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ABSTRACT

We study an unsupervised domain adaptation problem where the source domain
consists of subpopulations defined by the binary label Y and a binary background
(or environment) A. We focus on a challenging setting in which one such subpop-
ulation in the source domain is unobservable. Naively ignoring this unobserved
group can result in biased estimates and degraded predictive performance. Despite
this structured missingness, we show that the prediction in the target domain can
still be recovered. Specifically, we rigorously derive both background-specific
and overall prediction models for the target domain. For practical implementation,
we propose the distribution matching method to estimate the subpopulation pro-
portions. We provide theoretical guarantees for the asymptotic behavior of our
estimator, and establish an upper bound on the prediction error. Experiments on
both synthetic and real-world datasets show that our method outperforms the naive
benchmark that does not account for this unobservable source subpopulation.

1 INTRODUCTION

Unsupervised domain adaptation (UDA) (Kouw & Loog| 2019) addresses the challenge of transferring
predictive models from a labeled source domain to an unlabeled target domain under distributional
shifts (Koh et al., 2021} [Sagawa et al.,|2022). In this area, research methods aim to reduce domain
discrepancy by aligning feature distributions, using statistical measures such as maximum mean
discrepancy (MMD) (Tzeng et al.,|2014)) and higher-order moment matching (HoMM) (Chen et al.,
2020). Deep adaptation frameworks, such as deep adaptation network (DAN) (Long et al., 2015)
and domain-adversarial neural network (DANN) (Ganin et al.,2016), are also popularly used due
to their strong empirical performance. There are also other approaches that integrate reconstruction
objectives to disentangle domain-invariant and domain-specific components (Ghifary et al., 2016).
These approaches often assume access to a representative and diverse set of source examples.
However, real-world datasets may violate this assumption in systematic and non-random ways.

In this work, we focus on a more challenging and practically relevant UDA setting where a structured
subpopulation is entirely missing from the source domain. Specifically, we consider binary label Y and
a binary background or environment variable A, and study the case where one subpopulation—defined
by a particular combination of Y and A—is unobserved in the source. This structured missingness is
not merely a sampling artifact, but often reflects real-world constraints in data collection. For instance,
in the widely studied Waterbirds dataset (Sagawa et al.,|2019), waterbirds (Y = 1) photographed
in water environments (A = 1) can be rare or entirely absent due to the difficulty of capturing
such images in the wild. This issue arises in many other disciplines as well. In healthcare, certain
patient subgroups—defined jointly by disease status and demographics—may be underrepresented or
absent in historical datasets due to restrictive inclusion criteria or changes in clinical practice over
time. When such models are applied to broader populations, unobserved subgroups can suffer from
systematic mispredictions. This structured missingness (Mitra et al.,|2023) fundamentally changes
some statistical properties when comparing the source and target domains, and, if unaddressed, can
lead to severely biased estimation and unreliable prediction in the target domain. These structured
gaps pose new challenges that are not adequately addressed by conventional UDA techniques, which
motivates our work.

To tackle this challenge, we develop a theoretical framework that accounts for the structured absence
of a subpopulation, such as (Y = 1, A = 1), in the source domain. Our key idea is to model how
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prediction in the target domain can still be recovered by relating it to the observable parts of the
source and target data. Under a mild assumption that the distribution of features X given (Y, A) stays
the same across domains, we derive closed-form expressions for making accurate predictions in the
target domain. These expressions depend on the proportions of different subgroups in the target,
which are unknown. To estimate them, we propose a practical method based on distribution matching
that avoids modeling complex feature distributions directly. Specifically, we frame the problem
as estimating finite-dimensional mixture proportions under structured conditional invariance, and
propose a KL-divergence-based objective that can be optimized using only observable quantities. We
also provide theoretical guarantees, showing that our approach yields statistically consistent estimates
and deriving upper bounds on the prediction error of the resulting target-domain classifiers. Overall,
our framework provides the first rigorous characterization of model adaptation under structured
subpopulation absence, and enables robust domain adaptation in such a challenging scenario.

We validate our approach through experiments on both synthetic and real-world datasets. We simulate
domain adaptation scenarios where one subpopulation is systematically excluded from the source
data and evaluate our method against baseline approaches that do not account for this missing
group. Across a range of settings, our method consistently achieves higher accuracy and F1 scores,
particularly on the subpopulation absent from the source. These results highlight the practical value of
explicitly modeling structured missingness and demonstrate that our approach leads to more reliable
predictions in the target domain. To summarize, this paper makes the following novel contributions:

* We consider a new unsupervised domain adaptation setting where an entire label-background
subpopulation is missing from the source domain, a scenario motivated by real-world data
collection constraints.

* We develop a theoretical framework that enables accurate prediction in the target domain
by estimating subpopulation proportions through distribution matching, and we provide
rigorous guarantees and error bounds for our method.

* We demonstrate the effectiveness of our approach on both synthetic and real-world datasets.
Our method outperforms standard baselines that ignore structured missingness, particularly
in recovering performance on the unobserved subpopulation.

2 PROBLEM SETUP AND NOTATION

In our UDA setting, Y € {0, 1} denotes the binary label, which is observed in the source domain
but not in the target. Let A € {0, 1} be a binary background or environment variable and X € R? a
vector of all other attributes. Let R € {0, 1} be a domain indicator, with R = 1 corresponding to
the source and R = 0 to the target. In our notation, we consistently use the order of (R,Y, A) for
indicator function Iy, sample size ny.y, and population probability py ;.

We define 7 = pr(R = 1). Fory = 1,0, a = 1,0, we define oy = pr(Y =y,A=a | R=1), and
Bya =pr(Y =y, A =a| R =0). For clarity, the total source sample size is 71 = n191+n110+n100,
and the target sample size is ng = ng.1 + no.o, S0 that the total sample size is n = nq + nyg. TableE]
summarizes the observed data structure and key notation.

Table 1: Data structure and key notation used throughout the paper.

R Y A X Sample Size Proportion Prediction Models

1 0 1 Ve 1101 P1o1 = Qo1 §1(X) :pr(Y:l ‘ XZX,A: RZI)
Source 1 1 0 V n1i10 P110 = Q107 Sox)=pr(Y =1|X=x,A=0,R=1)

1 0 0 v 1100 P100 = QT S(X) = pl‘(y =1 ‘ X = X, R = 1)

o ? 1 Vv

0 7 1 v no1 po1= (P11 +Bo)(1—-7m) mEx)=pr(Y =1|X=x,A=1,R=0)
Target : n(x)=pr(Y =1|X=%x,A=0,R=0)

o ?2 0 Vv = = = =

0 7 0 v 10.0 po-0 = (B1o + Boo)(1 — ) () =pr(¥ =1[X =x R =0)

In our context, we have ar1g + ap1 +ago =1, a1 =0, and 0 < 19,01, 00 < 1. The
parameters can be consistently estimated by

Q10 = n11o/M1, Qo1 = n1o1/n1, Qoo = Nioo/M1, T = ni/n. (1
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More formally, ai;; = 0 is the following structured missingness condition:
prY =1,A=1|R=1)=0. 2)

Note that this assumption is made without loss of generality, as alternative combinations—such as
Y =0A=1),(Y =1,A=0),o0r (Y = 0,4 = 0)—can be similarly assumed to have zero
probability. To characterize the distributional connection between the two domains, we impose a
structured conditional invariance assumption:

PX[Y, A, R=1)=p(X|Y, A, R=0)=pX|Y,A4) = pya(X), 3)

that is, the conditional distribution of features X given (Y, A) remains the same across domains.
This can be regarded as a conditional version, or, more nuanced version, of label shift where
the marginal distribution of labels (now, the combination of both label and background) varies
across domains (e.g., Du Plessis & Sugiyamal 2014} (Garg et al., 2020; [Iyer et al., [2014; Lipton
et al., 2018} [Nguyen et al., 2016} |Tasche, [2017; Tian et al., 2023} [Zhang et al., 2013)). It indicates,
conditional on background A, the label shift assumption holds. Mathematically, it states that
p(X|Y,A,R = 1) = p(X|Y,A, R = 0). It is equivalent to p(R|X,Y,A) = p(R|Y, A), the
independence between R and X, conditional on (Y, A). In practice, this assumption may be suitable
in many applications. Below we give two examples to illustrate the rationality of this assumption.
For instance, we aim to predict user clicks on advertisements for a new batch of users (target domain,
R = 0) using historical data (source domain, R = 1). Conditional on the advertisement type A and
whether the user clicks Y, the distribution of browsing behavior features X is assumed to remain
stable across time periods. This is because user clicks are fundamentally determined by ad content
and user interests, not by the time period in which data are collected. As another example, suppose we
have datasets from two hospitals (R = 1 indicates the source hospital and R = 0 indicates the target
hospital). Here, X represents imaging features, Y is the disease type, and A denotes patient attributes
such as gender or age group. Then, conditional on the disease type Y and demographic attributes
A, the distribution of imaging features X is expected to remain the same across hospitals. This is
because imaging characteristics for a given disease and demographic group are not systematically
altered by the hospital. The main difference between hospitals lies in sampling proportions rather
than in conditional distributions.

