

EFFICIENTREFINER: AN EFFICIENT REFINEMENT METHOD FOR MACRO PLACEMENTS GENERATED BY OFF-THE-SHELF PLACERS

006 **Anonymous authors**

007 Paper under double-blind review

ABSTRACT

013 A refinement stage on macro placements generated by SOTA off-the-shelf plac-
 014 ers can further improve the layout quality, as this stage compensates for the sub-
 015 optimality arising from lack of full-layout awareness in RL-based placers, as well
 016 as the quality degradation resulting from the overlap-resolving legalization step
 017 in analytical placers. Nevertheless, existing RL-based refinement techniques of-
 018 ten incur high computational cost. This paper proposes EfficientRefiner, which
 019 leverages an efficient analytical framework to refine macro layouts produced by
 020 existing placement approaches, achieving reduced computational overhead while
 021 improving layout quality. EfficientRefiner encodes macro positions as learnable
 022 vectors and optimizes an objective function that integrates both target metrics and
 023 placement constraints via gradient descent. It introduces a novel fine-grained pair-
 024 wise overlap formulation tailored for macro refinement, which overcomes the lim-
 025 itations of prior density-based objectives in analytical methods by effectively min-
 026 imizing overlaps without inducing excessive spreading that could degrade layout
 027 quality. Moreover, EfficientRefiner enhances efficiency and scalability through
 028 pruning algorithms and GPU acceleration. Experimental results show that, when
 029 considering both HPWL and regularity metrics for optimization, it improves aver-
 030 age HPWL by **7.20%–34.71% within 10 minutes** on the ISPD2005 bench-
 031 mark, and achieves average timing gains of **20% WNS and 29% TNS** on PPA-
 032 supported ChiPBench circuits.

1 INTRODUCTION

035 Chip placement is a critical stage in Electronic Design Automation (EDA), as it strongly influences
 036 subsequent steps such as clock tree synthesis and routing, and significantly affects the overall quality
 037 of the chip design. The goal is to generate an optimized layout for both large functional modules
 038 (macros) and small logic gates (standard cells), ensuring that no overlaps occur while improving
 039 key objectives (e.g., proxy wirelength metric, and final Power, Performance and Area (PPA) met-
 040 rics). Macro placement plays a decisive role within the overall placement task, as macros are much
 041 larger and more densely connected than standard cells (Geng et al., 2024). Nevertheless, the prob-
 042 lem remains highly challenging due to its NP-hard nature and the intricate trade-offs involved in
 043 optimizing placement quality under essential design constraints (Wang et al., 2009).

044 A wide range of approaches have been developed to address the placement problem, with state-
 045 of-the-art methods mainly falling into analytical-based and Reinforcement Learning (RL)-based
 046 categories. Analytical methods (Lin et al., 2019; Lu et al., 2015; Cheng et al., 2018; Chen et al.,
 047 2008) formulate differentiable objectives, such as wirelength (capturing the primary optimization
 048 goal) and density (encouraging module spreading). Then they optimize these objectives efficiently
 049 with gradient-descent. Analytical-based methods leverage global layout information and offer high
 050 computational efficiency, but often cause severe macro overlaps which have to be resolved by a
 051 subsequent legalization step at the cost of significant performance degradation (Lai et al., 2022).
 052 RL-based methods (Mirhoseini et al., 2021; Lai et al., 2022; 2023; Cheng & Yan, 2021; Geng et al.,
 053 2024) formulate placement as a Markov Decision Process (MDP). They mainly learn policies that
 place modules step by step. These methods have shown promise in generating high-quality place-
 ments and are able to avoid overlaps through masking, but they suffer from high computational cost

054 and limited ability to capture global context. Overall, existing approaches show notable strengths
 055 but also leave room for further improvement.
 056

057 An analytical-based refinement stage has the potential to improve layouts produced by existing
 058 placement methods, as it can compensate for the suboptimality caused by incomplete global context
 059 information and the quality loss from legalization. Previous work such as MaskRegulate (Xue et al.,
 060 2024) has explored RL to refine DreamPlace-generated layouts, but this approach requires dataset-
 061 specific training to achieve the best results and updates only one module per iteration, which is
 062 inefficient. In contrast, we view refinement as a post-processing stage that should impose minimal
 063 additional runtime, and thus adopt an efficient analytical framework to implement refinement and
 064 explore its effectiveness in enhancing placement quality.

065 Effectively handling overlaps is particularly critical when applying analytical methods for macro re-
 066 finement, because (1) macros are large, vary greatly in size, and densely connected, which increases
 067 the likelihood of overlaps and makes legalization more likely to degrade the refined layout; (2) large
 068 macro perturbations at legalization can substantially diminish the value of refinement on layouts
 069 already with high quality (Lai et al., 2022). Existing analytical methods generally address overlaps
 070 using coarse-grained density functions, which partition the placement region into grids and drive
 071 each grid toward a target density. However, this strategy faces two major issues for handling macro
 072 overlaps. One issue is that minimizing grid-based objectives does not guarantee complete removal,
 073 often leaving significant overlaps among macros unresolved. The other is that many methods rely
 074 on repulsive forces between modules, but in high-density regions these forces may continue acting
 075 even after modules have moved away, leading to unnecessary spreading that may hinder effective
 076 optimization of key objectives (Cheng et al., 2018).

077 To tackle the above issues, we introduce a fine-grained, module-pair-based overlap function that
 078 effectively reduces macro overlaps. This function explicitly computes overlaps between every pair
 079 of macros and aggregates them to obtain the total overlap, providing a more accurate representation
 080 than grid-based formulations. To address the higher computational cost of fine-grained modeling,
 081 we employ algorithmic optimizations together with GPU acceleration for computation of both the
 082 overlap function and its gradient, resulting in substantial efficiency gains and improved scalability.
 083 Building on this novel overlap formulation and its efficient implementation, we develop Efficient-
 084 Refiner, a layout refinement method specifically suitable for efficient macro refinement.

085 EfficientRefiner can seamlessly integrate with any placement approach to optimize placement ob-
 086 jectives while maintaining low overlap. The main contributions are as follows: (1) We introduce
 087 a novel module-pair-based overlap function tailored for refinement scenarios, which provides a
 088 more accurate representation of overlaps and enables effective overlap reduction. (2) We design
 089 an efficient pruning scheme for overlap computation across large numbers of modules, combined
 090 with a GPU-accelerated refinement implementation, to ensure efficiency and scalability. (3) We
 091 incorporate multiple optimization objectives in our experiments, including HPWL and the regular-
 092 ity metric to improve PPA. Experimental results show that our approach improves average HPWL
 093 by 7.20%–34.71% on the ISPD2005 benchmark, and improves WNS and TNS by 20% and 29%,
 094 respectively, on PPA-supported ChiPBench circuits.

095 2 RELATED WORK

096 We begin by reviewing existing placement methods, whose outputs provide the initial layouts for
 097 our refinement. We then discuss prior refinement approaches that further improve placement quality.
 098

099 2.1 PLACEMENT METHODS

100 Placement methods can be broadly categorized into constructive and iterative adjustment methods
 101 (Shahookar & Mazumder, 1991). **Constructive methods** start from an empty placement region and
 102 generate layouts from scratch. Early work is mainly partition-based (Breuer, 1977; Agnihotri et al.,
 103 2003; Can Yildiz & Madden, 2001; Khatkhate et al., 2004), where modules are clustered using min-
 104 cut algorithms (Fiduccia & Mattheyses, 1988; Karypis et al., 1997; Alpert et al., 1997) and assigned
 105 to subregions in a recursive divide-and-conquer manner until clusters reach a manageable size. Re-
 106 cent work (Mirhoseini et al., 2021; Cheng & Yan, 2021; Lai et al., 2022; 2023; Geng et al., 2024)
 107 leverages the strong learning capability of RL to achieve state-of-the-art results. These methods

108 train RL agents to construct layouts by sequentially placing modules. MaskPlace (Lai et al., 2022)
 109 introduces masks that encode layout occupancy and wirelength increments to guide optimization.
 110 This mechanism effectively removes overlaps and significantly improves macro placement quality,
 111 and thus has been widely adopted in subsequent studies (Geng et al., 2024; Shi et al., 2023; Geng
 112 et al., 2025). ChipFormer (Lai et al., 2023) improves the efficiency of RL methods by combin-
 113 ing offline training with online fine-tuning. Although many constructive approaches achieve strong
 114 performance, they lack foresight of the global layout to guide optimization. And among them, RL-
 115 based methods, although often the most effective, require expensive training and face difficulties
 116 scaling to placements with a large number of modules.

117 **Iterative adjustment methods** start from relatively poor initial layouts (e.g., random initialization)
 118 and make iterative improvement. Stochastic-based adjustment methods, such as simulated annealing
 119 (Sechen & Sangiovanni-Vincentelli, 1985; Adya & Markov, 2001; Ho et al., 2004; Shunmugatham-
 120 mal et al., 2020; Yang et al., 2000) or evolutionary algorithms (Shi et al., 2023), improve layouts
 121 through numerous adjustments. These methods often require repeatedly executing a time-consuming
 122 process, which maps genotype solutions, which are convenient for adjustment (Chang et al., 2000;
 123 Hong et al., 2000; Murata et al., 1996), to phenotype solutions for evaluation. Besides, LaMPlace
 124 (Geng et al., 2025), adopts the WireMask-BBO framework but guides optimization with PPA-related
 125 masks to improve ultimate placement metrics. Analytical-based adjustment methods (Lin et al.,
 126 2019; Lu et al., 2015; Cheng et al., 2018; Chen et al., 2008; Spindler et al., 2008; Sigl et al., 1991;
 127 Viswanathan et al., 2007; Kahng et al., 2005) are highly efficient. They model placement objectives
 128 (e.g., wirelength) and constraints (e.g., density) as differentiable functions of module coordinates
 129 and optimize them using gradient-based techniques. However, the density formulation, intended to
 130 encourage roughly uniform module distribution, is ineffective at fully eliminating macro overlaps.
 131 This often results in substantial macro overlaps that must be resolved during the legalization stage,
 132 which can in turn significantly alter the layout and degrade overall placement quality.

