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ABSTRACT

A refinement stage on macro placements generated by state-of-the-art methods
can further improve the layout quality, as this stage compensates for the sub-
optimality arising from lack of full-layout awareness in RL-based methods, as
well as the quality degradation resulted from the overlap-resolving legalization
step in analytical approaches. However, existing RL-based refinement techniques
often incur high computational cost. To reduce the computation overhead intro-
duced by the additional refinement stage, this paper proposes EfficientRefiner,
which leverages the efficiency of analytical framework to refine placement from
any BBO placement approaches. EfficientRefiner encodes macro positions as
learnable vectors and optimizes an objective function that integrates both target
metrics and placement constraints via gradient descent. It introduces a novel fine-
grained pairwise overlap formulation tailored for macro refinement, which over-
comes the limitations of prior density-based objectives in analytical methods by
effectively minimizing overlaps without inducing excessive spreading that could
degrade layout quality. Moreover, EfficientRefiner enhances efficiency and scal-
ability through pruning algorithms and GPU acceleration. Experimental results
show that, when considering both HPWL and regularity metrics for optimiza-
tion, it improves average HPWL by 7.20%–34.71% within 10 minutes on the
ISPD2005 benchmark, and achieves 20% WNS and 29% TNS gains on PPA-
supported ChiPBench circuits.

1 INTRODUCTION

Chip placement is a critical stage in Electronic Design Automation (EDA), as it strongly influences
subsequent steps such as clock tree synthesis and routing, and significantly affects the overall quality
of the chip design. The goal is to generate an optimized layout for both large functional modules
(macros) and small logic gates (standard cells), ensuring that no overlaps occur while improving
key objectives (e.g., proxy wirelength metric, and final Power, Performance and Area (PPA) met-
rics). Macro placement plays a decisive role within the overall placement task, as macros are much
larger and more densely connected than standard cells (Geng et al., 2024). Nevertheless, the prob-
lem remains highly challenging due to its NP-hard nature and the intricate trade-offs involved in
optimizing placement quality under essential design constraints (Wang et al., 2009).

A wide range of approaches have been developed to address the placement problem, with state-
of-the-art methods mainly falling into analytical-based and Reinforcement Learning (RL)-based
categories. Analytical methods (Lin et al., 2019; Lu et al., 2015; Cheng et al., 2018; Chen et al.,
2008) formulate differentiable objectives, such as wirelength (capturing the primary optimization
goal) and density (encouraging module spreading). Then they optimize these objectives efficiently
with gradient-descent. Analytical-based methods leverage global layout information and offer high
computational efficiency, but often cause severe macro overlaps which has to be resolved by a sub-
sequent legalization step at the cost of significant performance degradation (Lai et al., 2022). RL-
based methods (Mirhoseini et al., 2021; Lai et al., 2022; 2023; Cheng & Yan, 2021; Geng et al.,
2024) formulate placement as a Markov Decision Process (MDP). They mainly learn policies that
place modules step by step. These methods have shown promise in generating high-quality place-
ments and are able to avoid overlaps through masking, but they suffer from high computational cost
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and limited ability to capture global context. Overall, existing approaches show notable strengths
but also leave room for further improvement.

An analytical-based refinement stage has the potential to improve layouts produced by existing
placement methods, as it can compensate for the suboptimality caused by incomplete global context
information and the quality loss from legalization. Previous work such as MaskRegulate (Xue et al.,
2024) has explored RL to refine DreamPlace-generated layouts, but this approach requires dataset-
specific training to achieve the best results and updates only one module per iteration, which is
inefficient. In contrast, we view refinement as a post-processing stage that should impose minimal
additional runtime, and thus adopt an efficient analytical framework to implement refinement and
explore its effectiveness in enhancing placement quality.

Effectively handling overlaps is particularly critical when applying analytical methods for macro re-
finement, because (1) macros are large, vary greatly in size, and densely connected, which increases
the likelihood of overlaps and makes legalization more likely to degrade the refined layout; (2) large
macro perturbations at legalization can substantially diminish the value of refinement on layouts
already with high quality (Lai et al., 2022). Existing analytical methods generally address overlaps
using coarse-grained density functions, which partition the placement region into grids and drive
each grid toward a target density. However, this strategy faces two major issues for handling macro
overlaps. One issue is that minimizing grid-based objectives does not guarantee complete removal,
often leaving significant overlaps among macros unresolved. The other is that many methods rely
on repulsive forces between modules, but in high-density regions these forces may continue acting
even after modules have moved away, leading to unnecessary spreading that may hinder effective
optimization of key objectives (Cheng et al., 2018).

To tackle the above issues, we introduce a fine-grained, module-pair-based overlap function that
effectively reduces macro overlaps. This function explicitly computes overlaps between every pair
of macros and aggregates them to obtain the total overlap, providing a more accurate representation
than grid-based formulations. To address the higher computational cost of fine-grained modeling,
we employ algorithmic optimizations together with GPU acceleration for computation of both the
overlap function and its gradient, resulting in substantial efficiency gains and improved scalability.
Building on this novel overlap formulation and its efficient implementation, we develop Efficien-
tRefiner, a layout refinement method specifically suitable for efficient macro refinement.

EfficientRefiner can seamlessly integrate with any black-box optimization (BBO) placement ap-
proach to optimize placement objectives while maintaining low overlap. The main contributions
are as follows: (1) We introduce a novel module-pair-based overlap function tailored for refinement
scenarios, which provides a more accurate representation of overlaps and enables effective overlap
reduction. (2) We design an efficient pruning scheme for overlap computation across large num-
bers of modules, combined with a GPU-accelerated refinement implementation, to ensure efficiency
and scalability. (3) We incorporate multiple optimization objectives in our experiments, including
HPWL and the regularity metric to improve PPA. Experimental results show that our approach im-
proves average HPWL by 7.20%–34.71% on the ISPD2005 benchmark, and improves WNS and
TNS by 20% and 29%, respectively, on PPA-supported ChiPBench circuits.

2 RELATED WORK

We begin by reviewing existing placement methods, which are considered as black-box optimiz-
ers whose outputs provide the initial layouts for our refinement. We then discuss prior refinement
approaches that further improve placement quality.

2.1 PLACEMENT METHODS

Placement methods can be broadly categorized into constructive and iterative adjustment methods
(Shahookar & Mazumder, 1991). Constructive methods start from an empty placement region and
generate layouts from scratch. Early work is mainly partition-based (Breuer, 1977; Agnihotri et al.,
2003; Can Yildiz & Madden, 2001; Khatkhate et al., 2004), where modules are clustered using min-
cut algorithms (Fiduccia & Mattheyses, 1988; Karypis et al., 1997; Alpert et al., 1997) and assigned
to subregions in a recursive divide-and-conquer manner until clusters reach a manageable size. Re-
cent work (Mirhoseini et al., 2021; Cheng & Yan, 2021; Lai et al., 2022; 2023; Geng et al., 2024)
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leverages the strong learning capability of RL to achieve state-of-the-art results. These methods
train RL agents to construct layouts by sequentially placing modules. MaskPlace (Lai et al., 2022)
introduces masks that encode layout occupancy and wirelength increments to guide optimization.
This mechanism effectively removes overlaps and significantly improves macro placement quality,
and thus has been widely adopted in subsequent studies (Geng et al., 2024; Shi et al., 2023; Gu
et al., 2024). ChipFormer (Lai et al., 2023), improve efficiency by combining offline training with
online fine-tuning. Although many constructive approaches achieve strong performance, they lack
foresight of the global layout to guide optimization. And among them the most effective RL method
require costly training and struggle to scale to placements with large numbers of modules.