This framework captures real-world scenarios in which a certain label-background subpopulation
is absent from the source domain. For example, in the Waterbirds dataset, waterbirds on water
backgrounds (label Y = 1, background A = 1) are rarely observed—or even completely absent—in
the training set, making the adaptation to target domains particularly challenging. For illustration
purposes, Table [2]below shows the three observed subpopulations in the source as well as the four
subpopulations in the target in two real-world datasets.

Table 2: Tllustrations in Waterbirds and CelebA datasets. Note that the (Y = 1, A = 1) combination
does not exist in the source domain but does in the target domain.

Dataset Source Data Target Data
(v, 4) (0.1) (1,0) (0,0) (1,1) (0,1) (1,0) (0,0)

Y=0:Landbird Y=0:Landbird _ )
A=1:Water background  A=0: Y=0:Landbird Y=0:Landbird

ckground  A=0:Land background A=1:Water A=1:Water A=0:Land

Waterbird = 1 - A
‘aterbirds e = = |
5 ~ =
E =g
e A
Y=0:Blond hair Y=0: Blond hair Y=0:Blond hair Y=0:Blond hair

A=1:Male A=0:Female A=0:Female

= |||
CelebA |

3  PROPOSED METHODOLOGY

A=1:Male A=1:Male A= 0:Female A=0:Female

iaAE
AN @

Our goal in this work is to correctly identify and successfully implement, under our UDA setting, the
two background-specific prediction models 7; (x) and 79(x) and the overall prediction model 7(x),
in the target domain. All of the three models were precisely defined in Table([T}
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3.1 THE NAIVE BENCHMARK

As the benchmark, one may naively apply the three source domain prediction models &; (x), (%),

and £(x) to the target. First, one can use the observed data to implement the overall source domain

prediction model £(x) and one background-specific prediction model &, (x) as
Ex)=pr(Y=1|x,R=1),and&(x) =pr(Y =1|x,R=1,4=0). 4)

Afterwards, even though the subpopulation (Y = 1, A = 1) is entirely absent in the source, still one
can compute the other background-specific prediction model

x)—&(x) {1l —mi(x
61(){)25( ) = &{1 —n(x)}
71(x)

nx)=pr(A=1|X=x,R=1), (6)
can also be implemented using the observed data.

, where Q)

3.2 MODEL ADAPTATION FROM SOURCE TO TARGET

The most challenging aspect of this work is to adapt the model for the A = 1 background since the
component (Y = 1, A = 1) is entirely absent in the source. Nevertheless, we can still correctly
derive the three prediction models for the target domain, as shown below.

Proposition 3.1. Define the model to(x) = pr(A =1| X = x, R = 0) and the model
r(x) =pr(R=1|x,A=1), M

both of which can be implemented using the observed data in our UDA setting. Then the three
prediction models in the target domain are given by:

P 1-m k(x) B %Efo(x)
R A e M T e TR A

n(x) = m(x)70(x) + 70 (x){1 = 70(x)}.

The proof of this result is provided in Appendix [A.T} Proposition [3.1]illustrated that, in general,
the naive method presented in Sectionfails. There are no explicit relations between 7, (x) and
&1(x) or between 7(x) and £(x). For the relation between 79 (x) and £y(x), they coincide only in
the special case that 319/a10 = Boo /00, which corresponds to a proportionality condition between
the class-conditional densities across domains. Outside of this narrow scenario, the naive approach
systematically misestimates the target posterior, leading to biased predictions.

This result also implies that model adaptation fundamentally relies on estimating the proportions
of key subgroups in the target population. In particular, for individuals with A = 1, one only
needs to estimate (31, while for those with A = 0, it suffices to estimate the ratio 319/8p0. Denote
B = (B10,Bo0) . It can be seen that, accurate estimation of the parameter (3 in the target domain
enables valid model adaptation across domains. Before developing methods for estimating 3 in
Section[3.4] we first present some model identification considerations.

3.3 MODEL IDENTIFICATION CONSIDERATIONS

The identifiability structure of our problem closely resembles that of the open set label shift (OSLS)
framework (Garg et al.,[2022). Note that our target distribution consists of a mixture over four joint
distributions: pr(Y = 1,A = 1),pr(Y =1,A=0),pr(Y = 0,A =0),and pr(Y = 0,4 = 1).
By treating the joint label (Y, A) as the response, this setting can be viewed as a special case of the
OSLS framework. However, our setup is considerably simpler due to the availability of the auxiliary
variable A in the target domain. As a result, we can restrict attention to the subset A = 1, thereby
discarding the A = 0 portion of the distribution. This reduction simplifies the problem to recovering
pr(Y =1,A =1) from a mixture of pr(Y = 1, A = 1) and pr(Y = 0, A = 1), given direct access
to pr(Y = 0, A = 1). This is a canonical positive-unlabeled (PU) learning problem. Identifiability in
this setting is governed by the standard anchor set condition (see Definition 8 of Ramaswamy et al.
(2016)): there exists a measurable subset Xanchor € X such that

p(X € xanchor|Y = 1, A= 1)
p(X € Xanchor|Y = 0, A= 1)

p(X € Xanchor|Y = O7A = 1) > (0 and =0.
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This condition ensures that the positive class (Y = 1, A = 1) has no support on a subset of the feature
space that is occupied by the negative class (Y = 0, A = 1), which is necessary for identifiability.
Under the assumption , the primary difficulty arises from the fact that the component p;;(x),
corresponding to the subgroup (Y = 1, A = 1), is not directly observable in either the source or
target domain.

To elucidate this observation, we denote po(x) = {p10(x),poo(x)} ", and then the observed data
log-likelihood of one generic observation in our UDA setting is proportional to:

I1glogpio(x) + T1o1logpor (x) + T100logpoo(x)
+Ip.1log { Brip11(x) + (1 = Bi1 — BT 1)po1 (%)} + Io.olog { B po(x)} .

In this formulation, the parameter with finite dimension is 3. The model involves four nonparametric
nuisance components: p11(x), p1o(X), po1(x), and pgo(x).

Lemma 3.2. Assume 511 = 0 and p10(X) # poo(X), then all components except pi1(x) are
identifiable. Assume 0 < 11 < 1 and is known, and p1o(x) # poo(X), then all components in the
model are identifiable.

The proof of Lemma[3.2)is provided in Appendix[A.T} The identification conditions in Lemma|[3.2]are
intuitive and reasonable. If 511 = 0, it degenerates to the situation that the source and target domains
have the same support on both label Y and background A, then the component p;1 (x) is no longer
relevant. Also, if p1o(x) = pgo(x), the subpopulations of (Y = 1,A = 0) and (Y = 0,4 = 0)
become indistinguishable, and hence the individual probabilities 819 and [yg are not separately
identifiable. Overall, these conditions are natural to ensure the problem is well-posed.

3.4 ESTIMATING PARAMETERS OF INTEREST

To estimate the parameter 3, we consider the distribution of attributes x in the subpopulation defined
by (R = 0, A = 0). By the law of total probability, we have

p(x | R=0,A=0)pr(R=0,4=0)=pio(x)Bio(1 — 7) + poo(x) Boo (1 — 7), ©)
subject to the constraint
pr(R=0,A=0) = B1o(1 —7) + Boo(1 — 7). (10)

Note that the distribution p(x | R = 0, A = 0) is identifiable from the target population. The
distributions p1o(x) and pgo(x) can be consistently estimated from the source population subgroups
(R=1Y =1,A=0)and (R = 1,Y = 0,4 = 0), respectively. Thus, the parameters
B = (Boo, B10) T can be estimated by minimizing a suitable discrepancy measure between the two
sides of equation (9), such as an L, norm or a divergence-based criterion (e.g., Kullback—Leibler
divergence), subject to the constraint in equation (I0). Therefore, we reformulate the estimation of 3
as a constrained distribution matching problem:

~

B = argming D {p(x | R = 0, A = 0)[{P10(x)B10 + Poo(x)Boo}/pt(A =0[R=0)}, (11

subject to pr(A = O|R = 0) = B9 + Boo, where D denotes a discrepancy measure between
probability distributions over the covariate space X'. Among various choices for D, we adopt the
Kullback—Leibler (KL) divergence due to its favorable analytical and computational properties. To
facilitate optimization, we relax the constraint in (TI) and reformulate the objective under KL
divergence, as summarized in the following lemma.

