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Abstract
Score-based diffusion models, while achieving
remarkable empirical performance, often suf-
fer from low sampling speed, due to extensive
function evaluations needed during the sampling
phase. Despite a flurry of recent activities to-
wards speeding up diffusion generative modeling
in practice, theoretical underpinnings for acceler-
ation techniques remain severely limited. In this
paper, we design novel training-free algorithms
to accelerate popular deterministic (i.e., DDIM)
and stochastic (i.e., DDPM) samplers. Our accel-
erated deterministic sampler converges at a rate
O( 1

T 2 ) with T the number of steps, improving
upon the O( 1

T ) rate for the DDIM sampler; and
our accelerated stochastic sampler converges at
a rate O( 1

T ), outperforming the rate O( 1√
T
) for

the DDPM sampler. The design of our algorithms
leverages insights from higher-order approxima-
tion, and shares similar intuitions as popular high-
order ODE solvers like the DPM-Solver-2. Our
theory accommodates ℓ2-accurate score estimates,
and does not require log-concavity or smoothness
on the target distribution.

1. Introduction
Initially introduced by Sohl-Dickstein et al. (2015) and sub-
sequently gaining momentum through the works Ho et al.
(2020); Song et al. (2021), diffusion models have risen to
the forefront of generative modeling. Remarkably, score-
based diffusion models have demonstrated superior perfor-
mance across various domains like computer vision, natural
language processing, medical imaging, and bioinformatics
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(Croitoru et al., 2023; Yang et al., 2023; Kazerouni et al.,
2023; Guo et al., 2023), outperforming earlier generative
methods such as GANs (Goodfellow et al., 2020) and VAEs
(Kingma and Welling, 2014) on multiple fronts (Dhariwal
and Nichol, 2021).

1.1. Score-based diffusion models

On a high level, diffusion-based generative modeling begins
by considering a forward Markov diffusion process that
progressively diffuses a data distribution into noise:

X0
add noise−→ X1

add noise−→ X2
add noise−→ · · · add noise−→ XT , (1)

where X0 ∼ pdata is drawn from the target data distribution
in Rd, and XT resembles pure noise (e.g., with a distribution
close to N (0, Id)). The pivotal step then lies in learning to
construct a reverse Markov process

Y0
use scores←− Y1

use scores←− Y2
use scores←− · · · use scores←− YT , (2)

which starts from purse noise YT ∼ N (0, Id) and main-
tains distributional proximity throughout in the sense that

Yt
d
≈ Xt (t ≤ T ). To accomplish this goal, Yt−1 in each

step is typically obtained from Yt with the aid of (Stein)
score functions — namely, ∇X log pXt

(X), with pXt
de-

noting the distribution of Xt — where the score functions
are pre-trained by means of score matching techniques (e.g.,
Hyvärinen (2005); Ho et al. (2020); Hyvärinen (2007); Vin-
cent (2011); Song and Ermon (2019); Pang et al. (2020)).

The mainstream approaches for constructing the reverse-
time process (2) can roughly be divided into two categories,
as described below.

• Stochastic (or SDE-based) samplers. A widely adopted
strategy involves exploiting both the score function and
some injected random noise when generating each Yt−1;
that is, Yt−1 is taken to be a function of Yt and some
independent noise Zt. A prominent example of this kind
is the Denoising Diffusion Probabilistic Model (DDPM)
(Ho et al., 2020), to be detailed in Section 2. Notably, this
approach has intimate connections with certain stochastic
differential equations (SDEs), which can be elucidated
via celebrated SDE results concerning the existence of
reverse-time diffusion processes (Anderson, 1982; Hauss-
mann and Pardoux, 1986).
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• Deterministic (or ODE-based) samplers. In contrast, an-
other approach is purely deterministic (except for the
generation of YT ), constructing Yt−1 as a function of the
previously computed steps (e.g., Yt) without injecting any
additional noise. This approach was introduced by Song
et al. (2021), as inspired by the existence of ordinary dif-
ferential equations (ODEs) — termed probability flow
ODEs or diffusion ODEs — exhibiting the same marginal
distributions as the above-mentioned reverse-time diffu-
sion process. A notable example in this category is often
referred to as the Denoising Diffusion Implicit Model
(DDIM) (Song et al., 2020).

In practice, it is often observed that DDIM converges more
rapidly than DDPM, although the final data instances pro-
duced by DDPM (given sufficient runtime) might enjoy
better diversity compared to the output of DDIM.

1.2. Non-asymptotic convergence theory and
acceleration

Despite the astounding empirical success, theoretical analy-
sis for diffusion-based generative modeling is still in its early
stages of development. Treating the score matching step as
a blackbox and exploiting only (crude) information about
the score estimation error, a recent strand of works have
explored the convergence rates of the data generating pro-
cess (i.e., the reverse Markov process) in a non-asymptotic
fashion, in an attempt to uncover how fast sampling can be
performed (e.g., Lee et al. (2022; 2023); Chen et al. (2022;
2023a;c;b); Li et al. (2023); Benton et al. (2023b;a); Liang
et al. (2024)). In what follows, let us give a brief overview
of the state-of-the-art results in this direction. Here and
throughout, the iteration complexity of a sampler refers to
the number of steps T needed to attain ε accuracy in the
sense that TV(pX1 , pY1) ≤ ε, where TV(·, ·) represents the
total-variation (TV) distance between two distributions, and
pX1

(resp. pY1
) stands for the distribution of X1 (resp. Y1).