132 2.2 REFINEMENT METHODS

133 The above placement methods still leave room for improvement, which can be addressed through an
 134 additional refinement process. Existing methods leverage RL to adjust layouts produced by Dream-
 135 Place. MaskRegulate (Xue et al., 2024) learns an adjustment policy that relocates one macro per step
 136 guided by masks similar to MaskPlace. Chiang et al. (2025) trains a deep Q-network to adjust groups
 137 of blocks (i.e., macros and standard cell clusters) simultaneously at each step, generating mixed-size
 138 placement prototypes for subsequent DreamPlace optimization. However, reinforcement learning
 139 approaches are computationally expensive and can only adjust a limited number of modules per it-
 140 eration. To reduce the overhead of the post-processing refinement stage, we explore an analytical
 141 framework for refinement and introduce a fine-grained overlap function to address the limitations of
 142 analytical methods in handling macro overlaps.

144 3 PRELIMINARIES AND NOTATIONS

145 The goal of macro placement is to determine the optimal arrangement of macros within a rectangular
 146 chip region while ensuring compliance with the non-overlapping constraint. The input includes the
 147 width and height of the placement region (R_w, R_h), and a circuit netlist $G(V, E)$ which can be
 148 viewed as a hypergraph where modules or ports act as hypernodes, while nets connecting them
 149 serve as hyperedges. Modules and ports are connected by nets through pins which serve as I/O
 150 interfaces located at fixed positions relative to their corresponding modules.

151 The optimization objectives include the final Power, Performance, and Area (PPA) metrics and sur-
 152rogate metrics such as wirelength. In practice, directly evaluating PPA requires time-consuming
 153 subsequent steps such as routing. Consequently, surrogate metrics are typically employed. Half-
 154 Perimeter Wirelength (HPWL) is a widely used surrogate metric, serving as an estimate of wire-
 155 length. A smaller HPWL may indicate reduced routing resource consumption and better perfor-
 156 mance. Since HPWL is non-differentiable, the weighted-average function (Hsu et al., 2013) is com-
 157 monly adopted as a differentiable approximation to enable gradient-based optimization. We also
 158 employ this differentiable surrogate in our refinement framework. In addition, we incorporate the
 159 regularity metric (Xue et al., 2024), which encourages macros to be placed closer to the chip bound-
 160 ary, thereby leaving sufficient space for standard cells and improving both mixed-size placement
 161 wirelength and PPA. Detailed definitions of these placement metrics are provided in Appendix A.1.

Figure 1: **Overview of EfficientRefiner.** Starting from an optimized layout generated by an off-the-shelf placer, EfficientRefiner encodes module positions as unbounded learnable vectors, optimizes a joint objective function consisting of the optimization objective and fine-grained overlap via iterative forward and backward propagation, and applies legalization at the end to resolve any remaining overlaps.

Our refinement task can be described as follows. We receive the initial set of macro positions $S = \{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$ generated by existing placement methods as input, and aim to find a set $S^{(ref)} = \{(x_1^{(ref)}, y_1^{(ref)}), (x_2^{(ref)}, y_2^{(ref)}), \dots, (x_n^{(ref)}, y_n^{(ref)})\}$ of refined locations which satisfies Eq.(1). In the equation, Obj denotes the optimization objective, which can be adapted to different metrics depending on the setting. In this paper we support HPWL and regularity, and may extend them to metrics that more directly reflect PPA in the future.

$$\text{Obj}(S^{(ref)}) < \text{Obj}(S), \quad \text{Overlap}(S^{(ref)}) = 0 \quad (1)$$

We reformulate the refinement problem as an unconstrained optimization, as defined in Eq.(2), by incorporating the overlap constraint into the objective function with a weighting parameter α . We employ differentiable approximations during refinement, denoted as $\hat{\text{Obj}}$ and $\hat{\text{Overlap}}$.

$$f = \hat{\text{Obj}} + \alpha \cdot \hat{\text{Overlap}} \quad (2)$$

4 EFFICIENTREFINER

Fig.1 presents an overview of EfficientRefiner. EfficientRefiner first represents module positions as learnable vectors and formulate an objective function that integrates placement metrics and constraints (Eq.(2)). Then it refines the layouts by optimizing this objective through iterative gradient descent. Note that with our proposed fine-grained overlap formulation, the overlap remains low throughout the refinement process. After a specified number of iterations, a legalization step is applied to remove any remaining overlaps. This step requires only minor adjustments to module positions and has little impact on the overall layout, as the overlap rate is already low.

Our method consists of several key components. First, the boundary-oblivious module position representation maps module positions to unconstrained learnable vectors to ensure that modules remain within the chip boundary during refinement. Second, the fine-grained, module-pair-based overlap function enables effective overlap removal and reduces the impact of legalization on macro refinement. This is in contrast with coarse-grained grid-based density formulations used in analytical methods, which suffer from two main drawbacks: (1) they often leave overlaps unresolved even when the objective is minimized. (2) Their repulsive force mechanisms continue to push modules after they have moved away from dense regions, causing unnecessary spreading that can degrade performance (Cheng et al., 2018). Third, GPU programming, along with pruning techniques, are employed to enable efficiency and scalability.

4.1 BOUNDARY-OBLIVIOUS MODULE POSITION REPRESENTATION

Representing module positions as boundary-oblivious learnable vectors streamlines optimization by eliminating the need to check for boundary violations during refinement. Each bounded module position (x_i, y_i) (constrained within $[\frac{w_i}{2}, R_w - \frac{w_i}{2}] \times [\frac{h_i}{2}, R_h - \frac{h_i}{2}]$) is mapped to an unbounded vector representation (z_{ix}, z_{iy}) .

Figure 2: **Boundary-oblivious representation.**

The mapping technique is illustrated in Fig.2 and described in detail below. We take the x -direction as an example, as the mapping in the y -direction follows similar process. For a module M_i with absolute position (x_i, y_i) , the mapping consists of three steps. First, we determine the valid placement region, (i.e., the range that ensures M_i remains within the placement boundary), given by $[w_i/2, R_w - w_i/2]$. Next, we normalize (x_i, y_i) to the interval $[0, 1]$ using the calculated valid region boundary value. Specifically,

the normalized x -position is computed as the ratio of the distance from the center of M_i to the region's left boundary over the region's width, which is presented as $\frac{x_i - w_i/2}{R_w - w_i}$. Finally, the normalized position is mapped to the learnable vector z_{ix} using the inverse sigmoid function. The complete mapping function is given in Eq.(3). The resulting learnable vector z_{ix} spans the entire real domain and is therefore unbounded.

$$z_{ix} = \sigma^{-1}\left(\frac{x_i - w_i/2}{R_w - w_i}\right) \quad (3)$$

The role of this mapping technique in the overall refinement process is as follows. At the beginning, given an initial layout produced by any placement placement method, the mapping is applied to compute the initial values of the learnable vectors from the current module positions. During each forward propagation, the learnable vectors are then mapped back into module positions through the inverse of Eq.(3), so the objective function can be computed based on these reconstructed positions.

4.2 FINE-GRAINED MODULE PAIR BASED OVERLAP FUNCTION

The fine-grained, module pair-based overlap function is specifically designed for macro refinement and offers several advantages over the density formulations used in analytical methods. First, it ensures more effective overlap reduction, as modules are guaranteed to be non-overlapping when the overlap function reaches its minimum value of zero. Second, it prevents unnecessary module spreading that can degrade placement quality, since the gradient of the overlap function becomes zero once a module no longer overlaps with others.

To formulate the overlap function, we begin with a basic version that aggregates pairwise module overlaps and then extend it to a gradient-descent-robust formulation. This evolution is illustrated in the blue-shaded panel on the middle-left of Fig.1. In the basic version, the gradient vanishes when the overlap reaches its maximum, hindering further adjustment. Therefore, a more robust formulation is introduced to enable effective gradient-based optimization.

Basic Overlap Formulation. The basic overlap formulation is defined by aggregating the overlap areas across all module pairs. For a given pair (M_i, M_j) , the overlap area Overlap_{ij} is computed as the product of the overlapping lengths along the x - and y -directions, as illustrated in Fig.3(a). The exact formulation is provided in Eq.(4).

$$\text{Overlap} = \sum_{M_i, M_j \in V, i \neq j} \text{Overlap}_{ij} = \sum_{M_i, M_j \in V, i \neq j} \text{Overlap}_{ijx} \cdot \text{Overlap}_{ijy} \quad (4)$$

In the above equation, the overlap lengths Overlap_{ijx} and Overlap_{ijy} between modules M_i and M_j are defined as follows. Taking the x -direction as an example (the y -direction is analogous), Overlap_{ijx} is given by the difference between the minimum of the two right boundaries and the maximum of the two left boundaries when the modules overlap; otherwise, it is zero. The exact formulation is provided in Eq.(5) and illustrated in Fig.3(a).

$$\text{Overlap}_{ijx} = \max(0, \min(x_i + \frac{w_i}{2}, x_j + \frac{w_j}{2}) - \max(x_i - \frac{w_i}{2}, x_j - \frac{w_j}{2})) \quad (5)$$

This basic formulation suffers from a zero-gradient issue that limits its effectiveness in gradient-based optimization for overlap removal. Specifically, when the span of M_i in the x -direction is fully contained within that of M_j , Overlap_{ijx} remains fixed and provides no gradient signal. Such cases, as illustrated in Fig.3(b) and 3(c), prevent M_i and M_j from being effectively separated. To address this issue, we revise the formulation and define a gradient-descent-robust version $\hat{\text{Overlap}}_{ijx}$.

