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Abstract

Diffusion models achieve state-of-the-art perfor-
mance in various generation tasks. However, their
theoretical foundations fall far behind. This paper
studies score approximation, estimation, and dis-
tribution recovery of diffusion models, when data
are supported on an unknown low-dimensional
linear subspace. Our result provides sample com-
plexity bounds for distribution estimation using
diffusion models. We show that with a prop-
erly chosen neural network architecture, the score
function can be both accurately approximated and
efficiently estimated. Further, the generated distri-
bution based on the estimated score function cap-
tures the data geometric structures and converges
to a close vicinity of the data distribution. The
convergence rate depends on subspace dimension,
implying that diffusion models can circumvent
the curse of data ambient dimensionality.

1. Introduction

Diffusion models achieve state-of-the-art performance in
image and audio generating tasks (Song & Ermon, 2019;
Dathathri et al., 2019; Song et al., 2020b; Ho et al., 2020)
and are one of the fundamental building blocks of the more
advanced image synthesis system, e.g., DALL-E-2 (Ramesh
et al., 2022) and stable diffusion (Rombach et al., 2022).

A standard diffusion model (Sohl-Dickstein et al., 2015; Ho
et al., 2020) consists of a forward process and a backward
process: In the forward process, a data point is sequentially
corrupted by Gaussian random noises and in the limit the
data distribution is transformed into white noise; In the
backward process, a denoising neural network is trained to
sequentially remove the added noise in the data and restore
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the clean data point. Using the trained denoising network for
the backward process, one can generate diverse and high fi-
delity samples by first sampling from the standard Gaussian
distribution and then progressively removing noises.

The distinctive denoising objective separates diffusion mod-
els from other deep generative models such as GANs (Good-
fellow et al., 2014), and Normalizing Flows (Rezende &
Mohamed, 2015). As shown by Vincent (2011), the training
of denoising network essentially learns the so-called “score
function”, i.e., the gradient of log probability density func-
tion. Therefore, diffusion models fall into the category of
Score-based Generative Models (SGMs).

Despite the empirical success of diffusion models, the theory
is still in its embryo. Here we are interested in answering
two fundamental questions:

Q1. Can neural networks well approximate and learn score
functions, especially when data have intrinsic geometric
structures? If so, how should one choose the neural net-
work architectures, and what is the sample complexity of
learning?

Q2. Can diffusion models estimate the data distribution
using the learned score functions? If so, how are the data
intrinsic geometric structures being captured and how do
they affect the sample complexity?

Both Q7 and Q2 raise a practical concern about the real
world data, such as high resolution images. These data,
though having high ambient dimensions, often exhibit low-
dimensional structures (Pope et al., 2021), due to symme-
tries, repetitive patterns, and local regularities (Tenenbaum
et al., 2000; Roweis & Saul, 2000). Deep neural networks
have been known for capturing certain low-dimensional data
geometric structures (Schmidt-Hieber, 2017; Suzuki, 2018;
Nakada & Imaizumi, 2020; Shen et al., 2022). However,
whether such abilities hold for diffusion models remains
unclear.

Some recent works skipped Q1 and attempted to study Q2,
by directly assuming that the score function is accurately
learned up to a small error under certain metric, e.g., L3>
norm (De Bortoli, 2022; Lee et al., 2022a; Chen et al.,
2022b; Lee et al., 2022b). De Bortoli (2022) in particular
studied low-dimensional manifold data. These progresses
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unveil important theoretical insights about the sampling
properties of the backward process of diffusion models,
however, leaving Q1 largely untouched. As a result, a full
theoretical picture of diffusion models is lacking.

To bridge the gap between theory and practice, we make
a first step towards an integrated analysis to answer both
Q1 and Q2 for diffusion models. The combined result pro-
vides sample complexity bounds of diffusion models for
learning data distributions supported on low-dimensional
data. Specifically, we consider data point x satisfying
U—1(x) = Az, where ¥ is a known invertible data transfor-
mation, e.g., Fourier transform, z is referred to as the latent
variable, columns of A € RP*? form an orthonormal basis
of R% for d < D. We remark that the data transformation
U allows a flexible data modeling for even functional data.
Applying diffusion to the transformed data ¥ ~!(x) corre-
sponds to diffusion models in the latent space (Vahdat et al.,
2021; Kim et al., 2022). To simplify the theory, we take ¥
as the identity mapping throughout the paper. Therefore,
data point x = Az assumes a linear representation. We
refer to d as the intrinsic dimension and D as the ambient
dimension.

Based on such a low-dimensional linear subspace assump-
tion, we can decompose the score function of the linear
subspace data into on-support and orthogonal components
(Lemma 1). We then characterize their distinct behaviors of
the two components, where on-support component carries
latent distribution information and orthogonal component
forces the subspace recovery.

Our main contributions are summarized as follows:

e We specify an encoder-decoder neural architecture with
skip-layer connections and establish its approximation guar-
antees with respect to the score functions under the L? norm
(Theorem 1). Specifically, given an approximation error
€, we show that the network size needs to be exponential
in 1/¢ with the exponent depending on the data intrinsic
dimension d.

e We establish statistical guarantees of score estimation us-
ing our properly chosen encoder-decoder neural network.
We show that such a neural score estimator converges to
the ground truth score under the L? norm at a rate of
(5(%717(1%5), where n is the sample size and ¢, is an
early stopping time (Theorem 2). This result indicates that
the neural score estimator does not suffer from the curse of
the data ambient dimensionality in score estimation, when
the data exhibit intrinsic geometric structures.

e We establish distribution estimation guarantees using the
learned neural score estimator. By simulating a discretized
backward process, the generated data distribution of diffu-
sion models converges to a close vicinity of the data distribu-
tion (Theorem 3). Specifically, for the on-support direction,

generated distribution enjoys a (5(717%) rate of con-
vergence in total variation distance. For the orthogonal
direction, the generated distribution vanishes in magnitude,
and the support of the data is approximated recovered. Our
analysis demonstrates that diffusion models are free of the
curse of data ambient dimensionality.

1.1. Related Work

Several recent works study diffusion models from the sam-
pling perspective. De Bortoli et al. (2021) study the con-
vergence of diffusion Schrodinger bridges by assuming
the score estimator is accurate under the L°° norm. Lee
et al. (2022a) provide polynomial convergence guarantees
of SGMs, under the assumption that the score estimator is
accurate under the L2 norm. In addition, Lee et al. (2022a)
require the data distribution satisfying a log-Sobolev in-
equality. Concurrent works Chen et al. (2022b) and Lee
et al. (2022b) improve previous results by extending to
distributions with bounded moments. Their analyses still
assume access to an accurate score estimator under the L?
norm. It is worth mentioning that Lee et al. (2022b) allow
the error of the score estimator under the L? norm to scale
with time.

Moreover, De Bortoli (2022) made an interesting attempt
to analyze diffusion models for learning low-dimensional
manifold data. Assuming the score estimator is accurate
under the L norm, De Bortoli (2022) provide distribution
estimation guarantees of diffusion models in terms of the
Wasserstein distance. The obtained convergence rate has an
exponential dependence on the diameter of manifold.

As stated, aforementioned works hardly touch Q7 and pro-
vide partial understandings of diffusion models. To the best
of our knowledge, Block et al. (2020) is the only work in
existing literature, which provides score estimation guaran-
tees under the L2 norm. Yet the error bound depends on
some unknown Rademacher complexity of certain concept
class. In comparison, our work is explicit on the choice of
a neural network concept class and score estimation error
bound. Note that Block et al. (2020) also provide sampling
convergence guarantees under the assumption of access to
an accurate score estimator under the L? norm. We are also
aware of Song et al. (2020a) and Liu et al. (2022) studying
score estimation and distribution estimation from an asymp-
totic statistics point of view. During the review period, a
concurrent work (Oko et al., 2023) proves minimax opti-
mal statistical gaurantees of diffusion models. They focus
on learning high-dimensional compactly supported distri-
butions with Besov density functions. They also extend to
low-dimensional linear subspace data, with the subspace
known a priori.

Notations: We use bold lower case letters to denote vec-
tors, e.g., x € RP. For a vector x, ||x||, and |x]
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denote its Euclidean norm and maximum magnitude of
entries, respectively. Normal upper case letters denote
matrices, e.g., A € RPX4. For a matrix A, | All,, and
| Al denote its operator norm and Frobenius norm, respec-
tively. Given a mapping f and a distribution P, we denote
£l p2py = E};/2[||f||§] as the L?(P) norm. We also de-
note f; P as a pushforward measure, i.e., for any measurable
Q, (£,P)(2) = P(£71(12)), We reserve ¢ for (conditional)
Gaussian density functions.

2. Preliminaries

We briefly review diffusion models and score matching
using neural networks.

Forward and Backward SDEs The forward process in
diffusion models progressively adds noise to original data.
Here we consider the Ornstein-Ulhenbeck process, which is
described by the following SDE,

X, — f%g(t)xt dt + /9@ dW, for g(t) > 0, (1)

where initial Xg ~ Pjaia follows the data distribution,
(W¢)¢>0 is a standard Wiener process, and g(¢) is a non-
decreasing weighting function. We denote the marginal
distribution of X, at time ¢ as P,. Roughly speaking, af-
ter an infinitesimal time, (1) shrinks the magnitude of data
and corrupts data by Gaussian white noise. More precisely,
given X, the conditional distribution of X; |X0 is Gaussian
N(a(t)Xo, h(t)Ip), where a(t) = exp(— fo 39(s)ds) and
h(t) = 1 — a?(t). Consequently, under mild condltlons,
(1) transforms initial distribution Pyas, to Pso = N(0, Ip).
Therefore, (1) is also known as the variance preserving for-
ward SDE (Song et al., 2020b).

In practice, the forward process (1) will terminate at a suf-
ficiently large time horizon 7" > 0, where the corrupted
marginal distribution Pr is expected to be close to the stan-
dard Gaussian distribution.

Diffusion models generate fake data by reversing the time
of (1), which leads to the following backward SDE,

1
aX; = 5g(T - )X +g(T - t)VlogPTt(Xf:_)] dt

+Vg(T —t)dWy, (2)

where V log p;(+) is the score function, i.e., the gradient of
log probability density function of P;, and W is a reversed
Wiener process. Under mild conditions, when initialized
at X§~ ~ Pr, the backward process (X; )o<¢<r has the
same distribution as the time-reversed version of the for-
ward process (X7_t)o<t<7 (Anderson, 1982; Haussmann
& Pardoux, 1986).

Working with (2), however, leads to difficulties, as both the
score function V log p; and initial distribution Pr are un-
known. In practice, several surrogates are deployed. Firstly,
we replace Pr by the standard Gaussian distribution. Sec-
ondly, we use a score estimator 8 instead of ground truth
score V log p;. The estimated score S is often parameterized
by a neural network. With these substitutions, we obtain the
following practical backward SDE,

dX; = [;g(T — )X +g(T — t)8(X:, T — t)} dt

+ V(T —t)dWy,

Diffusion models then generate data by simulating a dis-
cretization of (3) with 7 > 0 being the discretization step
size:

X5 ~N(©0,Ip).  (3)

4XE = | 0T~ X5, + ol ~ 08K, T~ )|

+/g(T —t)dWy, for t € [kn, (k+ 1)n], 4)

Throughout the paper, we take g(t) = 1 for simplicity.

Score Matching To estimate the score function, a concep-
tual way is to minimize a weighted quadratic loss:

T
min [ w(OEx~r, [V logp(X) — s(X.1)[3] e
seS Jy

where w(t) is a weighting function and S is a concept class
(often neural networks). However, such an objective func-
tion is intractable, as V log p; is unknown. As shown by
Hyvirinen & Dayan (2005); Vincent (2011), rather than min-
imizing the integral above, we can minimize an equivalent
objective,

T
min / W(t)Ex o~ Pyaga {Exaxo [Hvxt log ¢+ (X¢|Xo)
0

_ s(Xt,t)H;” . (5)

Here ¢:(X:|Xo) denotes the transition kernel of the forward
process, which is Gaussian. Hence, we have an analytical
form

Xt — Oé(t)Xo

vXt ]'Og ¢t (Xt‘XO) = h(t)

Note that Vx, log ¢ (X¢|Xo) is the noise added to X at
time ¢. Therefore, (5) is known as denoising score matching.

In practice, we approximate (5) by its empirical version.
Specifically, given n i.i.d. data points x; ~ Pyata for
i = 1,...,n, we sample X; given Xy = x; from
N(a(t)x“ h( )Ip). We also sample time ¢ uniformly from
interval [tg, T for some small ¢, > 0. (In Section 5, we
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will choose tg based on sample size n.) The reason behind
avoiding [0, to] is to prevent score from blowing up and
stabilize training (Song & Ermon, 2020). To this end, the
empirical score matching objective is

n

min E(s) = %Zf(Xi;S)a

s€S

(6)

i=1

where the loss function ¢(x;;s) is defined as ¢(x;;s) =

e [ B, xo—x, [| Vx, Jog 64 (X4 |Xo) — s(X,, 1)]3] dt.
Note that we have already taken w(t) = 1/(T — to) for
simplicity and assumed sufficient sampling of X;|x; and ¢,
as they are cheap to generate. For notational convenience,

o~

we denote population loss £(-) = Ep,_,. [£(-)]-

3. Score Decomposition

In this section, we show that for a low-dimensional data
distribution, the score function can be decomposed — each
component of the score function has distinct properties. Ex-
ploiting these properties enables an efficient approximation
and estimation of the score function; see Section 4.