Lemma 3.3. Let D be the Kullback—Leibler divergence. Then the solution 310 to the minimization
problem is given by

argmas, B (log[€(X)br ' Bio + {1 = &(X)H1 = B) (@ - Buo)l|[R=0,4=0), (12

where, for simplicity, by = pr(Y = 1|lR=1,A=0), o = pr(A=0|R = 0) and E represents the
empirical average.

The proof of Lemma [3.3]is provided in Appendix [A.T] A key advantage of minimizing the KL
divergence is that it circumvents the need to explicitly estimate the generative models p1o(x) and
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poo(x), which are often difficult to model accurately in high dimensions. Instead, it suffices to
estimate one background-specific prediction model &, (x) using standard classification techniques on
the source domain restricted to A = 0.

The above method adopts the idea of distribution matching. Alternatively, one may consider matching
only certain moments rather than the full distribution. Due to space constraints, we defer the details

to Appendix[A.1]

Algorithm 1 Implementation details of our proposed method.

Input: Observed source domain data {(X;,Y;,4;,R; = 1)}*; and target domain data
{(Xi, Ai, Ri = 0)};2,
Output: Estimated benchmark prediction models £ | (x), & (x) and & (x), proposed prediction models
for the target 7(x), 771 (x) and 7jp(x); and subpopulation proportions &y, B\W
1: Estimate £(x) (defined in ) using data {(X;,Y;, R, =1):i=1,--- nl} as £(x )
2: Estimate &o(x) (defined in (4)) using data {(X;,Y;, 4; = 0,R; = 1) ci=1,---,n1}, as
§o(x);
3: Estimate 7,(x) (defined in (6)) using data {(X;, 4;, R; = r) : i = 1,---n,},r = 0,1, as
e (x);
Estimate &; (x) following equation , as & (x);
Estimate r(x) (defined in (7)) using data {(X;, R;, A = 1) i=1,---n}, as K(x);
Estimate 3 and oy, , following equations lb and (1), as 6 and @y, for (y,a) € {0,1};
Estimate 71 (x), no(x) and 7(x) following equation @i as 71 (x), No(x) and 7j(x).

A A

Finally, based on all of the above discussions, we summarize the implementation details of our
proposed method in Algorithm T}

3.5 DOWNSTREAM TASKS

With any loss function £(-), for the background-specific prediction model with A = 0, the conditional
risk is

E[H{n(X),Y} | R=0,A4=0] = E[({h(X),Y}w(Y) | R=1,4=0], (13)
where, for simplicity, we write w(y) = % One can derive that w(1) = % and

_ Boo(@oo+aio)
w(O) ~ apo(Boo+p10)

as E[({n(X),Y}@(Y) | R =1, A = 0]. Furthermore, the model can be fine-tuned specifically for
the target subgroup by minimizing the reweighted empirical risk:

To evaluate the performance of the prediction model, it can be approximated

he € arginig E[t{h(X),Y}@(Y)|R=1,A=0], (14)
€

where F is a suitable function class.

For the interest of space, for the other two prediction models, we only present the relations analogous
to (13) without elaborations. For the background-specific prediction model with A = 1, one can
derive E[¢{h(X),Y}IR=0,A = 1] as
El{h(X),Y =1}|]R=0,A=1]
Bo1
Bo1 + P11’

For the overall prediction model, the conditional risk E[¢{h(X),Y }| R = 0] is
ElH{h(X),Y}w(Y) | R=1,A=0](f10+ Boo)
+E[{h(X),Y =1}[R =0, A = 1](Bo1 + fu1)

—E ([¢({h(X),Y =1} = ¢{n(X),Y =0}]|]Y =0,A=1) Bp1.

—E ([({h(X),Y =1} —¢{h(X),Y =0}]|Y =0,A=1)
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4 THEORETICAL RESULTS

For the interest of space, we only present the results for the background-specific prediction model with
A = 0. The results for the other two prediction models are parallel and can be similarly developed.
To facilitate the analysis, we begin by formally defining the population-level (expected) objective
function:

£(&0, b1, Bro, 0) = E (log[€(X)by "Bro + {1 — &(X)}(1 = b1) (o — Bro)]|R=0,4=0),

with its empirical version E(fo, b1, B10, 0)-
Assumption 4.1. Define £(x) = {fo(x), f1(x)}", where fo(x) = log{&(x)} — 1[log{&(x)} +

log{1 — & (x)}] and f1(x) = log{1 — & (x)} — %[log{fo(x)} + log{1 — &y(x)}], and the corre-

sponding estimate is { fx(x)}},_,. There exist a constant ¢ > 0 and a sequence 1y, , — 0 such that,
for almost every x, we have

pr(I1F60) = FG)ll2 > £) <exp {—2/(c2, )}, ¥i>0.

Theorem 4.2. Suppose Assumption holds. Define xn, = T, ,+\/108(no.0) + n;é/Q + na(l)/Q.
Then, there exists a constant c19 > 0 such that for any § > 0, with probability at least 1 — 69, we

have
18 = Bll1 < c1oxn\/10g(1/3).

The proof of Theorem [.2)is provided in Appendix[A.2] Theorem [.2]establishes the consistency of
the estimator 3, provided that r,,, ,1/log(ng.0) — 0 as 1.9, ng.0 — 0.

Next, we establish a generalization bound for the fitted model , which is obtained via weighted
empirical risk minimization over the source subgroup. Let F denote the hypothesis class of classifiers.

For any h € F and a weight function w(y) : y — R, we define the population-level weighted loss
and its empirical counterpart based on the source subgroup data as follows:

Ly(hyw) = E [E{h(X),Y}w(Y)|A =0,R= 1] ,

Li(hyw) = E[{nX),Y}w(Y)A=0,R=1].
We also define the population loss on the target subgroup as: Lo(h) =
E [/{h(X),Y}|R =0, A = 0]. Clearly, £y (h,w) = Lo(h).

To establish our generalization bound, we utilize the concept of Rademacher complexity (Bartlett
& Mendelson, 2002), denoted as R,,(G) (see Appendixfor details), and impose the following
assumption on the loss function:

Assumption 4.3. The loss function { is uniformly bounded; that is, there exists a constant B > ()
such that

[¢{h(x),y}| < Bforanyh e F,xe€ X C RY,andy € {0,1}.

We now present the generalization bound for the learned model, with its proof provided in Ap-
pendix[A.2]

Proposition 4.4. Under Assumptions and let hg = argming, ¢ ]_-21 (h, W) be the classifier
obtained by minimizing the reweighted empirical risk on the source subgroup. Then, there exist
constants ¢,d > 0 such that, with probability at least 1 — 76, the following generalization bound
holds:

Lo(hg) —min Lo(h) < 2R, ,(G) +dB|B - Bl + ¢ \/10g(1/5>+\/1og(1/6) 7

heF n1.0 no

where G = {w(y)l{h(x),y} : h € F}, and R, ,(G) denotes its Rademacher complexity as defined
in Appendix[A.2]
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5 EXPERIMENTS

We conduct extensive experiments on both synthetic and real-world datasets. Due to space limitations,
we present the results on the Waterbirds dataset here and provide additional results in Appendix [A.3]

The Waterbirds dataset (Sagawa et al., 2019) consists of 11,788 images. The label Y = 1 denotes
a waterbird and Y = 0 landbird. The background A = 1 corresponds to a water background and
A = 0 aland background. It yields four label-background subpopulations, as summarized in Table 3]

Table 3: Empirical joint distribution of (Y, A) in the Waterbirds dataset, with varied values of a, b
andc, 0 < a,b,c < 1.

Y A Description Count Total Proportion  Proportion in Source  Proportion in Target
1 1 Waterbird on water 1832 0.155 0 0.155

0 1 Landbird on water ~ 2905 0.246 0.246a 0.246(1 — a)

1 0 Waterbird on land 831 0.071 0.071b 0.071(1 —b)

0 0 Landbirdonland 6220 0.528 0.528¢ 0.528(1 —¢)

To construct a structured domain adaptation problem, we partition the full dataset into a source
domain (R = 1) and a target domain (R = 0). Specifically, we allocate samples from three
subgroups—(Y = 0,A = 1), (Y = 1,A = 0), and (Y = 0, A = 0)—into the source domain,
with allocation rates denoted by parameters a, b, and ¢, respectively. The remaining subgroup,
(Y =1, A = 1), is deliberately excluded from the source domain and appears only in the target
domain. This setting reflects real-world scenarios in which a specific combination of label and
background is structurally missing from labeled datasets due to systematic data collection biases or
constraints. In the target domain, all four subgroups are retained, but the label variable Y is treated as
unobserved.

