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ABSTRACT

Proteins are essential to life and function, and discovering new proteins can un-
lock new therapeutics and industrial applications. However, the space of proteins
is incredibly large and diverse, making discovering useful proteins difficult. Ma-
chine learning (ML) models help search the space of proteins, finding candidate
proteins for specific goals and reducing the need for costly experimentation. The
recent trend of increasing scale of ML models creates more demanding computa-
tional requirements, especially for large language models (LLMs) and their pro-
tein language model (PLM) counterparts. Quantization and efficient fine-tuning
methods can help offset this by reducing the amount of memory and training re-
quired to use ML models. Here we show that combining 4-bit quantization and
efficient training with low rank adapters maintains >90% of the performance for
most models in protein prediction tasks, while simultaneously reducing the re-
quired memory consumption by 46.7% on average. Generative models that are
4-bit quantized use 76.4% less memory while showing no significant difference
in the quality of their generated proteins. This represents the first benchmark of
quantized training with parameter efficient fine-tuning for PLMs while retaining
nearly all of their performance, thus lowering the requirements and barrier of entry
for practitioners.

1 INTRODUCTION

Proteins represent a highly versatile class of molecules with applications in medicine, biotechnology
and chemistry. However, the immense space of possible proteins (20100 possible sequences for a 100
amino acid protein) presents a very challenging problem in discovering proteins of interest. This is
compounded by the associated high cost and time of testing these proteins in the laboratory. ML
models are capable of recognizing underlying patterns in data (Frappier & Keating, 2021) and have
recently become remarkably successful in the design of new proteins (Hayes et al., 2025; Watson
et al., 2023). Protein language models are large language models trained on protein amino acid
sequences instead of natural language, and are often fine-tuned for specific downstream tasks such
as enzymatic reaction performance (Chen et al., 2025) or drug binding kinetics (Paul et al., 2021).

ML models and LLMs/PLMs in particular have heavy computational requirements which have only
increased with the recent trend in the field to use massively larger models (see Figure 1). Some
models have even reached trillions of model parameters, and PLMs are following this trend as well
(Zhao et al., 2023; Vieira et al., 2025). As PLMs scale in size, so do the GPU memory requirements
resulting in a higher training/inference cost and barrier to usage, particularly for academic labs and
small companies. Methods that reduce PLM compute requirements are key to mitigating these
ballooning costs.
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Figure 1: Parameter count of landmark LLMs (blue) and PLMs (red) over time (Amatriain et al.,
2023). For models with multiple sizes, the model with highest performance was selected. GPT 4.0
model size is a community estimate given lack of published statistics.

Current methods for reducing the computational cost of large models focus either on creating new
architectures that use fewer parameters, or modifying existing training and inference methods to
reduce size (Han et al., 2024). We focus on methods that integrate with existing models, in particular
quantization and parameter efficient fine tuning (PEFT) methods. Low Rank Adaptation (LoRA) is
a PEFT method that freezes the existing model weights and substitutes rank decomposed matrices
to train instead. Hu et al. (2021) demonstrated that the modifications in weight matrices during
fine-tuning are typically low-rank, which permits the approximation of these changes through a
decomposition into two smaller matrices. These substitute weights greatly reduce the trainable
parameters while retaining a comparable level of detail in the model during fine-tuning.

Schmirler et al. (2024) showed that PLMs like ESM-2 and ProtT5 can be efficiently fine-tuned
with LoRA to improve protein prediction and reduce computational costs. Sledzieski et al. (2024)
further applied LoRA to proteomics, demonstrating its effectiveness in protein-protein interaction
(PPI) prediction and homo-oligomer symmetry classification. These methods can be extended for
further efficiency benefits by combining quantization with LoRA (QLoRA), as has been done with
LLMs (Dettmers et al., 2024). Our work builds on these efforts by systematically applying QLoRA
across diverse protein modeling tasks, thus optimizing memory efficiency while maintaining high
performance across various models.

