ϱ)

∣∣∣∣R = 0, A = 0

]
.

We decompose (17) using the Taylor expansion and obtain:

0 = ∂β10L̂(f0, b̂1, β̂10, ϱ̂) + ⟨f̂0 − f0, ∂f0∂β10L̂(f̃0, b̂1, β̂10, ϱ̂)⟩
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where f̃0 is a function in the bracket [f0, f̂0], i.e. for every x, f̃0(x) is a number between f̂0(x) and
f0(x).
Bound on ⟨f̂0 − f0, ∂f0∂β10L̂(f̃0, b̂1, β̂10, ϱ̂)⟩:

To bound the term, we define ζ0 = f̂0 − f0 and notice that

⟨ζ0, ∂f0∂β10L̂(f̃0, b̂1, β̂10, ϱ̂)⟩

=

〈
ζ0, ∂f0

[
Ê

{
µ(f̃0, b̂1)

ω(f̃0, b̂1, β̂10, ϱ̂)

∣∣∣∣∣R = 0, A = 0

}]〉

= Ê

(
ζ0

2ξ̃0(1− ξ̃0)

ω(f̃0, b̂1, β̂10, ϱ̂)

[
b̂−1
1 + (1− b̂1)

−1

− µ(f̃0, b̂1)

ω(f̃0, b̂1, β̂10, ϱ̂)

{
b̂−1
1 β̂10 − (1− b̂1)

−1(ϱ̂− β̂10)
}]∣∣∣∣∣R = 0, A = 0

)
.

The derivative in third equality in the above display is calculated in Lemma A.1. Assume
ϱ − ϵ > β10 > ϵ > 0 and 1 − ϵ1 > b1 > ϵ1 > 0, i.e., there exist a c1 > 0 such that∣∣∣ 2ξ̃0(1−ξ̃0)

ω(f̃0 ,̂b1,β̂10,ϱ̂)

[
b̂−1
1 + (1− b̂1)

−1 − µ(f̃0 ,̂b1)

ω(f̃0 ,̂b1,β̂10,ϱ̂)

{
b̂−1
1 β̂10 − (1− b̂1)

−1(ϱ̂− β̂10)
}]∣∣∣ < c1. This

implies the followings: we have∣∣∣∣∣Ê
(
ζ0

2ξ̃0(1− ξ̃0)

ω(f̃0, b̂1, β̂10, ϱ̂)

[
b̂−1
1 + (1− b̂1)

−1

− µ(f̃0, b̂1)

ω(f̃0, b̂1, β̂10, ϱ̂)

{
b̂−1
1 β̂10 − (1− b̂1)

−1(ϱ̂− β̂10)
}]∣∣∣∣∣R = 0, A = 0

)∣∣∣∣∣
≤ c1Ê{|ζ0(x)||R = 0, A = 0}.

It follows from Assumption 4.1 with probability at least 1−δ it holds supi∈[n0·0] ∥f̂(xi)−f(xi)∥2 ≤
crn1·0

√
log(n0·0)log(1/δ), we conclude that

|⟨ζ0, ∂f0∂β10
L̂(f̃0, b̂1, β̂10, ϱ̂)⟩| ≤ cc1rn1·0

√
log(n0·0)log(1/δ)

holds with probability at least 1− δ.

Bound on ∂β10L̂(f0, b̂1, β̂10, ϱ̂)− ∂β10L̂(f0, b1, β̂10, ϱ̂).

Using the taylor expansion, we have

∂β10
L̂(f0, b̂1, β̂10, ϱ̂)− ∂β10

L̂(f0, b1, β̂10, ϱ̂) = ⟨̂b1 − b1, ∂b1∂β10
L̂(f0, b̃1, β̂10, ϱ̂)⟩

=

〈
b̂1 − b1, ∂b1

[
Ê

{
µ(f0, b̃1)

ω(f0, b̃1, β̂10, ϱ̂)

∣∣∣∣∣R = 0, A = 0

}]〉

= Ê

{
(̂b1 − b1)

[
−ξ0(x)̃b

−2
1 − {1− ξ0(x)}(1− b̃1)

−2

ω(f0, b̃1, β̂10, ϱ̂)

− µ(f0, b̃1)

ω(f0, b̃1, β̂10, ϱ̂)

−ξ0(x)̃b
−2
1 β̂10 + {1− ξ0(x)}(1− b̃1)

−2(ϱ̂− β̂10)

ω(f0, b̃1, β̂10, ϱ̂)

]}
.