Figure 3: **Basic and Gradient-Descent-Robust Overlap Formulations.** (a) Overlap between two modules is computed as the product of their overlapping lengths along the x - and y -directions. (b)-(c) Overlapping length in the x -direction under the basic and gradient descent robust formulations when module M_i lies to the left of M_j (b) or to the right of M_j (c). (d)-(e) Plots of the x -direction overlapping length as a function of x_j under the basic formulation (d) and the gradient descent robust formulation (e).

Gradient Descent Robust Overlap Formulation. To resolve the zero-gradient issue, we extend the basic overlap formulation to a gradient-descent-robust version for cases where the span of M_i fully contains that of M_j in either x - or y -directions. As shown in Fig.3(b) and Fig.3(c), two subcases are considered: (1) if the center of M_i lies to the left of M_j , the overlapping length is extended from the right boundary of M_i to the left boundary of M_j ; (2) if the center of M_i lies to the right, it is extended from the left boundary of M_i to the right boundary of M_j . In all other case (i.e., disjoint or partially overlapping spans) Overlap reduces to the basic formulation Overlap. The full formulation is provided in Eq.(6).

$$\hat{Overlap}_{ijx} = \begin{cases} (x_j + \frac{w_j}{2}) - (x_i - \frac{w_i}{2}), & \text{if } x_j \leq x_i \text{ and } |x_i - x_j| < \frac{w_i}{2} + \frac{w_j}{2} \\ (x_i + \frac{w_i}{2}) - (x_j - \frac{w_j}{2}), & \text{if } x_j > x_i \text{ and } |x_i - x_j| < \frac{w_i}{2} + \frac{w_j}{2} \\ 0, & \text{otherwise} \end{cases} \quad (6)$$

Figure 3(e) illustrates $\hat{Overlap}_{ijx}$ as a function of M_j 's position with M_i fixed. As x_j moves from $x_i - \frac{w_i+w_j}{2}$ to $x_i + \frac{w_i+w_j}{2}$, the overlap length rises linearly to the peak and then symmetrically decreases to zero. Its derivative maintains an absolute value of 1 within the overlap region, resolving the zero-gradient issue.

4.3 EFFICIENCY ENHANCED GRADIENT COMPUTATION

The objective function is optimized using gradient descent as defined in Eq.(7), with lr representing the learning rate.

$$z_{ix} = z_{ix} - lr \cdot \frac{\partial f}{\partial z_{ix}}, \quad z_{ij} = z_{ix} - lr \cdot \frac{\partial f}{\partial z_{ix}} \quad (7)$$

Since the module-pair-based overlap formulation introduces larger gradient computational overhead than previous coarse-grained density formulations, we adopt two acceleration strategies to maintain efficiency and scalability: (1) GPU programming, which leverages the high computational power of GPUs and improves the parallelism of gradient computation; (2) A pruning strategy, which reduces redundant pairwise computations to improve refinement efficiency for large-scale designs.

4.3.1 GPU PROGRAMMING

We begin by analyzing the parallelism in gradient computation, which motivates the use of GPU programming to improve efficiency. We then explain the GPU programming scheme in detail.

324 **Parallelism in Gradient Computation.** The gradient of f with respect to the learnable vector z_{ix}
 325 consists of two parts: the derivative of $\hat{\text{Obj}}$ and $\hat{\text{Overlap}}$, respectively, as shown in Eq.(8).
 326

$$327 \quad \frac{\partial f}{\partial z_{ix}} = \frac{\partial f}{\partial x_i} \cdot \frac{\partial x_i}{\partial z_{ix}} = \left(\frac{\partial \hat{\text{Obj}}}{\partial x_i} + \lambda \cdot \frac{\partial \hat{\text{Overlap}}}{\partial x_i} \right) \cdot \frac{\partial x_i}{\partial z_{ix}} \quad (8)$$

329 The term $\hat{\text{Overlap}}$ aggregates the contributions of overlaps between all module pairs, and its gradient
 330 is given in Eq.(9). We can observe from this formulation that the overlap gradients between module
 331 332 M_i and each other module M_j can be computed independently and then summed, which enables
 333 efficient parallelization.

$$334 \quad \frac{\partial \hat{\text{Overlap}}}{\partial x_i} = \sum_{M_j \in V, j \neq i} \hat{\text{Overlap}}_{ijy} \cdot \frac{\partial \hat{\text{Overlap}}_{ijx}}{\partial x_i} \quad (9)$$

337 **GPU Programming Scheme.** Based on the parallelism analysis, we implement GPU program-
 338 339 ming to accelerate computation. Specifically, a dedicated GPU thread is assigned to each module
 340 341 pair to enable parallel computation of the overlap lengths and their corresponding gradients. Then,
 342 343 overlap contributions from all module pairs are accumulated according to Eq.(4) to obtain the overall
 344 345 overlap function, and the gradients are accumulated according to Eq.(9) to yield overlap gradients.

346 In practice, we adopt the GPU programming interface provided by the Numba library, as it offers
 347 348 greater flexibility in defining GPU threads for parallel computation and better supports the pruning
 349 350 strategy introduced later. In contrast, the more commonly used PyTorch implementation can only
 351 352 compute overlaps between module pairs sequentially under the same space complexity, which leads
 353 354 to significant efficiency degradation, as shown in the experimental section.

355 4.3.2 PRUNING STRATEGY

356 The pruning strategy further reduces computation when refining a large
 357 358 number of modules by reducing the number of module pairs under con-
 359 360 sideration. The strategy divides the placement region into rectangular
 361 362 bins, and categorizes modules as either large (with width or height ex-
 363 364 ceeding a bin dimension) or small (fully contained within a bin). For
 365 366 large modules, overlaps and gradients are computed with respect to all
 367 368 other modules in the layout. For small modules, the computation is re-
 369 370 stricted to pairs formed with modules located in the same bin and its
 371 372 eight neighboring bins. For example, in Fig. 4, module M_1 is identified
 373 374 as large and interacts with all other modules, whereas module M_2 , clas-
 375 376 sified as small, only interacts with modules M_3 , M_4 , and M_5 residing
 377 378 in its bin and adjacent bins (marked by the yellow shaded region). The
 379 380 detailed algorithm can be find in Appendix A.2.

381 Figure 4: Example of the
 382 383 pruning strategy.

384 5 EXPERIMENTS

385 5.1 BENCHMARKS, BASELINES AND SETTINGS

386 We evaluate the effectiveness of EfficientRefiner on macro and mixed-size HPWL using the widely
 387 388 adopted ISPD2005 (Nam et al., 2005) and ICCAD2015 (Kim et al., 2015) benchmarks, which to-
 389 390 gether contain 16 circuits. We further assess PPA results on 8 circuits from ChiPBench (Wang et al.,
 391 392 2024). We refine multiple state-of-the-art placement methods and compare their results before and
 393 394 after refinement. We also compare against the RL-based method MaskRegulate (Xue et al., 2024)
 395 396 to examine their relative effectiveness in refinement. Additional benchmark statistics, baselines and
 397 398 experimental settings are provided in Appendix A.3.

399 5.2 MAIN RESULTS

400 We conduct three groups of experiments: (1) optimizing HPWL alone to evaluate macro wire-
 401 402 length reduction; (2) jointly optimizing HPWL and regularity to assess effectiveness on mixed-size
 403 404 placement with respect to wirelength and PPA; and (3) comparing against the RL-based refinement
 405 406 method MaskRegulate (Xue et al., 2024) to demonstrate effectiveness.

378 Table 1: Comparison of macro HPWL values ($\times 10^5$) of layouts generated by baseline placement methods and
 379 their corresponding refined results. Columns labeled “+ER” report the HPWL after applying EfficientRefiner.
 380 Values in parentheses represent the improvement rate achieved after refinement.

Method	adaptec1	adaptec1+ER	adaptec2	adaptec2+ER	adaptec3	adaptec3+ER	adaptec4	adaptec4+ER
NTUPlace3	14.35	7.72 (-46.20%)	65.33	41.04 (-37.18%)	74.66	60.39 (-19.11%)	63.21	48.46 (-23.33%)
DreamPlace 4.0	8.32	5.91 (-28.97%)	38.68	30.27 (-27.14%)	45.93	43.85 (-4.53%)	39.78	35.83 (-9.93%)
DreamPlace 4.1.0	6.89	6.13 (-11.03%)	50.09	35.11 (-21.92%)	50.77	49.43 (-2.64%)	40.92	38.01 (-7.11%)
WireMask-EA	6.10	5.58 (-8.52%)	54.78	51.93 (-5.20%)	59.40	60.01 (+1.03%)	59.46	53.51 (-10.01%)
MaskPlace	6.69	5.98 (-10.67%)	78.58	55.34 (-29.57%)	118.18	89.43 (-24.33%)	91.22	62.92 (-31.02%)
Chipformer	7.13	5.94 (-16.69%)	64.42	47.00 (-27.04%)	80.55	63.32 (-21.39%)	68.73	52.77 (-23.22%)
EfficientPlace	6.14	5.47 (-10.91%)	45.94	36.76 (-19.98%)	57.37	54.40 (-5.18%)	59.07	54.23 (-8.19%)
Method	bigblue1	bigblue1+ER	bigblue2	bigblue2+ER	bigblue3	bigblue3+ER	bigblue4	bigblue4+ER
NTUPlace3	6.74	4.08 (-39.47%)	12.17	9.03 (-25.80%)	60.78	32.37 (-46.74%)	95.30	60.16 (-39.87%)
DreamPlace 4.0	2.36	2.13 (-9.75%)	7.33	6.87 (-6.28%)	239.72	217.96 (-9.08%)	390.94	164.37 (-57.96%)
DreamPlace 4.1.0	2.41	2.21 (-8.30%)	7.62	7.66 (+0.52%)	25.32	25.77 (+1.78%)	64.14	58.42 (-8.92%)
WireMask-EA	2.17	2.22 (+2.30%)	11.23	10.61 (-5.52%)	67.17	39.20 (-41.64%)	79.65	64.82 (-18.62%)
MaskPlace	2.67	2.31 (-13.48%)	17.49	12.41 (-29.05%)	62.90	37.04 (-41.11%)	112.87	70.07 (-37.92%)
Chipformer	3.09	2.63 (-14.89%)	13.30	11.86 (-10.83%)	81.77	36.53 (-55.33%)	105.62	64.74 (-38.70%)
EfficientPlace	2.29	2.23 (-2.62%)	12.85	10.42 (-18.91%)	58.15	43.62 (-24.99%)	84.18	64.44 (-23.45%)

