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Abstract
Multimodal Retrieval Augmented Generation (MRAG) systems have
shown promise in enhancing the generation capabilities of multi-
modal large language models (MLLMs). However, existing MRAG
frameworks primarily adhere to rigid, single-step retrieval strate-
gies that fail to address real-world challenges of information acqui-
sition and query reformulation. In this work, we introduce the task
of Multimodal Retrieval Augmented Generation Planning (MRAG
Planning) that aims at effective information seeking and integra-
tion while minimizing computational overhead. Specifically, we
propose CogPlanner, an agentic plug-and-play framework inspired
by human cognitive processes, which iteratively determines query
reformulation and retrieval strategies to generate accurate and
contextually relevant responses. CogPlanner supports parallel and
sequential modeling paradigms. Furthermore, we introduce Cog-
Bench, a new benchmark designed to rigorously evaluate theMRAG
Planning task and facilitate lightweight CogPlanner integration
with resource-efficient MLLMs, such as Qwen2-VL-7B-Cog. Experi-
mental results demonstrate that CogPlanner significantly outper-
forms existing MRAG baselines, offering improvements in both
accuracy and efficiency with minimal additional computational
costs.

CCS Concepts
• Computing methodologies→ Natural language generation;
• Information systems→ Languagemodels;Question answer-
ing.

Keywords
Multimodal Retrieval Augmented Retrieval, Query Planning, Multi-
modal Large Language Model, Visual Question Answering

ACM Reference Format:
Xiaohan Yu, Zhihan Yang∗, and Chong Chen. 2025. CogPlanner: Unveiling
the Potential of Agentic Multimodal Retrieval Augmented Generation with
Planning. In Proceedings of the 2025 Annual International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval in the Asia Pacific
Region (SIGIR-AP 2025), December 7–10, 2025, Xi’an, China. ACM, New York,
NY, USA, 10 pages. https://doi.org/10.1145/3767695.3769486

∗Euqal Contribution
†Corresponding author.

This work is licensed under a Creative Commons Attribution 4.0 International License.
SIGIR-AP 2025, Xi’an, China
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2218-9/2025/12
https://doi.org/10.1145/3767695.3769486

Huawei Proprietary - Restricted Distribution7

Does this game sale better than 

Black Myth Wukong?

Google Image Search

Current MRAG: 

I'm afraid I can't directly compare the sales 

performance of AstroBot to Black Myth Wukong, as I 

don't have access to specific sales data for either title.

With MRAG Planning: 

Black Myth: Wukong sales 21 millions and AstroBot

sales 1.5 millions to date.

MRAG Planning

What is the name of the game? 

Sub-queries:

Google Text Search

Sales of Black Myth Wukong.

Sales of AstroBot.

Sub-queries: 

Global sales of Black Myth: Wukong distributed through 

online gaming store Steam have exceeded 21 million copies to 

date…

Astro Bot has sold 1.5 million copies so far, Sony has 

announced. As part of its latest financial results…

Iteration 1 Iteration2

Figure 1: An example of current MRAG system with the ben-
efits of incorporating MRAG Planning.

1 Introduction
Retrieval-Augmented Generation (RAG) has been shown to signifi-
cantly enhance the performance of large language models (LLMs)
by grounding generation in retrieved knowledge [10, 15]. More
recently, the emergence of agentic RAG frameworks, exemplified
by web agents [17, 29], has highlighted the potential of autonomous
reasoning and information seeking capabilities within RAG systems.
Howevewr, the increasing demands of real-world applications have
necessitated a natural extension of RAG beyond purely texts to en-
compass multimodal data (e.g., images, videos). This development
has led to the advent of Multimodal Retrieval-Augmented Genera-
tion (MRAG) [23], which equips multimodal large language models
(MLLMs) with the ability to retrieve and exploit external multi-
modal knowledge sources, thereby reducing hallucinations and
improving reliability [35]. Existing MRAG frameworks generally
adhere to a rigid pipeline characterized by a predetermined retrieval
action, either exclusively textual or exclusively visual [5, 38], which
manifests several critical limitations:

• Blind Information Acquisition: As demonstrated in recent
studies [2, 25], this compulsive retrieval mechanism without
proper consideration of necessity or relevance can introduce ir-
relevant contextual information that undermines the MLLM’s
capability for accurate responses. Moreover, it neglects the inher-
ent capabilities of MLLMs to reason and process multimodal data,
rendering the retrieval step redundant or counterproductive.

• Inadequate Query Formation: The visual incompleteness, tex-
tual ambiguity, and conciseness create a fundamental impediment
that fails to retrieve pertinent information. Furthermore, these
existing single-step MRAG methodologies prove inadequate for
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addressing multi-hop queries that require a multi-step reasoning
process [13].
In response to these real-world limitations, we propose a new

task,Multimodal Retrieval-AugmentedGeneration Planning (MRAG
Planning). The objective is to establish optimized trajectories for
information seeking and integration in multimodal queries. It guies
the downstream MLLMs toward more accurate and comprehensive
responses, while reducing the computational overhead. This task
constitutes a central component in the development of effective
agentic MRAG systems. To this end, the MRAG Planning task is
decomposed into two interrelated sub-tasks: (1) Information acqui-
sition that discerns the truly necessary information required by the
MLLMs and devises the appropriate retrieval strategies accordingly.
(2) Query reformulation, which involves decomposing complex,
multi-hop queries into manageable atomic sub-queries and refining
them for clarity and informativeness. Figure 1 illustrates a multi-
hop reasoning example where the first step is to identify the game
name AstroBot through an image search. The initial query is then
decomposed into two sub-queries, each focusing on the sales data
for the two respective games. Subsequent web searches are con-
ducted to retrieve sales data and generate the final response. This
example underscores the crucial need for dynamic planning proce-
dures in MRAG systems where both order and selection of retrieval
methods, and query reformulation are determined tailored to the
specific characteristics of the multimodal query.

