
Object-Centric Dexterous Manipulation
from Human Motion Data

Yuanpei Chen1,2, Chen Wang1, Yaodong Yang2, C. Karen Liu1

1Stanford University, 2Peking University

Human Data

Simulation

Real-World

Figure 1: Our system uses human hand motion capture data and deep reinforcement learning to train
dexterous robot hands for effective object-centric manipulation (i.e., learning to manipulate an object
to follow a goal trajectory) in both simulation and real world.

Abstract: Manipulating objects to achieve desired goal states is a basic but impor-
tant skill for dexterous manipulation. Human hand motions demonstrate proficient
manipulation capability, providing valuable data for training robots with multi-finger
hands. Despite this potential, substantial challenges arise due to the embodiment gap
between human and robot hands. In this work, we introduce a hierarchical policy
learning framework that uses human hand motion data for training object-centric dex-
terous robot manipulation. At the core of our method is a high-level trajectory gener-
ative model, learned with a large-scale human hand motion capture dataset, to synthe-
size human-like wrist motions conditioned on the desired object goal states. Guided
by the generated wrist motions, deep reinforcement learning is further used to train a
low-level finger controller that is grounded in the robot’s embodiment to physically
interact with the object to achieve the goal. Through extensive evaluation across 10
household objects, our approach not only demonstrates superior performance but also
showcases generalization capability to novel object geometries and goal states. Fur-
thermore, we transfer the learned policies from simulation to a real-world bimanual
dexterous robot system, further demonstrating its applicability in real-world scenar-
ios. Project website: https://cypypccpy.github.io/obj-dex.github.io/.

Keywords: Dexterous Manipulation, RL, Learning from Human

Correspondence to Chen Wang <chenwj@stanford.edu>

8th Conference on Robot Learning (CoRL 2024), Munich, Germany.

https://cypypccpy.github.io/obj-dex.github.io/


1 Introduction
Developing bimanual multi-fingered robotic systems capable of handling complex manipulation tasks
with human-level dexterity has been a longstanding goal in robotics research. When a robot engages
general manipulation tasks beyond a simple pick-and-place, the definition of a task can be difficult
to establish. Previous works defined manipulation tasks in a variety of ways, including the state of
the environment [1, 2], symbolic representations [3, 4], or language descriptions [5, 6]. Regardless of
how the goals are specified, a common element across these definitions is an object-centric perspective
focusing on the state of the objects being manipulated. As such, the goal of our work is to train a
policy for a bimanual dexterous robot to manipulate the objects according to the task goal defined
as a sequence of object pose trajectories.

Prior works primarily utilize deep reinforcement learning (RL) to learn object-centric dexterous
manipulation skills [7–9]. Despite the success of these methods in tasks such as in-hand object
reorientation [10–12], they typically focus solely on learning the movements of the fingers, neglecting
the integrated coordination of both arms and hands. Training RL policy that controls both robot arms
and two multi-finger hands is possible in theory, but presents substantial challenges in practice due
to the high degree of freedom of the robot action space. Imitation learning (IL) can potentially tackle
this challenge by leveraging the guidance from human motion data to assist policy learning. However,
another challenge arises due to the morphological differences between human and robotic hands,
often referred to as the “embodiment gap”. For instance, some robotic hands are designed with only
four fingers, each significantly larger than a human’s, making it difficult to retarget the human hand
trajectories to the robot hand while achieving the intended manipulation tasks.

One critical observation is that human finger motions are not consistently useful across various
manipulation tasks due to the embodiment gap. In contrast, human wrist motions offer valuable
information less sensitive to the embodiment gap, such as where to place the palm and how to
interact with the objects in 3D space. Such motion cues significantly reduce the complexity of the
high-dimensional action space in RL training, allowing it to focus on exploring finger motions to
achieve the object-centric task goal. Based on this observation, we propose a hierarchical policy
learning framework consisting of a high-level planner for the wrist and a low-level controller for the
hand. The high-level planner is a generative-based policy, trained by imitation learning with human
wrist movements, to generate robot arm actions conditioned on a desired trajectory of the object’s
movements. Based on the generated arm motions, the low-level controller outputs fine-grained finger
actions learned through RL exploration rather than imitation of human data. The reward function for
the RL training is the likelihood between the object’s movements during interaction and the reference
trajectory. By harnessing the strengths of both RL and IL, we enable the robot to adapt to its own hand
embodiment while keeping the training tractable by refining the action space using human data.

To ensure that the learned policy can adapt to a variety of reference object trajectories, not just a single
scenario, we utilize ARCTIC [13], a comprehensive dataset with 51 hours of diverse hand-object
manipulation motion capture sequences. Our experiments demonstrate that the learned policy exhibits
generalization to novel object geometries and unseen motion trajectories. In addition, we successfully
transfer our policy from simulation environments to a real-world bimanual dexterous robot, further
validating its practical applicability in real-world manipulation tasks.

2 Related Works
2.1 Dexterous Manipulation
Dexterous manipulation is a long-standing research topic in robotics [14–17]. Traditional methods rely
on analytical dynamic models for trajectory optimization [14, 15, 17, 18], which fall short in complex
tasks due to the simplification of contact dynamics. [19] and [20] propose model-based optimization
methods to solve the contact-rich dexterous manipulation task, but a correct dynamics model of the
environment is required. Recently, deep reinforcement learning (RL) has showcased promising results
in training dexterous manipulation skills such as in-hand object reorientation [10–12, 21–28], bimanual
manipulation [7, 8, 29], sequential manipulation [30–32], and human-like activities [33]. [24] learn
a grasping policy to make the object follows a manual designed trajectory, while we focus on more

2



MLP

Dual Wrist 

Trajectories

Motion Capture Data

Object Trajectories

High-level Wrist Planner Low-level Finger Controller

Transformer

Successful Trajectories

(a). Training

(b). Inference

Target Object Trajectory

Transformer MLP

Dual Wrist Trajectories

(𝒈𝑡 , … , 𝒈𝑡+𝑇)

(𝒂𝑡
𝑊, … , 𝒂𝑡+𝑇

𝑊 )

Robot States 𝑠𝑡

(𝒂𝑡
𝑊 + ∆𝒂𝑡

𝑊, 𝒂𝑡
𝐹)(𝒈𝑡 , … , 𝒈𝑡+𝑇)

(𝒂𝑡
𝑊, … , 𝒂𝑡+𝑇

𝑊 )

Robot States 𝑠𝑡

(𝒂𝑡
𝑊 + ∆𝒂𝑡

𝑊, 𝒂𝑡
𝐹)

Data 

Aug.

Object Size

Init Pose

Goal Traj

Figure 2: Overview of our framework. (A) Training: Firstly, we use human motion capture data to
train a generation model to synthesize dual hand trajectory conditions on object trajectory. Then we
use the RL to train a low-level robot controller conditioned on the dual hand trajectory generated by
the trained high-level planner. During this process we augment the data in simulation to improve the
high-level planner and low-level controller simultaneously (B) Inference: Given a single object goal
trajectory, our framework generates dual hand reference trajectory and guides the low-level controller
to accomplish the task.

challenging tasks. Despite the progress, successfully training a dexterous RL policy often requires
extensive reward engineering and system design, which limits its practicality in some scenarios.
Besides RL, imitation learning (IL) is also widely used for training dexterous policies [34, 35]. By
performing supervised-learning with human teleoperation data [36–40], prior works show impressive
results in dexterous grasping [41, 42] and general manipulation tasks [43–50]. However, teleoperation
data are often expensive to collect due to the requirement of a real-world robot system.