395 **Macro HPWL Optimization.** Table 1 reports HPWL results before and after applying Efficient-
 396 Refiner. EfficientRefiner achieves average HPWL reductions of 7.20%–34.71% across all circuits
 397 for the baseline methods listed in the table. All refinements complete within 10 minutes as shown
 398 in Table 11, highlighting the efficiency of our approach. Moreover, EfficientRefiner scales to larger
 399 designs than RL-based methods due to its efficiency and scalability. We test on the ICCAD2015
 400 benchmark with 8192 modules and thousands of fixed ports to validate its efficiency, with the results
 401 provided in Appendix A.4.1. The refinement time is shown in Table 12.

402 Table 2: Comparation of surrogate metrics and PPA results before and after refinement on ChiPBench circuits.
 403 “DP” denotes DreamPlace 4.1.0, and “DP+ER” denotes DreamPlace refined with EfficientRefiner. The best
 404 results are marked in **bold**.

Circuit	Method	HPWL \downarrow	WL \downarrow	Cong \downarrow	Power \downarrow	NVP \downarrow	WNS \uparrow	TNS \uparrow	Area \downarrow
ariane136	DP	6211190	7370520	0.2481	0.3836	1842	-0.2471	-208.74	393322
	DP+ER	6133533	7430453	0.2502	0.3847	1779	-0.2277	-166.55	393161
bp_fe	DP	2246648	2817587	0.4943	0.1655	177	-0.6845	-40.16	71872
	DP+ER	2204814	2692443	0.4692	0.1652	112	-0.3469	-19.09	71596
bp_be	DP	3429613	4223729	0.5977	0.1466	111	-0.6366	-52.07	123881
	DP+ER	3230676	3886870	0.5972	0.1427	111	-0.6184	-49.00	121749
bp_be12	DP	3659015	4187820	0.5108	0.0753	115	-0.6826	-65.89	92695
	DP+ER	3560677	4097495	0.4998	0.0752	114	-0.6015	-54.64	92827
bp_multi57	DP	6668232	7485321	0.5235	0.1055	457	-2.8632	-799.80	210043
	DP+ER	5972371	6714072	0.4702	0.1059	411	-2.5053	-622.87	204627
bp68	DP	12744064	14728606	0.4597	0.1530	2427	-2.9514	-1153.07	275709
	DP+ER	11186402	12856599	0.4037	0.1485	563	-2.1447	-746.56	269561
swerv_wrapper	DP	4642293	5481023	0.3918	0.2743	1421	-0.6348	-543.29	230130
	DP+ER	4351614	5139469	0.3532	0.2680	1296	-0.5787	-459.99	228604
VeriGPU	DP	1186895	1674544	0.1838	0.0951	1650	-0.5759	-210.83	153312
	DP+ER	1174880	1656132	0.1900	0.0900	531	-0.3665	-66.44	152468

421 **Mixed-Size HPWL and PPA Evaluation.** We evaluate mixed-size and PPA performance on PPA
 422 supported circuits from ChiPBench and ICCAD2015. Results on ChiPBench are shown in Table 2.
 423 As shown in the ChiPBench paper, most existing macro placement methods focus on macro HPWL
 424 optimization and provide limited improvements on PPA metrics. So we adopt the state-of-the-art
 425 mixed-size placer DreamPlace 4.1.0 as the baseline and refine its macro placements to provide a
 426 stronger comparison. Details of the refinement process and PPA evaluation process are provided in
 427 Appendix A.3. Experimental results show consistent improvements: mixed-size HPWL is reduced
 428 by 5% on average, while WNS and TNS improve by 20% and 29%, respectively. Additional results
 429 on ICCAD2015 presented in Appendix A.4.2 further confirm the effectiveness of our refinement.

430 **Comparison with RL-based Adjustment Method.** We compare EfficientRefiner with the RL-
 431 based method MaskRegulate (Xue et al., 2024), both applied to refine ICCAD2015 layouts generated

432 by DreamPlace 4.0. As shown in Table 3, EfficientRefiner consistently delivers higher placement
 433 quality, reducing mixed-size HPWL by 27% on average. While MaskRegulate requires 30+ hours
 434 of training for 1k iterations, our method completes 5k refinement iterations in only about 3 minutes.
 435

436 Table 3: Comparison of EfficientRefiner (ER) with MaskRegulate (MR) on the ICCAD2015 benchmark. “DP”
 437 denotes DreamPlace 4.0. HPWL values are reported in units of 10^8 . The best results are marked in **bold**.

Circuit	Method	HPWL	WNS*	TNS*	Circuit	Method	HPWL	WNS*	TNS*
superblue1	DP	12.91	-3583.26	-827.03	superblue7	DP	13.74	-2082.79	-152.93
	DP+MR	6.21	-1241.74	-51.75		DP+MR	8.20	-1852.93	-58.65
	DP+ER	4.46	-210.98	-22.80		DP+ER	6.58	-304.41	-20.20
superblue3	DP	11.15	-785.77	-93.10	superblue10	DP	13.74	-2082.79	-152.93
	DP+MR	7.42	-886.39	-88.56		DP+MR	12.16	-3215.87	-142.13
	DP+ER	5.17	-158.40	-114.95		DP+ER	7.56	-696.24	-22.56
superblue4	DP	7.70	-1211.13	-49.75	superblue16	DP	11.47	-4039.89	-253.56
	DP+MR	4.24	-912.54	-45.85		DP+MR	4.32	-522.66	-41.76
	DP+ER	3.46	-319.83	-25.75		DP+ER	5.44	-1409.37	-36.81
superblue5	DP	10.33	-1009.39	-70.33	superblue18	DP	4.42	-181.41	-80.20
	DP+MR	7.34	-667.19	-77.50		DP+MR	3.10	-415.80	-29.67
	DP+ER	4.67	-258.66	-54.29		DP+ER	2.33	-128.55	-18.47

441 Note: As the ICCAD2015 benchmark is not supported by OpenRoad, the WNS and TNS values are estimated pre-routing using OpenTimer.
 442

443 5.3 ANALYSIS

444 **Effectiveness of GPU Programming.** We compare our Numba-based GPU implementation with
 445 a PyTorch-based version to demonstrate the benefits of parallel computation. As shown in Table 13,
 446 our approach achieves over $1000\times$ speedup. This improvement stems from the fact that, when
 447 maintaining the same space complexity in overlap computation, the PyTorch implementation can
 448 only process overlaps sequentially for each module pair. In contrast, our implementation computes
 449 overlaps for multiple module pairs in parallel to yield significant performance gains.
 450

451 **Effectiveness of the Pruning Strategy.** To evaluate the efficiency improvement of the pruning
 452 strategy, we conduct experiments on the ICCAD2015 dataset refining 8192 modules along with
 453 several thousand ports. The runtime comparison with or without the pruning strategy is presented in
 454 Table 12, showing that this strategy achieves an average speedup of $8\times$.
 455

456 **Effectiveness of Fine-grained Overlap Modeling.** We compare EfficientRefiner with the ana-
 457 lytical approaches NTUPlace3 and DreamPlace to evaluate the effectiveness of our fine-grained
 458 module-pair overlap formulation and to examine the impact of legalization, which often degrades
 459 solution quality. In this experiment, all methods are applied to refine macro layouts generated by
 460 EfficientPlace. Both baselines rely on coarse-grained density formulations for overlap removal. We
 461 use the HPWL metric as an indicator to measure the effect of legalization. Table 9 reports the
 462 overlap rates before legalization, and Table 10 shows the relative HPWL increase after legalization.
 463 Across all eight benchmarks, EfficientRefiner achieves near-zero overlap, significantly outper-
 464 forming NTUPlace3 and DreamPlace. Moreover, it yields the lowest average HPWL increase of only
 465 0.81%, compared to 8.60% for NTUPlace3 and 57.67% for DreamPlace.
 466

467 **Parameter Analysis.** We investigate the impact of the overlap weight α in Eq. (2) on the re-
 468 finement process, using HPWL as the optimization objective for demonstration. Figures 9–12 in
 469 Appendix A.4.6 show HPWL changes before and after legalization (left) and overlap rates before
 470 legalization (right) for various α values. Similar trends are observed across different baselines and
 471 circuits: (1) very small α (e.g., < 10) may cause legalization failure. (2) Moderate α ($10–100$) leads
 472 to high overlap and a large HPWL increase after legalization. (3) Larger α (> 100) reduces overlap
 473 and lowers the legalization impact on HPWL. (4) The HPWL value remains small for $\alpha > 5k$.
 474

475 6 CONCLUSION

476 This paper presented EfficientRefiner, an analytical-based framework for refining macro placements
 477 produced by existing placement methods. The method leverages the strengths of analytical tech-
 478 niques while being tailored to the macro refinement setting. It adjusts macro positions using a
 479 comprehensive representation of the full layout and incorporates a fine-grained pairwise overlap ob-
 480

486 jective that effectively reduces module overlaps without inducing excessive spreading. Moreover, it
 487 accelerates refinement with pruning strategy and GPU-based parallel computation, substantially im-
 488 proving efficiency. Experimental results show that EfficientRefiner achieves notable improvements
 489 in both HPWL and PPA over existing methods.