To address the challenges of MRAG Planning, we propose a novel
framework, CogPlanner 1, inspired by human cognitive processes.
Just as humans synthesize and gather multimodal information to
address complex queries, adapting their reasoning based on prior
knowledge, CogPlanner emulates this behavior through a central-
ized planning expert that dynamically determines a planning proce-
dure in coordination with downstream MLLMs. CogPlanner oper-
ates through two core operations: query reformulation and retrieval
action selection. Query reformulation involves breaking down a
complex query into related sub-queries or refining the queries. The
retrieval strategy, in turn, encompasses image search, text search,
or none. When sufficient information is gathered, the framework
refrains from further retrieval, culminating in the generation of a
final response. This iterative procedure reflects an adaptive chain of
actions tailored to the specific needs of each multimodal query. For
instance, the optimal planning strategy in Figure 1 follows (Query
Refinement, Image Search) → (Query Decomposition, Text Search).
CogPlanner supports two distinct modeling approaches: parallel
and sequential modeling. Each differs in the order of the query
reformulation and retrieval action selection.

In conjunction with the introduction of the CogPlanner frame-
work, we present CogBench, a comprehensive dataset tailored to
the MRAG Planning task. CogBench consists of over 5,000 data
samples, with a high-quality test set of 401 samples. In addition
to its essential role in evaluation, the development of CogBench
facilitates the design of specialized fine-tuning strategies aimed
at bolstering the decision-making capabilities of smaller, resource-
efficient MLLMs. By utilizing the CogBench training set, we achieve
lightweight integration of the Qwen2-VL-7B-Instruct [28] model as

1We name our framework as CogPlanner because of the inherent cognitive process of
humans.

the planning expert in CogPlanner. This integration, referred to as
Qwen2-7B-VL-Cog, maintains its resource-efficient characteristics
while enabling effective performance within the MRAG Planning
context. In summary, the contributions of this work are as follows:

• We thoroughly examine the limitations of current MRAG frame-
works, specifically addressing the challenges of information ac-
quisition and query reformulation. Building upon this, we for-
mally define the task of Multimodal Retrieval Augmented Gen-
eration Planning (MRAG Planning), laying the groundwork for
further research.

• We introduce CogPlanner, a flexible, plug-and-play framework
that incorporates two distinct modeling approaches, parallel mod-
eling and sequential modeling.

• We develop the CogBench benchmark, tailored to the MRAG
Planning task. It supports performance evaluation and facilitates
fine-tuning strategies to enable the lightweight integration of
resource-efficient MLLMs with CogPlanner. Experimental results
demonstrate that CogPlanner achieves more than 15% improve-
ments over various MRAG approaches while incurring less than
10% additional costs with Qwen2-VL-7B.

2 Related Work
2.1 Query Processing in IR
Query processing is a critical aspect of Information Retrieval (IR)
systems, directly influencing the efficiency and effectiveness with
which relevant information is retrieved in response to user queries.
Early IR systems rely on complex, multi-stage query processing
pipelines, which incorporate a range of techniques, including query
rewriting [20], intention detection [1], sentiment analysis [34], and
query expansion [27], among others. These pipelines often utilize
human-defined heuristics to refine the query, enabling more precise
document retrieval [14, 16]. However, the advent of large language
models (LLMs) has significantly transformed this approach. The
exceptional expressive power and reasoning capabilities of LLMs
allow them to effectively perform several traditional query pro-
cessing tasks within a single, well-crafted prompt. This shift has
been particularly notable in the context of RAG systems, where
the primary challenge now lies in determining the most effective
strategy for processing user queries.

2.2 Multimodal Retrieval Augmented
Generation

RAG frameworks have demonstrated considerable success in var-
ious real-world applications [16]. However, their reliance on tex-
tual information presents a significant limitation, as it precludes
the incorporation of crucial knowledge embedded within other
modalities, such as images and videos. Multimodal Retrieval Aug-
mented Generation (MRAG) seeks to address this limitation by
equipping MLLMs with access to a broader spectrum of knowl-
edge, encompassing up-to-date and domain-specific information
[36]. Empirical studies consistently demonstrate the effectiveness of
MRAG systems [35] across various visual question answering (VQA)
benchmarks [30]. Recent advancements in MRAG have demon-
strated notable progress. For instance, MuRAG [5] highlights how
incorporating visual information retrieved from external sources
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significantly improves the system performance. Other prominent
approaches include Plug-and-Play [26], which transforms visual
content into textual descriptions to facilitate integration with con-
ventional text-based question-answering mechanisms. Additionally,
RAMM [31] enhances the generation process by incorporating both
text-to-image retrieval and subsequent fusion of the representa-
tions for more accurate answer generation. Further innovations
include Wiki-llava [4] and mR2AG [33], which enable retrieval
from online knowledge bases, such as Wikipedia, via image-based
queries, to provide more contextually informed responses to user
queries. M2RAG [21] extends these efforts by enabling concurrent
retrieval of both textual and visual elements in response to multi-
modal queries, allowing for more robust query understanding and
generation capabilities. Additionally, benchmarks such as MRAG-
Bench [8] and MMSearch [12] have been introduced to evaluate
MRAG performance, particularly in tasks with image-to-image re-
trieval, addressing challenges related to incomplete or insufficient
image data. The prevailing methodologies predominantly adhere
to a rigid, single-modality search paradigm. However, in authentic
user scenarios, knowledge acquisition can originate from diverse
sources, contingent upon the specific query and the underlying
domain. To this end, we introduce the novel task of MRAG Planning.