2.2 Learning from Human Motion

Recently, learning from human motion data has started to receive more attention because it allows
scaling up data collection without robot hardware. Prior works leverage human videos [51–56],
motion capture data [57–62] to extract valuable motion hints for manipulation such as trajectory-level
plans [51, 59], object affordance [53] and motion priors [52, 55]. For dexterous manipulation,
VideoDex [55], DexMV [43], DexTransfer [58] and DexCap [63] showcase the potential of using
analytical methods (e.g., inverse kinematics) to retarget human hand motion to robot hardware, such
as matching joint angles [43, 55], fingertip positions [63]. [64] showing independent control of the
fingers and arm for capturing detailed hand manipulation of objects. DexPilot [38] formulate the
retargeting objective as a non-linear optimization problem and retarget human motion to robot by
minimizing a cost function. However, due to the embodiment gap between human and robot hands,
position-based retargeting methods do not guarantee the replication of task success. In contrast,
our approach uses human data as guidance for RL training, which learns the motion retargeting
conditioned on the robot’s embodiment. Notably, [34, 65–69] share the same idea of utilizing human
data as guidance or reward for reinforcement learning. While these works focus on learning human
whole-body control in simulation, we study dexterous manipulation with multi-fingered robotic hands
and transfer the learned policy from simulation to the real world.

3 Task Formulation

The goal of an object-centric manipulation task is to let the robot physically interact with the object
to achieve the desired motion trajectory. We define the motion trajectory as the sequence of the object’s

3



SE(3) transformation G = (g1,g2, ... ,gT ), where each time step gi = (gR
i ,g

T
i ,g

J
i ) consists a 3D

rotation gR
i , a 3D translation gT

i , and the joint angle gJi . gJi can be omitted if the object is a single
rigid body. We then formulate an object-centric manipulation task as a Markov Decision Process
(MDP)M=(SSS,AAA,π,T ,R,γ,ρ,G), whereSSS is the state space,AAA is the action space, π is the agent’s
policy, T (st+1|st,at) is the transition distribution, R is the reward function, γ is the discount factor,
and ρ is the initial state distribution. The policy π conditions on the reference object state trajectory
G and the current state st, and generates robot action distributions at to maximize the likelihood
between the future object states (st+1,st+2,...,st+T ) and the reference trajectory G. This formulation
is versatile to adapt to downstream tasks, such as moving objects to desired locations and in-hand
object re-orientation with bi-manual hands.

4 Method
In this section, we introduce our framework for object-centric manipulation. The overview of
the framework is shown in Figure 2. Our framework consists of three parts: high-level planner
(Section 4.1), low-level controller (Section 4.2) and the data augmentation loop (Section 4.3). The
details of our sim-to-real policy transfer are introduced in Section 4.4.

4.1 High-Level Planner
One of the key challenges in training a dexterous robot policy, especially with bi-manual dexterous
hands, is managing the high-dimensional action space. Despite the embodiment gap between human and
robot hands, human hand motion, particularly wrist movements, provides highly informative hints for
how to interact with objects and environments. Such motion hints not only narrow the action space for
the robot but also provide guidance toward the task goal. Based on this observation, we first train a gener-
ative model to synthesize wrist motion by imitating human wrist movements in the motion capture data.

We train a Transformer-based generative model πH that takes object category ID c, and the desired
object motion trajectory G = (gt,gt+1,...,gt+T ) as inputs and outputs a sequence of 6-DoF wrist
actions (aW

t ,aW
t+1,...,a

W
t+T ), where each action aW

i =(pl
i,p

r
i ) consists the 6-DoF pose of the left hand

pl
i and right hand pr

i in SE(3). In our experiments, we use T =10. We leverage the entire ARCTIC
dataset [13] to train πH with a behavior cloning algorithm. The total training samples consist of 339
sequences of human hand mocap trajectories, totaling 2.1 million steps.

4.2 Low-Level Controller
Based on the generated wrist trajectory from the high-level planner πH , the low-level controller
πL can start from a reasonable wrist pose and focus on learning the fine-grained finger motions to
physically interact with the object to achieve the task goal G. We use Proximal Policy Optimization
(PPO) [70] to train πL. The policy πL takes the current observation si , the desired object motion
trajectory G = (gt,gt+1, ...,gt+T ), and a sequence of 6-DoF wrist actions (aW

t ,aW
t+1, ...,a

W
t+T )

generated by high-level planner as inputs, and outputs the finger joint action aF
t . Here the

observation st contains the object pose and robot proprioception. The reward function is defined
as rt = exp−(λ1∗∥gR

t −ĝR
t ∥2+λ2∗∥gT

t −ĝT
t ∥2+λ3∗∥gJ

t −ĝJ
t ∥2), aiming to minimize the distance between

object’s movements and the desired goal trajectory. ĝR
t , ĝT

t and ĝJt is the current 3D translation, 3D
rotation and joint angle of the object respectively. λ1, λ2, and λ3 are the hyperparameters to balance
the weight of each component of the reward. In some scenarios, when the robot’s hand is larger
than the human’s, the generated wrist actions from the high-level planner πH need to be adjusted
accordingly. To achieve this, πL learns to output a residual wrist action ∆aW

t within a fixed range
(±4 centimeters for transition and±0.5 radian for rotation). With the residual wrist actions, the policy
can now adjust the wrist position to better synthesize the motion of the robot hand. The final robot
action is a combination of (aW

t +∆aW
t ,aF

t ). Please refer to Appendix B for more detail about the
observation space and the reward function.

4.3 Data Augmentation for Generalization
Training policy only with the ARCTIC dataset [13] limits the diversity of task objects and generated
motions. For instance, given a box twice the size of the one used in the dataset, it is challenging for the

4



(b.1) Simulation Object Sets

(b.2) Real-World Object Sets

(a) Simulation (c) Real-World

Figure 3: Overview of the environment setups. (a) Workspace of the simulation. We employ two Shadow
Hands, each individually mounted on separate UR10e robots, arranged in an abreast configuration.
(b.1) Object sets in the simulation. (b.2) Object sets in the real-world. (c) Workspace of the real-world,
mirroring the simulation, the robot system uses the same Shadow Hands and UR10e robots as the
simulation.

learned policies to manipulate the box effectively because of the unseen object geometry. To improve
the generalization capability, it is critical to augment the data and train the policies to generalize in
these scenarios. Thereby, we propose Data Augmentation Loop (DAL) to handle different object
geometries and goal trajectories during training πL.

Specifically, we introduce three types of augmentation during the RL training of the πL: randomizing
the object’s size in all three dimensions (width, length, height), randomizing the object’s initial pose,
and modifying the goal trajectories of the object with waypoint interpolation. The low-level controller
then learns to adapt to the augmented scenarios during the RL training. Finally, we collect the successful
motion trajectories executed by the low-level controller and add them to the training dataset to fine-tune
the high-level planner. By leveraging the adaptability of the RL training process, we can synthesize
novel motion trajectories to improve the policy’s generalization beyond the scope of the original
training data. Detailed implementations of the Data Augmentation Loop can be found in Appendix A.