Iterative adjustment methods start from relatively poor initial layouts (e.g., random initialization)
and make iterative improvement. Stochastic-based adjustment methods, such as simulated annealing
(Sechen & Sangiovanni-Vincentelli, 1985; Adya & Markov, 2001; Ho et al., 2004; Shunmugatham-
mal et al., 2020; Yang et al., 2000) or evolutionary algorithms (Shi et al., 2023), improve layouts
through numerous adjustment. These methods often require repeatedly executing a time-consuming
process, which maps genotype solutions, which are convenient for adjustment (Chang et al., 2000;
Hong et al., 2000; Murata et al., 1996), to phenotype solutions for evaluation. Besides, LaMPlace
(Gu et al., 2024), adopts the WireMask-BBO framework but guide optimization with PPA-related
masks to improve ultimate placement metrics. Analytical-based adjustment methods (Lin et al.,
2019; Lu et al., 2015; Cheng et al., 2018; Chen et al., 2008; Spindler et al., 2008; Sigl et al., 1991;
Viswanathan et al., 2007; Kahng et al., 2005) are highly efficient. They model placement objectives
(e.g., wirelength) and constraints (e.g., density) as differentiable functions of module coordinates
and optimize them using gradient-based techniques. However, the density formulation, intended to
encourage roughly uniform module distribution, is ineffective at fully eliminating macro overlaps.
This often results in substantial macro overlaps that must be resolved during the legalization stage,
which can in turn significantly alter the layout and degrade overall placement quality.

2.2 REFINEMENT METHODS

The above placement methods still leave room for improvement, which can be addressed through an
additional refinement process. Existing methods leverage RL to adjust layouts produced by Dream-
place. MaskRegulate (Xue et al., 2024) learns a adjustment policy that relocates one macro per step
guided by masks similar to MaskPlace. Chiang et al. (2025) trains a deep Q-network to adjust groups
of blocks (i.e., macros and standard cell clusters) simultaneously at each step, generating mixed-size
placement prototypes for subsequent Dreamplace optimization. However, reinforcement learning
approaches are computationally expensive and can only adjust a limited number of modules per it-
eration. To reduce the overhead of the post-processing refinement stage, we explore an analytical
framework for refinement and introduce a fine-grained overlap function to address the limitations of
analytical methods in handling macro overlaps.

3 PRELIMINARIES AND NOTATIONS

The goal of macro placement is to determine the optimal arrangement of macros within a rectangular
chip region while ensuring compliance with the non-overlapping constraint. The input includes the
width and height of the placement region (Rw, Rh), and a circuit netlist G(V,E) which can be
viewed as a hypergraph where modules or ports act as hypernodes, while nets connecting them
serve as hyperedges. Modules and ports are connected by nets through pins which serve as I/O
interfaces located at fixed positions relative to their corresponding modules.

The optimization objective include the final Power, Performance, and Area (PPA) metrics and surro-
gate metrics such as wirelength. In practice, directly evaluating PPA requires time-consuming subse-
quent steps such as routing. Consequently, surrogate metrics are typically employed. Half-Perimeter
Wirelength (HPWL) is a widely used surrogate metric, serving as an estimate of wirelength. A
smaller HPWL may indicates reduced routing resource consumption and better performance. Since
HPWL is non-differentiable, the weighted-average function (Hsu et al., 2013) is commonly adopted
as a differentiable approximation to enable gradient-based optimization. We also employ this dif-
ferentiable surrogate in our refinement framework. In addition, we incorporate the regularity met-
ric (Xue et al., 2024), which encourages macros to be placed closer to the chip boundary, thereby
leaving sufficient space for standard cells and improving both mixed-size placement wirelength and
PPA. Detailed definitions of these placement metrics are provided in Appendix A.1.
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Figure 1: Overview of EfficientRefiner. Starting from an optimized layout generated by any BBO method,
EfficientRefiner encodes module positions as unbounded learnable vectors, optimizes a joint objective function
consist of the optimization objective and fine-grained overlap via iterative forward and backward propagation,
and applies legalization at the end to resolve any remaining overlaps.

Our refinement task can be described as follows. We receive the initial set of macro positions
S = {(x1, y1), (x2, y2), ..., (xn, yn)} generated by black-box optimization methods as input, and
aim to find a set S(ref) = {(x(ref)

1 , y
(ref)
1 ), (x

(ref)
2 , y

(ref)
2 ), ..., (x

(ref)
n , y

(ref)
n )} of refined locations

which satisfies Eq.(1). In the equation, Obj denotes the optimization objective, which can be adapted
to different metrics depending on the setting. In this paper we support HPWL and regularity, and
may extend it to metrics that more directly reflect PPA in the future.

Obj(S(ref)) < Obj(S), Overlap(S(ref)) = 0 (1)

We reformulate the refinement problem as an unconstrained optimization, as defined in Eq.(2), by
incorporating the overlap constraint into the objective function with a weighting parameter α. We
employ differentiable approximations during refinement, denoted as Ôbj and ˆOverlap.

f = Ôbj + α · ˆOverlap (2)

4 EFFICIENTREFINER

Fig.1 presents an overview of EfficientRefiner. EfficientRefiner first represent module positions as
learnable vectors and formulate an objective function that integrates placement metrics and con-
straints (Eq.(2)). Then it refine the layouts by optimizing this objective through iterative gradient
descent. Note that with our proposed fine-grained overlap formulation, the overlap remains low
throughout the refinement process. After a specified number of iterations, a legalization step is
applied to remove any remaining overlaps. This step requires only minor adjustments to module
positions and has little impact on the overall layout, as the overlap rate is already low.

Our method consists of several key components. First, the boundary-oblivious module position
representation maps module positions to unconstrained learnable vectors to ensure that modules
remain within the chip boundary during refinement. Second, the fine-grained, module-pair-based
overlap function enables effective overlap removal and reduces the impact of legalization on macro
refinement. This is in contrast with coarse-grained grid-based density formulations used in analytical
methods, which suffer from two main drawbacks: (1) they often leave overlaps unresolved even
when the objective is minimized. (2) Their repulsive force mechanisms continue to push modules
after they have moved away from dense regions, causing unnecessary spreading that can degrade
performance (Cheng et al., 2018). Third, GPU programming, along with prunning techniques, are
employed to enable efficiency and scalability.