• Convergence rate of stochastic samplers. Assuming
Lipschitz continuity (or smoothness) of the score func-
tions across all steps, Chen et al. (2022) proved that
the iteration complexity of the DDPM sampler is pro-
portional to 1/ε2. The Lipschitz assumption is then
relaxed by Chen et al. (2023a); Benton et al. (2023a); Li
et al. (2023), revealing that the scaling 1/ε2 is achiev-
able for a fairly general family of data distributions.

• Convergence rate of deterministic samplers. As al-
luded to previously, deterministic samplers often ex-
hibit faster convergence in both practice and theory.
For instance, Chen et al. (2023c) provided the first
polynomial convergence guarantees for the probability
flow ODE sampler under exact scores, whereas Li et al.
(2023) demonstrated that its iteration complexity scales

proportionally to 1/ε. Note that the theory in Li et al.
(2023) also accommodates score estimation errors. Ad-
ditionally, it is noteworthy that an iteration complexity
proportional to 1/ε has also been established by Chen
et al. (2023b) for a variant of the probability flow ODE
sampler, although the sampler studied therein incorpo-
rates a stochastic corrector step in each iteration.

Acceleration? While the theoretical studies outlined
above have offered non-asymptotic convergence guaran-
tees for both the stochastic and deterministic samplers, one
might naturally wonder whether there is potential for achiev-
ing faster rates. In practice, the evaluation of Stein scores
in each step often entails computing the output of a large
neural network, thereby calling for new solutions to reduce
the number of score evaluations without compromising sam-
pling fidelity. Indeed, this has inspired a large strand of
recent works focused on speeding up diffusion generative
modeling. Towards this end, one prominent approach is
distillation, which attempts to distill a pre-trained diffu-
sion model into another model (e.g., progressive distillation,
consistency model) that can be executed in significantly
fewer steps (Luhman and Luhman, 2021; Salimans and
Ho, 2021; Meng et al., 2023; Song et al., 2023). However,
while distillation-based techniques have achieved outstand-
ing empirical performance, they often necessitate additional
training processes, imposing high computational burdens
beyond score matching. In contrast, an alternative route to-
wards acceleration is “training-free,” which directly invokes
the pre-trained diffusion model (particularly the pre-trained
score functions) for sampling without requiring additional
training processes. Examples of training-free accelerated
samplers include the DPM-Solver (Lu et al., 2022a), the
DPM-Solver++ (Lu et al., 2022b), DEIS (Zhang and Chen,
2022), UniPC (Zhao et al., 2023), the SA-Solver (Xue et al.,
2023), among others, which leverage faster solvers for ODE
and SDE using only the pre-trained score functions. Nev-
ertheless, non-asymptotic convergence analyses for these
methods remain largely absent, making it challenging to
rigorize the degrees of acceleration compared to the non-
accelerated results (Lee et al., 2023; Chen et al., 2022;
2023a; Li et al., 2023; Benton et al., 2023a). All of this
leads to the following question that we aim to explore in
this work:

Can we design a training-free deterministic
(resp. stochastic) sampler that converges provably
faster than the DDIM (resp. DDPM)?

1.3. Our contributions

In this paper, we answer the above question in the affirma-
tive. Our main contributions can be summarized as follows.

• In the deterministic setting, we demonstrate how to speed
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up the ODE-based sampler (i.e., the DDIM-type sampler).
The proposed sampler, which exploits some sort of mo-
mentum term to adjust the update rule, leverages insights
from higher-order ODE approximation in discrete time
and shares similar intuitions with the fast ODE-based sam-
pler DPM-Solver-2 (Lu et al., 2022a). We establish non-
asymptotic convergence guarantees for the accelerated
DDIM-type sampler, showing that its iteration complexity
scales proportionally to 1/

√
ε (up to log factor). This

substantially improves upon the prior convergence theory
for the original DDIM sampler (Li et al., 2023) (which
has an iteration complexity proportional to 1/ε).

• In the stochastic setting, we propose a novel sampling
procedure to accelerate the SDE-based sampler (i.e., the
DDPM-type sampler). For this new sampler, we estab-
lish an iteration complexity bound proportional to 1/ε
(modulo some log factor), thus unveiling the superiority
of the proposed sampler compared to the original DDPM
sampler (recall that the original DDPM sampler has an
iteration complexity proportional to 1/ε2 (Li et al., 2023;
Chen et al., 2023a; 2022)).

In addition, two aspects of our theory are worth emphasiz-
ing: (i) our theory accommodates ℓ2-accurate score esti-
mates, rather than requiring ℓ∞ score estimation accuracy;
(ii) our theory covers a fairly general family of target data
distributions, without imposing stringent assumptions like
log-concavity and smoothness on the target distributions.