4.4 Sim-to-Real Transfer
When deploying the policy to the real world, some observation cannot be accurately estimated, such as
joint velocity and object velocity. We use the teacher-student policy distillation framework [11, 21, 71]
to remove the dependence on these observation inputs from the policy. In real-world deployments,
our system uses four top-down cameras to perform articulated object pose estimation. We use
FoundationPose [72] to estimate the 6-DoF pose of different parts of the articulated object and calculate
the joint angle between them. The entire object pose tracking system runs at the speed of 15Hz. The
learned policies generate actions to control the robot, and the low-level controller is processed by a
low-pass filter with an exponential moving average (EMA) smoothing factor [11] to reduce the jittering
motions of the robot fingers. For more details on the sim-to-real setups, please refer to Appendix C.

5 Experiments
The experiments are designed to answer the following research questions: (1) Can the high-level
planner generalize to unseen trajectories and unseen objects? (Sec. 5.1) (2) Does our hierarchical
approach help bridge the embodiment gap between human and robot hands? (Sec. 5.2) (3) Can our
trained policy generalize to unseen object geometries and goal trajectories? (Sec. 5.3) (4) Can we
transfer the policy from simulation to a real-world bimanual dexterous robot system? (Sec. 5.4). In
this section, we first introduce our training data and baseline setups, followed by the results for each
research question. The experimental setups are shown in Figure.3. Our simulation experiments are
all evaluated in 10 different seeds, and the real-world experiments are all evaluated in 20 different trials.
The small numbers in each table represent the standard deviations across different seeds and trials.

Data. The ARCTIC dataset consists of 10 objects, each with 20 sequences of motion capture data.
We choose 9 objects, each with 16 sequences of data, as our training set. We left the remaining objects
and motion sequences as the unseen testing set.

5



MLP RNN Ours

Trained TE 5.4±0.2 5.0±0.1 4.2±0.2

OE 14.6±0.7 12.4±0.8 9.6±0.6

Unseen TE 5.6±0.5 6.2±0.3 5.0±0.8

Traj OE 9.4±1.0 9.2±0.5 7.2±0.7

Unseen TE 18.2±1.5 17.7±1.2 12.4±1.1

Object OE 109.4±5.8 82.2±4.2 75.5±4.7

Table 1: Results for the high-level planner

Fingertip
Mapping

Vanilla
RL Ours

Box 13.1±1.8 20.4±1.8 69.8±6.6

Micro. 60.6±2.7 56.1±9.8 100±0.0

Laptop 9.2±0.5 8.6±1.4 76.7±4.1

Coffee. 8.2±0.6 9.2±3.1 74.8±3.8

Mixer 8.3±2.1 10.8±3.2 82.8±2.1

Notebook 4.5±0.1 4.5±0.3 64.3±8.4

Table 2: Results for the real-world experiments

Fingertip
Mapping

Finger Joint
Mapping

Vanilla
RL

Ours
(w. FR)

Ours
(w.o. DAL) Ours

Box 14.6±0.3 8.9±0.2 23.5±3.5 56.2±7.4 100±0.0 100±0.0

Coffee Maker 9.3±0.6 9.0±0.5 10.7±2.7 78.6±1.6 71.5±2.6 86.1±5.5

Espresso Machine 22.2±0.4 7.0±0.8 14.3±1.5 70.7±3.5 75.4±4.3 81.1±8.6

Ketchup 14.8±0.7 9.5±0.2 4.9±2.7 15.2±1.7 21.8±7.2 41.2±13.3

Microwave 38.7±0.2 27.5±0.6 43.5±2.4 61.2±5.3 100±0.0 100±0.0

Mixer 21.7±0.9 10.7±0.8 42.1±1.4 42.2±4.0 44.2±6.4 57.6±4.9

Notebook 10.1±0.5 5.9±0.4 10.6±2.9 31.1±4.1 38.1±4.8 38.7±3.3

Scissors 4.2±0.5 4.1±0.6 4.4±0.6 20.7±2.0 35.9±4.0 41.4±14.9

Laptop 9.9±0.4 8.8±1.1 33.0±2.1 42.5±5.4 100±0.0 100±0.0

Table 3: Results for the experiments of using one policy per object.

Baselines. We compare our approach with the following methods and ablations: (1) Finger Joint Map-
ping: Match the finger joint angles between human and robot hands as demonstration and perform end-
to-end imitation learning [43]. (2) Fingertip Mapping: Match the fingertip positions between human and
robot hands using IK as demonstration and perform end-to-end imitation learning [63]. (3) Vanilla RL:
Train a PPO policy [70] to learn the motions of the arm and hand together. (4) Ours: Full implementation
of our hierarchical policy learning approach. (5) Ours w. FR: Our method with an additional fingertip-
matching reward during training. (6). Ours w/o. DAL: Our method without data augmentation loop.

5.1 Performance of the high-level planner

Tasks. To validate the accuracy of the learned high-level planner, we introduce three experimental
tasks: (1) Trained: Testing the policy with trained objects and goal trajectories. (2) Unseen Traj:
Testing the policy conditioned on unseen goal trajectories with trained objects. (3) Unseen Obj: Testing
the policy with unseen objects and trained goal trajectories.

Metric. Evaluation metric is defined as the distance between the ground truth wrist pose trajectory of
the hand and the wrist pose trajectory of the left and right hand output by our high-level planner. For each
step, we compute translation error (TE) using Euclidean distance in centimeters and orientation error
(OE) using angle difference. We report the cumulative error of the entire motion sequence in Table 1

Results. Table 1 shows that Ours performs the best in generating wrist motions, with the lowest
cumulative translation and orientation error. More importantly, the performance does not drop when
testing with unseen goal trajectories (Unseen Traj), which demonstrates the generalization capability
of our high-level planner to novel object-centric task goals.

5.2 Effectiveness of learning from human with hierarchical pipeline

Task. To validate the effectiveness of our framework, we first train one policy conditioned on a single
trajectory in the training set for each object and test its rollout performance. Each policy is trained
on a single object.

Metric. We use Completion Rate as the evaluation metric, which indicates the percentage of the goal
object trajectory completed by the policy. Completion is achieved if and only if the object’s pose error
is smaller than a threshold (5 centimeters in translation, 2.5 centimeters in object’s longest dimension

6



Fingertip
Mapping

Finger Joint
Mapping

Vanilla
RL

Ours
(w. FR)

Ours
(w.o. DAL) Ours

Single Obj - Trained Traj 10.4±2.8 7.1±4.8 17.1±9.6 30.8±12.1 59.6±14.4 83.8±9.1

Single Obj - Unseen Traj 4.8±0.3 5.5±0.8 18.8±5.7 19.6±10.1 42.5±7.5 57.1±10.2

Multi Obj - Trained Obj 6.9±1.7 5.3±1.2 17.7±10.1 15.5±6.2 35.2±2.8 47.6±4.2

Multi Obj - Unseen Obj 3.2±0.6 2.9±0.2 8.1±4.2 8.2±5.3 18.6±3.7 36.4±5.0

Table 4: Results for the generalization experiments.

multiplied by rotation angle, and 0.5 radians in joint angle). Each goal trajectory has a total of 500
action steps.