We consider data x € R” supported on a d-dimensional
unknown linear subspace with d < D.

Assumption 1. Data point x can be written as x = Az,
where A € RP*4 g an unknown matrix with orthonor-
mal columns. The latent variable z € R? follows some
distribution P, with a density function p,.

Assumption 1 is not restrictive, as it encodes high-
dimensional data with d = D and A = Ip. Given the
low-dimensional structure in data, we show that the ground-
truth score function has the following decomposition.

Lemma 1. Let data x = Az follows Assumption 1. The
score function V log p;(x) decomposes as

1
Viogpi(x) = AVlogptP(ATx) ) (Ip — AAT) X,
s)| (AT x,t): on-support score
s (x,t): ortho. score
where

PO(2) = / 6u(2 |2)p- (z) dz

with ¢;(-|z) being the Gaussian density function of
N(a(t)z, h(t)Iy) for a(t) = e */? and h(t) = 1 — e~ .

The proof follows from algebraic manipulation, which is de-
ferred to Appendix A.1. Here p}P denotes a density function
on the latent space (superscript stands for “latent distribu-
tion”). The on-support score s|| belongs to the column span
of A, depends on the projected data A " x, and is orthogonal
tos;. Whent — 0, we can check that s; will blow up
since h(t) — 0. This observation is consistent with the

Linear subspace

Orthogonal space

Figure 1. Demonstration of score decomposition induces two back-
ward processes. XZ,_H is the on-support backward process. X; | is
the orthogonal backward process that will vanish as ¢ — 0.

score blowup phenomenon for manifold data (Pidstrigach,
2022; De Bortoli, 2022), as our linear subspace is a special
type of manifolds.

The decomposition of V log p; also suggests a decompo-
sition of the backward process. Specifically, we denote
Xj = AATX{ and X§ = (Ip — AAT)X{". Then the
dynamic in (2) leads to

1 —
dX;l = |:2X:: + 5| (XZTH , 1 — t):l dt + AAT dW,,

1 1
D, oyl [ —
Rer [2 h(Tt)]

A graphical illustration is provided in Figure 1. The dy-
namics of X;_ ‘ incorporates information from the latent
distribution P,, while the dynamics of X7 is linear and
much simpler. The interesting part is that the coefficient
in the drift term of le " is always negative, indicating that
X1 will vanish eventually and the data support will be
perfectly recovered.

Xi dt+ (Ip — AAT)dW,.

For better interpretation, we analyze a Gaussian example.
Detailed computation is provided in Appendix A.2.

Example 1. We take latent distribution P, = N(0, X) with

¥ = diag(M},...,A%) = 0, a d-dimensional Gaussian dis-
tribution. The score function can be computed as
1
Viogpi(x) = —AY; 'ATx ———(Ip — AAT)x,
— ()
S|
S

where X, = diag(...,a?(t)A\] + h(1),...).

One can verify that S| now is linear in x, whereas s | blows
up when t approaches 0. Moreover, only the on-support
score s|| carries the covariance information of the latent
distribution and will guide the distribution recovery.

A closer evaluation further reveals s|| is Lipschitz continu-
ous, i.e.,

s||(z1,t) — SH(ZQ,t)H2 < max{\;% 1} ||z1 — 22,
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forany ¢t € [0,7] and z1, Z2, and
HSH(Z,tl) -8 (z,tg)H2 < max{)\cf, 1} ||z]|5 [t1 — ta]-

for any z and t¢1, to € [0, T]. Such properties are essential
to develop score approximation and estimation results.

4. Score Approximation and Estimation

In practice, score functions are approximated by neural net-
works. To ensure an effective learning, the network class
should be expressive enough to approximate the score func-
tion. This section first establishes a score approximation
theory. Built upon the approximation theory, we next pro-
vide statistical guarantees of the score matching.

4.1. Score Approximation

We rearrange terms of V log p; in Lemma 1 as

1
Viogpi(x) = —A(h(t)Viog piP(ATx)+ATx) - ——x.

1
h(t) h(t)

Accordingly, we consider score networks in the form of

1 1
meg(VTx, t) — mx :

V € RP*? with orthonormal columns,

Snn = {SV76(X7 t) =

fo : R? x [to, T] — R% a ReLU network}.

Remark 1. The network family Sy resembles commonly
used architectures of score networks, e.g., U-Net (Ron-
neberger et al., 2015): (1) fﬁx contributes as a shortcut
connection; (2) Vfa(V "x,t) retains an encoder-decoder
structure, where V, V' T are the linear decoder and encoder,
respectively. See Figure 2 for an illustration of the network
architecture. We will show later that through score matching,

V indeed recovers the unknown data subspace.

We configure the ReLU network fp in Syn by hyperparam-
eters. Specifically, fg € NN(L, M, J, K, k, 7, ) with

NN(L’Mv ‘]7Ka ‘%7777%) =
{f(z,t) = Wio(...o(Wilz", 4T +by)...) + by :
network width bounded by M, sup ||f(z,?)||, < K,
z,t
max{||bi|| ., [|[Will,} < kfori=1,... L,

L

Z ( ||WZ||0 + ||bi||0> <J

i=1
lf(z1,t) — f(22,t)|ly < v|lz1 — 22|, foranyt € [0,77,

1£(2, t1) — £(z,12)]|, < 7e|t: — t2] for any z},

Shortcut
t
x RP R (% \ R
Encoder fo Decoder

Figure 2. Network architecture of Sxn. The network consists of a
shortcut connection and linear encoder-decoder represented by a
matrix V. fg : R? — R is a feedforward network with learnable
weight parameters.

where the network width refers to the maximum dimensions
of the weight matrices, o is the ReLU activation, and ||-||
and ||-||, denote the maximum magnitude of entries and the
number of nonzero entries, respectively. In the sequel, we
write S\n (L, M, J, K, k, 7, ) to reflect the configuration
of fg. To establish our score approximation theory, we
impose an assumption on the latent distribution P,.

Assumption 2. The density function p, > 0 is twice con-
tinuously differentiable. Moreover, there exist positive con-
stants B, C1,C5 such that when ||z||, > B, the density

function p, (z) < (27)~ %20} exp(—Cy ||Z||§ /2).

Assumption 2 describes the tail behavior of P, being sub-
Gaussian, which is commonly adopted in high-dimensional
statistics literature (Vershynin, 2018; Wainwright, 2019).
We also need the following regularity assumption on the
score function.

Assumption 3. The on-support score function s(z,1) is
B-Lipschitz in z € RY for any t € [0, T.

Lipschitz score functions are a standard assumption in ex-
isting literature (Block et al., 2020; Lee et al., 2022a; Chen
et al., 2022b). Yet Assumption 3 only requires the Lipschitz
continuity of the on-support score. As an example, the Gaus-
sian data in Example 1 verifies Assumption 3. We remark
that V log p; itself is (8 + ﬁ)-Lipsehitz, which matches
the weaker assumption of Lee et al. (2022b, Assumption 3).
When ¢ goes to zero, the Lipschitz constant of V log p; goes
to infinity.

The following theorem presents an approximation theory
using Sy for score functions.

Theorem 1. Given an approximation error ¢ > 0, we
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choose Syn with

L= O(log% +d), K=0 ((1 + 5)dlog1/2(d/(toe))> ,
M=0 ((1 + B)ATrdY > 1e(d+D) 10g/2 (d/(toe))> ,
J= o((1 + B)4Trd Y21 e (@D 100424 (d/(t€)) )

k=0 (maX{Q(l + B8)V/dlog (d/(toe)), TT}) ’

v =10d(1 + f), v, = 107,

where 7 = SuPte[to,T],HZHOOS\/@ ||%[h(t)s|‘(z,t)]”2.
Then for any data distribution Pya¢, satisfying Assumptions
1 — 3, there exists an Sy, € Snn such that for any ¢ €
[to, T'], we have

i} Vd+1

||SV,9(', t) -V logpt(')HL2(pt) S WE.

The proof is provided in Appendix B.1. Theorem 1 con-
firms the universal approximation ability of Sy for score
functions. A few remarks are in order.

Universal Approximation under the L?> Norm Many
existing universal approximation theory of neural networks
focus on approximating target functions on a compact do-
main under the L*>° norm (Yarotsky, 2017; Schmidt-Hieber,
2017; Chen et al., 2019a; Giihring et al., 2020). Instead,
we provide an L2-approximation error bound over the un-
bounded input domain RP, where we tackle the unbound-
edness through a truncation argument. In addition, thanks
to the encoder-decoder architecture, the network size only
depends on the intrinsic dimension d of data.

Lipschitz Score Network Conventional universal approx-
imation theory of neural networks hardly provide network
Lipschitz continuity guarantees (Cybenko, 1989; Barron,
1993; Yarotsky, 2017). By our construction, the Lipschitz
constraints vy and ; do not undermine the approximation
power of score networks. In practice, such a Lipschitz
regularity is often enforced during training, e.g., adding reg-
ularization (Virmaux & Scaman, 2018; Pauli et al., 2021;
Gouk et al., 2021). Further, from a theoretical perspective,
the Lipschitz property of the estimated score is essential to
bounding the distribution recovery error, as we demonstrate
in Section 5.

Time as an Additional Input Dimension We take time ¢
as an additional input dimension to the score network. The
network size depends on the Lipschitz constant 7. We show
a very coarse upper bound of 7 in Appendix B.1. However,
7 depends on the latent distribution P, and is highly instance

specific. In Example 1, we have 7 = O(y/dlog (d/(to€))),

&

[_Rv R}d

Figure 3. Construction of fa(z, t) for approximating g(z, t). For
a fixed ¢, inside [— R, R}d, we uniformly partition the hypercube
into smaller hypercubes. On each of the small hypercube, we
locally approximate g(z, t) by its value on the center g(c, t). To
detect whether an input z belongs to a local hypercube, we con-
struct a trapezoid function 1 on each coordinate. Their product
Hle 1(z;) is an approximate indicator function. Outside the
cube [—R, R]%, we simply set fo(z,t) = 0.

much smaller than its coarse upper bound. More inter-
estingly, in practice, time ¢ is embedded using sinusoidal
positional encoding scheme (Vaswani et al., 2017) and the
processed embedding is added to the input data. Such a
dimensional lift of time opens research directions, however,
the analysis is beyond the scope of this paper.

Proof Sketch Theorem 1 is established by construction. A
significant difference from the existing universal approxima-
tion theories is that the input domain of Sy is unbounded.
We manipulate the tail behavior of P, for developing a
truncation argument.

In the construction, we choose V' = A and the approx-
imation of the score boils down to that of fg(z,t) to
h(t)V1og piP(z) + z for z € RY. We denote g(z,t) =
h(t)V log piP(z) + z. By Assumption 3, g(z,t) is (8 + 1)-
Lipschitz in z.

Let R > B be a truncation radius. On the hypercube
[~R, R]? x [to, T], we construct fg as a piecewise linear
function for approximating s(z,t). Outside of the hyper-
cube, we simply set fg = 0. See Figure 3 for an illustration.

The L? approximation error is evaluated as

Hf‘e(?t) - g('at)HLz(PtLD)
< [(Fol-+t) — 1) 1411 < B2 puo

(4)

| (Bo 1) — &) 11l > B}l o -

(B)

Term (A) is directly bounded by the approximation error
of fp on the hypercube. Term (B) utilizes the tail behavior
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of P;. In particular, since g(z, t) is Lipschitz in z, for suffi-
ciently large R, ||g(z,t)||, is bounded by O (]|z||,) when-
ever ||z||, > R. Consequently, term (B) is bounded by

(B)=0 ( /| . ||z||2pt<z>dz> .

Note that Assumption 2 implies that P, has a sub-Gaussian
tail. Therefore, (B) can be bounded (by Lemma 2), which

leads to a choice of R = O (1 /dlog £ +log %) The

Lipschitzness of the constructed network is analyzed by
adapting Chen et al. (2020, Lemma 10).

4.2. Score Estimation Theory

In this subsection, we provide sample complexity for score
estimation using Syn. As we have parameterized the score
function using deep neural networks, we can rewrite the
score matching objective in (6) as

Sv,e € argmin L(sy,),
syv,0 ESNN

where £ is defined in (6). The following theorem establishes
the L2 convergence of Sy,¢ to V log p; when the sample size
n — oQ.

Theorem 2. Suppose Assumptions 1 — 3 hold. We choose

. . _1=8(n)
Snn as in Theorem 1 with e = n™ @5 for §(n) =

%, Then with probability 1 — L, it holds

1 T )
T —to /t0 Isv,e(-,t) *Vlogpt()”Lz(Pt)dt =

0

where O hides factors depending on f3, log D, d, log ty and
7 defined in Theorem 1.