Assume ϱ − ϵ > β10 > ϵ > 0 and 1 − ϵ1 > b1 > ϵ1 > 0, i.e., there exist a c2 > 0 such

that
∣∣∣[−ξ0(x)̃b

−2
1 −{1−ξ0(x)}(1−b̃1)

−2

ω(f0 ,̃b1,β̂10,ϱ̂)
− µ(f0 ,̃b1)

ω(f0 ,̃b1,β̂10,ϱ̂)

−ξ0(x)̃b
−2
1 β̂10+{1−ξ0(x)}(1−b̃1)

−2(ϱ̂−β̂10)

ω(f0 ,̃b1,β̂10,ϱ̂)

]∣∣∣ < c2.
This implies the followings: we have∣∣∣∣∣Ê

{
(̂b1 − b1)

[
−ξ0(x)̃b

−2
1 − {1− ξ0(x)}(1− b̃1)

−2

ω(f0, b̃1, β̂10, ϱ̂)

− µ(f0, b̃1)

ω(f0, b̃1, β̂10, ϱ̂)

−ξ0(x)̃b
−2
1 β̂10 + {1− ξ0(x)}(1− b̃1)

−2(ϱ̂− β̂10)

ω(f0, b̃1, β̂10, ϱ̂)

]} ∣∣∣∣∣
≤ c2 |̂b1 − b1|.
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We apply Hoeffing’s concentration inequality for a sample mean of i.i.d. sub-gaussian random
variable Yi and obtain a c3 > 0 such that for any δ > 0 with probability at least 1− δ it holds

|̂b1 − b1| = |p̂r(Y = 1|R = 1, A = 0)− pr(Y = 1|R = 1, A = 0)| ≤ c3

√
log(1/δ)

n1·0
.

Bound on ∂β10
L̂(f0, b1, β̂10, ϱ̂)− ∂β10

L̂(f0, b1, β̂10, ϱ).

Using the taylor expansion, we have

∂β10L̂(f0, b1, β̂10, ϱ̂)− ∂β10L̂(f0, b1, β̂10, ϱ) = ⟨ϱ̂− ϱ, ∂ϱ∂β10L̂(f0, b1, β̂10, ϱ̃)⟩

= Ê

[
(ϱ̂− ϱ)

−µ(f0, b1){1− ξ0(x)}(1− b1)
−1

ω2(f0, b1, β̂10, ϱ̃)

∣∣∣∣∣R = 0, A = 0

]
.

Assume ϱ − ϵ > β10 > ϵ > 0 and 1 − ϵ1 > b1 > ϵ1 > 0, i.e., there exist a c4 > 0 such that∣∣∣−µ(f0,b1){1−ξ0(x)}(1−b1)
−1

ω2(f0,b1,β̂10,ϱ̃)

∣∣∣ < c4. This implies the followings: we have∣∣∣∣∣Ê
[
(ϱ̂− ϱ)

−µ(f0, b1){1− ξ0(x)}(1− b1)
−1

ω2(f0, b1, β̂10, ϱ̃)

∣∣∣∣∣R = 0, A = 0

]∣∣∣∣∣ ≤ c4|ϱ̂− ϱ|.

We apply Hoeffing’s concentration inequality for a sample mean of i.i.d. sub-gaussian random
variable Ai and obtain a c5 > 0 such that for any δ > 0 with probability at least 1− δ it holds

|ϱ̂− ϱ| = |p̂r(A = 0|R = 0)− pr(A = 0|R = 0)| ≤ c5

√
log(1/δ)

n0
.

The term ∂β10
L̂(f0, b̂1, β̂10, ϱ̂): We have

∂β10
L̂(f0, b̂1, β̂10, ϱ̂)− ∂β10

L̂(f0, b1, β̂10, ϱ) + ∂β10
L̂(f0, b1, β̂10, ϱ)

= ∂β10L̂(f0, b1, β̂10, ϱ) +Op(|̂b1 − b1|+ |ϱ̂− ϱ|).

Now, we study the term ∂β10L̂(f0, b1, β̂10, ϱ), use strong convexity of −L(f0, b1, β10, ϱ) with β10

and the convergence of the loss that

sup
β10∈(0,ϱ)

|L̂(f0, b1, β10, ϱ)− L(f0, b1, β10, ϱ)|
n0·0→∞−−−−−→ 0

for β10 ∈ (0, ϱ) in Wellner et al. (2013)(see Corollary 3.2.3) to conclude that β̂10 → β10 in probability
and hence β̂10 is a consistent estimator for β10.