To implement the proposed method, we apply the distribution matching approach to estimate the
subclass proportions in the target domain. For feature extraction, we embed each image into a
512-dimensional feature vector using a ResNet-18 model (He et al.,|2016) pre-trained on ImageNet
(Deng et al., 2009), without additional fine-tuning. These embeddings serve as covariates X € R512
in our downstream analysis. Based on these feature vectors, we fit logistic regression models with
Lo-regularization to estimate five key conditional probabilities required by both our proposed method
and benchmark procedures: £y(x), £(x), 70(x), 71(x) and k(x).

Mx) vs §1(x) n(x) vs &(x)
0.80 0.80

ors{T T T E T P F os{FPEEEEEEER 0_85_}*;.}.};.1.-1--1- s B EE £
g 070 T o7

fii
go.ss %I%l%' 205: 0.80 %%%%%% 0.80 %%%%%% 'f.}
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Figure 1: Performance comparison of our proposed estimators 71 (x), 1(x), and the benchmark
method & (x), £(x) under the setting @ = 0.5 with either ¢ = 0.5 and varying b or b = 0.5 and
varying c.

For empirical evaluation, we fix the subclass sampling rate at ¢ = 0.5 in the source domain and
systematically vary the remaining subclass inclusion rates by setting either b = 0.5 with ¢ €
{0.1,0.2,...,0.9}, or ¢ = 0.5 with b € {0.1,0.2,...,0.9}. For each configuration, the data
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generation process is repeated 50 times to account for sampling variability. We assess performance
using two widely adopted classification metrics: accuracy and F; score. Figure[I] presents boxplots
summarizing the distribution of these metrics across repetitions for our proposed estimators 7 (x)

and 7)(x), alongside benchmark estimators £ (x) and £(x). The results demonstrate that the proposed
methods consistently outperform the benchmarks in both accuracy and F; score, suggesting enhanced
robustness to structured subpopulation missingness in the unsupervised domain adaptation setting.
Due to the space limitations, additional results are provided in Appendix

6 RELATED WORK

Out-of-distribution (OOD) generalization OOD generalization refers to the ability of a prediction
model to perform well on test data drawn from a distribution that differs from the training data. In
our context, the subpopulation (Y = 1, A = 1) in the target can be regarded as the OOD data while
the other three subpopulations are in-distribution data. For a comprehensive overview of OOD gener-
alization, we refer the readers to the excellent survey (Liu et al.;|2021), which reviewed real-world
datasets, evaluation protocols, and key challenges in this area. In the OOD generalization literature,
different methods were proposed with different emphases: (Arjovsky et al.,[2019) emphasized the
need to minimize invariant risk across different environments to ensure consistent model performance,
whereas (Sagawa et al., [2019) underscored the importance of distributionally robust optimization
(DRO) and various regularization techniques in reducing performance disparities across subgroups.
In addition, (Bahng et al.,[2020) introduced adversarial training as a method for learning de-biased
representations, which is critical for promoting fairness in machine learning models, and (Sohoni
et al., 2020) examined the issue of robustness in classification tasks involving coarse classes that
contain finer subclasses, enhancing model performance across all subclasses.

OOD detection OOD detection is the task of identifying inputs at test time that do not come from
the same distribution as the training data. Its goal is to prevent a model from making confident but
incorrect predictions on unfamiliar or anomalous inputs by flagging them as OOD. There are a variety
of techniques developed for OOD detection in the literature. For example, (Hendrycks & Gimpell
2017) introduced a simple yet effective method for detecting both misclassified and OOD inputs in
neural networks. [Liang et al.|(2018) (ODIN) proposed an improved method for detecting OOD inputs
by applying temperature scaling to the softmax outputs and adding small input perturbations during
inference. ODIN significantly outperformed previous baseline methods, including the maximum
softmax probability approach, and set a new standard for OOD detection in classification tasks. Other
techniques include but not limited to, outlier exposure (Hendrycks et al., |2018; [Papadopoulos et al.|
2021)), ConfGAN (Sricharan & Srivastava, 2018]) and OodGAN (Marek et al., [2021)). In addition,
Fort et al.| (2021)) provided an extensive empirical study of OOD detection methods across a wide
range of datasets, architectures, and training regimes.

Spurious correlation Spurious correlation is a major obstacle to OOD generalization, where
models often rely on non-causal features that can degrade performance, particularly when these
correlations do not generalize across domains. For example, a model trained to classify cows might
rely on green pastures (background) instead of the cow itself. On a desert background, it fails.
This is also the case in the Waterbirds dataset where the spurious correlation exists between label
Y and background A. Different learning strategies were proposed to discover and mitigate the
impact of spurious correlation on model performance, as well as to improve model robustness. For
example, (Wu et al.| 2023) introduced an attention-based approach to automatically identify spurious
concepts and apply adversarial training to reduce reliance on them. Another approach proposed
by (Kumar et al.| |2023)) used causal regularization to detect and discourage spurious dependencies,
allowing for scalable robustness across shifts. In addition, (Sagawa et al.,[2020) investigated why
overparameterization exacerbates spurious correlations, and (Kirichenko et al., [2022) found that
retraining only the final layer on a small, balanced dataset can restore robustness against spurious
correlations. Also, (Wang & Wang| 2024) developed a theoretical model to analyze the influence of
spurious correlation strength, sample size, and feature noise on learning. Spurious correlations were
also investigated in feature learning (Izmailov et al., 2022; Q1u et al., |2024)), reinforcement learning
(Ding et al.,|2023)), OOD detection (Ming et al., 2022), and text classification (Wang & Culotta, [2020).
One can also resort to a comprehensive survey paper (Ye et al., 2024) on this topic.
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A APPENDIX

A.1 PROOFS AND MORE DETAILS IN SECTION[3]

Proof of Proposition For A = 1 case, note that

p(x|R=0,A=1)pr(R=0,A=1)
= px|R=0,Y=1,A=1)po11 +p(x| R=0,Y = 0,4 = 1)pgo1.

Thus,

p(x| R=0,A=1)pr(R=0,A4 = 1) — po1(x)poo1

p11(X) B Po11

13
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Then,
pn(X)pon
pr( [ R=0A= = R=0.A=1)
_ pPx|R=0,A=1)pr(R=0,A4=1)— po1(X)poo
p(x|R=0,A=1)pr(R=0,A=1)
_ p(x|R=0,A=1)po1 — po1(x)Bo1(1 —m)
p(X | R= O7A = 1)p0~1
Note that
p01(X)04017T
r(R=1 X,A =1)=
p ( | ) p01(X)0[017T +p(X | R = 0714 = 1)100-1
gives
po1(x) _ pr(R=1|x,A=1)
p(x| R=0,A=1)pp.1 apm{l—-pr(R=1|x,A=1)}
Hence,
Bor(l—7) pr(R=1|x,A=1)
Y=1 =0,A=1)=1-— .
pr( % B =0, ) anm  1-pr(R=1|x,A=1)
Note that
p(x|R=1,A=1annr
pr(R |, ) p(x|R=1,A=1Dapm+px|R=0,4A=1)py1
gives
px|R=1,A=1) pr(R=1|x,A=1)
px| R=0,A=1)pg1 apr{l—pr(R=1|x,A=1)}
Hence,

pr(Y=1|x,R=0,A=1)=1-

ﬁOl(l — 7T) pr(R =1 | X7A = 1) p(X|Y = 07A = 1)
apm 1—-pr(R=1|x,A=1) |px|[R=1,A=1) ]

For A = 0 case, note that
prY =1,x,R=0,4A=0)
pr(Y =1,x,R=0,A=0)+pr(Y =0,x,R=0,A=0)

I[(Y=1,R=0,A=0
pr(x,Y =1, R = LAZO)W

prY =1|x,R=0,A=0) =

(Y =1,R=0,A=0 I(Y=0,R=0,A=0
pr(x,Y =1,R=1,A= O)W +pr(x,Y=0,R=1,A4= O)W

_ B gy (x)
D10 go(x) + B {1 — &o(x)}

By Bayes’ rule, we obtain the following equation
(%) = m(x)70(x) + no(x){1 = 70(x)}-
O

Proof of Lemma[3.2] Itis easy to see that, , 10, @01, P10(X), Po1(x) and poo(x) are all identifiable.
Now suppose that there are two different sets p11(x), 810, Soo and p11(x), B10, Soo such that

Brpi1(x) + (1 = Bir — B0 — Boo)por(x) = Bupni(x) + (1 = Bi1 — Bro — Boo)por (x),
Biop1o(x) + Boopoo(x) = Bropio(x) + Boopoo (X)- (15)

Now taking the integral with respect to x on both sides of the second equation above, it is clear that

B1o + Boo = B1o + Boo-

14
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Plugging in back to the first equation above, we obtain
Br1{p11(x) —pu1(x)} = 0.