3 Task Formulation
Consider a multimodal query Q0 = (𝑞, 𝑣) where 𝑞 represents the
textual component and 𝑣 represents the visual component (e.g., an
image). The objective of MRAG is to retrieve pertinent informa-
tion from a document collection D = {D1, . . . ,D𝑛}, and gener-
ate cogent responses. Drawing parallels with human information
processing, we introduce the task of MRAG Planning that inter-
faces intimately with the retrieval tools and downstream MLLMs
in the MRAG systems, restructuring their information gathering
mechanism. We formalize the MRAG system environment as a
tuple (G,I). Here, G refers to the goal conditions of assembling
sufficient information to generate comprehensive and accurate
responses. S represents the state, capturing the current set of infor-
mation available, which may encompass queries and any retrieved
documents. The initial state corresponds to the input multimodal
query, I = S0 = Q0. The MRAG Planning task can thus be framed
as a state transition function F that progresses from I toward the
goal state through a chain of decisions. Formally, this transition
process is defined as follows:

F : S × P → S, (1)

where P represents the available decision space.

3.1 Multimodal Retrieval Augmented
Generation Planning

In line with the human cognitive architecture’s capacity for knowl-
edge integration, we conceptualize the MRAG Planning task as a
dual optimization problem comprising two sub-tasks: information
acquisition and query reformulation.

3.1.1 Planning Procedure. The decision space can thus be decom-
posed as P = (A,Q), where A represents the information acqui-
sition strategy and Q denotes the query reformulation result. To
accommodate multi-hop reasoning queries, the planning process

unfolds iteratively across 𝑇 rounds under the assumption of Mar-
kovian state transitions. Specifically, at each iteration 𝑡 , the decision
is determined by the current available information state:

S𝑡 → (A𝑡 ,Q𝑡 ). (2)

The subsequent state is updated naturally as follows:

{S𝑡 , (A𝑡 ,Q𝑡 )} → S𝑡+1, (3)

where S𝑡 may encompass the historical queries or the retrieved
document elements, denoted as D𝑡 .

3.1.2 Information Aquisition. Recognizing the inherent limitations
of MLLMs in terms of specific knowledge gaps, an information
acquisition mechanism is imperative to supplement the MLLM’s
knowledge base. We defineA as comprising three distinct retrieval
operations: text search, image search, and non-search. The optimal
retrieval action is determined based on the quality of the available
multimodal information and the estimated utility of additional
context from external knowledge sources:

A𝑡 = argmax
𝑎∈A

F𝐼𝐴 (𝑎 |S𝑡 ) . (4)

Post action selection, we proceed with in-document retrieval, which
identifies and extracts pertinent elements under the selected re-
trieval strategy, yielding retrieved document elements D𝑡 .

3.1.3 Query Reformalization. To address the ambiguity and poten-
tial incompleteness in queries, we refine the queries by leverag-
ing both textual and visual cues within the multimodal query. For
complex queries necessitating multi-hop reasoning, we employ a
decomposition strategy that preserves semantic relationships while
breaking down the query into manageable sub-queries. This process
can be expressed as:

Q𝑡 = F𝑄𝑅 (Q𝑡−1,S𝑡 ) = {Q𝑡,1, . . . ,Q𝑡,𝑁𝑡
}, (5)

where 𝑁𝑡 represents the cardinality of the decomposed and refined
query set at iteration 𝑡 .

3.1.4 Generation. Once the final state S𝑇 is deemed sufficiently
informed, the planning process culminates in response generation.
The response is synthesized by incorporating the initial query, the
final refined query, and the relevant document elements:

Response = F𝐺𝑒𝑛 (Q0,Q𝑇 ,D𝑇 ), (6)

where F𝐺𝑒𝑛 represents the MLLM generator.

4 Methodology
4.1 Baselines
Existing MRAG methodologies predominantly rely on a fixed in-
formation acquisition pipeline, characterized by a single-modality
retrieval action performed in a single turn. These methods can be
broadly classified into two distinct categories:
• Fixed textual retrieval, which closely resembles traditional RAG
frameworks. They employ textual queries to retrieve relevant
documents to generate the final answer.

• Fixed visual retrieval, which prioritizes visual information, lever-
aging visual queries to retrieve relevant images and their associ-
ated captions. The MLLM then integrates both the original user
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Question: How was he arrested?

GPT-4 knowledge cutoff is December 2023.

New Query: Who is the person in Picture?

New Query: How was Luigi arrested?

Mangione was arrested while 
eating breakfast at an Altoona 
McDonald.

New Query: Who was the gunman killed UnitedHealthcare's CEO?

Image Search:

Text Search: 
Luigi Mangione has been charged with second-degree murder in the killing of 
UnitedHealthcare CEO Brian Thompson…

Text Search: 
Mangione was arrested while eating breakfast at an Altoona McDonald‘s after a 
customer noticed that he looked like the person in surveillance photos that police 
were circulating of Thompson’s killer. Dec 24, 2024…

Query Reformulation

Retrieval Action Selection

Planning Expert

Parallel Modeling
Sequential Modeling

Iteration 1

Iteration 2

Iteration 3

Figure 2: The overall framework of CogPlanner.

query and the augmented retrieved images to produce the final
answer.

While these fixed workflows have been effective within certain
domains, they exhibit limited flexibility. The rigid, modality-specific
structure hinders their ability to adapt to other contexts, or the
non-search scenario, where fixed search may bring extra noise. It
undermines their potential for broader applicability in dynamic,
real-world scenarios.