Here, we apply QLoRA for fine-tuning PLMs across multiple model scales and designs, includ-
ing ESM-2, ESM C, ProtBERT, ProtT5-half, and Ankh-base. We quantify model performance on
both regression (predicting fluorescent protein brightness and protease stability) and classification
(predicting secondary structure) tasks. By comparing QLoRA-based approaches against traditional
full-model fine-tuning, we highlight the potential to reduce memory footprints while maintaining
strong predictive performance. We also apply quantization to ProtGPT2 and ProLLaMA to deter-
mine the effects on unconditional generation of proteins. Our experiments confirm the practical
feasibility of applying PEFT and quantization methods together for large-scale protein modeling,
opening up avenues for more accessible and democratized protein design processes.

2 METHODS

2.1 PRE-TRAINED PLMS

All models are based on the transformer architecture and initialized with pre-trained checkpoints
from the Hugging Face Transformers library. ESM-2 models ranging from 8 million to 3 billion
parameters (8M, 35M, 150M, 650M, 3B), ESM C (300M, 600M), ProtBERT (420M), ProtT5-half
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(3B), and Ankh-Base (726M) were used for fine-tuning with QLoRA. ProtGPT2 (738M) and ProL-
LaMA (6.7B) were used for unconditional generation with quantization.

2.2 COMPUTE BENCHMARK

We evaluated several metrics of computational cost for training each model. We tracked the maxi-
mum GPU memory utilized by the model and the average power consumption of the model during
training. For each metric, we trained each model for various batch sizes (2n, n ∈ 0, 1, . . . , 8) and
measured the metric with the full model, and again with the quantized model. We evaluated these on
a single dataset, green fluorescent protein (GFP) brightness prediction, with three seeded replicates.
We tracked model consumption metrics with the wandb library and nvidia-stat-gpu.

2.3 QLORA FINE-TUNING

We used the following datasets for fine-tuning: For regression, we used GFP brightness (Sarkisyan
et al., 2016) and protease stability (Rocklin et al., 2017). For 3-class classification, we used protein
secondary structure (Berman et al., 2000; Moult et al., 2018; Klausen et al., 2019).

We performed an initial hyperparameter search on ESM-2 150M across learning rate (LR), alpha,
and rank, and used this as a basis for fine-tuning all the models with adjustments to LR and batch size
to facilitate convergence as needed (Appendix A). For QLoRA models, we quantized to 4-bit float
on linear layers in the base model (either by default layers specified by the model implementation
in the Transformers library or our specification if there was no default) and used LoRA rank=8,
alpha=32 and dropout=0.05. We fine-tuned each model on each dataset task for both the full model
and the QLoRA model in triplicate across three seeds for 10 epochs. We evaluated models with
Spearman’s rank correlation coefficient (SpearmanR) for fluorescence and stability regression tasks
and multi-class accuracy for the secondary structure classification task.

2.4 QUANTIZED UNCONDITIONAL GENERATION

We evaluated full and 4-bit quantized models in triplicate across three seeds each by generating
100 sequences between 100-200 amino acids and screening the generated sequences for predicted
structure based scores. We quantized ProLLaMA on the q proj, k proj, v proj and o proj
layers, and ProtGPT2 on the c attn and c proj layers. We used Foldseek (Van Kempen et al.,
2024) to evaluate pass rate (ratio of sequences with any homology match), local distance difference
test (LDDT), alignment score and homology probability. We used s4pred (Moffat & Jones, 2021) to
determine helix, sheet and coil content. We used aiupred (Erdős & Dosztányi, 2024) to determine
disorder probability. Lastly, we used AlphaFold2 (Jumper et al., 2021) via ColabFold (Mirdita et al.,
2022) to determine predicted LDDT (pLDDT) and predicted template modeling (pTM) scores.