Figure 4: Experiments on the different embodi-
ment. We study four types of the dexterous hand in
three tasks from the Section 5.2.

Results. Table 3 demonstrates that our hierarchi-
cal learning framework outperforms traditional
hand pose matching methods (Finger Joint Map-
ping, Fingertip Mapping) by 50% in completion
rate, indicating that our low-level RL significantly
helps in bridging the embodiment gap when learn-
ing from human data. Moreover, Ours surpasses
Vanilla RL by 47.3% on average, underscoring
the challenge of training arm and hand actions
together with RL, and emphasizing the advantage of our high-level planner for guiding the RL in
high-dimensional action space. Additionally, the inclusion of human finger motions in the RL reward
(Ours (w. FR)) does not yield benefits and even leads to lower performance, validating our hypothesis
that the embodiment gap makes human finger motion unsuitable for training robot actions. Lastly, our
data augmentation loop further brings an additional 7% improvement (Ours vs. Ours (w.o. DAL)). We
further apply our method to four different types of multi-fingered dexterous hands, varying in size and
degree of freedom. The results are shown in Figure 4. Our method achieved more than 50% completion
rate for all hands, demonstrating that our framework can effectively transfer human data to different
robot hand embodiments.

5.3 Generalization to unseen scenarios

Tasks. We design four types of tasks to test the policy’s generalization capability: (1). Single Obj -
Trained Traj: One policy for each object, and testing with trained goal trajectories. (2). Single Obj -
Unseen Traj: Same as prior but testing the policy conditioned on unseen goal trajectories. (3). Multi
Obj - Trained Obj: One policy trained with all objects, and testing with trained objects. (4). Multi Obj -
Unseen Obj: Same as prior but testing the policy with unseen objects. We use the completion rate as the
evaluation metric same as in Section 5.2.

Results. In Table 4, our algorithm surpassing the results of Vanilla RL on Single Obj - Unseen Traj and
Multi Obj - Unseen Obj by more than 28%. This indicates that our hierarchical structure substantially
improves generalization capabilities across unseen trajectories and unseen object geometries. Notably,
unlike the Section 5.2, we observe an average 18% improvement in Table 3 with our DAL (Ours vs.
Ours (w.o. DAL)), showcasing that the DAL greatly helps generalization. Traditional mapping methods
(Finger Joint Mapping, Fingertip Mapping) and Ours (w. FR) cannot generalize to unseen trajectories
and unseen object geometries due to their dependency on the finger information.

5.4 Transfer from simulation to real-world

Tasks. We train one policy per object conditioned on a single goal trajectory in simulation and test its
rollout performance on a real-world robot system. We use the completion rate as the evaluation metric.

Results. In Table 2 real-world experiments, our approach has more than a 50% completion rate
improvements compared to prior methods, which barely achieve any success (<20% completion rate)
on several objects. This result showcases the ability of our approach on tackling real-world bimaual
dexterous manipulation tasks. The visualization of our real-world experiments is shown in Figure 5.

7



a

b

c

d

Figure 5: Real-world experiment tasks. All clips include snapshot of the simulation (top row) and the
real-world (bottom row). (a) Coffee Maker : Pick and lift the coffee machine. (b) Laptop: Lift up a
laptop and place it back to the table. (c) Mixer: Rotate the Mixer and then open it. (d) Notebook: Open
the notebook on the table. Please refer to our website for more visualization results.

6 Limitations
There are several limitations of our work, including our model encounters difficulties in manipulating
small-size objects, the order of joints must be predefined and in our high-level planner, generalizations
can only happen in the same category. More discussion about the limitations can be found in Appendix I.

7 Conclusion
In this work, we present a hierarchical policy learning framework that effectively utilizes human
hand motion data to train object-centric dexterous robot manipulation. At the core of our method is a
high-level trajectory generative model trained with a large-scale human hand motion capture dataset,
which synthesizes human-like wrist motions conditioned on the object goal trajectory. Guided by
these wrist motions, we further trained an RL-based low-level finger controller to achieve the task goal.
Our approach demonstrated superior performance across various household objects and showcased
generalization capabilities to novel object geometries and goal trajectories. Moreover, the successful
transfer of the learned policies from simulation to a real-world bimanual dexterous robot system
underscores the practical applicability of our method in real-world scenarios.

8



Acknowledgments

This research was supported by National Science Foundation NSF-FRR-2153854, NSF-NRI-2024247,
NSF-CCRI-2120095 and Stanford Institute for Human-Centered Artificial Intelligence, SUHAI.

References
[1] Y. Tassa, Y. Doron, A. Muldal, T. Erez, Y. Li, D. d. L. Casas, D. Budden, A. Abdolmaleki, J. Merel,

A. Lefrancq, et al. Deepmind control suite. arXiv preprint arXiv:1801.00690, 2018.

[2] S. James, Z. Ma, D. R. Arrojo, and A. J. Davison. Rlbench: The robot learning benchmark &
learning environment. IEEE Robotics and Automation Letters, 5(2):3019–3026, 2020.

[3] C. R. Garrett, T. Lozano-Perez, and L. P. Kaelbling. Ffrob: Leveraging symbolic planning
for efficient task and motion planning. The International Journal of Robotics Research, 37(1):
104–136, 2018.

[4] C. R. Garrett, R. Chitnis, R. Holladay, B. Kim, T. Silver, L. P. Kaelbling, and T. Lozano-Pérez.
Integrated task and motion planning. Annual review of control, robotics, and autonomous systems,
4:265–293, 2021.

[5] W. Huang, P. Abbeel, D. Pathak, and I. Mordatch. Language models as zero-shot planners:
Extracting actionable knowledge for embodied agents. In International Conference on Machine
Learning, pages 9118–9147. PMLR, 2022.

[6] A. Brohan, Y. Chebotar, C. Finn, K. Hausman, A. Herzog, D. Ho, J. Ibarz, A. Irpan, E. Jang,
R. Julian, et al. Do as i can, not as i say: Grounding language in robotic affordances. In Conference
on robot learning, pages 287–318. PMLR, 2023.

[7] B. Huang, Y. Chen, T. Wang, Y. Qin, Y. Yang, N. Atanasov, and X. Wang. Dynamic handover:
Throw and catch with bimanual hands. arXiv preprint arXiv:2309.05655, 2023.

[8] Y. Chen, T. Wu, S. Wang, X. Feng, J. Jiang, Z. Lu, S. McAleer, H. Dong, S.-C. Zhu, and Y. Yang.
Towards human-level bimanual dexterous manipulation with reinforcement learning. Advances
in Neural Information Processing Systems, 35:5150–5163, 2022.

[9] Y. Zhang, A. Clegg, S. Ha, G. Turk, and Y. Ye. Learning to transfer in-hand manipulations using a
greedy shape curriculum. In Computer Graphics Forum, volume 42, pages 25–36. Wiley Online
Library, 2023.

[10] Z.-H. Yin, B. Huang, Y. Qin, Q. Chen, and X. Wang. Rotating without seeing: Towards in-hand
dexterity through touch. arXiv preprint arXiv:2303.10880, 2023.

[11] T. Chen, M. Tippur, S. Wu, V. Kumar, E. Adelson, and P. Agrawal. Visual dexterity: In-hand
dexterous manipulation from depth. arXiv preprint arXiv:2211.11744, 2022.

