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Abstract
We analyze the convergence rates of two popu-
lar variants of coordinate descent (CD): random
CD (RCD), in which the coordinates are sampled
uniformly at random, and random-permutation
CD (RPCD), in which random permutations are
used to select the update indices. Despite abun-
dant empirical evidence that RPCD outperforms
RCD in various tasks, the theoretical gap between
the two algorithms’ performance has remained
elusive. Even for the benign case of positive-
definite quadratic functions with permutation-
invariant Hessians, previous efforts have failed
to demonstrate a provable performance gap be-
tween RCD and RPCD. To this end, we present
novel results showing that, for a class of quadrat-
ics with permutation-invariant structures, the con-
traction rate upper bound for RPCD is always
strictly smaller than the contraction rate lower
bound for RCD for every individual problem
instance. Furthermore, we conjecture that this
function class contains the worst-case examples
of RPCD among all positive-definite quadratics.
Combined with our RCD lower bound, this con-
jecture extends our results to the general class of
positive-definite quadratic functions.

1. Introduction
We consider the minimization problem:

min
x∈Rn

f(x), (1)

where f : Rn → R is a smooth and convex function.

The coordinate descent (CD) algorithm has been proposed
and widely used for solving problem (1) arising in mod-
ern optimization and machine-learning problems as it can
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significantly reduce the computational overhead of high-
dimensional or large-scale problems by updating only a
single coordinate (or sometimes a small subset, referred to
as blocks) instead of the whole set of parameters. Stemming
from extensive studies on different types of CD algorithms
(Beck & Tetruashvili, 2013; Lee & Sidford, 2013; Wright,
2015; Nesterov & Stich, 2017), randomized versions of CD
have been especially popularized since Nesterov (2012);
Richtárik & Takác (2011). Usually referred to as random
coordinate descent (RCD), these types of algorithms choose
the coordinates to update i.i.d. randomly from a certain
distribution, typically uniform and sometimes specifically
chosen according to the problem geometry. The introduction
of randomness has been demonstrated in Sun & Ye (2016) to
outperform deterministic algorithms like cyclic coordinate
descent (CCD) in terms of worst-case performance.

Meanwhile, for stochastic algorithms under finite-sum mini-
mization settings, utilizing random permutations has been
common for a long time, based on observations that tak-
ing a full pass among the component gradient updates in a
randomly permuted order (commonly referred to as SGD
with Random Reshuffling) shows faster convergence speed
than its ordinary, i.i.d. with-replacement-sampling counter-
part. After empirical observations and some conjectures
(Bottou, 2009; Recht & Re, 2012), a recent line of work has
theoretically analyzed the exact convergence rates of SGD-
RR and demonstrated the benefits over ordinary SGD (Ahn
et al., 2020; Mishchenko et al., 2020; Cha et al., 2023; Liu &
Zhou, 2024). Many other stochastic algorithms also incorpo-
rate random reshuffling for acceleration, including federated
learning (Mishchenko et al., 2022; Yun et al., 2022) and
minimax optimization (Das et al., 2022; Cho & Yun, 2023).

A similar variant also exists for CD, often referred to as
random-permutation coordinate descent (RPCD) (Sun et al.,
2020). While RPCD is based on a similar idea that using
permutations can accelerate, theoretical analysis of RPCD is
even harder because we must focus on the preconditioning-
like effects of using permutations, which is very different
from the case of SGD-RR (where random permutations
induce variance reduction) and is notoriously difficult to in-
spect theoretically. However, for strongly convex quadratic
functions with permutation-invariant Hessians, it is possi-
ble to compute the expectation of such matrices over all
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permutations explicitly. Based on this approach, Lee &
Wright (2019) (first appeared in 2016) derive convergence
bounds for the expected function value for quadratic func-
tions with permutation-invariant Hessians, and a follow-up
work Wright & Lee (2017) further extends to Hessians with
slight diagonal perturbations.

A natural, important question arises on whether RPCD beats
RCD, just as in the case of SGD with random permutations
Bottou (2009). Many empirical studies have shown this to
be true, as we demonstrate in Figure 1, but the theoretical as-
pects of this phenomenon have been relatively less revealed
in the literature. Gürbüzbalaban et al. (2018) demonstrate
that it is possible to derive a stronger convergence upper
bound for RPCD for permutation-invariant matrices with
negative off-diagonal entries. However, they only compare
between the upper bounds of RCD and RPCD, failing to
demonstrate a rigorous gap between the two algorithms.
Also, even for this comparison, the paper does not provide
a clear analysis (other than numerical experiments) on the
assertion that the ratio of contraction upper bounds for RCD
to RPCD is larger than 1.

Summary of Contributions. Our results contribute to
overcoming these limitations by adequately comparing the
lower bounds for RCD and the upper bounds for RPCD. We
present the following results in the paper.

• In Theorem 3.1, we show a novel convergence lower
bound of RCD that holds for general quadratics with
positive definite Hessians.

• In Theorem 3.3, we show the convergence upper bound
of RPCD for a class of quadratic functions including
permutation-invariant Hessians. This upper bound co-
incides with the RCD lower bound, concluding that
RPCD outperforms RCD for any problem instance.

• In Theorem 3.4, we show a stronger convergence lower
bound of RCD that holds for the same function class
with the RPCD upper bounds. This demonstrates the
existence of a wider gap between RCD and RPCD for
all problem instances in this function class.

• In Section 4, we conjecture that our RPCD upper
bounds can be extended to the general class of positive
definite quadratic functions. We also provide some
experiments demonstrating the convergence of RPCD
and RCD in practice.

1.1. Related Work

Randomized CD. Nesterov (2012) presents global non-
asymptotic convergence rates of RCD for (strongly) convex,
smooth functions, where the probability of sampling each in-
dex is proportional to the α-th power of the coordinate-wise
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Figure 1. Performance comparison of RCD and RPCD. We use the
objective function f(x) = 1

2
x⊤Ax with A = σI+(1−σ)11⊤.

For this plot we use σ = 0.7 and dimension n = 25.

Lipschitz constant. (The case α = 0 corresponds to uni-
form sampling). Richtárik & Takác (2011) further improve
the constant factors of the convergence rate and extend to
composite minimization problems. After Beck & Tetru-
ashvili (2013) established global non-asymptotic conver-
gence rates of block CCD with gradient-based updates, Sun
& Ye (2016) show that RCD outperforms CCD for quadrat-
ics f(x) = 1

2x
⊤Ax with permutation-invariant Hessians

of the form A = σI+(1−σ)11⊤ for some σ ∈ (0, 1], hav-
ing positive off-diagonals1. They also show that this is the
worst-case instance of CCD via a (up-to-constant) matching
lower bound. Gürbüzbalaban et al. (2017) demonstrate a
different case analysis on when CCD outperforms RCD, the
Hessians of which they refer to as 2-cyclic matrices.

Random Permutations. One of the earliest works on
RPCD by Sun et al. (2020) (first appeared in 2015) analyzes
the convergence of (block-)RPCD. While the results cover
all positive definite quadratic functions and also the more
general method of alternating direction method of multipli-
ers (ADMM), expected iterate convergence is a weaker guar-
antee than the expected iterate norm or function value. An-
other work by Lee & Wright (2019) (first appeared in public
in 2016) derived convergence bounds for the expected func-
tion value for quadratic functions with permutation-invariant
Hessians, and a follow-up work Wright & Lee (2017) fur-
ther extends to Hessians with subtle diagonal perturbations,
which turns out to be equivalent to A = σI + (1− σ)uu⊤

where the entries of u are not too far from 1. Gürbüzbalaban
et al. (2018) compares the contraction ratio upper bound
for RCD and RPCD to demonstrate that RPCD has better
convergence guarantees for permutation-invariant matrices
with negative off-diagonal entries. (We later provide a more
detailed, quantitative comparison in Table 2.)

1See Section 2 for definitions and notations.
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Reference Algorithm Function Class Bounds

Theorem 3.1 RCD All Quadratics max
{(

1− 1
n

)n
,
(
1− σ

n

)2n}
(LB)

Theorem 3.3 RPCD Hessian in Aσ max
{(

1− 1
n

)n
,
(
1− σ

n

)2n}
(UB)

Theorem 3.4 RCD Hessian in Aσ

(
1− 1

n + (1−σ)2

n

)n
(LB)

Appendix D RPCD Hessian in Aσ 1− 2σ − 2σ
n + 2σ2 +O

(
σ2

n

)
+O

(
σ3
)

(UB)

Table 1. Summary of our results for (a subclass of) strongly convex, smooth quadratic functions. The rightmost column indicates the

upper/lower bounds (UB/LB) of the value limK→∞

(
E[∥xK∥2]
∥x0∥2

)1/K

, where xK is the algorithm output after either K epochs of RPCD

or T = nK iterations of RCD.

2. Preliminaries
For a positive integer N , we write [N ] := {1, 2, . . . , N}.
We denote the dimension (number of coordinates) by n ∈
N. We define Sn (Sn+) as the collection of all symmetric
(positive-definite) matrices of size n × n. We write ∥ · ∥
for the Euclidean ℓ2-norm for vectors and the spectral norm
(i.e., operator norm) for matrices. We also use ∥ · ∥∞ for the
Euclidean ℓ∞-norm in an analogous sense. The symbols
⊗ and ⊙ represent the matrix Kronecker product and the
elementwise Hadamard product, respectively.

The spectral radius (i.e., maximum absolute eigenvalue)
of a matrix M is denoted by ρ(M), and the minimum
(maximum) eigenvalue of matrices M (with real eigenval-
ues) is denoted by λmin(M) (λmax(M)). We denote by
tril(M) the lower triangular part of M , including the diag-
onals. We will usually denote the elements of matrices by
lower-case letters with subscripts, as in A = (aij), and the
elements of vectors via parentheses indicating the index, as
in x = (x(1), . . . , x(n)).

We denote by Ik the k-dimensional identity matrix, 1k the k-
dimensional ones vector, and diag{a1, . . . , an} the diagonal
matrix with (i, i)-th entry ai, or the similarly constructed
block diagonal matrix if the elements are matrices. (We may
drop the k subscript in obvious cases, usually when k = n.)
Also, we denote by ei ∈ Rn the unit vector with the 1 in the
i-th coordinate and Ei ∈ Rn×n by the unit matrix eie

⊤
i .

2.1. Problem Settings

Our goal is to minimize the following quadratic function:

min
x

f(x) :=
1

2
x⊤Ax,

where the Hessian A ∈ Sn+ is a positive definite matrix. We
write A = (aij) for the elements of A. The objective will
be to find the minimizer x⋆ = 0 of f .

For useful purposes, we define the following quantity.

Definition 2.1. We define σ = λmin(D
−1A), where D =

diag(a11, . . . , ann) is the diagonal part of A. In particular,

if D = I , then we have σ = λmin(A).

By definition, we must have σ ∈ (0, 1]. Later in Assump-
tion 2.2, we justify why we can set D = I without loss
of generality. For such cases, σ is equivalent to the strong
convexity constant of the function f , and the convergence
bounds we derive will depend on σ.
Remark. Our analysis automatically includes the translated
quadratics f(x) = 1

2x
⊤Ax+b⊤x+ c for any b ∈ Rn and

c ∈ R, as long as the Hessian A is positive definite. We can
straightforwardly replace x with x−x⋆ for x⋆ = A−1b, the
minimizer of the translated problem Wright & Lee (2017).

2.2. Algorithms

Algorithm 1 shows a general framework for coordinate de-
scent (CD) methods. We focus on two versions of CD that
differ in how we choose the index it at each iteration.

• For random coordinate descent (RCD), we choose

it ∼ Unif([n]). (2)

• For random-permutation coordinate descent (RPCD),
we use T = nK iterations (K is the number of epochs).
For each k = 0, . . . ,K − 1 we choose a permutation
pk of [n] uniformly at random and choose

it = pk(ℓ+ 1), (3)

where t = nk + ℓ with ℓ ∈ {0, . . . , n− 1}.
Remark. For quadratic objectives f(x) = 1

2x
⊤Ax, we can

rewrite the argmin updates of Algorithm 1 in explicit form:

xt+1 = xt −
1

aitit
EitAxt = xt −

1

aitit
Eit∇f(xt)

which can also be viewed as a coordinate gradient descent
method with step size ηit = 1

aitit
. Such gradient-based

methods are often used as a proxy of CD when it is hard to
compute the exact argmins via line search. In the case of
quadratics, the two are essentially equivalent.
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Algorithm 1 Coordinate Descent (CD)

Input: Number of iterations T
Initialize: x0 ∈ Rn

for t = 0 to T − 1 do
Choose the index it ∈ [n] to update
Update xt+1 = (xt(1), . . . , x′︸︷︷︸

it-th

, . . . , xt(n)), where

x′ = argmin
x

f(xt(1), . . . , x︸︷︷︸
it-th

, . . . , xt(n))

end for
Output: xT ∈ Rn

RCD. As shown in Equation (2), RCD randomly chooses
a coordinate index per iteration to update.

We can concisely write one iteration of RCD as follows:

xt+1 = T RCD
A,i xt,

where we choose to update index it = i and we define

T RCD
A,i := I − 1

aii
EiA. (4)

Remark. Nesterov (2012) also considers RCD with indices
it sampled from a non-uniform distribution, primarily when
the probabilities are proportional to the Lipschitz constants
of each coordinate. However, in our work, we only focus on
the uniformly sampled case as our purpose is to make a fair
comparison with RPCD.

RPCD. As shown in Equation (3), RPCD randomly
chooses a permutation of indices and then takes coordinate
updates in the order of the permutation we chose.

This time, we focus on one epoch (containing n iterates) of
RPCD for quadratic objectives f(x) = 1

2x
⊤Ax. Accord-

ingly, here we denote by xk+1 the iterate after applying one
epoch (of n updates) to xk. For a better illustration, we
follow Sun et al. (2020) and consider the simple case when
n = 3 and p0 = (123) is the identity permutation (which
can also be viewed as an epoch of cyclic coordinate descent).
Observing that we update only the i-th coordinate at the i-th
iteration (which won’t change for the rest of the epoch), we
can write RPCD in terms of coordinates as follows:

x1(1) = x0(1)− 1
a11

(a11x0(1) + a12x0(2) + a13x0(3))

x1(2) = x0(2)− 1
a22

(a21x1(1) + a22x0(2) + a23x0(3))

x1(3) = x0(3)− 1
a33

(a31x1(1) + a32x1(2) + a33x0(3))

which can be rearranged and written in matrix form as:a11 0 0
a21 a22 0
a31 a32 a33

x1 = −

0 a12 a13
0 0 a23
0 0 0

x0,

or more concisely:

x1 = −Γ−1(A− Γ)x0

= (I − Γ−1A)x0

where Γ = tril(A). In the general case, we can similarly
observe that one epoch of RPCD with permutation pk = p
boils down to

xk+1 = T RPCD
A,p xk,

where we define

T RPCD
A,p := I − PΓ−1

P P⊤A. (5)

Here, P ∈ {0, 1}n×n is the permutation matrix generated
by the permutation p (i.e., Pei = ep(i) for all i ∈ [n]) and
ΓP = tril(P⊤AP ).

Unit-diagonal Assumption. Here we state and justify the
following assumption on the Hessian A of f .
Assumption 2.2. We assume that the Hessian A has unit
diagonals, or equivalently, a11 = · · · = ann = 1.

This assumption might seem restrictive, but this is without
loss of generality for any coordinate-descent type methods
on quadratics. For any nonzero diagonal matrix F , every
iterate of a certain CD algorithm (RCD, RPCD, etc.) applied
on f̃(x) = 1

2x
⊤Ãx for Ã = F−1AF−1 proceeds as

x̃k = Fxk, where xk is the trajectory of the same algorithm
applied on f(x) with the same initialization and choices
of ik (see Appendix A of Wright & Lee (2017)). We may
therefore assume that D = I by choosing F = D

1
2 . (Note

that D is defined as the diagonal part of A.)

Sign-flip Invariance. Another particularly useful case of
the diagonal transformation is when F = diag(v) with
v ∈ {±1}n. In this setting, we have Ã = F−1AF−1 =
A⊙vv⊤, which corresponds to flipping the signs of specific
rows and columns of A.

2.3. Matrix Operators

Suppose that f(x) = 1
2x

⊤Ax and we have some iteration
that proceeds according to the following update:

xk+1 = TAxk

where the iteration matrix TA ∈ Rn×n is i.i.d. random and
independent with the iterate xk. Let us define a linear matrix
operator MA : Rn×n → Rn×n as

MA(X) := E
[
T⊤
AXTA

]
.

Note that we can also write MA in matrix form by vector-
izing the input and output matrices:

vec(MA(X)) = E
[
T⊤
A ⊗ T⊤

A

]
vec(X).
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We denote the matrix operator for RCD and RPCD, gener-
ated by the random matrix iterations T RCD

A and T RPCD
A by

MRCD
A and MRPCD

A , respectively.

For the case of RCD, we can plug in TA,i = I −EiA (as
in (4) with aii = 1) to explicitly compute

MA(X) = Ei

[
(I −EiA)⊤X(I −EiA)

]
=

(
I − A

n

)⊤

X

(
I − A

n

)
+

A⊤(n · diag(X)−X)A

n2
.

To motivate the use of such matrix operators, suppose that
we define the convergence measure as the quadratic form
below, where Θ ∈ Sn+ is a positive definite matrix that
might depend on A but not on xk:

Ψk =
1

2
x⊤
k Θxk. (6)

This (up to scaling) includes typical choices like the squared
Euclidean norm ∥xk∥2 (using Θ = I) and the function
value f(xk) (using Θ = A). Then we can observe that

E [Ψk]

Ψ0
=

y⊤
0

(
Θ−1/2Mk

A(Θ)Θ−1/2
)
y0

∥y0∥2
(7)

where y0 := Θ1/2x0 and the expectation above is condi-
tioned by x0. Similarly, we omit the conditional notation
part of the expectations if clear by context.

Diagonalizability. If a linear matrix operator MA is di-
agonalizable, then we can view Mk

A(Θ) in (7) as a power
iteration. The limit as k → ∞ will be dominated by the
eigenmatrix of MA with the largest absolute eigenvalue
among nonzero components of the eigendecomposition of
Θ. Hence we can understand the spectral radius of the
operator ρ(MA) as an upper bound of the contraction for
convergence measures.
Lemma 2.3. The matrix operators MRCD

A and MRPCD
A are

both diagonalizable.

While we defer the proof of Lemma 2.3 to Appendix A.1,
the main idea is to define a similar operator:

M̃A(X) = A− 1
2MA(A

1
2XA

1
2 )A− 1

2 (8)

which can be shown to have a symmetric matrix form

T̃⊤
A ⊗ T̃⊤

A , T̃A := A
1
2TAA− 1

2 (9)

for both MRCD
A and MRPCD

A , therefore is diagonalizable.

Furthermore, if we can show that MA is closed inside a
subspace S which contains positive definite matrices, then
choosing any Θ ∈ S , it suffices to show an upper bound of
ρ(MA|S), the spectral radius of MA restricted at S.
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S)

(yellow), the RPCD upper bound in Theorem 3.3 (green), and the
n-th power (for fair comparison) of the stronger RCD lower bound
for A ∈ Aσ in Theorem 3.4 (red).

3. RCD vs RPCD
In this section, we compare the convergence rates of RCD
and RPCD, under the problem setting defined in Section 2.

3.1. RCD Lower Bounds

Theorem 3.1 provides the convergence lower bound of RCD
for the expected iterate norm. Note that this convergence
measure is equivalent to choosing Θ = I in (6).

Theorem 3.1. For an initial point x0 ∈ Rn, let xT be the
output of RCD after T iterates. Then, except for a Lebesgue
measure zero set of initial points,

lim
T→∞

(
E
[
∥xT ∥2

]
∥x0∥2

) 1
T

≥ max

{(
1− 1

n

)
,
(
1− σ

n

)2}
.

The green graph in Figure 2 coincides with the (n-th power
of the) RCD lower bound. We can observe that the former
term of the max dominates for large σ and the latter for
small σ, where the transition happens near σ ≈ 1

2 .

We defer the proof of Theorem 3.1 to Appendix B.1.
Remark. For general convergence lower bounds for a certain
function class, the existence of a bad function and initial-
ization usually suffices. Our results show an even stronger
lower bound argument that holds for almost all initialization
points and, altogether with Theorem 3.3, shows a perfor-
mance gap for every specific instance in the function class.

3.2. RPCD Upper Bounds

In this section, we focus on the case when A is either
permutation-invariant or is closely related to such a matrix.
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In particular, we focus on the following class of Hessians.

Definition 3.2. We define the class of Hessians API
σ ,Aσ as

API
σ :=

{
diag{σIk + (1− σ)1k1

⊤
k , In−k} : 2 ≤ k ≤ n

}
,

Aσ :=
{
A = API ⊙ vv⊤ : API ∈ API

σ ,v ∈ {±1}n
}

for given σ ∈ (0, 1].

Note that σIk+(1−σ)1k1
⊤
k is a unit-diagonal, permutation-

invariant matrix with a λmin of σ, and that the sign-flip
invariance of CD (see the end of Section 2.2) allows us to
extend any type of convergence analysis from API

σ to Aσ .

Theorem 3.3 provides the convergence upper bound of
RPCD for the expected iterate norm.

Theorem 3.3. For an initial point x0 ∈ Rn, let xK be the
output of RPCD after K epochs. If A ∈ Aσ and x0 ̸= 0,

lim
K→∞

(
E
[
∥xK∥2

]
∥x0∥2

)1
K

≤ max

{(
1− 1

n

)n

,
(
1− σ

n

)2n}
.