3 RESULTS

3.1 COMPUTE PERFORMANCE

All models saw reduced memory usage with small batch sizes and tended towards a larger reduction
for larger models (Figure 2, Appendix B.2). However, as batch size increased, we saw less of a re-
duction, even going as far as increasing memory size for the smallest models. For the largest models,
quantization reduced the memory to just 10% of their original size. The average memory reduction
across all batch sizes and models was 46.7%. All models showed reduced power consumption on
average (Appendix B.1). Overall, for all models and batch sizes we saw an average 5.6% less power
consumed.

3.2 FINE-TUNING PERFORMANCE

We fine-tuned each model on each dataset with QLoRA models performing generally close to the
full model performance for all models (Figure 3A). For smaller models, batch size and learning
rate could be kept the same for full and QLoRA models to obtain convergence, while larger models
tended to require a magnitude lower learning rate for the full model relative to the QLoRA model
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Figure 2: Heatmap showing the difference in model training memory across models and batch
sizes. We tested each model in triplicate on a 1xH100 GPU. Percent difference is calculated by
full−qlora

full × 100%. Negative numbers represent reduced memory consumption, positive increased.

(Appendix A). ESM C 600M performed best in both overall fine-tuning performance and relative
QLoRA vs. full model performance with fluorescence SpearmanR 0.850 vs. 0.863, stability Spear-
manR 0.556 vs. 0.671 and secondary structure accuracy 0.870 vs. 0.870. All models had relatively
poor performance on the stability dataset compared to fluorescence and secondary structure. The
ESM-2 family exhibited better relative QLoRA performance as parameterization increased, and
larger models also generally exhibited the same better performance relative to smaller models. ESM
C 300M and 600M showed performance similar or better than the much larger ESM-2 3B. The T5
based models, ProtT5 and Ankh, were both challenging to train and exhibited high sensitivity to LR
and batch size with large variance.

3.3 UNCONDITIONAL GENERATION QUALITY

We found ProtGPT2 and ProLLaMA both quantized well with very similar predicted structural prop-
erties of the generated proteins (Figure 3B). Through Foldseek, full and quantized models exhibited
very similar characteristics though ProtGPT2 and ProLLaMA had lower pass rates for quantized
vs. full of 84.0% vs. 89.3% and 83.3% vs. 89.3%, respectively. Secondary structures predicted by
s4pred were also similar between model types with preference towards disordered structures. Over-
all disorder predicted by aiupred was lower for quantized ProtGPT2 (36.5% quantized vs. 40.2%
full) and higher for quantized ProLLaMA (54.2% quantized vs. 50.9% full). AlphaFold2 predicted
close pLDDT and pTM for quantized and full versions of both models. Overall, both models were
not significantly different in their generated output characteristics between full and quantized models
(Welch’s t-test, ProtGPT2 p=0.805, ProLlaMa p=0.787).

4 DISCUSSION

We have shown that PLMs can be quantized and efficiently trained without sacrificing significant
performance. Fine-tuning across various tasks with 4-bit conversion of the large majority of model
weights and utilization of LoRA provides much smaller memory footprints with mostly preserved
performance in these contexts. We saw QLoRA performance get closer to full model parity with
lower deviation across seeds as the model size increased, both within the ESM-2 family and for
all models in general. ESM C 600M in particular quantized very well and performed better than
its much larger but earlier generation counterpart ESM-2 3B, in line with ESM Team (2024). The
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Figure 3: PLMs can be efficiently fine-tuned and quantized for prediction and generation. (A) Com-
parison of full and QLoRA models after fine-tuning across each dataset. Dots above bars represent
relative performance of quantized to full. Error bars represent standard deviation across seeds. (B)
Comparison of full and 4-bit quantized PLMs for unconditional generation of 100-200 length pro-
teins. FS pass rate, FS LDDT, FS alignment score, FS homology probability are determined from
FoldSeek. Helix, sheet and coil content are determined from s4pred. Disorder probability is deter-
mined from aiupred. pTM and pLDDT are determined with AlphaFold2. Dashed lines represent
95% CI upper and lower bounds across seeds.

unconditional generation of new sequences is also preserved for both ProtGPT2 and ProLLaMA
when 4-bit quantized, allowing nearly identical quality proteins with a vast reduction in memory.