Following the consistency of β̂10 we see that for sufficiently large n0·0, we have |β̂10 − β10| ≤ δβ(δβ
is chosen bound by β10

2 ∧ ϱ−β10

2 ) with probability at least 1 − δ and on the event it holds: β̂10 ∈
[β10 − δβ , β10 + δβ ]. We define empirical process

Zn0·0 = sup
β∈[β10−δβ ,β10+δβ ]

|∂βL̂(f0, b1, β, ϱ)− ∂βL(f0, b1, β, ϱ)|

for which we shall provide a high probability upper bound. We denote Zn0·0(β) = ∂βL̂(f0, b1, β, ϱ)−
∂βL(f0, b1, β, ϱ) and notice that

∂βL̂(f0, b1, β, ϱ)− ∂βL(f0, b1, β, ϱ)

= Ê

{
µ(f0, b1)

ω(f0, b1, β, ϱ)

∣∣∣∣R = 0, A = 0

}
− E

{
µ(f0, b1)

ω(f0, b1, β, ϱ)

∣∣∣∣R = 0, A = 0

}
:= A(β)

where to bound A(β) we notice that µ(f0,b1)
ω(f0,b1,β,ϱ)

are i.i.d. and bounded by c0(β−1 + (ϱ− β)−1 ≤
2

β10
+ 2

ϱ−β10
≤ c0 for all x ∈ X ) and hence sub-gaussian. We apply Hoeffding’s concentration
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inequality for a sample mean if i.i.d. sub-gaussian random variables and obtain a constant c6 > 0
such that for any δ > 0 with probability at least 1− δ it holds

A(β) = Ê

{
µ(f0, b1)

ω(f0, b1, β, ϱ)

∣∣∣∣R = 0, A = 0

}
− E

{
µ(f0, b1)

ω(f0, b1, β, ϱ)

∣∣∣∣R = 0, A = 0

}

≤ c0c6

√
log(1/δ)

n0·0
.

Use chained arguments for ℓ1 with interval length 2δβ we obtain a uniform bound as the following:
there exists a constant c7 > 0 such that for any δ > 0 with probability at least 1− δ if it holds

sup
β∈[β10−δβ ,β10+δβ ]

A(β) ≤ c0c6c7

√
log(1/δ)

n0·0
.

Therefore, with probability at least 1− δ, we have

Zn0·0 ≤ c0c6c7

√
log(1/δ)

n0·0
.

Returning to the first order optimality condition for estimating β̂10 we notice that

0 = (β̂10 − β10)
{
∂β10

L̂(f0, b̂1, β̂10, ϱ̂) + ⟨f̂0 − f0, ∂f0∂β10
L̂(f̃0, b̂1, β̂10, ϱ̂)⟩

}
= (β̂10 − β10)

{
∂β10

L̂(f0, b̂1, β̂10, ϱ̂)− ∂β10
L̂(f0, b1, β̂10, ϱ) + ∂β10

L̂(f0, b1, β̂10, ϱ)

+⟨f̂0 − f0, ∂f0∂β10
L̂(f̃0, b̂1, β̂10, ϱ̂)⟩

}
= (β̂10 − β10)∂β10

L(f0, b1, β̂10, ϱ)

+(β̂10 − β10)
{
∂β10L̂(f0, b̂1, β̂10, ϱ̂)− ∂β10L̂(f0, b1, β̂10, ϱ) + Zn0·0(β̂10)

+⟨f̂0 − f0, ∂f0∂β10L̂(f̃0, b̂1, β̂10, ϱ̂)⟩
}
.

We combine it with the first order optimality condition for β to obtain

(β̂10 − β10)
{
∂β10L(f0, b1, β̂10, ϱ)− ∂β10L(f0, b1, β10, ϱ)

}
+(β̂10 − β10)

{
∂β10L̂(f0, b̂1, β̂10, ϱ̂)− ∂β10L̂(f0, b1, β̂10, ϱ) + Zn0·0(β̂10)

+⟨f̂0 − f0, ∂f0∂β10L̂(f̃0, b̂1, β̂, ϱ̂)⟩
}
= 0,

which can be rewritten as

−(β̂10 − β10)
{
∂β10

L(f0, b1, β̂10, ϱ)− ∂β10
L(f0, b1, β10, ϱ)

}
(18)

= (β̂10 − β10)
{
∂β10

L̂(f0, b̂1, β̂10, ϱ̂)− ∂β10
L̂(f0, b1, β̂10, ϱ) + Zn0·0(β̂10)

+⟨f̂0 − f0, ∂f0∂β10
L̂(f̃0, b̂1, β̂10, ϱ̂)⟩

}
.

Using the strong convexity of function −L at β10, we obtain that the left-hand side in the above
equation is lower bounded as

−(β̂10 − β10)
{
∂β10

L(f0, b1, β̂10, ϱ)− ∂β10
L(f0, b1, β10, ϱ)

}
≥ µ(β̂10 − β10)

2. (19)

Let E be the event on which the following hold:

• |β̂10 − β10| ≤ δβ .