Summarizing our results in Theorem 3.1 and Theorem 3.3,
we can show that RPCD outperforms RCD for all instances
of the form A = diag{σIk + (1 − σ)1k1

⊤
k , In−k}. The

threshold between the two bounds is

max

{(
1− 1

n

)n

,
(
1− σ

n

)2n}
, (10)

where we recall that n iterations of RCD are equivalent to
one epoch of RPCD for a fair comparison.

Proof Sketch. The proof starts from the observation that if
A ∈ S := span{I,11⊤}, or considering Assumption 2.2:

A = σI + (1− σ)11⊤, (11)

then MRPCD
A is closed in S = span{I,11⊤}. This allows

us to convert the restricted matrix operator

MRPCD
A

∣∣
S

into a 2× 2 matrix MA.

Therefore, if we choose any Θ ∈ S with Θ ≻ 0 to define the
convergence measure (we choose Θ = I for Theorem 3.3),
the matrix

(
MRPCD

A

)k
(Θ) will stay in span{I,11⊤} and it

suffices to find an upper bound of ρ(MRPCD
A

∣∣
S) = ρ(MA)

for this 2× 2 matrix. We also show that the matrix

A = diag{σIk + (1− σ)1k1
⊤
k , In−k}

for all 2 ≤ k ≤ n has the same value of ρ(MRPCD
A ) with

that of the k × k matrix Ak = σIk + (1− σ)1k1
⊤
k .

After this, we upper bound ρ(MAk
) with ∥MAk

∥∞, which
can be expressed as the maximum of two polynomials of

σ. We then proceed to divide the range of σ into three
regions: (0, 0.6], [0.6, 0.8], and [0.8, 1.0]. Perhaps interest-
ingly, we can find a (nearly) sign-alternating trend in the
coefficients of both the polynomials from ∥MAk

∥∞ and the
upper bound. This allows us to use lower-order Taylor ap-
proximations instead of the true lower and upper bounds and
compare these to complete the proof for the cases (0, 0.6]
and [0.6, 0.8], where the difference is in which part of the
max of the upper bound we use for comparison. For the
remaining region [0.8, 1.0], we can show that ∥MAk

∥∞ is
always too small compared to

(
1− 1

n

)n
.

We defer the full proof of Theorem 3.3 to Appendix B.2.
Remark. In Figure 2, we can observe that for permutation-
invariant instances An with large enough n, a small bump
appears in the graph of ρ(MRPCD

An
) close to σ = 1. This

breaks monotonicity and makes theoretical analysis harder,
motivating us to separately handle the cases of small and
large σ in Theorem 3.3 and the proof.

3.3. Stronger RCD Lower Bound

If we solely focus on the class Aσ, we can further show an
RCD lower bound stronger than Theorem 3.1.

Theorem 3.4. Let A ∈ Aσ. For an initial point x0 ∈ Rn,
let xT be the output of RCD after T iterates. Then, except
for a Lebesgue measure zero set of initial points,

lim
T→∞

(
E
[
∥xT ∥2

]
∥x0∥2

) 1
T

≥ 1− 1

n
+

(1− σ)2

n
.

Summarizing our results in Theorem 3.3 and Theorem 3.4,
we can now show that there exists a clear gap between the
convergence rates of RCD and RPCD for A ∈ Aσ. The
green line depicted in Figure 2 is equal to the RPCD upper
bounds in Theorem 3.3, which is strictly smaller than the
red RCD lower bound graph in Theorem 3.4 at σ ∈ (0, 1).

We defer the proof of Theorem 3.4 to Appendix B.3.
Remark. While our results are written in terms of the ex-
pected iterate norm E

[
∥xT ∥2

]
, for any f(x) = 1

2x
⊤Ax

where A ≻ 0 has unit diagonals and λmin(A) = σ we have

σ

2
∥x∥2 ≤ f(x) ≤ n− (n− 1)σ

2
∥x∥2,

and hence we can easily extend the same convergence anal-
yses to function values by scaling with a constant factor.

Non-asymptotic results. The inequality between the
RCD and RPCD bounds which we establish in the asymp-
totic limit, in fact, already holds after a finite number of
epochs. The required number of epochs depends on σ, and
the corresponding non-asymptotic result is given in Ap-
pendix G.
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Table 2. A comparison of existing convergence rate upper bounds
and our results for RPCD. Note that Wright & Lee (2017) consider
a larger function class and Gürbüzbalaban et al. (2018) consider a
different function. In the last row, we use α = 1−σ

n−1
.

Reference Convergence Rate

Lee & Wright (2019) O
((

1 − 2σ − 2σ
n + 2σ2

)K)
Ours (Theorem 3.3) O

((
max

{(
1 − 1

n

)n, (1 − σ
n

)2n})K
)

Ours (Appendix D) O
((

1 − 2σ − 2σ
n + 2σ2

)K)
Wright & Lee (2017) O

(
K
(
1 − 7σ

5

)K)
Gürbüzbalaban et al. (2018) O

((
1 − σ

n

(
(1+α)2n−1

α(α+2)

))K
)

Comparison with Previous Work. Lee & Wright (2019)
demonstrate that, if n ≥ 10 and σ ∈ (0, 0.4], the epoch-wise
contraction ratio of RPCD is of order

1− 2σ − 2σ

n
+ 2σ2 +O

(
σ2

n

)
+O

(
σ3
)

for quadratic functions with permutation-invariant Hessians.
While our result seems to be weaker in the sense that(

1− σ

n

)2n
= 1− 2σ − σ2

n
+ 2σ2 +O(σ3),

we can deduce from the details in our proof that in fact, a
tighter exposition of our result can recover the rate of Lee
& Wright (2019) (see Appendix D) while also providing
a stronger analysis by (i) finding the exact bounds with
explicit coefficients (without asymptotic terms) and (ii) cov-
ering the whole region of σ ∈ (0, 1] and smaller values of n
using the (1− 1

n )
n term and novel proof techniques.

Wright & Lee (2017) consider an extension to Hessians
of the form σI + (1 − σ)uu⊤ where the coordinates of
u ranges from

√
σ/(σ + ϵ) to 1 for some small ϵ. Their

convergence rate upper bound shown in Table 2 is quanti-
tatively weaker, but it is not directly comparable because it
applies to a slightly larger function class. Gürbüzbalaban
et al. (2018) consider a different function with Hessian of
the form A = (1+α)I −α11⊤, where σ = 1− (n− 1)α,
an instance for which CCD is also shown to outperform
RCD (Gürbüzbalaban et al., 2017).

4. RPCD on General Quadratics
One limitation of our work is that the RPCD upper bounds
in Theorem 3.3 only apply to problem instances in A ∈ Aσ .
Here we leave some noteworthy discussions considering
ways to generalize to the entire class of quadratic functions.

4.1. Conjecture on the RPCD Worst Case

Here we propose a conjecture that the RPCD upper bound
we have shown for A ∈ Aσ in Theorem 3.3 could possibly

extend to an upper bound for all positive definite quadratics.

Conjecture 4.1. For an initial point x0 ∈ Rn, let xK be
the output of RPCD after K epochs. If σ ∈ (0, 1], A ∈ Sn+
with λmin(A) = σ, and x0 ̸= 0, then

lim
K→∞

(
E
[
∥xK∥2

]
∥x0∥2

)1
K

≤ max

{(
1− 1

n

)n

,
(
1− σ

n

)2n}
.

Algorithmic Search. We use the following framework to
search for the worst-case example among the larger space
of all (unit-diagonal) quadratics.

Step 1. Start with a (randomly initialized) lower trian-
gular matrix X ∈ Rn×n with nonzero diagonals.

Step 2. Construct a unit-diagonal, positive semi-
definite matrix by computing Y = X⊤X and set
unit diagonals by Z = D

− 1
2

Y Y D
− 1

2

Y , where DY is
the diagonal part of Y .

Step 3. Construct a matrix A with σ = λmin(A) by

A =
1− σ

1− µ
Z +

σ − µ

1− µ
I,

where µ = λmin(Z). Note that A is also unit-diagonal
and positive semi-definite.

Step 4. Construct an objective function that takes an
input X to compute the value of ρ(MRPCD

A ) and run a
scipy optimizer to maximize the objective.

We explore dimensions n = 3, 4, 5, 6 and σ values ranging
from 0.1 to 0.9 with increments of 0.1. Note that Algorith-
mic Search finds the argmax of ρ(MRPCD

A ), which is an
upper bound of the convergence rates. The results suggest
that A ∈ Aσ are the worst cases concerning this upper
bound, as all of our trials of Algorithmic Search converged
to a problem instance A ∈ Aσ with various sign flips.
We also observed that for any A ∈ Aσ, we always have
ρ(MRPCD

A ) = ρ(MRPCD
A |S) (where S = span{I,11⊤}),

which we were able to show in Theorem 3.3 that is smaller
than the same upper bound. These observations altogether
motivated us to propose Conjecture 4.1 on the worst-case
instance for general quadratic functions.

Remark. Sun & Ye (2016) show that A = σI+(1−σ)11⊤

is the worst-case example of cyclic coordinate descent
(CCD), which partially aligns with the idea of our con-
jecture that CD algorithms using one update per coordinate
in each epoch (including both CCD and RPCD) are slow for
similar types of matrices.
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Figure 3. Numerical experiments comparing RCD and RPCD. We
plot the mean values and min-max range over multiple trials of
RCD/RPCD. For (i)-(iii), we use n = 25, σ ∈ {0.3, 0.7}. The
experiments are conducted on (i) a quadratic function with A ∈
Aσ , (ii) a random quadratic with λmin(A) = σ, (iii) a random
quadratic + (scaled and transformed) LSE function, and (iv) an
ℓ2-regularized sparse logistic regression objective with n = 100.

4.2. Experiments

To compare the performance of RCD and RPCD, we con-
ducted experiments on four types of convex and smooth
functions: (i) quadratic functions with permutation-invariant
Hessians, (ii) general quadratic functions with positive defi-
nite Hessians, (iii) general quadratic functions with positive
definite Hessians plus a scaled log-sum-exp (LSE) term, and
(iv) ℓ2-regularized logistic regression objective functions.
Specifically, we use the following form for (i)-(iii):

f(x) =
1

2
x⊤Ax+ α · LSE(Qx),

where A is either σI + (1− σ)11⊤ or randomly generated
with unit diagonals and λmin(A) = σ (following Steps 1-3
of Algorithmic Search), Q is a randomly generated orthog-
onal matrix we use to avoid coordinate-friendly structures,
LSE(a1, . . . , an) = log(ea1 + · · ·+ ean), and α ≥ 0.

For (iv), we use the ℓ2-regularized logistic regression objec-

tive:

min
x

1

m

m∑
i=1

log(1 + exp(−bia
⊤
i x)) +

λ

2
∥x∥2,

where ai ∼ N (0, In) and the labels are generated by sam-
pling xtrue ∼ N (0, In), setting bi = sign(a⊤

i xtrue), and
flipping each bi independently with probability 0.1. This
setup follows Nutini et al. (2015).

Our theoretical contribution focuses on establishing the
superiority of RPCD over RCD for the specific case of
quadratic functions with permutation-invariant Hessians (i).
As demonstrated in Figure 3, RPCD does not only show
faster convergence than RCD for (i) in practice, but also
in minimizing both (ii) and (iii). Results for (ii) particu-
larly support an immediate corollary of Conjecture 4.1; that
RPCD is generally faster than RCD for any problem instance
in the broader class of quadratic functions. Readers may
refer to Appendix F for more details on the experiments.

4.3. Discussions

All previous results considering the convergence of expected
iterate norm or function value2 of RPCD (Lee & Wright,
2019; Wright & Lee, 2017) rely on the properties of permu-
tation invariant matrices, for which MRPCD

A is closed in a
certain low-dimensional matrix subspace S . In this section,
we first discuss a special portion of cases when we might be
able to use similar arguments, then proceed to discussions
regarding arbitrary positive definite quadratics for which we
cannot use such an approach.

Partially Invariant Hessians. Suppose that we have a
4× 4 unit-diagonal matrix of the form:

A =


1 a a a
a 1 b b
a b 1 b
a b b 1

 .

For these types of matrices, there are only 4 possible cases
of matrices P⊤AP . Then we can define the bases using
the following (1+ (n− 1))× (1+ (n− 1)) block matrices:

V1 =

[
1 0
0 0

]
, V2 =

[
0 1⊤

1 0

]
,

V3 =

[
0 0
0 I

]
, V4 =

[
0 0
0 11⊤

]
,

and show MRPCD
A is closed in S ′ = span{V1,V2,V3,V4}.

Then the problem reduces into finding ρ(MRPCD
A |S′) which

2Convergence of the expected iterate E[xT ] is weaker than that
of the expected iterate norm E[∥xT ∥2] or function value E[f(xT )]
as the latter implies the former (if f is convex) but not vice versa.

8
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requires a fine spectral analysis of an asymmetric 4 × 4
matrix with two controllable variables a, b ∈ [0, 1]. See
Appendix E.1 for a more detailed discussion.

General Quadratics. The only known results that con-
sider RPCD for general quadratics are those by Sun et al.
(2020), where they observe that for each permutation p,

T̃ RPCD
A,p = A

1
2T RPCD

A,p A− 1
2

= I −A
1
2PΓ−1

P P⊤A
1
2 = Zp(n) · · ·Zp(1),

(12)

where Zi = I − viv
⊤
i is a projection matrix with vi being

the i-th column of A
1
2 . They then show expected iterate2

convergence from ρ(T RPCD
A,p ) = ρ(T̃ RPCD

A,p ) ≤ 1 − σ
n . The

resulting iteration complexity upper bound is n times loose
compared to both our upper bounds and previous results for
A ∈ Aσ that involves the n-th exponent, (1− σ

n )
n, instead.

For our goal, it is sufficient to show

ρ(MRPCD
A ) = ρ

(
E
[
T RPCD⊤
A ⊗ T RPCD⊤

A

])
≤ max

{(
1− σ

n

)2n
,

(
1− 1

n

)n}
.

(13)

While there are no well-known analyses on the upper bounds
of the spectral radius of the expectation of Kronecker pow-
ers of matrices over permutations, we can use (12) and
ρ(MRPCD

A ) = ρ(M̃RPCD
A ) (see (8)) to equivalently write3

ρ(M̃RPCD
A ) = ρ

(
E
[
T̃ RPCD⊤
A ⊗ T̃ RPCD⊤

A

])
= ρ

(
E
[(
Zp(n) · · ·Zp(1)

)⊤⊗2
])

.

One possible strategy could be to use

ρ(MRPCD
A ) ≤

∥∥∥A−1/2MRPCD
A (A)A−1/2

∥∥∥ (14)

to circumvent the need to compute the sum of the Kronecker
powers. We can use (12) to express the RHS of (14) as

E
[
Zp(1) · · ·Zp(n) · · ·Zp(1)

]
.

We have numerically checked that (14) is quite tight enough
to be useful when σ ≤ 1

2 , but unfortunately gets suddenly
loose for σ > 1

2 if n gets large, as shown in Figure 4. See
Appendix E.2 for proofs of some of the statements above
and a more detailed discussion.

5. Conclusion
We have shown convergence lower bounds for RCD and
convergence upper bounds for RPCD for positive definite
quadratic functions with permutation-invariant structures.

3The notation (·)⊗2 is for the Kronecker product with itself.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2
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0.6

0.8

1.0
n = 100

A 1/2 RPCD
A (A)A 1/2

Thm 3.3 RHS

Figure 4. Plot of ∥A− 1
2MA(A)A− 1

2 ∥ (A = σI+(1−σ)11⊤)
and the RPCD upper bound from Theorem 3.3 for n = 100.

We obtain results demonstrating that RPCD outperforms
RCD for any problem instance in A ∈ Aσ (Theorems 3.1
and 3.3), show a stronger RCD lower bound that induces
a clear gap between RCD and RPCD (Theorem 3.4), and
conjecture that RPCD will also outperform RCD for general
quadratic functions (Conjecture 4.1).

An immediate future direction would be to prove (or dis-
prove) Conjecture 4.1 for general quadratic functions, and
possibly further analyze the benefits of random permutations
for even broader function/algorithm classes, such as non-
quadratic (strongly) convex functions or block coordinate
descent algorithms.
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Richtárik, P. and Takác, M. Iteration complexity of random-
ized block-coordinate descent methods for minimizing a
composite function. Mathematical Programming, 144:1 –
38, 2011. URL https://api.semanticscholar.
org/CorpusID:16816638.

Russo, B. and Dye, H. A. A note on unitary op-
erators in C∗-algebras. Duke Mathematical Jour-
nal, 33(2):413 – 416, 1966. doi: 10.1215/
S0012-7094-66-03346-1. URL https://doi.org/
10.1215/S0012-7094-66-03346-1.

Sun, R. and Ye, Y. Worst-case complexity of cyclic
coordinate descent: O(n2) gap with randomized ver-
sion. Mathematical Programming, 185:487 – 520,
2016. URL https://api.semanticscholar.
org/CorpusID:232935420.

Sun, R., Luo, Z.-Q., and Ye, Y. On the efficiency of ran-
dom permutation for ADMM and coordinate descent.
Mathematics of Operations Research, 45(1):233–271,
2020. doi: 10.1287/moor.2019.0990. URL https:
//doi.org/10.1287/moor.2019.0990.

Weyl, H. Das asymptotische verteilungsgesetz der eigen-
werte linearer partieller differentialgleichungen (mit einer
anwendung auf die theorie der hohlraumstrahlung). Math-
ematische Annalen, 71(4):441–479, 1912. URL https:
//doi.org/10.1007/BF01456804.

Wright, S. J. Coordinate descent algorithms. Mathematical
Programming, 151:3 – 34, 2015. URL https://api.
semanticscholar.org/CorpusID:15284973.

Wright, S. J. and Lee, C.-P. Analyzing random per-
mutations for cyclic coordinate descent. Math. Com-
put., 89:2217–2248, 2017. URL https://api.
semanticscholar.org/CorpusID:39214865.

Yun, C., Sra, S., and Jadbabaie, A. Open problem:
Can single-shuffle sgd be better than reshuffling sgd
and gd? In Belkin, M. and Kpotufe, S. (eds.),
Proceedings of Thirty Fourth Conference on Learn-
ing Theory, volume 134 of Proceedings of Machine
Learning Research, pp. 4653–4658. PMLR, 15–19 Aug
2021. URL https://proceedings.mlr.press/
v134/open-problem-yun21a.html.

Yun, C., Rajput, S., and Sra, S. Minibatch vs local sgd
with shuffling: Tight convergence bounds and beyond. In
10th International Conference on Learning Representa-
tions, ICLR 2022. International Conference on Learning
Representations (ICLR), 2022.

11

https://api.semanticscholar.org/CorpusID:16816638
https://api.semanticscholar.org/CorpusID:16816638
https://doi.org/10.1215/S0012-7094-66-03346-1
https://doi.org/10.1215/S0012-7094-66-03346-1
https://api.semanticscholar.org/CorpusID:232935420
https://api.semanticscholar.org/CorpusID:232935420
https://doi.org/10.1287/moor.2019.0990
https://doi.org/10.1287/moor.2019.0990
https://doi.org/10.1007/BF01456804
https://doi.org/10.1007/BF01456804
https://api.semanticscholar.org/CorpusID:15284973
https://api.semanticscholar.org/CorpusID:15284973
https://api.semanticscholar.org/CorpusID:39214865
https://api.semanticscholar.org/CorpusID:39214865
https://proceedings.mlr.press/v134/open-problem-yun21a.html
https://proceedings.mlr.press/v134/open-problem-yun21a.html


Provable Benefit of Random Permutations over Uniform Sampling in Stochastic Coordinate Descent

A. Proofs in Section 2
A.1. Proof of Lemma 2.3

Here we prove Lemma 2.3, restated below for the sake of readability.
Lemma 2.3. The matrix operators MRCD

A and MRPCD
A are both diagonalizable.

Proof. For MRCD
A , consider the matrix operator:

M̃RCD
A (X) = A− 1

2MRCD
A (A

1
2XA

1
2 )A− 1

2 ,

a similar operator to MRCD
A as it maps A− 1

2XA− 1
2 to A− 1

2MRCD
A (X)A− 1

2 . This can be rewritten in the form of

M̃RCD
A (X) = E

[
T̃ RCD⊤
A XT̃ RCD

A

]
,

where the expectation is over symmetric matrices

T̃ RCD
A,i := I − 1

aii
A

1
2EiA

1
2 .

Therefore the matrix form of M̃RCD
A ,

E
[
T̃ RCD⊤
A,i ⊗ T̃ RCD⊤

A,i

]
must also be symmetric, which implies that M̃RCD

A is diagonalizable. Hence MRCD
A must also be diagonalizable by similarity.

For MRPCD
A , we also consider the matrix operator:

M̃RPCD
A (X) = A− 1

2MRPCD
A (A

1
2XA

1
2 )A− 1

2 ,

which is also similar to MRPCD
A and can be rewritten as

M̃RPCD
A (X) = E

[
T̃ RPCD⊤
A XT̃ RPCD

A

]
,

where the expectation is over the matrices

T̃ RPCD
A,p := I −A

1
2PΓ−1

P P⊤A
1
2 .

For each permutation p, we consider a complementary permutation p′ defined as:

p′(i) = (n+ 1)− p(i), ∀i ∈ [n].

The permutation matrix P ′ generated by p′ satisfies P ′ΓP ′P ′⊤ =
(
PΓPP⊤)⊤ (Sun et al., 2020). This is because

PΓPP⊤ = P tril(P⊤AP )P⊤ = A⊙WP ,

where WP is a binary matrix with

WP ij =

{
1, p(i) ≥ p(j),

0, otherwise.

