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ABSTRACT

Despite progress across a broad range of applications, Transformers have limited
success in systematic generalization. The situation is especially frustrating in the
case of algorithmic tasks, where they often fail to find intuitive solutions that route
relevant information to the right node/operation at the right time in the grid repre-
sented by Transformer columns. To facilitate the learning of useful control flow, we
propose two modifications to the Transformer architecture, copy gate and geometric
attention. Our novel Neural Data Router (NDR) achieves 100% length generaliza-
tion accuracy on the classic compositional table lookup task, as well as near-perfect
accuracy on the simple arithmetic task and a new variant of ListOps testing for
generalization across computational depths. NDR’s attention and gating patterns
tend to be interpretable as an intuitive form of neural routing. Our code is public.1

1 INTRODUCTION

Neural networks (NNs) may easily learn certain training sets, but typically they do not generalize on
systematically different test sets. Examples of systematic generalization (Fodor et al., 1988)

include generalization to sequences longer than those seen during training—productivity, and algo-
rithmic combinations of previously learned rules—systematicity. Despite recent efforts (Bahdanau
et al., 2019; Korrel et al., 2019; Lake, 2019; Li et al., 2019; Russin et al., 2019; Csordás et al.,
2021), systematic generalization generally remains unsolved (Fodor & McLaughlin, 1990; Lake &
Baroni, 2018; Liska et al., 2018; Greff et al., 2020; Hupkes et al., 2020). On some datasets, the best
performing models are neuro-symbolic hybrids (Chen et al., 2020; Liu et al., 2020) using task-specific
symbolic functions. However, their applicability to other datasets remains limited (Furrer et al., 2020;
Shaw et al., 2020). A big question is: which type of architectural inductive bias encourages the
training process to select “good” solutions which generalize systematically?

The popular Transformers (Vaswani et al., 2017) also often fail to generalize on algorithmic tasks
(e.g. Liska et al. (2018); Dubois et al. (2020); Chaabouni et al. (2021); Csordás et al. (2021);
Ontañón et al. (2021)), even on tasks with intuitive solutions that can be simply expressed in terms of
Transformer attention patterns. Given an input sequence of length N and a Transformer encoder of
depth T , solving an algorithmic task is often all about routing the relevant information to the right
node/operation at the right time in the T -by-N grid represented by Transformer columns (illustrated
in Figure 1/Left). Effectively the task is to learn to draw an adaptive control flow on the canvas
of Transformer columns. In fact, recent work by Weiss et al. (2021) introduced a programming
language called RASP, which is specifically designed to express solutions to sequence processing
problems, and which has a direct equivalent to the operations in Transformer encoders. However, it is
shown that Transformers learn solutions expressed in RASP only through intermediate supervision of
attention patterns, and sometimes, even such supervision fails. Generally speaking, Transformers fail
to find easily interpretable and/or symbolic solutions to algorithmic tasks. We conversely hypothesize
that attention-based NNs that are able to find intuitive solutions (achieving interpretable attention
patterns) could improve systematic generalization.

1https://github.com/robertcsordas/ndr
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Here we point out that regular Transformers lack some basic ingredients for learning such “intuitive”
solutions to algorithmic problems. As a remedy, we propose simple architectural modifications to
help them learn data routing. As a first step towards validating our model, we focus on the popular
length generalization task of compositional table lookup (CTL; Liska et al. (2018); Hupkes et al.
(2019); Dubois et al. (2020)), as well as two more complex tasks: a simple arithmetic task and a
variant of ListOps (Nangia & Bowman, 2018) designed to test the compositional generalization
ability of NNs. Our novel Neural Data Router (NDR) achieves 100% generalization accuracy (never
reported before; Dubois et al. (2020)) on the CTL task, and obtains nearly perfect accuracy on both
the proposed simple arithmetic and ListOps tasks. We show that the attention and gating patterns of
NDR tend to be interpretable as plausible control flows.

2 IMPROVING TRANSFORMERS FOR LEARNING ADAPTIVE CONTROL FLOW

We argue that the following components are needed to build Transformers capable of learning adaptive
control flow. First, composing known operations in an arbitrary order requires that all operations
are available at every computational step. This can be easily achieved by sharing the weights of the
layers, as is done in Universal Transformers (Dehghani et al., 2019). Second, the network should be
sufficiently deep, at least as deep as the deepest data dependency in the computational graph built
from elementary operations (e.g., in the case of a parse tree, this is the depth of the tree). Otherwise,
multiple operations must be fused into a single layer and hinder natural and elegant compositions.
Third, inputs in some columns should be kept unchanged until it is their turn to be processed. The
regular Transformer lacks a mechanism for skipping the whole transformation step by simply copying
the input to the next step/layer. We propose a special gating function, copy gate, to implement such a
mechanism (Sec. 2.1). Finally, many algorithmic tasks require combining several local computations
in the right order. This typically implies that attention should not focus on all possible matches at a
given time but only on the closest match. We propose and investigate a new type of attention with a
corresponding inductive bias called geometric attention (Sec. 2.2). Using both the geometric attention
and copy gate, our model implements a “neural data routing mechanism”, which can adaptively
serialize the input problem. We refer to the resulting new Transformer as Neural Data Router (NDR).
In the experimental section (Sec. 3), we evaluate this model on three algorithmic tasks requiring
length generalization and demonstrate its effectiveness.

2.1 COPY GATE: LEARNING TO SKIP OPERATIONS (VERTICAL FLOW)

Each layer of the regular Transformer consists of one self-attention and one feedforward block.
The input to each of these blocks is directly connected to the corresponding output via a residual
connection (Srivastava et al., 2015; He et al., 2016). However, such a connection does not allow for
skipping the transformation of the entire layer and simply passing the unchanged input to the next
layer. Here we propose to add an explicit gate, which we call copy gate, to facilitate such a behavior.

We consider a T -layer Transformer encoder and an input sequence of length N . Since each layer
corresponds to one computational step, we often refer to a layer as a step t. We denote the Transformer
state of column i in layer t as h(i,t) = Ht,i ∈ Rd where d is the state size, and Ht ∈ RN×d denotes
the states of all N columns in layer t. In the copy gate-augmented Transformer (Figure 5 in the
appendix), each column i in layer (t+ 1) processes the input Ht similarly to regular Transformers:

a(i,t+1) = LayerNorm(MultiHeadAttention(h(i,t),Ht,Ht) + h(i,t)) (1)

u(i,t+1) = LayerNorm(FFNdata(a(i,t+1))) (2)

using the standard multi-head attention operation (Vaswani et al., 2017) MultiHeadAttention with a
query obtained from h(i,t) and keys/values from Ht, but the output is gated (using g(i,t+1) ∈ Rd) as:

g(i,t+1) = σ(FFNgate(a(i,t+1))) (3)

h(i,t+1) = g(i,t+1) � u(i,t+1) + (1− g(i,t+1))� h(i,t) (4)

We use the basic two-layer feedforward block (Vaswani et al., 2017) for both FFNdata and FFNgate

which transforms input x ∈ Rd to:

FFN(x) = W2 max(W1x+ b1, 0) + b2 (5)
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but with separate parameters and different dimensionalities: for FFNdata W data
1 ∈ RdFF×d, W data

2 ∈
Rd×dFF , while for FFNgate W gate

1 ,W gate
2 ∈ Rd×d, with biases bdata

1 ∈ RdFF and bdata
2 , bgate

1 , bgate
2 ∈ Rd.