• |⟨f̂0 − f0, ∂f0∂β10L̂(f̃0, b̂1, β̂10, ϱ̂)⟩| ≤ cc1rn1·0

√
log(n0·0)log(1/δ).
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• Zn0·0 ≤ c0c6c7

√
log(1/δ)

n0·0
.

• |∂β10
L̂(f0, b̂1, β̂10, ϱ̂)− ∂β10

L̂(f0, b1, β̂10, ϱ)| ≤ (c2c3 + c4c5)

{√
log(1/δ)

n1·0
+
√

log(1/δ)
n0

}
.

We notice that the event E has probability 1− 5δ. Under the event there exists a c8 > 0 such that the
right-hand side in (18) is upper bounded as∣∣∣(β̂10 − β10)

{
∂β10

L̂(f0, b̂1, β̂10, ϱ̂)− ∂β10
L̂(f0, b1, β̂10, ϱ) + Zn0·0(β̂10) (20)

+⟨f̂0 − f0, ∂f0∂β10
L̂(f̃0, b̂1, β̂10, ϱ)⟩

}∣∣∣
≤ |β̂10 − β10|

{
|∂β10

L̂(f0, b̂1, β̂10, ϱ̂)− ∂β10
L̂(f0, b1, β̂10, ϱ)|+ |Zn0·0(β̂10)|

+|⟨f̂0 − f0, ∂f0∂β10
L̂(f̃0, b̂1, β̂10, ϱ̂)⟩|

}
≤ c8

rn1·0

√
log(n0·0)log(1/δ) +

√
log(1/δ)

n1·0
+

√
log(1/δ)

n0
+

√
log(1/δ)

n0·0

 |β̂10 − β10|.

Combining the bounds (19) and (20) for left and right hand sides we obtain a c10 > 0 such that on
the event E it holds

|β̂10 − β10| ≤ c10

rn1·0

√
log(n0·0)log(1/δ) +

√
log(1/δ)

n1·0
+

√
log(1/δ)

n0
+

√
log(1/δ)

n0·0

 .

Further, sine Ai is bound random variable, then we can obtain a constant c9 > 0 such that for any
δ > 0 with probability at least 1− δ it holds

|β̂00 − β00| = |(ϱ̂− β̂10)− (ϱ− β10)| ≤ |ϱ̂− ϱ|+ |β̂10 − β10| ≤ c9

√
log(1/δ)

n0
+ |β̂10 − β10|.

In summary, we have a constant c10 > 0 such that for any δ > 0 with probability at least 1− 6δ it
holds

∥β̂ − β∥1 ≤ c10

rn1·0

√
log(n0·0)log(1/δ) +

√
log(1/δ)

n1·0
+

√
log(1/δ)

n0
++

√
log(1/δ)

n0·0

 .

Lemma A.1. (Derivatives).Th following holds:

• ∂f0(ξ0) = 2ξ0(1− ξ0);

• ∂f0{µ(f0, b1)} = ∂f0(ξ0){b−1
1 + (1− b1)

−1};

• ∂f0{ω(f1, b1, β10, ϱ)} = ∂f0(ξ0){b−1
1 β10 − (1− b1)

−1(ϱ− β10)};

• ∂f0

{
µ(f0,b1)

ω(f0,b1,β10,ϱ)

}
= 2ξ0(1−ξ0)

ω(f0,b1,β10,ϱ)

[
b−1
1 + (1− b1)

−1 − µ(f0,b1){b−1
1 β10−(1−b1)

−1(ϱ−β10)}
ω(f0,b1,β10,ϱ)

]
.

Proof.

∂f0ξ0 = ∂f0

(
ef0

ef0 + e−f0

)
=

ef0
(
ef0 + e−f0

)
− ef0

(
ef0 − e−f0

)
(ef0 + e−f0)

2 = 2ξ0(1− ξ0),

∂f0{µ(f0, b1)} = ∂f0(ξ0){b−1
1 + (1− b1)

−1},
∂f0{ω(f0, b1, β10, ϱ)} = ∂f0(ξ0)b

−1
1 β10 − ∂f0(ξ0)(1− b1)

−1(ϱ− β10)

= ∂f0(ξ0){b−1
1 β10 − (1− b1)

−1(ϱ− β10)}.
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Thus,

∂f0

{
µ(f0, b1)

ω(f0, b1, β10, ϱ)

}
=

∂f0(ξ0)[{b−1
1 + (1− b1)

−1}ω(f0, b1, β10, ϱ)− µ(f0, b1){b−1
1 β10 − (1− b1)

−1(ϱ− β10)}]
ω2(f0, b1, β10, ϱ)

=
∂f0(ξ0)

ω(f0, b1, β10, ϱ)

[
b−1
1 + (1− b1)

−1 − µ(f0, b1){b−1
1 β10 − (1− b1)

−1(ϱ− β10)}
ω(f0, b1, β10, ϱ)

]
=

2ξ0(1− ξ0)

ω(f0, b1, β10, ϱ)

[
b−1
1 + (1− b1)

−1 − µ(f0, b1){b−1
1 β10 − (1− b1)

−1(ϱ− β10)}
ω(f0, b1, β10, ϱ)

]
.