The proof is provided in Appendix B.2. To the best of our
knowledge, Theorem 2 is the first explicit sample complex-
ity bound for score matching. The rate of convergence only
depends on intrinsic dimension d. In the special case of
d = D, our theory still provides the first score estimation
guarantee in high-dimensional Euclidean spaces using neu-
ral networks, nonetheless, the sample complexity suffers
from the curse of data ambient dimensionality.

When n is sufficiently large, d(n) is negligible and

the squared L? estimation error converges at a rate of
6(%71_%%) (We hide other factors depending on d in
the bound to highlight the fast convergence in terms of sam-
ple size n. As d is often much smaller than D and n is large
for diffusion models, those factors on d do not undermine

the convergence guarantee.)

Theorem 2 becomes vacuous if tg — 0 when n is fixed. This
is a consequence of the blowup of score function V log p;
as to — 0. Although larger ¢, leads to a better estimation
error bound, following the backward process until a large
time ¢y gives poor distribution recovery. In the following
section, we will show a tradeoff on ¢g.

Proof Sketch We first focus on the equivalent objective
L(Sv ) and then switch to the desired score matching er-
ror. The proof relies on an oracle inequality for bounding

L(Sv,e):
L(/S\V,H) < Etrunc(/s\vﬂ) N (1 + a)ztrunc(/s\vﬁ)
(A)
+ L(Sv,e) — LT (Sv.0)
(B)
1 inf L
+ ( + (l) Sv,;IEISNN (SV’9)7

| S —
(&)

where a > 0 is arbitrary, and L£7"(Sy) is a truncated
loss defined as

LU(By9) = Exw Pagea [£(x:8v,0) L{[|x[|; < R} df]

for some radius R > 0 to be determined, and LA“““C is the
empirical counterpart of £™""¢. We truncate on ||x||, to
achieve an uniform upper bound on the loss £ for concen-
tration. Here term (A) is the statistical error due to finite
samples, term (B) is the truncation error, term (C') reflects
the approximation error of Sxn. We bound these error terms
separately and details are deferred to Appendix B.2.

5. Distribution Estimation

This section establishes distribution estimation guarantees
using the estimated score functions. Recall that in reality,
diffusion models generate data using the discretized back-
ward process (4) with step size 1. Given an estimated score
function §V79 as in Theorem 2, we denote the generated
distribution by P,

We focus on three major criteria to assess the quality of
Pfo'sz 1). How accurate is the subspace A recovered; 2).

What is the estimation error of Igtdois to the on-support latent

distribution P,; 3). What is the behavior of ﬁtdois in the
orthogonal space.

Recall from Lemma 1, we denote on-support latent distribu-
tion as PP with density function piP. Since we early-stop
at time ¢o, we compare the estimated distribution with P}-P.
Now we summarize our results in the following theorem.

Theorem 3. Given the estimated score Sy,g9 € Sy in The-
orem 2, we choose T' = O(log n), tg = O(min{cg, 1/5}),
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where cg = omin(Ep_[zz"]) is the minimum eigenvalue.
Then the following items hold.

1). The unknown data subspace is recovered as

e ] )

2). Under the condition KL(P,||N(0, I;)) < oo, we choose
2-25(

. 2 2-26(n) ~ ..
the step size 7 < %Jn a5 . Recall (VU)t;rPtdo'S denotes
the pushforward distribution. Then there exists an orthogo-
nal matrix U € R%*? such that the total variation distance

~ ~ 1 1-5(n
TV(PL, (VU)] By = O (1 /%n*%ﬁs  og? n) .

Moreover, the Wasserstein-2 distance between Pt';D and P,
satisfies

W (PP, P.) = O (V/dty ) .

3). The orthogonal pushforward (I — VVT)u]stdois of the
continuous-time generated data distribution is N(0, X), with
Y < ctol for a constant ¢ > 0.

The proof is provided in Appendix C. Theorem 3 has the
following interpretations.

Subspace Recovery Error Item 1 of Theorem 3 confirms
that the subspace is accurately learned, in that the column
span of matrix V closely matches that of A. The error is
proportional to the score estimation error and depends on the
minimum eigenvalue of the covariance of P.. The intuition
behind is that we need P, to span every direction of column
span of A for estimation.

Meanwhile, item 1 does not translate to ||A — V||r being
small, since the column span is invariant under orthogonal
transformation, i.e., column spans of A and AU for an
orthogonal U are identical. Therefore, we need such an
orthogonal transformation in item 2.

Tradeoff on t; From item 2, we Aobserve that the latent
distribution error TV(PSP, (VU), P2®) increases as to de-
creases, because the error of score estimation amplifies. On
the other hand, the bias W2 (PLP, P.) = O (/tod) shrinks
as to decreases. This reveals a tradeoff concerning recov-
ery of data distribution P,. Although we cannot directly
translate total variation distance to Wasserstein-2 distance
and vice versa, we can make them in the same order, which

. . . _1=6(n) .
implies setting tgo = n~ 45 . We thus obtain

1-5(n)

TV(PL, (VU)] Pde) = O (n_72<d+5> log? n) and

to

to’

W, (PP P) = O (n‘ilz?fi?f ) .

Vanishing in the Orthogonal Space The behavior of ﬁt‘ﬂs
matches our discussion in the score decomposition. In par-
ticular, (I — V'V ), P& degenerates to a point mass at
origin when to — 0. Due toitem 1, (I — AAT); P& is also
approximately vanishing.

Proof Sketch We will be succinct on how to prove items 1
and 3, and focus on the proof of item 2. The intuition behind
item 1 is that the mismatch between the column span of A
and V will be significantly amplified due to the blowup of
the orthogonal score. Therefore, an accurate neural score
estimator forces A and V' to match. Item 3 can be obtained
by analytically solving the orthogonal backward process.

e Proof of Item 2. We consider the continuous-time gen-
erated distribution P;, for an exposure of the main idea.
The discrete result is obtained by adding discretization error
(Lemma 4).

For the ground-truth backward process, we consider the cor-
responding latent backward process Z;~ = A" X;~, which
satisfies the following SDE

) _
AZj = | JZ + Vieg i (Z]) dt + AW, ",

<-LD . . .
where W, ~ is a standard Wiener process in the latent space.

For the learned process, similarly we consider Zz_ T =
UTV X, We first show that (Z;""),>¢ satisfies the fol-
lowing SDE

~ . 1~ - 5 . AT
dZi " = |SZ{ "+ 32 T — 1) | dt+dW,

where §'[3'?9 (z,t) = ﬁ [U"f9(Uz,t)—z] is the latent score
estimator.

Observe that PP is the marginal distribution of Z5_,,.and
(vu )Jﬁto is the marginal distribution of Z;_’Tto. To this
end, it suffices to bound the divergence between the two
stochastic processes above. In the proof, we first convert
the score matching error bound to the latent score matching
error between V log p;°(z) and 87 (z,t). Then, similar
to Chen et al. (2022b), we adopt Girsanov’s Theorem and
bound the difference of the KL divergence of the two process
via the error bound of their drift terms.

6. Conclusion and Discussion

This paper studies distribution estimation of diffusion mod-
els for low-dimensional linear subspace data. We show
that with a properly chosen neural network, the score func-
tion can be accurately approximated and estimated. The
estimation error converges at a rate depending on the data
intrinsic dimension. We further show data distribution can
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be efficiently learned using the estimated score function.
The convergence rate is also free of the curse of ambient
dimensionality.

Linear Subspace Assumption Diffusion models are very
new in the field of machine learning theory. The theoret-
ical analysis has been very challenging, especially when
taking the intrinsic geometric structures of the data into
consideration. Although we make a linear subspace assump-
tion, characterizing the behavior of diffusion models in the
on-support and orthogonal subspaces has already required
highly non-trivial analysis. We expect to stimulate more so-
phisticated followup works, which analyze diffusion models
under more general assumptions such as manifold data.

End-to-End Distribution Learning Given our linear sub-
space assumption, one may advocate PCA-like methods,
which first reduce the data dimension by estimating the sub-
space structure, and then estimate the data distribution on
a projected subspace. However, such a two-step method
is rarely used in practice, and does not necessarily help us
understand the empirical success of diffusion models. On
the contrary, our results consider a more realistic end-to-end
learning scheme, and show that the learned diffusion model
can capture the unknown linear structure and the data dis-
tribution, and enjoy fast distribution estimation guarantees
with a proper score network.
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Content of Appendix

The supplementary material is orgaized as follows:

* Appendix A presents the proof of score decomposition in Lemma 1 and its instantiation to Gaussian distribution in
Example 1.

* Appendix B devotes to proving Theorem 1 and 2. Main steps are exposed in proof sketches in the main paper. Theorem 1
is proved by construction and Theorem 2 follows from a bias-variance decomposition.

* Appendix C presents the proof of Theorem 3. In particular, assuming the score estimation error is €, Appendix C.1
proves item 1; Appendix C.2 proves item 2 as sketched in the main paper; Appendix C.3 proves item 3 by explicitly
solving the orthogonal backward process. Then Appendix C.4 combines the three items and specialize to the score
estimation error provided in Theorem 2.

* Appendix D and E consist of supporting lemmas for Appendix C and B, respectively.

A. Omitted Proofs in Section 3
A.1. Proof of Lemma 1

Proof. Using the latent variable z and according to the forward process (1), we have

:/¢t(x|Az)pz(z) dz

where ¢;(x|Az) = (27)~P/2h=P/2(t) exp ( ||a( )Az — x||§) . Then the score function can be written as

V [ ¢u(x|Az)p.(z) dz _ [ Vi (x|Az)p.(z) dz
[ oi(x|Az)p.(z)dz [ ¢1(x|Az)p.(2)dz ’

where the last equality holds since ¢;(x|Az) is continuously differentiable in x. Substituting ¢ (x| Az) into (7) gives rise to

Vlogpi(x) = (7

or\—D/2p— D/2 )
Vlogpi(x) = };)XMZ o) ds / e — X) exp <_2h(t) |l(t) Az — x||§> p=(z) dz
2 D/2h D/2 1
- };)X|AZ )p.(z) dz / h(t t)Az — AATx )eXP <_2h(t) le(t) Az — x||§> p.(z) dz

)=D/2 D/2 2
- fét)XIAz})Lpz( )d / (1) (Ip — AAT) x - exp (2,11@) ||a(t)Azx||2> p-(z)dz

B f¢t(X|Ai)pz(Z) dz / hL ( Az - AAT ) ¢t(X|AZ)pZ (Z) dz —

% (Ip — AAT)x

S| S

We can further simplify s;. We decompose ¢ (x| Az) as

b¢(x|Az) = (27)"P/2h=P/2(t) exp (— Hoz(t)Az —AATx + (Ip — AAT) XH;)

1
2h(t)
= (2m) P2h P2 (t) exp (-2;@) (la@ Az — AATx||; + ||(7p — A4T) xHZ)>
— (2m)~ /2072 (1) exp ( ' hl(t la(t)z - ATX||§)

1
% (2m)-(P=D/2=(D=D)/2(4) e (%(t) (In — AAT) XH;) _

12
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We denote
o (ATX|Z) = (2m) Y22 (1) exp ( TI0) Ha ATXHz) and
—(D— —(D— 2
¢ ((Ip — AAT)x) = (2m) = P=D/2p=D=D/2(3) exp <_2h(t) | (Ip — AAT) x||2)

being both Gaussian densities. Substituting ¢(x|Az) = ¢, (A" x|z) ¢, (Ip — AAT)x) into s, we obtain

1 1
— Az — AAT AT .
1000 = T T | 7 (0042~ 447 ATk o)t
As can be seen, s only depends on the projected data A" x. Therefore, it is legitimate to overload s (x, t) by SH (ATx,1).

The benefit is that the first input of SH(ATX7 t) now has the intrinsic dimension d. Denoting z’ = ATx, we ob-
serve 75 (a(t)z — ATx)¢y(ATx|z) = Vi ¢;(2|z). Therefore, we can rewrite s (A7x,t) = %dz =
AV log pld(A T x). The proof is complete. O

A.2. Computation in Example 1

We find the marginal distribution P; of the forward process is still Gaussian. Density function p;(x) = [ ¢+(A"x|2)p.(z) dz.
We check
1
bi(ATx|z)p.(z) x exp (_Qh(t) HATX - a(t)z”i - zTElz>

1 2 IS P o
|z — alt t)I;+ h(t)X A
x eXp( 2h(t) HZ o(t) (a (8)1a + h(t) ) X (2t Ig+h()s-1)"1 )’

where ||x||, = x"Ax. Therefore, ¢:(A"x|z)p.(z) corresponds to a Gaussian distribution with mean vector
a(t) (a®(t) g + h(t)E7T) ~' ATx. To this end, Lemma 1 leads to

S1(ATx, 1) = ()4 (a*(1) I+ h()5 ™) ™ ATx — AATx)

h(t)
— L ia, on(t) a2(t) — Tx
- h(t)A (d & <a2(t) + AN a2(t) + h(t)Af) Id) 4
. A N
~ A ding (a2<t> TROAZ Q) +dh<t>A;2> A

. 1 1 .
= A diag (cﬂ(m% Fh(t) T @A+ h(t)) Ax

Lastly, we check s is Lipschitz continuous. We need to upper bound

‘ diag (a?(tn% R T h(t))

We discuss two cases. If \; > 1, we have
1

‘ s (o raay a7 TG )

For the Lipschitzness with respect to ¢, we take time derivative of diag (

1 1
SRR TR N2+ (1R

op
1 .3 1 -2 E
W § 1, if )\d S 1, we have W S >\d . COmblnlng the

two cases gives rise to

< max{\;?1}.