4.2 CogPlanner
We propose CogPlanner, a flexible, plug-and-play framework that
mirrors the human cognitive processes when handling complex
multimodal queries. Our approach is inspired by the observation
that humans demonstrate both adaptability and efficiency in ac-
quiring and integrating multimodal information. When confronted
with such queries, individuals instinctively engage in a structured,
multi-step process that involves continuous assessment of informa-
tion gaps, determination of appropriate retrieval strategies for the
missing knowledge, and decomposition and refinement of complex
queries into manageable sub-components. Crucially, this process is
inherently adaptive - guided by the individual’s prior knowledge
and cognitive capabilities, with the goal of converging toward a
state of conceptual clarity and informational completeness.

CogPlanner operationalizes this cognitive architecture through
an iterative decision-making framework. It dynamically orches-
trates a chain of decisions for each query, optimizing both effective-
ness and efficiency in conjunction with the downstream MLLMs.
As shown in Figure 2, the multimodal query — seeking up-to-date
news about Luigi’s arrest — requires three processing rounds to
gather sufficient information for the current GPT knowledge base.
CogPlanner centers on two critical decisions in P: (1) query refor-
mulation, and (2) action selection among text search, image search,

and non-search, corresponding to the sub-tasks outlined in Section
3.1. We implement the core state transition function F through a
planning expert who makes these decisions at each iteration, com-
pleting the roles of F𝐼𝐴 and F𝑄𝑅 . Then, the retrieval is invoked to
assess and process relevant multimodal elements.

4.2.1 Planning Expert. We employ an MLLM as the planning ex-
pert. As formalized in Equation 2, at each iterative step, the expert
analyzes the current multimodal content, evaluates the information
gathered thus far, and subsequently determines the most appro-
priate follow-up retrieval action and reformulates the query. To
accomplish this, we propose two distinct modeling paradigms -
parallel modeling and sequential modeling - each of which differs
in the order in which the decision-making occurs.

Parallel Modeling In the parallel modeling paradigm, the plan-
ning expert concurrently adjusts the query and determines the
appropriate retrieval action. Specifically, it takes the current query
alongside the information retrieved in the preceding iteration as
inputs. The implementation employs two parallel threads of MLLM
inference: one is responsible for query reformulation, while the
other determines the next retrieval action. The primary advan-
tage of this paradigm lies in efficiency. By enabling simultaneous
decision-making, we achieve a streamlined decision chain and faster
processing. This is particularly beneficial in real-world applications
where response latency is a critical consideration. The parallel
process can be formally expressed as:

Q𝑡 =F𝑄𝑅 (Q𝑡−1,D𝑡 ),
A𝑡 =F𝐼𝐴 (Q𝑡−1,D𝑡 ).

(7)
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Sequential Modeling The sequential paradigm, in contrast, imple-
ments an ordered two-step decision process. The first step involves
query reformulation, wherein multimodal inputs, along with previ-
ously retrieved information, are leveraged to refine and decompose
the query. These restructured queries then serve as the inputs for
the subsequent stage, which entails an evaluation of the necessity
of further retrieval actions. This paradigm facilitates a more nu-
anced understanding of information retrieval requirements, as the
planning expert is presented with both the original query and its
reformulated meta-queries. It mimics a reflective cognitive process
where the planning expert jointly assesses whether the queries
align with the system’s knowledge bounds. Such an assessment
enables the expert to more accurately determine whether additional
retrieval actions are needed. This capability is especially beneficial
for complex queries that demand deeper reasoning regarding infor-
mation sufficiency. The sequential modeling process is formalized
as follows:

Q𝑡 =F𝑄𝑅 (Q𝑡−1,D𝑡 ),
A𝑡 =F𝐼𝐴 (Q𝑡 ,D𝑡 ).

(8)

Both the retrieval decision-making function F𝐼𝐴 and query re-
formulation function F𝑄𝑅 are implemented through MLLM genera-
tion. To effectively harness the capabilities of MLLMs within these
planning sub-tasks, we meticulously engineer tailored prompts.

4.2.2 Retrieval and Generation. At each iterative stage, the selec-
tion of retrieval actions determines whether or not and which
retrieval API is invoked, either text retrieval or image retrieval.
We leverage Google Web Search and Google Image Search as our
primary retrieval API service. For each text retrieval request, we
retrieve the top-k search results to ensure that only the most rele-
vant information is retained. These results undergo preprocessing
through the Jina API framework 2, which transforms the raw web
content into structured representations better suited for MLLM con-
sumption. The visual retrieval pipeline captures full-page screen-
shots of search results, employing a set of systematic human-crafted
rules to eliminate extraneous elements such as white space and
original query images. To balance computational cost with retrieval
quality, we limit the image retrieval to between three and six high-
confidence candidates, accompanied by their contextual captions
to provide relevant semantic grounding. Furthermore, to enhance
system efficiency and responsiveness, we incorporate cachingmech-
anisms for both text and image retrieval modules.

This iterative cycle culminates when the planning expert collec-
tively assesses that the acquired information is sufficiently compre-
hensive and the formulated query exhibits adequate clarity. Upon
reaching this convergence criterion, the planning procedure is final-
ized, and CogPlanner proceeds to generate the ultimate response.

4.3 Compatibility
The CogPlanner framework is inherently agnostic to the specific
model employed, making it easy to be integrated into any MRAG
system and immediately enhancing their performance, demonstrat-
ing stunning flexibility in real-world applications. The planning
expert responsible for query reformulation and determining the
appropriate retrieval action can be any MLLM, or even a traditional

2https://github.com/jina-ai/reader

classificationmodel. For the planning expert, we exclusively employ
a diverse set of advanced MLLMs as the foundation. Specifically,
we leverage both closed-source APIs and open-source MLLMs. The
closed-source models include GPT-4o [9], while the open-source
models consist of the Qwen-VL series [3] and the Pixtral series [7].