Since p(i) ≥ p(j) if and only if p′(i) ≥ p′(j), we have WP ′ = W⊤
P and PΓP ′P ′⊤ =

(
PΓPP⊤)⊤.

Therefore we have T̃ RPCD
A,p′ = (T̃ RPCD

A,p )⊤, and the following sum:

T̃ RPCD⊤
A,p ⊗ T̃ RPCD⊤

A,p + T̃ RPCD⊤
A,p′ ⊗ T̃ RPCD⊤

A,p′

is also symmetric as a sum of transposes. As the set of all permutations can be paired with its unique complementary
permutation, the matrix form of M̃RPCD

A ,

E
[
T̃ RPCD⊤
A ⊗ T̃ RPCD⊤

A

]
must be symmetric, which implies that M̃RPCD

A and MRPCD
A must also be diagonalizable.

12
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B. Proofs in Section 3
B.1. Proof of Theorem 3.1

Here we prove Theorem 3.1, restated below for the sake of readability.

Theorem 3.1. For an initial point x0 ∈ Rn, let xT be the output of RCD after T iterates. Then, except for a Lebesgue
measure zero set of initial points,

lim
T→∞

(
E
[
∥xT ∥2

]
∥x0∥2

) 1
T

≥ max

{(
1− 1

n

)
,
(
1− σ

n

)2}
.

Proof. We will prove the following two inequalities:

lim
T→∞

(
E
[
∥xT ∥2 | x0

]
∥x0∥2

)1/T

≥ 1− 1

n
,

lim
T→∞

(
E
[
∥xT ∥2 | x0

]
∥x0∥2

)1/T

≥
(
1− σ

n

)2
.

To show the first inequality, we use the fact that MRCD
A (I) = I − 2A

n + A2

n . Then,

E
[
x⊤
k xk | xk−1

]
= x⊤

k−1MRCD
A (I)xk−1

= x⊤
k−1

(
I − 2A

n
+

A2

n

)
xk−1

≥ λmin

(
I − 2A

n
+

A2

n

)
x⊤
k−1xk−1.

Since the eigenvalues of I− 2A
n +A2

n are in the form of 1− 2λ
n + λ2

n , where λ is an eigenvalue of A, and 1− 2x
n + x2

n ≥ 1− 1
n

for any x ∈ R, we have

E
[
x⊤
k xk | xk−1

]
≥
(
1− 1

n

)
x⊤
k−1xk−1.

By the law of total expectation,

E
[
x⊤
T xT | x0

]
= E

[
E
[
x⊤
T xT | xT−1

]
| x0

]
≥
(
1− 1

n

)
E
[
x⊤
T−1xT−1 | x0

]
...

≥
(
1− 1

n

)T

∥x0∥2.

For the second part, we use the following lemma.

Lemma B.1 (Nesterov (2012), Lemma 1). If X ∈ Rn×n is a positive semi-definite matrix,

X ⪯ n · diag(X).

Now we define the following matrix operator:

M̂RCD
A (X) :=

(
I − A

n

)⊤

X

(
I − A

n

)
.

13
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According to Lemma B.1, M̂RCD
A (X) ⪯ MRCD

A (X) for any X ⪰ 0 because

MRCD
A (X) = M̂RCD

A (X) +
A⊤(n · diag(X)−X)A

n2
.

Moreover, if X ⪯ Y , then M̂RCD
A (X) ⪯ M̂RCD

A (Y ).

We now aim to show that for any positive integer k and X ⪰ 0,

(M̂RCD
A )k(X) ⪯ (MRCD

A )k(X). (15)

We prove this by induction on k.

Base Case: For k = 1, we have already shown that M̂RCD
A (X) ⪯ MRCD

A (X).

Inductive Step: Assume that for some positive integer k, we have

(M̂RCD
A )k(X) ⪯ (MRCD

A )k(X).

We need to show that (M̂RCD
A )k+1(X) ⪯ (MRCD

A )k+1(X). Since

(M̂RCD
A )k+1(X) = M̂RCD

A ((M̂RCD
A )k(X))

⪯ M̂RCD
A ((MRCD

A )k(X)) (∵ (M̂RCD
A )k(X) ⪯ (MRCD

A )k(X))

⪯ MRCD
A ((MRCD

A )k(X)) (∵ M̂RCD
A (X) ⪯ MRCD

A (X), (MRCD
A )k(X)) ⪰ 0)

= (MRCD
A )k+1(X),

we have (M̂RCD
A )k+1(X) ⪯ (MRCD

A )k+1(X) and Equation (15) holds for any positive integer k.

Therefore,

E
[
x⊤
T xT | x0

]
= x⊤

0 (MRCD
A )T (I)x0

≥ x⊤
0 (M̂RCD

A )T (I)x0

= x⊤
0

(
I − A

n

)2T

x0.

Let v1,v2, . . . ,vn be the eigenvectors of A corresponding to the eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn, respectively. Since
A ≻ 0, the eigenvalues are positive and the eigenvectors form an orthonormal basis for Rn. Therefore, we can express
x0 ∈ Rn as a linear combination, x0 = c1v1 + c2v2 + · · ·+ cnvn, where ci are scalar coefficients.

Excluding a measure zero set of vectors x such that v⊤
1 x = 0, we may assume that c1 ̸= 0.

Now, let us define

di =
c2i∑n
k=1 c

2
k

, µi = 1− λi

n
.

Then, d1 ̸= 0, di ≥ 0 for i ∈ [n],
∑n

i=1 di = 1 and µ1 ≥ µ2 ≥ · · · ≥ µn > 0. We can express
x⊤

0 (I−A
n )

2T
x0

x⊤
0 x0

in terms of
ci and µi:

x⊤
0

(
I − A

n

)2T
x0

x⊤
0 x0

=

n∑
i=1

diµ
2T
i .

Thus, we have (
x⊤
0

(
I − A

n

)2T
x0

x⊤
0 x0

)1/T

=

(
n∑

i=1

diµ
2T
i

)1/T

= µ2
1

(
d1 + d2

(
µ2

µ1

)2T

+ · · ·+ dn

(
µn

µ1

)2T
)1/T

.

14
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Since 0 < µi

µ1
≤ 1, we have

d
1/T
1 ≤

(
d1 + d2

(
µ2

µ1

)2T

+ · · ·+ dn

(
µn

µ1

)2T
)1/T

≤ (d1 + · · ·+ dn)
1/T

= 1.

Thus,

lim
T→∞

(
d1 + d2

(
µ2

µ1

)2T

+ · · ·+ dn

(
µn

µ1

)2T
)1/T

= 1

because d1 > 0. Therefore we can conclude that

lim
T→∞

(
E
[
x⊤
T xT | x0

]
x⊤
0 x0

)1/T

≥ µ2
1 =

(
1− σ

n

)2
which finishes the proof.

B.2. Proof of Theorem 3.3

Here we prove Theorem 3.3, restated below for the sake of readability.

Theorem 3.3. For an initial point x0 ∈ Rn, let xK be the output of RPCD after K epochs. If A ∈ Aσ and x0 ̸= 0,

lim
K→∞

(
E
[
∥xK∥2

]
∥x0∥2

)1
K

≤ max

{(
1− 1

n

)n

,
(
1− σ

n

)2n}
.

Proof. We first assume that A = σIn + (1− σ)1n1
⊤
n . Then, λmin(A) = σ and λmax(A) = n− (n− 1)σ.

Let Γ = tril(A) and C = I − Γ−1A. Since both I and 11⊤ are permutation-invariant, we have

MRPCD
A (I) = E[PC⊤CP⊤],

MRPCD
A (11⊤) = E[PC⊤11⊤CP⊤].

We use the following lemma to compute MRPCD
A (I) and MRPCD

A (11⊤).

Lemma B.2 (Lee & Wright (2019), Lemma 3.1). Given any matrix Q ∈ Rn×n and permutation matrix P selected
uniformly at random from the set of all permutations Π, we have EP [PQP⊤] = τ1I + τ211

⊤, where

τ2 =
1⊤Q1− trQ

n(n− 1)
, τ1 =

trQ

n
− τ2.

As a consequence of this lemma, MRPCD
A (I) and MRPCD

A (11⊤) can be expressed as

τ
(1)
1 I + τ

(1)
2 11⊤ = MRPCD

A (I),

τ
(2)
1 I + τ

(2)
2 11⊤ = MRPCD

A (11⊤),

where τ
(1)
1 , τ

(1)
2 , τ

(2)
1 and τ

(2)
2 can be computed using 1⊤C⊤C1, tr(C⊤C), 1⊤C⊤11⊤C1, and tr(C⊤11⊤C).

We remark that span{I,11⊤} is invariant under MRPCD
A and the matrix representation of MRPCD

A

∣∣
span{I,11⊤} is MA :=[

τ
(1)
1 τ

(2)
1

τ
(1)
2 τ

(2)
2

]
. That is, if

MA

[
a
b

]
=

[
a′

b′

]
,

15
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then MRPCD
A (aI + b11⊤) = a′I + b′11⊤.

Let us denote 1⊤C⊤C1, tr(C⊤C), 1⊤C⊤11⊤C1, and tr(C⊤11⊤C) as α, β, γ and δ, respectively. Then, by Lemma B.2,
we have

MA =
1

n(n− 1)

[
nβ − α nδ − γ
α− β γ − δ

]
.

To derive the explicit forms, we first calculate C, which is given by I − Γ−1A. We can express Γ−1 as follows:

(Γ−1)ij =


0 if i < j

1 if i = j

−(1− σ)σi−j−1 if i > j.

Consequently, we have

Cij =

{
−(1− σ)σi−1 if i < j

(1− σ)(σi−j − σi−1) if i ≥ j.
(16)

To proceed, we introduce v = C1,w = C⊤1 and L = λmax(A) = n− (n− 1)σ. Then, by Equation (16), we have

v = 1− L


1
σ
...

σn−1

 , w =


0

σn − σn−1

...
σn − σ

 .

With the explicit form of the entries of C, we can now calculate the four quantities α, β, γ, and δ, as follows (when σ ̸= 1):

α = v⊤v = n− 2L
1− σn

1− σ
+ L2 1− σ2n

1− σ2

β =
∑

1≤i,j≤n

C2
ij =

n∑
j=1

(
(1− σ)2

1− σ2n

1− σ2
+ (1− σ)2(1− 2σj−1)

1− σ2(n−j+1)

1− σ2

)

=
1− σ

1 + σ

(
2n− nσ2n − 2(1− σn+1)

1− σn

1− σ
− σ2 1− σ2n

1− σ2

)
γ =

(
1⊤v

)2
=

(
1− 1

1− σ
+

(
n− 1 +

1

1− σ

)
σn

)2

δ = w⊤w = nσ2n − 2σn+1 1− σn

1− σ
+ σ2 1− σ2n

1− σ2
.

(17)

Note that all of these values are polynomials in σ. (If σ = 1, all four quantities above are equal to zero.)

The explicit form of α, β, γ, and δ allows us to establish the following lemma.

Lemma B.3. τ
(1)
1 , τ

(2)
1 , τ

(1)
2 and τ

(2)
2 are all non-negative.

Proof. First, we show that τ (1)1 , τ
(2)
1 ≥ 0 from the fact that MRPCD

A preserves positive semi-definiteness.

Recall that MRPCD
A (X) = E[T RPCD⊤

A,p XT RPCD
A,p ]. Since X ⪰ 0 implies T RPCD⊤

A,p XT RPCD
A,p ⪰ 0 and the expectation of

positive semi-definite matrices is also positive semi-definite, we can conclude that MRPCD
A (X) ⪰ 0 whenever X ⪰ 0. As

both I ⪰ 0 and 11⊤ ⪰ 0, it follows that MRPCD
A (I) ⪰ 0 and MRPCD

A (11⊤) ⪰ 0, i.e., their eigenvalues are non-negative.
Since τ

(1)
1 and τ

(2)
1 are eigenvalues of MRPCD

A (I) ⪰ 0 and MRPCD
A (11⊤) ⪰ 0 respectively, we have τ

(1)
1 , τ

(2)
1 ≥ 0.

16
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Next, we show that τ (2)2 ≥ 0. For w = C⊤1, we have

γ = 1⊤ww⊤1 = (1⊤w)2

δ = tr(ww⊤) = tr(w⊤w) = ∥w∥2.

Since τ
(2)
2 = γ − δ, we have

τ
(2)
2 = (1⊤w)2 − ∥w∥2

= 2
∑
i<j

w(i)w(j).

Since w(i) = σn − σn+1−i ≤ 0 for all i ∈ [n], we have w(i)w(j) ≥ 0, and therefore τ
(2)
2 = 2

∑
i<j w(i)w(j) ≥ 0.

Finally, to show that τ (1)2 ≥ 0, we first show that the entries of C⊤C is non-negative.

In particular, we can prove the following two inequalities:

• If 2 ≤ i < j < n, then C⊤
i Cj ≥ C⊤

i Cj+1,

• If 2 < i < j ≤ n, then C⊤
i Cj ≥ C⊤

i−1Cj ,

where Ci denotes the i-th column of C.

To show the first inequality, we begin by considering the difference Cj −Cj+1. We have

(Cj −Cj+1)k =


0 if k < j,

1− σ if k = j,

(1− σ)(σk−j − σk−j−1) if k > j.

(18)

Therefore, if 2 ≤ i < j < n,

C⊤
i (Cj −Cj+1) = (1− σ)2(σj−i − σj−1) +

n∑
k=j+1

(1− σ)2(σk−i − σk−1)(σk−j − σk−j−1)

= (1− σ)2(σ−i − σ−1)

σj + (σ−j − σ−j−1)

n∑
k=j+1

σ2k

 .

Since i ≥ 2 and σ ∈ (0, 1], we have (1− σ)2 ≥ 0 and (σ−i − σ−1) ≥ 0. Thus, it suffices to show that

σj + (σ−j − σ−j−1)

n∑
k=j+1

σ2k ≥ 0.

Since

σj + (σ−j − σ−j−1)

n∑
k=j+1

σ2k = σj + (σ−j − σ−j−1)σ2j+2 · 1− σ2(n−j)

1− σ2

= σj

(
1− σ

1 + σ
(1− σ2(n−j))

)
=

σj

1 + σ
(1 + σ2n−2j+1),

we have C⊤
i (Cj −Cj+1) ≥ 0.

17
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For the second inequality, we will show that (Ci−1 −Ci)
⊤Cj ≤ 0. Using Equation (18), we obtain

(Ci−1 −Ci)
⊤Cj = (1− σ)2

−σi−2 + (σ−i−1 − σ−i)

j−1∑
k=i

σ2k + (σ−i+1 − σ−i)(σ−j − σ−1)

n∑
k=j

σ2k

 .

Since

(σ−i+1 − σ−i)(σ−j − σ−1)

n∑
k=j

σ2k ≤ 0,

it is sufficient to show that

−σi−2 + (σ−i−1 − σ−i)

j−1∑
k=i

σ2k ≤ 0.

Since

−σi−2 + (σ−i−1 − σ−i)

j−1∑
k=i

σ2k = −σi−2 + (σ−i−1 − σ−i)σ2i · 1− σ2(j−i)

1− σ2

≤ −σi−2 +
σi−1 − σi

1− σ2

= − σi−2

σ + 1

≤ 0,

it follows that (Ci −Ci−1)
⊤Cj ≤ 0.

Using a chain of the inequalities we showed, we can obtain min2≤i<j≤n C
⊤
i Cj = C⊤

2 Cn. Moreover, since

C⊤
2 Cn = (1− σ)2

(
1− (σ−3 − σ−2)

n−1∑
k=2

σ2k + (1− σn−1)(σn−2 − σn−1)

)

and

1− (σ−3 − σ−2)

n−1∑
k=2

σ2k + (1− σn−1)(σn−2 − σn−1) ≥ 1− (σ−3 − σ−2)

n−1∑
k=2

σ2k

≥ 1− (σ−3 − σ−2)
σ4

1− σ2

≥ 0,

we have C⊤
2 Cn ≥ 0. Additionally, since C1 = 0, we have C⊤

i Cj = 0 whenever i = 1 or j = 1. With the fact that
C⊤

i Cj ≥ 0 if 2 ≤ i, j ≤ n, we have min1≤i,j≤n C
⊤
i Cj = min1≤i,j≤n(C

⊤C)ij ≥ 0, i.e., all entries of C⊤C are
non-negative. Therefore we can conclude that

τ
(1)
2 = 1⊤C⊤C1− tr(C⊤C)

=
∑
i̸=j

(C⊤C)ij

≥ 0,

which completes the proof.

18
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We now shift our focus to the left-hand side of the inequality in the theorem. Since (MRPCD
A )K(I) is symmetric, we have

E
[
∥xK∥2

]
∥x0∥2

=
x⊤
0 (MRPCD

A )K(I)x0

x⊤
0 x0

≤ λmax((MRPCD
A )K(I)).

Importantly, we have previously shown that (MRPCD
A )K(I) can be computed using only MA. Specifically, if we write

(MRPCD
A )K(I) = αKI + βK11⊤, then it follows that

MK
A

[
1
0

]
=

[
αK

βK

]
.

Moreover, since the entries of MA are non-negative by Lemma B.3, we have αK , βK ≥ 0 for all K ≥ 0. Since the
eigenvalues of a matrix of the form aI + b11⊤ are a and a + nb (with multiplicity n − 1), the largest eigenvalue of
(MRPCD

A )K(I) = αKI + βK11⊤ is given by

αK + nβK = y⊤MK
A x,

where x =

[
1
0

]
and y =

[
1
n

]
.

To proceed, we use the following lemma, known as the Gelfand formula.

Lemma B.4 (Horn & Johnson (2012), Corollary 5.6.14.). If A ∈ Rn×n, then ρ(A) = limK→∞ ∥AK∥1/K .

Since λmax((MRPCD
A )K(I)) = y⊤MK

A x ≥ 0, we have

lim
K→∞

(
λmax((MRPCD

A )K(I))
)1/K

= lim
K→∞

|y⊤MK
A x|1/K

≤ lim
K→∞

(∥y∥∥MK
A ∥∥x∥)1/K

≤ lim
K→∞

∥y∥1/K∥x∥1/K∥MK
A ∥1/K

= ρ(MA). (∵ Lemma B.4)

Now, consider A = diag{σIk + (1 − σ)1k1
⊤
k , In−k} for an integer k with 2 ≤ k ≤ n. We denote the submatrix

σIk + (1− σ)1k1
⊤
k by Ak. Let Sn be the set of permutations on [n]. We first show the following lemma:

Lemma B.5. Let P be an n× n permutation matrix generated by a permutation p ∈ Sn. Let q be a permutation of [n]
such that q(l) = il for l ∈ [k], where i1, . . . , ik is a reordering of [k] satisfying p−1(ik) > · · · > p−1(i1), and q(l) = l for
l > k. Define Q as an n× n permutation matrix generated by q. Then,

PΓPP⊤ = QΓQQ⊤.

Proof. Since

e⊤i tril(A)ej =

{
aij if i ≥ j

0 if i < j

and P⊤ = P−1 for any permutation matrix P , we have

e⊤i PΓPP⊤ej = e⊤p−1(i)ΓP ep−1(j)

=

{
e⊤p−1(i)(P

⊤AP )ep−1(j) if p−1(i) ≥ p−1(j)

0 if i < j

=

{
aij if p−1(i) ≥ p−1(j)

0 if p−1(i) < p−1(j).
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Consider first the case where i, j ∈ [k]. Then,

p−1(i) ≥ p−1(j) ⇐⇒ i = ia, j = ib for some a, b ∈ [k] such that a ≥ b

⇐⇒ q−1(ia) = a ≥ b = q−1(ib).

Therefore,

e⊤i PΓPP⊤ej = e⊤i QΓQQ⊤ej

for all i, j ∈ [k].

Now consider the case where i ∈ [k] and j /∈ [k]. In this case, we have aij = 0, so the equality e⊤i PΓPP⊤ej =
e⊤i QΓQQ⊤ej holds trivially. Similarly, the equality holds when i /∈ [k] and j ∈ [k].

Finally, suppose i, j /∈ [k]. Then both e⊤i PΓPP⊤ej and e⊤i QΓQQ⊤ej are equal to 1 if i = j, and 0 otherwise.

Therefore, we conclude that

e⊤i PΓPP⊤ej = e⊤i QΓQQ⊤ej

for all i, j ∈ [n].

Note that for any p ∈ Sn, there exists a unique permutation qk ∈ Sk satisfying q(l) = il for l ∈ [k], where i1, . . . , ik is a
reordering of [k] such that p−1(ik) > · · · > p−1(i1). Furthermore, there exist n!

k! permutations in Sn that correspond to a
given qk.

Let Dk,n−k be the set of block-diagonal matrices consisting of a k× k block and an (n− k)× (n− k) block. Then, Dk,n−k

is closed under scalar multiplication, matrix multiplication, addition, transposition, and inversion.

Now, we have T RPCD
A,p = I − PΓ−1

P P⊤A = I −QΓ−1
Q Q⊤A by Lemma B.5. Also, I,P ,ΓP and A are in Dk,n−k, so

T RPCD
A,p ∈ Dk,n−k. To analyze the structure, let qk be the restriction of q to [k] and Qk be the k × k permutation matrix

generated by qk, which is equal to the (1, 1)-block of Q. Then, the (1, 1)-block of T RPCD
A,p is given by Ik −QkΓ

−1
Qk

Q⊤
k Ak

and the (2, 2)-block is 0n−k,n−k, meaning that

T RPCD
A,p =

[
T RPCD
Ak,qk

0k,n−k

0n−k,k 0n−k,n−k

]
.

Therefore, if X =

[
X11 0k,n−k

0n−k,k X22

]
∈ Dk,n−k, we have

MRPCD
A (X) =

1

n!