When the gate is closed i.e. g(i,t+1) = 0 in Eq. 4, the entire transformation is skipped and the input is
copied over to the next layer h(i,t+1) = h(i,t). Crucially, we parameterize the gate (Eq. 3) as a func-
tion of the output of the self-attention (Eq. 1), such that the decision to copy or transform the input for
each column depends on the states of all columns. This is a crucial difference compared to previously
proposed gatings in Transformers, which are solely motivated by training stability (Parisotto et al.,
2020) or by a common practice from convolution-based models (Chaabouni et al., 2021). None of
the previous approaches can implement the behavior of our copy gate (see Sec. 6 on related work).

The bias of the gate bgate
2 is initialized to −3 (Hochreiter & Schmidhuber, 1997). This ensures that no

update happens initially to create a better gradient flow between layers. It also encourages the model
to skip layers unless they have an important contribution in the corresponding step.

2.2 GEOMETRIC ATTENTION: LEARNING TO ATTEND TO THE CLOSEST MATCH
(HORIZONTAL FLOW)

We propose geometric attention designed to attend to the closest matching element. Like in regular
self-attention, given an input sequence [x(1),x(2), ...,x(N)] with x(i) ∈ Rdin , each input is projected
to key k(i) ∈ Rdkey , value v(i) ∈ Rdvalue , query q(i) ∈ Rdkey vectors, and the dot product is computed
for each key/query combination. In our geometric attention, the dot product is followed by a sigmoid
function to obtain a score between 0 and 1:

Pi,j = σ(k(j)>q(i)) (6)

which will be treated as a probability of the key at (source) position j matching the query at (target)
position i. These probabilities are finally converted to the attention scores Ai,j as follows:

Ai,j = Pi,j

∏
k∈Si,j

(1− Pi,k) (7)

where Si,j denotes the set of all (source) indices which are closer to i than j is to i, and when two
indices have the same distance to i, we consider the one which is to the right of i (i.e., greater than i)
to be closer, i.e.,

Si,j =
{
k ∈ {1, ..., N} \ {i, j} : |i− k| < |i− j|, if i < j

k ∈ {1, ..., N} \ {i, j} : |i− k| ≤ |i− j|, if j < i
(8)

In addition, we explicitly zero out the diagonal by setting Ai,i = 0 for all i = 1, ..., N . The ordering
of source indices is illustrated in Figure 1/Right. The resulting scores Ai,j are the attention scores
used to compute the weighted averages of the value vectors.

By using the terms (1− Pi,k) in Eq. 7, when there is a match, it downscales any other more distant
matches. Two recent works (Brooks et al., 2021; Banino et al., 2021) use such a parameterized
geometric distribution in the form of Eq. 7 (see Sec. 6 on related work).

The resulting attention function has a complexity of O(N2), similar to the regular self-attention used
in Transformers (Vaswani et al., 2017). Eq. 7 can be implemented in a numerically stable way in log
space. The products can then be calculated using cumulative sums, subtracting the elements for the
correct indices in each position.

Directional encoding. In practice, we augment Eq. 6 with an additional directional encoding. In
fact, the only positional information available in the geometric attention presented above is the
ordering used to define the product in Eqs. 7-8. In practice, we found it crucial to augment the score
computation of Eq. 6 with additional directional information, encoded as a scalar Di,j ∈ R for each
target/source position pair (i, j):

Di,j =

{
WLRh

(i) + bLR, if i ≤ j
WRLh

(i) + bRL, if i > j
(9)

where h(i) ∈ Rd denotes the input/state at position i and WLR,WRL ∈ R1×d, bLR, bRL ∈ R are
trainable parameters. This directional information is integrated into the score computation of Eq. 6 as
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Figure 1: Left: an ideal sequence of computations in a Transformer for an arithmetic expression.
Right: ordering (numbers in the grid) of source positions used in geometric attention (Eq. 8; N = 5).

follows (akin to how Dai et al. (2019) introduce the relative positional encoding (Schmidhuber, 1992)
as an extra term in the computation of attention scores):

Pi,j = σ
(
α
(
Wqh

(i) + bq
)>

Wk,Eh
(j) + βDi,j + γ

)
(10)

where the matrix Wq ∈ Rdhead×d maps the states to queries, bq ∈ Rdhead is a bias for queries,
Wk,E ∈ Rdhead×d maps states to keys (we note that dhead is typically the size of the key, query and
value vectors for each head, dhead = d

nheads
), and α, β, γ ∈ R are learned scaling coefficients and bias,

initialized to α = 1√
dhead

, β = 1, γ = 0. Using this additional directional information, each query
(position i) can potentially learn to restrict its attention to either the left or right side.

3 EXPERIMENTS

We evaluate the proposed methods on three tasks: the compositional table lookup (Liska et al., 2018;
Hupkes et al., 2019), a custom variant of ListOps (Nangia & Bowman, 2018), and a simple arithmetic
task which we propose. In all cases, the task is designed to test the compositional generalization
ability of NNs: the model has to learn to apply operations seen during training in a longer/deeper com-
positional way (productivity). Further experimental details for each task can be found in Appendix C.

3.1 COMPOSITIONAL TABLE LOOKUP

Task. The compositional table lookup task (Liska et al., 2018; Hupkes et al., 2019; Dubois et al.,
2020) is constructed based on a set of symbols and unary functions defined over these symbols. Each
example in the task is defined by one input symbol and a list of functions to be applied sequentially,
i.e., the first function is applied to the input symbol and the resulting output becomes the input to
the second function, and so forth. There are eight possible symbols. Each symbol is traditionally
represented by a 3-bit bitstring (Liska et al., 2018). However, in practice, they are simply processed
as one token (Dubois et al., 2020). The functions are bijective and randomly generated. Each function
is represented by a letter. An example input is ‘101 d a b’, which corresponds to the expression
b(a(d(101))); the model has to predict the correct output symbol. We note that there exists a sequence-
to-sequence variant of this task (Dubois et al., 2020) where the model has to predict all intermediate
steps (thus trained with intermediate supervision). We directly predict the final output. An ideal
model should be able to solve this task independently of the presentation order, that is, it should
not matter whether the task is encoded as ‘101 d a b’ or ‘b a d 101’. We thus study both
forward (former) and backward (latter) variants of the task. To evaluate systematic generalization, the
train/valid/test sets reflect different numbers of compositions: samples with 1-5/6-8/9-10 operations,
respectively. To best of our knowledge, no previous work has reported perfect accuracy on this task
through an NN. We refer the readers to Sec. 6 for further details on the previous work.