5 CogBench Construction
In this section, we present CogBench, a benchmark specifically
developed for the MRAG planning task. CogBench comprises over
5,000 data samples, with a high-quality test set containingmore than
400 samples. This benchmark is designed to facilitate the assess-
ment of the effectiveness of our proposed CogPlanner framework,
as well as other MRAG planning frameworks. Moreover, CogBench
can be leveraged to enhance the decision-making capabilities of
various MLLMs, particularly resource-efficient models, through
fine-tuning. In the following subsections, we detail the construc-
tion process of CogBench and demonstrate how the benchmark
enables lightweight integration of CogPlanner with the Qwen2-VL-
7B-Instruct.

5.1 Query Collection
The rapid evolution of MLLMs has underscored the need for evalu-
ation on increasingly complex user queries that mirror real-world
application scenarios. While existing benchmarks [8, 12] provide
valuable groundwork, we recognized the necessity to extend beyond
their scope. To this end, we deliberately incorporate more complex
queries that demand image-based knowledge augmentation. We
acquire authentic user intent through web-sourced screenshots. We
curate a diverse array of topics and structure search queries around
these topic words, such as "Astro Bot screenshot", and use Google Im-
age Search to collect an image corpus. The resultant image corpus is
subject to a manual filtration process. To generate realistic queries,
we leveraged the Claude-3.5-sonnet API 3 to simulate real users,
producing five distinct queries per image that span both factual
and open-ended inquiries requiring visual context interpretation.
Each query-image pair undergoes manual review and modifica-
tion by two senior AI research engineers, each bringing at least
three years of domain expertise. The modification process follows
several key principles: (1) each query must be distinct, with no
repetition—even across different images; (2) queries must be unam-
biguous; (3) queries should be meaningful and formulated naturally,
resembling how real humans would ask them; and (4) each query
should target specific information, asking about concrete aspects of
the image. For each image, the 1–5 most compelling queries, which
highlight the potential of multimodal retrieval, are retained.

5.2 MRAG Planning and Generation
The MRAG planning and generation process is central to the Cog-
Planner framework, as detailed in Section 4.2. We employ the GPT-
4o API for executing the planning process. This implementation
records each iteration of the planning process, encompassing the
series of actions taken, the multimodal document sets retrieved, and
the responses generated. Following response generation, the expert
annotators conduct a thorough examination to review and regular-
ize the entire chain of actions, and manually annotate the golden
3https://www.anthropic.com/news/claude-3-5-sonnet
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Table 1: Key statistics of CogBench.

# Query # Domians # Query Len. # Answer Len. # Images

5718 9 8.95 40.13 1381

Reasoning Steps Answer Type

1-hop 2-hop > 2-hop open-ended close-ended

1166 1882 2666 1383 4334
20.39% 32.91% 46.62% 24.19% 75.80%

answer. Each data sample in the CogBench, therefore, contains a
multimodal query, the retrieval actions, reformulated queries at
each iterative step, the documents retrieved, and the final golden
answer. To be noticed, we do not define a fixed gold standard for
the multimodal query processing, as manual annotation of informa-
tion collection paths does not yield a unique or definitive reference.
Instead, we focus on the correctness and completeness of the final
answer. Finally, the CogBench dataset is divided into training and
test sets, comprising 5307 and 401 samples, respectively.

5.3 CogBench Analysis
As shown in Table 1 and Figure 3, CogBench contains 5718 user
queries spanning 9 distinct cognitive domains. We identify several
fundamental characteristics that distinguish CogBench from exist-
ing benchmarks. (1) Unlike previous benchmarks, which focus pri-
marily on query-response pairs, CogBench offers a comprehensive
record of the entire planning procedure involved in MRAG tasks,
thereby facilitating the training of MLLMs. (2) A critical limitation
of current MRAG benchmarks lies in their reliance on artificial
query construction, primarily through simple entity substitution
techniques [8, 19]. Such methodologies typically yield responses
confined to single entities or numerical values, severely understat-
ing the complexity inherent in real-world multimodal interaction
scenarios. In contrast, CogBench introduces 24.19% open-ended
queries that demand sophisticated, multi-faceted responses encom-
passing multiple interconnected claims with much longer answer
length - 40.13 tokens on average. (3) CogBench incorporates diverse
planning procedures that necessitate distinct search strategies at
different stages, resulting in varied decision chains across different
MLLMs. To quantify this complexity, we also ask the annotators to
assess the number of reasoning steps required for resolution (e.g. a
single round of question answering is considered a 1-hop query).
Our findings reveal that 79.55% of cases explicitly require MRAG
Planning, highlighting the sophisticated nature of the reasoning
tasks presented in our benchmark.

5.4 Lightweight Integration of CogPlanner
To improve the efficiency and reduce the resource requirements
of the CogPlanner framework, we aim to achieve a more light-
weight integration within MRAG systems. Building upon the Cog-
Bench, we introduce a specialized fine-tuning strategy tailored for
smaller, resource-efficient MLLMs to broaden the applicability of
the CogPlanner framework and mitigate resource constraints. We
utilize the Qwen2-VL-7B-Instruct as the backbone and employ the
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or
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22
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nology & Scien
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Architecture & Design 2.2%

Culture & Society 5.2%

Military 1.5%

Double Ring Pie Chart

Figure 3: Domain distribution of CogBench.

CogBench training set as specialized training data. To maintain
a balance between the fine-tuning process and the retention of
the Qwen2-VL-7B-Instruct model’s general capabilities, we aug-
ment the training dataset with general instruction data at a 1:1
ratio. This ensures that the model benefits from the specialized
training required for CogPlanner integration while preserving its
broad functionality. The fine-tuned model is referred to as Qwen2-
7B-VL-Cog. This fine-tuning methodology is highly adaptable and
capable of being applied to any existing MLLM. In our practice, we
find that the CogBench fine-tuning process significantly enhances
the MRAG planning capabilities of MLLMs, making them qualified
for effective planning experts. Ultimately, this approach facilitates
the development of a lightweight integration of CogPlanner, en-
hancing MRAG performance while requiring minimal additional
computational resources.