4.1 BOUNDARY-OBLIVIOUS MODULE POSITION REPRESENTATION

Representing module positions as boundary-oblivious learnable vectors streamlines optimization by
eliminating the need to check for boundary violations during refinement. Each bounded module
position (xi, yi) (constrained within [wi

2 , Rw − wi

2 ] × [hi

2 , Rh − hi

2 ]) is mapped to an unbounded
vector representation (zix, ziy).
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The mapping technique is illustrated in the right blue panel of Fig.1 and described in detail below.
We take the x-direction as an example, as the mapping in the y-direction follows similar process.
For a module Mi with absolute position (xi, yi), the mapping consists of three steps. First, we
determine the valid placement region, (i.e., the range that ensures Mi remains within the placement
boundary), given by [wi/2, Rw − wi/2]. Next, we normalize (xi, yi) to the interval [0, 1] using the
calculated valid region boundary value. Specifically, the normalized x-position is computed as the
ratio of the distance from the center of Mi to the region’s left boundary over the region’s width,
which is presented as xi−wi/2

Rw−wi
. Finally, the normalized position is mapped to the learnable vector

zix using the inverse sigmoid function. The complete mapping function is given in Eq.(3). The
resulting learnable vector zix spans the entire real domain and is therefore unbounded.

zix = σ−1(
xi − wi/2

Rw − wi
) (3)

The role of this mapping technique in the overall refinement process is as follows. At the beginning,
given an initial layout produced by any BBO placement method, the mapping is applied to compute
the initial values of the learnable vectors from the current module positions. During each forward
propagation, the learnable vectors are then mapped back into module positions through the inverse
of Eq.(3), so the objective function can be computed based on these reconstructed positions.

4.2 FINE-GRAINED MODULE PAIR BASED OVERLAP FUNCTION

The fine-grained, module pair-based overlap function is specifically designed for macro refinement
and offers several advantages over the density formulations used in analytical methods. First, it
ensures more effective overlap reduction, as modules are guaranteed to be non-overlapping when
the overlap function reaches its minimum value of zero. Second, it prevents unnecessary module
spreading that can degrade placement quality, since the gradient of the overlap function becomes
zero once a module no longer overlaps with others.

To formulate the overlap function, we begin with a basic version that aggregates pairwise module
overlaps and then extend it to a gradient-descent–robust formulation. This evolution is illustrated
in the blue-shaded panel on the middle-left of Fig.1. In the basic version, the gradient vanishes
when the overlap reaches its maximum, hindering further adjustment. Therefore, a more robust
formulation is introduced to enable effective gradient-based optimization.

Basic Overlap Formulation. The basic overlap formulation is defined by aggregating the overlap
areas across all module pairs. For a given pair (Mi,Mj), the overlap area Overlapij is computed as
the product of the overlapping lengths along the x- and y-directions, as illustrated in Fig.2(a). The
exact formulation is provided in Eq.(4).

Overlap =
∑

Mi,Mj∈V,i̸=j

Overlapij =
∑

Mi,Mj∈V,i̸=j

Overlapijx ·Overlapijy (4)

In the above equation, the overlap lengths Overlapijx and Overlapijy between modules Mi and
Mj are defined as follows. Taking the x-direction as an example (the y-direction is analogous),
Overlapijx is given by the difference between the minimum of the two right boundaries and the
maximum of the two left boundaries when the modules overlap; otherwise, it is zero. The exact
formulation is provided in Eq.(5) and illustrated in Fig.2(a).

Overlapijx = max(0,min(xi +
wi

2
, xj +

wj

2
)−max(xi −

wi

2
, xj −

wj

2
)) (5)

This basic formulation suffers from a zero-gradient issue that limits its effectiveness in gradient-
based optimization for overlap removal. Specifically, when the span of Mi in the x-direction is fully
contained within that of Mj , Overlapijx remains fixed and provides no gradient signal. Such cases,
as illustrated in Fig.2(b) and 2(c), prevent Mi and Mj from being effectively separated. To address
this issue, we revise the formulation and define a gradient-descent-robust version ˆOverlapijx.

Gradient Descent Robust Overlap Formulation. To resolve the zero-gradient issue, we extend
the basic overlap formulation to a gradient-descent-robust version for cases where the span of Mi

fully contains that of Mj in either x- or y-directions. As shown in Fig.2(b) and Fig.2(c), two subcases

5
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�𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑗𝑗 +
𝑤𝑤𝑗𝑗
2

− 𝑥𝑥𝑖𝑖 −
𝑤𝑤𝑖𝑖
2

𝑴𝑴𝒋𝒋

𝑴𝑴𝒊𝒊
(𝑥𝑥𝑗𝑗 ,𝑦𝑦𝑗𝑗)

(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖)

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑤𝑤𝑖𝑖

(b) (c)

Figure 2: Overlap Formulation. (a) Overlap between a module pair is defined as the product of overlapping
lengths along the x- and y-direction. (b), (c) Gradient descent robust overlapping length along the x-direction
when Mi is to the left or right of Mj , respectively.

are considered: (1) if the center of Mi lies to the left of Mj , the overlapping length is extended from
the right boundary of Mi to the left boundary of Mj ; (2) if the center of Mi lies to the right,
it is extended from the left boundary of Mi to the right boundary of Mj . In all other case (i.e.,
disjoint or partially overlapping spans) ˆOverlap reduces to the basic formulation Overlap. The full
formulation is provided in Eq.(6).

ˆOverlapijx =


(xj +

wj

2 )− (xi − wi

2 ), if xj ≤ xi and |xi − xj | < wj

2 +
wj

2

(xi +
wi

2 )− (xj − wj

2 ), if xj > xi and |xi − xj | < wj

2 +
wj

2

0, otherwise
(6)

The blue-shaded panel in the middle-left of Fig. 1 illustrates ˆOverlap as a function of Mj’s position
with Mi fixed. As xj moves from xi − wi+wj

2 to xi +
wi+wj

2 , the overlap length rises linearly to
the peak and then symmetrically decreases to zero. Its derivative maintains an absolute value of 1
within the overlap region, resolving the zero-gradient issue.

4.3 EFFICIENCY ENHANCED GRADIENT COMPUTATION

The objective function is optimized using gradient descent as defined in Eq.(7), with lr representing
the learning rate.

zix = zix − lr · ∂f

∂zix
, zij = zix − lr · ∂f

∂zix
(7)

Since the module-pair-based overlap formulation introduces larger gradient computational overhead
than previous coarse-grained density formulations, we adopt two acceleration strategies to maintain
efficiency and scalability: (1) GPU programming, which leverages the high computational power of
GPUs and improves the parallelism of gradient computation; (2) A pruning strategy, which reduces
redundant pairwise computations to improve refinement efficiency for large-scale designs.

4.3.1 GPU PROGRAMMING

We begin by analyzing the parallelism in gradient computation, which motivates the use of GPU
programming to improve efficiency. We then explain the GPU programming scheme in detail.

Parallelism in Gradient Computation. The gradient of f with respect to the learnable vector zix
consists of two parts: the derivative of Ôbj and ˆOverlap, respectively, as shown in Eq.(8).

∂f

∂zix
=

∂f

∂xi
· ∂xi

∂zix
=

(
∂Ôbj

∂xi
+ λ · ∂

ˆOverlap

∂xi

)
· ∂xi

∂zix
(8)

The term ˆOverlap aggregates the contributions of overlaps between all module pairs, and its gra-
dient is given in Eq.(9). We can observe from this formulation that the overlap gradients between
module Mi and each other module Mj can be computed independently and then summed, which
enables efficient parallelization.

∂ ˆOverlap

∂xi
=

∑
Mj∈V,j ̸=i

ˆOverlapijy ·
∂ ˆOverlapijx

∂xi
(9)

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

GPU Programming Scheme. Based on the parallelism analysis, we implement GPU program-
ming to accelerate computation. Specifically, a dedicated GPU thread is assigned to each module
pair to enable parallel computation of the overlap lengths and their corresponding gradients. Then,
overlap contributions from all module pairs are accumulated according to Eq.(4) to obtain the overall
overlap function, and the gradients are accumulated according to Eq.(9) to yield overlap gradients.