1 .
a?(t /\2+h T a2(t)A%+h(t) ) '

5 ) 1 L 2(t)(A2—1) QIOYERY)
8tdlag (aQ(t))\% T h(t)a.. . aQ(t)/\g n h(t)) = dlag <(a2(t)>\% + h(t))2 sy (042(t)/\3 + h(t))Q)

= diag (az(t),\g +ht) T a2 ()N + h(t)) '



Score Approx. Estimation and Distribution Recovery

Therefore, for any ¢1,t2 € [0,7] and z, we have

) 1 1
||s|‘(z7t1) - s‘|(z7t2)H2 < ||diag PETSCRATIIEEE on(t))\?i e A ) [t1 — ta]
< max{A;? 1} |z, [t; — tal.

B. Omitted Proofs in Section 4

B.1. Proof of Theorem 1

Proof. Due to Lemma 1, we cast score function V log p;(x) into

AT . 1
Vlogpi(x) = 2u(A Xlzlp:(z) 4, 1 )

w(t) ") ToATxlz)p.(2)dz  A(t)
Ag(ATx,t)

Note that g(A"x,t) = h(t)A" (s (ATx,t) + x). It suffices to construct Vfo(V " x, t) for approximating Ag(A ' x, t). By
taking V = A, it further reduces to construct fg(z’, ) well approximating g(z’,t), where z’ € R<.

A major difficulty in approximating g(z’, t) is that the input space R? x [ty, T'] is unbounded. Here we partition R? into
a compact subset S and its complement. On set S x [tg, T], we construct fg to achieve an L°>° approximation. On the
complement of S, we simply let fo(z’,¢) = 0. Thanks to the tail behavior of P,, the L? approximation error of fg(z’,t) to
s(z’, t) can still be controlled.

e Approximation on S x [ty,T]. We choose S = {z'| ||z’|| ., < R} to be a d-dimensional hypercube of edge length
2R > 0, where R will be determined later. On S X [to, T'], we approximate coordinate maps g (z’,t) of g(z’, t) separately,
where g(z',t) = [91(2/,t),...,9a4(2z',t)]". The main idea replicates Lemma 10 in Chen et al. (2020). To match the
function domain, we first rescale the input by y’ = ﬁ(z’ + R1) and ¢’ = ¢/T, so that the transformed input space is
[0,1]% x [to/T,1]. Such a transformation can be exactly implemented by a single ReLU layer.

By Assumption 3, on-support score s (z', ¢) is #-Lipschitz in z’. This implies g(z’, t) is 1 4- 3-Lipschitz in z’. When taking
the transformed inputs, g(y’,t') = s(2Ry’ — R1,Tt’) becomes 2R(1 + 3)-Lipschitz in y’; so is each coordinate map. For
notational simplicity, we denote L, = 1 + (.

We also denote the Lipschitz constant of g(y’, ') with respect to t as T'7(R), when y’ € [0, 1]¢. That is, we denote

9 g(2,1)

7(R)= sup sup 5

tefto,T] z’ €[0,R]?

2

A very coarse upper bound on 7(R) is computed by

dz

25 ¢u(2|2)p-(2) 2¢4(2'|2)p-(2) [ 5;¢1(2'|2)p-(2) dz
ot 7 ot
J ¢:(2'|z)p-(z) dz ‘ A/ (f ¢e(2'|2)p: (2) dz)’

A [E 2213 12'] ~ Elzl2|E[|2]} 1] — (1 + a*(1)) Covlalz']2'|

9 .,
ag(z 7t) =A

(@) o)
h2(t)

where we plug in 2 ¢;(z'|z) = :2(&)) (HzHg —(14+a2(t)z"2z +a(t) ||z/||§) ¢¢(2'|z) and collect terms in (7). Since
P, has Gaussian tail, its third moment is bounded. By the computation in Appendix B.3, we have ||Cov(z|z']|,, <

h2(t) 1
aQ—(t)(ﬂ + W) Therefore, we deduce

7(R) =0 <1+a?;2)(t) (B + h(lt)> \/ER) =0 (eT/26p01Y(\/gR)) ;

as P, having sub-Gaussian tail and ||z’[| ,, < R implies HIE[Z ||z||§ |z']

, is bounded by O(poly(v/dR)).

14
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Now we form a partition of [0, 1]¢ x [to/T, 1]. For the first d dimension, we uniformly partition [0, 1]¢ into nonoverlapping
hypercubes with edge length e;. We also evenly partition the interval [ty /T, 1] into nonoverlapping subintervals of length
es. e1 and es will be chosen depending on the desired approximation error. We also denote N1 = (é] and Ny = [é}

Letm = [my,...,mg]" € {0,..., N; — 1}9 be a multi-index. We define f as

A= Y (2R - BT ) ()

m,j=0,...,Na—1

where U, ;(y’,t’) is a partition of unity function. We choose ¥ as a product of coordinatewise trapezoid functions:

s =0 (o () o (o (- 3))

where 1) is a trapezoid function (see also a graphical illustration in Figure 4),

1, la| <1
7//((1) =42— ‘a|7 ‘a| € [172] :
0, la| > 2

VEN(a- %)) v (BN (a— =)

J. A ' 'l A}
mp+1
N

=¥

|
my
N

Figure 4. Trapezoid function in one dimension.

‘We claim that

1. f; is an approximation to g;;

2. f; can be implemented by a ReLU neural network ﬁ with small error.

Both claims are verified in Chen et al. (2020, Lemma 10), where we only need to substitute the Lipschitz coefficients
2¢R(14 ) and T'T(R) into the error analysis. (We use the coordinate wise analysis in the proof of Chen et al. (2020, Lemma
10) for deriving the Lipschitz continuity w.r.t. y’ and ¢'.) By concatenating f;’s together, we construct fg = [f1,..., fq] |
Given e, if we achieve

sup ||f9(ylat/) - g(y/7t/)||oo < €,
v/ ' €[0,1)4X [to/T,1]

the neural network configuration is
1 1
L=0 (log -+ d) ., M=0 (TT(R)(RLZ)de_(dH)) ., J=0 (TT(R)(RLZ)de_(d“) <log -+ d)) ,
€ €

K=0 (V&RLZ) . & =max{1, RL,, T(R)}.

Here we already take e; = O (R%) and ey = O (%(R)

Combining with the input transformation layer (i.e., z' — y’ and t — ¢’ rescaling), we have the constructed network is
Lipschitz continuous in Z/, i.e., for any z,z} € S and ¢ € [to, T}, it holds

). The output range K is computed by K = v/d max; ||sy]|

[fo (2, ) — fo(z5,1)| , < 10dL. ||z} — Z5]), .

15
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Moreover, the network is also Lipschitz in ¢, i.e., for any ¢1,t2 € [to, T] and ||z’||, < R, it holds
Hfg(zl,tl) - Fg(Zl,tQ)Hoo § 10T(R) ||t1 - t2||2 .

Due to the partition of unity function ¥ vanishes outside S, we have fg(z’,t) = 0 for ||z’|, > R. Therefore, the above
Lipschitz continuity in z’ extends to whole R¢.

¢ Bounding L?> Approximation Error. The L? approximation error of fg can be decomposed into two terms,
Hg Z t - fa Z t HLz(PLD) = H Z 7t) - fg(Z/,t)]l{”Z/HQ < R}HL2(PtLD) + ”g(z/’t)]l{”Z/HQ > R}”L2(P¢LD) ’
The first term on the right-hand side of the last display is bounded by

H(g(zl7t) - fe(zl7t)ﬂ{‘|z/||2 < R}HLZ(}DLD) < \/E sup ||g(zl7t) - f‘g(Z/,t)Hoo < \/6716.
t z te€SX[to,T]

The second term assumes an upper bound in Lemma 2. Specifically, when choosing R = O (, /dlog % + log %), we have

||g(z/,t)]l{||z'H2 > R}HLz(ptLD) <e
As a result, with the choice of R, we obtain

< (Vd+1)e.

||g(zl’t fg Z t HL2 PLD)

Substituting R into the network configuration and 7(R) denoted as 7, we obtain
1
L=0 <1og -+ d) , M=0 ((1 + B)ITrdd/ 2 e~ (d+1) 1pgd/2 td> ,
€ 0€

1
J=0 ((1 + B) T rdd/ 2 e~ (d+1) |ogd/2 ti (log -+ d)) ,
0€ €

d d
K=0 <(1 + B)dlog!/? t) . K= max{(l + B)y/dlog t,TT} . y=10d(1+B), ~ =107
0€ 0€

The constructed approximator to V log p; is Sy.¢ = ﬁA?g(AT)Q t) — h( 77X, whose L? approximation error is

_ Vid+1
||V1ngt(at) - SV,G('7t)||L2(pt) < WG

for ¢ € [to, T].

B.2. Proof of Theorem 2
Proof. The proof is based on the following oracle inequality to decompose L(Sy,g).

o Oracle Inequality. For any a € (0, 1), we decompose L(Sy,g) as
L(Bve) = L(Bve) — (1+a)L(Bve) + (1 +a)L(8v,e)

) r
< LUN(Sy o) — (14 a) L (Sy0) + L(Bv,e) — LY (Sy0) + (1 + a)L(Sv0)
— EtrunC(s ) (1 + a)ﬁtrunC( )+£(SV9) EtrunC(SVg) +(1 + a) inf Z(Sv,g) .

sv,0 ESNN
A B) —_—
(4) ( R

where in (i), £ is defined as

LTEv0) = Exe P [0 (%58v,0)| = Exw Paea [(x58v,0)1{[[x]|, < R}dt],

16



Score Approx. Estimation and Distribution Recovery

for some radius R > B to be determined. In the sequel, we bound (A) — (C) separately.

* Bounding Term (A). This term measures the concentration of the empirical loss to its population counterpart. We denote
G = {{"""¢(:;8y.9) : Sv,9 € Snn} as an induced function class of score network Syn. We first determine an upper bound
on G. For any sy ¢ € Sy, we have

1 T 2
i | B [Isvolx':t) = Vlogan(xx) [} 1 xl, < R} e
0 Jto

1 T
= IEx’w,gx’x
T—to/to 9./ 1%)

étrunc<x; SV,O) —

2
H[x[l, < R} dt
2

svo(x',1) + ——(x' — a(t)x)

h(t)

T
< Tfto /t (Sl(l/p so(x',t) + WX + g)) ) 1{|Ix||, < R} dt
= T%to/t <sup ’Vfg(VTX/ || + O[Eg ) 1{||x||, < R} dt

dt

(QKZ—FRQ 2
- T —t /to h2(t)

K? + R?
~o (o)
to(T" — to)
where inequality (¢) invokes the uniform upper bound of Sxn. Moreover, suppose given sy, g, and sy, g, with

SUD |x||, <3R+/DTog Dotelto,1] 15v1,6: (X, 1) = Sv3,0, (X, 1), < 1. We evaluate

Hgtrunc(.; SV1,91) o [crunc(_; SV2792)H00

1 T
= ! SHUER T —to / EX’N@(X’\X) [||SV1791 (xlv t) — SV;,0- (X/’ t)”z ||SV1791 (xlv t) — SV;,0, (X/’ t) -2V log ¢t(XI|X)H2} dt
X|[o< to

2AK+R) [T 1
< sup ZEEI [T p o [I8vi0, . 0) — s, 0,0l 1, < 38R + /Dlog D)
Ixl,<r I'—to Ji, h(t)
2K + R 1
+ sup g/ B |50, (1) = v, (< Dll, LI, > 3R+ v/Dlog D} | dt
Ixl,<k T —to Ji, h(t)
2 T
< K+R/ dt
T 0( ) to h(t>
K+R) [T 1
+ sup y By (x|x) [”Sthl(X/,t)—SV2’92(XI7t)H2]l{||X/H2>3R+ \/DlogD}} dt
Ixl,<r T —to Jy, h(t)
T
A(K + RK
< ! (K+R)/ gt / by (x'|x) dx’
T —to to P(t) T —tg x|, >3R+v/Dlog D
() L T 4K(K+R) 1 5
Yo K+ R)log — + ——— " D(3R +2,/Dlog D)? 2R Dl D
(Tto( + R) ogto—i- to(T — o) + og Zexp ET0] + og
¢ T 4K(K+R) D2 1 5
-0 K+ R)log— + — T (R/D ~ R
(g + mytos .+ S S Dy e () ).

where in (i), we upper bound ¢, (x'|x) < (27h(t))~P/? exp( 2h(t (2 ||X’H2 ||x||§)> and invoke Lemma 16. Denote

= %( R/D)P~2exp ( " ( ; R2) The last display above indicates that an t-covering of Snn induces a 77— (K +

R) log % + n-covering of G. Now we apply Lemma 15 and obtain with probability 1 — 4,

(T—to) (¢
(1+3/a)(K? + R?) N ((K+R)?og(T/t0)’SNN’ R )
log
’nto(T — to) )

A)=0 +(2+a)r

17
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We emphasize that norm in the covering of Sxx is SUP|x |, <sr+Dleg D lISv.0(%, 1) |,

* Bounding Term (B). By the truncation, we have

(B) = ExPaea [(05Sv,0) {Ix][, > R}]

1 T -
=5 / B i Bttty [[Bv:0(X's8) = ¥ log én (x'[x)| ]n{||x||2 > R} at
0

<2 /TIE E Svo(x, ) + ——x/ + O ) 1gxf, > 7y| d
STty Jy, e | TR OIR | |EVORE T ) h(t) ™ 2
2 |
S /t hQ(t)Edem [(K + IIXIIQ) L{[x[[, > R}} dt
(i) 2 do—a/2+1 do—d/2+1 T 4
< K2 d—2 _ 2 d _ 2 /
S (01 R ANCEE] exp(—CoR*/2) +017C’2F(d/2 n 1)R exp(—CqoR”/2) . 0 dt

< 1 pepd 9—2/d+2 exp (—C R2/2)>
X — .
to(T — to) T(d/2+1) P2

where the last inequality follows from x = Az and applying Lemma 16, since p, (z) < (2r)~%/2C} exp(—C» ||z||§ /2) for
1zll, > B.