6 Experiments
6.1 Experimental Settings
Our experimental evaluation of CogPlanner, conducted on the Cog-
Bench test set, encompasses two primary dimensions: the overall
performance of the MARG system and the analysis of the planning
procedure within CogPlanner. We utilize the following backbone
MLLMs, GPT-4o [9], Qwen2-VL-72B-Instruct [28], Pixtral-Large-
Instruct [11], and our fine-tuned Qwen2-7B-VL-Cog. Notably, QVQ-
72B-Preview serves as a representative MLLM for advanced multi-
modal reasoning capabilities.

6.1.1 End-to-End MRAG Performance. We conduct six distinct ex-
perimental configurations across all selected MLLMs. The base-
line configuration employs the original MLLMs, where multimodal
queries are processed directly by the MLLM. We then examine
two intermediate configurations: one incorporating fixed image
retrieval based on visual query components, and another utilizing
fixed text retrieval driven by textual query components. Besides, we
employ the self-reflective RAG framework4 [2] as a reflective and it-
erative competitive framework. The core evaluation focuses on both
parallel and sequential modeling implementations of CogPlanner.

For performance metrics, we adopt both token-level and claim-
level evaluations, inspired by [24]. Token-level evaluation is per-
formed using the F1 score, measuring the overlap of common tokens
between the generated response and the ground truth. Specifically,
4https://github.com/langchain-ai/langgraph/tree/main/examples/rag
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Table 2: Performance comparison between CogPlanner and baseline MRAG methodologies on CogBench. Precision and recall
are evaluated at the claim level, while the F1 score is assessed at the token level. The diverse planning procedures required by
CogBench lead to performance degradation across all fixed pipeline baselines, whereas CogPlanner demonstrates substantial
improvements.

Model
Reasoning-Steps Overall Performance

1-hop 2-hop > 2-hop

Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

Origin MLLMs

GPT-4o 33.49 37.44 10.01 44.38 59.46 39.84 16.17 24.74 12.83 29.07 38.85 21.21
Pixtral-Large-Instruct 24.30 41.87 5.19 37.65 54.64 34.51 10.77 24.50 7.13 22.45 38.05 15.81
QVQ-72B-Preview 34.15 22.10 10.56 40.51 31.29 21.48 19.42 13.99 6.37 29.43 21.39 12.24
Qwen2-VL-72B-Instruct 34.45 48.85 7.95 35.46 44.94 37.00 12.55 17.00 9.27 24.63 32.78 18.19

With Fixed Image Retrieval

GPT-4o 31.73 23.13 10.74 36.75 45.14 36.07 17.88 30.10 11.13 26.97 33.67 19.32
Pixtral-Large-Instruct 23.10 39.27 6.13 28.05 44.51 29.28 12.58 24.91 6.88 19.86 34.35 14.16
QVQ-72B-Preview 11.35 23.13 2.72 17.10 19.77 20.42 8.17 10.24 2.70 11.78 16.03 8.58
Qwen2-VL-72B-Instruct 26.30 35.65 9.02 26.92 32.44 29.20 16.45 17.45 7.89 21.93 26.14 15.19

With Fixed Text Retrieval

GPT-4o 22.68 15.63 5.72 38.72 36.79 37.08 15.72 17.11 10.49 24.77 23.33 18.33
Pixtral-Large-Instruct 8.35 14.22 1.57 16.91 21.73 27.27 8.58 13.01 7.18 11.30 16.15 12.70
QVQ-72B-Preview 29.22 18.54 8.04 24.90 16.62 18.75 9.95 8.08 6.02 18.85 13.05 10.66
Qwen2-VL-72B-Instruct 20.56 24.47 7.12 26.66 27.07 30.64 11.63 13.33 9.98 18.44 20.17 16.25

Self-Reflective RAG

GPT-4o 43.83 11.72 15.56 28.79 22.21 30.88 22.79 20.68 13.03 29.59 19.13 19.47
Qwen2-VL-72B-Instruct 43.29 10.97 10.49 27.55 20.72 28.58 19.01 18.96 13.85 26.81 17.91 18.05

CogPlanner with Parallel Modeling

GPT-4o 35.74 37.67 10.46 47.46 57.37 42.83 24.09 27.73 13.65 34.22 39.59 22.67
Pixtral-Large-Instruct 21.46 37.08 5.16 45.35 52.29 38.96 20.95 30.34 11.12 29.15 39.00 19.13
QVQ-72B-Preview 36.38 36.44 48.16 43.90 29.60 24.43 22.19 25.22 26.69 32.29 28.97 30.33
Qwen2-VL-72B-Instruct 35.50 48.77 8.23 45.88 47.08 38.51 21.64 24.00 15.71 32.45 36.90 21.74

CogPlanner with Sequential Modeling

GPT-4o 32.92 33.46 10.14 49.67 54.68 43.26 28.03 33.38 15.26 36.21 40.46 23.49
Pixtral-Large-Instruct 22.60 36.39 5.57 37.18 54.32 39.60 9.96 29.96 11.28 21.57 39.36 19.51
QVQ-72B-Preview 35.62 45.95 51.69 43.36 44.07 25.37 19.54 21.18 27.27 30.73 33.84 31.63
Qwen2-VL-72B-Instruct 36.88 48.86 7.84 42.94 44.45 37.48 21.57 25.01 14.27 31.79 36.33 20.65

we use the NLTK tokenizer to segment the generated answers and
ground truth. For claim-level evaluation, we utilize both precision
and recall, calculated by first extracting claims from both the golden
and generated answers using GPT-4o. Precision measures the pro-
portion of correct claims within the generated responses, while
recall evaluates the proportion of correct claims relative to the
ground-truth answer claims.