In practice, we adopt the GPU programming interface provided by the Numba library, as it offers
greater flexibility in defining GPU threads for parallel computation and better supports the pruning
strategy introduced later. In contrast, the more commonly used PyTorch implementation can only
compute overlaps between module pairs sequentially under the same space complexity, which leads
to significant efficiency degradation, as shown in the experimental section.

4.3.2 PRUNING STRATEGY

𝑀1

𝑀2

𝑀3

𝑀4

𝑀6

𝑏𝑖𝑛

𝑀5

Figure 3: Example of the
pruning strategy.

The pruning strategy further reduces computation when refining a large
number of modules by reducing the number of module pairs under con-
sideration. The strategy divides the placement region into rectangular
bins, and categorizes modules as either large (with width or height ex-
ceeding a bin dimension) or small (fully contained within a bin). For
large modules, overlaps and gradients are computed with respect to all
other modules in the layout. For small modules, the computation is re-
stricted to pairs formed with modules located in the same bin and its
eight neighboring bins. For example, in Fig. 3, module M1 is identified
as large and interacts with all other modules, whereas module M2, clas-
sified as small, only interacts with modules M3, M4, and M5 residing
in its bin and adjacent bins (marked by the yellow shaded region). The
detailed algorithm can be find in Appendix A.2.

5 EXPERIMENTS

5.1 BENCHMARKS, BASELINES AND SETTINGS

We evaluate the effectiveness of EfficientRefiner on macro and mixed-size HPWL using the widely
adopted ISPD2005 (Nam et al., 2005) and ICCAD2015 (Kim et al., 2015) benchmarks, which to-
gether contain 16 circuits. We further assess PPA results on 8 circuits from ChiPBench (Wang et al.,
2024). We refine multiple state-of-the-art BBO methods and compare their results before and af-
ter refinement. We also compare against the RL-based method MaskRegulate (Xue et al., 2024) to
examine their relative effectiveness in refinement. Additional benchmark statistics, baselines and
experimental settings are provided in Appendix A.3.

5.2 MAIN RESULTS

We conduct three groups of experiments: (1) optimizing HPWL alone to evaluate macro wire-
length reduction; (2) jointly optimizing HPWL and regularity to assess effectiveness on mixed-size
placement with respect to wirelength and PPA; and (3) comparing against the RL-based refinement
method MaskRegulate (Xue et al., 2024) to demonstrate effectiveness.

Macro HPWL Optimization. Table 1 reports HPWL results before and after applying Efficien-
tRefiner. EfficientRefiner achieves average HPWL reductions of 7.20%–34.71% across all circuits
for the baseline methods listed in the table. All refinements complete within 10 minutes as shown
in Table 11, highlighting the efficiency of our approach. Moreover, EfficientRefiner scales to larger
designs than RL-based methods due to its efficiency and scalability. We test on the ICCAD2015
benchmark with 8192 modules and thousands of fixed ports to validate its efficiency, with the results
provided in Appendix A.4.1. The refinement time is shown in Table 12.

Mixed-Size HPWL and PPA Evaluation. We evaluate mixed-size and PPA performance on PPA
supported circuits from ChiPBench and ICCAD2015. Results on ChiPBench are shown in Table 2.
As shown in the ChiPBench paper, most existing macro placement methods focus on macro HPWL
optimization and provide limited improvements on PPA metrics. So we adopt the state-of-the-art
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Table 1: Comparison of macro HPWL values (×105) of layouts generated by baseline BBO methods and their
corresponding refined results. Columns labeled “+ER” report the HPWL after applying EfficientRefiner. Values
in parentheses represent the improvement rate achieved after refinement.

Method adaptec1 adaptec1+ER adaptec2 adaptec2+ER adaptec3 adaptec3+ER adaptec4 adaptec4+ER

NTUPlace3 14.35 7.72 (-46.20%) 65.33 41.04 (-37.18%) 74.66 60.39 (-19.11%) 63.21 48.46 (-23.33%)
DreamPlace 4.0 8.32 5.91 (-28.97%) 38.68 30.27 (-27.14%) 45.93 43.85 (-4.53%) 39.78 35.83 (-9.93%)

DreamPlace 4.1.0 6.89 6.13 (-11.03%) 50.09 35.11 (-21.92%) 50.77 49.43 (-2.64%) 40.92 38.01 (-7.11%)
WireMask-EA 6.10 5.58 (-8.52%) 54.78 51.93 (-5.20%) 59.40 60.01 (+1.03%) 59.46 53.51 (-10.01%)

MaskPlace 6.69 5.98 (-10.67%) 78.58 55.34 (-29.57%) 118.18 89.43 (-24.33%) 91.22 62.92 (-31.02%)
Chipformer 7.13 5.94 (-16.69%) 64.42 47.00 (-27.04%) 80.55 63.32 (-21.39%) 68.73 52.77 (-23.22%)

EfficientPlace 6.14 5.47 (-10.91%) 45.94 36.76 (-19.98%) 57.37 54.40 (-5.18%) 59.07 54.23 (-8.19%)

Method bigblue1 bigblue1+ER bigblue2 bigblue2+ER bigblue3 bigblue3+ER bigblue4 bigblue4+ER

NTUPlace3 6.74 4.08 (-39.47%) 12.17 9.03 (-25.80%) 60.78 32.37 (-46.74%) 95.30 60.16 (-39.87%)
DreamPlace 4.0 2.36 2.13 (-9.75%) 7.33 6.87 (-6.28%) 239.72 217.96 (-9.08%) 390.94 164.37 (-57.96%)

DreamPlace 4.1.0 2.41 2.21 (-8.30%) 7.62 7.66 (+0.52%) 25.32 25.77 (+1.78%) 64.14 58.42 (-8.92%)
WireMask-EA 2.17 2.22 (+2.30%) 11.23 10.61 (-5.52%) 67.17 39.20 (-41.64%) 79.65 64.82 (-18.62%)

MaskPlace 2.67 2.31 (-13.48%) 17.49 12.41 (-29.05%) 62.90 37.04 (-41.11%) 112.87 70.07 (-37.92%)
Chipformer 3.09 2.63 (-14.89%) 13.30 11.86 (-10.83%) 81.77 36.53 (-55.33%) 105.62 64.74 (-38.70%)

EfficientPlace 2.29 2.23 (-2.62%) 12.85 10.42 (-18.91%) 58.15 43.62 (-24.99%) 84.18 64.44 (-23.45%)

mixed-size placer DreamPlace 4.1.0 as the baseline and refine its macro placements to provide a
stronger comparison. Details of the refinement process and PPA evaluation process are provided in
Appendix A.3. Experimental results show consistent improvements: mixed-size HPWL is reduced
by 5% on average, while WNS and TNS improve by 20% and 29%, respectively. Additional results
on ICCAD2015 presented in Appendix A.4.2 further confirm the effectiveness of our refinement.

Table 2: Comparation of surrogate metrics and PPA results efore and after refinement on ChiPBench circuits.
“DP” denotes DreamPlace 4.1.0, and “DP+ER” denotes DreamPlace refined with EfficientRefiner. The best
results are marked in bold.