[12] OpenAI, I. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin, B. McGrew, A. Petron, A. Paino,
M. Plappert, G. Powell, R. Ribas, J. Schneider, N. Tezak, J. Tworek, P. Welinder, L. Weng, Q. Yuan,
W. Zaremba, and L. Zhang. Solving rubik’s cube with a robot hand. CoRR, abs/1910.07113,
2019.

[13] Z. Fan, O. Taheri, D. Tzionas, M. Kocabas, M. Kaufmann, M. J. Black, and O. Hilliges. Arctic:
A dataset for dexterous bimanual hand-object manipulation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 12943–12954, 2023.

[14] Y. Bai and C. K. Liu. Dexterous manipulation using both palm and fingers. In 2014 IEEE
International Conference on Robotics and Automation (ICRA), pages 1560–1565. IEEE, 2014.

9



[15] V. Kumar, Y. Tassa, T. Erez, and E. Todorov. Real-time behaviour synthesis for dynamic hand-
manipulation. In 2014 IEEE International Conference on Robotics and Automation (ICRA),
pages 6808–6815. IEEE, 2014.

[16] M. T. Mason and J. K. Salisbury Jr. Robot hands and the mechanics of manipulation. 1985.

[17] I. Mordatch, Z. Popović, and E. Todorov. Contact-invariant optimization for hand manipulation.
In Proceedings of the ACM SIGGRAPH/Eurographics symposium on computer animation, pages
137–144, 2012.

[18] S. Chen, J. Bohg, and C. K. Liu. Springgrasp: An optimization pipeline for robust and compliant
dexterous pre-grasp synthesis. arXiv preprint arXiv:2404.13532, 2024.

[19] T. Pang, H. T. Suh, L. Yang, and R. Tedrake. Global planning for contact-rich manipulation via
local smoothing of quasi-dynamic contact models. IEEE Transactions on robotics, 2023.

[20] X. Cheng, S. Patil, Z. Temel, O. Kroemer, and M. T. Mason. Enhancing dexterity in robotic
manipulation via hierarchical contact exploration. IEEE Robotics and Automation Letters, 9(1):
390–397, 2023.

[21] T. Chen, J. Xu, and P. Agrawal. A system for general in-hand object re-orientation. Conference
on Robot Learning, 2021.

[22] H. Qi, B. Yi, S. Suresh, M. Lambeta, Y. Ma, R. Calandra, and J. Malik. General in-hand object
rotation with vision and touch. In Conference on Robot Learning, pages 2549–2564. PMLR,
2023.

[23] H. Qi, A. Kumar, R. Calandra, Y. Ma, and J. Malik. In-hand object rotation via rapid motor
adaptation. In Conference on Robot Learning, pages 1722–1732. PMLR, 2023.

[24] S. Dasari, A. Gupta, and V. Kumar. Learning dexterous manipulation from exemplar object
trajectories and pre-grasps. In 2023 IEEE International Conference on Robotics and Automation
(ICRA), pages 3889–3896. IEEE, 2023.

[25] M. Yang, C. Lu, A. Church, Y. Lin, C. Ford, H. Li, E. Psomopoulou, D. A. Barton, and N. F.
Lepora. Anyrotate: Gravity-invariant in-hand object rotation with sim-to-real touch. arXiv
preprint arXiv:2405.07391, 2024.

[26] J. Pitz, L. Röstel, L. Sievers, and B. Bäuml. Dextrous tactile in-hand manipulation using a modular
reinforcement learning architecture. In 2023 IEEE International Conference on Robotics and
Automation (ICRA), pages 1852–1858. IEEE, 2023.

[27] A. Handa, A. Allshire, V. Makoviychuk, A. Petrenko, R. Singh, J. Liu, D. Makoviichuk,
K. Van Wyk, A. Zhurkevich, B. Sundaralingam, et al. Dextreme: Transfer of agile in-hand
manipulation from simulation to reality. arXiv preprint arXiv:2210.13702, 2022.

[28] G. Khandate, S. Shang, E. T. Chang, T. L. Saidi, Y. Liu, S. M. Dennis, J. Adams, and M. Ciocarlie.
Sampling-based exploration for reinforcement learning of dexterous manipulation. arXiv preprint
arXiv:2303.03486, 2023.

[29] T. Lin, Z.-H. Yin, H. Qi, P. Abbeel, and J. Malik. Twisting lids off with two hands. arXiv preprint
arXiv:2403.02338, 2024.

[30] K. Xu, Z. Hu, R. Doshi, A. Rovinsky, V. Kumar, A. Gupta, and S. Levine. Dexterous manipulation
from images: Autonomous real-world rl via substep guidance. In 2023 IEEE International
Conference on Robotics and Automation (ICRA), pages 5938–5945. IEEE, 2023.

[31] Y. Chen, C. Wang, L. Fei-Fei, and C. K. Liu. Sequential dexterity: Chaining dexterous policies
for long-horizon manipulation. arXiv preprint arXiv:2309.00987, 2023.

10



[32] A. Gupta, J. Yu, T. Z. Zhao, V. Kumar, A. Rovinsky, K. Xu, T. Devlin, and S. Levine. Reset-free
reinforcement learning via multi-task learning: Learning dexterous manipulation behaviors
without human intervention. In 2021 IEEE International Conference on Robotics and Automation
(ICRA), pages 6664–6671. IEEE, 2021.

[33] K. Zakka, L. Smith, N. Gileadi, T. Howell, X. B. Peng, S. Singh, Y. Tassa, P. Florence, A. Zeng,
and P. Abbeel. Robopianist: A benchmark for high-dimensional robot control. arXiv preprint
arXiv:2304.04150, 2023.

[34] A. Rajeswaran, V. Kumar, A. Gupta, G. Vezzani, J. Schulman, E. Todorov, and S. Levine. Learning
complex dexterous manipulation with deep reinforcement learning and demonstrations. arXiv
preprint arXiv:1709.10087, 2017.

[35] I. Radosavovic, X. Wang, L. Pinto, and J. Malik. State-only imitation learning for dexterous
manipulation. In 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 7865–7871. IEEE, 2021.

[36] S. P. Arunachalam, I. Güzey, S. Chintala, and L. Pinto. Holo-dex: Teaching dexterity with
immersive mixed reality. In 2023 IEEE International Conference on Robotics and Automation
(ICRA), pages 5962–5969. IEEE, 2023.

[37] I. Guzey, B. Evans, S. Chintala, and L. Pinto. Dexterity from touch: Self-supervised pre-training
of tactile representations with robotic play. arXiv preprint arXiv:2303.12076, 2023.

[38] A. Handa, K. Van Wyk, W. Yang, J. Liang, Y.-W. Chao, Q. Wan, S. Birchfield, N. Ratliff, and
D. Fox. Dexpilot: Vision-based teleoperation of dexterous robotic hand-arm system. In 2020
IEEE International Conference on Robotics and Automation (ICRA), pages 9164–9170. IEEE,
2020.

[39] A. Sivakumar, K. Shaw, and D. Pathak. Robotic telekinesis: Learning a robotic hand imitator by
watching humans on youtube. arXiv preprint arXiv:2202.10448, 2022.