490 For future work, we aim to integrate more accurate PPA-related metrics into the optimization ob-
 491 jective. For example, LaMPlace (Geng et al., 2025) introduces learned PPA predictors that could be
 492 incorporated into our framework. However, since the data released in the LaMPlace GitHub reposi-
 493 tory is currently incomplete, we leave this direction to future work. We also plan to conduct more
 494 rigorous PPA evaluations on the large-scale ICCAD2015 benchmark once commercial design tools
 495 become available.

497 REFERENCES

499 Saurabh N Adya and Igor L Markov. Fixed-outline floorplanning through better local search. In
 500 *Proceedings 2001 IEEE International Conference on Computer Design: VLSI in Computers and*
 501 *Processors. ICCD 2001*, pp. 328–334. IEEE, 2001.

502 Anthony Agnesina, Puranjay Rajvanshi, Tian Yang, Geraldo Pradipta, Austin Jiao, Ben Keller,
 503 Brucek Khailany, and Haoxing Ren. Autodmp: Automated dreamplace-based macro placement.
 504 In *Proceedings of the 2023 International Symposium on Physical Design*, pp. 149–157, 2023.

505

506 Ameya Agnihotri, Mehmet Can Yildiz, Ateen Khatkhate, Ajita Mathur, Satoshi Ono, and Patrick H
 507 Madden. Fractional cut: Improved recursive bisection placement. In *ICCAD-2003. International*
 508 *Conference on Computer Aided Design (IEEE Cat. No. 03CH37486)*, pp. 307–310. IEEE, 2003.

509

510 Tutu Ajayi and David Blaauw. Openroad: Toward a self-driving, open-source digital layout im-
 511 plementation tool chain. In *Proceedings of Government Microcircuit Applications and Critical*
 512 *Technology Conference*, 2019.

513 Charles J Alpert, Jen-Hsin Huang, and Andrew B Kahng. Multilevel circuit partitioning. In *Pro-
 514 ceedings of the 34th annual Design Automation Conference*, pp. 530–533, 1997.

515

516 Mohammad Amini, Zhanqiang Zhang, Surya Penmetsa, Yingxue Zhang, Jianye Hao, and Wulong
 517 Liu. Generalizable floorplanner through corner block list representation and hypergraph embed-
 518 ding. In *Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data*
 519 *Mining*, pp. 2692–2702, 2022.

520 Melvin A Breuer. A class of min-cut placement algorithms. In *Proceedings of the 14th Design*
 521 *Automation Conference*, pp. 284–290, 1977.

522

523 Mehmet Can Yildiz and Patrick H Madden. Improved cut sequences for partitioning based place-
 524 ment. In *Proceedings of the 38th annual Design Automation Conference*, pp. 776–779, 2001.

525

526 Yun-Chih Chang, Yao-Wen Chang, Guang-Ming Wu, and Shu-Wei Wu. B*-trees: A new represen-
 527 tation for non-slicing floorplans. In *Proceedings of the 37th Annual Design Automation Conference*,
 528 pp. 458–463, 2000.

529

530 Tung-Chieh Chen, Zhe-Wei Jiang, Tien-Chang Hsu, Hsin-Chen Chen, and Yao-Wen Chang. A
 531 high-quality mixed-size analytical placer considering preplaced blocks and density constraints.
 532 In *Proceedings of the 2006 IEEE/ACM International Conference on Computer-Aided Design*, pp.
 533 187–192, 2006.

534

535 Tung-Chieh Chen, Zhe-Wei Jiang, Tien-Chang Hsu, Hsin-Chen Chen, and Yao-Wen Chang. Ntu-
 536 place3: An analytical placer for large-scale mixed-size designs with preplaced blocks and density
 537 constraints. *IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems*,
 538 27(7):1228–1240, 2008.

539

540 Chung-Kuan Cheng, Andrew B Kahng, Ilgweon Kang, and Lutong Wang. Replace: Advancing
 541 solution quality and routability validation in global placement. *IEEE Transactions on Computer-
 542 Aided Design of Integrated Circuits and Systems*, 38(9):1717–1730, 2018.

540 Ruoyu Cheng and Junchi Yan. On joint learning for solving placement and routing in chip design.
 541 *Advances in Neural Information Processing Systems*, 34:16508–16519, 2021.
 542

543 Cheng-Yu Chiang, Yi-Hsien Chiang, Chao-Chi Lan, Yang Hsu, Che-Ming Chang, Shao-Chi Huang,
 544 Sheng-Hua Wang, Yao-Wen Chang, and Hung-Ming Chen. Mixed-size placement prototyping
 545 based on reinforcement learning with semi-concurrent optimization. In *Proceedings of the 30th*
 546 *Asia and South Pacific Design Automation Conference*, pp. 893–899, 2025.

547 James P Cohoon and William D Paris. Genetic placement. *IEEE Transactions on Computer-Aided*
 548 *Design of Integrated Circuits and Systems*, 6(6):956–964, 1987.

549 Charles M Fiduccia and Robert M Mattheyses. A linear-time heuristic for improving network parti-
 550 tions. In *Papers on Twenty-five years of electronic design automation*, pp. 241–247. 1988.

551

552 Zijie Geng, Jie Wang, Ziyuan Liu, Siyuan Xu, Zhentao Tang, Mingxuan Yuan, HAO Jianye, Yong-
 553 dong Zhang, and Feng Wu. Reinforcement learning within tree search for fast macro placement.
 554 In *Forty-first International Conference on Machine Learning*, 2024.

555 Zijie Geng, Jie Wang, Ziyuan Liu, Siyuan Xu, Zhentao Tang, Shixiong Kai, Mingxuan Yuan, Jianye
 556 Hao, and Feng Wu. Lamplace: Learning to optimize cross-stage metrics in macro placement. In
 557 *The Thirteenth International Conference on Learning Representations*, 2025.

558

559 Shinn-Ying Ho, Shinn-Jang Ho, Yi-Kuang Lin, and WC-C Chu. An orthogonal simulated annealing
 560 algorithm for large floorplanning problems. *IEEE transactions on very large scale integration*
 561 (*VLSI*) systems, 12(8):874–877, 2004.

562 Xianlong Hong, Gang Huang, Yici Cai, Jiangchun Gu, Sheqin Dong, Chung-Kuan Cheng, and
 563 Jun Gu. Corner block list: An effective and efficient topological representation of non-slicing
 564 floorplan. In *IEEE/ACM International Conference on Computer Aided Design. ICCAD-2000.*
 565 *IEEE/ACM Digest of Technical Papers (Cat. No. 00CH37140)*, pp. 8–12. IEEE, 2000.

566

567 Meng-Kai Hsu, Valeriy Balabanov, and Yao-Wen Chang. Tsv-aware analytical placement for 3-d ic
 568 designs based on a novel weighted-average wirelength model. *IEEE Transactions on Computer-
 569 Aided Design of Integrated Circuits and Systems*, 32(4):497–509, 2013.

570

571 Tsung-Wei Huang and Martin DF Wong. Opentimer: A high-performance timing analysis tool. In
 572 *2015 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)*, pp. 895–902.
 573 IEEE, 2015.

574

575 Andrew B Kahng, Sherief Reda, and Qinke Wang. Aplace: A general analytic placement framework.
 576 In *Proceedings of the 2005 international symposium on Physical design*, pp. 233–235, 2005.

577

578 George Karypis, Rajat Aggarwal, Vipin Kumar, and Shashi Shekhar. Multilevel hypergraph par-
 579 titioning: Application in vlsi domain. In *Proceedings of the 34th annual Design Automation*
 580 *Conference*, pp. 526–529, 1997.

581

582 Ateen Khatkhate, Chen Li, Ameya R Agnihotri, Mehmet C Yildiz, Satoshi Ono, Cheng-Kok Koh,
 583 and Patrick H Madden. Recursive bisection based mixed block placement. In *Proceedings of the*
 584 *2004 international symposium on Physical design*, pp. 84–89, 2004.

585

586 Myung-Chul Kim, Jin Hu, Jiajia Li, and Natarajan Viswanathan. Iccad-2015 cad contest in incre-
 587 mental timing-driven placement and benchmark suite. In *2015 IEEE/ACM International Confer-
 588 ence on Computer-Aided Design (ICCAD)*, pp. 921–926. IEEE, 2015.

589

590 Yao Lai, Yao Mu, and Ping Luo. Maskplace: Fast chip placement via reinforced visual representa-
 591 tion learning. *Advances in Neural Information Processing Systems*, 35:24019–24030, 2022.

592

593 Yao Lai, Jinxin Liu, Zhentao Tang, Bin Wang, Jianye Hao, and Ping Luo. Chipformer: Transfer-
 594 able chip placement via offline decision transformer. In *International Conference on Machine*
 595 *Learning*, pp. 18346–18364. PMLR, 2023.

596

597 Yibo Lin, Shounak Dhar, Wuxi Li, Haoxing Ren, Brucek Khailany, and David Z Pan. Dreamplace:
 598 Deep learning toolkit-enabled gpu acceleration for modern vlsi placement. In *Proceedings of the*
 599 *56th Annual Design Automation Conference 2019*, pp. 1–6, 2019.

594 Jingwei Lu and Chiu-Wing Sham. Lmgr: A low-m emory global router with dynamic topology up-
 595 date and bending-aware optimum path search. In *International Symposium on Quality Electronic*
 596 *Design (ISQED)*, pp. 231–238. IEEE, 2013.