∑
p∈Sn

(T RPCD⊤
A,p XT RPCD

A,p )

=
1

k!

∑
qk∈Sk

[
T RPCD⊤
Ak,qk

0k,n−k

0n−k,k 0n−k,n−k

] [
X11 0k,n−k

0n−k,k X22

] [
T RPCD
Ak,qk

0k,n−k

0n−k,k 0n−k,n−k

]

=
1

k!

∑
qk∈Sk

[
T RPCD⊤
Ak,qk

X11T
RPCD
Ak,qk

0k,n−k

0n−k,k 0n−k,n−k

]

=

[
MRPCD

Ak
(X11) 0k,n−k

0n−k,k 0n−k,n−k

]
.

By the above, for all K ≥ 1, we can see that

(MRPCD
A )K(In) =

[
(MRPCD

Ak
)K(Ik) 0k,n−k

0n−k,k 0n−k,n−k

]
and

λmax((MRPCD
A )K(In)) = λmax((MRPCD

Ak
)K(Ik))
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because (MRPCD
Ak

)K(Ik) ⪰ 0.

Since we have already shown that limK→∞ λmax((MRPCD
Ak

)K(Ik))
1/K ≤ ρ(MAk

), it suffices to show that

ρ(MAk
) ≤ max

{(
1− 1

n

)n

,
(
1− σ

n

)2n}
.

To proceed, we can use the fact that ρ(MAk
) ≤ ∥MAk

∥∞. Since ∥MAk
∥∞ = max{τ (1)1 + τ

(2)
1 , τ

(1)
2 + τ

(2)
2 } (all being

positive values by Lemma B.3), it is sufficient to show that the inequalities

τ
(1)
1 (k, σ) + τ

(2)
1 (k, σ) ≤ max

{(
1− 1

n

)n

,
(
1− σ

n

)2n}
(19)

τ
(1)
2 (k, σ) + τ

(2)
2 (k, σ) ≤ max

{(
1− 1

n

)n

,
(
1− σ

n

)2n}
(20)

hold for all integers k such that 2 ≤ k ≤ n, where τ
(j)
i (k, σ) denotes (MAk

)ij for i = 1, 2 and j = 1, 2. Since both
left-hand sides in (19) and (20) are polynomials in σ, the problem reduces to a comparison of polynomials.

We now focus on finding the coefficient series of α, β, γ, and δ when each is written as a polynomial of σ. This is because
the left-hand sides of the inequalities can be expressed in terms of these polynomials. We introduce some notations for
brevity. Let sn =

∑n−1
i=0 σi and tn =

∑n−1
i=0 σ2i. Then, for σ ∈ (0, 1), we have

sn =
1− σn

1− σ
, tn =

1− σ2n

1− σ2
.

Since α = β = γ = δ = 0 when σ = 1, we will focus on calculating the coefficients of α, β, γ and δ for σ ∈ (0, 1).

COEFFICIENTS OF α

We have

Lsn = n+

n−1∑
i=1

σi − (n− 1)σn

L2tn = n2 − 2n(n− 1)

n−1∑
i=0

σ2i+1 + (n2 + (n− 1)2)

n−1∑
i=0

σ2i+2 + (n− 1)2σ2n.

Since α = n− 2Lsn + L2tn, if we write α =
∑2n

k=0 akσ
k,

ak =



n2 − n if k = 0

−2n2 + 2n− 2 if 1 ≤ k ≤ n− 1 and k odd
2n2 − 2n− 1 if 1 ≤ k ≤ n− 1 and k even
−2(n− 1)2 if k = n and n odd
2n2 − 1 if k = n and n even
−2n(n− 1) if n+ 1 ≤ k ≤ 2n− 1 and k odd
2n2 − 2n+ 1 if n+ 1 ≤ k ≤ 2n− 1 and k even
(n− 1)2 if k = 2n.

COEFFICIENTS OF β

We first expand

(1− σ)2
n∑

j=1

(
(1− 2σj−1)

n−j∑
i=0

σ2i

)
= (1− σ)2

n∑
j=1

n−j∑
i=0

σ2i − (1− σ)2
n∑

j=1

n−j∑
i=0

2σj−1σ2i.
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Using the fact that

n∑
j=1

n−j∑
i=0

σ2i =

n−1∑
k=0

(n− k)σ2k,

we can simplify the first term:

(1− σ)2
n∑

j=1

n−j∑
i=0

σ2i = n+

2n∑
k=1

(−1)k(2n+ 1− k)σk

For the second term, we have

(1− σ)2
n∑

j=1

n−j∑
i=0

σj−1σ2i = −σn +

2n∑
k=0

(−σ)k.

Now, the remaining part is

n−1∑
j=0

(1− σ)2
1− σ2n

1− σ2
= n(1− σ)2

(
1 + σ2 + · · ·+ σ2n−2

)
= n+ nσ2n +

2n−1∑
k=1

2n(−σ)k.

Therefore, β =
∑2n

k=0 bkσ
k, where

bk =



2n− 2 if k = 0

−3n+ 3 if k = n and n odd
3n+ 1 if k = n and n even
n− 1 if k = 2n

(−1)k(4n− 1− k) otherwise.

COEFFICIENTS OF γ

We use the fact that γ =
(
1⊤v

)2
= (n− Lsn)

2. Since n− Lsn = (n− 1)σn −
∑n−1

i=1 σi, we have

γ = (n− Lsn)
2

=

(
(n− 1)σn −

n−1∑
i=1

σi

)2

= (n− 1)2σ2n − 2(n− 1)σn
n−1∑
i=1

σi +

2n−2∑
j=2

(j − 1)σj .

Consequently, γ =
∑2n

k=0 ckσ
k, where

ck =


0 if k = 0

k − 1 if 1 ≤ k ≤ n

1− k if n+ 1 ≤ k ≤ 2n− 1

(n− 1)2 if k = 2n.

22



Provable Benefit of Random Permutations over Uniform Sampling in Stochastic Coordinate Descent

COEFFICIENTS OF δ

Let δ =
∑2n

k=0 dkσ
k. Since

δ =

n∑
i=1

(σn − σi)2

=

n∑
i=1

(σ2n − 2σn+i + σ2i)2

= nσ2n − 2(σn+1 + · · ·+ σ2n) + (σ2 + · · ·+ σ2n),

dk =



0 if k = 0

0 if 1 ≤ k ≤ n and k odd
1 if 1 ≤ k ≤ n and k even
−2 if n+ 1 ≤ k ≤ 2n− 1 and k odd
−1 if n+ 1 ≤ k ≤ 2n− 1 and k even
n− 1 if k = 2n.

We can now express the left-hand sides of inequalities (19) and (20) using the coefficients of α, β, γ and δ. Let us define

T1(n, σ) = n(β + δ)− (α+ γ) =

2n∑
k=0

t1,kσ
k

T2(n, σ) = (α+ γ)− (β + δ) =

2n∑
k=0

t2,kσ
k.

Then, T1(n, σ) = n(n− 1)(τ
(1)
1 + τ

(2)
1 ), T2(n, σ) = n(n− 1)(τ

(1)
2 + τ

(2)
2 ),

t1,k =



n2 − n if k = 0

(n− 1)k − 2n2 − n+ 3 if 1 ≤ k ≤ n and k odd
−(n+ 1)k + 2n2 + 2n+ 2 if 1 ≤ k ≤ n and k even
(n+ 1)k − 2n2 − 3n− 1 if n+ 1 ≤ k ≤ 2n and k odd
−(n− 1)k + 2n2 − 2 if n+ 1 ≤ k ≤ 2n and k even

and

t2,k =



n2 − 3n+ 2 if k = 0

−2n2 + 6n− 4 if 1 ≤ k ≤ n− 1 and k odd
2k + 2n2 − 6n− 2 if 1 ≤ k ≤ n− 1 and k even
−2n2 + 8n− 6 if k = n and n odd
2n2 − 2n− 4 if k = n and n even
−2k − 2n2 + 6n+ 2 if n+ 1 ≤ k ≤ 2n and k odd
2n2 − 6n+ 4 if n+ 1 ≤ k ≤ 2n and k even.

We will first address the case where n is sufficiently large. For the remaining cases, including inequalities (19) and (20) for
smaller values of n as well as specific polynomial inequalities arising during the proof for sufficiently large n, we will utilize
Sturm’s theorem (Proposition B.6), which provides a method for counting the number of distinct real roots of a polynomial
within a given interval.
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Proposition B.6 (Jacobson (1985), Sturm’s Theorem). Let f(x) be any polynomial with coefficients in R of positive degree.
We define the standard sequence for f(x) by:

f0(x) = f(x), f1(x) = f ′(x) (formal derivative of f(x))

f0(x) = q1(x)f1(x)− f2(x), deg f2 < deg f1

...

fi−1(x) = qi(x)fi(x)− fi+1(x), deg fi+1 < deg fi

...

fs(x) = qs(x)fs(x) (that is, fs+1(x) = 0).

Given a sequence c = (c1, c2, . . . , cm) of elements of R, we define the number of variations in sign of c to be the number of
variations in sign of the subsequence c′ obtained by dropping the 0’s in c.

Let f(x) be a polynomial of positive degree with coefficients in a real closed field R and let {f0(x) = f(x), f1(x) =
f ′(x), . . . , fs(x)} be the standard sequence for f(x). Assume [a, b] is an interval such that f(a) ̸= 0, f(b) ̸= 0.
Then the number of distinct roots of f(x) in (a, b) is Va − Vb, where Vc denotes the number of variations in sign of
{f0(c), f1(c), . . . , fs(c)}.

To apply Proposition B.6 to inequalities, we utilize the following property: for a polynomial p, if p(x) ̸= 0 on (a, b) and
p(a) > 0, then p(b) ≥ 0; similarly, if p(b) > 0, then p(a) ≥ 0. By this property, we can verify that p ≥ 0 on (a, b], [a, b),
or [a, b]. That is, since p(x) ̸= 0 can be confirmed using Proposition B.6, we only need to check that p is positive at the
specific endpoint of the interval. Once this is established, we can conclude that p ≥ 0 on the interval (a, b], [a, b), or [a, b],
as required.

Prior to the main proof, we establish the following results using Proposition B.6, which address not only the remaining cases
for smaller values of n but also certain inequalities that arise during the proof.

• For i = 1, 2, Ti(m,σ)
m(m−1) ≤

(
1− σ

n

)2n
for all integers m and n where 2 ≤ m ≤ n ≤ 6 and σ ∈ (0, 0.6].

• T1(m,σ)
m(m−1) ≤

1
4 for all integers m where 2 ≤ m ≤ 10 and σ ∈ [0.6, 0.8].

• T1(m,σ)
m(m−1) ≤

1
4 for all integers m where 2 ≤ m ≤ 14 and σ ∈ [0.8, 1).

• T2(m,σ)
m(m−1) ≤

1
4 for all integers m where 2 ≤ m ≤ 10 and σ ∈ [0.6, 1).

We verify these results in Appendix C using Proposition B.6 implemented in a computer algebra system. See Appendix C
for more details on the implementations of the computational verification system.

Back to the main proof, to prove (19) and (20) on the interval (0, 1] for all integers k and n such that 2 ≤ k ≤ n, we
first divide the interval into three subintervals: (0, 0.6], [0.6, 0.8] and [0.8, 1]. We then show these inequalities for each
subinterval. In the subsequent proof, for the cases when σ ∈ (0, 0.6] and when σ ∈ [0.6, 0.8], we initially assume that n ≥ 7
and n ≥ 11, respectively. The results of our proof can be summarized as follows:

• σ ∈ (0, 0.6]: Both inequalities (19) and (20) hold for all integers k and n such that n ≥ 7 and 2 ≤ k ≤ n.

• σ ∈ [0.6, 0.8]: Both inequalities (19) and (20) hold for all integers k and n such that n ≥ 11 and 2 ≤ k ≤ n.

• σ ∈ [0.8, 1]: If σ ̸= 1, inequality (19) holds for all integers k and n such that n ≥ 15 and 2 ≤ k ≤ n, and (20) holds
for all integers k and n such that n ≥ 10 and 2 ≤ k ≤ n. If σ = 1, since the left-hand side of both (19) and (20) is 0,
thus they are trivially satisfied.
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CASE I. σ ∈ (0, 0.6]

We first show that if 2 ≤ i ≤ n, then t1,2i ≥ 0, t1,2i−1 ≤ 0 and t1,2i−1 + t1,2i ≤ 0. If 4 ≤ 2i ≤ n,

t1,2i = −(n+ 1)2i+ 2n2 + 2n+ 2

≥ −(n+ 1)n+ 2n2 + 2n+ 2

= n2 + n+ 2

≥ 0

and

t1,2i−1 = (n− 1)(2i− 1)− 2n2 − n+ 3

≤ (n− 1)2 − 2n2 − n+ 3

= −n2 − 3n− 5

≤ 0.

Moreover, we have t1,2i−1 + t1,2i = −4i+ 6 ≤ 0 because i ≥ 2.

If 2i = n+ 1,

t1,2i = −(n− 1)(n+ 1) + 2n2 − 2

= n2 − 1

≥ 0

and

t1,2i−1 = (n− 1)n− 2n2 − n+ 3

= −n2 − 2n+ 3

≤ 0.

Furthermore, we have t1,2i−1 + t1,2i = −2n+ 2 ≤ 0.

Finally, if n < 2i− 1 ≤ 2n− 1,

t1,2i = −(n− 1)2i+ 2n2 − 2

≥ −2n(n− 1) + 2n2 − 2

= 2n− 2

≥ 0

and

t1,2i−1 = (n+ 1)(2i− 1)− 2n2 − 3n− 1

≤ (2n− 1)(n+ 1)− 2n2 − 3n− 1

= −2n− 2

≤ 0.

In this case, we have t1,2i−1 + t1,2i = 4i− 4n− 4 ≤ 0 because 2i ≤ 2n.

Now, if σ ∈ (0, 1],

t1,2iσ
2i + t1,2i−1σ

2i−1 = σ2i−1(t1,2iσ + t1,2i−1)

≤ (t1,2iσ + t1,2i−1)

≤ t1,2i + t1,2i−1 (∵ t1,2i ≥ 0)

≤ 0.
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Thus, for 2 ≤ i ≤ n, we have

2i∑
k=0

t1,kσ
k ≥ T1(n, σ). (21)

This provides an upper bound for T1(n, σ).

A similar result can be obtained for T2(n, σ). We first show that t2,2i−1 ≤ 0, t2,2i ≥ 0 for all i ∈ [n].

Since 2n2 − 6n+ 4, 2n2 − 2n− 4, 2n2 − 8n+ 6 ≥ 0, we only consider when k is even and 2 ≤ k ≤ n− 1, or k is odd
and n+ 1 ≤ k ≤ 2n. For the first case,

t2,k = 2k + 2n2 − 6n− 2

≥ 2n2 − 6n+ 2

≥ 0

and for the second case,

t2,k = −2k − 2n2 + 6n+ 2

≤ −2(n+ 1)− 2n2 + 6n+ 2

= −2n2 + 4n

≤ 0.

Now, we show that t2,2i + t2,2i−1 ≤ 0 if 2i− 1 ≥ n+ 1. We have

t2,2i = 2n2 − 6n+ 4

≥ 0

and

t2,2i−1 = −2(2i− 1)− 2n2 + 6n+ 2

≤ −2(n+ 1)− 2n2 + 6n+ 2

= −2n2 + 4n

≤ 0.

Moreover, t2,2i + t2,2i−1 = −4i+ 8 ≤ 0 because 2i− 1 ≥ n+ 1.

Using the fact that t2,2i−1 ≤ 0, t2,2i ≥ 0 for all i ∈ [n], we have

t2,2iσ
2i + t2,2i−1σ

2i−1 = σ2i−1(t2,2iσ + t2,2i−1)

≤ 0

if σ ∈
[
0,− t2,2i−1

t2,2i

]
. Thus, if

σ ∈
n⋂

i=1

[
0,− t2,2i−1

t2,2i

]
=

[
0, min

1≤i≤n
− t2,2i−1

t2,2i

]
,

we have

2i−2∑
k=0

t2,kσ
k ≥ T2(n, σ)

for i ≥ 1.
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Now, we focus on the minimum of − t2,2i−1

t2,2i
. If n is even,

− t2,2i−1

t2,2i
=


2n2−6n+4

2n2−6n−2+4i if 1 ≤ 2i ≤ n− 1
2n2−6n+4
2n2−2n−4 if 2i = n
2n2−6n−4+4i
2n2−6n+4 if n+ 1 ≤ 2i ≤ 2n.

Therefore, if n is even and n ≥ 4,

min
1≤i≤n

− t2,2i−1

t2,2i
= min

{
2n2 − 6n+ 4

2n2 − 4n+ 4
,
2n2 − 6n+ 4

2n2 − 2n− 4
,
2n2 − 4n− 2

2n2 − 6n+ 4

}
=

n− 1

n+ 1
.

If n is odd and 2i− 1 ≤ n,

− t2,2i−1

t2,2i
=


2n2−6n+4

2n2−6n−2+4i if 1 ≤ 2i− 1 ≤ n− 1
2n2−8n+6
2n2−6n+4 if 2i− 1 = n
2n2−6n−4+4i
2n2−6n+4 if n+ 1 ≤ 2i− 1 ≤ 2n.

Therefore, if n is odd and n ≥ 3,

min
1≤i≤n

− t2,2i−1

t2,2i
= min

{
2n2 − 8n+ 6

2n2 − 6n+ 4
,
2n2 − 6n+ 4

2n2 − 4n− 2
,

2n2 − 4n

2n2 − 6n+ 4

}
=

n− 3

n− 2
.

Thus,

min
1≤i≤n

− t2,2i−1

t2,2i
= min

{
n− 1

n+ 1
,
n− 3

n− 2

}
. (22)

Since 0.6 ≤ n−1
n+1 ≤ n−3

n−2 for n ≥ 5, for σ ∈ (0, 0.6] and i ∈ [n], we have

2i−2∑
k=0

t2,kσ
k ≥ T2(n, σ). (23)

Our next step is to find a lower bound for
(
1− σ

n

)2n
. To this end, we first prove the following lemma about binomial

coefficients.

Lemma B.7. For positive integers r and n such that 1 ≤ r < n,(
2n

r

)
1

nr
≥
(

2n

r + 1

)
1

nr+1
.

Proof. (
2n
r+1

)
1

nr+1(
2n
r

)
1
nr

=
2n− r

n(r + 1)

and
2n− r

n(r + 1)
≤ 1 ⇐⇒ n ≤ (n+ 1)r.

Since n ≤ (n+ 1)r for all r ≥ 1 and both
(
2n
r

)
1
nr and

(
2n
r+1

)
1

nr+1 are positive, we conclude that(
2n

r

)
1

nr
≥
(

2n

r + 1

)
1

nr+1
.

27



Provable Benefit of Random Permutations over Uniform Sampling in Stochastic Coordinate Descent

By the Binomial Theorem,

(
1− σ

n

)2n
=

2n∑
r=0

(
2n

r

)(
− 1

n

)r

σr.

Additionally, for i ≤ n− 1, we have

2n∑
r=2i

(
2n

r

)(
− 1

n

)r

σr =
1

n2n
σ2n +

n−1∑
k=i

((
2n

2k

)(
− 1

n

)2k

σ2k +

(
2n

2k + 1

)(
− 1

n

)2k+1

σ2k+1

)

≥
n−1∑
k=i

σ2k

((
2n

2k

)(
− 1

n

)2k

+

(
2n

2k + 1

)(
− 1

n

)2k+1

σ

) (
∵

1

n2n
σ2n ≥ 0

)

=

n−1∑
k=i

σ2k

((
2n

2k

)
1

n2k
−
(

2n

2k + 1

)
1

n2k+1
σ

)

≥
n−1∑
k=i

σ2k

((
2n

2k

)
1

n2k
−
(

2n

2k + 1

)
1

n2k+1

)
(∵ 0 ≤ σ ≤ 1)

≥ 0. (∵ Lemma B.7)

Therefore, we obtain

2i−1∑
r=0

(
2n

r

)(
− 1

n

)r

σr ≤
(
1− σ

n

)2n
, (24)

which provides a lower bound for
(
1− σ

n

)2n
.

Let P1(n, σ) =
∑6

k=0 t1,kσ
k. By Equation (21), T1(n, σ) ≤ P1(n, σ). Moreover, if m is an integer with 2 ≤ m ≤ n,

P1(m+ 1, σ)

(m+ 1)m
− P1(m,σ)

m(m− 1)
=

2

m(m2 − 1)

(
m(σ6 − σ5 − σ2 + σ) + 5σ6 + σ5 + 2σ4 − σ2 − σ

)
. (25)

Let p1(σ) = σ6 − σ5 − σ2 + σ and q1(σ) = 5σ6 + σ5 + 2σ4 − σ2 − σ.

It can be easily verified that 6p1 + q1 ≥ 0 holds for σ ∈ (0, 0.6]. Also, p1(σ) = σ(σ − 1)2(σ + 1)(σ2 + 1) ≥ 0 if σ ≥ 0,
so mp1 + q1 ≥ 0 for all m ≥ 6 and σ ∈ (0, 0.6]. This implies that

P1(m+ 1, σ)

(m+ 1)m
≥ P1(m,σ)

m(m− 1)
,

or equivalently, P1(m,σ)
m(m−1) is increasing in m, for all m ≥ 6.
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Now, define D1(n, σ) =
(∑5

r=0

(
2n
r

) (
−σ

n

)r)− P1

n(n−1) =
∑6

k=0 d1,kσ
k. Then,

d1,0 = 0

d1,1 =
2

n

d1,2 =
−3n+ 1

n(n− 1)

d1,3 =
2n2 + 6n− 2

3n2

d1,4 =
−8n4 − 4n3 + 35n2 − 14n+ 3

6n3(n− 1)

d1,5 =
26n4 − 10n3 − 35n2 + 25n− 6

15n4

d1,6 =
2(−n2 + 2n+ 2)

n(n− 1)
.