* Bounding Term (C). For any ¢ > 0, denote Sy,¢ as the constructed network approximator to the score function in
Theorem 1. Then we have

(C) < Llsve) = (1 +a) L™ (sv,0) +(1 +a) L™ (5v.0),
——

(C1) (C2)

where (C1) is the statistical error and (Cs) is the approximation error.

As data distribution Py, has sub-Gaussian tail, E(gv’g) = Z“““C(év’g) holds with high probability. In fact, Lemma 16
yields

P X, > R) < = pice o ouR2 )
< B B — .
asta ([Pxlly > B) < Crig s (d/2+1) *p(~CaF"/2)

Applying union bound leads to

d2—d/2+1

Paaia (%ill, < Rforalli =1,....0) > 1 - nCi—me—
data (||l orall 4 n) n 1CQF(d/2+1)

R4 Zexp(—CyR?/2).
Therefore, (C7) is equal to

(Cl) ﬁtrunc(SVe) (1 + a)ﬁtrunc(gv’e)

with high probability. Since Sy g is a fixed function, Lemma 15 implies

EtruDC(S 9) (1 —&—a)ﬁ“““c(év’g) _ O ((1 —|—6/a)(K2 + RQ) 1)

1 _
nto(T — 1) 26

with probability 1 — d. For (C5), we have

Etrunc(s 0) < E(SVO)

1 T 2 _ 1 T 2
— s /tO |‘sV79(~,t)fV]ngt(o)HLz(Pt)dt+£(sV79)*T_to/ ||SV70(~,t)fVIngt(JHLZ(Pt)dt.

to

(€]

18
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Recall that the two terms in (£) are equivalent score matching objective functions. Their difference is an absolute constant,
denoted as (£) = E. By Theorem 1, we have

d
Cy) =0 ———é? E.
(@) (750(T—750)6 > i
o Putting (A), (B), (C) Together. We first take R = O (,/dlogd +1log K +log %) such that n < m, (B) <
m and Pyata (||xi]], < Rforalli=1,...,n) > 1 —¢. Next, we set L = m, which gives rise to
N0 (1+3/a) ((1 + 8)%d? log 7 + log %) ) N (n(K+R)t;10g(T/tg)’SNN’ H'”2) 1
4) = nto(T — to) o8 5 o
with probability 1 — §. For term (C'), we have
oo (1—|—6/a)((1+ﬁ)2d210gt%6+10g%)1 L1 A T
(©) = nto(T — to) R R v Al G
with probability 1 — 24. Summing up error terms (A), (B) and (C'), we derive
L(Bve) < (A)+(B)+(1+a)-(C)
_ o (1+6/a) ((1 + B)*d? log 7 + log %) o N (7»<K+R>tilog(T/to>75NN’ “'“2) Lyl 4 o
o ’nto(T—tQ) & 1) n to(T—to)e

+(1+a)’FE

with probability 1 — 34. Using the relation T%to ftf ISv,e(-,t) — Vlogpt(-)HQLg(Pt) dt = L(Sv,9) — E, with probability
1 — 36, we can bound

1 r
/ ||Sv,9(’,t)7V1ogpt(~)||iz(Pt)dt

T —tg Ji,

o (AF 0/ (U reoeg o) N (amamor S h) 1 4,
o ntQ(Tfto) o8 0 + g + to(T*to)e

+ (2a + a?)E.

Setting a = €2 leads to

1 T
[ vt = Viog () age

to

o e2nt0(T — to) 08 0 n to (T — to) ¢

with probability 1 — 3.

e Covering Number of Syy. The only remaining task is to find the covering number of Syn. Snyn consists of two
components: 1) matrix V' with orthonormal columns; 2) network function fg. Suppose we have V7, V5 and 81, 85 such that
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[Vi = Vallp < 01 and sup|y, <sp+Dlog D tefto. 1) Ifor (X, 1) — fo, (x, )|, < 02. Then we evaluate

sup ||SV1791 (X7 t) — SV4,0, (X7t)||2
[Ix]|, <3R++/Dlog D, t€to,T]
1
== sup |[Vifo, (Vi x,t) — Vafe, (Vo' x, 1),
(t) x|l <3R+vDTog D.telto,T]
1
= sup ||‘/1f91 (VlTxv t) - Vlf@l (‘/QTXa t)”g + ||‘/if91<‘/2Txv t) - Wf92 (‘/QTxv t)”g

h(t) x|, <3R+Dlog D.telto,T]
o+ [[Vafou (Ve %, 1) — Vafo, (V% D), |

1
< w0 (751\/&(31% +/Dlog D) + 6, + 51K) :

where we recall v upper bounds the Lipschitz constant of fg, . For set {V € RP*? . ||[V||, < 1}, its d;-covering number is

Dd
(1 + 2\5/—13) (Chen et al., 2019b, Lemma 8). For the d,-covering number of fg, we follow the upper bound in Chen et al.
(2022a, Lemma 5.3):

<2L2M(3R + /Dlog D))kE ML+ ) !
5 '

To this end, with R = O (\/ dlogd +log K +log ), we compute the log covering number of Sy as

N 6KvVd(3R + /Dlog D D))

toL

log N (¢, Sxw, [I+ll5) = O(?Dd -log (1

+ Jlog "
0

6L2M (3R + /Dlog D))HLMLJrl)

d 1 TrDdlog D
—0 <<(1 + B)ITrd 2= (A1) [og /2 — Dd) (d log — + d2> log TOg) .
0

toLe

Substituting the log covering number into (9), we have

1 T _ 2
— / I5v:0(+) = Vlog pe()a

- (9<((1 +B)2d2logt% +1og%> (

62TLt0 (T — to)

1 TTDdlog D
(1+ ﬁ)dTTdd/2€_(d+1) logd/2 i +Dd ) (dlog - + d2 log %
toe € (T —to)e

TR P
— — € .
n to(T*to)
dloglog(1/e) 1-8(n)

o Balancing Error Terms. Note that log?/? 1 < (1) 29¢0/9" Wesete = n~ a5 , which implies Le=9—3log?/? 1 <
_2-26(n)

n~~ a+5 . Then with probability 1 — 34, it holds

[
/ Isvio () = Viogpi ()17 p,, dt

T - tO tO
d+2 7d/2+4 s N
_o (T(l + B)t d (n—% + Dd,f%) log®/?+3 (;) log D log® n) )
0 0

Setting § = = gives rise to

1
3n
1 T )

o [ lsvaltt) = Viogm Ol de

to
d+2 3d/2+4 Casin "
_0 (T(l +B3)*d (n_z 25(n) + Ddn- d-£3-25( )) 1Ogd/Q-ﬁ-Z’) <f) longog3 n>
0

to
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with probability 1 — }L Omitting factors in d, 3, 7,log D, log t( yields the bound in Theorem 2. O

B.3. Conditional Covariance Bound

We repeat the on-support score expression for reference:

a(t) z - ¢:(2'|z)p.(2) 1 ,
s”(z t) tA/f@ T2)p-(2) dz dz—%Az. (10)

Using (10) and taking derivative with respect to z’, we have

O oo (B ? 22" $u(2|2)p-(2) | [ 26u(z /|Z)Pz() , [ 2 e 2p(z) 1 1
5z %1% 1) = (h(t)> A[ f¢t(z’|z)]9z(z)dzd [ ou(2'|2)p-(2) 2 [ ou(z'|2)p-(2) dz ‘ h(t)A

_ (%)2 A [Cov(z|z') - h(lt)fd] ,

which implies

|Cov(z]z) ||, <

B.4. Truncation Error

Lemma 2. Suppose Assumption 2 holds. Let g be defined in (8). Given € > 0, with R = ¢ (, /dlog % + log %) for an
absolute constant ¢, it holds

lg(A T OL{[[ATx|l, = BY| o,y <€ for t€ [t T].

Proof. Letn € (0,1/2) to be chosen later. Plugging in the expression of g, we have
]I{HATXH2 > R}pi(x)dx

[ Frl.
¢ (A" x|z)p. (z)

|15
/|ATx|2>R /|2|2<n|ATXI|2 ? [ 6u(ATx|2)p:(2) dz

$1(ATx|z)p.(2)
d
+/|ATx|2>R/ all, >l AT xIl, Izl [ ¢(ATx|z)p.(2) a0

<[ 213 6:(A"xl2)61 (I ~ AAT)x)p.(z) dalx
1ATx[l;>R /2], <nl[AT x|,

pe(x) dx

+ / / 2112 ée(ATx[2)ée ((Ip — AAT)x)ps (2) dz dx
[ATx[[,>R J||z]l,>n||AT x|,

(7)
9 / / I2l12 61 (2 |2)ps (z) dz 42
[12’]lo>R Yz, <nllz]l,
(A)

+/ / |22 ¢1(2'|2)p. (z) dz dz’,
2/ ll.>R izl >nll2]l,

(B)

where we recall Gaussian density ¢;((Ip — AAT)x) = (2m)~ (P=D/2p=(D=d)/2(t) exp (—#(t) |(Ip — AAT) x||;>,

and in (), we observe ¢; (A x|z) and ¢ ((Ip — AAT)x) are independent Gaussians for any fixed z.
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5, we have ||z" — a(t)zHg >1 Hz’||§ —a?(t) HzH; > (1 -n) Hz’||§ As aresult, we have

A) < z|2 (2mh(t)) "% ex _%—77 7|3 ) p.(z) dz dz’
(4) < /sz /uz|2smzf||2 BHCI0) p( L )p ()
Z 2 ™ —d/2 X i z' 2 7/
<uleld) [ e e (-2l I1E) a

1 _

2

2h
d/242 d/2+1(¢ 1 _
2” dh’ ( )Rd—2 exp ( 2 nRQ) .
(1/2 —=n)T'(d/2+ 1) 2h(t)

For term (B), under the condition R > 1B V 1, we have

o=,

z||? (27 “dexp | — s 7|
= /|z'||2>R/ 2>l [, =l (2mh ) p< 2(a?(t) + Cah(t)) | ”2)
exp (_ <>+02 H alt) ) ey’
2

2h(t a2(t) + Cyh(t )
< Ci(a(t) + Cgh(t))_d/Q(Zﬂ'h(t))_d/2

a?(t) 2 h(t)d C, o /

| /nz/|2>R {(ag(t) Fonmy 71t az(t)+02h(t)} o (_2(a2(t) T GohD) | 2) dz

*d/2+2dh7d/2(t) Rd exp <_

CoT'(d/2+1)

In term (A), when ||z, < |2’

E[||z]) ]

/ 1215 ¢ (2’ |2) (27) ~/>C1 exp(—C ||zl5 /2) dz dz’
> 1S el >l

o2 —d/22 2
< Ci(a™(t) + Cah(t)) 2(a2(t) + Czh(t))R > '

It suffices to choose 77 = 4. Combining (A) and (B), we conclude

2—d/2+3dh7d/2(t)
e O {AT ], = B, < 1y

R%exp (8(042@) + Coh(t)) R2>

for an absolute constant ¢’. In order for ||g(A"x, t)]l{||ATXH2 > R}H;(Pt) < e, we deduce

R—c<g/dlogd—|—log1>,
t() €

where c is an absolute constant. O

C. Omitted Proofs in Section 5

C.1. Subspace Error and Latent Score Matching Error

For simplicity, we define the (unnormalized) expectation E as

T
Elp(x,t)] = / h%(t)IEprtw(x,t)}dt.

to

During the analysis, we also denote z = A" x and

T
Blolat] = | g Been 04T %,

Define
g(z,t) = h(t)Vlog p;°(z) + z,
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Then the objective of diffusion models is
T —
/ Ex,~p,|lsv.o(Xe,t) — Viog pe(Xe)l[3dt = E[[VEe(V x,1) — Ag(Ax,1)[3.
to
Lemma 3. Assume that the following holds
Eap. |V logp.(2)[3 < C,

AminEZNPZ [ZZT] Z Co,
Eqp. |2l < Cs

We set tg < min { log(d/Cg +1),1,log(1 + ¢o), Wg(%)} and 7' > max{log(C,/d + 1), 1}. Suppose we have

E||VEe(V x,t) — Ag(ATx,1)|]3 < e.