[40] Y. Qin, W. Yang, B. Huang, K. Van Wyk, H. Su, X. Wang, Y.-W. Chao, and D. Fox.
Anyteleop: A general vision-based dexterous robot arm-hand teleoperation system. arXiv
preprint arXiv:2307.04577, 2023.

[41] P. Mandikal and K. Grauman. Learning dexterous grasping with object-centric visual affordances.
In 2021 IEEE international conference on robotics and automation (ICRA), pages 6169–6176.
IEEE, 2021.

[42] Z. Q. Chen, K. Van Wyk, Y.-W. Chao, W. Yang, A. Mousavian, A. Gupta, and D. Fox. Learning
robust real-world dexterous grasping policies via implicit shape augmentation. arXiv preprint
arXiv:2210.13638, 2022.

[43] Y. Qin, Y.-H. Wu, S. Liu, H. Jiang, R. Yang, Y. Fu, and X. Wang. Dexmv: Imitation learning for
dexterous manipulation from human videos. In European Conference on Computer Vision, pages
570–587. Springer, 2022.

[44] Z. J. Cui, Y. Wang, N. M. M. Shafiullah, and L. Pinto. From play to policy: Conditional behavior
generation from uncurated robot data. arXiv e-prints, pages arXiv–2210, 2022.

[45] S. Haldar, J. Pari, A. Rai, and L. Pinto. Teach a robot to fish: Versatile imitation from one minute
of demonstrations. arXiv preprint arXiv:2303.01497, 2023.

[46] Y. Qin, H. Su, and X. Wang. From one hand to multiple hands: Imitation learning for dexterous
manipulation from single-camera teleoperation. IEEE Robotics and Automation Letters, 7(4):
10873–10881, 2022.

[47] S. P. Arunachalam, S. Silwal, B. Evans, and L. Pinto. Dexterous imitation made easy: A learning-
based framework for efficient dexterous manipulation. arXiv preprint arXiv:2203.13251, 2022.

11



[48] I. Guzey, Y. Dai, B. Evans, S. Chintala, and L. Pinto. See to touch: Learning tactile dexterity
through visual incentives. arXiv preprint arXiv:2309.12300, 2023.

[49] T. Lin, Y. Zhang, Q. Li, H. Qi, B. Yi, S. Levine, and J. Malik. Learning visuotactile skills with
two multifingered hands. arXiv preprint arXiv:2404.16823, 2024.

[50] Y. Ze, G. Zhang, K. Zhang, C. Hu, M. Wang, and H. Xu. 3d diffusion policy. arXiv preprint
arXiv:2403.03954, 2024.

[51] S. Bahl, A. Gupta, and D. Pathak. Human-to-robot imitation in the wild. arXiv preprint
arXiv:2207.09450, 2022.

[52] P. Mandikal and K. Grauman. Dexvip: Learning dexterous grasping with human hand pose priors
from video. In Conference on Robot Learning, pages 651–661. PMLR, 2022.

[53] S. Bahl, R. Mendonca, L. Chen, U. Jain, and D. Pathak. Affordances from human videos as a
versatile representation for robotics. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 13778–13790, 2023.

[54] H. Bharadhwaj, A. Gupta, V. Kumar, and S. Tulsiani. Towards generalizable zero-shot manipula-
tion via translating human interaction plans. arXiv preprint arXiv:2312.00775, 2023.

[55] K. Shaw, S. Bahl, and D. Pathak. Videodex: Learning dexterity from internet videos. In
Conference on Robot Learning, pages 654–665. PMLR, 2023.

[56] A. Bahety, P. Mandikal, B. Abbatematteo, and R. Martı́n-Martı́n. Screwmimic: Bimanual
imitation from human videos with screw space projection. arXiv preprint arXiv:2405.03666,
2024.

[57] H. Zhang, S. Christen, Z. Fan, L. Zheng, J. Hwangbo, J. Song, and O. Hilliges. Artigrasp:
Physically plausible synthesis of bi-manual dexterous grasping and articulation. arXiv preprint
arXiv:2309.03891, 2023.

[58] Z. Q. Chen, K. Van Wyk, Y.-W. Chao, W. Yang, A. Mousavian, A. Gupta, and D. Fox. Dextransfer:
Real world multi-fingered dexterous grasping with minimal human demonstrations. arXiv
preprint arXiv:2209.14284, 2022.

[59] C. Wang, L. Fan, J. Sun, R. Zhang, L. Fei-Fei, D. Xu, Y. Zhu, and A. Anandkumar. Mimicplay:
Long-horizon imitation learning by watching human play. arXiv preprint arXiv:2302.12422,
2023.

[60] G. Garcia-Hernando, S. Yuan, S. Baek, and T.-K. Kim. First-person hand action benchmark with
rgb-d videos and 3d hand pose annotations. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 409–419, 2018.

[61] Y. Hasson, G. Varol, D. Tzionas, I. Kalevatykh, M. J. Black, I. Laptev, and C. Schmid. Learn-
ing joint reconstruction of hands and manipulated objects. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 11807–11816, 2019.

[62] O. Taheri, N. Ghorbani, M. J. Black, and D. Tzionas. Grab: A dataset of whole-body human
grasping of objects. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK,
August 23–28, 2020, Proceedings, Part IV 16, pages 581–600. Springer, 2020.

[63] C. Wang, H. Shi, W. Wang, R. Zhang, L. Fei-Fei, and C. K. Liu. Dexcap: Scalable and portable
mocap data collection system for dexterous manipulation. arXiv preprint arXiv:2403.07788,
2024.

[64] Y. Ye and C. K. Liu. Synthesis of detailed hand manipulations using contact sampling. ACM
Transactions on Graphics (ToG), 31(4):1–10, 2012.

12



[65] J. Ho and S. Ermon. Generative adversarial imitation learning. Advances in neural information
processing systems, 29, 2016.

[66] X. B. Peng, P. Abbeel, S. Levine, and M. Van de Panne. Deepmimic: Example-guided deep
reinforcement learning of physics-based character skills. ACM Transactions On Graphics (TOG),
37(4):1–14, 2018.

[67] X. B. Peng, Z. Ma, P. Abbeel, S. Levine, and A. Kanazawa. Amp: Adversarial motion priors for
stylized physics-based character control. ACM Transactions on Graphics (ToG), 40(4):1–20,
2021.

[68] X. B. Peng, Y. Guo, L. Halper, S. Levine, and S. Fidler. Ase: Large-scale reusable adversarial
skill embeddings for physically simulated characters. ACM Transactions On Graphics (TOG), 41
(4):1–17, 2022.

[69] Y. Wang, J. Lin, A. Zeng, Z. Luo, J. Zhang, and L. Zhang. Physhoi: Physics-based imitation of
dynamic human-object interaction. arXiv preprint arXiv:2312.04393, 2023.

[70] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

[71] A. A. Rusu, S. G. Colmenarejo, Ç. Gülçehre, G. Desjardins, J. Kirkpatrick, R. Pascanu, V. Mnih,
K. Kavukcuoglu, and R. Hadsell. Policy distillation. In ICLR (Poster), 2016.

[72] B. Wen, W. Yang, J. Kautz, and S. Birchfield. Foundationpose: Unified 6d pose estimation and
tracking of novel objects. arXiv preprint arXiv:2312.08344, 2023.