1.4. Other related works

We now briefly discuss additional related works in the prior
art.

Convergence of score-based generative models (SGMs).
For stochastic samplers of SGMs, the convergence guaran-
tees were initially provided by early works including but
not limited to De Bortoli et al. (2021); Liu et al. (2022b);
Pidstrigach (2022); Block et al. (2020); De Bortoli (2022);
Wibisono and Yang (2022); Gao et al. (2023), which often
faced issues of either being not quantitative or suffering
from the curse of dimensionality. More recent research has
advanced this field by relaxing the assumptions on the score
function and achieving polynomial convergence rates (Lee
et al., 2022; 2023; Chen et al., 2022; 2023a;b; Li et al.,
2023; Benton et al., 2023a; Liang et al., 2024; Tang and
Zhao, 2024b). Furthermore, theoretical insights into prob-
ability flow-based ODE samplers, though less abundant,
have been explored in recent works (Chen et al., 2023c;
Li et al., 2023; Chen et al., 2023b; Benton et al., 2023b;
Gao and Zhu, 2024). Additionally, Tang and Zhao (2024a)
provided a continuous-time sampling error guarantee for
a novel class of contraction diffusion models. Gao and
Zhu (2024) studies the convergence properties for general
probability flow ODEs w.r.t. Wasserstein distances. Most

recently, Chen and Ying (2024) makes a step towards the
convergence analysis of discrete state space diffusion model.
Note that this body of research primarily aims to quantify
the proximity between distributions generated by SGMs and
the ground truth distributions, assuming availability of an
accurate score estimation oracle. Interestingly, a very recent
research by Li et al. (2024c) reveals that even SGMs with
empirically optimized score functions might underperform
due to strong memorization effects. Moreover, some works
delve into other aspects of the theoretical understanding of
diffusion models. Furthermore, Wu et al. (2024) investi-
gated how diffusion guidance combined with DDPM and
DDIM samplers influences the conditional sampling quality.

Fast sampling in diffusion models. A recent strand of
works to achieve few-step sampling — or even one-step
sampling — falls under the category of training-based sam-
plers, primarily focused on knowledge distillation (Meng
et al., 2023; Salimans and Ho, 2021; Song et al., 2023). This
method aims to distill a pre-trained diffusion model into an-
other model that can be executed in significantly fewer steps.
The recent work (Li et al., 2024b) provided a first attempt
towards theoretically understanding the sampling efficiency
of consistency models. Another line of works aims to design
training-free samplers (Lu et al., 2022a;b; Zhao et al., 2023;
Zhang and Chen, 2022; Liu et al., 2022a; Zhang et al., 2022),
which addresses the efficiency issue by developing faster
solvers for the reverse-time SDE or ODE without requiring
other information beyond the pre-trained SGMs. In addition,
Li et al. (2023); Liang et al. (2024) introduced accelerated
samplers that require additional training pertaining to es-
timating Hessian information at each step. Furthermore,
combining GAN with diffusion has shown to be an effec-
tive strategy to speed up the sampling process (Wang et al.,
2022; Xiao et al., 2021).

1.5. Notation

Before continuing, we find it helpful to introduce some
notational conventions to be used throughout this paper.
Capital letters are often used to represent random vari-
ables/vectors/processes, while lowercase letters denote de-
terministic variables. When considering two probability
measures P and Q, we define their total-variation (TV)
distance as TV(P,Q) := 1

2

∫
|dP − dQ|, and the Kullback-

Leibler (KL) divergence as KL(P ∥Q) :=
∫ (

log dP
dQ

)
dP .

We use pX(·) and pX |Y (· | ·) to denote the probability den-
sity function of a random vector X , and the conditional
probability of X given Y , respectively. For matrices, ∥A∥
and ∥A∥F refer to the spectral norm and Frobenius norm
of a matrix A, respectively. For vector-valued functions
f , we use Jf or ∂f

∂x to represent the Jacobian matrix of
f . Given two functions f(d, T ) and g(d, T ), we employ
the notation f(d, T ) ≲ g(d, T ) or f(d, T ) = O(g(d, T ))
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(resp. f(d, T ) ≳ g(d, T )) to indicate the existence of a uni-
versal constant C1 > 0 such that for all d and T , f(d, T ) ≤
C1g(d, T ) (resp. f(d, T ) ≥ C1g(d, T )). The notation
f(d, T ) ≍ g(d, T ) indicates that both f(d, T ) ≲ g(d, T )
and f(d, T ) ≳ g(d, T ) hold at once.