QLoRA reduced the memory utilization of all models at small batch sizes, however this reduction
was lost for large batch sizes, even increasing memory requirements in some instances. This is line
with Dettmers et al. (2024), where increased batch sizes results in a larger memory footprint from
the activation gradient. For the models and batch sizes that see a large reduction in memory, it is
much easier to run these on readily available hardware. The larger models we tested (ProtT5, ESM-
2 3B) initially took up ∼60 GB, too large to fit on an RTX A6000 GPU. After quantization, these
models were reduced to less than 10 GB, able to train and run on a free Colaboratory notebook with
a T4 GPU.

Our work demonstrates a promising application of QLoRA to PLMs, showing computational ben-
efits with minimal performance trade-offs. Achieving a 90% reduction in training memory while
retaining at least 90% of performance represents a significant advantage for practical model training
and inference. While model memory requirements increased with larger batch sizes, forthcoming
GPU architectures with native support for sub 8-bit floating point operations may help address this
limitation (NVIDIA, 2024). The ability to achieve similar performance with more efficient com-
putation enables both a wider exploration of protein space and accessibility for researchers in the
field.

5

https://colab.research.google.com/


Published at the GEM workshop, ICLR 2025

REFERENCES

Xavier Amatriain, Ananth Sankar, Jie Bing, Praveen Kumar Bodigutla, Timothy J Hazen,
and Michaeel Kazi. Transformer models: an introduction and catalog. arXiv preprint
arXiv:2302.07730, 2023.

Helen M Berman, John Westbrook, Zukang Feng, Gary Gilliland, Talapady N Bhat, Helge Weissig,
Ilya N Shindyalov, and Philip E Bourne. The protein data bank. Nucleic acids research, 28(1):
235–242, 2000.

Jia-Ying Chen, Jing-Fu Wang, Yue Hu, Xin-Hui Li, Yu-Rong Qian, and Chao-Lin Song. Evaluating
the advancements in protein language models for encoding strategies in protein function pre-
diction: a comprehensive review. Frontiers in Bioengineering and Biotechnology, 13:1506508,
2025.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. Advances in Neural Information Processing Systems, 36, 2024.
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A EXTENDED METHODS

Fluorescence Stability Secondary Structure
Full QLoRA Full QLoRA Full QLoRA

Model BS LR BS LR BS LR BS LR BS LR BS LR
ESM-2 8M 32 5E-05 32 5E-05 32 5E-05 32 5E-05 32 5E-05 32 5E-05
ESM-2 35M 32 5E-05 32 5E-05 32 5E-05 32 5E-05 32 5E-05 32 5E-05

ESM-2 150M 32 5E-05 32 5E-05 32 5E-05 32 5E-05 32 5E-06 32 5E-05
ESM-2 650M 16 5E-05 16 5E-05 16 5E-05 16 5E-05 16 5E-06 16 5E-05

ESM-2 3B 32 5E-06 32 5E-05 32 5E-06 32 5E-05 8 5E-06 4 5E-05
ESM C 300M 32 5E-05 32 5E-05 32 5E-05 32 5E-05 32 5E-05 32 5E-05
ESM C 600M 32 5E-05 32 5E-05 32 5E-05 32 5E-05 16 5E-06 32 5E-05

ProtBERT 32 5E-06 32 5E-05 32 5E-06 32 5E-05 32 5E-06 32 5E-05
ProtT5 Half 8 5E-08 8 5E-07 32 5E-06 32 5E-05 4 5E-06 16 5E-05
Ankh Base 8 5E-05 32 5E-06 8 5E-05 8 5E-05 8 5E-05 8 5E-05

Table 1: Batch size and learning rate for full and QLoRA models fine-tuned on fluorescence, stability
and secondary structure datasets. LoRA parameters were fixed with r = 8, α = 32, dropout =
0.05. Runs were completed on NVIDIA GeForce RTX 4090 24GB, RTX A6000 48GB and H100
80GB depending on model size and availability.