Note that d1,1 ≥ 0 and d1,2 ≤ 0. Since n ≥ 7 implies 0.6 ≤ −d1,1

d1,2
= 2n−2

3n−1 , we have d1,2σ2+d1,1σ = σ(d1,2σ+d1,1) ≥ 0

for σ ∈ (0, 0.6].

Now, let r1(n, σ) = d1,6σ
3 + d1,5σ

2 + d1,4σ+ d1,3. Then, we have D1 = σ3r1 + d1,2σ
2 + d1,1σ. Therefore, it suffices to

show that r1 ≥ 0.

We proceed by examining the derivative of r1 with respect to σ to determine its monotonicity on this interval. The derivative
is given by

d

dσ
r1(n, σ) = 3d1,6σ

2 + 2d1,5σ + d1,4.

For n ≥ 7, we have 3d1,6 ≤ −4, 2d1,5 ≤ 4 and d1,4 ≤ −1. Therefore, for σ ∈ (0, 0.6], we have

d

dσ
r1(n, σ) ≤ −4σ2 + 4σ − 1

= −(2σ − 1)2

≤ 0.

Thus, r1(n, σ) is decreasing in σ on (0, 0.6]. Consequently, r1(n, σ) ≥ r1(n, 0.6) if σ ∈ (0, 0.6]. Furthermore, we have

r1(0.6) =
44n5 + 700n4 + 823n3 + 530n2 − 333n+ 108

750n4 (n− 1)
≥ 0.

Thus, we can conclude that D1(n, σ) = σ3r1(n, σ) + d1,2σ
2 + d1,1σ ≥ 0 for σ ∈ (0, 0.6] and n ≥ 7.

Similar to P1, let P2 =
∑6

k=0 t2,kσ
k. Then, T2 ≤ P2 by (23). Furthermore,

P2(m+ 1, σ)

(m+ 1)m
− P2(m,σ)

m(m− 1)
=

2

m(m2 − 1)
(mp2(σ) + q2(σ)) (26)

where p2(σ) = 2σ6 − 2σ5 + 2σ4 − 2σ3 + 2σ2 − 2σ + 1 and q2(σ) = −8σ6 + 2σ5 − 4σ4 + 2σ3 + 2σ − 1.

Then, it follows that 2p1 + q1 ≥ 0 for σ ∈ (0, 0.6].

Moreover,

p2(σ) = 1− 2σ(1− σ + σ2 − σ3 + σ4 − σ5)

=
1− σ + 2σ7

1 + σ

≥ 0,
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so mp2(σ) + q2(σ) ≥ 0 for all m ≥ 2. Therefore, P2(m,σ)
m(m−1) is increasing in m.

Now, similar to D1, we define D2(n, σ) =
(∑5

r=0

(
2n
r

) (
−σ

n

)r)− P2(n,σ)
n(n−1) =

∑6
k=0 d2,kσ

k. Then,

d2,0 =
2

n

d2,1 = − 4

n

d2,2 =
3n− 1

n (n− 1)

d2,3 =
2n2 − 6n− 2

3n2

d2,4 =
−8n4 + 20n3 − 13n2 − 14n+ 3

6n3 (n− 1)

d2,5 =
26n4 − 40n3 − 35n2 + 25n− 6

15n4

d2,6 =
2
(
−n2 + 3n− 5

)
n (n− 1)

.

Let r2(n, σ) = d2,6σ
3 + d2,5σ

2 + d2,4σ + d2,3. Then, we can express D2 as

D2 = σ3r2 + d2,2σ
2 + d2,1σ + d2,0.

We will show that the minimum of D2 is non-negative on (0, 0.6]. First, we consider d2,2σ2 + d2,1σ + d2,0. This quadratic
attains its minimum value of 2(n+1)

n(3n−1) at σ = 2(n−1)
3n−1 . Thus, to prove that D2 ≥ 0 on (0, 0.6], it suffices to show that

2(n+ 1)

n(3n− 1)
+ min

σ∈(0,0.6]
σ3r2(σ) ≥ 0.

If minσ∈(0,0.6] r2(σ) ≥ 0, then the inequality holds. On the other hand, if minσ∈(0,0.6] r2(σ) ≤ 0, then we have

min
σ∈(0,0.6]

σ3r2(σ) ≥ 0.63 min
σ∈(0,0.6]

r2(σ).

Taking the derivative, we have

d

dσ
r2 = 3d2,6σ

2 + 2d2,5σ + d2,4.

We can also observe that 3d2,6 ≤ − 13
3 , 2d2,5 ≤ 52

15 and d2,4 ≤ − 3
4 for all n. Therefore, given that σ ≥ 0, we can see that

d

dσ
r2 ≤ −13

3
σ2 +

52

15
σ − 3

4

≤ − 17

300
.

Hence, r2 is decreasing in σ and we have

min
σ∈(0,0.6]

r2(σ) = r2(0.6)

=
44n5 − 716n4 − 1505n3 + 530n2 − 333n+ 108

750n4 (n− 1)
.
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For n ≥ 19, we have r2(0.6) ≥ 0. In the remaining cases, we use the fact that minσ∈(0,0.6] σ
3r2(σ) ≥ 0.63r2(0.6). Then,

for all n such that 7 ≤ n ≤ 18, we have

2(n+ 1)

n(3n− 1)
+ min

σ∈(0,0.6]
σ3r2(σ) ≥

2(n+ 1)

n(3n− 1)
+ 0.63r2(0.6)

=
1188n6 + 42772n5 − 34191n4 − 34645n3 − 13761n2 + 5913n− 972

31250n4(3n2 − 4n+ 1)

≥ 0.

Hence, we can conclude that D2 ≥ 0 for n ≥ 7 and σ ∈ (0, 0.6].

Finally, we use the following lemma:

Lemma B.8.
(
1 + c

n

)n
is increasing if n ≥ −c.

Proof. Let an =
(
1 + c

n

)n
. Then, by the AM-GM inequality,

an =
(
1 +

c

n

)n
= 1 ·

(
1 +

c

n

)
· · ·
(
1 +

c

n

)
≤
(
n+ 1 + c

n+ 1

)n+1

= an+1.

For σ ∈ (0, 0.6] and i = 1, 2, we have

max
2≤m≤n

Ti(m,σ)

m(m− 1)
= max

{
max

2≤m≤6

Ti(m,σ)

m(m− 1)
, max
7≤m≤n

Ti(m,σ)

m(m− 1)

}
≤ max

{(
1− σ

6

)12
, max
7≤m≤n

Ti(m,σ)

m(m− 1)

}
≤ max

{(
1− σ

6

)12
, max
7≤m≤n

Pi(m,σ)

m(m− 1)

}
(∵ Ti ≤ Pi for n ≥ 7)

≤ max

{(
1− σ

6

)12
,
Pi(n, σ)

n(n− 1)

} (
∵

Pi(m,σ)

m(m− 1)
is increasing in m for m ≥ 7

)
≤ max

{(
1− σ

6

)12
,
(
1− σ

n

)2n}
(∵ Di ≥ 0 and (24))

≤
(
1− σ

n

)2n
. (∵ Lemma B.8)

Note that we used the fact that max2≤m≤6
Ti(m,σ)
m(m−1) ≤

(
1− σ

6

)12
for the first inequality, which can be verified using

Proposition B.6.

CASE II. σ ∈ [0.6, 0.8]

Since
(
1− σ

n

)2n ≤
(
1− 1

n

)n
for σ ∈ [0.6, 0.8], it is enough to show that

max
2≤m≤n

Ti(m,σ)

m(m− 1)
≤
(
1− 1

n

)n

for i = 1, 2.
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We start by examining P1, which is an upper bound for T1. By Equation (25), if mp1 + q1 ≥ 0, we have

P1(m+ 1, σ)

(m+ 1)m
− P1(m,σ)

m(m− 1)
≥ 0.

Note that p1(σ) = σ(σ − 1)2(σ + 1)(σ2 + 1) ≥ 0 for σ ≥ 0 and 2p1 + q1 ≥ 0 on [0.6, 0.8]. Therefore, mp1 + q1 ≥ 0 for
all m ≥ 2, and

max
2≤m≤n

P1(m,σ)

m(m− 1)
=

P1(n, σ)

n(n− 1)

≤ lim
n→∞

P1(n, σ)

n(n− 1)

= 2σ6 − 2σ5 + 2σ4 − 2σ3 + 2σ2 − 2σ + 1

for σ ∈ [0.6, 0.8].

Next, we consider P2. We have already shown that if σ ∈
[
0,min

{
n−1
n+1 ,

n−3
n−2

}]
, then (23) holds. Since we assumed that

n ≥ 11 in this case, and 0.8 ≤ n−1
n+1 ≤ n−3

n−2 for n ≥ 11, we have T2 ≤ P2 on [0.6, 0.8].

Similar to P1, we first note that p2(σ) = 1−σ+2σ7

1+σ ≥ 0 on [0.6, 0.8]. Using the fact that 11p2 + q2 ≥ 0 on [0.6, 0.8], we can
conclude that

max
11≤m≤n

P2(m,σ)

m(m− 1)
=

P2(n, σ)

n(n− 1)

≤ lim
n→∞

P2(n, σ)

n(n− 1)

= 2σ6 − 2σ5 + 2σ4 − 2σ3 + 2σ2 − 2σ + 1.

We also note that 2σ6 − 2σ5 + 2σ4 − 2σ3 + 2σ2 − 2σ + 1 ≤ 7
20 ≤

(
1− 1

11

)11
on [0.6, 0.8].

Thus, for i = 1, 2,

max
2≤m≤n

Ti(m,σ)

m(m− 1)
≤ max

{
max

2≤m≤10

Ti(m,σ)

m(m− 1)
, max
11≤m≤n

Ti(m,σ)

m(m− 1)

}
≤ max

{
1

4
, max
11≤m≤n

Ti(m,σ)

m(m− 1)

}
≤ max

{
1

4
, max
11≤m≤n

Pi(m,σ)

m(m− 1)

}
(∵ Ti ≤ Pi for m ≥ 11)

≤ max

{
1

4
, 2σ6 − 2σ5 + 2σ4 − 2σ3 + 2σ2 − 2σ + 1

}
≤ max

{(
1− 1

2

)2

,

(
1− 1

11

)11
}

≤
(
1− 1

n

)n

. (∵ Lemma B.8)

The second inequality follows from the fact that max2≤m≤10
Ti(m,σ)
m(m−1) ≤

1
4 , which can be confirmed using Proposition B.6.

CASE III. σ ∈ [0.8, 1]

If σ = 1, we have T1 = T2 = 0, and hence inequalities (19) and (20) are trivially satisfied. Therefore, we proceed to prove
the inequalities for σ ∈ [0.8, 1).

We first prove the following three lemmas.

Lemma B.9. log(1 + x) ≥ x
1+x for x > −1.
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Proof. The inequality is equivalent to log x ≥ 1 + 1
x for x > 0. This inequality can be easily verified by considering the

function g(x) = log x + 1
x − 1. Since g′(x) = 1

x − 1
x2 , g has the a local minimum at x = 1. Since g(1) = 0, we have

g(x) ≥ 0, which implies log x ≥ 1− 1
x .

Lemma B.10. log(1+x)
x ≥ 2

2+x for −1 < x < 0 and x > 0.

Proof. If x > 0, the inequality becomes (2 + x) log(1 + x) ≥ 2x. Define f(x) = (2 + x) log(1 + x) − 2x. Then,
f ′(x) = log(1 + x) − x

1+x and f ′′(x) = x
(1+x)2 . Since limx↓0 f

′(x) = 0 and f ′′(x) > 0, f ′(x) ≥ 0 on x > 0. Now,
suppose −1 < x < 0. Then, the inequality is equivalent to f(x) ≤ 0. Then, limx↑0 f

′(x) = 0 and f ′′(x) < 0, so f ′(x) ≤ 0
on −1 < x < 0. Since limx→0 f(x) = 0, f(x) ≤ 0 for −1 < x < 0.

Lemma B.11. log(1 + x) ≥ x− x2

2 for x ≥ 0.

Proof. Let f(x) = log(1 + x)− x+ x2

2 . Then, f ′(x) = 1
1+x − 1 + x and f ′′(x) = 1− 1

(1+x)2 . Since f(0) = f ′(0) = 0

and f ′′(x) ≥ 0, f ′(x) ≥ 0, so f(x) ≥ 0 and the inequality is proved.

We first find an upper bound for γ
n(n−1) . Recall that w = C⊤1, sn =

∑n−1
i=0 σi and L = n − (n − 1)σ. We also define

rn = n
(

n
n+1

)n−1

− 1.

We use the following two lemmas:

Lemma B.12.

0 ≤ Lsn − n ≤ rn.

Proof. The first inequality holds because sn = 1−σn

1−σ , 1− σ ≥ 0 and

(1− σ)

(
L
1− σn

1− σ
− n

)
= (n− (n− 1)σ)(1− σn)− n(1− σ)

= σ − nσn + (n− 1)σn+1

= σ(1− σ)

(
n−2∑
i=0

σi − (n− 1)σn−1

)
≥ 0.

For the second inequality, we need to show that

(n− (n− 1)σ)(1− σn)− n(1− σ) + rn(σ − 1) ≤ 0.

To this end, let

gn(σ) = (n− (n− 1)σ)(1− σn)− n(1− σ) + rn(σ − 1)

= (n− 1)σn+1 − nσn + σ + rn(σ − 1).

Then, g′n(σ) = (n2 − 1)σn − n2σn−1 + 1 + rn. Since n2σn−1 − (n2 − 1)σn has the maximum at σ = n
n+1 on [0, 1], we

have

g′n(σ) ≥ g′n

(
n

n+ 1

)
= 0

by the definition of rn. Therefore, gn is increasing on [0, 1] As gn(1) = 0, we have gn ≤ 0 on [0, 1], and therefore on
[0.8, 1).
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Lemma B.13. r2n
n(n−1) ≤

1
e2 .

Proof. Let x > 1 and f(x) = x
(

x
x+1

)x−1

. By showing that f ′(x) ≤ 1
e , we can show that f(x) ≤ 1

e (x− 1) + 1 because
f(1) = 1 and ∫ x

1

f ′(t) dt = f(x)− 1 ≤ x− 1

e
.

Once the above is shown, it follows that

(f(x)− 1)2

x(x− 1)
≤
(
f(x)− 1

x− 1

)2

≤ 1

e2

and therefore r2n
n(n−1) ≤

1
e2 . To show that f ′(x) ≤ 1

e , we differentiate f(x) and obtain

f ′(x) =

(
x

x+ 1

)x−1(
2x

x+ 1
− x log

(
1 +

1

x

))
.

By Lemma B.10, x log
(
1 + 1

x

)
≥ 2x

2x+1 , so

f ′(x) ≤
(

x

x+ 1

)x−1(
2x

x+ 1
− 2x

2x+ 1

)
=

(
2x

2x+ 1

)(
x

x+ 1

)x

.

Thus, it suffices to show (
2x

2x+ 1

)(
x

x+ 1

)x

≤ 1

e

which is equivalent to

1 ≤ log

(
1 +

1

2x

)
+ x log

(
1 +

1

x

)
.

We now prove the inequality using Lemma B.10 and B.11. It suffices to show that 1 ≤ 1
2x −

1
8x2 +

2x
2x+1 because 1

2x −
1

8x2 ≤
log
(
1 + 1

2x

)
and 2x

2x+1 ≤ x log
(
1 + 1

x

)
. Multiplying both sides by (2x+1)8x2 , we have 8x2 ≤ (4x− 1)(2x+1), which

holds for all x ≥ 1
2 and therefore for x > 1.

By the lemma above, we have

γ

n(n− 1)
≤ 1

e2
(27)

because γ = (n− Lsn)
2.

Next, we will focus on deriving an upper bound for δ
n−1 on [0, 1]. Since δ =

∑n−1
i=1 (σ

i − σn)2 ≤
∑n−1

i=1 max0≤σ≤1(σ
i −

σn)2, and (σi − σn)2 attains its maximum at σ =
(
i
n

)1/(n−i)
, we have

δ ≤
n−1∑
i=1

((
i

n

) i
n/(1− i

n )

−
(
i

n

)1/(1− i
n )
)2

.

Now we use the following lemma:
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Lemma B.14. xx/(1−x) − x1/(1−x) ≤ e−(4 log 2)x if 0 < x < 1.

Proof. Let f(x) = xx/(1−x) − x1/(1−x). Then, f(x) = xx/(1−x)(1− x) and therefore we need to show that log f(x) =
x

1−x log x+ log(1− x) ≤ −(4 log 2)x. Let g(x) = log x
1−x + log(1−x)

x . Then, g′(x) = x2 log x−(1−x)2 log(1−x)
x(1−x) . To check the

change of the sign of g′, define h(x) = x2 log x. Since h′(x)+h′(1−x) = 2x log x+2(1−x) log(1−x)+1 and 2x log x
is convex, so is h′(x) + h′(1− x) and limx↑1 h

′(x) + h′(1− x) = limx↓0 h
′(x) + h′(1− x) = 1 and 2h′( 12 ) < 0. Thus,

for some c ∈ (0, 1
2 ), h

′(x) + h′(1− x) ≥ 0 is 0 < x ≤ c or 1− c ≤ x < 1 and h′(x) + h′(1− x) ≤ 0 if c ≤ x ≤ 1− c.
Consequently, g′ ≥ 0 if 0 < x ≤ 1

2 and g′ ≤ 0 if 1
2 ≤ x < 1. This shows that g has the maximum g

(
1
2

)
= −4 log 2 at

x = 1
2 and the lemma has been proved.

By the lemma above,

δ ≤
n−1∑
i=1

e(−8 log 2)i/n

≤
∞∑
i=1

e(−8 log 2)i/n

=
1

e(8 log 2)/n − 1

and since t
et−1 ≤ 1 for t > 0,

δ

n− 1
≤ 1

(n− 1) 8 log 2
n

8 log 2
n

e(8 log 2)/n − 1

≤ n

n− 1

1

8 log 2
. (28)

Next, we consider an upper and lower bounds of α. Recall that

α = n− 2L
1− σn

1− σ
+ L2 1− σ2n

1− σ2
.

First, we derive an upper bound of α. To achieve this, we will establish upper bounds for the terms −2L 1−σn

1−σ and L2 1−σ2n

1−σ2 .
We start by analyzing L 1−σn

1−σ . Since L = n− (n− 1)σ and sn = 1−σn

1−σ , by Lemma B.12, we have

L
1− σn

1− σ
≥ n. (29)

Next we examine the term L2 1−σ2n

1−σ2 . Since L = (n− 1)(1− σ) + 1, we obtain

L2 1− σ2n

1− σ2
= (1− σ2n)

(
(n− 1)2

1− σ

1 + σ
+

2(n− 1)

1 + σ
+

1

1− σ2

)
≤ (n− 1)2

1− σ

1 + σ
+

2(n− 1)

1 + σ
+

1− σ2n

1− σ2

≤ (n− 1)2
1− σ

1 + σ
+

2(n− 1)

1 + σ
+ n. (30)

The first inequality holds because 0 ≤ 1 − σ2n ≤ 1, while the second inequality follows from the fact that 1−σ2n

1−σ2 =∑n−1
i=0 σ2i ≤ n. From (29) and (30), we have

α

n(n− 1)
≤
(
1− 1

n

)
1− σ

1 + σ
+

2

n(1 + σ)
. (31)
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Next, we obtain a lower bound of α. For any real c, we have

L
1− σn

1− σ
≤ nc ⇐⇒ c(1− σ)− (1− σn)

(
1−

(
1− 1

n
σ

))
≥ 0,

which motivates us to define g(σ) = c(1− σ)− (1− σn)
(
1−

(
1− 1

nσ
))

. Then, our objective is to find a value for c such
that g(σ) ≥ 0. Now, we analyze the function g(σ) to determine a suitable value for c. We have g(1) = 0 and

g′(σ) =

(
1

n
− n

)
σn + nσn−1 − c+ 1− 1

n
.

Since
(
1
n − n

)
σn + nσn−1 + 1− 1

n has the local maximum
(

n
n+1

)n−1

+ 1− 1
n at σ = n

n+1 , if c = 1 + 1
e , g′(σ) ≤ 0 by

the following lemma:

Lemma B.15.
(

x
x+1

)x−1

− 1
x ≤ 1

e if x > 1.

Proof. Let f(x) =
(

x
x+1

)x−1

− 1
x . We first show that f is increasing on x > 1. Taking the derivative, we have

f ′(x) =

(
x

x+ 1

)x−1(
log

x

x+ 1
+

x− 1

x(x+ 1)

)
+

1

x2
.

To show that f ′(x) ≥ 0, we can use the inequality log x ≥ 1− 1
x for x > 0, which is directly derived from Lemma B.9.

Applying this inequality to the term log x
x+1 , we have

f ′(x) =

(
x

x+ 1

)x−1(
log

x

x+ 1
+

x− 1

x(x+ 1)

)
+

1

x2

≥
(

x

x+ 1

)x−1(
− 1

x
+

x− 1

x(x+ 1)

)
+

1

x2

= − 2

x(x+ 1)

(
x

x+ 1

)x−1

+
1

x2
.