Circuit Method HPWL↓ WL↓ Cong↓ Power↓ NVP↓ WNS↑ TNS↑ Area↓

ariane136 DP 6211190 7370520 0.2481 0.3836 1842 -0.2471 -208.74 393322
DP+ER 6133533 7430453 0.2502 0.3847 1779 -0.2277 -166.55 393161

bp fe DP 2246648 2817587 0.4943 0.1655 177 -0.6845 -40.16 71872
DP+ER 2204814 2692443 0.4692 0.1652 112 -0.3469 -19.09 71596

bp be DP 3429613 4223729 0.5977 0.1466 111 -0.6366 -52.07 123881
DP+ER 3230676 3886870 0.5972 0.1427 111 -0.6184 -49.00 121749

bp be12 DP 3659015 4187820 0.5108 0.0753 115 -0.6826 -65.89 92695
DP+ER 3560677 4097495 0.4998 0.0752 114 -0.6015 -54.64 92827

bp multi57 DP 6668232 7485321 0.5235 0.1055 457 -2.8632 -799.80 210043
DP+ER 5972371 6714072 0.4702 0.1059 411 -2.5053 -622.87 204627

bp68 DP 12744064 14728606 0.4597 0.1530 2427 -2.9514 -1153.07 275709
DP+ER 11186402 12856599 0.4037 0.1485 563 -2.1447 -746.56 269561

swerv wrapper DP 4642293 5481023 0.3918 0.2743 1421 -0.6348 -543.29 230130
DP+ER 4351614 5139469 0.3532 0.2680 1296 -0.5787 -459.99 228604

VeriGPU DP 1186895 1674544 0.1838 0.0951 1650 -0.5759 -210.83 153312
DP+ER 1174880 1656132 0.1900 0.0900 531 -0.3665 -66.44 152468

Comparison with RL-based Adjustment Method. We compare EfficientRefiner with the RL-
based method MaskRegulate (Xue et al., 2024), both applied to refine ICCAD2015 layouts generated
by DreamPlace 4.0. As shown in Table 3, EfficientRefiner consistently delivers higher placement
quality, reducing mixed-size HPWL by 27% on average. While MaskRegulate requires 30+ hours
of training for 1k iterations, our method completes 5k refinement iterations in only about 3 minutes.

5.3 ANALYSIS

Effectiveness of GPU Programming. We compare our Numba-based GPU implementation with
a PyTorch-based version to demonstrate the benefits of parallel computation. As shown in Table 13,
our approach achieves over 1000× speedup. This improvement stems from the fact that, when
maintaining the same space complexity in overlap computation, the PyTorch implementation can
only process overlaps sequentially for each module pair. In contrast, our implementation computes
overlaps for multiple module pairs in parallel to yield significant performance gains.
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Table 3: Comparison of EfficientRefiner (ER) with MaskRegulate (MR) on the ICCAD2015 benchmark. “DP”
denotes DreamPlace 4.0. HPWL values are reported in units of 108. The best results are marked in bold.

Circuit Method HPWL WNS* TNS* Circuit Method HPWL WNS* TNS*

superblue1 DP 12.91 -3583.26 -827.03 superblue7 DP 13.74 -2082.79 -152.93
DP+MR 6.21 -1241.74 -51.75 DP+MR 8.20 -1852.93 -58.65
DP+ER 4.46 -210.98 -22.80 DP+ER 6.58 -304.41 -20.20

superblue3 DP 11.15 -785.77 -93.10 superblue10 DP 13.74 -2082.79 -152.93
DP+MR 7.42 -886.39 -88.56 DP+MR 12.16 -3215.87 -142.13
DP+ER 5.17 -158.40 -114.95 DP+ER 7.56 -696.24 -22.56

superblue4 DP 7.70 -1211.13 -49.75 superblue16 DP 11.47 -4039.89 -253.56
DP+MR 4.24 -912.54 -45.85 DP+MR 4.32 -522.66 -41.76
DP+ER 3.46 -319.83 -25.75 DP+ER 5.44 -1409.37 -36.81

superblue5 DP 10.33 -1009.39 -70.33 superblue18 DP 4.42 -181.41 -80.20
DP+MR 7.34 -667.19 -77.50 DP+MR 3.10 -415.80 -29.67
DP+ER 4.67 -258.66 -54.29 DP+ER 2.33 -128.55 -18.47

Note: As the ICCAD2015 benchmark is not supported by OpenRoad, the WNS and TNS values are estimated pre-routing using OpenTimer.

Effectiveness of the Pruning Strategy. To evaluate the efficiency improvement of the pruning
strategy, we conduct experiments on the ICCAD2015 dataset refining 8192 modules along with
several thousand ports. The runtime comparison with or without the pruning strategy is presented in
Table 12, showing that this strategy achieves an average speedup of 8×.

Effectiveness of Fine-grained Overlap Modeling We compare EfficientRefiner with the ana-
lytical approaches NTUPlace3 and DreamPlace to evaluate the effectiveness of our fine-grained
module-pair overlap formulation and to examine the impact of legalization, which often degrades
solution quality. In this experiment,all methods are applied to refine macro layouts generated by
EfficientPlace. Both baselines rely on coarse-grained density formulations for overlap removal. We
use the HPWL metric as an indicator to measure the effect of legalization. Table 9 reports the
overlap rates before legalization, and Table 10 shows the relative HPWL increase after legalization.
Across all eight benchmarks, EfficientRefiner achieves near-zero overlap, significantly outperform-
ing NTUPlace3 and DreamPlace. Moreover, it yields the lowest average HPWL increase of only
0.81%, compared to 8.60% for NTUPlace3 and 57.67% for DreamPlace.

Parameter Analysis We investigate the impact of the overlap weight α in Eq. (2) on the re-
finement process, using HPWL as the optimization objective for demonstration. Figures 8–11 in
Appendix A.4.6 show HPWL changes before and after legalization (left) and overlap rates before
legalization (right) for various α values. Similar trends are observed across different baselines and
circuits: (1) very small α (e.g., < 10) may cause legalization failure. (2) Moderate α (10–100) leads
to high overlap and a large HPWL increase after legalization. (3) Larger α (> 100) reduces overlap
and lowers the legalization impact on HPWL. (4) The HPWL value remains small for α > 5k.

6 CONCLUSION

This paper presented EfficientRefiner, an analytical-based framework for refining macro placements
produced by existing BBO methods. The method leverages the strengths of analytical techniques
while being tailored to the macro refinement setting. It adjusts macro positions using a comprehen-
sive representation of the full layout and incorporates a fine-grained pairwise overlap objective that
effectively reduces module overlaps without inducing excessive spreading. Moreover, it acceler-
ate refinement with pruning strategy and GPU-based parallel computation, substantially improving
efficiency. Experimental results show that EfficientRefiner achieves notable improvements in both
HPWL and PPA over existing methods.

For future work, we aim to integrate more accurate PPA-related metrics into the optimization ob-
jective. For example, LaMPlace (Gu et al., 2024) introduces learned PPA predictors that could be
incorporated into our framework. However, since the data released in the LaMPlace GitHub repos-
itory is currently incomplete, we leave this direction to future work. We also plan to conduct more
rigorous PPA evaluations on the large-scale ICCAD2015 benchmark once commercial design tools
become available.
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A APPENDIX

A.1 MACRO PLACEMENT METRICS

We present the PPA metrics for chip placement below and discuss two key surrogate metrics, HPWL
and regularity.