597

598 Jingwei Lu, Wing-Kai Chow, and Chiu-Wing Sham. A new clock network synthesizer for modern
 599 vlsi designs. *Integration*, 45(2):121–131, 2012.

600 Jingwei Lu, Hao Zhuang, Pengwen Chen, Hongliang Chang, Chin-Chih Chang, Yiu-Chung Wong,
 601 Lu Sha, Dennis Huang, Yufeng Luo, Chin-Chi Teng, et al. eplace-ms: Electrostatics-based place-
 602 ment for mixed-size circuits. *IEEE Transactions on Computer-Aided Design of Integrated Circuits*
 603 and *Systems*, 34(5):685–698, 2015.

604

605 Azalia Mirhoseini, Anna Goldie, Mustafa Yazgan, Joe Wenjie Jiang, Ebrahim Songhori, Shen Wang,
 606 Young-Joon Lee, Eric Johnson, Omkar Pathak, Azade Nova, et al. A graph placement methodol-
 607 ogy for fast chip design. *Nature*, 594(7862):207–212, 2021.

608 Hiroshi Murata, Kunihiro Fujiyoshi, Shigetoshi Nakatake, and Yoji Kajitani. Vlsi module placement
 609 based on rectangle-packing by the sequence-pair. *IEEE Transactions on Computer-Aided Design*
 610 of *Integrated Circuits and Systems*, 15(12):1518–1524, 1996.

611

612 Gi-Joon Nam, Charles J Alpert, Paul Villarrubia, Bruce Winter, and Mehmet Yildiz. The ispd2005
 613 placement contest and benchmark suite. In *Proceedings of the 2005 international symposium on*
 614 *Physical design*, pp. 216–220, 2005.

615 William C Naylor, Ross Donelly, and Lu Sha. Non-linear optimization system and method for wire
 616 length and delay optimization for an automatic electric circuit placer, October 9 2001. US Patent
 617 6,301,693.

618

619 Jan M Rabaey, Anantha Chandrakasan, and Borivoje Nikolic. *Digital integrated circuits*, volume 2.
 620 Prentice hall Englewood Cliffs, 2002.

621

622 Carl Sechen and Alberto Sangiovanni-Vincentelli. The timberwolf placement and routing package.
 623 *IEEE Journal of Solid-State Circuits*, 20(2):510–522, 1985.

624

625 K Shahookar and P Mazumder. A genetic approach to standard cell placement. In *First European*
 626 *Design Automation Conf*, 1990.

627

628 Khushro Shahookar and Pinaki Mazumder. Vlsi cell placement techniques. *ACM Computing Sur-*
 629 *veys (CSUR)*, 23(2):143–220, 1991.

630

631 Yunqi Shi, Ke Xue, Song Lei, and Chao Qian. Macro placement by wire-mask-guided black-box
 632 optimization. *Advances in Neural Information Processing Systems*, 36:6825–6843, 2023.

633

634 M Shunmugathammal, C Christopher Columbus, and S Anand. A novel b* tree crossover-based
 635 simulated annealing algorithm for combinatorial optimization in vlsi fixed-outline floorplans. *Cir-*
 636 *uits, Systems, and Signal Processing*, 39:900–918, 2020.

637

638 Georg Sigl, Konrad Doll, and Frank M Johannes. Analytical placement: A linear or a quadratic
 639 objective function? In *Proceedings of the 28th ACM/IEEE design automation conference*, pp.
 640 427–432, 1991.

641

642 Peter Spindler and Frank M Johannes. Fast and accurate routing demand estimation for efficient
 643 routability-driven placement. In *2007 Design, Automation & Test in Europe Conference & Exhi-*
 644 *bition*, pp. 1–6. IEEE, 2007.

645

646 Peter Spindler, Ulf Schlichtmann, and Frank M Johannes. Kraftwerk2—a fast force-directed
 647 quadratic placement approach using an accurate net model. *IEEE Transactions on Computer-*
 648 *Aided Design of Integrated Circuits and Systems*, 27(8):1398–1411, 2008.

649

650 Natarajan Viswanathan, Min Pan, and Chris Chu. Fastplace 3.0: A fast multilevel quadratic place-
 651 ment algorithm with placement congestion control. In *2007 Asia and South Pacific Design Au-*
 652 *tomation Conference*, pp. 135–140. IEEE, 2007.

648 Laung-Terng Wang, Yao-Wen Chang, and Kwang-Ting Tim Cheng. *Electronic design automation:
649 synthesis, verification, and test*. Morgan Kaufmann, 2009.
650

651 Zhihai Wang, Zijie Geng, Zhaojie Tu, Jie Wang, Yuxi Qian, Zhexuan Xu, Ziyan Liu, Siyuan Xu,
652 Zhentao Tang, Shixiong Kai, et al. Benchmarking end-to-end performance of ai-based chip place-
653 ment algorithms. *arXiv preprint arXiv:2407.15026*, 2024.

654 Ke Xue, Ruo-Tong Chen, Xi Lin, Yunqi Shi, Shixiong Kai, Siyuan Xu, and Chao Qian. Re-
655 enforcement learning policy as macro regulator rather than macro placer. *arXiv preprint
656 arXiv:2412.07167*, 2024.
657

658 Junchi Yan, Xianglong Lyu, Ruoyu Cheng, and Yibo Lin. Towards machine learning for placement
659 and routing in chip design: a methodological overview. *arXiv preprint arXiv:2202.13564*, 2022.
660

661 Xiaojian Yang, Majid Sarrafzadeh, et al. Dragon2000: Standard-cell placement tool for large indus-
662 try circuits. In *IEEE/ACM International Conference on Computer Aided Design. ICCAD-2000.*
663 *IEEE/ACM Digest of Technical Papers (Cat. No. 00CH37140)*, pp. 260–263. IEEE, 2000.
664

665 A APPENDIX

666 A.1 MACRO PLACEMENT METRICS

667 We present the PPA metrics for chip placement below and discuss two key surrogate metrics, HPWL
668 and regularity.
669

670 **PPA.** PPA (performance, power, and area) metrics are comprehensive indicators of the chip design
671 quality. PPA consists of timing and physical metrics. In particular, timing performance is commonly
672 assessed using worst negative slack (WNS) and total negative slack (TNS). Slack represents the
673 difference between the required arrival time of a signal at a circuit endpoint and its actual arrival
674 time. A negative slack indicates that the timing constraint is violated. WNS captures the most
675 critical violation in the design by reporting the worst slack value, whereas TNS measures the overall
676 severity of timing issues by summing all negative slack values. Together with power consumption
677 and area utilization, these metrics provide a practical basis for assessing design quality.
678

679 **HPWL.** HPWL is a widely adopted metric for efficiently approximating total wirelength. A lower
680 HPWL often indicates reduced routing resource usage and improved performance. The HPWL of
681 the placement is computed as the sum of the half-perimeters of all net bounding boxes, i.e., the
682 smallest rectangles enclosing all pins in each net, as shown in Eq.(10).
683

$$684 \text{HPWL} = \sum_{e \in E} (\max_{p \in e} p_x - \min_{p \in e} p_x + \max_{p \in e} p_y - \min_{p \in e} p_y) \quad (10)$$

685 In the above equation, p represents a pin belonging to net e . Its position, denoted as (p_x, p_y) , is
686 determined by the position of its associated module M_i plus the pin's offset $(\Delta p_x, \Delta p_y)$, as shown
687 in Eq.(11).
688

$$(p_x, p_y) = (x_i, y_i) + (\Delta p_x, \Delta p_y), \quad p \in M_i \quad (11)$$

689 Since HPWL is not differentiable, the weighted-average function (Hsu et al., 2013) is commonly
690 employed as an approximation to facilitate gradient descent optimization. The approximated HPWL
691 in the x-direction is computed as shown in Eq.(12), with the estimation in the y-direction derived
692 similarly. In this equation, for each net $e \in E$, the minuend and subtrahend estimate the upper
693 and lower boundaries of e 's bounding box, respectively. γ is a hyperparameter that governs the
694 trade-off between accuracy and smoothness in HPWL estimation. A smaller γ yields a more precise
695 approximation but reduces the smoothness of the function. Eq.(12) is also utilized in our method for
696 HPWL estimation.
697

$$698 \text{HPWL}_x = \sum_{e \in E} \left(\frac{\sum_{p \in e} p_x e^{\frac{p_x}{\gamma}}}{\sum_{p \in e} e^{\frac{p_x}{\gamma}}} - \frac{\sum_{p \in e} p_x e^{-\frac{p_x}{\gamma}}}{\sum_{p \in e} e^{-\frac{p_x}{\gamma}}} \right) \quad (12)$$

702 **Regularity.** Regularity encourages macros to be placed closer to the chip boundary, thereby leaving
 703 larger spaces available for standard cells placement. Incorporating this metric as an optimization
 704 objective has been shown in prior work (Xue et al., 2024) to be beneficial for both mixed-
 705 size placement and overall PPA. The regularity of a macro located at position (x, y) is defined as
 706 $\min\{x, R_w - x\} + \min\{y, R_h - y\}$, where R_w and R_h denote the width and height of the chip,
 707 respectively.

708 **A.2 ALGORITHMS FOR GPU PROGRAMMING ACCELERATION**

710 The pseudocode for computing the overlapping lengths and their gradients for each module pair is
 711 presented in Algorithms 1 and 2. In Algorithm 1, the pairwise overlap gradient between (M_i, M_j)
 712 is computed as Eq.(13).

$$\frac{\partial \hat{\text{Overlap}}_{ijx}}{\partial x_i} = \begin{cases} 1, & x_i < x_j \text{ and } |x_i - x_j| < w_i + w_j \\ -1, & x_i \geq x_j \text{ and } |x_i - x_j| < w_i + w_j \\ 0, & |x_i - x_j| \geq w_i + w_j \end{cases} \quad (13)$$

717 Algorithm 3 outlines the computation of the overall objective function and its derivatives with respect
 718 to module positions.