2. Problem settings
In this section, we formulate the problem, and introduce a
couple of key assumptions.

2.1. Model and sampling process

Forward process. Consider the forward Markov process
(1) in discrete time that starts from the target data distribu-
tion X0 ∼ pdata in Rd and proceeds as follows:

Xt =
√
1− βtXt−1 +

√
βt Wt, t = 1, · · · , T, (3)

where the Wt’s are independently drawn from N (0, Id).
This process is said to be “variance-preserving,” in the
sense that the covariance Cov(Xt) = Id holds throughout
if Cov(X0) = Id. Taking

αt :=

t∏
k=1

αk with αt := 1− βt (4)

for every 1 ≤ t ≤ T , one can write

Xt =
√
αtX0 +

√
1− αt W t for W t ∼ N (0, Id). (5)

Throughout the paper, we shall use qt(·) or pXt(·) inter-
changeably to denote the probability density function (PDF)
of Xt. While we shall concentrate on the discrete-time pro-
cess in the current paper, we shall note that the forward pro-
cess has also been commonly studied in the continuous-time
limit through the following diffusion process for 0 ≤ t ≤ T

dXt = −
1

2
β(t)Xtdt+

√
β(t)dWt, X0 ∼ pdata (6)

for some function β(t) related to the learning rate, where
Wt is the standard Brownian motion.

Score functions and score estimates. A key ingredient
that plays a pivotal role in the sampling process is the (Stein)
score function, defined as the log marginal density of the
forward process.

Definition 2.1 (Score function). The score function, de-
noted by s⋆t : Rd → Rd(1 ≤ t ≤ T ), is defined as

s⋆t (X) := ∇ log qt(X)

= − 1

1− αt

∫
x0

pX0 |Xt
(x0 |x)

(
x−
√
αtx0

)
dx0.

(7)

Here, the last identity follows from standard properties about
Gaussians; see, e.g., Chen et al. (2022). In most applica-
tions, we have no access to perfect score functions; instead,
what we have available are certain estimates for the score
functions, to be denoted by {st(·)}1≤t≤T throughout.

Data generation process. The sampling process is per-
formed via careful construction of the reverse process (2)
to ensure distributional proximity. Working backward from
t = T, . . . , 1, we assume throughout that YT ∼ N (0, Id).

• Deterministic sampler. A deterministic sampler typically
chooses Yt−1 for each t to be a function of {Yt, . . . , YT }.
For instance, the following construction

Yt−1 =
1
√
αt

(
Yt +

1− αt

2
st(Yt)

)
, t = T, . . . , 1 (8)

can be viewed as a DDIM-type sampler in discrete time.
Note that the DDIM sampler is intimately connected with
the following ODE — called the probability flow ODE or
the diffusion ODE — in the continuous-time limit:

dỸt = −
1

2
β
(
t
) (

Ỹt +∇ log qt
(
Ỹt

))
dt, ỸT ∼ qT (9)

which enjoys matching marginal distributions as the for-
ward diffusion process (6) in the sense that Ỹt

d
= Xt for

all 0 ≤ t ≤ T (Song et al., 2021).

• Stochastic sampler. In contrast to the deterministic case,
each Yt−1 is a function of not only {Yt, . . . , YT } but also
an additional independent noise Zt ∼ N (0, Id). One
example is the following sampler:

Yt−1 =
1
√
αt

(
Yt+(1−αt)st(Yt)

)
+
√
1− αtZt, (10)

which is closely related to the DDPM sampler in discrete
time. The design of DDPM draws inspiration from a well-
renowned result in the SDE literature (Anderson, 1982;
Haussmann and Pardoux, 1986); namely, there exists a
reverse-time SDE

dŶt = −
1

2
β
(
t
) (

Ŷt + 2∇ log qt
(
Ŷt

))
dt+

√
β(t)dẐt

(11)

with ŶT ∼ qT that exhibits the same marginals — Ŷt
d
=

Xt for all t — as the forward diffusion process (6). Here,
Ẑt indicates a backward standard Brownian motion.

2.2. Assumptions

Before moving on to our algorithms and theory, let us intro-
duce several assumptions that shall be used multiple times
in this paper. To begin with, we impose the following as-
sumption on the target data distribution.
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Assumption 2.2. Suppose that X0 is a continuous random
vector, and obeys

P
(
∥X0∥2 ≤ R = T cR | X0 ∼ pdata

)
= 1 (12)

for some arbitrarily large constant cR > 0.

In words, the size of X0 is allowed to grow polynomially
(with arbitrarily large constant degree) in the number of
steps, which suffices to accommodate the vast majority of
practical applications.

Next, we specify the learning rates {βt} (or {αt}) employed
in the forward process (3). Throughout this paper, we select
the same learning rate schedule as in Li et al. (2023), namely,

β1 = 1− α1 =
1

T c0
, (13a)

βt = 1− αt (13b)

=
c1 log T

T
min

{
β1

(
1 +

c1 log T

T

)t

, 1

}
, t > 1

for some large enough numerical constants c0, c1 > 0. In
short, there are two phases here: at first βt grows exponen-
tially fast, and then stays unchanged after surpassing some
threshold. This also resembles the learning rate choices
recommended by Benton et al. (2023a).

Moreover, let us also introduce two assumptions regarding
the accuracy of the score estimates {st}, which are adopted
in Li et al. (2023). Here and throughout, we denote by

Js⋆t =
∂s⋆t
∂x

and Jst =
∂st
∂x

, (14)

the Jacobian matrices of s⋆t (·) and st(·), respectively.
Assumption 2.3. Suppose that the mean squared estimation
error of the score estimates {st}1≤t≤T obeys

1

T

T∑
t=1

E
X∼qt

[
∥st(X)− s⋆t (X)∥22

]
≤ ε2score.