B COMPUTE BENCHMARKS

B.1 POWER CONSUMPTION DIFFERENCE

Figure 4: Heatmap showing percent difference in power consumption for models. Tests were ran in
triplicate across a 1xH100 cluster, measuring average GPU power consumption during training.
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B.2 RAW COMPUTE METRICS

ESM2 8M
Full QLoRA

Batch Size Memory (MB) Power (W) Memory (MB) Power (W)
1 3, 633.6± 1.4 91.6± 3.3 3, 480.5± 1.4 87.2± 0.9
2 3, 655.9± 0.0 108.1± 1.1 3, 507.0± 0.0 98.0± 0.8
4 3, 699.9± 0.0 157.2± 1.3 3, 578.3± 0.0 117.0± 0.3
8 3, 957.9± 0.0 219.1± 1.9 3, 725.1± 0.0 185.2± 0.2
16 3, 980.9± 0.0 239.3± 1.4 3, 993.5± 0.0 239.0± 1.0
32 4, 429.7± 0.0 242.8± 0.8 4, 522.0± 0.0 244.0± 0.9
64 5, 321.0± 0.0 241.2± 0.2 5, 553.8± 0.0 245.2± 0.6
128 7, 115.7± 4.5 241.4± 2.1 7, 643.4± 2.7 245.7± 1.4
256 12, 873.8± 1, 864.9 237.5± 2.3 15, 177.1± 231.4 244.5± 1.3

ESM2 35M
Full QLoRA

Batch Size Memory (MB) Power (W) Memory (MB) Power (W)
1 8, 328.9± 397.9 103.5± 1.7 7, 899.1± 64.2 93.5± 0.3
2 9, 104.9± 35.0 136.7± 3.8 8, 440.5± 37.8 105.5± 1.6
4 9, 136.1± 73.4 185.9± 3.9 8, 551.7± 85.2 159.2± 2.9
8 7, 040.9± 2, 194.7 252.0± 0.7 5, 394.3± 2, 362.5 231.7± 2.1
16 4, 803.7± 5.3 265.0± 1.0 4, 386.8± 3.4 256.9± 0.9
32 5, 239.1± 0.0 266.7± 1.1 5, 065.1± 0.0 264.2± 6.1
64 6, 159.8± 0.0 266.5± 0.7 6, 472.3± 0.0 263.8± 0.4
128 8, 311.5± 0.0 266.2± 0.3 9, 158.7± 0.0 264.8± 0.5
256 12, 621.1± 0.0 265.8± 0.1 14, 614.1± 1.2 262.7± 0.5

ESM2 150M
Full QLoRA

Batch Size Memory (MB) Power (W) Memory (MB) Power (W)
1 6, 949.7± 1.2 118.7± 0.9 3, 800.4± 0.0 99.4± 0.4
2 6, 935.6± 0.1 162.3± 2.1 3, 863.2± 0.0 117.1± 0.8
4 6, 931.3± 0.0 224.0± 2.9 3, 972.3± 0.0 187.7± 1.7
8 6, 950.2± 0.0 260.5± 0.8 4, 299.4± 0.0 250.4± 0.8
16 7, 147.4± 0.0 266.0± 1.0 4, 819.5± 0.0 260.2± 0.2
32 7, 931.7± 0.0 270.0± 1.2 5, 889.1± 0.0 264.0± 0.7
64 9, 162.7± 0.0 269.1± 0.4 8, 122.5± 0.0 264.2± 0.5
128 12, 094.5± 0.0 268.3± 0.6 12, 509.8± 0.0 265.7± 0.3
256 17, 670.9± 0.0 269.3± 0.9 21, 248.6± 0.0 261.9± 1.6