Since

− 2

x(x+ 1)

(
x

x+ 1

)x−1

+
1

x2
≥ 0 ⇐⇒

(
1 +

1

x

)x

≥ 2

and
(
1 + 1

x

)x ≥ 2 holds for all x > 1 by Bernoulli’s inequality, it follows that f ′(x) ≥ 0 and f(x) is increasing. Since
limx→∞ f(x) = 1

e and f(x) is continuous on x > 1, we have f(x) ≤ 1
e .

Therefore, g(σ) ≥ 0 on [0, 1] and

L
1− σn

1− σ
≤ n

(
1 +

1

e

)
. (32)

For the term L2 1−σ2n

1−σ2 , we use the fact that

L2 1− σ2n

1− σ2
= (1− σ2n)

(
(n− 1)2

1− σ

1 + σ
+

2(n− 1)

1 + σ
+

1

1− σ2

)
= (n− 1)2

(
1− σ

1 + σ
− σ2n 1− σ

1 + σ

)
+ (1− σ2n)

(
2(n− 1)

1 + σ
+

1

1− σ2

)
.

36



Provable Benefit of Random Permutations over Uniform Sampling in Stochastic Coordinate Descent

Since we are considering the case σ ∈ [0.8, 1), we have 1
1+σ ≤ 5

9 . Also, σ2n(1− σ) has the local maximum at σ = 2n
2n+1 ,

and since
(

2n
2n+1

)2n
is decreasing (the inverse

(
1 + 1

2n

)2n
is positive and increasing by Lemma B.8),

σ2n 1− σ

1 + σ
≤ 5

9
σ2n(1− σ)

≤ 5

9

(
2n

2n+ 1

)2n
1

2n+ 1

≤ 256

1125

1

2n+ 1
.

Next, since

(1− σ2)

(
(1− σ2n)

(
2(n− 1)

1 + σ
+

1

1− σ2

)
− n

)
= (1− σ2n)(2(n− 1)(1− σ) + 1)− n(1− σ2)

= (1− σ)2

(
n− 1 +

2n−1∑
i=2

(i− 1)σi

)
≥ 0,

we have

(1− σ2n)

(
2(n− 1)

1 + σ
+

1

1− σ2

)
≥ n

because 1− σ2 ≥ 0. Therefore,

L2 1− σ2n

1− σ2
≥ (n− 1)2

(
1− σ

1 + σ
− 256

1125

1

2n+ 1

)
+ n. (33)

By (32) and (33), we obtain

α

n(n− 1)
≥ 1

n(n− 1)

(
(n− 1)2

(
1− σ

1 + σ
− 256

1125

1

2n+ 1

)
− 2

e
n

)
. (34)

We now derive an upper bound for β. Since

β =
1− σ

1 + σ

(
2n− nσ2n − 2(1− σn+1)

1− σn

1− σ
− σ2 1− σ2n

1− σ2

)
≤ 1− σ

1 + σ

(
2n− 2(1− σn+1)

1− σn

1− σ

)
,

we need to find a lower bound for the term (1−σn+1) 1−σn

1−σ . We claim that (1−σn+1) 1−σn

1−σ ≥ 20(1−σ). Since 1−σ > 0,

this is equivalent to showing that 1−σn+1

1−σ
1−σn

1−σ ≥ 20. We can rewrite the inequality as(
n∑

i=0

σi

)(
n−1∑
i=0

σi

)
≥ 20,

The left-hand side is increasing in σ for σ ∈ (0, 1). Given that n ≥ 15, we can verify the inequality holds because(
n∑

i=0

0.8i

)(
n−1∑
i=0

0.8i

)
≥ 20.

Therefore, we have (1− σn+1) 1−σn

1−σ ≥ 20(1− σ) as claimed.
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Substituting this into the inequality for β, we obtain

β =
1− σ

1 + σ

(
2n− nσ2n − 2(1− σn+1)

1− σn

1− σ
− σ2 1− σ2n

1− σ2

)
=

1− σ

1 + σ

(
2n− 2(1− σn+1)

1− σn

1− σ

)
≤ 1− σ

1 + σ
(2n− 40(1− σ)) . (35)

Using the derived bounds for α, β, γ and δ, we now establish upper bounds for T1 and T2. Combining (28), (34) and (35),
we have

T1

n(n− 1)
≤ 1

n(n− 1)
(nβ − α+ max

σ∈(0,1]
nδ)

≤ 2n

n− 1

1− σ

1 + σ
− 40

n− 1

(1− σ)2

1 + σ
− 1

n(n− 1)

(
(n− 1)2

(
1− σ

1 + σ
− 256

1125

1

2n+ 1

)
− 2

e
n

)
+

1

8 log 2

n

n− 1

=
n2 + 2n− 1

n(n− 1)

1− σ

1 + σ
− 40

n− 1

(1− σ)2

1 + σ
+

256

1125

n− 1

n(2n+ 1)
+

2

e

1

n− 1
+

1

8 log 2

n

n− 1

≤ 5

9

(
n2 + 2n− 1

n(n− 1)
(1− σ)− 40

n− 1
(1− σ)2

)
+

256

1125

n− 1

n(2n+ 1)
+

2

e

1

n− 1
+

1

8 log 2

n

n− 1
,

where the last inequality holds because n ≥ 15 implies n2+2n−1
n(n−1) (1− σ)− 40

n−1 (1− σ)2 ≥ 0 and 1
1+σ ≤ 5

9 .

Similarly, by (27) and (31), we have

T2

n(n− 1)
≤ 1

n(n− 1)
(α+ max

σ∈(0,1]
γ)

≤
(
1− 1

n

)
1− σ

1 + σ
+

2

n(1 + σ)
+

1

e2

≤ −5

9

(
1− 1

n

)
σ +

5

9

(
1 +

1

n

)
+

1

e2
.

(
∵

1

1 + σ
≤ 5

9

)

Now, let

U1(n, σ) =
5

9

(
n2 + 2n− 1

n(n− 1)
(1− σ)− 40

n− 1
(1− σ)2

)
+

256

1125

n− 1

n(2n+ 1)
+

2

e

1

n− 1
+

1

8 log 2

n

n− 1

U2(n, σ) = −5

9

(
1− 1

n

)
σ +

5

9

(
1 +

1

n

)
+

1

e2
.

We first consider U1(n, σ). Note that U1(n, σ) is a quadratic function of σ, which attains its maximum at σ = 1− n2+2n−1
80n .

Thus, U1(n, σ) has its maximum at σ = 0.8 on [0.8, 1) because 1− n2+2n−1
80n ≤ 0.8 for all n ≥ 15. Since

U1(n, σ) ≤ U1(n, 0.8)

=
n2 + 2n− 1

9n(n− 1)
− 8

9(n− 1)
+

256

1125

n− 1

n(2n+ 1)
+

2

e

1

n− 1
+

1

8 log 2

n

n− 1

≤ 1

9

(
1 +

3

n
+

2

n(n− 1)

)
+

(
128

1125
+

2

e
+

1

8 log 2
− 8

9

)
1

n− 1

(
∵

n− 1

n(2n+ 1)
≤ 1

2(n− 1)

)
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and the last line is decreasing in n, substituting n = 15 yields

U1(n, σ) ≤ U1(n, 0.8)

≤ 1867

23625
+

(
2

e
+

1

8 log 2

)
1

14
+

1

8 log 2

≤
(
1− 1

15

)15

for n ≥ 15 and σ ∈ [0.8, 1).

Similarly, since U2 is decreasing in σ,

U2(n, σ) ≤ U2(n, 0.8)

=
1

n
+

1

9
+

1

e2

≤
(
1− 1

10

)10

for n ≥ 10.

Recall that we can verify that

T1(m,σ)

m(m− 1)
≤ 1

4

for 2 ≤ m ≤ 14 and

T2(m,σ)

m(m− 1)
≤ 1

4

for 2 ≤ m ≤ 9 using Proposition B.6.

Therefore, we have

max
2≤m≤n

T1(m,σ)

m(m− 1)
= max

{
max

2≤m≤14

T1(m,σ)

m(m− 1)
, max
15≤m≤n

T1(m,σ)

m(m− 1)

}
≤ max

{(
1− 1

2

)2

,

(
1− 1

15

)15
}

≤
(
1− 1

n

)n

(∵ Lemma B.8)

if n ≥ 15 and

max
2≤m≤n

T1(m,σ)

m(m− 1)
≤
(
1− 1

2

)2

≤
(
1− 1

n

)n

if 2 ≤ n ≤ 14.

Similarly, we have

max
2≤m≤n

T2(m,σ)

m(m− 1)
= max

{
max

2≤m≤9

T2(m,σ)

m(m− 1)
, max
10≤m≤n

T2(m,σ)

m(m− 1)

}
≤ max

{(
1− 1

2

)2

,

(
1− 1

10

)10
}

≤
(
1− 1

n

)n

(∵ Lemma B.8)
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if n ≥ 10 and

max
2≤m≤n

T2(m,σ)

m(m− 1)
≤
(
1− 1

2

)2

≤
(
1− 1

n

)n

if 2 ≤ n ≤ 9.

B.3. Proof of Theorem 3.4

Here we prove Theorem 3.4, restated below for the sake of readability.
Theorem 3.4. Let A ∈ Aσ . For an initial point x0 ∈ Rn, let xT be the output of RCD after T iterates. Then, except for a
Lebesgue measure zero set of initial points,

lim
T→∞

(
E
[
∥xT ∥2

]
∥x0∥2

) 1
T

≥ 1− 1

n
+

(1− σ)2

n
.

Proof. We first assume that A = σIn + (1− σ)1n1
⊤
n . Then,

E
[
∥xT ∥2

]
∥x0∥2

=
x⊤
0 (MRCD

A )T (I)x0

x⊤
0 x0

≥ λmin((MRCD
A )T (I))

because (MRCD
A )T (I) is symmetric.

Now, we observe that span{I,11⊤} is invariant under MRCD
A . To verify this, we compute MRCD

A (I) and MRCD
A (11⊤).

Then, we obtain

MRCD
A (I) =

n− 1 + (1− σ)2

n
I +

(1− σ)2(n− 2)

n
11⊤

MRCD
A (11⊤) =

σ2

n
I +

σ2(n− 2)

n
11⊤,

which confirms that both MRCD
A (I) and MRCD

A (11⊤) are in span{I,11⊤}. Consequently, we can only focus on the 2× 2
matrix MA which represents the restriction of MRCD

A to span{I,11⊤}, where

MA =
1

n

[
n− 1 + (1− σ)2 (1− σ)2(n− 2)

σ2 σ2(n− 2)

]
.

That is, if

MA

[
a
b

]
=

[
a′

b′

]
,

then MRCD
A (aI + b11⊤) = a′I + b′11⊤.

Now, define αT and βT as [
αT

βT

]
= MT

A

[
1
0

]
Then,

λmin((MRCD
A )T (I)) = λmin(αT I + βT11

⊤)

=

{
αT if βT ≥ 0

αT + nβT if βT < 0.
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Since the entries of MA are all non-negative, we have βT ≥ 0 for all T ≥ 0. Therefore, we have

λmin((MRCD
A )T (I)) = αT .

When n = 2, we have

MA =
1

2

[
1 + (1− σ)2 0

σ2 0

]
and

MT
A

[
1
0

]
=


(

1+(1−σ)2

2

)T
σ2
(

1+(1−σ)2

2

)T−1

 .

Therefore, αT =
(

1+(1−σ)2

2

)T
and we obtain

(
E
[
∥xT ∥2

]
∥x0∥2

)1/T

= α
1/T
T

=
1 + (1− σ)2

2
.

This establishes the result for the case n = 2.

We now turn to the general case where n ≥ 3. Let v be the dominant eigenvector (i.e., the eigenvector corresponding to the
eigenvalue with the largest magnitude) of MA. We will show that

[
1 0

]⊤
is not orthogonal to v. Assume for contradiction

that
[
1 0

]⊤
is orthogonal to v. Then, v must be of the form

[
0 c

]⊤
for some nonzero scalar c. Since v is an eigenvector

of MA, MAv must also be a multiple of
[
0 1

]⊤
. This implies that (MA)12 = 0. However, it implies σ = 1. In this case,

MA =

[
1− 1

n 0
1
n 1− 2

n

]
and MAv =

(
1− 2

n

)
v. Nevertheless, 1− 2

n is not the the eigenvalue of MA with the largest absolute value because the

eigenvalues of MA are 1− 1
n and 1− 2

n . Therefore,
[
1 0

]⊤
is not orthogonal to v. This implies that

lim
T→∞

α
1/T
T = ρ(MA).

Now, let p(λ) be the characteristic polynomial of MA, which is defined as det(λI −MA). Since MA ∈ R2×2, we have

p(λ) = λ2 − tr(MA)λ+ det(MA)

= λ2 − ((MA)11 + (MA)22)λ+ ((MA)11(MA)22 − (MA)12(MA)21).

Furthermore, since tr(MA) = 1
n ((n− 1)σ2 − 2σ + n) ≥ 0, det(MA) = 1

n2σ
2(n− 1)(n− 2) ≥ 0, p(λ) does not have a

negative root. Thus,

p

(
1− 1

n
+

(1− σ)2

n

)
= p((MA)11)

= (MA)211 − ((MA)11 + (MA)22)(MA)11 + ((MA)11(MA)22 − (MA)12(MA)21)

= −(MA)12(MA)21

≤ 0,

because the entries of MA are all non-negative.
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Therefore, we have

1− 1

n
+

(1− σ)2

n
≤ ρ(MA).

Next, consider A = diag{σIk + (1 − σ)1k1
⊤
k , In−k} for an integer k with 2 ≤ k ≤ n. Since σ = 1 implies A = In,

which has already been considered, we will assume that σ ∈ (0, 1).

We will denote σIk + (1− σ)1k1
⊤
k as Ak, and the set of of block-diagonal matrices consisting of a k × k block and an

(n− k)× (n− k) block as Dk,n−k. Recall that Dk,n−k is closed under scalar multiplication, matrix multiplication, addition,
transposition, and inversion. Thus, if X ∈ Dk,n−k, then MRCD

A (X) ∈ Dk,n−k because T RCD
A,i = I − EiA ∈ Dk,n−k.

Therefore, we will now compute the (1, 1)-block and (2, 2)-block of MRCD
A (X) when X ∈ Dk,n−k.

To analyze the (1, 1)-block of MRCD
A (X), we consider two cases for the index i: 1 ≤ i ≤ k and k + 1 ≤ i ≤ n. If

1 ≤ i ≤ k, the (1, 1)-block of T RCD⊤
A,i XT RCD

A,i is (I −Ei,kAk)
⊤X11(I −Ei,kAk), where Ei,k denotes the k × k matrix

eie
⊤
i . If k + 1 ≤ i ≤ n, since the (1, 1)-block of Ei is zero, the (1, 1)-block of T RCD⊤

A,i XT RCD
A,i is X11.

Therefore, the (1, 1)-block of MRCD
A (X) is

1

n

(
k∑

i=1

(I −Ei,kAk)
⊤X11(I −Ei,kAk) +

n∑
i=k+1

X11

)
=

1

n

(
kMRCD

Ak
(X11) + (n− k)X11

)
.

We denote the matrix operator X 7→ 1
n

(
kMRCD

Ak
(X) + (n− k)X

)
on Rk×k as MA. Note that span{Ik,1k1

⊤
k } is

invariant under MA, and the matrix representation of MA|span{I,11⊤} is

k

n
MAk

+

(
1− k

n

)
I2,

where

MAk
=

1

k

[
k − 1 + (1− σ)2 (1− σ)2(k − 2)

σ2 σ2(k − 2)

]
.

Let us now consider the (2, 2)-block of MRCD
A (X). Given that the (2, 2)-block of A is In−k, the (2, 2)-block of can be

computed as X22 when 1 ≤ i ≤ k and (In−k −Ei−k,n−k)
⊤X22(In−k −Ei−k,n−k) when k + 1 ≤ i ≤ n.

Therefore, if we denote the diagonal part of X22 as D22, the (1, 1)-block of MRCD
A (X) is

1

n

(
k∑

i=1

X22 +

n∑
i=k+1

(In−k −Ei−k,n−k)
⊤X22(In−k −Ei−k,n−k)

)
=

1

n
(kX22 + (n− k − 2)X22 +D22)

=

(
1− 2

n

)
X22 +

1

n
D22

because
∑n

i=k+1 Ei−k,n−k = In−k and
∑n

i=k+1 E
⊤
i−k,n−kX22Ei−k,n−k = D22.

From the above, we have

(MRCD
A )T (In) =

[
(MRCD

Ak
)T (Ik) 0k,n−k

0n−k,k

(
1− 1

n

)T
In−k

]
.

Now, we define αT and βT as [
αT

βT

]
= MT

A

[
1
0

]
.

42



Provable Benefit of Random Permutations over Uniform Sampling in Stochastic Coordinate Descent

We now proceed to examine the limit

lim
T→∞

(
x⊤
0 (MRCD

A )T (I)x0

x⊤
0 x0

)1/T

.

To this end, let
[
y0 z0

]⊤
= x0, where y0 ∈ Rk and z0 ∈ Rn−k. Since the set {x0 ∈ Rn : y0 = 0k} has measure zero in

Rn, we assume that y0 ̸= 0. Then,

x⊤
0 (MRCD

A )T (I)x0 = y⊤
0 (αT I + βT11

⊤)y0 +

(
1− 1

n

)T

∥z0∥2

≥ αT ∥y0∥2 +
(
1− 1

n

)T

∥z0∥2. (∵ βT ≥ 0)

By the same argument in the case when k = n, we can show that

lim
T→∞

α
1/T
T = ρ

(
k

n
MAk

+

(
1− k

n

)
I2

)
≥ k

n

(
1− 1

k
+

(1− σ)2

k

)
+ 1− k

n

= 1− 1

n
+

(1− σ)2

n
.

Since σ ̸= 1 by the assumption, we have

lim
T→∞

(
1− 1

n

)T
αT

= lim
T→∞

((
1− 1

n

)
α
1/T
T

)T

= 0

and

lim
T→∞

(
x⊤
0 (MRCD

A )T (I)x0

x⊤
0 x0

)1/T

= lim
T→∞

(
αT ∥y0∥2 +

(
1− 1

n

)T ∥z0∥2

∥y0∥2 + ∥z0∥2

)1/T

= lim
T→∞

α
1/T
T

(
∥y0∥2

∥y0∥2 + ∥z0∥2
+

(
1− 1

n

)T
αT

(
∥z0∥2

∥y0∥2 + ∥z0∥2

))1/T

= lim
T→∞

α
1/T
T

≥ 1− 1

n
+

(1− σ)2

n
.
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C. Computational Verification of Inequalities Deferred from Appendix B
In this section, we provide the computer-assisted verification of the inequalities presented in Appendix B, which were stated
to be verifiable using Sturm’s theorem (Proposition B.6). Recall that for a polynomial p, if p(x) ̸= 0 on (a, b) and p(a) > 0,
then p(b) ≥ 0; similarly, if p(b) > 0, then p(a) ≥ 0. Therefore, to verify that p(x) ≥ 0 on an interval, it suffices to show
that p(x) has no real roots in the interval using Proposition B.6 and then check that p(x) is positive at one of the endpoints.

The specific cases that require verification using Proposition B.6 are as follows:

• For i = 1, 2, Ti(m,σ)
m(m−1) ≤

(
1− σ

n

)2n
for all integers m and n where 2 ≤ m ≤ n ≤ 6 and σ ∈ (0, 0.6].

• T1(m,σ)
m(m−1) ≤

1
4 for all integers m where 2 ≤ m ≤ 10 and σ ∈ [0.6, 0.8].

• T1(m,σ)
m(m−1) ≤

1
4 for all integers m where 2 ≤ m ≤ 14 and σ ∈ [0.8, 1).

• T2(m,σ)
m(m−1) ≤

1
4 for all integers m where 2 ≤ m ≤ 10 and σ ∈ [0.6, 1).