Results. We consider five different baselines: an LSTM (Hochreiter & Schmidhuber, 1997), bidi-
rectional LSTM (Schuster & Paliwal, 1997), DNC (Graves et al., 2016; Csordás & Schmidhuber,
2019), Universal Transformers (Vaswani et al., 2017; Dehghani et al., 2019), and its relative position
variants (Csordás et al., 2021). For Transformers, the prediction is based on the last column in the
final layer (we conduct an ablation study on this choice in Appendix A). The hyper-parameters used
for each model can be found in Table 7 in the appendix. We also provide an ablation study on the
number of layers needed for generalization in Appendix A, which supports our claim on the necessity
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for a “sufficiently” deep architecture. The main results on this task are shown in Table 1. The LSTM
and DNC perform well in the forward variant, achieving perfect generalization for longer sequences,
but fail on the backward variant. This is not surprising since in the forward case, input symbols are
presented in the “right” processing order to the LSTM. As expected, the bidirectional LSTM performs
well in both presentation orders, since one of its processing directions is always aligned with the order
of computation. However, for an arbitrary task, the order of processing is not given. For example,
for ListOps (Sec. 3.3), the processing should start from the deepest point in the parse tree, which is
probably somewhere in the middle of the sequence. The experiments on other tasks (Sec. 3.2 and
3.3) requiring arbitrary processing orders show that bidirectional LSTMs do not generalize well in
such tasks. This is not satisfactory since our goal is to create a generic architecture which can solve
arbitrary problems with an arbitrary underlying input processing order. While the Transformer seems
to be a good candidate for learning problem dependent processing orders, the baseline Transformer
variants fail to generalize in this task in both directions.

By introducing the copy gate (Sec. 2.1), the relative Transformer can solve the forward task, but
not the backward one. Our analysis showed that the network learns to attend to the last operation
based on the relative position information. Since the result is read from the last column, this position
changes with the sequence length. The model thus fails to generalize to such arbitrary offsets. To
address this issue, we introduce a simple mechanism to let the model choose between absolute and
relative positional encodings at each position (see Appendix B). The resulting model effectively
manages to use the absolute position for the prediction and perform well in both directions. However,
such a combination of absolute/relative positional encoding might be an overly specific bias. A more
generic solution, geometric attention (Sec. 2.2), also achieved perfect generalization and was found
easier to train. We present the corresponding visualization of our model in Sec. 4.

Table 1: Accuracy on compositional table lookup dataset.

IID Longer

Model Forward Backward Forward Backward

LSTM 1.00 ± 0.00 0.59 ± 0.03 1.00 ± 0.00 0.22 ± 0.03
Bidirectional LSTM 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
DNC 1.00 ± 0.00 0.57 ± 0.06 1.00 ± 0.00 0.18 ± 0.02

Transformer 1.00 ± 0.00 0.82 ± 0.39 0.13 ± 0.01 0.12 ± 0.01
+ rel 1.00 ± 0.00 1.00 ± 0.00 0.23 ± 0.05 0.13 ± 0.01
+ rel + gate 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.01 0.19 ± 0.04
+ abs/rel + gate 1.00 ± 0.00 1.00 ± 0.00 0.98 ± 0.02 0.98 ± 0.03
+ geom. att. 0.96 ± 0.04 0.93 ± 0.06 0.16 ± 0.02 0.15 ± 0.02
+ geom. att. + gate (NDR) 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

3.2 SIMPLE ARITHMETIC

In order to validate the success of the proposed model on a task that involves more complex data
flows and operations, we propose the simple arithmetic task.

Task. The task is to execute an arithmetic expression consisting of nested modulo 10 additions and
multiplications. This requires the model to process tree-structured data flows, which is presumably
more difficult than the sequential processing required for the CTL task. Each operation is surrounded
by brackets, such that the boundaries of operations are easy to determine. For example ‘((4*7)+2)’
should evaluate to ‘0’ (30 modulo 10). The expressions are generated randomly. The tree depth is up
to 5 for the training set, 6 for the validation set, and 7-8 for the test set. The depth is measured as
the number of operations, ignoring the leaves, so the example above has a depth of 2. The sequence
length is limited to at most 50 tokens.

Results. Table 2 shows the results. All considered models perform well on the IID validation data,
but none except the NDR performs well on the generalization test set, which achieves near-perfect
accuracy of 98%. We also note that the NDR learns very quickly: while all other models require
about 200 K steps to converge, the NDR achieves near-perfect accuracy after 50 K steps of training.
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Table 2: Performance of different models on the simple arithmetic dataset. All models are trained
for 200 K iterations, except the NDR which we stop training at 100 K. We also report the performance
after 50 K iterations, where it can be seen that NDR converges significantly faster than the others.

IID (1..5) Test (7..8)

200 K 200 K 50 K

LSTM 0.99 ± 0.00 0.74 ± 0.02 0.72 ± 0.01
Bidirectional LSTM 0.98 ± 0.01 0.82 ± 0.06 0.80 ± 0.04

Transformer 0.98 ± 0.01 0.47 ± 0.01 0.29 ± 0.01
+ rel 1.00 ± 0.00 0.77 ± 0.04 0.40 ± 0.05
+ abs/rel + gate 1.00 ± 0.01 0.80 ± 0.16 0.73 ± 0.15
+ geom. att. + gate (NDR) 1.00 ± 0.00 0.98 ± 0.01 0.98 ± 0.01

3.3 LISTOPS

We also evaluate our model on a variant of the ListOps task (Nangia & Bowman, 2018) which is
a popular task commonly used to evaluate parsing abilities of NNs (Havrylov et al., 2019; Shen
et al., 2019; Xiong et al., 2021; Tay et al., 2021; Irie et al., 2021). Some special architectures such
as Chowdhury & Caragea (2021) can almost perfectly generalize to longer sequences on this task.
However, as far as we know, no Transformer variant has been reported to be fully successful.

Task. The task consists of executing nested list operations written in prefix notation. All operations
have a list of arguments that can be either a digit (from 0 to 9) or recursively another operation with
its own list of arguments. The operations are min, max, median and sum. The sum is modulo 10, and
the median is followed by the floor function such that the output of any operation lies between 0 and
9. For example: [MED 4 8 5 [MAX 8 4 9 ] ] should return 6. There are two well-known
variants: the original one by Nangia & Bowman (2018) and the “Long Range Arena” variant by Tay
et al. (2021) which have different maximum numbers of arguments in each function and maximum
sequence lengths. In both variants, there is no strict control of the depth of data samples: there is
simply a certain pre-defined probability that each argument in the list is expanded into another list
(which may increase the tree depth). This is not suitable for evaluating systematic generalization in
terms of compositionality (over the problem depth). We propose instead to generate clean train, valid,
and test splits with disjoint depths: up to depth 5 for training, depth 6 for validation and depths 7
and 8 for test. Importantly, we make sure that a depth-K sample effectively requires computation
until depth-K (otherwise min, max, and med operations could potentially find the output without
executing all of its arguments). By dissociating the splits by the depth, we can clearly identify models
which fail to generalize compositionally. Apart from the depth specifications, all train/valid/test sets
share the same settings as follows: the maximum sequence length is 50 (tokens), the probability of
recursively sampling another function inside a list is 30% at each position, and the maximum number
of arguments for a function is 5. The train set consists of 1M, the valid and test sets of 1K sequences.

Results. Table 3 shows the results. Like on the other tasks, the baseline LSTM and Transformers
do not generalize well on the test set consisting of deeper problems, while they achieve a near-perfect
accuracy on IID data. In contrast, our model achieves near-perfect generalization.