ESM2 650M
Full QLoRA

Batch Size Memory (MB) Power (W) Memory (MB) Power (W)
1 17, 389.8± 0.0 209.8± 2.8 4, 184.1± 0.0 167.8± 1.0
2 17, 429.7± 0.0 251.5± 1.7 4, 320.4± 0.0 217.0± 3.1
4 17, 706.5± 0.0 264.5± 1.4 4, 565.8± 0.0 260.7± 0.5
8 17, 859.6± 0.0 269.5± 0.6 4, 907.6± 0.0 264.1± 0.0
16 17, 566.0± 0.0 272.6± 0.2 5, 765.3± 0.0 265.5± 0.6
32 18, 199.3± 0.0 273.7± 0.6 7, 415.8± 0.0 266.0± 0.2
64 20, 571.2± 0.0 273.7± 0.2 10, 746.1± 0.0 265.5± 0.2
128 26, 244.0± 0.0 273.0± 0.4 17, 391.9± 0.0 266.1± 0.4
256 38, 283.8± 0.0 269.1± 0.2 30, 702.6± 0.0 261.5± 0.9
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ESM2 3B
Full QLoRA

Batch Size Memory (MB) Power (W) Memory (MB) Power (W)
1 61, 072.3± 0.0 227.4± 19.9 3, 511.8± 0.0 161.5± 15.9
2 61, 393.2± 0.0 234.1± 15.6 3, 782.3± 0.0 214.7± 31.0
4 61, 521.1± 0.0 257.9± 0.8 4, 203.9± 0.0 253.5± 3.1
8 62, 414.5± 0.0 260.0± 4.4 5, 091.0± 0.0 258.8± 5.7
16 61, 370.1± 0.0 259.8± 3.9 6, 615.6± 0.0 261.4± 5.4
32 61, 972.0± 0.0 252.8± 2.4 10, 086.4± 0.0 260.9± 4.6
64 64, 379.6± 0.0 255.2± 5.1 17, 168.5± 0.0 260.3± 3.1
128 74, 403.9± 0.0 260.6± 3.9 30, 674.1± 0.0 262.9± 5.1
256 78, 271.1± 5, 728.3 223.8± 9.1 58, 278.9± 0.0 265.3± 2.3

ESMC 300M
Full QLoRA

Batch Size Memory (MB) Power (W) Memory (MB) Power (W)
1 33, 306.6± 42, 823.0 133.6± 40.8 20, 551.0± 32, 277.0 118.4± 30.1
2 8, 542.9± 0.0 116.7± 0.9 1, 934.8± 0.0 107.8± 0.3
4 8, 547.1± 0.0 133.1± 0.8 2, 045.9± 0.0 125.8± 0.8
8 8, 505.1± 0.0 167.2± 7.1 2, 293.4± 0.0 158.0± 3.9
16 8, 563.9± 0.0 232.3± 24.1 2, 784.1± 0.0 243.8± 5.5
32 8, 983.3± 0.0 310.2± 13.1 3, 658.6± 0.0 317.7± 4.1
64 10, 721.8± 0.0 324.8± 2.7 5, 615.3± 0.0 330.3± 1.5
128 13, 496.4± 0.0 325.6± 0.7 8, 903.6± 0.0 329.9± 1.0
256 19, 802.5± 0.0 321.9± 1.4 17, 369.8± 0.0 331.6± 0.9