The following SymPy code can be used to verify these inequalities. Since the coefficients are all rational numbers, the
computations are exact and free from floating-point errors.

import sympy as sp

def sturm_sequence(f, x):
f0 = sp.expand(f)
f1 = sp.expand(f.diff(x))
sturm_seq = [f0, f1]
while sturm_seq[-1] != 0:

f_prev = sturm_seq[-2]
f_curr = sturm_seq[-1]
q, r = sp.div(f_prev, f_curr)
sturm_seq.append(-r)

return sturm_seq

def sign_variations(seq):
seq_nonzero = [val for val in seq if val != 0]
if not seq_nonzero:

return 0
variations = 0
for i in range(len(seq_nonzero) - 1):

if (seq_nonzero[i] > 0 and seq_nonzero[i+1] < 0) or \
(seq_nonzero[i] < 0 and seq_nonzero[i+1] > 0):
variations += 1

return variations

def count_real_roots(f, a, b, x):
seq = sturm_sequence(f, x)
vals_a = [poly.subs(x, a) for poly in seq]
vals_b = [poly.subs(x, b) for poly in seq]
return sign_variations(vals_a) - sign_variations(vals_b)

def tau(n, s):
L = n - (n - 1) * s
alpha = 0
for i in range(n):

alpha += (1 - L * s**i)**2

C = sp.Matrix.zeros(n, n)
for i in range(1, n + 1):

for j in range(1, n + 1):
if i < j:

C[i - 1, j - 1] = -(1 - s) * s**(i - 1)
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else:
C[i - 1, j - 1] = (1 - s) * (s**(i - j) - s**(i - 1))

beta = sum(C[i, j]**2 for i in range(n) for j in range(n))
gamma = sum(1 - L * s**i for i in range(n))**2
delta = sum((s**n - s**i)**2 for i in range(1, n + 1))
t1 = sp.Rational(1, (n - 1))*(beta + delta) \

- sp.Rational(1, n*(n - 1))*(alpha + gamma)
t2 = sp.Rational(1, n*(n - 1))*((alpha + gamma) - (beta + delta))
return t1, t2

def p(n, s):
p1_coeffs = []
p2_coeffs = []
for k in range(7):

if k == 0:
p1_coeffs.append(n**2 - n)
p2_coeffs.append(n**2 - 3*n + 2)

else:
if k % 2 == 1:

p1_coeffs.append((n-1)*k - 2*n**2 - n + 3)
p2_coeffs.append(-2*n**2 + 6*n - 4)

else:
p1_coeffs.append(-(n+1)*k + 2*n**2+ 2*n + 2)
p2_coeffs.append(2*k + 2*n**2 - 6*n - 2)

p1 = sum([coeff * s**i for i, coeff in enumerate(p1_coeffs)])
p2 = sum([coeff * s**i for i, coeff in enumerate(p2_coeffs)])
return p1, p2

s = sp.symbols('s')

tau_k = {}
for k in range(2, 15):

tau_k[k] = tau(k, s)

for n in range(2, 7):
rcd = (1 - sp.Rational(1, n)*s)**(2*n)
inequality_verified = True
for k in range(2, n+1):

d1 = rcd - tau_k[k][0]
d2 = rcd - tau_k[k][1]
roots_1 = count_real_roots(d1, sp.Rational(0), sp.Rational(1), s)
roots_2 = count_real_roots(d2, sp.Rational(0), sp.Rational(1), s)
d1_end = d1.subs(s, sp.Rational(1))
d2_end = d2.subs(s, sp.Rational(1))
if not all([roots_1 == 0, roots_2 == 0, d1_end > 0, d2_end > 0]):

inequality_verified = False

assert all([roots_1 == 0, roots_2 == 0, d1_end > 0, d2_end > 0]), \
f"Error: Inequality verification failed for n = {n}, k = {k}."

if inequality_verified:
print(f"Case 1, n = {n}: All inequalities verified.")

else:
print(f"Case 1, n = {n}: Inequality verification failed for some k.")

for m in range(2, 11):
lhs = sp.Rational(1, m*(m-1)) * tau_k[m][0]
rhs = sp.Rational(1, 4)
diff = rhs - lhs
diff_end = diff.subs(s, sp.Rational(4, 5))
roots = count_real_roots(diff, sp.Rational(3, 5), sp.Rational(4, 5), s)
assert roots == 0 and diff_end > 0, \
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f"Error: Inequality verification failed for Case 2, m = {m}."
print(f"Case 2, m = {m}: Inequality verified.")

for m in range(2, 15):
lhs = sp.Rational(1, m*(m-1)) * tau_k[m][0]
rhs = sp.Rational(1, 4)
diff = rhs - lhs
diff_end = diff.subs(s, sp.Rational(1))
roots = count_real_roots(rhs - lhs, sp.Rational(4, 5), sp.Rational(1), s)
assert roots == 0 and diff_end > 0, \

f"Error: Inequality verification failed for Case 3, m = {m}."
print(f"Case 3, m = {m}: Inequality verified.")

for m in range(2, 11):
lhs = sp.Rational(1, m*(m-1)) * tau_k[m][1]
rhs = sp.Rational(1, 4)
diff = rhs - lhs
diff_end = diff.subs(s, sp.Rational(1))
roots = count_real_roots(rhs - lhs, sp.Rational(3, 5), sp.Rational(1), s)
assert roots == 0 and diff_end > 0, \

f"Error: Inequality verification failed for Case 4, m = {m}."
print(f"Case 4, m = {m}: Inequality verified.")

We also provide an example demonstrating the computation involved in applying Proposition B.6 to verify the inequality
1
4 − T2(m,σ)

m(m−1) on (0.6, 1), when m = 3. Since

1

4
− T2(m,σ)

m(m− 1)
= −σ6

9
+

2σ5

9
− σ4

9
− σ2

18
+

σ

9
+

7

36
,

the Sturm sequence is

p0(σ) = −σ6

9
+

2σ5

9
− σ4

9
− σ2

18
+

σ

9
+

7

36

p1(σ) = −2σ5

3
+

10σ4

9
− 4σ3

9
− σ

9
+

1

9

p2(σ) = −2σ4

81
+

2σ3

81
+

σ2

27
− 7σ

81
− 65

324

p3(σ) = σ3 − 3σ2 − 15σ

4
+

7

2

p4(σ) =
11σ2

54
+

5σ

27
+

1

36

p5(σ) =
161σ

484
− 488

121

p6(σ) = −10021099

311052
p7(σ) = 0.

Therefore, we have

p0(0.6) =
134329

562500
, p0(1) =

1

4
,

p1(0.6) =
1142

28125
, p1(1) = 0,

p2(0.6) = − 47993

202500
, p2(1) = −1

4
,

p3(0.6) =
193

500
, p3(1) = −9

4
,

p4(0.6) =
191

900
, p4(1) =

5

12
,

p5(0.6) = −9277

2420
, p5(1) = −1791

484
,

p6(0.6) = −10021099

311052
, p6(1) = −10021099

311052
,

p7(0.6) = 0, p7(1) = 0.
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We now examine the number of variations in sign for each sequence. Recall that for a sequence c = (c1, c2, . . . , cm) of
real numbers, the number of variations in sign is defined as the number of sign changes in the subsequence obtained by
removing any zeros from c.

For the sequence evaluated at σ = 0.6, we observe the signs are given by (+,+,−,+,+,−,−, 0). Removing the zero, the
signs of the subsequence are (+,+,−,+,+,−,−). Thus, there are three variations in sign.

Similarly, for the sequence evaluated at σ = 1, we observe the signs are (+, 0,−,−,+,−,−, 0). Removing the zeros, the
signs of the subsequence are (+,−,−,+,−,−). This also has three variations in sign.

Applying Proposition B.6, the number of distinct real roots of p0(σ) in the interval (0.6, 1) is given by V0.6−V1 = 3−3 = 0,
where Va denotes the number of variations in sign of the sequence (p0(a), p1(a), . . . , p7(a)). Thus, we conclude that p0(σ)
has no roots in the interval (0.6, 1).
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D. Comparison with Previous Work
In this section, we provide a detailed comparison of previous work by Lee & Wright (2019), continuing from the discussion
at the end of Section 3. Recall that Lee & Wright (2019) established that, for quadratic functions with permutation-invariant
Hessians, the epoch-wise contraction ratio of RPCD is of order

1− 2σ − 2σ

n
+ 2σ2 +O

(
σ2

n

)
+O

(
σ3
)

(36)

when n ≥ 10 and σ ∈ (0, 0.4]. In comparison, Theorem 3.3 provides an upper bound of max
{(

1− σ
n

)2n
,
(
1− 1

n

)n}
,

which simplifies to
(
1− σ

n

)2n
in the region σ ∈ (0, 0.4].

As noted earlier, we obtain (
1− σ

n

)2n
= 1− 2σ − σ2

n
+ 2σ2 +O

(
σ3
)
.

This expansion initially appears to have extra terms compared to Equation (36). However, a closer examination of our proof
methodology reveals a more refined upper bound.

We exploit the inequality ρ(M) ≤ ∥M∥∞, where M is the iteration matrix. In our analysis, we define the iteration matrix
as

MA =
1

n(n− 1)

[
nβ − α nδ − γ
α− β γ − δ

]
,

where α, β, γ, and δ are polynomials in σ (see (17) in Appendix B for their explicit definitions).

Lemma B.3 establishes that all entries of MA are non-negative. Consequently, ∥MA∥∞ simplifies to the maximum of the
sums of the first and second rows of MA, both of which are polynomials in σ. We define T1 and T2 as the sum of the first

and second rows of
[
nβ − α nδ − γ
α− β γ − δ

]
, respectively.

Importantly, our proof explicitly determines the coefficients of the polynomials T1 and T2 in terms of n. Furthermore, (21)
and (23) establish that the even-degree Taylor approximations of T1 and T2 serve as upper bounds. Specifically, if we
consider the 4-th order Taylor approximations of T1 and T2, we have

T1

n(n− 1)
≤ 1−

(
2 +

1

n

)
σ +

2n

n− 1
σ2 − 2σ3 +

2(n2 − n− 1)

n(n− 1)
σ4

T2

n(n− 1)
≤ 1− 2

n
− 2

(
1− 2

n

)
σ +

2(n2 − 3n+ 1)

n(n− 1)
σ2 − 2

(
1− 2

n

)
σ3 +

2(n2 − 3n+ 3)

n(n− 1)
σ4.

Remarkably, the upper bound for T1

n(n−1) precisely matches the contraction ratio given in Equation (36). While the upper

bound for T2

n(n−1) does not directly match this expression, we have

T2

n(n− 1)
≤ 1− 2

n
− 2σ +

4

n
σ + 2σ2 − 4

n
σ2 +O

(
σ3
)

≤ 1− 2σ − 2

n
σ + 2σ2 +

σ2

n
+O

(
σ3
)
,

where the last inequality follows from the fact that 2− 6σ + 5σ2 ≥ 0.

Therefore, we conclude that

ρ(MA) ≤ ∥MA∥∞

= max
i=1,2

Ti

n(n− 1)

= 1− 2σ − 2σ

n
+ 2σ2 +O

(
σ2

n

)
+O

(
σ3
)
.
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E. Further Discussions: RPCD on General Quadratics
Here we continue from and elaborate on our discussions in Section 4.3.

E.1. Partially Invariant Hessians.

Let us revisit the 4× 4 unit-diagonal matrix4:

A =


1 a a a
a 1 b b
a b 1 b
a b b 1

 . (37)

As stated in Section 4.3, we can observe that there are only 4 possible cases of matrices P⊤AP :
1 a a a
a 1 b b
a b 1 b
a b b 1

 ,


1 a b b
a 1 a a
b a 1 b
b a b 1

 ,


1 b a b
b 1 a b
a a 1 a
b b a 1

 ,


1 b b a
b b 1 a
b b b a
a a a 1

 ,

one for each i ∈ [4] with unit diagonals, a in the non-diagonal entries at the i-th row and column, and b for the rest of the
entries. We can also think of a similar formulation where A is an n×n unit-diagonal matrix with the non-diagonal elements
of the first row and column filled with a’s and the rest of the elements filled with b’s:

A =

[
1 a1⊤

a1 (1− b)I + b11⊤

]
. (38)

Note that the upper diagonal block is a scalar, the lower diagonal block is a (n− 1)× (n− 1), permutation-invariant matrix,
and the off-diagonal blocks are constant-filled (n− 1)-dimensional vectors.

We define the bases using the following block matrices with the same dimensions:

V1 =

[
1 0
0 0

]
, V2 =

[
0 1⊤

1 0

]
, V3 =

[
0 0
0 I

]
, V4 =

[
0 0
0 11⊤

]
.

Lemma E.1. If A is defined as in (38), then MRPCD
A is closed in S ′ = span{V1,V2,V3,V4}.

Proof. First, we observe that we can define

CP = I − Γ−1
P P⊤AP = I − tril(P⊤AP )−1P⊤AP

so that T RPCD
A,p = PCPP⊤. Suppose we have any X ∈ S ′. Then we can write

MRPCD
A (X) = E

[
PC⊤

PP⊤XPCPP⊤] .
Now, we think of partitioning the set of all possible permutations into n sets, denoted by Πi for i ∈ [n], each containing the
set of all permutations such that p(i) = 1. For any i, each permutation p ∈ Πi can be uniquely decomposed into two parts:

p = p′ ◦ p(1i)

where p(1i) is a permutation that swaps 1 and i and p′ is a permutation that satisfies p(1) = 1. For each i ∈ [n] we have
(n− 1)! different choices of p′ and hence p as well. Let us use the same analogy between permutations p and permutation
matrices P preserving the subscripts. Using this decomposition, for each fixed i ∈ [n] we have

CP = I − tril(P⊤AP )−1P⊤AP

= I − tril(P⊤
(1i)P

′⊤AP ′P(1i))
−1P⊤

(1i)P
′⊤AP ′P(1i)

= I − tril(P⊤
(1i)AP(1i))

−1P⊤
(1i)AP(1i)

4The minimal example would be a 3×3 version with two a’s and one b below the diagonal, but we choose 4×4 for clearer illustration.
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where we use our construction of A ∈ S ′ such that A is P ′-invariant. Thus, if we fix i, then CP is also a fixed (constant)
matrix, allowing us to use the notation CP = Ci instead. Considering the expectation over Πi for fixed i, we have

Ep∈Πi

[
PC⊤

PP⊤XPCPP⊤] = Ep∈Πi

[
P ′P(1i)C

⊤
i P⊤

(1i)P
′⊤XP ′P(1i)CiP

⊤
(1i)P

′⊤
]

= Ep∈Πi

[
P ′P(1i)C

⊤
i P⊤

(1i)XP(1i)CiP
⊤
(1i)P

′⊤
]

where we also use the fact that X ∈ S ′ is P ′-invariant. Therefore we can (i) use Lemma B.2 over the permutations P ′ to
conclude that the lower diagonal block is permutation-invariant, and (ii) also observe that the off-diagonal block parts are
also filled with constants. (This is because the entries in (1, 2), . . . , (1, n) of P(1i)C

⊤
i P⊤

(1i)XP(1i)CiP
⊤
(1i) will be averaged

after taking expectations on P ′, and the same holds for entries in (2, 1), . . . , (n, 1). Moreover, the two averaged values must
be identical because the matrix P(1i)C

⊤
i P⊤

(1i)XP(1i)CiP
⊤
(1i) is symmetric.)

Therefore we can conclude that for all i ∈ [n],

Ep∈Πi

[
PC⊤

PP⊤XPCPP⊤] = Ep∈Πi

[
P ′P(1i)C

⊤
i P⊤

(1i)XP(1i)CiP
⊤
(1i)P

′⊤
]
∈ S ′.

Taking one final average over i ∈ [n], we have shown that

MRPCD
A (X) = E

[
PC⊤

PP⊤XPCPP⊤] ∈ S ′

as desired.

As we have discussed in Section 4.3, we can see that Lemma E.1 allows us to reduce the problem into finding ρ(MRPCD
A |S′),

which can be written as a 4 × 4 matrix using the subspace S ′ as the basis. Note that the remaining steps will require a
relatively complicated analysis of an asymmetric 4× 4 matrix with two controllable variables a, b ∈ [0, 1], compared to
Theorem 3.3 where we use a 2× 2 matrix with only one variable σ.

More generally, it is intuitive that a similar dimension-reduction argument can also apply to different block structures. For
example, we can think of the following 4× 4 matrix:

A =


1 a c c
a 1 c c
c c 1 b
c c b 1

 . (39)

For this case, we instead have 6 = 4!
2!2! types of matrices P⊤AP . Similar arguments are also always possible for various n

and various dimensions of blocks. In general cases, however, it is much more likely that we cannot find such a nice block
structure that reduces permutation variance and thus a small-dimensional subspace S on which we can express MRPCD

A |S as
a smaller matrix.

E.2. General Hessians: Matrix AM-GM Inequality

Continuing from our discussion in the second paragraph of Section 4.3, the only results we are aware of that consider RPCD
for general quadratics are those by Sun et al. (2020). In particular, their objective was to show that

ρ(E[T RPCD
A ]) ≤ 1− σ

n
.

This is a direct corollary of a weak version of the well-known matrix AM-GM inequality (Recht & Re, 2012; Lai & Lim,
2020; De Sa, 2020; Yun et al., 2021). To elaborate, Sun et al. (2020) (Claim 4.1) observe that:

A
1
2T RPCD

A,p A− 1
2 = I −A

1
2PΓ−1

P P⊤A
1
2 = Zp(n) · · ·Zp(1), (40)

where Zi = I − viv
⊤
i is a projection matrix, with vi being the i-th column of A

1
2 . Then they show for the expectation:

1

n!

∑
p

Zp(n) · · ·Zp(1) ⪯
1

n

n∑
i=1

Zi

(
= I − A

n

)
,
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which is called weak because the RHS is missing the n-th exponent from the original matrix AM-GM,

1

n!

∑
p

Zp(n) · · ·Zp(1) ⪯

(
1

n

n∑
i=1

Zi

)n

.

To obtain a proper comparison with the RCD lower bound results in Theorem 3.1, it suffices to show an upper bound of

ρ(MRPCD
A ) = ρ(E[T RPCD⊤

A ⊗ T RPCD⊤
A ]) ≤ max

{(
1− σ

n

)2n
,

(
1− 1

n

)n}
,

which is not only stronger than the weak AM-GM, considering that we have an order n exponent added to the upper bound,
but also much more difficult in many aspects.

• Analyzing the upper bounds of quantities derived from a sum of Kronecker power of matrices is presumably the harder
direction than the opposite (we typically use the sum of squares as an upper bound).

• Even for the case of two matrices A and B, the relationship between the spectrum of A+B and each of the matrices
A and B (beyond Weyl’s inequality (Weyl, 1912)) is highly nontrivial (Knutson & Tao, 2000). In our case, we have a
sum of n! matrices, and a fine spectral analysis is extremely hard.

One of the few possible solutions to avoid computing the Kronecker powers could be to use the following lemma.
Lemma E.2. We have

ρ(MRPCD
A ) ≤

∥∥∥A−1/2MRPCD
A (A)A−1/2

∥∥∥ . (41)

Proof. The Russo-Dye theorem (Russo & Dye (1966), Theorem 2.3.7 of Bhatia (2007)) states that if M is a positive linear
map,5 then we have |||M||| = ∥M(I)∥, where |||·||| is the operator norm induced by the matrix operator norm ∥·∥. For our
case, we can easily check that MRPCD

A is positive as it outputs the expectation of positive semi-definite matrices. Moreover,
we have defined a similar matrix operator earlier in Section 2:

M̃RPCD
A (X) = A− 1

2MRPCD
A (A

1
2XA

1
2 )A− 1

2 ,

which is also a positive linear map (with a symmetric matrix form). Using the Russo-Dye theorem on M̃RPCD
A , we have

ρ(MRPCD
A ) = ρ(M̃RPCD

A ) ≤
∣∣∣∣∣∣∣∣∣M̃RPCD

A

∣∣∣∣∣∣∣∣∣ = ∥∥∥M̃RPCD
A (I)

∥∥∥ =
∥∥∥A− 1

2MRPCD
A (A)A− 1

2

∥∥∥
which completes the proof.

One caveat of the approach is that the RHS of (41) gets too large and exceeds the RCD lower bound for some values of
σ ∈ ( 12 , 1) after n gets sufficiently large, i.e., (41) is too loose for this case (as shown in Figure 4 in Section 4). The same
bound still seems tight enough for the region σ ∈ (0, 1

2 ], where we also have (1− σ
n )

2n ≥ (1− 1
n )

n and hence the upper
bound simply reduces to (1− σ

n )
2n.

From (40), we can observe the following:

A− 1
2MRPCD

A (A)A− 1
2 = E

[
(I −A

1
2PΓ−1

P P⊤A
1
2 )⊤(I −A

1
2PΓ−1

P P⊤A
1
2 )
]

=
1

n!

∑
p

(Zp(n) · · ·Zp(1))
⊤(Zp(n) · · ·Zp(1)).

Then by (41), it suffices to show

ρ

(
1

n!

∑
p

(Zp(n) · · ·Zp(1))
⊤(Zp(n) · · ·Zp(1))

)
≤ ρ

(
1

n

n∑
i=1

Zi

)2n

to prove Conjecture 4.1 on σ ∈ (0, 1
2 ], and we leave the proof/disproof for future work.

5A linear map Rn×n → Rk×k is positive if it maps positive semi-definite matrices into positive semi-definite matrices.
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F. Details on Experiments
F.1. Algorithmic Search.

Here we provide detailed information about the algorithmic search used to find the worst-case instances for RPCD. Recall
that we use the following framework to search for the worst-case example among the space of all (unit-diagonal) quadratics.

Step 1. Start with a (randomly initialized) lower triangular matrix X ∈ Rn×n with nonzero diagonals.

Step 2. Construct a unit-diagonal, positive semi-definite matrix by computing Y = X⊤X and set unit diagonals by
Z = D

− 1
2

Y Y D
− 1

2

Y , where DY is the diagonal part of Y .

Step 3. Construct a matrix A with σ = λmin(A) by

A =
1− σ

1− µ
Z +

σ − µ

1− µ
I,

where µ = λmin(Z). Note that A is also unit-diagonal and positive semi-definite.

Step 4. Construct an objective function that takes an input X to compute the value of ρ(MRPCD
A ) and run a scipy

optimizer to maximize the objective.

Experiment Settings. In our search for worst-case matrices, we explored the performance of our algorithm for dimensions
n ∈ {3, 4, 5, 6} and for minimum eigenvalue σ ∈ {0.1, . . . , 0.9} (with increments of 0.1).

Initialization. To initialize the lower-triangular matrix X , we generated a vector of length n(n+1)
2 with elements drawn

from a standard normal distribution and then used this vector to create an n×n lower-triangular matrix. We used 10 random
initial vectors for n = 3, 4 and 2 vectors for n = 5, 6. The reduced number of initializations for n = 5 and n = 6 was due to
the computational complexity of calculating the matrix representation of MRPCD

A and its spectral radius, which is O(n4 · n!).

Construction of A. We computed A = 1−σ
1−µZ + σ−µ

1−µ I , where µ = λmin(Z). This construction ensures that A is a
unit-diagonal matrix and that its eigenvalues are of the form 1−σ

1−µλ + σ−µ
1−µ , where λ is an eigenvalue of Z. Since Z is a

unit-diagonal positive semi-definite matrix, its minimum eigenvalue µ lies in [0, 1], and thus 1−σ
1−µ ≥ 0. This guarantees that

the minimum eigenvalue of A is 1−σ
1−µµ+ σ−µ

1−µ = σ.