Proof of Proposition 4.4. Define w(y) = pr(y|A=0,R=0)
pr(y|A=0,R=1) ,

L0(h) = E[ℓ{h(X), Y }|R = 0, A = 0]

=

∫
ℓ{h(X), Y }p(x, y|A = 0, R = 0)dxdy

=

∫
ℓ{h(X), Y }p(x, y|A = 0, R = 0)

p(x, y|A = 0, R = 1)
p(x, y|A = 0, R = 1)dxdy

=

∫
ℓ{h(x), y}pr(y|A = 0, R = 0)

pr(y|A = 0, R = 1)
pr(x, y|A = 0, R = 1)dxdy

= E
[
ℓ{h(X), Y }w(Y )

∣∣A = 0, R = 1
]
=: L1(h,w).

Let L1(h,w) = E
[
ℓ{h(X), Y }w(Y )

∣∣A = 0, R = 1
]
, then we have

L0(ĥ)− L0(h) = L1(ĥ, w)− L1(h,w)

= L1(ĥ, w)− L̂1(ĥ, w)︸ ︷︷ ︸
(a)

+ L̂1(ĥ, w)− L̂1(ĥ, ŵ)︸ ︷︷ ︸
(b)

(21)

+ L̂1(ĥ, ŵ)− L̂1(h, ŵ)︸ ︷︷ ︸
≤0

+ L̂1(h, ŵ)− L̂1(h,w)︸ ︷︷ ︸
(c)

+ L̂1(h,w)− L1(h,w)︸ ︷︷ ︸
(d)

,

where ĥ ≡ ĥŵ.

Uniform bound on (a) To control (a) in (21) we establish a concentration bound on the following
generalization error

sup
g∈F

{L1(g, w)− L̂1(g, w)}

= sup
g∈F

{
E
[
ℓ{g(X), Y }w(Y )

∣∣A = 0, R = 1
]
− Ê

[
ℓ{g(X), Y }w(Y )

∣∣A = 0, R = 1
]}

= : F (Z1:n1·0)

where, for i > 1 we denote Z1:i = (Z1, · · · ,Zi) and Zi = (Xi, Yi). First, we use a modifica-
tion of McDiarmid concentration inequality to bound F (Z1:n1·0) in terms of its expectation and a
Op(1/

√
n1·0) term, as elucidated in the following lemma.

Lemma A.2. There exists a constant c1 > 0 such that with probability at least 1− δ the following
holds

F (Z1:n1·0) ≤ E{F (Z1:n1·0)}+ c1

√
log(1/δ)

n1·0
. (22)

The proof is similar to Lemma A.3 of Maity et al. (2022), so we omit it.
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Next, we use a symmetrization argument (see Wellner et al. (2013), Chapter 2, Lemma 2.3.1) to
bound the expectation E{F (Z1:n1·0)} by the Rademacher complexity of the hypothesis class G, i.e.,

E{F (Z1:n1·0)} ≤ 2Rn1·0(G). (23)

Combining (22) and (23) we obtain

(a) ≤ 2Rn1·0(G) + c1

√
log(1/δ)

n1·0
(24)

with probability at least 1− δ.

Uniform bound on (b) and (c) Denoting Zi = (Xi, Yi) and ℓg(Zi) = ℓ{g(Xi), Yi} we notice that
for any g ∈ F we have

|L̂1(g, w)− L̂1(g, ŵ)|

= |Ê [ℓ{g(X), Y } {w(Y )− ŵ(Y )} | A = 0, R = 1] | ≤ ∥ℓg∥∞
n1·0

n1·0∑
i=1

|w(yi)− ŵ(yi)| .

Since w(y)− ŵ(y) is a sub-gaussian random variable, we use sub-gaussian concentration to establish
that for some constant c2 > 0,

for any g ∈ F , |L̂1(g, w)− L̂1(g, ŵ)| ≤ ∥ℓg∥∞

EY |w(Y )− ŵ(Y )|+ c2

√
log(1/δ)

n1·0


with probability at least 1− δ. This provides a simultaneous bound (on the same probability event)
for both (b) and (c) with g = ĥ and g = h. Further, by Lemma A.3, for some constants C1 and C2

and any g ∈ F , we have

|L̂1(g, w)− L̂1(g, ŵ)| (25)

≤ ∥ℓg∥∞

C1∥β̂ − β∥1 + C2

√ log(1/δ)

n0
+

√
log(1/δ)

n1

+ c2

√
log(1/δ)

n1·0


with probability at least 1− 5δ.