6.1.2 Planning Procedure Performance. In addition to the overall
MRAG performance, we examine the efficiency of CogPlanner’s
planning procedure, with emphasis on query reformulation, by
comparing its reformulated queries with those annotated by human
experts. We evaluate three distinct approaches: parallel modeling,

Table 3: Performance of query reformulation across different
MLLMs.

Category Model BLEU Rouge F1

Prompting GPT-4o 0.1629 0.4951 0.5375

Parallel
GPT-4o 0.1922 0.5266 0.5620
Pixtral-Large-Instruct 0.1678 0.4614 0.5089
Qwen2-VL-72B-Instruct 0.0907 0.4140 0.4472

Sequential
GPT-4o 0.1739 0.5050 0.5460
Pixtral-Large-Instruct 0.1773 0.4707 0.5221
Qwen2-VL-72B-Instruct 0.0918 0.4266 0.4643
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sequential modeling, and direct reformulating query through GPT-
4o with optimized prompt engineering. The comparative analysis
employs standard metrics, including BLEU [22], ROUGE [18], and
F1 scores to assess the quality and relevance of the reformulated
query outputs against established ground truth.

6.1.3 Implementation Details. In our retrieval process, we retain
the top five results from a web search, each result containing a max-
imum of 800 tokens. For fine-tuning the Qwen2-7B-VL-Cog model,
we leverage the Llama-Factory framework [37] with a learning rate
of 2e-6. A cosine learning rate scheduler is employed, and training
proceeds for 2 epochs with a batch size of 32 and a warm-up ratio
of 0.1. To ensure computational efficiency and prevent indefinite
reasoning loops, we impose an upper bound of three iterations on
the CogPlanner planning process. Our experiments are conducted
on 8 NVIDIA A800 GPUs.

6.2 CogPlanner Performance
6.2.1 End-to-end Performance. Table 2 presents a comprehensive
comparison of the end-to-end performance of various MLLMs inte-
grated with current MRAG methodologies and our proposed Cog-
Planner. The following observations can be drawn based on these
results: (1) Enhanced Performance with CogPlanner: Notably,
CogPlanner with GPT-4o consistently yields best performance com-
pared to all other configurations. Specifically, it delivers substantial
improvements over baseline MRAG systems, with end-to-end per-
formance gains ranging from 12.4% to 52.5%, and at least a 41.45%
improvement over self-reflective MRAG variants. This enhance-
ment is attributed to its ability to decompose and refine complex
queries. By simplifying these queries, CogPlanner facilitates the
dynamic determination of necessary retrieval actions, thereby en-
suring the acquisition of accurate, complementary information.
These results highlight the critical role of MRAG Planning in op-
timizing the performance of MRAG systems. (2) Weakness of
Fixed Search Strategies: The two fixed search strategies, while
offering some improvements in specific metrics, generally exhibit
a negative impact when compared to direct responses generated
by MLLMs. As anticipated, these rigid search actions, particularly
when applied to concise queries and screenshot images within mul-
timodal queries, introduce noise that misleads downstream MLLMs
rather than providing useful information. The noisy retrieval results
tend to obscure the relevant information, thereby diminishing the
effectiveness of the system. These findings further validate the mo-
tivation behind the development of the CogPlanner framework. (3)
Comparison of Parallel and SequentialModelingApproaches:
Comparing our parallel and sequential modeling methodologies,
they show comparable performance, each demonstrating signifi-
cant improvements over traditional MRAG systems. However, the
sequential modeling approach does not exhibit a substantial ad-
vantage over the parallel approach. This suggests that the current
capabilities of MLLMs are insufficient for accurately evaluating
complementary information in a sequential manner (4) Benefits
on Multihop Query: The performance of CogPlanner shows vari-
ability across 1-3 hop query categories, with more pronounced
improvements observed in multi-hop queries. This pattern suggests
that the iterative and adaptive planning process of CogPlanner is

particularly beneficial in scenarios that require the retrieval of in-
formation from multiple sources and involve multi-step reasoning
to formulate a complete and accurate response.

6.2.2 Query Reformulation Performance. As illustrated in Table 3,
we evaluate the query reformulation performance of CogPlanner
in comparison with various backbones, including direct prompt
engineering approaches with these MLLMs. Among the config-
urations tested, GPT-4o with parallel modeling emerges as the
highest-performing setting. Notably, CogPlanner demonstrates its
ability to significantly enhance the accuracy and informativeness
of the original multimodal queries, thereby improving the over-
all query formulation process. This improvement underscores the
core objective of query reformulation within the context of MRAG
Planning, highlighting the robustness and effectiveness of the Cog-
Planner framework. Moreover, the results reveal that the query
reformulation performance is highly contingent upon the selection
of the planning expert MLLMs.

6.3 Lightweight Model Performance
In this section, we assess the performance of our fine-tuned Qwen2-
7B-VL-Cog from both effectiveness and efficiency perspectives. The
results are presented in Table 4.

6.3.1 Model Evaluation. To ensure a fair comparison, we use the
Qwen2-VL-72B-Instruct as the reference model for final answer gen-
eration. Both Qwen2-VL-72B-Instruct and our fine-tuned Qwen2-
7B-VL-Cog are utilized as planning experts within the CogPlanner
framework, facilitating an assessment of whether smaller MLLMs,
specifically through our tailored supervised fine-tuning procedure,
can effectivelymanage the complexities inherent inMRAGplanning
tasks. The results underscore the critical role of model selection in
determining the overall performance. While larger MLLMs typi-
cally demonstrate superior results, our Qwen2-7B-VL-Cog closely
approximates the performance of Qwen2-VL-72B-Instruct across
most evaluation metrics. This finding serves to validate the efficacy
of our fine-tuning strategy. Under the CogPlanner framework, our
results demonstrate that it is indeed possible to deploy a resource-
efficient planning expert, leading to enhanced performance of the
MRAG system. Specifically, the Qwen2-7B-VL-Cog emerges as a
compelling alternative.