Since $11 > 0, we obtain p11(x) = ;'511(3(). Finsilly, leads to (510 — §1o)p1o(x) = (Eoo —

Boo)poo(x), which can only hold if 519 = $10 and Bop = SBoo since p1o(x) # poo(x). This completes
the proof. O

Proof of Lemma[3.3]

D {p(x|R =0,A=0)

1
1—-m
Y=kA= .
kzzop(x| k, 0>5kopr(R:07A:0)}

_ /(X|R 0, A = 0)log Pf=04=0 4
_op(x|Y =k, A = 0)Broprrrsoa=oy
p(x|R = 0,4 = 0)

dx

= p(x|R =0,A = 0)log ,,T
/ Z;lg:op(th =k A= 0)5k0m

pxIR=0,4=0)
/p(x|R 0, 0) ng(x|R —1.4-0) dx
Yo P|Y =k, A = 0)Bro prorssa=n)
_ _ _ = PI(R=0,4=0)
/p(x|R 0, A = 0)log PR A=0) dx
B B p(x|R=0,4=0)
/p(x|R—O7A—0)log = |R: 7 A:O)dx

B pr( —k|x R=1,A=0)Bro(l —m)pr(R=1,A=0)
/QWR 0,4=0) E: R=1Y=kA=0)pr(R=0,4=0) dx.
k=0 pr(

R—QA—O}
subject to pr(R = 0, A = 0) = B10(1 — 7) + Boo(1 — 7).

We enforce this restriction as a constraint in the distribution matching problem: where D is a
discrepancy between probability distributions on X'

Define
£(&0, b1, Bro, 0) = E (log[€o(X)by " Bro + {1 — &(X)}1 —b1) " (0 — Bio)]|[R =0,A=0).

Its empirical version is

Minimizing the above equation is equivalent to maximizing

Bro
Y=kR=1,A=0)

1
argmax gk {logZpr(Y =klx,R=1,A=0)

£(¢0,b1, B10,0) = E (log[€0(X)by ' Bro + {1 — & (X)}H1 — b1) (0 — B1o)]|[R =0,A=0).
O

AN ALTERNATIVE APPROACH FOR ESTIMATING 3

In the main text, we explore the use of distribution matching for estimating 3. Alternatively, it is
sufficient to only consider some moments instead of the whole distribution. For any measurable
function m(x), the law of total expectation yields the identity:

E{m(x) | R=0,A=0}pr(R=0,A=0)
= E{m(x)]|1,0}B10(1 —7) + E{m(x) | 0,0}Bpo(1 — 7). (16)
Rewriting equation (T6), we obtain the following linear system:
(1 - m)pys [E{m(x) | 1,0}, E{m(x) | 0,0}] 8 = E{m(x) | R = 0,4 = 0}
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which leads to the expression
B=(1-m) "poo [E{m(x) | 1,0}, E{m(x) | 0,0}] ' E{m(x) | R = 0,4 = 0},

provided that the 2 x 2 matrix [E{m(x) | 1,0}, E{m(x) | 0,0}] is invertible. To use the idea of
moment matching, one has the flexibility of choosing different moments m(x). Certainly, a further
research question of interest is to identify the optimal choice of this moment function, say, m. (x),
by borrowing the semiparametric techniques (Bickel et al.l 1993} Tsiatis, [2006).

A.2 PROOFS AND MORE DETAILS IN SECTION[4]

Firstly, note that the tail bound described in Assumption[d.1]is intended to hold uniformly for every
n1.0 when estimating f, for k = 0, 1. In other words, for each subsample size n1.9, we have ar,

such that the corresponding estimators f; for kK = 0, 1 are required to satisfy the stated concentration
inequality. This inequality is analogous to Hoeffding’s inequality and provides a non-asymptotic
concentration bound on the estimation error. Similar assumptions have also been adopted in recent
work (e.g., Maity et al.[(2022), Tsybakov & Audibert (2007)).

We next define the Rademacher complexity (Bartlett & Mendelson, [2002)) that has been frequently
used in machine learning literature to establish a generalization bound. Instead of considering the
Rademacher complexity on F we define the class of weighted losses G(¢, F) = [w(x, y)¢{g(z),y} :
g € F]and n € N we define its Rademacher complexity measure as

Rn(G) := Ey, 4, (Egl

sup — Zfz UMUZ)K{Q(UZ) Ul}‘|>7

heF M

where {¢;}7" ; are i.i.d. Rademacher random variables, taking values 1 with equal probability 1/2.

Proof of Theorem{.2] Foraprobablhstlc classifier: {£o(x),1—&o(x)} : & — A2, and the parameter
BT = (B0, Bo0) and by = pr(Y = 1|R = 1,A = 0), we define the centered logit function

f:X = R?as fo(x) = logé(x) — %[logﬁo(x) + log{1 — & (x)}] and f1(x) = log{1l — & (x)} —
1 logo(x)+log{1—&y(x)}]. We define the functions u( fo, b1) = &o(x)b7 " —{1—&o(x)}(1—b1) 7"

and w( fo, b1, f10,0) = fo(x)bflﬁlo +{1—¢&0(x)}(1—b1)~'(0— Bio), and notice that the objective
is

E(fOu b17 BlOa Q) = E {1ng(f07 blu 5107 9)|R = 07 A= 0} 3
whereas the true objective is

L(anblaﬂloa Q) = E{logw(f();blaﬂloa Q)|R = 07A = O}a

We see that the first-order optimality conditions in estimating 310 are

0 = 8310/\(]%7/61;3107/\) a7
= aﬁm |: {IOgW(anthlO; ‘R =0,A= 0}:|
— [aﬁlo{w(f07blaﬁloa )}
(fo, b1, B0, 0)

Similarly, the first order optimality condition at truth (for 31¢) are

0 aﬁloL(fmbl»BlOaQ)

s, [E {logw(fo, b1, B10, 0)|R = 0, A = 0}]

E |:aﬂlo{W(fo,b1,,810,
(fo, b1, B10, 0)

We decompose using the Taylor expansion and obtain:
0= 8;8102;\(.]0()7 b17 6107 5) + <f0 - an afoaﬁloi(f(h b17 /8107 §)>

R=0,A=0

}’R OA—O]
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where fo is a function in the bracket [fo, fo], i.e. for every x, fo(x) is a number between fo(x) and
fo(x).
Bound on <f0 - f07 afoaﬁlgL(f()v blv ﬁlOv §)>:

To bound the term, we define (y = ]?0 — fo and notice that

(€0, 05,98,0 L(fo, b1, Bro, 0))
R:QA:OH>

_ S n(oby)
= <C0,af0 E{w(
[3;1 (1Dt

.%5/51731()’@\)
B (Co 2~'§0(A1 _A§O)A
w(fo, b1, P10, 0)

~73 o L
—fé(fo—/\l)/\ {bl 1610 — (1 - bl) 1(@ - 510)}

w(va blv ﬁlOv Q)
The derivative in third equality in the above display is calculated in Lemma [AI] Assume
o—¢€ > P1p >€>0and1l—¢ > b > e > 0, ie., there exist a ¢; > 0 such that

28y (1-&) [21 -1 p(forb) {AflA C1-2)5-3 }H ~
Sbdep |01 TE )T o 10 Ao~ (L= 7@ = o) p || < er. This
implies the followings: we have

. 26 (1 — & . ~
B (g—2oll=%0) [b;l (1B
w(fo, b1, B, 0)
fo, b
W(fOu b17 BlOa Q)

< aB{|G(x)||R=0,4=0}.
It follows from Assumptionwith probability at least 1 —4d it holds sup; ¢, ) |l f (x:)—f(xi)]2 <
CT'ny 0 V/108(n0.0)log(1/6), we conclude that

‘<<07 afoaﬂwi(foa b1, P10, §)>| < CC1Tny \/1Og(n0‘0)10g(1/6)
holds with probability at least 1 — 6.