ESMC 600M
Full QLoRA

Batch Size Memory (MB) Power (W) Memory (MB) Power (W)
1 14, 100.3± 0.0 124.9± 5.0 2, 184.3± 0.0 108.7± 4.9
2 14, 085.7± 0.0 135.2± 2.2 2, 249.3± 0.0 122.9± 1.0
4 14, 006.0± 0.0 159.3± 2.0 2, 402.4± 0.0 148.8± 2.5
8 14, 582.7± 0.0 204.6± 2.9 2, 662.5± 0.0 198.1± 3.1
16 13, 787.9± 0.0 285.1± 10.6 3, 287.4± 0.0 283.3± 15.5
32 14, 094.0± 0.0 320.7± 5.1 4, 447.1± 0.0 325.2± 1.7
64 15, 962.6± 0.0 326.7± 4.1 6, 982.6± 0.0 330.9± 1.0
128 20, 333.1± 0.0 307.5± 33.7 12, 078.7± 0.0 311.4± 34.6
256 29, 432.6± 0.0 261.8± 1.3 22, 216.3± 0.0 270.8± 1.2

ProtBERT
Full QLoRA

Batch Size Memory (MB) Power (W) Memory (MB) Power (W)
1 9, 822.1± 0.0 112.0± 2.9 1, 829.9± 0.0 101.0± 0.8
2 9, 822.1± 0.0 121.6± 2.4 1, 888.6± 0.0 107.5± 1.1
4 9, 857.8± 0.0 135.2± 4.0 2, 014.4± 0.0 115.5± 5.7
8 9, 883.0± 0.0 169.3± 3.9 2, 217.9± 0.0 144.9± 1.2
16 10, 128.3± 0.0 235.9± 0.5 2, 654.1± 0.0 206.6± 5.4
32 10, 239.5± 0.0 299.0± 5.8 3, 522.3± 0.0 277.4± 9.3
64 11, 481.0± 0.0 305.2± 0.7 5, 244.1± 0.0 312.5± 1.0
128 14, 043.7± 0.0 309.1± 0.8 8, 740.0± 0.0 313.3± 2.5
256 19, 590.7± 0.0 300.8± 10.2 15, 723.5± 0.0 320.7± 4.7
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ProtT5
Full QLoRA

Batch Size Memory (MB) Power (W) Memory (MB) Power (W)
1 58, 910.2± 0.0 189.6± 14.5 6, 017.9± 0.0 139.8± 10.3
2 59, 772.1± 0.0 218.8± 18.6 6, 225.5± 0.0 172.9± 6.5
4 60, 160.1± 0.0 267.6± 19.0 6, 628.2± 0.0 224.5± 7.4
8 59, 847.6± 0.0 311.3± 4.5 7, 429.3± 0.0 279.3± 10.6
16 60, 009.1± 0.0 318.9± 1.0 8, 897.3± 0.0 308.5± 1.9
32 59, 702.9± 0.0 321.0± 1.6 12, 135.3± 0.0 316.2± 0.8
64 63, 112.9± 0.0 321.9± 0.7 18, 412.1± 0.0 315.8± 2.9
128 78, 745.0± 0.0 320.5± 2.6 31, 141.8± 0.0 315.5± 0.1
256 78, 768.0± 18.4 240.5± 25.2 59, 638.3± 4, 292.6 268.2± 40.0

Ankh-Base
Full QLoRA

Batch Size Memory (MB) Power (W) Memory (MB) Power (W)
1 17, 831.2± 0.0 114.5± 4.6 2, 568.1± 0.0 100.5± 0.3
2 17, 785.0± 0.0 125.6± 8.2 2, 670.9± 0.0 112.4± 4.5
4 17, 699.0± 0.0 153.3± 9.7 2, 918.3± 0.0 123.7± 1.3
8 17, 642.4± 0.0 245.8± 2.2 9, 066.3± 9, 842.3 157.8± 2.3
16 37, 346.3± 0.0 267.8± 0.7 24, 178.3± 0.0 238.6± 2.4
32 25, 194.0± 11, 452.3 273.6± 3.0 6, 095.5± 0.0 274.6± 1.1
64 21, 889.2± 0.0 276.6± 0.5 9, 723.6± 0.0 275.2± 1.6
128 29, 055.1± 0.0 273.5± 13.6 17, 057.3± 0.0 269.3± 3.2
256 44, 639.1± 0.0 264.7± 7.1 31, 632.5± 0.0 273.6± 4.1
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