Uniform bound on (d) We note that

L̂1(h,w)− L1(h,w)

= Ê
[
ℓ{h(X), Y }w(Y )

∣∣A = 0, R = 1
]
− E

[
ℓ{h(X), Y }w(Y )

∣∣A = 0, R = 1
]

where [ℓ{h(Xi), Yi}w(Yi)]
n1·0
i=1 are i.i.d sub-gaussian random variables. Using Hoeffding concentra-

tion bound we conclude that there exists a constant c3 > 0 such that for any δ > 0 the following
holds with probability at least 1− δ,

L̂1(h,w)− L1(h,w) ≤ c3

√
log(1/δ)

n1·0
. (26)

Finally, using (24) on (a) (which is true on an event of probability ≥ 1 − δ), (25) on (b) and
(c) (simultaneously true on an event of probability 1 − 5δ), and (26) on (d) (holds on an event of
probability ≥ 1− δ) we conclude that with probability at least 1− 7δ the following holds

L0(ĥŵ)− L0(h) ≤ 2Rn1·0(G) + CB∥β̂ − β∥1 + c


√

log(1/δ)

n1·0
+

√
log(1/δ)

n0
+

√
log(1/δ)

n1

 .

where c = c1 + ∥ℓg∥∞(C2 + c2) + c3.
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Lemma A.3. Assume |βi0/αi0| ≤ B1 for any i = 0, 1. There exist constants C, c1, c2, such that
with probability at least 1− 4δ,

|ŵ(y)− w(y)| ≤ CB1∥β̂ − β∥1 + CB1(c1 + c2)

√ log(1/δ)

n0
+

√
log(1/δ)

n1

 .

Proof.

|ŵ(y)− w(y)| =
∣∣∣∣ p̂r(y|A = 0, R = 0)

p̂r(y|A = 0, R = 1)
− pr(y|A = 0, R = 0)

pr(y|A = 0, R = 1)

∣∣∣∣
=

∣∣∣∣ p̂r(y,A = 0|R = 0)

p̂r(y,A = 0|R = 1)

p̂r(A = 0|R = 1)

p̂r(A = 0|R = 0)
− pr(y,A = 0|R = 0)

pr(y,A = 0|R = 1)

pr(A = 0|R = 1)

pr(A = 0|R = 0)

∣∣∣∣
≤

∣∣∣∣{ p̂r(y,A = 0|R = 0)

p̂r(y,A = 0|R = 1)
− pr(y,A = 0|R = 0)

pr(y,A = 0|R = 1)

}
p̂r(A = 0|R = 1)

p̂r(A = 0|R = 0)

∣∣∣∣
+

∣∣∣∣pr(y,A = 0|R = 0)

pr(y,A = 0|R = 1)

{
p̂r(A = 0|R = 1)

p̂r(A = 0|R = 0)
− pr(A = 0|R = 1)

pr(A = 0|R = 0)

}∣∣∣∣ .
For the first term, we have∣∣∣∣∣ β̂y0αy0 − βy0α̂y0

αy0α̂y0

n1·0

n0·0

n0

n1

∣∣∣∣∣
=

∣∣∣∣∣ (β̂y0 − βy0)αy0 + βy0(αy0 − α̂y0)

αy0α̂y0

n1·0

n0·0

n0

n1

∣∣∣∣∣
≤

∣∣∣∣ yαy0

αy0α̂y0

n1·0

n0·0

n0

n1

∣∣∣∣ |β̂10 − β10|+
∣∣∣∣ (1− y)αy0

αy0α̂y0

n1·0

n0·0

n0

n1

∣∣∣∣ |β̂00 − β00|

+

∣∣∣∣ yβy0

αy0α̂y0

n1·0

n0·0

n0

n1

∣∣∣∣ (α10 − α̂10) +

∣∣∣∣ (1− y)βy0

αy0α̂y0

n1·0

n0·0

n0

n1

∣∣∣∣ (α00 − α̂00)

≤ CB1(∥β̂ − β∥1 + |α̂00 − α00|+ |α̂10 − α10|).

Here C is some constant. Since Yi and Ai are sub-gaussian random variables, we use sub-gaussian
concentration to establish that for some constant c > 0,

|α̂00 − α00|+ |α̂10 − α10| ≤ c


√

log(1/δ)

n1


with probability at least 1− 2δ.