Optimization. We used the BFGS method in the scipy.optimize.minimize function with default parameters as the
optimization algorithm to minimize the function −ρ(MRPCD

A ). To calculate the spectral radius of MRPCD
A , we utilized its

matrix representation, which is given by E
[
(T RPCD

A,p )⊤ ⊗ (T RPCD
A,p )⊤

]
. Here, T RPCD

A,p is defined in Equation (5).

Results. We present a few examples of the optimized matrices obtained through Algorithmic Search. Specifically, for each
combination of n ∈ {3, 4, 5, 6} with σ ∈ {0.3, 0.7}, we selected the matrix that achieved the largest ρ(MRPCD

A ) among the
trials. These examples demonstrate that the optimization process converges to matrices in Aσ with various sign flips. Here,
An,σ represents the matrix σIn + (1− σ)1n1

⊤
n ∈ API

σ . Note that An,σ ⊙ vv⊤ ∈ Aσ when v ∈ {±1}n.

An,σ ⊙ vv⊤ +∆, v =
[
1 1 1

]⊤
, ∥∆∥F ≈ 1.2 · 10−10 for n = 3, σ = 0.3

An,σ ⊙ vv⊤ +∆, v =
[
1 −1 −1

]⊤
, ∥∆∥F ≈ 8.7 · 10−11 for n = 3, σ = 0.7

An,σ ⊙ vv⊤ +∆, v =
[
1 1 −1 1

]⊤
, ∥∆∥F ≈ 2.7 · 10−10 for n = 4, σ = 0.3

An,σ ⊙ vv⊤ +∆, v =
[
1 −1 −1 1

]⊤
, ∥∆∥F ≈ 2.5 · 10−10 for n = 4, σ = 0.7

An,σ ⊙ vv⊤ +∆, v =
[
1 −1 1 −1 1

]⊤
, ∥∆∥F ≈ 1.1 · 10−8 for n = 5, σ = 0.3

An,σ ⊙ vv⊤ +∆, v =
[
1 −1 1 −1 1

]⊤
, ∥∆∥F ≈ 9.3 · 10−10 for n = 5, σ = 0.7

An,σ ⊙ vv⊤ +∆, v =
[
1 1 −1 1 1 −1

]⊤
, ∥∆∥F ≈ 1.9 · 10−4 for n = 6, σ = 0.3

An,σ ⊙ vv⊤ +∆, v =
[
1 −1 1 1 −1 −1

]⊤
, ∥∆∥F ≈ 9.4 · 10−7 for n = 6, σ = 0.7

Furthermore, we empirically observed that for any optimized matrix Â, it holds that ρ(MRPCD
Â

) ≤ maxA∈Aσ ρ(MRPCD
A ).
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The following Python code implements Algorithmic Search, which also empirically validates that ρ(MRPCD
Â

) ≤
maxA∈Aσ

ρ(MRPCD
A ) for all optimized Â.

import numpy as np
from scipy.optimize import minimize
from itertools import permutations
from numpy.linalg import *
from math import factorial

def rho(M):
return max(abs(eig(M)[0]))

def unit_diag(M):
diag_sqrt = np.sqrt(np.diag(M))
return M / (diag_sqrt * diag_sqrt[:, None])

def mat_rep_rpcd(A):
n = A.shape[0]
result = np.zeros((n*n, n*n))
for perm in list(permutations(np.arange(n))):

P = np.eye(n)[np.array(perm)]
Ap = P.T@A@P
Gp = np.tril(Ap)
Gxp = P@Gp@P.T
temp = (np.eye(n)-inv(Gxp)@A).T
result += np.kron(temp, temp)

return result/factorial(n)

def rpcd_pi_rho(n, s):
L = n - (n - 1) * s
if s != 1.:

alpha = n - 2 * L * (1 - s**n) / (1 - s) + L**2 * (1 - s**(2*n)) / (1 - s**2)
beta = ((1 - s) / (1 + s)) * (2 * n - n * s**(2*n) \

- 2 * (1 - s**(n + 1)) * (1 - s**n) / (1 - s) \
- s**2 * (1 - s**(2*n)) / (1 - s**2))

gamma = (1 - 1/(1 - s) + (n - 1 + 1/(1 - s)) * s**n)**2
delta = n * s**(2 * n) - 2 * s**(n + 1) * (1 - s**n) / (1 - s) \

+ s**2 * (1 - s**(2 * n)) / (1 - s**2)
else:

alpha = 0.
beta = 0.
gamma = 0.
delta = 0.

M = np.array([[n*beta - alpha, n*delta - gamma], \
[alpha - beta, gamma - delta]])/(n*(n-1))

return rho(M)

def set_min_eigval(A, s):
n = A.shape[0]
mu = min(eigvals(A))
a = (1-s)/(1-mu)
b = (s-mu)/(1-mu)
B = a*A + b*np.eye(n)
return B

def X_to_A(X, n, s):
if len(X) != int(n*(n+1)/2):

raise ValueError("X must have length n(n+1)/2.")
L = np.zeros((n, n)).astype(float)
idx = 0
for i in range(n):

for j in range(i + 1):
L[i, j] = X[idx]
idx += 1
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Y = L.T@L
Z = unit_diag(Y)
A = set_min_eigval(Z, s)
return A

#### Optimization ####

def objective(X, n, s):
A = X_to_A(X, n, s)
return -rho(mat_rep_rpcd(A))

n_values = [3, 4, 5, 6]
s_values = np.linspace(0.1, 0.9, 9)

sim_num_list = [10, 10, 2, 2]
results = []

# Compute max rho(M_AˆRPCD), for A in A_sigma
rho_max_dict = {}
for n in range(n_values):

for s in s_values:
temp = []
for k in range(2, n+1):

Aks = s*np.eye(k) + (1-s)*np.ones((k, k))
temp.append(rho(mat_rep_rpcd(Aks)))

rho_max_dict[(n, s)] = max(temp)

for i, n in enumerate(n_values):
for s in s_values:

sim_num = sim_num_list[i]
for sim in range(sim_num):

values = []
X_init = np.random.randn(int(n*(n+1)/2))
result = minimize(objective, X_init, args=(n, s), method='BFGS')
X = result.x
res_A = X_to_A(X, n, s)
results.append({'n': n, 's': s, 'sim': sim+1, 'A': res_A})
assert rho(mat_rep_rpcd(res_A)) <= rho_max_dict[(n, s)], f"Counterexample"

F.2. RCD vs RPCD.

Problem Settings. We considered four types of convex and smooth optimization problems in n-dimensional space. The first
three share a common structure of the form

f(x) =
1

2
x⊤Ax+ α · LSE(Qx),

where LSE is the log-sum-exp function, i.e., LSE(a1, . . . , an) = log(ea1 + · · ·+ ean). These problems differ in the specific
construction of A and the presence of the LSE term:

• (i) Quadratic functions with permutation-invariant Hessians: A = σIn + (1− σ)1n1
⊤
n with σ ∈ (0, 1] and α = 0.

• (ii) General quadratic functions with positive definite Hessians: A was randomly generated with unit diagonals and
λmin(A) = σ ∈ (0, 1], and α = 0.

• (iii) General quadratic functions with positive definite Hessians and a scaled LSE term: we used the same A as in (ii)
with an additional term α · LSE(Qx), where Q is a randomly generated orthogonal matrix.

We further consider a logistic regression problem with ridge regularization.
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• (iv) ℓ2-regularized logistic regression: the objective is

min
x

1

m

m∑
i=1

log(1 + exp(−bia
⊤
i x)) +

λ

2
∥x∥2,

where each ai ∈ Rn is drawn from N (0, In). We sample a ground-truth vector xtrue ∼ N (0, In), set bi =
sign(a⊤

i xtrue), and flip each bi independently with probability 0.1. This setup follows Nutini et al. (2015).

Matrix Generation. For (ii) and (iii), the matrix A was constructed by first generating an n× n random matrix X with
entries drawn from the standard normal distribution, followed by Steps 2-3 of Algorithmic Search detailed in Appendix F.1.
This procedure ensures that the generated A is unit-diagonal and has a minimum eigenvalue σ. The orthogonal matrix Q
in the LSE term was generated by applying QR decomposition to a random matrix with entries drawn from the standard
normal distribution.

Initialization. For each parameter setting in problems (i)-(iv) (i.e., each combination of n, σ, α, or λ), we sampled 10 initial
points from the standard normal distribution. For each initial point, both RCD and RPCD were run 10 times, resulting in
100 runs per setting.

Parameter Settings. We performed experiments for dimension n ∈ {25, 50} and minimum eigenvalue σ ∈ {0.1, . . . , 0.9}
(with increments of 0.1). For (iii), we considered the scaling factor α ∈ {0.5, 2.0}. For each algorithm execution, we ran 200
iterations when n = 25 and 300 iterations when n = 50. For (iv), we set n = m = 100, λ ∈ {0.0001, 0.001, 0.01, 0.1, 1.0},
and ran 600 iterations.

Implementation Details. For the implementation of RCD and RPCD, we computed the argmin for the objective function
at each coordinate, as described in Algorithm 1. For (i) and (ii), the update rule can be computed in closed form:

xt+1 = xt −
1

aitit
EitAxt.

This update rule is derived from the CD update formula for quadratic objectives, as remarked in Section 2.2. For (iii) and
(iv), we used scipy.optimize.minimize scalar with default parameters to compute the coordinate-wise updates.

Measurement. To evaluate the convergence, we measured ∥xk−x⋆∥
∥x0−x⋆∥ as our metric. This metric is motivated by Theorems

3.1 and 3.3, which provide convergence bounds in terms of the norm of the iterates. For (i) and (ii), the optimal solution
is known to be x⋆ = 0, simplifying the metric to ∥xk∥

∥x0∥ . For (iii) and (iv), we used the BFGS method implemented
in scipy.optimize.minimize with custom parameters (gtol=1e-12, maxiter=10000) to ensure a more
accurate approximate optimal solution x⋆ before running the RCD and RPCD algorithms.

Results. Figures 5-15 illustrate the convergence behavior of RCD and RPCD. Each algorithm was executed 100 times (10
random initial points and 10 runs per initial point) for each combination of (n, σ). The plots depict the ratio ∥xk−x∗∥

∥x0−x∗∥ on a
log scale. In the plots, solid lines represent the average of the convergence values over all trials at each iteration, and shaded
regions indicate the min-max range of the convergence values across all trials at each iteration. The results demonstrate that
RPCD consistently converges faster than RCD. For small values of σ (e.g., σ = 0.1), the performance of RCD and RPCD
is similar in (i), with RPCD showing only a slight speed advantage. However, for the same small σ, the performance gap
between RCD and RPCD becomes noticeably larger in (ii). This supports Conjecture 4.1 that RPCD is faster than RCD for
general quadratic functions and provides additional evidence that (i) represents a worst-case instance for RPCD.
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Figure 5. RCD vs RPCD, permutation-invariant quadratic functions. A = σI + (1− σ)11⊤, n = 25, σ ∈ {0.1, . . . , 0.9}. The y-axis is
in log scale.
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Figure 6. RCD vs RPCD, permutation-invariant quadratic functions. A = σI + (1− σ)11⊤, n = 50, σ ∈ {0.1, . . . , 0.9}. The y-axis is
in log scale.
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Figure 7. RCD vs RPCD, quadratic functions with unit-diagonal Hessians. A is unit-diagonal and λmin(A) = σ, n = 25, σ ∈
{0.1, . . . , 0.9}. The y-axis is in log scale.
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Figure 8. RCD vs RPCD, quadratic functions with unit-diagonal Hessians. A is unit-diagonal and λmin(A) = σ, n = 50, σ ∈
{0.1, . . . , 0.9}. The y-axis is in log scale.
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Figure 9. RCD vs RPCD, quadratic functions with unit-diagonal Hessians and log-sum-exp term. A is unit-diagonal and λmin(A) = σ,
n = 25, σ ∈ {0.1, . . . , 0.9}, α = 0.5. The y-axis is in log scale.
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Figure 10. RCD vs RPCD, quadratic functions with unit-diagonal Hessians and log-sum-exp term. A is unit-diagonal and λmin(A) = σ,
n = 50, σ ∈ {0.1, . . . , 0.9}, α = 0.5. The y-axis is in log scale.

61



Provable Benefit of Random Permutations over Uniform Sampling in Stochastic Coordinate Descent

0 25 50 75 100 125 150 175 200
Iterations

10 1

100

x k
x

*
/x

0
x

*

RCD vs RPCD, Quad. + LSE, = 0.1, = 2.0, n = 25
RCD
RPCD

0 25 50 75 100 125 150 175 200
Iterations

10 2

10 1

100

x k
x

*
/x

0
x

*

RCD vs RPCD, Quad. + LSE, = 0.2, = 2.0, n = 25

RCD
RPCD

0 25 50 75 100 125 150 175 200
Iterations

10 2

10 1

100

x k
x

*
/x

0
x

*

RCD vs RPCD, Quad. + LSE, = 0.3, = 2.0, n = 25
RCD
RPCD

0 25 50 75 100 125 150 175 200
Iterations

10 3

10 2

10 1

100

x k
x

*
/x

0
x

*

RCD vs RPCD, Quad. + LSE, = 0.4, = 2.0, n = 25

RCD
RPCD

0 25 50 75 100 125 150 175 200
Iterations

10 4

10 3

10 2

10 1

100

x k
x

*
/x

0
x

*

RCD vs RPCD, Quad. + LSE, = 0.5, = 2.0, n = 25
RCD
RPCD

0 25 50 75 100 125 150 175 200
Iterations

10 5

10 4

10 3

10 2

10 1

100

x k
x

*
/x

0
x

*

RCD vs RPCD, Quad. + LSE, = 0.6, = 2.0, n = 25

RCD
RPCD

0 25 50 75 100 125 150 175 200
Iterations

10 6

10 5

10 4

10 3

10 2

10 1

100

x k
x

*
/x

0
x

*

RCD vs RPCD, Quad. + LSE, = 0.7, = 2.0, n = 25

RCD
RPCD

0 25 50 75 100 125 150 175 200
Iterations

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

x k
x

*
/x

0
x

*

RCD vs RPCD, Quad. + LSE, = 0.8, = 2.0, n = 25

RCD
RPCD

0 25 50 75 100 125 150 175 200
Iterations

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

x k
x

*
/x

0
x

*

RCD vs RPCD, Quad. + LSE, = 0.9, = 2.0, n = 25

RCD
RPCD

Figure 11. RCD vs RPCD, quadratic functions with unit-diagonal Hessians and log-sum-exp term. A is unit-diagonal and λmin(A) = σ,
n = 25, σ ∈ {0.1, . . . , 0.9}, α = 2.0. The y-axis is in log scale.
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Figure 12. RCD vs RPCD, quadratic functions with unit-diagonal Hessians and log-sum-exp term. A is unit-diagonal and λmin(A) = σ,
n = 50, σ ∈ {0.1, . . . , 0.9}, α = 2.0. The y-axis is in log scale.
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Figure 13. RCD vs RPCD, quadratic functions with unit-diagonal Hessians and log-sum-exp term. A is unit-diagonal and λmin(A) = σ,
n = 25, σ ∈ {0.1, . . . , 0.9}, α = 20.0. The y-axis is in log scale.
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Figure 14. RCD vs RPCD, quadratic functions with unit-diagonal Hessians and log-sum-exp term. A is unit-diagonal and λmin(A) = σ,
n = 50, σ ∈ {0.1, . . . , 0.9}, α = 20.0. The y-axis is in log scale.
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Figure 15. RCD vs RPCD, Ridge-regularized logistic regression, n = m = 100, λ ∈ {0.0001, 0.001, 0.01, 0.1, 1.0}. The y-axis is in
log scale.
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G. Non-Asymptotic Comparison of RCD and RPCD
This section shows that RPCD outperforms RCD even after a finite number of epochs when A ∈ Aσ, complementing the
asymptotic results in the main text.

To avoid confusion, we introduce separate notations for RCD and RPCD. We denote by xRCD
T and xRPCD

K the iterates after T
iterations and K epochs, respectively, both starting from the same initial point x0. The corresponding iteration matrices,
denoted by MRCD

A and MRPCD
A , are both 2× 2 iteration matrices of RCD and RPCD that represent the restriction of MRCD

A

and MRPCD
A to span{I,11⊤}.

G.1. RCD Lower Bound

From the proof of Theorem 3.4, we have

λmin((MRCD
A )T (I)) = αT ,

where αT = e⊤1 (M
RCD
A )Te1. Let v1 and v2 be the unit eigenvectors of MRCD

A associated with eigenvalues λ1 and λ2,
where λ1 ≥ λ2. Then we can decompose e1 = c1v1 + c2v2, where c21 + c22 = 1 since v1 and v2 form an orthonormal basis.

Using this decomposition, we compute

αT = e⊤1 (M
RCD
A )Te1

= (c1v1 + c2v2)
⊤
(MRCD

A )T (c1v1 + c2v2)

= c21λ
T
1 + c22λ

T
2

≥ c21λ
T
1 .

The inequality follows from the fact that λ2 ≥ 0, as shown in the proof of Theorem 3.4.

We now consider two cases: (i) n > 2 and (ii) n = 2.

(i) n > 2. When n > 2, all entries of MRCD
A are positive. Therefore, we can apply the following lemma, known as the

Perron-Frobenius Theorem.

Lemma G.1 (Horn & Johnson (2012), Theorem 8.2.8.). Let A ∈ Rn×n be a positive matrix, i.e., all entries are strictly
positive. Then there exists a unique real vector x such that Ax = ρ(A)x and x is a positive vector, i.e., all entries are
strictly positive.

By this lemma, the eigenvector v1 =
[
v11 v12

]⊤
corresponding to the largest eigenvalue λmax(M

RCD
A ) can be chosen to

have strictly positive components.

Now, from the equation MRCD
A v1 = λ1v1, comparing the second coordinates gives

v11
v12

=
nλ1 − σ2(n− 2)

σ2
.

Hence, v11 ≥ v12 is equivalent to λ1 ≥
(
1− 1

n

)
σ2.

Now let p be the characteristic polynomial of MRCD
A . One can compute that

p

((
1− 1

n

)
σ2

)
=

2(n− 1)σ2(σ − 1)

n2
≤ 0.

Since p is a convex quadratic polynomial, the inequality above implies that λ1 ≥
(
1− 1

n

)
σ2. Therefore, v11 ≥ v12, and

since c1 = e⊤1 v1 = v11 and v211 + v212 = 1, we conclude that c21 ≥ 1
2 .

(ii) n = 2. In this case,

MRCD
A =

1

2

[
1 + (1− σ)2 0

σ2 0

]
,
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whose eigenvalues are 0 and 1+(1−σ)2

2 . The eigenvector corresponding to the largest eigenvalue is proportional to

w =

[
1 + (1− σ)2

1

]
,

so the normalized eigenvector is v1 = w
∥w∥ . Since 1 + (1− σ)2 ≥ σ2, it follows that v11 ≥ v12, and as in the previous case,

we again obtain c21 ≥ 1
2 .

Finally, we have

E[∥xRCD
T ∥2]

∥x0∥2
≥ 1

2

(
1− 1

n
+

(1− σ)2

n

)T

.

G.2. RPCD Upper Bound

From the proof of Theorem 3.3, we have

E
[
∥xRPCD

K ∥2
]

∥x0∥2
=

x⊤
0 (MRPCD

A )K(I)x0

x⊤
0 x0

≤ λmax((MRPCD
A )K(I))

= y⊤(MRPCD
A )Kx,

where x =
[
1 0

]⊤
and y =

[
1 n

]⊤
. Let v1 and v2 be the unit eigenvectors of MRPCD

A such that ∥vi∥ = 1, associated
with eigenvalues λ1, λ2 with λ1 ≥ λ2. Then x = c1v1 + c2v2 for some c1, c2 with c21 + c22 = 1, because x = e1. We have

y⊤(MRPCD
A )Kx = c1λ

K
1 y⊤v1 + c2λ

K
2 y⊤v2

= λK
1

(
c1y

⊤v1 + c2

(
λ2

λ1

)K

y⊤v2

)

≤ λK
1

(
|c1|∥y∥∥v1∥+ |c2|∥y∥∥v2∥

(
λ2

λ1

)K
)

≤ λK
1 ∥y∥(|c1|+ |c2|).

Since c21 + c22 = 1, we have |c1|+ |c2| ≤
√
2. Also, ∥y∥ =

√
n2 + 1, so we get y⊤(MRPCD

A )Kx ≤ λK
1

√
2(n2 + 1).

G.3. Comparison of RCD and RPCD

From the above, if T = nK, we have(
E
[
∥xRCD

T ∥2
]

∥x0∥2

) 1
K

≥
(
1− 1

n
+

(1− σ)2

n

)n(
1

2

) 1
K

(
E
[
∥xRPCD

K ∥2
]

∥x0∥2

) 1
K

≤ max

{(
1− 1

n

)n

,
(
1− σ

n

)2n}(√
2(n2 + 1)

) 1
K

.

Thus, if we can show that(
1− 1

n
+

(1− σ)2

n

)n(
1

2

) 1
K

≥ max

{(
1− 1

n

)n

,
(
1− σ

n

)2n}(√
2(n2 + 1)

) 1
K

, (42)

then we can conclude that RPCD is faster than RCD. The following is equivalent to (42):(
1− 1

n + (1−σ)2

n

)n
max

{(
1− 1

n

)n
,
(
1− σ

n

)2n} ≥
(
2
√
2(n2 + 1)

) 1
K

.

Since the left-hand side is ≥ 1, for any σ ∈ (0, 1), there exists K0 such that if K ≥ K0, then (42) holds.

Therefore, after K0 epochs, RPCD is faster than RCD.
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