Table 3: Performance of different models on balanced ListOps dataset. All models are trained for
200 K iterations, except all +gate variants which converge after 100 K steps. The numbers in the
parentheses indicate the problem depths (1-5 for the IID, and 7-8 for the test set).

IID (1..5) Test (7..8)

LSTM 0.99 ± 0.00 0.71 ± 0.03
Bidirectional LSTM 1.00 ± 0.00 0.57 ± 0.04

Transformer 0.98 ± 0.00 0.74 ± 0.03
+ rel 0.98 ± 0.01 0.79 ± 0.04
+ abs/rel + gate 1.00 ± 0.01 0.90 ± 0.06
+ geom. att. + gate (NDR) 1.00 ± 0.00 0.99 ± 0.01
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4 ANALYSIS

In this section, we provide some visualizations of attention and gating patterns of the NDR and the
corresponding analyses. For more visualizations, we refer the readers to Appendix D.

Compositional Table Lookup. Figure 2 shows the gating and attention patterns of the NDR model
for an example of the backward presentation task. As shown in Fig. 2/Bottom, the gates of different
columns open sequentially one after another when the input is available for them. Fig. 2/Top shows
the corresponding attention maps. Each column attends to the neighbouring one, waiting for its
computation to be finished. The behavior of the last column is different: it always attends to the
second position of the sequence, which corresponds to the last operation to be performed.
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Figure 2: Example visualization of NDR. For other models, see Appendix D. Top: Attention map
for different steps. The x/y-axis corresponds to source/target positions, respectively. Each position
focuses on the column to the right, except the last one where the result is read from, which focuses on
the last operation. The focus becomes clear only once the result is available. Bottom: gate activations
for different steps/layers. The gates remain closed until the data dependencies are satisfied.

ListOps. We can also identify how the NDR processes the data in ListOps. Different attention
heads play different roles. We highlight the core observations in Figure 3. The input for this ex-
ample is: [SM [MED [MIN 1 7 4 [MAX 2 4 0 8 9 ] ] 7 ] 5 [MED 8 5 8 ] 0
7 ]. First of all, we find that there is a head (head 13 in Figure 3, first row) which seems to be
responsible for connecting operators and their arguments: the operands/arguments of an operation at-
tend to the operator. In step 0 (t = 0 in the figure), we can recognize that the operations at the deepest
level, namely MAX and the second MED have all the arguments ready (as is shown by vertical lines on
the columns corresponding to MAX and MED). The model indeed identifies that these two operations
are ready to be executed and that they can be processed in parallel (these arguments-to-operation
attention patterns remain for a few steps). We note that at this stage, the last argument of MIN is not
ready yet ([MIN 1 7 4 [MAX 2 4 0 8 9 ] ]). We can see that only arguments which are
already ready (1 7 4) attend to the operator (see the column of MIN). In step 1 (t = 1, 2nd row), we
can see that head 5 copies the expected result of MAX, 9 to the column of the operator (we note that
this only requires one step as 9 is always the result of MAX when it is one of the arguments of MAX).
Similarly in step 2, head 7 (2nd row) seems to copy the result of the second MED, 8 to the operator
column. In step 3 (t = 3, 1st row), we recognize that the result of MAX is marked as an argument for
MIN in head 13 which is responsible for communication between operators and their arguments. This
is shown by the new attention which appears at t = 3 in head 13 from the source position MAX to the
target position MIN (a pattern which is not visible at t = 2). In head 3, t = 6 (2nd row), the expected
result of MIN, which is 1, is copied to the operator, similarly to the patterns we observed above for
MAX and MED. In head 13, t = 6 (1st row), all arguments for the first MED are now also recognized
(the result of MIN which is 1, and 7). Finally in t = 7 (2nd row), two heads, head 3 and head 5 seem
to copy/gather two inputs needed to compute the corresponding median, 1 and 7, and store them in
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Figure 3: Example visualization of NDR on ListOps. The top row shows head 13 in different steps,
which controls which arguments are used in which step. The bottom row shows different heads in
different key steps. Please refer to Sec. 4 for the step-by-step description. More visualizations are
provided in the appendix: Fig. 12 shows the max of attention over all heads for all steps, Fig. 13
shows all steps of head 13, and Fig. 14 shows the corresponding gates.

the column of the operator MED. A complete visualization of further steps can be found in Appendix
D.2. We noticed that some of the heads do not seem to play a key role; we focused on interpreting
those which seem to participate in the main computation. For ListOps, we also partially find the
attention patterns described above in the baseline Transformer with relative positional encoding, at
least on some inspected examples, which also explains its rather high accuracy.

5 DISCUSSION

Learning adaptive serialization. The NDR architecture can be understood as performing adaptive
serialization of the problem. A key requirement for reusable computation is decomposing the
problem into reusable building blocks, typically applied in sequential steps. The granularity of the
decomposition determines the degree of reusability: fusing operations in a single step makes the
processing faster (fewer steps), but also more specialized. Learning the most granular solutions
is thus preferable for generalization. At the same time, not all processing should happen serially:
branches of the computational graph that do not have common data dependencies can be processed
independently in parallel, which we empirically observe in our NDR in the ListOps example (Sec. 4).
This enables the architecture to get away with a number of computational steps reflecting the depth
of the computational graph rather than the length of the input.

Bottom up approach for improving model architectures. Transformers have seen tremendous
successes across various application domains (Devlin et al., 2019; Brown et al., 2020; Dosovitskiy
et al., 2021). Impressive results have been reported when they are scaled up with a large amount of
data (Brown et al., 2020). On the other hand, simple tasks like those highlighted in the present work
demonstrate that the Transformer architecture still struggles with basic reasoning. Particularly in
algorithmic tasks, it is often the case that a sub-optimal choice of architecture/optimization method
makes the model fall back to simple memorization. We argue that it is crucial to look at isolated
problems which test specific generalization capability. This calls for a bottom-up approach: building
on toy tasks that focus on individual aspects of generalization and using them for improving models.

6 RELATED WORK

Gating inside Transformers. Several prior works have proposed to use some sort of gating within
Transformer architectures (Parisotto et al., 2020; Chaabouni et al., 2021). Our proposed copy gate
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is different from those as it satisfies two important properties. First, our copy gate allows the model
to skip the entire Transformer layer (i.e., both the self-attention and the feedforward blocks) when the
gate is closed. Second, the gate function is conditioned on the attention output such that the decision
of opening or closing depends on information from all columns. While multiple gating variants have
been proposed by Parisotto et al. (2020) to stabilize Transformers for reinforcement learning, none of
them can produce this behavior. Empirically, we also tried out a few other gating variants which do
not satisfy the two properties above; we found them not to improve over regular Transformers in our
preliminary experiments on compositional table lookup. Recent work by Chaabouni et al. (2021) also
makes use of “gating” in Transformers through a gated linear unit (GLU) activation function com-
monly used in convolutional NNs (Dauphin et al., 2017). Transformer models with such an activation
function were reported to outperform RNN baselines on a systematic generalization task (Dessı̀ &
Baroni, 2019). Unlike our copy gate or Parisotto et al. (2020)’s gating, such a gating activation does
not have the “residual” term (i.e. a closed gate zeros out the input) which allows the model to skip
a transformation. In a more general context, benefits of the GLU activation in Transformers vary
across tasks (Irie et al., 2019; Shazeer, 2020). In language modeling, no improvement is typically
obtained by using the standard highway gate instead of the residual connection in Transformers (Irie,
2020), while it yields improvements when combined with convolutional layers (Kim & Rush, 2016).