6.3.2 Efficiency Evaluation. We compare the efficiency of CogPlan-
ner with Qwen2-VL-72B-Instruct and Qwen2-7B-VL-Cog as the
planning expert. Specifically, we use total token generation and
latency as the primary evaluation metrics, excluding the cost associ-
ated with final answer generation to isolate planning efficiency. As
shown in Table 4, our findings indicate that Qwen2-7B-VL-Cog con-
stitutes a significantly more lightweight module for MRAG systems,
incurring only a 10% increase in token consumption, but reducing
latency to just 30% compared to the Qwen2-VL-72B-Instruct model.
It emerges as a practical compromise between performance and
computational efficiency, particularly well-suited for deployment
in real-world industrial settings. Furthermore, the parallel execu-
tion model exhibits superior performance relative to the sequential
modeling approach across both efficiency metrics, aligning with
our design expectations.
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Table 4: End-to-end performance and efficiency evaluation of Qwen2-VL-72B-Instruct and Qwen2-7B-VL-Cog as planning
experts, with response generation models consistently using Qwen2-VL-72B-Instruct.

Planning Expert Precision Recall F1 Avg # Total Tokens Latency(s)

CogPlanner With Parallel Modeling

Qwen2-VL-72B-Instruct 32.45 36.90 21.74 30.36 9.76 (14.9%) 1.209
Qwen2-7B-VL-Cog 31.97 32.65 21.46 28.69 7.58 (9.8%) 0.484

CogPlanner With Sequential Modeling

Qwen2-VL-72B-Instruct 31.79 36.33 20.65 29.59 13.56 (21.6%) 1.842
Qwen2-7B-VL-Cog 32.50 33.10 21.38 29.00 7.59 (11.9%) 0.545

Table 5: The proportion of retrieval actions of different
methodologies, # No, # Text, # Image represents no search,
text search and image search, respectively.

Model Category # No # Text # Image

Pixtral-Large-Instruct Parallel 11.51% 65.24% 23.25%
Sequential 8.43% 84.28% 18.00%

Qwen2-VL-72B-Instruct Parallel 13.38% 59.87% 26.75%
Sequential 11.46% 66.07% 22.47%

Qwen2-7B-VL-Cog Parallel 5.25% 80.43% 14.32%
Sequential 5.25% 80.42% 14.43%

6.4 Analysis
6.4.1 Analysis on planning procedure of Cogplanner. We conduct
an analysis to explore the adaptive decision-making capabilities
of CogPlanner, which emulates human cognition by tailoring its
planning processes to the specific knowledge bases of different
MLLMs. Specifically, we examine the length of decision chains and
the distribution of retrieval actions across the Pixtral-Large-Instruct,
Qwen2-VL-72B-Instruct, and Qwen2-7B-VL-Cog. The results are
summarized in Table 5 and Figure 4. The following observations
can be drawn from these analyses: (1) As shown in Figure 4, the
distribution of retrieval actions indicates that all the MLLMs tend
to perform more actions than are typically expected by human
annotators. The expected behavior would be a gradual progression
of actions. However, MLLMs generally opt to acquire more infor-
mation and make conservative decisions in an attempt to ensure
accuracy [6, 32]. Among the models examined, the Qwen2-VL-
72B-Instruct exhibits the most pronounced mismatch, performing
over two rounds of processing even for 1-hop queries, which is
counterintuitive when compared to its behavior on more complex,
multi-hop queries. In contrast, the Qwen2-7B-VL-Cog model pro-
duces the most reasonable number of retrieval actions. Additionally,
comparing sequential and parallel modeling paradigms reveals a
substantial reduction in redundant retrieval actions. This is attrib-
uted to the query reformulation step, which allows the CogPlanner
to better evaluate whether further search is genuinely necessary,
resembling a reflective thought process. (2) From the data presented
in Table 5, it is evident that the Qwen2-7B-VL-Cog model predomi-
nantly relies on textual search. This trend is also observable when
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Figure 4: The average number of retrieval actions of different
MLLMs across queries with different reasoning steps.

comparing the two modeling paradigms. These results suggest that
text-based retrieval remains the most preferred and fundamental
method for acquiring information in MLLMs. Furthermore, the
prevalence of redundant retrieval actions in this domain could be
attributed to the tendency of models to perform additional web
searches for reassurance, which does not necessarily harm overall
performance. (3) Notably, most tasks appear to be resolved around
2-hop retrieval steps, even for more complex queries requiring
greater than 2 hops. Determining an optimal retrieval strategy that
aligns with the model’s knowledge base and reasoning capabilities
remains a challenging task for current MLLMs.

7 Conclusion
This work introduces Multimodal Retrieval Augmented Generation
Planning (MRAG Planning) to address the limitations of current
MRAG frameworks. Our research underscores the importance of
dynamically optimizing the information acquisition and query refor-
mulation processes. The CogPlanner framework leverages decision-
making to refine queries and select appropriate retrieval strategies,
minimizing redundant retrieval and enhancing response quality.
CogPlanner offers flexible modeling approaches and integrates
seamlessly with existing MRAG systems. Additionally, we propose
the CogBench benchmark to assess MRAG Planning’s decision-
making capabilities, filling a gap in current evaluation methods.
The experimental results validate the efficacy of MRAG Planning
and CogPlanner, showcasing substantial improvements in perfor-
mance with minimal additional computational costs. This work
paves the way for more adaptive and effective MRAG frameworks.
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