719 **Algorithm 1** GetOverlap

720 **Input:** Module pair (M_i, M_j) with sizes $(w_i, h_i), (w_j, h_j)$, and positions $(x_i, y_i), (x_j, y_j)$, respectively.

721 **Output:** The overlapping length between M_i and M_j along x - and y - directions, denoted as
 722 $\hat{\text{Overlap}}_{xij}$ and $\hat{\text{Overlap}}_{yij}$, respectively.

```

723 1:  $\delta \hat{\text{Overlap}}_{xij} \leftarrow 0$ 
724 2: if  $i \neq j$  and  $-\frac{w_i+w_j}{2} < x_i - x_j < \frac{w_i+w_j}{2}$  then
725 3:    $\{M_i \text{ overlap with } M_j \text{ in the } x\text{-direction}\}$ 
726 4:   if  $x_i < x_j$  then
727 5:      $\hat{\text{Overlap}}_{xij} \leftarrow (x_i + \frac{w_i}{2}) - (x_j + \frac{w_j}{2})$ 
728 6:   else
729 7:      $\hat{\text{Overlap}}_{xij} \leftarrow (x_j + \frac{w_j}{2}) - (x_i + \frac{w_i}{2})$ 
730 8:   end if
731 9: end if
732 10:
733 11:  $\delta \hat{\text{Overlap}}_{yij} \leftarrow 0$ 
734 12: if  $i \neq j$  and  $-\frac{h_i+h_j}{2} < y_i - y_j < \frac{h_i+h_j}{2}$  then
735 13:    $\{M_i \text{ overlap with } M_j \text{ in the } y\text{-direction}\}$ 
736 14:   if  $y_i < y_j$  then
737 15:      $\hat{\text{Overlap}}_{yij} \leftarrow (y_i + \frac{h_i}{2}) - (y_j + \frac{h_j}{2})$ 
738 16:   else
739 17:      $\hat{\text{Overlap}}_{yij} \leftarrow (y_j + \frac{h_j}{2}) - (y_i + \frac{h_i}{2})$ 
740 18:   end if
741 19: end if
742 Return:  $\hat{\text{Overlap}}_{xij}, \hat{\text{Overlap}}_{yij}$ 

```

743 **A.3 EXPERIMENTAL SETTINGS**

744 **Code.** The code is provided at <https://anonymous.4open.science/r/EfficientRefiner-100D>.

745 **Benchmark Statistics.** The statistics of the ISPD2005, ICCAD2015, and ChiPBench circuits are
 746 reported in Tables 4, 5, and 6. The column ‘‘Macros (to place)’’ denotes the number of macros
 747 considered for placement. For the ICCAD2015 benchmarks, we additionally perform refinement on
 748 8192 modules, a scale considerably larger than that handled by existing RL-based macro placement
 749 methods.

750 **Parameter Settings.** We set the number of refinement iterations to 50k on the ISPD2005 benchmark
 751 to achieve better HPWL results. However, we found 5k iterations are already sufficient for

756 **Algorithm 2** GetOverlapGrad757 **Input:** Module pair (M_i, M_j) with sizes $(w_i, h_i), (w_j, h_j)$, and positions $(x_i, y_i), (x_j, y_j)$, respectively.758 **Output:** The gradient of the overlapping length between M_i and M_j with respect to x_i along x - and
759 y -directions, denoted as $\delta\text{Overlap}_{xij}$ and $\delta\text{Overlap}_{yij}$, respectively.

```

760 1:  $\delta\text{Overlap}_{xij} \leftarrow 0$ 
761 2: if  $i \neq j$  and  $-\frac{w_i+w_j}{2} < x_i - x_j < \frac{w_i+w_j}{2}$  then
762 3:    $\{M_i$  overlap with  $M_j$  in the  $x$ -direction}
763 4:   if  $x_i < x_j$  then
764 5:      $\delta\text{Overlap}_{xij} \leftarrow -1$ 
765 6:   else
766 7:      $\delta\text{Overlap}_{xij} \leftarrow 1$ 
767 8:   end if
768 9: end if
769 10:
770 11:  $\delta\text{Overlap}_{yij} \leftarrow 0$ 
771 12: if  $i \neq j$  and  $-\frac{h_i+h_j}{2} < y_i - y_j < \frac{h_i+h_j}{2}$  then
772 13:    $\{M_i$  overlap with  $M_j$  in the  $y$ -direction}
773 14:   if  $y_i < y_j$  then
774 15:      $\delta\text{Overlap}_{yij} \leftarrow -1$ 
775 16:   else
776 17:      $\delta\text{Overlap}_{yij} \leftarrow 1$ 
777 18:   end if
778 19: end if
779
780 Return:  $\delta\text{Overlap}_{xij}, \delta\text{Overlap}_{yij}$ 

```

783 Table 4: Statistics of the ISPD2005 Circuit Benchmark

Circuit	Macros	Macros(to place)	Macro-related Nets	Standard Cells	Nets	Area Util(%)
adaptec1	543	543	693	210904	221142	55.62
adaptec2	566	566	4201	254457	266009	74.46
adaptec3	723	723	3259	450927	466758	61.51
adaptec4	1329	1329	2949	494716	515951	48.62
bigblue1	560	560	409	277604	284479	31.58
bigblue2	23084	1024	33223	534782	577235	32.43
bigblue3	1293	1293	3937	1095519	1123170	66.81
bigblue4	8170	1024	22223	2169183	2229886	35.68

792 Table 5: Statistics of the ICCAD2015 Circuit Benchmark

Circuit	Macros (to Place)	Standard Cells	Nets	Pins	Ports	Area Util(%)
superblue1	512	1215820	1215710	3767494	6528	85
superblue3	512	1219170	1224979	3905321	6482	87
superblue4	512	801968	802513	2497940	6623	90
superblue5	512	1090247	1100825	3246878	4129	85
superblue7	512	1937699	1933945	6372094	6501	90
superblue10	512	984379	1898119	5560506	12257	87
superblue16	512	985909	999902	3013268	4449	85
superblue18	512	771845	771542	2559143	3978	85

802 Table 6: Statistics of Circuits in ChiPBench

Design	Macros	Standard Cells	Nets	Pins	Ports
ariane136	136	171347	201428	1000876	495
bp_fe	11	33188	39512	185524	2511
bp_be	10	51382	62228	293276	3029
swerv_wrapper	28	98039	113582	573688	1416
dft68	68	41974	56217	226420	132
bp68	68	164039	191475	887046	1198
VeriGPU	12	71082	85081	421857	134
bp_be12	12	38393	47030	220938	3029

864 strong performance so we use 5k iterations on both the ICCAD2015 and ChiPBench datasets. The
 865 weight for overlap in Eq.(2) is set to 10^5 in all experiments (except for parameter analysis), while
 866 the weight for regularity is set to 2.
 867

868 **Experimental Platform.** Refinements for 512 macros are conducted on a standardized platform
 869 equipped with an NVIDIA GeForce RTX 2080 Ti GPU. Refinement for 8192 macros and training
 870 for other baselines are executed on a server equipped with a NVIDIA RTX 3090Ti GPU and 40 Intel
 871 Xeon Silver 4210R CPUs (2.40 GHz).
 872

873 **Settings for Baseline Methods.** The baseline methods for refinement include the RL-based meth-
 874 ods MaskPlace Lai et al. (2022), Chipformer Lai et al. (2023), and EfficientPlace Geng et al. (2024);
 875 the stochastic-based method WireMask-EA Shi et al. (2023); and the analytical-based methods
 876 DreamPlace Lin et al. (2019) and NTUPlace3 Chen et al. (2008). We also compare our EfficientRe-
 877 finer with RL-based refinement method MaskRegulate (Xue et al., 2024). The specific settings for
 878 running each baseline method are as follows:
 879

- 880 • DreamPlace: We run the released code of DreamPlace 4.0 and 4.1.0 with the default pa-
 881 rameters.
- 882 • NTUPlace3: We use the released binary file of NTUPlace3 for execution.
- 883 • WireMask-EA: We run the released code of WireMask-EA with default parameters, iterat-
 884 ing for 1000 rounds.
- 885 • EfficientPlace: We run the released code of EfficientPlace with default parameters, iterat-
 886 ing for 1000 rounds.
- 887 • MaskPlace: We run the released code of MaskPlace with default parameters, iterating for
 888 3000 rounds.
- 889 • Chipformer: We execute the released code of Chipformer. We use the pretrained model
 890 parameters provided in the GitHub repository, fine-tune the Online Decision Transformer
 891 for 300 rounds with the default configuration.
- 892 • MaskRegulate: We use the released implementation of MaskRegulate with the pretrained
 893 model parameters provided in its GitHub repository. Since the released code is not directly
 894 compatible with DreamPlace 4.1.0, the initial placement for adjustment is generated using
 895 DreamPlace 4.0.