Bound on aﬂloz(fbagla/glOa Z)\) - 6ﬁloz(f07 6178107 5)

Using the taylor expansion, we have
aﬁmz(f()a blv 5107 /@) - aﬂmi(fO; bla 610; Z)\) = <b1 - blv ablaﬁloz(f(b bla ﬂlO, §)>

<31 — by, Oy, E{(”(fogl) RO,AOH>

f07gl73107§)
£ {@1 —b) [‘50(")51‘2 — {1609}~ b))~
w(f07b175107§)
N(fo,?ﬁ) —fo(X)EIQB\lo +{1-¢&(x)}(1 _Zl)_Q(@\_ 510)] } |

R:QA:Q.

{31_1310 -1 —31)_1(5— 310)}

OJ(fO,Ehﬂlo,@) w(f07517ﬂ107§)
Assume p —€> B0 > € >0 and 1 — ¢, > by > €1 > 0, i.e., there e~xist acy > 0 such
that | [ Z£000 " —{1-& ()} (1=b) " u(fo.by) —so(x>b;261o+{1—go<§)}(1—b1>*2(§—ﬁm>}‘ <
w(fo,b1,B10,0) w(fo,b1,B10,0) w(fo,b1,B10,0) ’

This implies the followings: we have

5 { Gr— b [—@(x)ﬁﬂ —{1=&EHL =)
w(an blaﬂlOv Q)

i(forby)  —& )by 2o + {1 — &(x)}(1 — by) (5 — Bm] } ‘

w(anglaalan) w(anglaglan)
< 62|??\1 — byl.
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We apply Hoeffing’s concentration inequality for a sample mean of i.i.d. sub-gaussian random
variable Y; and obtain a c3 > 0 such that for any § > 0 with probability at least 1 — ¢ it holds

log(1/6)

by — by = [pr(Y =1|R=1,A=0) —pr(Y =1|R=1,A=0)| < B
1-0

Bound on aﬁmf(fo, b, Bro, 0) — 86102(f0, b1, Bro, 0).

Using the taylor expansion, we have

aﬁmi(f07b173107 §) - 8510E(f03b17§103 Q) = <§7 Q,agaﬁwz(f07b173107 5)>
_ El@_g)mjfmbl){l5o<§>}<1b1>1
w2(f0,b156107§)

Assume p — ¢ > g > € > 0and 1 —e; > by > €1 > 0, i.e., there exist a ¢4 > 0 such that
‘—uUbwlnl—suf)Ml—bn*
w?(fo,b1,810,0)

R=0,A=0

i ‘ < c4. This implies the followings: we have

—p( fo,b1){1 — fo(i()}(l —by)!
w?(fo, b1, B10, 0)

We apply Hoeffing’s concentration inequality for a sample mean of i.i.d. sub-gaussian random
variable A; and obtain a c; > 0 such that for any § > 0 with probability at least 1 — ¢ it holds

log(1/6)

no

E R=0,A=0

(0—o0) < c4l0 - ol

[0 — o = [pr(A =0|R =0) —pr(A=0[R =0)| < ¢5

The term Ggmf(fo,gl, 3107 0): We have

aﬂwi(an/b\lvB\lOa 0) — 8510E(f0, b1, Bro, 0) + 8510E(f07 b1, B1o, 0)
= 0, L(fo,b1,B10,0) + Op(|br — b1| + [0 — 0l)-

Now, we study the term 85103(f0, b1, Bio, 0), use strong convexity of —L( fo, b1, 810, 0) with B1g
and the convergence of the loss that

sup L (fo, b1, B10: 0) = L(fo, b1, Bro, 0)] 22—
B10€(0,0)

for 810 € (0, o) in|Wellner et al{(2013)(see Corollary 3.2.3) to conclude that Blo — (1 in probability
and hence (319 is a consistent estimator for 3.

Following the consistency of 510 we see that for sufficiently large ng.q, we have | /310 — Bio| < 55(55

is chosen bound by ﬁé“ A =5 £=512) with probability at least 1 — ¢ and on the event it holds: 610 €
[B10 — 95, 1o + 0]. We deﬁne empirical process

an,(): sup |aﬂ (foﬂblaﬁa ) aBL(f07blaﬁ7Q)|
B€[B10—05,810+03]

for which we shall provide a high probability upper bound. We denote Z,,, ,(8) = aﬁf( fo,b1,8,0)—
L(fo,b1, 3, 0) and notice that

dsL(fo,b1, 8, 0) — dsL(fo, b1, B, 0)

{ AU g g ok (M) n )
E{w(fbvblvﬁv Q)’R O7A 0 E w(f07b17ﬁa Q) R O7A Op: A(ﬁ)

where to bound A(/3) we notice that % are i.i.d. and bounded by (87! + (0 — 8)7* <
% + ﬁ < ¢p for all x € X) and hence sub-gaussian. We apply Hoeffding’s concentration
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inequality for a sample mean if i.i.d. sub-gaussian random variables and obtain a constant cg > 0
such that for any 6 > 0 with probability at least 1 — § it holds

S Y T A
AlB) E{W(fo,blvﬁ’Q)R 0 A=0p-F W(f07517ﬂ79)R 0,4=0
< ¢ M-
0.0

Use chained arguments for ¢; with interval length 20g we obtain a uniform bound as the following:
there exists a constant c; > 0 such that for any § > 0 with probability at least 1 — ¢ if it holds

log(1/6
sup A(B) < cocecr M.
B€[B10—05,B10+5] no.o
Therefore, with probability at least 1 — §, we have
log(1/6
s < cocgery | 12BL0).

n0-0
Returning to the first order optimality condition for estimating Blo we notice that
0 = (Bio—Bu) {5ﬁlgz(f073173107 8) + (fo — fo, 01,08, L(fo. b, B1o, @)}
= (B — o) {3ﬂmi(fo73173107 8) — 9510 L(fo, b1, Bro, 0) + 91 L(fo, by, Bro. 0)
(o = fo 950920 L(fo. b1, Bro. ) }
= (B0 — B10)p1o L fo. b1 Bro, 0)
+(Bio — B1o) {8/310E(f0,31,310, 0) — 9510 L(fo, b1, B10, 0) + Zung., (Bro)

+(fo = fo, 01,08, L(fo, b1, B1o, §)>} :
We combine it with the first order optimality condition for 3 to obtain
(Bro — Bio) {3510L(f07 b1, Bro, 0) — 9p,0 L(fo, b1, Bro, Q)}
+(Bio = B10) {90 Lo, b1, Bro, 8) = Do Lo, b1, Bro, 0) + Zng(Br0)
+(Fo = for 05,00, L(fo. b1, B2 | =0,
which can be rewritten as
~(B1o — Bio) {3510L(f0, b1, B10, 0) — 9p1o L(fo, b1, Bro, Q)} (18)
= (Bio— Bo) {8[510E(f076173107 8) — 9510 L(fo, b1, B10, 0) + Zung., (Bro)
+(fo = fo, 05,0, L(fo, b1, Bro, §)>} :

Using the strong convexity of function —L at 319, we obtain that the left-hand side in the above
equation is lower bounded as

~(Bro — Bro) {aﬁloL(fm by, B10, ) — 9 L(fo, b1 Bro, Q)} > u(Bio — Bio)>. (19)
Let & be the event on which the following hold:
. |BlO — Bio| < 9.

* [{fo = fo,05,08,6 L(fo, b1, Bro, 0))| < ey o v/108(no-0)log(1/3).

19



Under review as a conference paper at ICLR 2026

log(1/6
¢ Zngo < CoCCr %.