PPA. PPA (performance, power, and area) metrics are comprehensive indicators of the chip design
quality. PPA consists of timing and physical metrics. In particular, timing performance is commonly
assessed using worst negative slack (WNS) and total negative slack (TNS). Slack represents the
difference between the required arrival time of a signal at a circuit endpoint and its actual arrival
time. A negative slack indicates that the timing constraint is violated. WNS captures the most
critical violation in the design by reporting the worst slack value, whereas TNS measures the overall
severity of timing issues by summing all negative slack values. Together with power consumption
and area utilization, these metrics provide a practical basis for assessing design quality.

HPWL. HPWL is a widely adopted metric for efficiently approximating total wirelength. A lower
HPWL often indicates reduced routing resource usage and improved performance. The HPWL of
the placement is computed as the sum of the half-perimeters of all net bounding boxes, i.e., the
smallest rectangles enclosing all pins in each net, as shown in Eq.(10).

HPWL =
∑
e∈E

(max
p∈e

px −min
p∈e

px +max
p∈e

py −min
p∈e

py) (10)

In the above equation, p represents a pin belonging to net e. Its position, denoted as (px, py), is
determined by the position of its associated module Mi plus the pin’s offset (∆px,∆px), as shown
in Eq.(11).

(px, py) = (xi, yi) + (∆px,∆px), p ∈Mi (11)

Since HPWL is not differentiable, the weighted-average function (Hsu et al., 2013) is commonly
employed as an approximation to facilitate gradient descent optimization. The approximated HPWL
in the x-direction is computed as shown in Eq.(12), with the estimation in the y-direction derived
similarly. In this equation, for each net e ∈ E, the minuend and subtrahend estimate the upper
and lower boundaries of e’s bounding box, respectively. γ is a hyperparameter that governs the
trade-off between accuracy and smoothness in HPWL estimation. A smaller γ yields a more precise
approximation but reduces the smoothness of the function. Eq.(12) is also utilized in our method for
HPWL estimation.

ˆHPWLx =
∑
e∈E

(

∑
p∈e pxe

px
γ∑

p∈e e
px
γ

−
∑

p∈e pxe
− px

γ∑
p∈e e

− px
γ

) (12)

Regularity. Regularity encourages macros to be placed closer to the chip boundary, thereby leav-
ing larger spaces available for standard cells placement. Incooperating this metric as an optimiza-
tion objective has been shown in prior work (Xue et al., 2024) to be beneficial for both mixed-
size placement and overall PPA. The regularity of a macro located at position (x, y) is defined as
min{x,Rw − x} + min{y,Rh − y}, where Rw and Rh denote the width and height of the chip,
respectively.

A.2 ALGORITHMS FOR GPU PROGRAMMING ACCELERATION

The pseudocode for computing the overlapping lengths and their gradients for each module pair is
presented in Algorithms 1 and 2. In Algorithm 1, the pairwise overlap gradient between (Mi,Mj)
is computed as Eq.(13).

∂ ˆOverlapijx
∂xi

=


1, xi < xj and |xi − xj | < wi + wj

−1, xi ≥ xj and |xi − xj | < wi + wj

0, |xi − xj | ≥ wi + wj

(13)
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Algorithm 3 outlines the computation of the overall objective function and its derivatives with re-
spect to module positions.

Algorithm 1 GetOverlap
Input: Module pair (Mi,Mj) with sizes (wi, hi), (wj , hj), and positions (xi, yi), (xj , yj), respec-
tively.
Output: The overlapping length between Mi and Mj along x- and y- directions, denoted as

ˆOverlapxij and ˆOverlapyij , respectively.

1: δ ˆOverlapxij ← 0

2: if i ̸= j and −wi+wj

2 < xi − xj <
wi+wj

2 then
3: {Mi overlap with Mj in the x-direction}
4: if xi < xj then
5: ˆOverlapxij ← (xi +

wi

2 )− (xj +
wj

2 )
6: else
7: ˆOverlapxij ← (xj +

wj

2 )− (xi +
wi

2 )
8: end if
9: end if

10:
11: δ ˆOverlapyij ← 0

12: if i ̸= j and −hi+hj

2 < yi − yj <
hi+hj

2 then
13: {Mi overlap with Mj in the y-direction}
14: if yi < yj then
15: ˆOverlapyij ← (yi +

hi

2 )− (yj +
hj

2 )
16: else
17: ˆOverlapyij ← (yj +

hj

2 )− (yi +
hi

2 )
18: end if
19: end if
Return: ˆOverlapxij , ˆOverlapxij

Algorithm 2 GetOverlapGrad
Input: Module pair (Mi,Mj) with sizes (wi, hi), (wj , hj), and positions (xi, yi), (xj , yj), respec-
tively.
Output: The gradient of the overlapping length between Mi and Mj with respect to xi along x- and
y- directions, denoted as δ ˆOverlapxij and δ ˆOverlapyij , respectively.

1: δ ˆOverlapxij ← 0

2: if i ̸= j and −wi+wj

2 < xi − xj <
wi+wj

2 then
3: {Mi overlap with Mj in the x-direction}
4: if xi < xj then
5: δ ˆOverlapxij ← −1
6: else
7: δ ˆOverlapxij ← 1
8: end if
9: end if

10:
11: δ ˆOverlapyij ← 0

12: if i ̸= j and −hi+hj

2 < yi − yj <
hi+hj

2 then
13: {Mi overlap with Mj in the y-direction}
14: if yi < yj then
15: δ ˆOverlapyij ← −1
16: else
17: δ ˆOverlapyij ← 1
18: end if
19: end if
Return: δ ˆOverlapxij , δ ˆOverlapxij
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Algorithm 3 Calculation of the Overlap Objective Function and Its Gradient
Input: The set of modules {M1,M2, ...,Mn}, with module sizes
{(w1, h1), (w2, h2), ..., (wn, hn)}, and module positions {(x1, y1), (x2, y2), ..., (xn, yn)}.
Output: The overlap function ˆOverlap, and the derivative of the overlap function with respect to
the module positions δ ˆOverlap = ( δ

ˆOverlap
δx1

, δ ˆOverlap
δy1

, δ ˆOverlap
δx2

, δ ˆOverlap
δy2

, ..., δ ˆOverlap
δxn

, δ ˆOverlap
δyn

)

1: Divide the placement region into B ×B bins, each bin with size (bw, bh).
2: {Categorize modules into big modules and small modules according to the bin size}
3: bigModules← {}, smallModules← {}
4: for each thread 0 ≤ t < n do
5: if wt ≤ bw and ht ≤ bh then
6: smallModules← smallModules ∪ {Mt}
7: else
8: bigModules← bigModules ∪ {Mt}
9: end if

10: end for
11:
12: {Retrieve the modules contained in each bin}
13: bins[i]← {},∀i ∈ [0, B ×B − 1]
14: for each thread 0 ≤ t < n do
15: if Mt ∈ smallModules then
16: xb ← ⌊xt/bw⌋, yb ← ⌊yt/bh⌋
17: i← xb ·B + yb
18: bins[i]← bins[i] ∪ {Mt}
19: end if
20: end for
21:
22: {Calculate overlap and its gradient in the x-direction}
23: ˆOverlap← 0, δ ˆOverlap[i]← 0,∀i ∈ [0, 2n]
24: for each thread 0 ≤ t < n2 do
25: i← t/n, j ← t mod n
26: if Mi ∈ bigModules then
27: {Calculate overlapping length and its gradient between Mi and all other modules}
28: if Mj ∈ bigModules and i < j or Mj ∈ smallModules then
29: {Compute overlapping length with Algorithm 1}
30: ˆOverlapxij , ˆOverlapyij ← GetOverlap(xi, xj , wi, wj)
31: {Compute gradient with Algorithm 2}
32: δ ˆOverlapxij , δ ˆOverlapyij ← GetOverlapGrad(xi, xj , wi, wj)