896 **Procedure for Refinement on Mixed-Size Layouts and PPA Evaluation.** We first extract the
 897 macros for refinement from mixed-size layouts generated by existing methods. Then we fix refined
 898 macros and place the standard cells with DreamPlace.
 899

900 The process for PPA evaluation is described as follows. For ChiPBench circuits, we feed layouts
 901 into the ChiPBench flow, which uses the OpenROAD (Ajayi & Blaauw, 2019) tool chain for de-
 902 tailed placement, routing, and metric evaluation. For the ICCAD2015 benchmark, since it does not
 903 support the required technology files for the open source OpenROAD tool and the commercial PPA
 904 evaluation tools are not accessible for us, we employ OpenTimer (Huang & Wong, 2015) to estimate
 905 PPA in the same way as DreamPlace. As this estimation does not include routing, the results are for
 906 reference.
 907

908 A.4 ADDITIONAL RESULTS

909 A.4.1 MACRO RESULTS ON ICCAD2015 BENCHMARK

910 HPWL results for refining circuits in the ICCAD2015 benchmarks is reported in Table 7, the results
 911 show that our method achieves 18% decrease in HPWL.
 912

913 Table 7: HPWL comparison ($\times 10^5$) between DreamPlace 4.1.0 (DP) and DP with EfficientRefiner (DP+ER)
 914 on the ICCAD2015 benchmark.
 915

Circuits	superblue1	superblue3	superblue4	superblue5	superblue7	superblue10	superblue16	superblue18
DP	8.29	19.34	44.02	43.41	35.51	48.38	16.39	13.47
DP+ER	7.43	15.70	33.61	36.75	25.73	33.42	16.62	10.81

918 A.4.2 MIXED-SIZE RESULTS ON THE ICCAD2015 BENCHMARK
919

920 The mixed-size placement results on ICCAD2015 benchmarks are shown in Table 8. We refine the
921 layouts generated by DreamPlace 4.1.0 by first extracting the macros, refining them, and then placing
922 the remaining standard cells with DreamPlace. Our method improves the placement quality on 7 out
923 of 8 circuits, achieving an average 34% reduction in mixed-size HPWL. It should be noted that,
924 since the open-source OpenROAD tool does not support ICCAD2015 benchmarks and commercial
925 software is currently unavailable to us, the reported PPA results are estimated by OpenTimer based
926 on the placement. As these estimates are obtained without post-routing, they are not exact and
927 should be regarded as references. For accurate results, we refer to the evaluation on ChiPBench
928 circuits in the main text.

929 Table 8: Mixed-size placement results on the ICCAD2015 benchmark. “DP” denotes DreamPlace 4.1.0, and
930 “DP+ER” denotes DreamPlace refined with EfficientRefiner. The best results are marked in **bold**.
931

Circuit	Method	HPWL ($\times 10^8$)	WNS*	TNS*
superblue1	DP	8.33	-2048.83	-57.04
	DP+ER	4.31	-275.92	-19.26
superblue3	DP	8.97	-1062.84	-92.06
	DP+ER	4.79	-125.89	-29.13
superblue4	DP	3.43	-289.19	-18.33
	DP+ER	3.14	-231.28	-17.85
superblue5	DP	7.07	-426.30	-58.88
	DP+ER	4.54	-95.89	-46.24
superblue7	DP	14.19	-779.96	-36.19
	DP+ER	6.01	-210.53	-16.98
superblue10	DP	10.78	-957.88	-49.88
	DP+ER	7.58	-512.87	-19.45
superblue16	DP	6.43	-829.18	-41.20
	DP+ER	3.97	-377.07	-18.73
superblue18	DP	2.38	-48.39	-12.29
	DP+ER	2.43	-170.00	-12.78

954 Note: As the ICCAD2015 benchmark is not supported by the open-source tool OpenRoad, the WNS and TNS values are estimated pre-routing
955 using OpenTimer.
956

957 A.4.3 OPTIMIZATION OBJECTIVE TRENDS DURING REFINEMENT
958

959 Figure 5 shows the trend of the differentiable HPWL estimate ($\hat{\text{HPWL}}$) when HPWL is used as the
960 optimization objective on superblue1 and superblue4. It can be seen that HPWL generally decreases
961 as the number of refinement iterations increases.

962 Figures 6–8 show the trajectories of $\hat{\text{HPWL}}$ and Regularity when optimizing both objectives jointly
963 on superblue1 and superblue4. The effectiveness of our approach arises from both reducing macro
964 $\hat{\text{HPWL}}$ and lowering Regularity to provide sufficient placement space for standard cells.
965

966 A.4.4 EFFECTIVENESS OF FINE-GRAINED OVERLAP MODELING
967

968 Overlap rate before legalization and HPWL increase rate after legalization for EfficientRefiner and
969 analytical based methods DreamPlace and NTUPlace3 are shown in Table 9 and 10, respectively.
970

Figure 5: $\hat{\text{HPWL}}$ trend during refinement for (a) superblue1 and (b) superblue4Figure 6: Trends of optimization objectives during refinement on superblue1 (a) $\hat{\text{HPWL}}$ trend. (b) Regularity trend.Figure 7: Trends of optimization objectives during refinement on superblue3 (a) $\hat{\text{HPWL}}$ trend. (b) Regularity trend.Figure 8: Trends of optimization objectives during refinement on superblue4 (a) $\hat{\text{HPWL}}$ trend. (b) Regularity trend.Table 9: Overlap rate (%) before legalization for various methods on the ISPD 2005 dataset. The lowest overlap rate for each benchmark is highlighted in **bold**.

Method	adaptec1	adaptec2	adaptec3	adaptec4	bigblue1	bigblue2	bigblue3	bigblue4
NTUPlace3	8.285	12.883	12.920	15.864	6.779	5.915	7.654	5.117
DreamPlace	5.300	4.228	4.362	4.362	8.794	5.818	18.789	15.120
EfficientRefiner	0.002	0.002	0.001	0.003	0.000	0.001	0.086	0.002

1026
1027 Table 10: HPWL increase rate (%) after legalization for various methods on the ISPD 2005 dataset. The lowest
1028 increase rate for each benchmark is highlighted in **bold**.

Method	adaptec1	adaptec2	adaptec3	adaptec4	bigblue1	bigblue2	bigblue3	bigblue4
NTUPlace3	0.70	30.74	20.21	18.50	11.77	1.08	-25.25	11.07
DreamPlace 4.0	62.50	54.10	6.05	4.93	22.92	13.64	261.84	35.38
EfficientRefiner	0.00	-0.05	0.15	0.18	-0.45	0.58	1.35	4.70

A.4.5 ANALYSIS OF RUNTIME

1034
1035 Table 11 reports the runtime of EfficientPlace for 50k refinement iterations on the ISPD2005 dataset.
1036 Table 13 reports our runtime improvement over PyTorch implementation. Table 12 compares the
1037 refinement time with and without the acceleration technique.

1038 Table 11: Time (in seconds) for refining 50k iterations on the ISPD 2005 dataset.

adaptec1	adaptec2	adaptec3	adaptec4	bigblue1	bigblue2	bigblue3	bigblue4
417	437	459	593	415	501	527	491

1041
1042 Table 12: Runtime comparison (in seconds) of EfficientRefiner (ER) with and without acceleration over 5k
1043 refinement iterations on the ICCAD2015 benchmark circuits.

Circuit	superblue1	superblue3	superblue4	superblue5	superblue7	superblue10	superblue16	superblue18
ER w/o acceleration	1125	1138	1173	922	1150	1775	955	901
ER with acceleration	135	135	153	136	138	174	142	130

1044
1045 Table 13: Runtime (s) comparison between our implementation and the PyTorch implementation, reporting the
1046 average runtime per iteration (over 10 iterations).

Method	adaptec1	adaptec2	adaptec3	adaptec4
Our Implementation	0.21	0.22	0.22	0.22
PyTorch Implementation	265.80	289.71	487.07	1663.23

A.4.6 THE IMPACT OF OVERLAP RATE ON THE REFINEMENT PROCESS

1055 Fig.9-12 show the HPWL growth before and after legalization, along with the overlap rate prior to
1056 legalization, for different values of overlap rate during refinement on the “adaptec1” and “adaptec3”
1057 layouts generated by EfficientPlace and DreamPlace.

A.4.7 LAYOUT VISUALIZATIONS

1060 Figure 13 and 14 provide visualizations of layouts before and after refinement for circuits in the IC-
1061 CAD2015 benchmark and ChiPBench, respectively. Figure 14 demonstrates reductions in both regu-
1062 larity and macro HPWL on ChipBench. In Fig.13, for the ICCAD2015 benchmarks “superblue1” to
1063 “superblue4”, our refinement method preserves the general placement patterns produced by Dream-
1064 Place while improving both regularity and macro HPWL. The yellow boxes in the figures highlight
1065 that our method moves macros closer to the chip boundary, reducing the regularity metric and leav-
1066 ing more whitespace for standard-cell placement. The green boxes show that we also pull tightly
1067 connected macros closer together, thereby reducing macro HPWL.

1068 In Fig.13, although MaskRegulate places many macros near the chip boundary, its regularity metric
1069 remains relatively high. A possible reason is that it often positions large macros along the outer
1070 boundary, which increases the average distance of small modules from the chip edge. Nevertheless,
1071 by pushing large macros outward and creating more whitespace for small modules, MaskRegulate
1072 still achieves better mixed-size results than DreamPlace.

1073
1074
1075
1076
1077
1078
1079

Figure 9: The Impact of Parameter α on the Refinement Process for the ‘adaptec1’ Layout Generated by EfficientPlace. (a) Changes in HPWL before and after legalization for different values of α . (b) Overlap rate before legalization for different values of α .

Figure 10: The Impact of Parameter α on the Refinement Process for the ‘adaptec3’ Layout Generated by EfficientPlace.

Figure 11: The Impact of Parameter α on the Refinement Process for the ‘adaptec1’ Layout Generated by DreamPlace 4.0. Legalization failed for $\alpha = 1$.

Figure 12: The Impact of Parameter α on the Refinement Process for the ‘adaptec3’ Layout Generated by DreamPlace 4.0. Legalization failed for $\alpha = 1$.

Figure 13: Layout visualizations before and after refinement for the “superblue1”-“superblue3” circuits.

Figure 14: Layout visualizations before and after refinement for circuits in ChiPBench.