Parameterized geometric distributions. Two recent works (Brooks et al., 2021; Banino et al.,
2021) have used a form of parameterized geometric distribution (PGD; in the form of Eq. 7). Brooks
et al. (2021) have used such a distribution to parameterize the movement of a pointer on a sequence of
instructions. Banino et al. (2021) have used it to implement adaptive computation time (Schmidhuber,
2012; Graves, 2016). We use the PGD to obtain a generic attention mechanism as a replacement of
the standard self-attention used in Transformers (Vaswani et al., 2017).

Compositional table lookup. CTL task was proposed for evaluating the compositional ability of
NNs (Liska et al., 2018). Previous works evaluated RNNs, RNNs with attention, and Transformers
on this task with limited success (Hupkes et al., 2019; Dubois et al., 2020). Dubois et al. (2020) have
proposed a special attention mechanism to augment the recurrent architecture. While they obtained
good performance for the forward presentation order, the proposed model failed in the backward one.
In contrast, two of our approaches (Sec. 3.1) achieve 100% generalization accuracy for both orders.

Positional encodings. Many previous works have focused on improving positional encoding
(Schmidhuber, 1992; Vaswani et al., 2017) for self-attention. Most notably, the relative positional
encoding (Schmidhuber, 1992; Shaw et al., 2018; Dai et al., 2019) was found useful for improving
systematic generalization of Transformers (Csordás et al., 2021). Here we also present two new
approaches related to positional encoding. One is the gated combination of absolute and relative posi-
tional encoding (Sec. 3.1; details in Appendix B). We show that absolute positional encoding can com-
plement relative positional encoding. The former enables the model to always attend to a specific po-
sition, as is needed for the CTL task in the last step, while the gating allows it to use relative positional
encoding for other positions/steps. Second, we introduce directional encoding to augment geometric
attention. Unlike positional encoding which can overfit to a range of positions seen during training, the
direction information is found to be robust and to be a crucial augmentation of the geometric attention.

7 CONCLUSION

We proposed a new view on the internal operations of Transformer encoders as a dynamic dataflow
architecture between Transformer columns. This overcomes two shortcomings of traditional Trans-
formers: the problem of routing and retaining data in an unaltered fashion, which we solve by an
additional copy gate, and the problem of learning length-independent attention patterns, which we
solve by geometric attention. Our new model, the Neural Data Router (NDR), generalizes to compo-
sitions longer than those seen during training on the popular compositional lookup table task in both
forward and backward directions. NDR also achieves near perfect performance on simple arithmetic
and ListOps tasks in settings that test systematic generalization in terms of computational depth. In
general, the gates and the attention maps collectively make the architecture more interpretable than
the baselines. Future work will extend this encoder-only architecture to a full sequence-to-sequence
model and evaluate it on other standard tasks in systematic generalization requiring generation of
variable-length output sequences.
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A ABLATIONS

Number of layers. In Sec. 2, we hypothesized that decomposition of the problem into its elementary
operations is a necessary property of a model which generalizes. This motivated us to configure our
models to have at least as many layers as the depth of the computation involved, plus a few additional
layers for writing the output and for gathering an overview of the problem at the beginning. We
assumed that in such a model with a sufficient number of layers, each layer learns the underlying
“elementary” operation. The resulting models are thus deeper than those typically used in the
literature for similar tasks (Keysers et al., 2020; Tay et al., 2021). Here we provide an ablation study
to demonstrate that such depths are effectively necessary for generalization. We measure the IID and
generalization performance with various numbers of layers on the compositional table lookup dataset.
Since our test set on the CTL task consists of up to 10 function applications, it should require about
12 layers according to our hypothesis. Table 4 shows the results. We clearly observe that, while the
shallow models can also solve the IID split, only the deep models generalize to the longer problems
(here the 12-layer model generalizes almost perfectly, but the 10-layer one does not).

Table 4: The performance of NDR on the compositional table lookup dataset, with different number
of layers.

IID Test

nlayers Forward Backward Forward Backward

14 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
12 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.02
10 1.00 ± 0.00 1.00 ± 0.00 0.75 ± 0.04 0.62 ± 0.05

8 1.00 ± 0.00 1.00 ± 0.00 0.23 ± 0.02 0.24 ± 0.03
6 1.00 ± 0.00 0.96 ± 0.03 0.22 ± 0.05 0.15 ± 0.01
4 0.96 ± 0.04 0.68 ± 0.11 0.14 ± 0.01 0.13 ± 0.01

Readout from the first instead of the last column. In our experiments with the Transformer
models, the last column was used for the readout of the result. Under this configuration, the readout
position depends on the length of the sequence which might increase the difficulty of the problem, in
particular for the models using absolute positional embeddings. Table 5 shows the corresponding
ablation study. We observe that this choice has only marginal impact on the model performance. As a
side note, we also tried the variant where an additional cross-attention layer is used for the readout.
Again, the generalization performance was not better. In fact, these results are not surprising since
none of these changes fundamentally addresses the problem of length generalization.

Table 5: Accuracy on compositional table lookup dataset with the results read from the first or last
column (Readout).

IID Longer

Model Readout Forward Backward Forward Backward

Transformer First 1.00 ± 0.00 0.82 ± 0.39 0.12 ± 0.01 0.13 ± 0.01
Last 1.00 ± 0.00 0.82 ± 0.39 0.13 ± 0.01 0.12 ± 0.01

+ rel First 1.00 ± 0.00 1.00 ± 0.00 0.12 ± 0.01 0.22 ± 0.05
Last 1.00 ± 0.00 1.00 ± 0.00 0.23 ± 0.05 0.13 ± 0.01

+ rel + gate First 1.00 ± 0.00 1.00 ± 0.00 0.17 ± 0.02 1.00 ± 0.00
Last 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.01 0.19 ± 0.04

Does Adaptive Computation Time (ACT) help? In this work, we determined the number of
layers/steps to be used in the model based on heuristics (see Appendix C.1). We could also consider
using Adaptive Computation Time (ACT) to dynamically determine the number of steps. Furthermore,
ACT introduces a form of gating which creates shortcuts in the credit assignment path between the
output and a result of an intermediate layer. This “copying” mechanism resulting from the ACT
(i.e. stop computation at a certain time and copy the result to the output) is fundamentally different
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from our copy gate (Sec. 2.1). Our copy gate allows Transformer columns to keep the input unchanged
until it’s their turn to be processed (a crucial property to implement control flow like behavior). This
behavior can not be simulated by the ACT. Here we provide some experimental results on models
with ACT which confirm that the proposed copy gate is a crucial component for generalization which
can not be replaced by ACT.