[73] T. Yu, D. Quillen, Z. He, R. Julian, K. Hausman, C. Finn, and S. Levine. Meta-world: A
benchmark and evaluation for multi-task and meta reinforcement learning. In Conference on
robot learning, pages 1094–1100. PMLR, 2020.

[74] H. J. Charlesworth and G. Montana. Solving challenging dexterous manipulation tasks with
trajectory optimisation and reinforcement learning. In International Conference on Machine
Learning, pages 1496–1506. PMLR, 2021.

[75] S. Ross, G. Gordon, and D. Bagnell. A reduction of imitation learning and structured prediction to
no-regret online learning. In Proceedings of the fourteenth international conference on artificial
intelligence and statistics, pages 627–635. JMLR Workshop and Conference Proceedings, 2011.

[76] J. Li, A. Clegg, R. Mottaghi, J. Wu, X. Puig, and C. K. Liu. Controllable human-object interaction
synthesis. arXiv preprint arXiv:2312.03913, 2023.

[77] C. Pezzato, C. Salmi, M. Spahn, E. Trevisan, J. Alonso-Mora, and C. H. Corbato. Sampling-based
model predictive control leveraging parallelizable physics simulations, 2023.

13



A Data Augmentation Loop

A.1 Pseudo Code

Algorithm 1 DATA AUGMENTATION LOOP

Require: Human data D = (G, aW ), training set Dt ∈ D, high-level planner πH , low-level
controller πL, augmentation iteration L, data augment function Laug(), wrist pose trajec-
tories Gt = (gt, gt+1, ..., gt+T−1), goal trajectory of the object and its geometric features
aW
t =(aW

t ,aW
t+1,...,a

W
t+T−1).

1: Initialize πH , πL, Dt={}.
2: for iteration m=0,1,...,L do
3: while until convergence of πH do
4: Generate augmented data Laug(D)
5: Append into training set Dt←Dt+Laug(D)
6: Train πH on Dt

7: end while
8: while until convergence of πL do
9: Train πL on (πH(G),G)

10: end while
11: Rollout success trajectories Dt

s=(aW
t ,Gt) with πL

12: Append into human data D←DT +Dt
s

13: end for

A.2 Detail of the Data Augmentation Loop

Below are the details for each augmentation. The unit of length is centimeters and the unit of angle is
degrees.

• Random the object’s mesh scales with a small scale:

– The scale of the width of the manipulated object ranges from 0.9 to 1.1.
– The scale of the length of the manipulated object ranges from 0.9 to 1.1.
– The scale of the height of the manipulated object ranges from 0.9 to 1.1.

• Random the object’s initial pose with a small scale:

– The x-coordinate of the manipulated object ranges from -0.02 to 0.02.
– The y-coordinate of the manipulated object ranges from -0.02 to 0.02.
– The manipulated object’s z-axis Euler degree ranges from 0 to 30.

• Modify the goal trajectories of the object with waypoint interpolation:

– The x-coordinate of the goal trajectories position is added by ranges from -0.02 to 0.02.
– The y-coordinate of the goal trajectories position is added by ranges from -0.02 to 0.02.
– The z-coordinate of the goal trajectories position is added by ranges from -0.02 to 0.02.

B Detail Implementation of RL in Simulation

B.1 Observation Space

Table.5 gives the specific information of the observation space.

B.2 Reward Design

Denote the ĝR
i , ĝT

i and ĝJi is the current 3D translation, 3D rotation and joint angle of the object
respectively, the desired object 3D rotation gR

i , the desired object 3D translation gT
i , and the desired

14



Figure 6: Setup of the cameras.

Index Description
0 - 60 right arm-hand dof position, velocity

60 - 120 left arm-hand dof position, velocity
120 - 133 right hand end-effector position, velocity, linear velocity, angle velocity
133 - 146 left hand end-effector position, velocity, linear velocity, angle velocity
146 - 159 object base position, rotation, linear velocity, angle velocity
159 - 172 articulated object top part position, rotation, linear velocity, angle velocity
172 - 185 articulated object bottom part position, rotation, linear velocity, angle velocity
185 - 187 object dof position, velocity
187 - 257 desired object motion trajectory G=(gt,gt+1,...,gt+T )
257 - 397 sequence of 6-DoF wrist actions (aW

t ,aW
t+1,...,a

W
t+T ) generated by high-level planner

397 - 462 right hand fingertip pose, linear velocity, angle velocity
462 - 527 left hand fingertip pose, linear velocity, angle velocity

Table 5: Observation space of our framework in simulation.

object joint angle gJi . λ1, λ2 and λ3 is the hyperparameters to balance the weight of each component of
the reward.

The reward function is defined as:

rt=exp−(λ1∗∥gR
t −ĝR

t ∥2+λ2∗∥gT
t −ĝT

t ∥2+λ3∗∥gJ
t −ĝJ

t ∥2) (1)

where λ1=20, λ2=1, and λ3=5.

We use an exponential map in the reward function, which is an effective reward shaping technique used
in the case to minimize the distance, introduced by [73, 74]. To improve the calculation efficiency, we
use quaternion to represent the object orientation. The angular position difference is then computed
through the dot product between the normalized goal quaternion and the current object’s quaternion.

C Detail Implementation in Real-World

C.1 Perception

Our perception setup is shown in Figure 6. We arranged 4 identical Femto Bolt cameras around the
table and face towards the object. We use FoundationPose [72] to estimate the articulated object pose.
To remove the abnormal results, we compare each pose to the desired pose and remove the pose if the

15



error is smaller than a threshold (5 centimeters in translation and 0.5 radians in orientation). Finally,
we average the rest of the poses as our observation for the policy. If none of the poses is smaller than
the threshold, we continue to use the pose from the previous frame.

C.2 Policy Distillation

We use the DAgger [75] algorithm for policy distillation. Table.6 gives the specific information of the
observation space of the distilled policy.

Index Description
0 - 24 right hand dof position

24 - 48 left hand dof position
48 - 55 right hand end-effector position, rotation
55 - 62 left hand end-effector position, rotation
62 - 69 articulated object top part position, rotation
69 - 76 articulated object bottom part position, rotation
76 - 77 object dof position

77 - 147 desired object motion trajectory G=(gt,gt+1,...,gt+T )
147 - 287 sequence of 6-DoF wrist actions (aW

t ,aW
t+1,...,a

W
t+T ) generated by high-level planner

Table 6: Observation space of our framework in the real-world.

C.3 Resets

In the real-world evaluation, we used a trajectory from the ARCTIC dataset as our goal trajectory. In
terms of resets in our real-world experiments, we pose the object within 3 centimeters and 0.5 radians of
the initial pose of the goal trajectory during resets. We evaluated 20 times and reported the completion
rate.

C.4 Evaluation

When evaluating real-world experiments, we take the same metric (completion rate) as in simulation. It
will fail if the tolerance is exceeded(5 centimeters in translation, 2.5 centimeters in object’s longest
dimension multiplied by rotation angle, and 0.5 radians in joint angle), and record the completion rate.

D Hyperparameters of the PPO

Table.7 gives the hyperparameters of the PPO.