. |85103(f0,31,310, §) — 85105(]"0, bl,glo, Q)‘ S (CQCS —+ 0405) {\/10%(1/5) + \/105(1/5) }

n1i.o0 no

We notice that the event £ has probability 1 — 5J. Under the event there exists a cs > 0 such that the
right-hand side in (I8) is upper bounded as

|Bio = B10) {9510 L(fo,B1. B0, 8) = Dsay L(fo: b1, Bro, ) + Zug.o (Bro) 0)
+(fo = fo, 95,950 L(fo, by Bro, Q)>H

< (B0 = Brol {10610 L(fo b1 B0, 8) — 95,0 L(for b1 Bros )] + | Zug.y (Bro)|
+1(Fo = fo. 05,0510 L(fo. b1, Bro, )1}

< es$ oo/ 10g(no.o)log(1/8) + \/log(l/é) + \/10g(1/5) + \/log(l/é) |Bl() — ol

ni.0 no no.0

Combining the bounds (T9) and (20) for left and right hand sides we obtain a c¢1p > 0 such that on
the event £ it holds

o Bl < e d v TR + \/log(l/é) . \/log(l/é) . \/log(l/é)

ni.o no 0.0

Further, sine A; is bound random variable, then we can obtain a constant ¢g > 0 such that for any
0 > 0 with probability at least 1 — § it holds

logu/a)

|1Boo — Bool = (@ — Bro) — (0 — Bio)] < 12— ol + B0 — Bro| < co + 810 — Buol-

In summary, we have a constant ¢;g > 0 such that for any § > 0 with probability at least 1 — 60 it
holds

ni.0 no o.0

18— Bl < c10 4 7y v/I0B(m00) o8 (1/0) + ¢ log(1/9) ¢ log(1/9) ., [lo8(1/9)

Lemma A.1. (Derivatives).Th following holds:
* 05, (&0) = 2&0(1 — &o);
* 9p{n(fo, b1)} = 0y, (€0) {1 + (1 —b1) ')

o s {w(f1,b1, B10,0)} = Oy (€0){b7 " Bro — (1 — b1)~L(o — Bro)}s
. afo{ 1(fo,b1) }: 280 (1—&o) [b1—1+(1_b1) _ pl(fo,b) {7 Bio—(1—b1) "' (o— Bo)} |

w(fo,b1,B10,0) w(fo,b1,B10,0) w(fo,b1,810,0)

Proof.

f fi fi —fo) _ of fo _ o=
elo )Ze“(e°+e 0) e”(e" e 0):2&)(1_&))7

Ao {1 fo,01)} = Dp, (€0){bT + (1 —by) 7'},
Ao {w(fo, b1, Br0, 0)} = 05, (0)by * Bro — Dy (€0)(1 = b1) ™ (2 — Bio)
= 05, (€0){b7 ' Bro — (1 —b1) (o — Bro)}-
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Thus,

P { w(fo,b1) }

7o\ @(fo, b1, Bio; 0)

5o () {1 " + (1 = by) " Jw(fo, b1, Bro, 0) = i fo, b1){b1 ' Bro — (1 = b1) (0 — Bro)}]
w?(fo,b1, B0, 0)

_ 95, (%) { 1 e o, b){bT B — (1= b1) Mo - Bm)}]
B w(f07b1761079) b +(1 bl) w(f07b1761079)
_ 2601 —&) { -1 et Afo, b){br Bro — (1 —bi) Mo - 510)}]
~ w(fo,b1, B0, 0) b+ (=) w(fo, b1, B0, 0) '
O
Proof of Proposition.4] Define w(y) = %,
— [ 4. Y ol plA = 0. = 0)dxdy
_ p(x,y|A=0,R =0) _ —
B pr(ylA =0,R=0) _a P
_ /E{h = 1) Prixesld = 0.R = dxdy
= E[({n(X), Y}w )|A=0,R=1] = Ly(h,w).
Let £1(h,w) = E [({h(X),Y}w(Y)|A =0, R = 1], then we have
Lo(h) = Lo(h) = La(h,w) = Li(h,w)
= Li(h,w) = Li(h,w) + Li(h,w) = L1(h, @) 1)

+ L1(h, @) — L1(h, @) + Ly (h, @) — L1 (h,w) + L1 (h,w) — L1(h, w),

<0 (¢) (d)

where h = ﬁ@

Uniform bound on (a) To control (a) in (ZI)) we establish a concentration bound on the following
generalization error

sup{L4(g,w) — Ly (9,w)}

geEF
= sup { [H{g(X), Y}w(Y)[A=0,R=1] — E[({g(X),Y}w(Y)|A = 0,R = 1]}
= - F(Zlin1-o)

where, for ¢ > 1 we denote Zy.; = (Z;,---,Z;) and Z; = (X;,Y;). First, we use a modifica-
tion of McDiarmid concentration inequality to bound F(Zj.,, ,) in terms of its expectation and a
O, (1/4/n170) term, as elucidated in the following lemma.

Lemma A.2. There exists a constant ¢1 > 0 such that with probability at least 1 — § the following
holds

M. (22)

F(ZlinLo) < E{F(Zlinl-o)} +a
ni.o

The proof is similar to Lemma A.3 of\Maity et al.|(2022), so we omit it.
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Next, we use a symmetrization argument (see |Wellner et al.[(2013)), Chapter 2, Lemma 2.3.1) to
bound the expectation E{F(Z1.,,,)} by the Rademacher complexity of the hypothesis class G, i.e.,

E{F(Zl ni. 0)} < 2R711 o(g) (23)
Combining (22)) and (23) we obtain
(@) < 2R (G) +exy [ B 24
ni.o0

with probability at least 1 — 4.

Uniform bound on (b) and (c¢) Denoting Z; = (X;,Y;) and ¢,(Z;) = ¢{g(X;),Y;} we notice that
for any g € F we have

\L1(g,w) — L1 (g, @)

= B9, Y} () — @V} | A =0,k =1]] < Lol SV a1,

ni.0 i—1

Since w(y) — w(y) is a sub-gaussian random variable, we use sub-gaussian concentration to establish
that for some constant c > 0,

log(1/9)

forany g € F,|L1(g,w) = L1(g, D) < |[€glloe § By w(Y) = B(Y)| + e P

with probability at least 1 — §. This provides a simultaneous bound (on the same probability event)

for both (b) and (c) with g = h and g = h. Further, by Lemma for some constants C; and Cs
and any g € F, we have

L1 (g, w) — Ly (g, )| o5
< Neyloo { C1lIB - Bl +C» w‘)gfjo/‘%\/log““’ Loy 1080/0)

nq n1.0

with probability at least 1 — 5J.
Uniform bound on (d) We note that

Ly (hyw) — £1(h, w)
= E[({h(X),Y}w(Y)|[A=0,R=1] — E [({h(X),Y}w(Y)|A =0,R = 1]
where [({h(X;),Y;}w(Y;)];2y are ii.d sub-gaussian random variables. Using Hoeffding concentra-

tion bound we conclude that there exists a constant c¢s > 0 such that for any § > 0 the following
holds with probability at least 1 — 6,

log(1/9)

ni.o

Ly(h,w) — L1(h,w) < ¢3 (26)

Finally, using on (a) (which is true on an event of probability > 1 — §), on (b) and
(c) (simultaneously true on an event of probability 1 — 54), and on (d) (holds on an event of
probability > 1 — §) we conclude that with probability at least 1 — 74 the following holds

Lol — Lo(h) < 2R (G) 4 OB = Bl +0 \/105_37,1(11{{5) +\/log(1/5) +\/log(l/5)

no ni

where ¢ = ¢1 + ||€]| 00 (C2 + ¢2) + c3. O
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Lemma A.3. Assume |Bio/ci0| < By for any i = 0, 1. There exist constants C, c1, ca, such that

with probability at least 1 — 49,
log(1
+¢%(MU'
ni

log(1/0)

no

|@(y) — w(y)| < CB1[|B = Blli + CBi(er + c2) (\/

Proof.
. _|pr(ylA=0,R=0) pr(ylA=0,R=0
0ly) —wW) = | A =0, R=1)  pryA=0,R=1
_ [Py, A=0[R=0)pr(A=0[R=1) pr(y,A=0[R=0)pr(A=0[R 1)‘
pi(y, A=0lR=1)pr(A=0[R=0) pr(y, —O\R—l pr(A =0[R =0)
pt(y,A=0[R=0) pr(y,A=0[R=0) A=0R=1)
Py, A—0R=1) pr(y,A—0R—1)J pr(A— O[R = 0)
pr(y, A=0[R=0) [pr(A=0[R=1) pr( —O\R—l
pr(y, A=0|R=1) | pr(A=0R=0) pr(A=0/R=0)
For the first term, we have
Byotyo = Byoliyo n1.0 No
0ty No.0 N1
_ (B\yo - 5y0)ay0 + ﬁyO (ayO - ayo) N1.0 o
Q0 0y n9.0 N1
Q0 M1.0 T Q0 N0 Mo | &
g“@lOMmmHV”WlOMmm|
Q0 0lyy0 0.0 M1 Qy0Qqy0  T0.0 M1
) N 1—- . ~
+ yﬂgo moTo (a0 — Q10) + ‘( yA)ﬂyO o™ (00 — Qino)
Q0 Qiy0 100 11 Qy0Qiyo  T0.0 M1
< CB(||B = Bl + o — aool + @10 — a1ol)-

Here C' is some constant. Since Y; and A; are sub-gaussian random variables, we use sub-gaussian
concentration to establish that for some constant ¢ > 0,

log(1/9)

|00 — cvoo| + [@10 — 10| < ¢
ni

with probability at least 1 — 24.