Then we have ;
IVVT - aaT|z = 0( 2e).

and there exists an orthonormal matrix U € R4*<_ such that:

maxy [fp ()| 1, - Ca

_ t
E|UT fo(Uz,1) — gz D[} S € [1+ (T~ logto)d - max [[fa(- )3, + C) + ;
0 0

C.2. Backward Processes
In this section, we provide the distribution estimation error of the learned backward SDEs. The objects of our arguments
are all in the latent space. Specifically, we consider the following decomposition of the ground-truth backward process:
Xi =AZ;7 + X} |, where
Z; =A'X{ and Xj =(I-AAT)X].
We know that the forward SDE for (Z)¢>¢ is
1 T
dZ; = =52, dt +d(AT W),

where Zg ~ P,. Denote PP as the marginal distribution of Z; . The backward SDE for Z;~ is

]_ P
dZi" = | 52§ + Viogpr (Z{7) | dt + d(ATW,).

For the learned process X;~, we consider a similar decomposition }Ef = VZf + 5{; ", Where

Z7 =V'X; and X, =(I-VVHX[.

For any orthogonal matrix U € R?*4, define the U transformed version of Zf as Zfr = UTZf . The backward SDEs
for Z, " is
~ 1~ IPTRPO —
dz; " = {2Z§_’T +Spe(Zy", T — t)} dt +d(UTVTWy), (11)
where 1
S0, (2, 1) = "D [ — 2+ U fo(Uz, t)] .
When X§~ ~ N(0, I), we have Z§ " ~ N(0, I)). We define PP to be the marginal distribution of Z5", .
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The discretized backward SDE is

~ . 1~ aD e —
dZ7" = {2z,§vr+sb'?g(z;’ T —kn)| dt + AU TVTW,) fort € [kn, (k + 1)n).

We define ﬁtI;JD’dis to be the marginal distribution of Z}:fto.

Lemma 4. Assume that P, is subGaussian. fg(z,t) and V log ptP(z) is Lipschitz in both z and t. Assume we have the
latent score matching error bound

T
/ Eg,~pwo 806 (Ze,t) — Vg pi°(Ze)|3 dt < eratent(T — to)-

to

Then we have the following latent distribution estimation error for the undiscretized backward SDE

TV(PLP, PEP) S etatent (T — to) + /KL(P.[[N(0, 1)) exp(—T).

Furthermore, we have the following latent distribution estimation error for the discretized backward SDE

TV(PtIBDa 13t|;D7dis) S \/Elatent(T —to) + \/KL(PZHN(O, 1a)) exp(=T) + v/€ais(T — to),

where

e = (maXz [fo(z,)l[Lip | maxs, ||f9(zvt)‘|2>2 2 (maXter(wt)Hup
s T

2
? max{E||Z|? d.
h{to) 2 h ) o max{EIZo | d) 4

C.3. Orthogonal Process
Lemma 5. Consider the following SDE

1 1
ay, = [5 - m]Yt dt + dBy,

where Yo ~ N(0, ). Then when T > 1 and tg < 1, we have Yr_;, ~ N(0,0%1) with 02 < et.
Lemma 6 (Discretized version). Consider the following discretized SDE with step size n satisfying T' — tg = K.

1 1

where Y ~ N(0, I).

Then when T > 1 and to + 7 < 1, we have Yr_;, ~ N(0,0%1) with 0% < e(to + 7).
C.4. Proof of Theorem 3
Proof. In Lemma 3, we replace € to be e(T' — to) and we set Cg = d by Lemma 10, we have

VVT — AAT|2 = ¢ O(E)

Co

Substituting the score estimation error in Theorem 2 and T = O(log n) into the bound above, we deduce

~ (1 —25(n.
VVT —AAT|2 =0 (n_2 755 LogT/? n) .
Co

The first item in Theorem 3 is proved.

Lemma 10 also implies
ElU fo(Uz,t) — g(2, )3 S €atent(T — to),
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where

t 2.0,
Clatent = € 0([02 ((T—10gto)d-7* +ds) + X - ).
Some algebra yields
T T
_ U'fe(Uz,t) —z 2
EHUng(UZ,t) - g(z,t)”% = / EsztLD G(h(t)) - VIogplt_D(Z) 9 dt < elatent(T - tO)-
to

Therefore, by Lemma 4, we obtain

TV(PEP, PEP%) < V/etatent(T — to) + KL(P.]IN(0, 1)) exp(=T) + v/eais(T — to)

to’

~ 1 1-5(n) \/dlo
:O<«a%”“5bgn+ 1Y Loed +¢*f>
. tg _2-258(n)
With n < Toezat . we deduce
~ 1 1-6(n)
TV(PLP, PP = O @ log’n ).
( to ) \/CQTOTL g n

By deﬁnmon PLD dis — = (U V)J]gtdnis. The total variation distance bound in item 2 is proved. The Wasserstein-2 distance

W, (PE to , P.) is bounded using the same technique as Chen et al. (2022b, Lemma 16). Although they require bounded
support, the proof only relies on finite second moment of P,, which is verified under our Assumption 2. As a result, we have

W (P, P) = O (\/%) .

Lastly, in item 3, due to our score decomposition, the orthogonal process follows that in Lemma 6. Invoking the marginal
distribution at time 7" — ¢( and observing 7 < ty, we obtain the desired result. O

D. Omitted Proofs in Section C
D.1. Proof of Lemma 3

We introduce several lemmas in preparation for the proof of Lemma 3.
Lemma 7. Let X,Y be random variables, A,V € RP*? have orthonormal columns. Then E ||V X — AY||§ < e implies

1
(b = VV AR < v = —

where A, is the smallest eigenvalue of ]E[YYT].

proof of Lemma 7. Notice that the best L? approximation in the subspace Im(V') to AY is VT AY’, which can be verified
through the following calculation:

VX —AY |2 = [VX —VVTAY |3+ |[VVTAY —AY |2 +2(VX —VVTAY,VVTAY — AY)
=||[VX —VVTAY |2+ [VVTAY — AY || 4+ 2(X —VTAY, VT (VVTAY — AY))
=|[VX -VVTAY |3+ |[VVTAY — AY|3.

Therefore, we have
VX —AY|[3 > [[VVTAY — AY|[; = [|(Ip = VV ) AY[]3.
Then
>E|VX — AY 3
E||(Ip - VV ") AY 3
Tr [AT(ID —-VV)(Ip-VVHA-EYY']
Am
> A

v

Y

Tr [AT(Ip - VV T )(Ip — VVT)A]
mlnH(ID - VVT)AHF
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Lemma 8. Assume that we have -
EHVfg(VTx,t) — Ag(ATx, t)H% <e

There exists an orthonormal matrix U € R%*?_guch that:
E|U fo(Uz,t) — g(z,1)|3
€ _ €
Set— Ele@ )z +5—

min )\min

where >\min = )\min(fE[g(Z7 t)g(Z, t)—r])

fEHZH% : mtax ”fe(vt)H%zp

Proof of Lemma 8. Since -
E|[VE(V x.t) — Ag(ATx D3 < e,

by Lemma 7, we have
e 1
Ip = VVDAIR <ev < —e,

where Ay is the smallest eigenvalue of E[g(z,t)g(z,t)T].

Then by Lemma 17, we know that there exists an orthonormal matrix U € R%*? such that

U —VTA|} < 2ey.

We have the following error decomposition
E|U fo(Uz t) - g(z t)|5 = Elfo(Uz,t) — Ug(z,1)]13
SE|fo(Uz,t) — fo(UU TV ' Az, t)|3
+E|fo(UUVT Az, t) — VT Ag(ATx,1)||2
+ EHVTAg(ATX, t) - Ug(z,t)H%
Next we provide upper bounds on the three terms.
E|fo(Uz,t) — fo(UU V' Az, 1)|3 <E|fo(-, )l 1;, - [U(Ta — UV A)zlf3
< max||fo (-, )7, - EIIU(Lg = UTV " A)zll3
< max|lfo(-,)|Z;, - [a — UTV T A|3 - El|z]3
= max||fo (1), - [U — VT A|3 - Ellz]3

< 2max |[fo (-, )iy, - Ell2ll3 - ev-

E|fo(UU TV T Az, t) — VT Ag(ATx,t)||2 = E||fo(V " Az, t) — VT Ag(ATx,1)]|3
<E|Vfe(V Az, t) — Ag(A"x,1)|3

€.

IA ]

E|VTAg(ATx,t) — Ug(z t)|3 < |[VTA- Ul -Ellg(z )3
< 2ev - Ellg(z,1)]3-

Proof of Lemma 3. The proof is dedicated to compute the problem constants in Lemma 8.

Denote E;¢(x) = Ex~p,¢(x) and E;$(z) = Eyxp, ,— a7xP(2). Specifically, Egp(z) = E,p, #(z).
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Properties of /(). We set g(t) = 1. Then h(t) = 1 — exp(—t), h~!(w) = —log(1 — w). And we have

1—h(t) 1
t= .
/ 0 d = exp(l) + Constant

1
/ %dt = log(exp(t) — 1) + Constant.

1
/ mdt = exp(t) + Constant.

We have the following bounds

21 — h(t) 1
dt < —.
/t R2(t) Tt

1

to 1
—dt <ty —logty.
/tl e TR

to 1
——dt < -t — 1.
[51 11— h(t)d S exp(tg) tl

Upper Bounds for E||z|3.

m 2 T 1 2
]E||Z||2 = ] hQ(t)Et”z”th
0

T 1 9
- / g [ = A(O)Eolal3 + ht)dar

T T
1 — h(t) ) / 1
— dt - Eqllzll5 + ——dt-d
/to h2(t) ollzllz+ | 5

1
—Eol|z]* + (T —logto) - d
0

IN

1
t—Cz + (T —logty) - d.
0

Upper Bounds for E||g(z, t)||3.
Ellg(z, t)[13 < 2Eh(t)*||V log p;° (2) |13 + 2El|z]3.

By Lemma 9, we have

T
EA(t)2]|V log pi°(2) 2 = / Ed[|V log pt° (z) [2ds

to

T 1 1
< 1 [ 2 - A
< /to mln{lh(t)EOHVlogpz(z)b, h(t)d} dt

We see that when ¢ increases, 1/(1 — h(t)) increases and 1/h(t) decreases. By setting

1
1— h(t)

1
h(t*) d

Eo||V log p.(2)||3 =

we have

- i)
d+Eo||Vzlogp.(2)|l5)
Notice that we have chosen ty < log(d/Cg + 1), where Eq||V log p.(z)||3 < Ck. Then we have

tg <log(d/Cg + 1) < log(d/Eqo |V log p.(z)||5 + 1) = t*.
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Therefore
B t*AT 1 T 1
BAGP IV lomnt® (I < | oyt Bl Viosp- Gl + [ qrsat
< exp(t*) - Bol|V ogp-(2) [} + (T — log(t* A T)) -d
< (d+ B[V logp. (2) ) + (T ~ log o)
S Eo||Vlogp.(2)|3 + d(T — logto).

Lower Bounds for \,..i, (Eg(z,t)g(z,t)"). By Lemma 9, we have

Eig(z,t)g(z,t)" = Eizz' + h(t)*E;V log ptP(2)V log p:P(z) "
+ h(t)E;ViogpP(z)z" + h(t)E,zV log piP(z) "
= (1 — h(t)Eozz" — h(t)I + h2*(t)E;V log pi°(2)V log ptP(z) "
= (1 — h(t))Eozz' — h(t)I.

Denote A\g = Amin(Eozz "), then we have for any tq < T* < T,

T _
Ain (B (2, 1)g(2,) ) = / <1h2(};()t) Yo ﬁ)dt'

to

Taking maximum w.r.t. to 7 and we get:
T* =h ' (No/(No +1)).

We need to verify that the above T* lies in [tp, T]. Notice that we have d\g < Eg||z||? < C,. By the assumptions that
to <log(l+ cp) and T' > log(C,/d + 1), we have

T > log(Cy/d+ 1) > log(1+ Ag) = T*,

and
to <log(1l+ o) <log(l+ Ag) =T

Therefore

Amin(Bg (2, t)g / OT Ao — %)dt

1
Ao — (T —logt
- [1 - eXp (T*) 1-— eXp(to)} 0~ o to)

= — log(1 log ¢
exp(to) — 1)\ 0g(1+ Xo) +logt

Q)
> 21 _ 1 —log(1+ Xo) + logty
€ to
()
1%
- 2e to
)
— 2e to ’
where we use exp(tg) — 1 < etg for to < 1in (7).