Assumption 2.4. Suppose that st(·) is continuously differ-
entiable for each 1 ≤ t ≤ T , and that the Jacobian matrices
associated with the score estimates {st}1≤t≤T satisfy

1

T

T∑
t=1

E
X∼qt

[∥∥Jst(X)− Js⋆t (X)
∥∥] ≤ εJacobi.

In short, Assumption 2.3 is concerned with the ℓ2 score
estimation error averaged across all steps, whereas Assump-
tion 2.4 is about the average discrepancy in the associated
Jacobian matrices. It is worth noting that Assumption 2.4
will only be imposed when analyzing the convergence of
deterministic samplers, and is completely unnecessary for
the stochastic counterpart.

3. Algorithm and main theory
In this section, we put forward two accelerated samplers —
an ODE-based algorithm and an SDE-based algorithm —
and present convergence theory to confirm the acceleration
compared with prior DDIM and DDPM approaches. Due to
space limitations, all proofs of our main theory are provided
in the arXiv version Li et al. (2024a).

3.1. Accelerated ODE-based sampler

The first algorithm we propose is an accelerated variant of
the ODE-based deterministic sampler. Specifically, starting
from YT ∼ N (0, Id), the proposed discrete-time sampler
adopts the following update rule:

Y −
t = Φt(Yt), Yt−1 = Ψt(Yt, Y

−
t ) for t = T, · · · , 1

(15a)
where the mappings Φt(·) and Ψt(·, ·) are chosen to be

Φt(x) =
√
αt+1

(
x− 1− αt+1

2
st(x)

)
, (15b)

Ψt(x, y) =
1
√
αt

(
x+

1− αt

2
st(x) (15c)

+
(1− αt)

2

4(1− αt+1)

(
st(x)−

√
αt+1st+1(y)

))
,

and we remind the reader that st is the score estimate. In
contrast to the original DDIM-type solver (8), the proposed
accelerated sampler enjoys two distinguishing features:

• In each iteration t, the proposed sampler computes
a mid-point Y −

t = Φt(Yt) (cf. (15b)). As it turns
out, this mid-point is designed as a prediction of the
probability flow ODE at time t+ 1 using Yt.

• In contrast to (8), the proposed update rule Yt−1 =
Ψt(Yt, Y

−
t ) (see (15c)) includes an additional term

that is a properly scaled version of st(Yt) −√
αt+1st+1(Y

−
t ). In some sense, this term can be

roughly viewed as exploiting “momentum” in adjust-
ing the original sampling rule.

Theoretical guarantees. Let us proceed to present our
convergence theory and its implications for the proposed
deterministic sampler.

Theorem 3.1. Suppose that Assumptions 2.2, 2.3 and 2.4
hold. Then the proposed sampler (15) with the learning rate
schedule (14) satisfies

TV
(
q1, p1

)
≤ C1

d6 log6 T

T 2
+ C1

√
d log3 Tεscore

+ C1(d log T )εJacobi (16)

for some universal constants C1 > 0, where we recall that
p1 (resp. q1) denotes the distribution of Y1 (resp. X1).
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We now take a moment to discuss the implications about
this theorem.

• Iteration complexity. When the target accuracy level ε is
small enough, the number of iterations needed to yield
TV

(
q1, p1

)
≤ ε is no larger than

(iteration complexity)
poly(d)√

ε
, (17)

ignoring any logarithmic factor in 1/ε. Clearly, the de-
pendency on 1/ε substantially improves upon the vanilla
DDIM sampler, the latter of which has an iteration com-
plexity proportional to 1/ε (Li et al., 2023).

• Stability vis-a-vis score errors. The discrepancy between
the distribution of Y1 and the target distribution of X1 is
proportional to the ℓ2 score estimation error εscore defined
in Assumption 2.3, as well as the Jacobian error εJacobi
defined in Assumption 2.4. It is worth noting, however,
that the same result might not hold if we remove Assump-
tion 2.4. More specifically, when only score estimation
accuracy is assumed, the deterministic sampler is not guar-
anteed to achieve small TV error; see Li et al. (2023) for
an illustrative example.

Interpretation via second-order ODE. In order to help
elucidate the rationale of the proposed sampler, we make
note of an intimate connection between (15) and high-order
ODE, the latter of which has facilitated the design of fast de-
terministic samplers (e.g., DPM-Solver (Lu et al., 2022a)).