33: ˆOverlap
at.← ˆOverlap+ ˆOverlapxij ∗ ˆOverlapyij {Atomic add}

34: δ ˆOverlap[2i]
at.← ˆOverlap[2i] + δ ˆOverlapxij ∗ ˆOverlapyij

35: δ ˆOverlap[2i+ 1]
at.← ˆOverlap[2i+ 1] + δ ˆOverlapyij ∗ ˆOverlapxij

36: end if
37: else
38: Calculate overlapping length and its gradient between Mi and the modules within modules

located in the same bin or any of its eight adjacent neighboring bins
39: xb ← ⌊xt/bw⌋, yb ← ⌊yt/bh⌋ {Locate the bin containing Mi}
40: for offsetx, offsetx in {−1, 0, 1} do
41: b← (xb + offsetx) ·B + (yb + offsety) {Get Neighboring bin}
42: if Mj ∈ bins[b] and i < j then
43: Compute overlap and its gradient as line 29-35.
44: end if
45: end for
46: end if
47: end for
Return: ˆOverlap, δ ˆOverlap
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A.3 EXPERIMENTAL SETTINGS

Code. The code is provided at https://anonymous.4open.science/r/EfficientRefiner-100D.

Benchmark Statistics. The statistics of the ISPD2005, ICCAD2015, and ChiPBench circuits are
reported in Tables 4, 5, and 6. The column “Macros (to place)” denotes the number of macros
considered for placement. For the ICCAD2015 benchmarks, we additionally perform refinement on
8192 models, a scale considerably larger than that handled by existing RL-based macro placement
methods.

Table 4: Statistics of the ISPD2005 Circuit Benchmark
Circuit Macros Macros(to place) Macro-related Nets Standard Cells Nets Area Util%)

adaptec1 543 543 693 210904 221142 55.62
adaptec2 566 566 4201 254457 266009 74.46
adaptec3 723 723 3259 450927 466758 61.51
adaptec4 1329 1329 2949 494716 515951 48.62
bigblue1 560 560 409 277604 284479 31.58
bigblue2 23084 1024 33223 534782 577235 32.43
bigblue3 1293 1293 3937 1095519 1123170 66.81
bigblue4 8170 1024 22223 2169183 2229886 35.68

Table 5: Statistics of the ICCAD2015 Circuit Benchmark
Circuit Macros (to Place) Standard Cells Nets Pins Ports Area Util(%)

superblue1 512 1215820 1215710 3767494 6528 85
superblue3 512 1219170 1224979 3905321 6482 87
superblue4 512 801968 802513 2497940 6623 90
superblue5 512 1090247 1100825 3246878 4129 85
superblue7 512 1937699 1933945 6372094 6501 90

superblue10 512 984379 1898119 5560506 12257 87
superblue16 512 985909 999902 3013268 4449 85
superblue18 512 771845 771542 2559143 3978 85

Table 6: Statistics of Circuits in ChiPBench
Design Macros Standard Cells Nets Pins Ports

ariane136 136 171347 201428 1000876 495
bp fe 11 33188 39512 185524 2511
bp be 10 51382 62228 293276 3029

swerv wrapper 28 98039 113582 573688 1416
dft68 68 41974 56217 226420 132
bp68 68 164039 191475 887046 1198

VeriGPU 12 71082 85081 421857 134
bp be12 12 38393 47030 220938 3029

Parameter Settings. We set the number of refinement iterations to 50k on the ISPD2005 bench-
mark to achieve better HPWL results. However, we found 5k iterations are already sufficient for
strong performance so we use 5k iterations on both the ICCAD2015 and ChiPBench datasets. The
weight for overlap in Eq.(2) is set to 105 in all experiments (except for parameter analysis), while
the weight for regularity is set to 2.

Experimental Platform. Refinements for 512 macros are conducted on a standardized platform
equipped with an NVIDIA GeForce RTX 2080 Ti GPU. Refinement for 8192 macros and training
for other baselines are executed on a server equipped with a NVIDIA RTX 3090Ti GPU and 40 Intel
Xeon Silver 4210R CPUs (2.40 GHz).

Settings for Baseline Methods. The baseline methods for refinement include the RL-based meth-
ods MaskPlace Lai et al. (2022), Chipformer Lai et al. (2023), and EfficientPlace Geng et al. (2024);
the stochastic-based method WireMask-EA Shi et al. (2023); and the analytical-based methods
DreamPlace Lin et al. (2019) and NTUPlace3 Chen et al. (2008). We also compare our EfficientRe-
finer with RL-based refinement method MaskRegulate (Xue et al., 2024). The specific settings for
running each baseline method are as follows:

• DreamPlace: We run the released code of DreamPlace 4.0 and 4.1.0 with the default pa-
rameters.

• NTUPlace3: We use the released binary file of NTUPlace3 for execution.
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• WireMask-EA: We run the released code of WireMask-EA with default parameters, iterat-
ing for 1000 rounds.

• EfficientPlace: We run the released code of EfficientPlace with default parameters, iterating
for 1000 rounds.

• MaskPlace: We run the released code of MaskPlace with default parameters, iterating for
3000 rounds.

• Chipformer: We execute the released code of Chipformer. We use the pretrained model
parameters provided in the GitHub repository, fine-tune the Online Decision Transformer
for 300 rounds with the default configuration.

• MaskRegulate: We use the released implementation of MaskRegulate with the pretrained
model parameters provided in its GitHub repository. Since the released code is not directly
compatible with DreamPlace 4.1.0, the initial placement for adjustment is generated using
DreamPlace 4.0.

Procedure for Refinement on Mixed-Size Layouts and PPA Evaluation. We first extract the
macros for refinement from mixed-size layouts generated by existing methods. Then we fix refined
macros and place the standard cells with DreamPlace.

The process for PPA evaluation is described as follows. For ChiPBench circuits, we feed layouts
into the ChiPBench flow, which uses the OpenROAD (Ajayi & Blaauw, 2019) tool chain for de-
tailed placement, routing, and metric evaluation. For the ICCAD2015 benchmark, since it does not
support the required technology files for the open source OpenROAD tool and the commercial PPA
evaluation tools are not accessible fot us, we employ OpenTimer (Huang & Wong, 2015) to estimate
PPA in the same way as DreamPlace. As this estimation does not include routing, the results are for
reference.

A.4 ADDITIONAL RESULTS

A.4.1 MACRO RESULTS ON ICCAD2015 BENCHMARK

HPWL results for refining circuits in the ICCAD2015 benchmarks is reported in Table 7, the results
shows that our method achieves 18% decrease in HPWL.
Table 7: HPWL comparison (×105) between DreamPlace 4.1.0 (DP) and DP with EfficientRefiner (DP+ER)
on the ICCAD2015 benchmark.