Then by Lemma 7 and Lemma 17 we know that

VYT — 4472 <e-0(2)

Co
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Next we show that (4¢) holds. Since we have chosen ¢y < one can show that

€o
4elog(4e)’

— > —log

1 _ 4e (46(1 + co)>
to Co '

Co

Then
1 _ 4de Og(4e(1—|—co)) > 4£10g (46(14—)\0)).

)\() )\()

6(1 + )\0) 462(1 + )\0) )\0
1 —2) -1 < — 1.
Og( to ) ©8 Ao ~ dety
Then
1+ 4e*(1+ A A
1+ log(1+ A\g) — logtg :1Og(m) < log e’(14 Xo) RN
t )\0 4€t0
de(14Xo) . Ao
/\0 4€t0
X Do
< 20 4 79
~ ety + 4ety
o 26150.

By substituting the above bounds into Lemma 8§, we have
E|lU fo(Uz,t) — g(z.1)]3
€ - €
Se+ —— Elgln 3+ —

min )\min

Elz]|3 - max||fo (-, t)l|7,

maxy |[fo (-, 1)17, - Cz}

t
Se- [+ 2 (T = togto)d - max |Ifo (- )13, + C ) +
Co t Co

where we assume max; [|fo (-, 1)]|7;, = Q(1).

D.1.1. EVOLUTION OF SCORE FUNCTION

(12)

(By (12))

In the subsection we analyze the property of V log ptP(z) in terms of the assumptions made on V log p, (z). Specifically, at

time ¢, the distribution piP(z) is given by
Zy ~ sz Z|ZO ~ N( 1-— h(t)th(t)Id).

Lemma 9. We have the following holds

4y

. 1
[ PP torpP @)z < mind s [ . (a0)]V o - o) o 75

and
/p%D(Z)VIOgPtLD(Z)ZT dz = —1I,.

Proof. In the proof, we drop the superscript in ptP for simplicity and denote p; as the probability density function of z at
time t. We use ¢;(z|zo) to represent the density function of z|zy ~ N(1/1 — h(t)zo, h(t)I4). By Integration by parts, one

can verify that

1 IPO(ZO)¢t(Z|Z0)Vlogpo(zo)dzo.

Vlogpi(z) = =0 T po(20) bt (2]20)dzg
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[ @90 (2) 0z = o [ LIl Eoeminls,,

a pi(z)
1 By @) Vioepo)ll3
-/ () 4
1 Em(ZoIZ)[p%(Z)HVlogPO(ZO)Hg]
S Toh / e(2) dz
— =i [ Pl @) o o)
1

- m/PO<Z0>HV10gpo(zO>||§dzO.

Further, we have

th(z)
Vio z) =
g pe(2) i(z)
_ | po(z0) Vi (2|zo) dzg
pt(z)
—(z— —h(t)z
_ fpo(m)@(ﬂ%)% dzg
pe(z) '
Therefore,
, | J polz0) e (2lz0) ~ ==V dazo|3
[ @IV 08| dz = [ () . dz
pi(z)
. )prxz)pt(z()\z)*(z*— G dal
- / s 17 (2) ‘
2
—(z —+/1—h(t)z
= [n@)| [ nisn = - 020) 4,0l
2
2
—(z —+/1—h(t)z
g/pt(z)/pt(z0|z) ‘ ( 10 (t)z0) dzo dz
2
2
—(z—+/1—h(t)z
:/po(zo)/ébt(z\zo) | ( 0] (t)zo) dz dz
__d
 h(t)
where we use the fact that z|zg ~ N(1/1 — h(t)zo, h(t)I;) in the last equality.
To summarize, we have
d

/pt(z)HVIngt(z)H%dz < min{%h(t)/po(zo)||Vlogp0(zo)||%dzo, m}

This is tight for Gaussian.

Next we prove that

/pt(z)woa‘a’Pt(Z)zT dz = —1I,.
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We have
—(z—+/1—h(t)z0)
Po(20) ¢t (zl20) —— 57— dzo
/pt(z)V log py(z)z' dz = /pt(z) / h(t) z' dz
pe(2)
—(z — /1 —h(t
= //po(zo)@(z\zo) (=2 0 ( )ZO)ZT dzo dz
=—1I,.
where we use the fact that z|zg ~ N(1/1 — h(t)zo, h(t)I;) in the last equality.
O
D.1.2. OTHER LEMMAS.
Lemma 10. Suppose Assumption 3 holds. Then we have E,.p_ ||V logp.(z)||3 < dB.
Proof. We have
EZNPz Vlogp. (Z)v log p. (Z)T = /pz (Z)v log p. (Z)V log p. (Z)T dz
= / Vp.(z)V logp. (Z)T dz
=— /pz (z)VVlogp.(z)" dz. (Integration by parts.)
Therefore
Eyr. |[Viogp.(2)]* = Tr [ - /pz(z)vv log p-(2) da| < fd.
O

D.2. Proof of Lemma 4, Undiscretized Setting

First, we show that the Novikov’s condition holds

Lemma 11 (Novikov’s condition). We have

1 T—to N
Bexp (5 [ [T~ 0) = Vioapl?, (20) ) < .

2
where the expectation is taken over the ground-truth latent backward diffusion process (Z;);.

Proof of Lemma 11. We consider the forward process (Z;)o<¢<7, which is an O-U process. We know that (Z5_, )¢ <t<T
and (Z; )y, << has the same distribution. Therefore, we have

1T
Baow (5 [ ISR (20T 1) - Viogp®, (21 k)

0

1" o LD 2

=K (z,), exp (5/ ISg,1/(Z¢,t) — Vlog py (Zt>||2dt)-
to
The solution of (Z;) can be explicitly calculated as
t

Z, = e %2 +/ e*/2dW,.

0
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And the two terms Zg and fot e*/2dW  are independent.

Denote C' = maxieps, 1) [867(t)lLip + maxieps, ) [|V1ogpi®()lLip and Co = maxieps, 1 [[5p1,(0,1) —
V log ptP(0)]|2. By our assumptions on the Lipschitz constants of the score network and the ground truth latent score
function, we have C, Cy < 0o, we have

Eexp (3 / ||§5DU<zt,t>—v1ogka<zt>||§dt)
<E (1 c?||Z ||2dt) (1 Tc%u)
S exp B) " tll2 exp 9 " 0
T T t 9
gEexp(/ C’QHe_t/2Z0H§dt+/ C’QH/ eS/ZdWSH dt)

C’QHeftﬂZOH%dt) Eexp(/t CZH/
0

Since by our assumption that Z is Sub-Gaussian, we have the first term is finite.

:Eexp(

)

For the second term, by Theorem 5.13 of (Le Gall et al., 2016), there exists a d dimensional Brownian motion B; =
(Bt(l)7 e ,Bgd)) such that

to

t
/ e*2AW, = B ;.
0

Therefore,

Eexp(/ OQH/ /2 AW, H dt) Eexp 02/ IBoi_ 1||2dt

(
—Eexp (¢ [ - 1B
= Eexp (d02 /to ) (1)| 1ds)
<E (d02 /to 1 s+1 ds- osglizt |B§1)|2)'

el —1
to—1 s+1

Denote C = dC? | —Lds < 0.

By the property of Brownian Motion (Theorem 2.21 of (Le Gall et al., 2016)), supg< < Bgl) has the same distribution as

|Bt(1) |, which is sub-gaussian. Since supg< <, |B§1)\ < SUPg< <y B — Supogsgt(_Bgl))’ we know that

2
Eexp (Cg sup |B£1)\2) < Eexp (C’g‘ sup BV — sup (—Bgl))’ )

0<s<t 0<s<t 0<s<t

2
< Eexp (202’ sup B 1)‘ —|—‘ sup ( Bgl))’ )
0<s<t 0<s<t

2
< E/? exp (4C2‘ sup Bgl)‘ ) .EY/? exp (402‘ sup (_Bgl))’ ) < 0.

0<s<t 0<s<t

Then we have the following result:

Lemma 12. When both started with Z§~ =4 ZE,_ N P;D, the KL divergence between the laws of the paths of the processes
(Zi Yo<t<T—t, and (Z; " )o<i<T—1, can be bounded by

1 [Tt 1
KL=E(3 / [85% (2. T — #) = Viog 2., (Zi7) [3dt) < Seratent(T = to).
0

32



Score Approx. Estimation and Distribution Recovery

Proof of Lemma 12. Since by Lemma 11 the Novikov’s condition holds, we invoke Girsanov’s Theorem (Chen et al., 2022b)
(Theorem 6). O]

Proof of Lemma 4, part 1. We use the same argument in (Chen et al., 2022b). The subtlety here lies in that the initial
distribution of the learned backward process (11) is N(0, 1) rather than PEP. Recall that PP is the marginal distribution of

Z%", when started from N(0, I;). We define Q}P to be the marginal distribution of Z5", when started from Z§ " ~ PXP.

Then we have
TV(PL, PL) < TV(PLP, QiP) + TV(QLP, EP)

to ?

For the first term, since marginalization only reduces the KL-divergence, we have by Lemma 12 and Pinsker’s Inequality
TV(PtIBDv @It_(?) 5 €latent (T - tO)

For the second term, ]5th and é'{(? are obtained through the same backward SDE but with different initial distributions.
Therefore by Data Processing Inequality and Pinsker’s Inequality, we know that

V(G PL2) < /KL(QHP|IPP) < \/KL(PEP(IN(0. 1)) £ V/KL(PN(D, 10)) exp(~T),

where in the last inequality we use the exponential convergence of the O-U process. [

D.3. Proof of Lemma 4, Discretized Setting

Assume we choose 7 as the time interval such that T — t, = Kpn. We first show the Novikov’s condition holds.

Lemma 13 (Novikov’s condition). We have the Novikov’s condition holds for the discretized setting.

KT 1 (k+1)n 1 2
E exp Z / kn+sU9(zg7,T—k:n)— 52 — VliogptP (Zi) dt) < o0
kn 2
where the expectation is taken over (Z; )¢>o.
Proof of Lemma 13. The proof is similar to the proof of Lemma 11.
oy (k—HM LD 1 LD 2
EGXP Z / kn+SU0( EWT—kn)—§ZZ_—V10ng7t(Z§_)szt>

KT—l T—k
1 g 1 - 1
= Eexp Z */ ||§ZTfkn + 8000 (Zr gy, T — k) — §Zt - Vlogp%‘lt(zt)llgdt)

k=0 T—(k+1)n
KT ! 3 Tk ~LD 2 LD 2
< Eexp 5 || Zp_jn — Zt||2 + lIste(Zr—ky, T — kn)||z + ”Vlongft(zt)”th)
k=0 T—(k+1)n
Kpr—1

3 T—kn
S| G CPlzenl + Ol i)

k=0 T—(k+1)n
3c2 (T 300 3c2 Lt
=Bewp (%5 [ Imdat + (70750 + 20 > Zr-ol8)
@ 3C*(Kr +2) [T 2 3C3 (KT +2)
SEexp (T | |Zdl3at) + Eexp (T —t0) =25—=)
to
= 3C2(Kr + 2) )
+ 3 Bexp (S 20 3)
k=0
(i1)
< 0.
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where
Co < max |V 10g 0 (0) | + max 5P (0, 1) < oo,

C <1+ max|Viogpi° ()| zip + max S5 (-, )| Lip < 0.
and in () we use

EA} 4 --- + EA?

)

EA;---- A4, <

n

and in (i2) we use the fact that Z is subGaussian, and a similar argument in the proof of Lemma 11. O

Lemma 14. When both started with Z§~ =4 Z;T " ~ PEP, the KL divergence between the laws of the paths of the processes
(Zi )o<t<r—t, and (Z;"")o<t<7—1, can be bounded by

! (kD 1 LD — 1 — LD 112
KL= B( [ 2+ 805, T~ ko) — 52— Viess, (27 [3ar)
k= n

- <maxz Ifo(z, )|l Lip
~ h(to) t%

+ n(T — to)d + Elatent(T — to).

2Oy — o) (B2 ) () 20l 0

proof of Lemma 14. Since by Lemma 13 the Novikov’s condition holds, we can invoke Girsanov’s Theorem as in (Chen
et al., 2022b) (Theorem 6). Next we provide an upper bound on the discretized score matching error.

(k+1)n 1 ~LD < 1 — LD —\ 12
B(5 [ 152+ S T — k) — 52— Vlogp® (Z0)[ar)

n

(k+1)n 4

1526~ 523 dr

(k+1)n
<( [ IRlREE, T~ k) — Viegst? (27 ) e) + B [
n n

We decompose the first term as

(k+1)n
B( [ B4R (i, T — k) = Vloxnt? (20 ) k)
n

(k+1)n
SE( [ IR0z, T — ko) 348 2, T - 0)at)
n

(k+1)n
vu( [ Rz, T - 1) - $iR(2 T - 0)Bar)
kn

(k+1)n
V([ R T - 0 - Viogs? (20 [hdt)
k

n
(k+1)n
SE( [ 1Lt~ lae)
kn
(k+1)n
—I—IE(/ 12|12t - Z; |3at)
kn

(k+D)n
+B( [ Rt T 1)~ Viegst® (2 ) k)
n

For any s < ¢,
E|Zs — Zi|?dt < (t — 8)°E||Zs|3 + (¢ — s)d < (t — ) max{E||Zo||3, d} + (t — s)d.
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Therefore

(k+1)n )
([ 12k, - 21 [3ar)
kn

(k+1)n
= ]E(/kn [(t = kn)? max{E||Zo||3, d} + (t — kn)d] dt)

< n® max{E||Zol|3, d} + n*d.