For the second term, we have

By0 Pr(A = 0| R = 1)pi(A = 0|R = 0) — pr(A4 = 0|R = 0)p(A = 0|R = 1) ‘
Qyo pr(A =0|R = 0)pr(A =0|R =0)
ByO pl‘(AZO‘R: 1) ~ _ _ _ _
Byo pr(A = 0|R:0) —
< |Pw Plo( )0 | (A = O[R = 0) — pr(A = 0|R = 0)}]
Qyo|  P0-0TNo.0
|20 0 pr(4 = 0l = 1) = (4 = 011 = 1)}
< CB({fH(A =0 = 0) — pr(A = 0R = 0)}| + {pr(A = O[R = 1) — Bi(A = O[R = 1)}]).
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Here C is some constant. Since A; is a sub-gaussian random variable, we use sub-gaussian concen-
tration to establish that for some constant ¢ > 0,

[{BH(A = 0[R = 0) — pr(A = 0|R = 0)}| + [{pr(A = 0|R = 1) — fi(A = O|R = 1)}

- w%ww+w%wa
no nq

with probability at least 1 — 2J. O

Remark A.4. Proposition indicates that the generalization bound depends on the estimation

error H,@ — Bl|1, which can be directly controlled based on the conditions listed in Assumption
implying that different estimation procedures for (3 will yield different upper bounds. In Theorem

we established an upper bound for the estimation error of 3, which directly leads to a refined

generalization bound for the learned classifier hg. Specifically, for any 6 > 0, with probability at
least 1 — 1396, the following inequality holds:

Lo(ha) — min Lo(h) < 2Ro, . (G) + dBe1oxn/10g(1/0) + ¢ \/log(1/5)+\/10g(1/5) |

heF 7n1.0 no
where cy is the constant appearing in Theorem and o, characterizes the convergence rate of (3.

A.3 SYNTHETIC DATA RESULTS

We consider a structured data-generating process in which the covariates X € R* are drawn from
a distribution conditioned on a latent pair (Y, A), where Y € {0, 1} denotes the class label and
A € {0,1} denotes the background. The generation begins by sampling (Y, A) according to a
predefined distribution.

In the source domain, we consider (Y, A) € {(0,0), (0,1), (1,0)}, each occurring with probability
1/3. The covariates X € R are generated as X ~ N (uya, 1), where prya denotes the mean vector
for each combination and 1 is the 4 x 4 identity matrix. The stratum (1, 1) is excluded from the
source. In the target domain, all four combinations (Y, A) € {0, 1}? appear with equal probability
1/4, and X is drawn from the same distribution N (pya, I4) with distinct means:

Moo = (1707070)T7 Ho1 = (07071a0)Ta Hio = (071a070)Ta 11 = (anaovl)T'

For model estimation, we utilize the known data-generating distribution to compute the conditional
probability models required by both our proposed estimators and the benchmark method. Specifically,
we calculate the five key conditional probabilities needed for implementation: £y(x), £(x), 7o(x),
71(x), and k(x), which together determine the models 79(x), 71 (x) and n(x) for our method, and
&o(x), &1(x) and £(x) for the benchmark. Additionally, the parameters {3, : y = 0,1;a = 0,1}
and {ay, 1 y = 0,1;a = 0, 1} as known. The classification threshold is set to 0.5, consistent with the
standard Bayesian decision rule—that is, a sample is classified as positive if the predicted probability
exceeds 0.5.

To assess the performance of the proposed estimators, we conduct 100 simulations for each configu-

~

ration and report the results using box plots that compare {7 (x), 3 (x)} and {n(x),&(x)} across

~

varying sample sizes. The left panel of Figureillustrates the performance of {7 (x), &1(x)} for
no = 1000 and 6000, with n; ranging from 1000 to 8000. The right panel of Figure [2] shows the
corresponding performance of {7(x), £(x)} under the same settings. Performance is evaluated using
two standard metrics: accuracy and F; score. In both cases, the proposed estimators consistently
outperform the benchmark estimators. Moreover, as ng increases, the variance of the estimators
decreases, suggesting improved stability and reliability. In particular, for the F; score of 7)(x), per-
formance steadily improves as ng increases, further demonstrating the robustness and effectiveness
of the proposed method. Comparable patterns are also observed when n; is fixed at 1000 and 6000
while ng varies from 1000 to 8000, as shown in Figure
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Figure 2: The left panel displays the performance of the F; score and accuracy for 71 (x) and &; (x)
across different scenarios, while the right panel presents the corresponding results for 7(x) and £(x).
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Figure 3: The left panel displays the performance of the F; score and accuracy for 7, (x) and &; (x)
across different scenarios, while the right panel presents the corresponding results for 7(x) and £(x).

25



Under review as a conference paper at ICLR 2026

o

©

o
!

Accuracy

0.80

F1-score

o

©

o
!

0.85 A

°

°

o
]
!

o
>
)

No(x) vs &op(x)

-
%%%%%%%
e

=

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

b

ks

R
| & ﬁ%

;

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

b

I Proposed no(x)

©

©

o
1

Accuracy

0.80

Fl-score

o

©

o
1

o

00

o
1

%%ﬁ%%%
i 5

¢

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
C

o
w
1

o
iN
1

=
% ®
e
{-;5’%

0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9
C

[ Benchmark &y(x) ]

Figure 4: Performance comparison of our proposed estimator 7)9(x), and the benchmark method
&o(x) under the setting @ = 0.5 with either ¢ = 0.5 and varying b or b = 0.5 and varying c.
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A.4 ADDITIONAL BENCHMARK DATA RESULTS

In addition to the estimators analyzed in the main text, we further evaluate the performance of the

proposed estimator 7 (x) and its corresponding benchmark & (x). Figurepresents the results with
a = 0.5 in the source domain and systematically vary the remaining subclass inclusion rates by setting
either b = 0.5 with ¢ € {0.1,0.2,...,0.9}, or ¢ = 0.5 with b € {0.1,0.2,...,0.9}. Performance is
assessed using the F; score and accuracy across 50 independent repetitions. The proAposed estimator

7o (x) consistently demonstrates superior performance compared to the benchmark &y(x), achieving
higher accuracy and F; scores across all configurations. Similar results are observed when a = 0.7 in
Figures [5|and [6] further validating the robustness of our method.

A.5 DISCUSSIONS AND CONCLUSIONS

In this paper, we introduce a novel unsupervised domain adaptation setting where an entire label-
background subpopulation is absent from the source domain, a scenario motivated by real-world data
collection constraints. Despite this structured missingness, we show that accurate prediction in the
target domain is still achievable. We develop a theoretical framework that enables such prediction
by estimating subpopulation proportions in the target through distribution matching. We provide
rigorous guarantees, including statistical consistency as well as upper bounds on the target-domain
prediction error. Empirically, our method outperforms standard baselines that overlook structured
missingness, especially in prediction performance for the unobserved subpopulation. Overall, our
framework provides a rigorous characterization of model adaptation under subpopulation structured
missingness, and enables robust domain adaptation in such a challenging scenario.

Our theoretical framework is built upon structured conditional invariance and mixture proportion
estimation. These tools naturally generalize to multi-class labels for n, species and multi-level
(or even continuous) environment variables for n, species. In fact, the identification strategy and
distribution-matching estimation carry over to larger joint label-environment spaces, though at the
cost of heavier notation and more complex optimization. Technically, at this general multi-label
and multi-background situation, the model identification considerations (see discussion in Section
becomes more complex. At this situation, one can identify both pr(X, A = a|R = 0) as well
as pr(A = a|R = 0), which in total 2n, — 1 quantities, while one has in total n,n, unknown
quantities, including pr(Y = y, A = a|R = 0) and the unobservable subpopulation distribution
pr(X|Y =1, A = 1). To make sure this model is identifiable, one needs to make (n, — 2)n, + 1
anchor set assumptions. For example, when n, = 3 and n, = 2, 3 anchor set assumptions are needed.
Interestingly, as long as the label is binary n,, = 2, one anchor set assumption is sufficient if only one
subpopulation is missing in the source. In the setting we consider in the paper, n, = n, = 2, so we
only need to make one anchor set assumption.
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B THE USE OF LARGE LANGUAGE MODELS (LLMS)

We declare that large language models (LLMs) were used in a limited capacity solely to aid in
polishing the writing and improving the linguistic clarity of this manuscript. The core research
ideation, methodological development, experimental execution, data analysis, and technical content
generation were conducted entirely by the human authors. All LLM-assisted refinements were
carefully reviewed, validated, and approved by the authors, who take full responsibility for the
final content. No LL.Ms were involved in the conceptualization of research ideas or the generation
of technical claims, and LLMs were not used in any capacity that would constitute substantive
intellectual contribution.
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