For the second term, we have∣∣∣∣βy0

αy0

pr(A = 0|R = 1)p̂r(A = 0|R = 0)− pr(A = 0|R = 0)p̂r(A = 0|R = 1)

pr(A = 0|R = 0)p̂r(A = 0|R = 0)

∣∣∣∣
≤

∣∣∣∣βy0

αy0

∣∣∣∣ pr(A = 0|R = 1)

pr(A = 0|R = 0)p̂r(A = 0|R = 0)
|{p̂r(A = 0|R = 0)− pr(A = 0|R = 0)}|

+

∣∣∣∣βy0

αy0

∣∣∣∣ pr(A = 0|R = 0)

pr(A = 0|R = 0)p̂r(A = 0|R = 0)
|{pr(A = 0|R = 1)− p̂r(A = 0|R = 1)}|

≤
∣∣∣∣βy0

αy0

∣∣∣∣ p1·0(1− π)n0

p0·0πn0·0
|{p̂r(A = 0|R = 0)− pr(A = 0|R = 0)}|

+

∣∣∣∣βy0

αy0

∣∣∣∣ n0

n0·0
|{pr(A = 0|R = 1)− p̂r(A = 0|R = 1)}|

≤ CB1(|{p̂r(A = 0|R = 0)− pr(A = 0|R = 0)}|+ |{pr(A = 0|R = 1)− p̂r(A = 0|R = 1)}|).
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Here C is some constant. Since Ai is a sub-gaussian random variable, we use sub-gaussian concen-
tration to establish that for some constant c > 0,

|{p̂r(A = 0|R = 0)− pr(A = 0|R = 0)}|+ |{pr(A = 0|R = 1)− p̂r(A = 0|R = 1)}|

≤ c


√

log(1/δ)

n0
+

√
log(1/δ)

n1


with probability at least 1− 2δ.

Remark A.4. Proposition 4.4 indicates that the generalization bound depends on the estimation
error ∥β̂ − β∥1, which can be directly controlled based on the conditions listed in Assumption 4.1,
implying that different estimation procedures for β will yield different upper bounds. In Theorem 4.2,
we established an upper bound for the estimation error of β̂, which directly leads to a refined
generalization bound for the learned classifier ĥŵ. Specifically, for any δ > 0, with probability at
least 1− 13δ, the following inequality holds:

L0(ĥŵ)−min
h∈F

L0(h) ≤ 2Rn1·0(G) + dBc10χn

√
log(1/δ) + c


√

log(1/δ)

n1·0
+

√
log(1/δ)

n0

 ,

where c10 is the constant appearing in Theorem 4.2, and αn characterizes the convergence rate of β̂.

A.3 SYNTHETIC DATA RESULTS

We consider a structured data-generating process in which the covariates X ∈ R4 are drawn from
a distribution conditioned on a latent pair (Y,A), where Y ∈ {0, 1} denotes the class label and
A ∈ {0, 1} denotes the background. The generation begins by sampling (Y,A) according to a
predefined distribution.

In the source domain, we consider (Y,A) ∈ {(0, 0), (0, 1), (1, 0)}, each occurring with probability
1/3. The covariates X ∈ R4 are generated as X ∼ N(µYA, I4), where µYA denotes the mean vector
for each combination and I4 is the 4 × 4 identity matrix. The stratum (1, 1) is excluded from the
source. In the target domain, all four combinations (Y,A) ∈ {0, 1}2 appear with equal probability
1/4, and X is drawn from the same distribution N(µYA, I4) with distinct means:

µ00 = (1, 0, 0, 0)T, µ01 = (0, 0, 1, 0)T, µ10 = (0, 1, 0, 0)T, µ11 = (0, 0, 0, 1)T.

For model estimation, we utilize the known data-generating distribution to compute the conditional
probability models required by both our proposed estimators and the benchmark method. Specifically,
we calculate the five key conditional probabilities needed for implementation: ξ0(x), ξ(x), τ0(x),
τ1(x), and κ(x), which together determine the models η0(x), η1(x) and η(x) for our method, and
ξ0(x), ξ1(x) and ξ(x) for the benchmark. Additionally, the parameters {βya : y = 0, 1; a = 0, 1}
and {αya : y = 0, 1; a = 0, 1} as known. The classification threshold is set to 0.5, consistent with the
standard Bayesian decision rule—that is, a sample is classified as positive if the predicted probability
exceeds 0.5.