Finally we have

(k+1)n 4 1
B[ I+ 802 T k) - 37 — Vioe? (7))
n

S LI (T —to) + (1 + L2)n*(T — to) max{E||Zo||3, d} + n(T — to)d + €iatent (T — to).

where )
= def ~
L g 850 )iy < s (14 max o D)),

and
maxy ||fo(z, )| Lip , maxg||fo(2, )2

h(to) t

7 def ~LD
Lo max [Py (2, )|y <
To see why the above two bounds on the Lipschitz constants hold, notice that

~ 1
e ) = 15 [~ 2+ UTf(Uz1)].

To calculate the Lipschitz constant of %, notice that

a(t) als)| _la(t) a(s)|  |al(s) a(s)| _ llallLiplt —s|
B S A I P A A i S A At —s|- -
0 e | S o e | T T we | S mim g T clall- e = sl L/
We use the fact that
RN TR St
h(t) || L B te[to,}é"] R2(t)|  elo4e~to —2 = 2

O

proof of Lemma 4, part 2. For the discretized setting, only notice that by Lemma 14 there is an additional error term
€dis (T — to). D

D.4. Proof of Lemma 5
proof of Lemma 5. Define 1(t) = exp fot {ﬁ — %] ds. Plug in h(t) = 1 — exp(—t), we have

el —1

_ t/2
w(t)_eT_ete/ .
‘We know that the solution of Y} is
1 t
Y, =—|Y dB;|.
t 1P(t)[ 0 +/O Y(s) ]

/0 B(s)2ds = (7 — D2[1/(e7 — et) — 1/(e7 — 1)),
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When Yo ~ N(0, I), we have
14+ fo P(s )2 dSI).

We provide an upper bound of
yodes 1+ Jo ¥(s)?ds (12! — )]
' P(t)? B ¥(t)?

= (T —el) /et =Tt — 1.

(whenT > 1)

Therefore, we have when tg < 1
Vg, < e —1 < ety.

To conclude, we know that Y7 _, is a zero-mean Gaussian random variable with covariance bounded by ety .

proof of Lemma 6. Denote a(t) = ﬁ — % We know that
Y(k+1)n — Ykn = _na(kn)Ykn + B(k-‘rl)n — Bkn~
Denote by V}, the variance of Yy,. We know that Y, ~ N(0, V%;). And we have the following recursion
Vo =1, and Viy1 = (1 — a(kn)n)?Vi + 1.

By solving the recursion we know that

Kr—1 Kr—1 Kr—1
VKT:H{I—(X]W]}-F’I]Z[H l—akn }
k=0 i=
Define (t) = exp fo s) ds. We have
e
Y(t) = —— et e,
Since «(t) is monotonically increasing, we have
ko
H [1 — a(kn) } H exp [— a(kn) }
k’:kl k= kl
k2
< exp {f > a(kn)ﬂ
k=Fk1
kan
< exp [ - / a(t) dt]
(k1—=1)n
(ki — L)
¥ (kan)
Therefore we have
Kr—1
¥ (=) k-1

) (k= Dn)
Vier = (e - T ,; V2((Kr — 1))’

Since (t) > 0 and ¥ (t) monotonically increases, we have
V2 (=n) + 0> w3 ((k = 1))
V(K —1)n)

B ) R S O ¢
R (CET)

Vi, <
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By

‘We have

E. Helper Lemmas

/0 ¥(s)2ds = (e — 1)2[1/(e7 - et) — 1/(e” - 1)]

Y2 (=) + [T g2 e
V2 ((Kr — 1))
_ )+ (7 =12/ T ) — 1/(eT — 1))

Vir <

- YT —to — 1)
<1t (" —1)2[1/(e" —eT o) =1 /(" = 1)]
- YT —tg — 1)
(eT _ 1)2(6T _ eT—to—n)
- Y2(T —to —n)

W2 (—n

)< D

(whenT > 1)

(whentyp+n<1)

O

We collect technical results frequently used in previous proofs. We group them according to topics: concentration inequality,
Gaussian integral tail bounds, matrix norm inequalities.

Bernstein-Type Concentration Inequality The following concentration bound is useful in the proof of Theorem 2.

Lemma 15. Let G be a bounded function class, i.e., there exists a constant B such that any g € G : Re

Z1,...,Zpy € R< be i.i.d. random variables. For any 0 € (0,1),a <1, and 7 > 0, we have
(1+3/a)B N(TagvHH )
i E 1 =
(Zlellga Zg zi + a)Elg(z)] > = log 5
n 1 .
P | supE[g Z +6/a)B log NG o) +2+a)r ) <4
g€eG =1 3n 1)

Proof. The proof utilizes Bernstein-type inequalities. Consider the deviation sup ¢ LS 1 9(z) —

+ (2+a)7’> <4 and

[0, B]. Let

(14 a)E[g(z)] first.

Let {gx } (m.9:loe) e a discretization of G, where A/ (1,6, ||l o) is the covering number with respect to the function L

norm. Then we have

sup = S g(a) — (1 + a)Eg(z <maxfzgk () — 2Blgu(2)) + (2 + o),

as for any g € G, we can find some gy~ such that ||g — gi+ |

<max — ng z;) — (1 + a)Elgr(z)] >

By union bound, we have

<max Y

< 7. Therefore, it is enough to show

3n )

(1 + a)Elgi(a)] > LY 1o, NS, ||-|oo>>

oo>> -

N(T7g7 ||||oo

3n

NG, I lo)P (:L Zgl(zi) — (14 a)E[g1(2)] > (14+3/a)B

i=1
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Therefore, it further suffices to provide an upper bound on

( Zgzi 1+a)E[g(z)]>(”334@31%/“(%95-IIOO)>,

where g € G is any fixed function. Let A > 0 be some parameter to be chosen later. Chernoff bound yields

n T . ex 1 m Z;
P (Tll Zg(zz') — (1 +a)E[g(z)] > C +33n/a)B log N ’gé’ ” °°)> < E [exp (X (("(Er:;;)fé 1) (IT;” ﬁE[“CS( 2)))] .
= 3n

exp
(13)
It remains to find E [exp (A (2 37 g(2i) — (1 4 a)E[g(2)]))]. We rewrite

- Zg (1 +a)E Zg 2) — aElg(a)] ~ Elg(a)] <~ 3 () ~ Elg(a)] ~ SEl*(z)].
i=1
Introducing independent ghost samples z1, .. ., Z,, we have
=3 o) — Elg(a)] — 5B = = Y g(m) ~ s [; > 9(z) |~ SElG ()

where inequality (i) invokes identity Var [g(z) — g(Z)] = E[(g(z) — g(2))?] < E[g%(z) + ¢°(2)]. For convenience, we
denote h; = g(z;) — g(2;). For 0 < A < 3n/B, we compute

E{exp(ihﬂ E 1+Ah +ZM

Jj=2

® = (\n)iBi?
]:

(ii) 2
< exp (3)\ Var(hi)> ,
n n

where inequality (¢) follows from E[h;] = 0 and |h;| < B, and inequality (i¢) invokes 1 4+ = < exp(xz) for z > 0. To this

end, we derive
A
2y ohi-
n

o (i) 2o

3)2 - Ao —
< = 1 )
=P <6n2 —9ABn Zlvar[hl] 2Bn 2= M) ’

n n

where (i) follows from Jensen’s inequality. We choose A = (Hgﬁ’ which satisfies % = 2Bn and A < 3n/B.
Substituting into (13), we obtain

P<;Zg<zi>—<1+a>mg<z>1> (+5/08 N0, ||-oo>> “ e (_IOgN(T,Qé ||.|oo>> :N<T,g6.|| -
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Therefore, the first inequality is proved. The second inequality can be proved in the exact same argument, by observing

Elg(a)] ~ 23" gla) =2 (E@(z)} ~ 1Y () - E[g(z)])
<2 (E@(z)} ~ 23 gl - QBE[g%zn)
The proof is complete. U

Tail Bound of Gaussian Integral Tail bounds of Gaussian integrals appear frequently in score approximation and
estimation theories. We show the following results.

Lemma 16. Consider a probability density function p(x) = exp (fC ||x||§ / 2) for x € R? and constant C' > 0. Let
R > 0 be a fixed radius. Then it holds

/ (x) dx < 2drd/?
px)dx < ————
lxll,> R CT(d/2+1)
2 2d7Td/2
x|hpx)dx < ——F——
/| o RIEPOO O < s

R4 Zexp(—CR?/2),

R exp(—CR?/2).

Proof. We apply change of variable using polar coordinate systems. For the first integral, we have

[ o= [ en-Clxi/2ax
lIx[l, >R lIx[l, >R

/ / exp 072/2 Hsmd =1 6;) drdf,...d0g—
01,.

@) dr?/?

= T2 1) /R rLexp (—=Cr?/2) dr

(i) d(QW)d/Q /OO d/2—1
= 0T Jom s u exp(—u) du

(2m)*/? /°° 2/d

S L A — 0?4} g
Cd/2I‘(d/2 + 1) (CR2/2)d/2 xp ( v ) v

(iid)  dnd/?

= oTdR+)

R4 exp(~CR?/2).

In (i), we invoke the identity fo f91 6y1 rd=1 H?;f sin®™I7H(0;) drdf;...d0;, = foH o dx = W being
; 2<

the volume of a unit d-ball. To obtain (m), we change variable by letting v = Cr? /2. Inequality (i7i) bounds the upper tail

of incomplete gamma function (Qi & Mei, 1999, Inequality (10) with o = 2/d, A = —d).
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A similar argument can be applied to the second integral:

/| e dx = / R||x||§exp<—c||x||§/2>dx
x2>

lIll,>

/ / Lexp (—Cr?/2) Hsmd I=H0;) drdfy ...d0;
01,....,0a—1

dr/? > d+1 2
- —Cr?/2
I‘(d/2+1)/R r exp( C’T/)dr

dnd/2 ) d/24+1  roo
O
(d + 2)F(d/2 + 1) C (CR2/2)d/2+1

2drd/?
< -
~ Cr(d/2+1)

Reexp(—CR?/2).

The proof is complete.

O

Matrix Norm Inequalities The following lemma deals with matrices with orthonormal columns, whose linear span is

approximately equal. These are useful results in deriving score estimation error bounds in Theorem 3.

Lemma 17. Let A,V € RP*? with d < D be two matrices with orthonormal columns, i.e., AT A=V TV = I;. Given

any € > 0,if ||(Ip — VV ") A||2 < ¢, then the following holds

(a).
[(Ip — AAT)V|2 < e,
[VVT — AAT |7 < 2¢,

[VTAATV — Iyl < 2e.

I

(b). There exists an orthogonal matrix U € R?*? such that

|U - VTA|lL < 2e.

Proof of Lemma 17. The first set of results in item (a) follows from some algebraic manipulation.

|(Ip — AAT) VH? first. We have
T Ty Ty T
D
|(fp = AAT) V][ = Tx (v = 44TV) (v = 447V) ")
=Tr (VV' —A4ATVVT)
Tr (VVT —AATVVT —VVTAAT + AAT)

1=
=

1
5
%Tr ((AAT —VVT) (AAT —VvVT))
1 2
D) HAAT - VVTHF7
where (i) follows from Tr(VV' ") = d = Tr(AAT). Similarly, we have
2 1 2
l(7p = VvV ) Allp = 5 [[AAT = VV T
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Next we consider |V TAATV — I,||% . We have

[VTAATV — 1|2 =

Tr(VIAATVVTAATV —2VTAATV + 1)
=Tr (VVTAAT(VVT —Ip)AAT + (Ip —VVT)AAT — AAT + 1,)
=Tr (VVTAAT(VVT Ip)AAT + (Ip —VVT)AAT) — Tr (AAT — 1)
=Tr (VVTAAT —Ip)(VVT —Ip)AAT)
=Tr (VVTAAT — VvV (VVT —Ip)AAT) + Te (VVT = Ip)(VVT —Ip)AAT)
<|[vvT(aaT - (VVT = Ip)AAT ||, + |[(VVT = In)AllL
<e€e+4e= 2.

D)l - |

For item (b), we consider the SVD decomposition of VT A. Let VT A = W, W5, where Wy, Wy € R?*4 are orthogonal
matrices, and ¥ = diag(sy, so, - - , 8¢) are diagonal matrix with s1, ..., sq being the singular values of V' A. Then we

have
d

[VTAATY — L5 =Y (s7 — 1)%

i=1
Let U = W, Ws € R?*4. Then we know that U is orthonormal. We have

d

[U-VTAL =3 (s - 1)2

i=1

<Z )2(si+1)2

The proof is complete. U
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