In view of the relation (5), for any 0 < γ < 1, let us first
abuse the notation and introduce

X(γ)
d
=
√
γX0 +

√
1− γZ, Z ∼ N (0, Id) (18a)

s⋆γ(X) := ∇X log pX(γ)(X). (18b)

We further consider the following continuous-time analog
α(t) of the discrete learning rate αt (cf. (4)):

dα(t)

dt
= −β(t)α(t), α(T ) = αT . (18c)

Given that the probability flow ODE (9) yields identical
marginal distributions as the forward process Xt (cf. (6)) for
every t, invoking (18c), we can easily see that X(α(t))

d
=

Xt can be generated as follows:

dX
(
α(t)

)
dα(t)

=
1

2α(t)

(
X
(
α(t)

)
+ s⋆α(t)

(
X
(
α(t)

)))
(19)

where X
(
α(T )

)
∼ qT . By taking f

(
γ
)
= 1√

γX
(
γ
)
, we

can apply (19) to derive

df
(
γ
)

dγ
= − 1

2
√
γ3

X
(
γ
)
+

1
√
γ

dX
(
γ
)

dγ
=

1

2
√
γ3

s⋆γ

(
X
(
γ
))

.

This taken together with αt = αt−1αt (cf. (4)) immediately
implies that

1√
αt−1

X(αt−1) =

1√
αt

X(αt) +
1

2

∫ αt−1

αt

1√
γ3

s⋆γ
(
X(γ)

)
dγ,

=⇒ X(αt−1) =

1
√
αt

X(αt) +

√
αt−1

2

∫ αt−1

αt

1√
γ3

s⋆γ
(
X(γ)

)
dγ.

(20)

With this relation in mind, we are ready to discuss the fol-
lowing approximation in discrete time:

• Scheme 1: If we approximate s⋆γ
(
X(γ)

)
for γ ∈

[αt, αt−1] by s⋆γ
(
X(γ)

)
≈ s⋆αt

(
X(αt)

)
≈ st(Xt), then

we arrive at

X(αt−1) ≈
1
√
αt

X(αt) +

(√
αt−1√
αt
− 1

)
st(Xt)

≈ 1
√
αt

{
X(αt) +

1− αt

2
st(Xt)

}
,

where we use the facts that αt/αt−1 = αt and αt ≈ 1.
This coincides with the deterministic sampler (8).

• Scheme 2: If we invoke a more refined approximation
for s⋆γ

(
X(γ)

)
as

s⋆γ
(
X(γ)

)
≈ s⋆αt

(
X(αt)

)
+

ds⋆γ
(
X(γ)

)
dγ︸ ︷︷ ︸

≈
s⋆
αt

(X(αt))−s⋆
αt+1

(X(αt+1))

αt−αt+1

(γ − αt)

≈ st(Xt) +
γ − αt

αt − αt+1

(
st
(
Xt

)
− st+1

(
Xt+1

))
,

(21)

then (20) can be approximated by

X(αt−1)

≈ 1
√
αt

X(αt) +

√
αt−1st

(
Xt

)
2

∫ αt−1

αt

1√
γ3

dγ+

√
αt−1

(
st
(
Xt

)
− st+1

(
Xt+1

))
2(αt − αt+1)

∫ αt−1

αt

γ − αt√
α3

dγ

≈ 1
√
αt

{
X(αt) +

1− αt

2
st(Xt)

+
(1− αt)

2

4(1− αt+1)

(
st
(
Xt

)
−√αt+1st+1

(
Xt+1

))}
,

(22)
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which resembles the proposed sampler (15), and is com-
putationally more appealing since it reuses the previous
score function evaluation.

It is worth noting that similar approximation as in Scheme 2
has been invoked previously in Lu et al. (2022a, Eqn (3.6))
to construct high-order ODE solvers (e.g., the DPM-Solver-
2, with 2 indicating second-order ODEs). Consequently, the
acceleration achieved by our sampler is achieved through
ideas akin to the second-order ODE; in turn, our conver-
gence guarantees shed light on the effectiveness of high-
order ODE solvers like the popular DPM-Solver.

3.2. Accelerated SDE-based sampler

Next, we turn to stochastic samplers, and propose a new
stochastic sampling procedure that enjoys improved con-
vergence guarantees compared to the DDPM-type sampler
(10). To be precise, the proposed sampler begins by drawing
YT ∼ N (0, Id) and adopts the following update rule:

Y +
t = Φt(Yt, Zt), Yt−1 = Ψt(Y

+
t , Z+

t ) (23a)

for t = T, . . . , 1, where Zt, Z
+
t

i.i.d.∼ N (0, Id), and

Φt(x, z) = x+

√
1− αt

2
z, (23b)

Ψt(y, z) =
1
√
αt

(
y + (1− αt)st(y)

)
+

√
1− αt

2
z.

(23c)

The key difference between the proposed sampler and the
original DDPM-type sampler lies in the additional operation
Φt(·, ·). In this step, a random noise Zt is injected into the
current sample Yt to obtain an intermediate point Y +

t , which
together with another random noise Z+

t is subsequently fed
into Ψt(·, ·) — a mapping identical to (10).

Theoretical guarantees. Let us present the convergence
guarantees of the proposed stochastic sampler and their
implications, followed by some interpretation of the design
rationale of the algorithm.

Theorem 3.2. Suppose that Assumptions 2.2 and 2.3 hold.
Then the proposed stochastic sampler (23) with the learning
rate schedule (14) achieves

TV
(
q1, p1

)
≤

√
1

2
KL

(
q1 ∥ p1)

≤ C1
d3 log4.5 T

T
+ C1

√
dεscore log

1.5 T (24)

for some universal constant C1 > 0.