To assess the performance of the proposed estimators, we conduct 100 simulations for each configu-
ration and report the results using box plots that compare {η̂1(x), ξ̂1(x)} and {η̂(x), ξ̂(x)} across
varying sample sizes. The left panel of Figure 2 illustrates the performance of {η̂1(x), ξ̂1(x)} for
n0 = 1000 and 6000, with n1 ranging from 1000 to 8000. The right panel of Figure 2 shows the
corresponding performance of {η̂(x), ξ̂(x)} under the same settings. Performance is evaluated using
two standard metrics: accuracy and F1 score. In both cases, the proposed estimators consistently
outperform the benchmark estimators. Moreover, as n0 increases, the variance of the estimators
decreases, suggesting improved stability and reliability. In particular, for the F1 score of η̂(x), per-
formance steadily improves as n0 increases, further demonstrating the robustness and effectiveness
of the proposed method. Comparable patterns are also observed when n1 is fixed at 1000 and 6000
while n0 varies from 1000 to 8000, as shown in Figure 3.
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Figure 2: The left panel displays the performance of the F1 score and accuracy for η1(x) and ξ1(x)
across different scenarios, while the right panel presents the corresponding results for η(x) and ξ(x).
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Figure 3: The left panel displays the performance of the F1 score and accuracy for η1(x) and ξ1(x)
across different scenarios, while the right panel presents the corresponding results for η(x) and ξ(x).
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Figure 4: Performance comparison of our proposed estimator η0(x), and the benchmark method
ξ0(x) under the setting a = 0.5 with either c = 0.5 and varying b or b = 0.5 and varying c.
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Figure 5: Performance comparison of our proposed estimators η1(x), η(x), and the benchmark
method ξ1(x), ξ(x) under the setting a = 0.7 with either c = 0.5 and varying b or b = 0.5 and
varying c.
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Figure 6: Performance comparison of our proposed estimator η0(x), and the benchmark method
ξ0(x) under the setting a = 0.7 with either c = 0.5 and varying b or b = 0.5 and varying c.
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A.4 ADDITIONAL BENCHMARK DATA RESULTS

In addition to the estimators analyzed in the main text, we further evaluate the performance of the
proposed estimator η̂0(x) and its corresponding benchmark ξ̂0(x). Figure 4 presents the results with
a = 0.5 in the source domain and systematically vary the remaining subclass inclusion rates by setting
either b = 0.5 with c ∈ {0.1, 0.2, . . . , 0.9}, or c = 0.5 with b ∈ {0.1, 0.2, . . . , 0.9}. Performance is
assessed using the F1 score and accuracy across 50 independent repetitions. The proposed estimator
η̂0(x) consistently demonstrates superior performance compared to the benchmark ξ̂0(x), achieving
higher accuracy and F1 scores across all configurations. Similar results are observed when a = 0.7 in
Figures 5 and 6, further validating the robustness of our method.

A.5 DISCUSSIONS AND CONCLUSIONS

In this paper, we introduce a novel unsupervised domain adaptation setting where an entire label-
background subpopulation is absent from the source domain, a scenario motivated by real-world data
collection constraints. Despite this structured missingness, we show that accurate prediction in the
target domain is still achievable. We develop a theoretical framework that enables such prediction
by estimating subpopulation proportions in the target through distribution matching. We provide
rigorous guarantees, including statistical consistency as well as upper bounds on the target-domain
prediction error. Empirically, our method outperforms standard baselines that overlook structured
missingness, especially in prediction performance for the unobserved subpopulation. Overall, our
framework provides a rigorous characterization of model adaptation under subpopulation structured
missingness, and enables robust domain adaptation in such a challenging scenario.

Our theoretical framework is built upon structured conditional invariance and mixture proportion
estimation. These tools naturally generalize to multi-class labels for ny species and multi-level
(or even continuous) environment variables for na species. In fact, the identification strategy and
distribution-matching estimation carry over to larger joint label-environment spaces, though at the
cost of heavier notation and more complex optimization. Technically, at this general multi-label
and multi-background situation, the model identification considerations (see discussion in Section
3.3) becomes more complex. At this situation, one can identify both pr(X, A = a|R = 0) as well
as pr(A = a|R = 0), which in total 2na − 1 quantities, while one has in total nyna unknown
quantities, including pr(Y = y,A = a|R = 0) and the unobservable subpopulation distribution
pr(X|Y = 1, A = 1). To make sure this model is identifiable, one needs to make (ny − 2)na + 1
anchor set assumptions. For example, when ny = 3 and na = 2, 3 anchor set assumptions are needed.
Interestingly, as long as the label is binary ny = 2, one anchor set assumption is sufficient if only one
subpopulation is missing in the source. In the setting we consider in the paper, ny = na = 2, so we
only need to make one anchor set assumption.
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B THE USE OF LARGE LANGUAGE MODELS (LLMS)

We declare that large language models (LLMs) were used in a limited capacity solely to aid in
polishing the writing and improving the linguistic clarity of this manuscript. The core research
ideation, methodological development, experimental execution, data analysis, and technical content
generation were conducted entirely by the human authors. All LLM-assisted refinements were
carefully reviewed, validated, and approved by the authors, who take full responsibility for the
final content. No LLMs were involved in the conceptualization of research ideas or the generation
of technical claims, and LLMs were not used in any capacity that would constitute substantive
intellectual contribution.
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