We note that there are various versions of ACT in the literature, e.g., the variant used by Dehghani
et al. (2019) in Universal Transformers is different from the one used by Graves (2016). Here we
focus on two variants: one in which we directly apply Graves (2016) to Transformers, and another
one used by Dehghani et al. (2019). We start with the description of the former.

An extra sigmoidal unit p̂(i,t) is computed for each column i in each timestep t as:

p̂(i,t) = σ(WHh
(i,t) + bH) (11)

where WH ∈ R1×d and bH ∈ R are trainable parameters. By comparing the cumulative sum of p̂(i,t)
over time steps to a certain threshold value (1− ε) with a hyper-parameter ε (0.01 in our experiment),
we determine the termination step T i for column i as:

T i = min{Tmax,min{t′ :
t′∑

t=1

p̂(i,t) ≥ 1− ε}} (12)

where Tmax is the pre-defined maximum number of steps.

The corresponding halting probability p(i,t) is then computed as:

p(i,t) =

{
p̂(i,t) if t < T i

Ri if t = T i (13)

Ri = 1−
T i−1∑
t=1

p̂(i,t) (14)

which is used to compute the final output of column i as:

oi =

T i∑
t=1

p(i,t)h(i,t) (15)

In Dehghani et al. (2019)’s variant, a different equation is used in lieu of Eq. 15 above and the
computation of the reminder term Ri in Eq. 14 above is not properly handled in case where Eq. 12
terminates because of the first condition on Tmax. For further details, we refer the readers to Listing 1
and 2 in Dehghani et al. (2019) and/or our public code.

One subtlety introduced by Dehghani et al. (2019) which we note here is that the computation
of the final output oi of column i effectively “halts” after T i (since oi only depends on h(i,t) for
0 < t < T i), but column i itself still continues transforming the hidden states h(i,t) for steps t > T i

until all columns reach the termination step, and its updated states can be attended/read by another
column j which has not halted yet (i.e. T j > T i). In this sense, computation is never stopped
independently for each column. The mechanism described above instead finds the readout steps for
each column (as is used in Eq. 15). We follow this decision in our implementation of both variants.

In addition, a new regularizer term, LACT = α 1
N

∑N
i=1R

i is added to the loss function, where N
is the length of the input sequence. This makes the network prefer short computations. We ran a
hyper-parameter search for α from the following values: 0.001, 0.003, 0.01, 0.03, 0.1. We found
α = 0.03 to work the best.

We conducted experiments on the compositional table lookup task. We first noted that ACT helps
training our baseline Transformer models with a maximum step of 14 layers which was not possible
without ACT (our baseline Transformer had only 11 layers for this reason; see Table 7). The shortcut
in the credit assignment path introduced by ACT certainly helps training of this 14 layer model. As
we noticed that the models with ACT learn slower than those with gating, we increased the number
of training steps to 60k steps which is twice as many as 30k used for the models without ACT. Table

15



Published as a conference paper at ICLR 2022

6 shows the results. We observe that, interestingly, ACT enables generalization for longer lengths in
the forward direction of the Transformer with relative positional encoding and the one with geometric
attention. However, we were not able to find any configuration that generalizes in the backward case.
This demonstrates that the copy gate is effectively a crucial component for generalization which can
not be replaced by ACT. Furthermore, the convergence of models with ACT is significantly slower
than those of models with our gating, and they are more unstable and very sensitive to the value of α
on the regularization term, even in the successful forward case. Overall, the only benefit of ACT is
thus the adaptive depth, as is illustrated in Figure 4, which is orthogonal to our study.

Table 6: Accuracy on compositional table lookup dataset with adaptive computation time (ACT).
Two variants of ACT are shown: “U” corresponds to Dehghani et al. (2019), while “A” is the variant
described in Appendix A. We also include baselines without ACT from Table 1 as a reference.
Generalization performance after 30k and 60k training steps are shown.

IID Longer, 60k Longer, 30k

Model ACT Forward Backward Forward Backward Forward Backward

Transformer 1.00 ± 0.00 0.82 ± 0.39 - - 0.13 ± 0.01 0.12 ± 0.01
A 1.00 ± 0.00 1.00 ± 0.00 0.12 ± 0.02 0.12 ± 0.01 0.13 ± 0.01 0.13 ± 0.01
U 1.00 ± 0.00 1.00 ± 0.00 0.12 ± 0.01 0.11 ± 0.01 0.13 ± 0.01 0.12 ± 0.01

+ rel 1.00 ± 0.00 1.00 ± 0.00 - - 0.23 ± 0.05 0.13 ± 0.01
A 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.02 0.13 ± 0.00 0.84 ± 0.22 0.13 ± 0.01
U 1.00 ± 0.00 1.00 ± 0.00 0.92 ± 0.14 0.12 ± 0.02 0.67 ± 0.41 0.12 ± 0.00

+ geo 0.96 ± 0.04 0.93 ± 0.06 - - 0.16 ± 0.02 0.15 ± 0.02
A 1.00 ± 0.00 1.00 ± 0.00 0.97 ± 0.05 0.45 ± 0.21 0.58 ± 0.16 0.30 ± 0.17
U 0.96 ± 0.10 1.00 ± 0.00 0.72 ± 0.35 0.44 ± 0.19 0.31 ± 0.22 0.21 ± 0.07

+ rel + gate 1.00 ± 0.00 1.00 ± 0.00 - - 0.99 ± 0.01 0.19 ± 0.04
+ abs/rel + gate 1.00 ± 0.00 1.00 ± 0.00 - - 0.98 ± 0.02 0.98 ± 0.03
+ geo + gate (NDR) 1.00 ± 0.00 1.00 ± 0.00 - - 1.00 ± 0.00 1.00 ± 0.00

3 4 5 6 7 8 9 10 11 12 13
Sequence length

0

5

10
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Figure 4: Average number of steps/layers for different sequence lengths on the compositional table
lookup task for the Transformer with relative positional encodings and the ACT variant described in
Appendix A. The red line shows Tmax = 14. Note that the sequence length shown here includes the
begin and end tokens. Thus, the sequence length of 4 corresponds to one function application (3 for
the identity function i.e. no function is applied).

B DETAILS OF ATTENTION WITH COMBINED ABSOLUTE/RELATIVE
POSITIONAL ENCODING

The use of copy gates enables Transformers to generalize to longer lengths in the forward presentation
order of the CTL task (Sec. 3.1), but that alone was not enough to make the model generalize in
the backward order variant of the task. Examining the attention maps reveals that the model uses
position-based attention to read out the result instead of content-based attention. In the backward
presentation order, the last column of the transformer should focus on the second column, whose
relative position changes dynamically with the length of the sequence. We solve this issue by adding
an option to choose between absolute and relative positional encodings to the attention head.
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In what follows, we describe the operation within a single layer/step. This allows us to omit the
layer/step-index t for better readability, and thus denote the state of column/position i as hi instead
of h(i,t). We use the relative positional embedding variant of self-attention by Dai et al. (2019). Our
attention matrix with the gated absolute/relative positional encodings can be decomposed as follows:

ri = σ(hiWar + bar) (16)

Âi,j = h>i W
>
q Wk,Ehj︸ ︷︷ ︸
(a)

+ b>q,EWk,Ehj︸ ︷︷ ︸
(c)

+
(
h>i W

>
q Wk,P︸ ︷︷ ︸
(b)

+ b>q,PWk,P︸ ︷︷ ︸
(d)

) (
pi−jri + pj(1− ri)︸ ︷︷ ︸

(e)

)
(17)

where the matrix Wq ∈ Rdhead×d maps the states to queries, Wk,E ∈ Rdhead×d maps states to keys,
while Wk,P ∈ Rdhead×d maps positional embeddings to keys. dhead is the size of the key, query and
value vectors for each head, set as dhead = d

nhead
. bq,E , bq,P ∈ Rdhead are learned vectors. pi ∈ Rd

is the standard sinusoidal embedding for position i (Vaswani et al., 2017). Softmax is applied to
the second dimension of Â to obtain the final attention scores, A. Component (a) corresponds to
content-based addressing, (b, e) to content-based positional addressing, (c) represents a global content
bias, while (d, e) represent a global position bias.