Theorem 3.2 provides non-asymptotic characterizations for
the data generation quality of the accelerated stochastic

sampler. In comparison with the convergence theory for
the DDPM-type sampler — which has a convergence rate
proportional to 1/

√
T (Chen et al., 2022; 2023a; Li et al.,

2023; Benton et al., 2023a) — Theorem 3.2 asserts that
the proposed accelerated sampler achieves a faster conver-
gence rate proportional to 1/T . In contrast to Theorem 3.1
for the ODE-based sampler, the SDE-based sampler does
not require continuity of the Jacobian matrix (i.e., Assump-
tion 2.4). As before, the total-variation distance between X1

and Y1 is proportional to the ℓ2 score estimation error when
T is sufficiently large, which covers a broad range of target
data distributions with no requirement on the smoothness or
log-concavity of the data distribution.

Interpretation via higher-order approximation. Now
we provide some insights into the motivation of the
proposed sampler. We start with the characterizations
of conditional density pXt−1|Xt

. Denoting µ⋆
t (xt) :=

1√
αt

(xt + (1− αt) s
⋆
t (xt)), we can approximate pXt−1|Xt

by

pXt−1 |Xt
(xt−1 |xt) ≈ exp

(
− αt

2(1− αt)
·∥∥∥(I + 1− αt

2
Js∗t (xt)

)−1

(xt−1 − µ⋆
t (xt))

∥∥∥2
2

)
. (25)

which is tighter than the one used in analysis of the original
SDE-based sampler (Li et al., 2023) by adopting a higher-
order expansion. This in turn motivates us to consider the
following sequence

Yt−1 =

√
1− αt

2
Z+
t +

1
√
αt

(
Yt +

√
1− αt

2
Zt︸ ︷︷ ︸

Φ(Yt,Zt)

+ (1− αt)
(
s⋆t (Yt) +

√
1− αt

2
Js⋆t (Yt)Zt

)
︸ ︷︷ ︸

≈s⋆t

(
Φ(Yt,Zt)

)
)

(26)

with Zt, Z
+
t

i.i.d.∼ N (0, Id). Note that pYt−1|Yt
(xt−1 | xt)

follows N
(
µ⋆
t (xt),Σ

⋆
t (xt)

)
; here,

Σ⋆
t (xt) =

1−αt

αt

(
I + 1−αt

2 Js⋆t (xt)
) (

I + 1−αt

2 Js⋆t (xt)
)⊤

,

which aligns with (25). In addition, if we further employ

s⋆t (Yt) +
√

1−αt

2 Js⋆t (Yt)Zt as a first-order approximation

of s⋆t
(
Yt+

√
1−αt

2 Zt

)
, then we can arrive at the update rule

of the proposed sampler in (23).

4. Experiments
In this section, we illustrate the performance of the proposed
accelerated samplers, focusing on emphasizing the relative

7
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Figure 1. The progress of the generated samples over different numbers of NFEs (5 to 50), using pre-trained scores from the LSUN-
Churches dataset. Top row: the vanilla DDIM-type sampler. Bottom row: the accelerated DDIM-type sampler (ours).

(a) LSUN-Churches (b) LSUN-Bedroom (c) CelebA-HQ

Figure 2. Examples of sampled images from the DDIM-type samplers with 5 NFEs, using pre-trained scores from the LSUN-Churches,
LSUN-Bedroom, and CelebA-HQ datasets. For each dataset, the top image is the original DDIM-type sampler, and the bottom image is
the accelerated DDIM-type sampler (ours).

comparisons with respect to the original DDIM/DDPM ones
using the same pre-trained score functions. We specifically
report results for deterministic samplers here, leaving the
stochastic setting to Appendix A.

4.1. Practical implementation

In practice, the pre-trained score functions are often avail-
able in the form of noise-prediction networks ϵt(·), which
are connected via the following relationship in view of (7):

s⋆t (X) := − 1√
1− αt

ϵ⋆t (X), (27)

and ϵt(·) is the estimate of ϵ⋆t (·). To better align with the
empirical practice, it is judicious that the integration in (20)
be approximated in terms of ϵ⋆t (X), leading to an equivalent
rewrite as

X(αt−1)

= 1√
αt
X(αt)−

√
αt−1

2

∫ αt−1

αt

1√
γ3

√
1−γ

ϵ⋆γ
(
X(γ)

)
dγ.

Following similar discussions in Section 3.1, we discuss
its first-order and second-order approximations in discrete
time.

• Scheme 1: If we approximate ϵ⋆γ
(
X(γ)

)
for γ ∈

[αt, αt−1] by ϵ⋆γ
(
X(γ)

)
≈ ϵ⋆αt

(
X(αt)

)
≈ ϵt(Xt), then

we arrive at

X(αt−1) (28)

≈ 1√
αt
X(αt) +

(√
1− αt−1 −

√
1−αt√
αt

)
ϵt(Xt),

which matches exactly with the DDIM sampler in Song
et al. (2020).