Circuits superblue1 superblue3 superblue4 superblue5 superblue7 superblue10 superblue16 superblue18

DP 8.29 19.34 44.02 43.41 35.51 48.38 16.39 13.47
DP+ER 7.43 15.70 33.61 36.75 25.73 33.42 16.62 10.81

A.4.2 MIXED-SIZE RESULTS ON THE ICCAD2015 BENCHMARK

The mixed-size placement results on ICCAD2015 benchmarks are shown in Table 8. We refine the
layouts generated by DreamPlace 4.1.0 by first extracting the macros, refining them, and then placing
the remaining standard cells with DreamPlace. Our method improves the placement quality on 7 out
of 8 circuits, achieving an average 34% reduction in mixed-size HPWL. It should be noted that,
since the open-source OpenROAD tool does not support ICCAD2015 benchmarks and commercial
software is currently unavailable to us, the reported PPA results are estimated by OpenTimer based
on the placement. As these estimates are obtained without post-routing, they are not exact and
should be regarded as references. For accurate results, we refer to the evaluation on ChiPBench
circuits in the main text.

A.4.3 OPTIMIZATION OBJECTIVE TRENDS DURING REFINEMENT

Figure 4 shows the trend of the differentiable HPWL estimate ( ˆHPWL) when HPWL is used as the
optimization objective on superblue1 and superblue4. It can be seen that HPWL generally decreases
as the number of refinement iterations increases.

Figures. 5-7 present the trends of ˆHPWL and Regularity when both HPWL and Regularity are
used as optimization objectives on superblue1 and superblue4. ˆHPWL generally decreases, while
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Table 8: Mixed-size placement results on the ICCAD2015 benchmark. “DP” denotes DreamPlace 4.1.0, and
“DP+ER” denotes DreamPlace refined with EfficientRefiner. The best results are marked in bold.

Circuit Method HPWL (×108) WNS* TNS*

superblue1 DP 8.33 -2048.83 -57.04

DP+ER 4.31 -275.92 -19.26
superblue3 DP 8.97 -1062.84 -92.06

DP+ER 4.79 -125.89 -29.13
superblue4 DP 3.43 -289.19 -18.33

DP+ER 3.14 -231.28 -17.85
superblue5 DP 7.07 -426.30 -58.88

DP+ER 4.54 -95.89 -46.24
superblue7 DP 14.19 -779.96 -36.19

DP+ER 6.01 -210.53 -16.98
superblue10 DP 10.78 -957.88 -49.88

DP+ER 7.58 -512.87 -19.45
superblue16 DP 6.43 -829.18 -41.20

DP+ER 3.97 -377.07 -18.73
superblue18 DP 2.38 -48.39 -12.29

DP+ER 2.43 -170.00 -12.78

Note: As the ICCAD2015 benchmark is not supported by the open-source tool OpenRoad, the WNS and TNS values are estimated pre-routing
using OpenTimer.
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Figure 4: ˆHPWL trend during refinement for (a) superblue1 and (b) superblue4
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Regularity remains relatively stable. Note that the mixed-size placement method DreamPlace
already achieves good regularity. The effectiveness of our method comes from its ability to reduce
macro HPWL while preserving regularity to leave sufficient placement space for standard cells.
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Figure 5: Trends of optimization objectives during refinement on superblue1 (a) ˆHPWL trend. (b)
Regularity trend.
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Figure 6: Trends of optimization objectives during refinement on superblue3 (a) ˆHPWL trend. (b)
Regularity trend.
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Figure 7: Trends of optimization objectives during refinement on superblue4 (a) ˆHPWL trend. (b)
Regularity trend.

A.4.4 EFFECTIVENESS OF FINE-GRAINED OVERLAP MODELING

Overlap rate before legalization and HPWL increase rate after legalization for EfficientRefiner and
analytical based methods DreamPlace and NTUPlace3 are shown in Table 9 and 10, respectively.
Table 9: Overlap rate (%) before legalization for various methods on the ISPD 2005 dataset. The lowest overlap
rate for each benchmark is highlighted in bold.

Method adaptec1 adaptec2 adaptec3 adaptec4 bigblue1 bigblue2 bigblue3 bigblue4

NTUPlace3 8.285 12.883 12.920 15.864 6.779 5.915 7.654 5.117
DreamPlace 5.300 4.228 4.362 4.362 8.794 5.818 18.789 15.120

EfficientRefiner 0.002 0.002 0.001 0.003 0.000 0.001 0.086 0.002

A.4.5 ANALYSIS OF RUNTIME

Table 11 reports the runtime of EfficientPlace for 50k refinement iterations on the ISPD2005 dataset.
Table 13 reports our runtime improvement over PyTorch implementation. Table 12 compares the
refinement time with and without the acceleration technique.
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Table 10: HPWL increase rate (%) after legalization for various methods on the ISPD 2005 dataset. The lowest
increase rate for each benchmark is highlighted in bold.

Method adaptec1 adaptec2 adaptec3 adaptec4 bigblue1 bigblue2 bigblue3 bigblue4

NTUPlace3 0.70 30.74 20.21 18.50 11.77 1.08 -25.25 11.07
DreamPlace 4.0 62.50 54.10 6.05 4.93 22.92 13.64 261.84 35.38
EfficientRefiner 0.00 -0.05 0.15 0.18 -0.45 0.58 1.35 4.70

Table 11: Time (in seconds) for refining 50k iterations on the ISPD 2005 dataset.

adaptec1 adaptec2 adaptec3 adaptec4 bigblue1 bigblue2 bigblue3 bigblue4

417 437 459 593 415 501 527 491

Table 12: Runtime comparison (in seconds) of EfficientRefiner (ER) with and without acceleration over 5k
refinement iterations on the ICCAD2015 benchmark circuits.

Circuit superblue1 superblue3 superblue4 superblue5 superblue7 superblue10 superblue16 superblue18

ER w/o acceleration 1125 1138 1173 922 1150 1775 955 901
ER with acceleration 135 135 153 136 138 174 142 130

Table 13: Runtime (s) comparison between our implementation and the PyTorch implementation, reporting the
average runtime per iteration (over 10 iterations).

Method adaptec1 adaptec2 adaptec3 adaptec4

Our Implementation 0.21 0.22 0.22 0.22
PyTorch Implementation 265.80 289.71 487.07 1663.23

A.4.6 THE IMPACT OF OVERLAP RATE ON THE REFINEMENT PROCESS

Fig.8-11 show the overlap growth before and after legalization, along with the overlap rate prior to
legalization, for different values of overlap rate during refinement on the “adaptec1” and “adaptec3”
layouts generated by EfficientPlace and DreamPlace.
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Figure 8: The Impact of Parameter α on the Refinement Process for the “adaptec1” Layout Generated
by EfficientPlace. (a) Changes in HPWL before and after legalization for different values of α. (b) Overlap
rate before legalization for different values of α.
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Figure 9: The Impact of Parameter α on the Refinement Process for the “adaptec3” Layout Generated
by EfficientPlace.
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Figure 10: The Impact of Parameter α on the Refinement Process for the “adaptec1” Layout Generated
by DreamPlace 4.0. Legalization failed for α = 1.
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Figure 11: The Impact of Parameter α on the Refinement Process for the “adaptec3” Layout Generated
by DreamPlace 4.0. Legalization failed for α = 1.
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