We introduce term (e) for the positional embedding which can switch between absolute and relative
positional encodings using the scalar gate ri (Eq. 16; parameterized by War ∈ Rd×1 and bar ∈ R),
which is the function of the state at target position i.

C IMPLEMENTATION DETAILS

A PyTorch implementation of our models together with the experimental setup is available under
https://github.com/robertcsordas/ndr. The performance of all models is reported as
mean and standard deviations over 5 different seeds.

C.1 CHOOSING THE NUMBER OF LAYERS

In Sec. 2, we hypothesized that one of the conditions for our model to generalize is to be “sufficiently”
deep such that elementary operations are learned in separate layers which would then become
composable. In practice, a “sufficient” depth can be determined by the basic units of compositions
implicitly defined by the dataset. The depth of the model must be at least as deep as the deepest
path in the computation graph defined by these basic operations. This hypothesis was empirically
validated in the ablation study presented above (Appendix A). In general, we used the following
heuristics to choose the depth of the Transformers:

(length of the deepest path in the graph) × (steps per operation) + a few more layers.

Determining the number of steps needed by the elementary operation is not straightforward but it
can be done empirically. For example, for ListOps, as is shown in Sec. 4, it requires two steps per
operation: one step in which the operands attend to the operation, followed by another one where
the result is written back to the operation. For other tasks, we found that a single step per operation
was enough. Choosing more layers than needed is safe, and it can be used to determine the required
number of layers, for example by looking at the gate activity. Finally, “+ a few more layers” are
needed because one additional layer should be used to read out the final result, and one or a few more
can be needed for communication between columns (e.g., to determine operator precedence).

Since parameters are shared across layers, we can optionally train models with a certain number of
layers and increase the number of computational steps at test time. This allows us to train models
using a depth which is “sufficient” to solve the training set, but increase it at test time to generalize to
a test set requiring more computational steps. We did this for the ListOps experiment (Sec. 3.3): the
model was trained with 20 layers and tested with 24. Our preliminary experiments confirmed that
this practice has no performance penalty, while it speeds up training.
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C.2 DATASET DETAILS

Compositional table lookup. Our implementation uses 8 symbols as input arguments and 9
randomly sampled bijective functions denoted by lower case letters of the English alphabet. All
functions are included in the train set in combination with all possible input symbols. The rest of the
training set consists of random combinations of functions applied to a random symbol as an argument,
up to length 5. The total size of the train set is 53,704 samples. The samples are roughly balanced
such that there are similar numbers of samples for each depth. There are different validation sets:
an IID set, which matches the distribution of the train set, and a depth validation, which includes
samples of lengths 6, 7 and 8. The test set consists of sequences of lengths 9 and 10.

Simple arithmetic. The dataset is constructed by sampling random digits (0-9) and operations +
(add) and ∗ (multiply). The operations are performed modulo 10. Parentheses surround the arguments
of the operations. The depth of the resulting tree is computed, and rejection sampling is used to
ensure that the same number of samples from each depth is present in the given split. The maximum
length of samples is 50 tokens, sub-operations are sampled with probability 0.2. 100 K samples are
used for training, 1 K for both test and validation sets. The train set consists of 0-5 operations, the
validation set of 6 and the test set of 7 operations.

ListOps. Random digits are sampled from range 0-9. Operations are sample from the set sum-
modulo (SM), which is a sum modulo 10, min (MIN), max (MAX) and median followed by the floor
function (MED). The maximum number of arguments for each operation is 5. A sub-operation is
sampled with probability 0.3. 1 M samples are used for training, 1 K for test and validation. The train
set consists of 0-5 operations, 6 for the validation set, and 7 for the test set.

For each sample, we calculate a number which we call dependency depth. To understand it, note
that MIN and MAX operations only select one of their operands, MED selects 1 or 2. In SUM,
all operands are needed to perform the operation. If we construct a parse tree and prune away the
branches which were not selected by any operation and measure the depth of such a tree, the resulting
number is the dependency depth. This ensures that the deeper parts of the tree contribute to the result
calculation, preventing shallow heuristics, like ignoring all branches of the tree that are too deep and
still getting the correct result with a high chance. We also ensure that the number of samples is the
same for all possible dependency depths in each split.

C.3 MODEL DETAILS

We use the AdamW optimizer (Loshchilov & Hutter, 2019) for all of our models. Standard hyperpa-
rameters are listed in Tab. 7, 8 and 9. Additionally, models with gating use dropout (Hanson, 1990;
Srivastava et al., 2014) applied to the content-based query and the position-query components of 0.1
for most models, except for non-gated Transformers on ListOps, where this value is 0.05. In the case
of geometric attention, since the channels of the directional encoding does not have any redundancy,
dropout is applied just to the content-query.

In the case of Transformers with the copy gate but without geometric attention, we use tanh instead
of LayerNorm in Eq. 2. The Transformer/NDR layer with a copy gate is illustrated in Figure 5.

The hyperparameters of the gateless Transformers differ significantly from the gated ones. This is
because they were very hard to train to achieve good performance even on the IID set, requiring
extensive hyperparameter tuning. One might argue that fewer layers make them less competitive on
longer sequences. However, we were unable to train them to perform well even on IID data with
comparable sizes.

All Transformer variants have a begin (B) and end (E) token included in the sequence. RNNs (LSTM
and DNC) have no such tokens. All Transformers are encoders only, and the results are read from the
last column (corresponding to the end token).

The DNC has 21 memory cells, 4 read heads, and an LSTM controller. It contains recently introduced
improvements (Csordás & Schmidhuber, 2019).

We use gradient clipping with magnitude 5 (for CTL) or 1 (for simple arithmetic and ListOps) for all
of our models.
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Figure 5: Structure of Transformer/NDR layer with a copy gate (Sec. 2.1). The blue part corresponds
to the standard Transformer, except for the missing residual connection around the feedforward block
(“FF: Update”). The gray part is the copy gate. The feedforward part corresponding to the gate is
usually significantly smaller than the one used for the update.

Hyperparameters were obtained by a Bayesian hyperparameter search of Weights & Biases2 over the
systematically different (OOD) validation set for the +abs/rel + gate models and were reused
for all other gated models. For the non-gated models, we used the +rel variant for tuning. It was not
possible to tune the baselines using only the OOD validation set because their performance was too
bad on that set. We thus used a mixture of IID and OOD validation sets to tune the hyperparameters
for the baselines. Table 10 shows the range of hyperparameters used for tuning. “FF multiplier” is
used to calculate dFF from dmodel.