• Scheme 2: If we invoke the refined approximation (21)
in terms of ϵ⋆γ

(
X(γ)

)
, we have

X(αt−1) (29)

≈ 1√
αt
X(αt)−

√
αt−1ϵt

(
Xt

)
2

∫ αt−1

αt

1√
γ3(1−γ)

dγ

−
√

αt−1

(
ϵt

(
Xt

)
−ϵt+1

(
Xt+1

))
2(αt−αt+1)

∫ αt−1

αt

(γ−αt)√
γ3(1−γ)

dγ,

which after integration becomes:

X(αt−1) (30)

≈ 1√
αt
X(αt) +

(√
1− αt−1 −

√
1−αt√
αt

)
ϵt(Xt)

+

( √
αt−1

αt−αt+1

)(
αt

√
1−αt−1√
αt−1

+ arcsin
√
αt−1

−αt

√
1−αt√
αt
− arcsin

√
αt

)
(ϵt+1(Xt+1)− ϵt(Xt)).

This is our new sampler for implementation.

4.2. Experimental results

We use pre-trained score functions from Huggingface (von
Platen et al., 2022) for the CelebA-HQ, LSUN-Bedroom,
and LSUN-Churches datasets. Moreover, for the CIFAR-10

8
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(a) LSUN-Churches (b) LSUN-Bedroom

(c) CelebA-HQ (d) CIFAR-10

Figure 3. The FID of the DDIM-type samplers for different datasets with respect to the NFEs.

dataset, we utilize pre-trained score functions from Ho et al.
(2020) and the DPM-Solver codebase (Lu et al., 2022a).
Note that we have not attempted to optimize the speed nor
the performance using additional tricks, e.g., employing
better score functions, but aim to corroborate our theoretical
findings regarding the acceleration of the new samplers with-
out training additional functions when the implementations
are otherwise kept the same.

Figure 1 illustrates the progress of the generated samples
over different numbers of function evaluations (NFEs) (be-
tween 5 and 50) from the same random seed, using pre-
trained scores from the LSUN-Churches dataset. Here, the
NFE is the same as the number of diffusion steps since each
step takes one score evaluation. Our proposed accelerated
DDIM-type sampler (cf. (28)) can generate high-quality im-
ages witin 10 NFEs, while the vanilla DDIM-type sampler
(cf. (30)) requires more NFEs to achieve similar quality.

To further demonstrate the quality of the sampled images,
Figure 2 provides examples of sampled images from the
DDIM-type samplers with 5 NFEs, using pre-trained scores
from CelebA-HQ, LSUN-Bedroom and LSUN-Churches
datasets, respectively. It can be seen that the sampled images
are crisper and less noisy from the accelerated DDIM-type
sampler, compared with from the original one, indicating
the effectiveness of our method.

As for the quantitative results, the FID scores during the sam-
pling precoss for different datasets are provided in Figure 3.
The quantitative advantage of the proposed deterministic
sampler is highlighted by achieving FID scores that are
halved compared to vanilla DDIM, using just 5 steps.

5. Discussion
In this paper, we have developed novel strategies to achieve
provable acceleration in score-based generative modeling.
The proposed deterministic sampler achieves a convergence
rate 1/T 2 that substantially improves upon prior theory for
the probability flow ODE approach, whereas the proposed
stochastic sampler enjoys a converge rate 1/T that also
significantly outperforms the convergence theory for the
DDPM-type sampler. We have demonstrated the stability
of these samplers, establishing non-asymptotic theoretical
guarantees that hold in the presence of ℓ2-accurate score
estimates. Our algorithm development for the deterministic
case draws inspiration from higher-order ODE approxima-
tions in discrete time, which might shed light on understand-
ing popular ODE-based samplers like the DPM-Solver. In
comparison, the accelerated stochastic sampler is designed
based on higher-order expansions of the conditional density.

Our findings further suggest multiple directions that are
worthy of future exploration. For instance, our convergence
theory remains sub-optimal in terms of the dependency on
the problem dimension d, which calls for a more refined the-
ory to sharpen dimension dependency. Additionally, given
the conceptual similarity between our accelerated determin-
istic sampler and second-order ODE, it would be interesting
to extend the algorithm and theory using ideas arising from
third-order or even higher-order ODE. In particular, third-
order ODE has been implemented in DPM-Solver-3, which
is among the most effective DPM-Solvers in practice. Fi-
nally, it would be important to design higher-order solvers
for SDE-based samplers, in order to unveil the degree of
acceleration that can be achieved through high-order SDE.
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APPENDIX

A. Additional experiments
To provide further quantitative comparisons, we calculate the FID scores of the generated images for DDPM-type samplers.
For ImageNet, we use the pre-trained score functions from Improved DDPM (Nichol and Dhariwal, 2021). As shown
in Figure 4, the slight FID gap still reflects the relative difference in image quality between the two samplers, with the
accelerated DDPM sampler consistently outperforming the original sampler.

(a) Cifar10 (b) ImageNet64

Figure 4. The FID of the DDPM-type samplers for different datasets with respect to the NFEs, where the accelerated sampler consistently
outperforms the original one.
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