Hyperparameters Value
Num mini-batches 4
Num opt-epochs 5

Num episode-length 8
Hidden size [1024, 1024, 512, 256]
Clip range 0.2

Max grad norm 1
Learning rate 3.e-4
Discount (γ) 0.998

GAE lambda (λ) 0.95
Init noise std 0.8
Desired kl 0.02
Ent-coef 0

Table 7: Hyperparameters of PPO.

16



E Domain Randomization

Isaac Gym provides lots of domain randomization functions for RL training. We add the randomization
for all the tasks as shown in Table. 8 for each environment. we generate new randomization every 1000
simulation steps.

Parameter Type Distribution Initial Range

Robot
Mass Scaling uniform [0.5, 1.5]

Friction Scaling uniform [0.7, 1.3]
Joint Lower Limit Scaling loguniform [0.0, 0.01]
Joint Upper Limit Scaling loguniform [0.0, 0.01]

Joint Stiffness Scaling loguniform [0.0, 0.01]
Joint Damping Scaling loguniform [0.0, 0.01]

Object
Mass Scaling uniform [0.5, 1.5]

Friction Scaling uniform [0.5, 1.5]
Scale Scaling uniform [0.95, 1.05]

Position Noise Additive gaussian [0.0, 0.02]
Rotation Noise Additive gaussian [0.0, 0.2]

Observation
Obs Correlated. Noise Additive gaussian [0.0, 0.001]

Obs Uncorrelated. Noise Additive gaussian [0.0, 0.002]
Action
Action Correlated Noise Additive gaussian [0.0, 0.015]

Action Uncorrelated Noise Additive gaussian [0.0, 0.05]
Environment

Gravity Additive normal [0, 0.4]

Table 8: Domain randomization of all the tasks.

F Goal Representation

Our framework requires the full 6D pose of the object trajectory at each time-step. For downstream
tasks, we are able to get the trajectories in many ways. For example, we can specify a few key poses of
the object based on the task, and use linear interpolation to generate the pose trajectories between the
key poses. Another solution is to use some object motion synthesis methods in the field of graphics to
generate the 6D pose of the object trajectory, such as [76]. We design an additional experiment to prove
that our method can work with this setup. Taking a task “lifting up the box in the air and dropping it
down” as an example, we can just simply manually define the pose of the box in the air and the landing
point after picking it up as the key poses, then interpolate it as our goal trajectory, and train the robot to
manipulate the object to follow the goal trajectory. The results are shown in Table 9 and the snapshot
are shown in Figure 7. The results show that we can complete the task under this setting, and shows that
our framework is extensible.

Box Manually Designed Trajectory

Our 100±0.0 100±0.0

Table 9: Results for the goal representation experiments.

17



Figure 7: Snapshots of the goal representation experiment.

G Time-indexed of the Goal Trajectory

For the time-indexed of the goal trajectory, we randomize the sampling of input trajectories with various
time gaps during training. We added an additional experiment to show that varying the time gap does
not significantly affect our performance, indicating that our approach maintains generalization despite
these temporal constraints. Using Coffee Maker as an example, we interpolated the goal trajectories
provided by ARCTIC datasets to varying levels, and tested the completion rate of our policy on it.
Origin represents the original goal trajectory from ARCTIC, and Skip 2 and Skip 1 represent skipping
2/1 poses between every two poses on the basis of origin goal trajectory. Inter 2 and Inter 1 represent
insertion of 2/1 pose between every two poses according to the linear interpolation method on the
basis of origin goal trajectory. Our policy generates robot actions conditioned on a sequence of object
goal poses, with the time gaps defined by the distance between each consecutive goal pose. In this
experiment, we randomly use time gaps of 0 to 3 units when sampling the object trajectory to test
whether the policy is sensitive to these time gaps (Random Sample). The results is shown in Table 10,
the performance of the trained policy will not vary greatly.

Skip 2 Skip 1 Origin Inter 1 Inter 2 Random Sample

Our 85.7±7.5 86.5±3.4 86.1±5.5 85.4±8.1 87.2±4.8 86.2±6.2

Table 10: Results for the time-indexed experiments.

H Model-base Baselines

We add a baseline of the model-based method in the simulation, the result is shown in Table 11. We
use the sample-based model predictive control method that is modified from [77] as our low-level
controller in our tasks. Our method outperforms the sample-based model predictive control by 46.3%
on average.

I Limitation

There are several limitations of our work. Firstly, our model encounters difficulties in manipulating
small-size objects (e.g. scissors, ketchup, etc.). One potential direction is to make better use of contact
information in human data. For example, [69] uses a contact graph in reward function to assist the
reinforcement learning, which has the possibility of being incorporated into our framework. Secondly,
we did not leverage the tactile information in the ARCTIC dataset during policy learning. In future
work, we plan to equip our robot hands with tactile sensors and use contact information to train the
robot to handle more contact-rich manipulation tasks. Thirdly, our method sometimes fails when the
difference between the initial pose of the real-world and the goal trajectory is large. Another failure is
due to the dexterous hand forms a large occlusion of the object, resulting in inaccurate pose estimation in
the real-world. Fourth, The order of joints must be predefined. This limitation may not pose significant
issues with single revolute joints. However, complications arise when objects feature multiple revolute
joints, as the representation lacks permutation invariance across joint orders. We addressed this by
focusing on category-level joint inputs consistent with URDF definitions, leveraging datasets like
ShapeNet that maintain joint order consistency within categories. Future steps will involve exploring
robust methods to accommodate diverse joint configurations beyond current dataset limitations. Fifth,

18



Box Coffee
Maker

Espresso
Machine Ketch Micro-

wave Mixer Note-
book

Scis-
sors Laptop

MPC 31.6±1.5 22.8±0.7 30.4±2.3 24.8±1.3 28.6±1.9 26.8±0.5 19.2±2.0 23.6±0.8 24.0±1.4

Ours 100±0.0 86.1±5.5 81.1±8.6 41.2±13.3 100±0.0 57.6±4.9 38.7±3.3 41.4±14.9 100±0.0

Table 11: Results for the experiments of using one policy per object.

in our high-level planner, generalizations can only happen in the same category. But we still can force
the model to predict action for unseen categories by sending in a trained category id and test with
unseen categories. This is how we did for the generalization experiments by using the trained Box
policy to manipulate the Laptop. Since there are only 11 objects in the ARCTIC dataset, it is difficult to
test the capability of the generalizations across categories. In future works we will use larger 3D object
dataset and human motion capture dataset to test the generalization to unseen categories.

19


	Introduction
	Related Works
	Dexterous Manipulation
	Learning from Human Motion

	Task Formulation
	Method
	High-Level Planner
	Low-Level Controller
	Data Augmentation for Generalization
	Sim-to-Real Transfer

	Experiments
	Performance of the high-level planner
	Effectiveness of learning from human with hierarchical pipeline
	Generalization to unseen scenarios
	Transfer from simulation to real-world

	Limitations
	Conclusion
	Data Augmentation Loop
	Pseudo Code
	Detail of the Data Augmentation Loop

	Detail Implementation of RL in Simulation
	Observation Space
	Reward Design

	Detail Implementation in Real-World
	Perception
	Policy Distillation
	Resets
	Evaluation

	Hyperparameters of the PPO
	Domain Randomization
	Goal Representation
	Time-indexed of the Goal Trajectory
	Model-base Baselines
	Limitation