We train all models for a fixed number of niters iterations and measure their validation performance
every 1000 iterations. For each model, we select the best checkpoint according to the validation
performance, and report its test accuracy.

Table 7: Hyperparameters used for different models on the compositional table lookup task. We
denote the feedforward size as dFF, weight decay as “wd.”, dropout as “do.”. The model is trained for
niters iterations.

dmodel dFF nheads nlayers batch s. learning rate wd. do. niters

LSTM 200 - - 1 256 10 ∗ 10−4 - 0.5 20k
Bidirectional LSTM 400 - - 1 256 10 ∗ 10−4 - 0.5 20k
DNC 200 - - 1 256 10 ∗ 10−4 - 0.5 20k

Transformer 128 256 4 11 512 1.5 ∗ 10−4 0.0025 0.1 30k
+ rel 128 256 4 11 512 1.5 ∗ 10−4 0.0025 0.1 30k
+ rel + gate 256 512 1 14 512 2 ∗ 10−4 0.01 0.5 30k
+ abs/rel + gate 256 512 1 14 512 2 ∗ 10−4 0.01 0.5 30k
+ geom. att. 128 256 4 11 512 1.5 ∗ 10−4 0.0025 0.1 30k
+ geom. att. + gate (NDR) 256 512 1 14 512 1.5 ∗ 10−4 0.01 0.5 30k

D ADDITIONAL ANALYSIS

D.1 COMPOSITIONAL TABLE LOOKUP

An idealized sequence of computations in a Transformer for an example from CTL task is shown in
Fig. 6. Each column waits for its input from the left side, then performs an update. Finally, the last

2https://wandb.ai/
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Table 8: Hyperparameters used for different models on the simple arithmetic task. We denote the
feedforward size as dFF, weight decay as “wd.”, dropout as “do.”. The model is trained for niters
iterations.

dmodel dFF nheads nlayers batch s. learning rate wd. do. niters

LSTM 200 - - 2 256 10 ∗ 10−4 - 0.5 200k
Bidirectional LSTM 400 - - 2 256 10 ∗ 10−4 - 0.5 200k

Transformer 128 256 4 11 512 1.5 ∗ 10−4 0.0025 0.5 200k
+ rel 128 256 4 11 512 1.5 ∗ 10−4 0.0025 0.5 200k
+ abs/rel + gate 256 1024 4 15 512 1.5 ∗ 10−4 0.01 0.5 100k
+ geom. att. + gate (NDR) 256 1024 4 15 512 1.5 ∗ 10−4 0.01 0.5 100k

Table 9: Hyperparameters used for different models on the ListOps task. We denote the feedforward
size as dFF, weight decay as “wd.”, dropout as “do.”. The model is trained for niters iterations.

dmodel dFF nheads nlayers batch s. learning rate wd. do. niters

LSTM 512 - - 4 512 10 ∗ 10−4 0.08 0.1 200k
Bidirectional LSTM 1024 - - 4 512 10 ∗ 10−4 0.08 0.1 200k

Transformer 256 1024 16 6 512 4 ∗ 10−4 0.05 0.015 200k
+ rel 256 1024 16 6 512 4 ∗ 10−4 0.05 0.015 200k
+ abs/rel + gate 512 1024 16 20 512 2 ∗ 10−4 0.09 0.1 100k
+ geom. att. + gate (NDR) 512 1024 16 20 512 2 ∗ 10−4 0.09 0.1 100k

column copies the result. So far, in the main text, we only had space to show the gate and attention
activity of the NDR for a few timesteps. Here we show the corresponding visualization of all steps in
Figures 10 and 11, as well as the attention map for the baseline Transformer with relative positional
encoding in Figure 7. We also show the Transformer + abs/rel + gate variant in Fig.
8 and Fig. 9. Please directly refer to the caption of the figures for the corresponding analysis. In
general, the visualization for our NDR and the abs/rel + gate variant is easily interpretable,
unlike that of the baseline Transformer model.

Figure 6: An ideal sequence of computations in a Transformer for an example CTL task.

D.2 LISTOPS

Figures 12 and 14 shows the attention and gate patterns of our NDR architecture on an example from
the ListOps dataset. We highlighted notable attention patterns in Sec. 4.

Different heads seem to specialize in different functions. As already mentioned in Sec. 4, head 13 of
the NDR architecture, shown in Figure 13, seems to specialize in selecting which arguments belong
to which operator.

The gating patterns are also very interesting. In the early stages, the deepest parts of the input are
updated: [MAX 2 4 0 8 9] and [MED 8 5 8], which are independent branches of the parse
tree that can be processed in parallel. In the following steps, the update patterns spread up in the
parse tree, updating the operations that have their arguments available. In this task, the input is read
from the first column, which is written in a very late stage.
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Table 10: Parameter ranges for hyperparameter tuning

Parameter Range

learning rate 0.00005 ... 0.001
nlayers 4 ... 20
dmodel 128, 256, 512
nheads 2, 4, 8, 16
weight decay 0.0 ... 0.1
dropout 0.0 ... 0.5
attention dropout 0.0 ... 0.5
FF multiplier 1, 2, 4
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Figure 7: Attention map for every computational step for a baseline Transformer with relative
positional encoding on CTL. The attention pattern gets blurry very quickly, and the model does not
generalize to longer sequences.
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Figure 8: Attention map for every computational step for a Transformer with gating and rela-
tive/absolute positional encoding (presented in Figure 2) on CTL. The attention pattern is relatively
stable over time, and it gets blurrier only after the given column is processed and updated. The gate
sequence for the same input can be seen in Figure 9.
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Figure 9: Gates for every computational step for a Transformer with gating and relative/absolute
positional encoding on CTL. The gates are closed until all arguments of the given operation become
available. The attention maps for the same input can be seen in Figure 8.
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Figure 10: Attention map for every computational step of the NDR on CTL. The network correctly
and clearly focuses on the last element of the sequence, and the last sharp read happens in step 10 -
corresponding to the 10 function calls in the example. The gate sequence for the same input can be
seen in Figure 11.
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Figure 11: Gates for every computational step of the NDR on CTL. The gates remain closed until all
arguments of the given operations become available. The attention maps for the same input can be
seen in Figure 10.
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Figure 12: Attention maps for every computational step of the NDR on ListOps. The network has 16
heads; the max of them is shown. The input has only depth 4, which explains the early stopping of
the computation, roughly after 8-9 steps, after which the attention barely changes. The corresponding
gate maps for the same input can be seen in Figure 14.
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Figure 13: Attention maps for head 13 of the NDR in every computational step on ListOps. This
head shows the operands for each operation. Following it, we observe the hierarchy and the order in
which the operations are performed.
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Figure 14: Gates for every computational step of the NDR on ListOps. Gates open for the deepest
operations in the tree, processing proceeds upwards in the computational tree. The input has only
depth 4, which explains the early stopping of the computation, roughly after 8-9 steps. The attention
maps for the same input can be seen in Figure 12.
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