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Abstract

What can large language models learn? By def-
inition, language models (LM) are distributions
over strings. Therefore, an intuitive way of
addressing the above question is to formalize
it as a matter of learnability of classes of distri-
butions over strings. While prior work in this
direction focused on assessing the theoretical
limits, we seek to understand the empirical
learnability. Unlike prior empirical work, we
evaluate LMs on their home ground—Iearning
probability distributions over strings—rather
than as classifiers of formal languages. In
particular, we investigate the learnability of
finite-state LMs (FSLMs). We first theoret-
ically quantify the minimal representation size
of a neural LM necessary for learning an FSLM
in terms of its rank, which corresponds to the
size of linear space spanned by the logits of its
conditional distributions. We then empirically
test the learnability of FSLMs and find that
the rank is a strong predictor of learnability
for both Transformers and RNNs, but the
significance of other properties of the FSLM
differs between Transformers and RNNS.

1 Introduction

Language models are, definitionally, distributions
over strings. However, not all neural LMs are ca-
pable of learning or even representing all possible
distributions. This raises two natural questions:
What classes can neural LMs represent and what
can they learn from training examples? In terms of
the first question, which distributions over strings
recurrent neural LMs can encode has been subject
to study for over three decades (e.g., McCulloch
and Pitts, 1943; Kleene, 1956; Siegelmann and Son-
tag, 1992; Hao et al., 2018; Korsky and Berwick,
2019; Merrill, 2019; Merrill et al., 2020; Hewitt
et al., 2020; Chung and Siegelmann, 2021; Merrill
et al., 2022; Merrill and Tsilivis, 2022; Svete and
Cotterell, 2023; Nowak et al., 2023). Moreover, the
prevalence of Transformer-based LMs has led to a
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Figure 1: A finite-state automaton (an unweighted ver-
sion of the one shown here) defines a set of strings by
assigning string binary weights. A probabilistic finite-
state automaton such as the one in the figure and a neural
LM such as an RNN or a Transformer LM, however,
define a probability distribution over strings.

recent body of work investigating their representa-
tional capacity (e.g., Hahn, 2020; Ebrahimi et al.,
2020; Bhattamishra et al., 2020; Merrill and Sab-
harwal, 2023). However, almost all of this work is
theoretical, i.e., researchers seek theorems that give
exact limitations for the capacity of specific neural
LMs. While such work provides a good characteri-
zation of what neural LMs could, in principle, learn,
it does not speak to what LMs can learn in practice.

In contrast to a more theoretically minded re-
searcher, an empirically minded researcher might
prefer to run a series of controlled experiments.
Their goal is to empirically characterize what
classes of formal LMs, e.g., probabilistic finite-
state automata, neural LMs are able to learn in
practice. Such work informs our understanding
of what types of languages larger LMs trained on
human-written text might represent—specifically,
what grammatical structures they can recognize,
and how efficiently they can do so. All of the
above is crucial for quantifying the practical capa-



bilities, and limits, of neural LMs. While plenty
of empirical work has provided insights into the
linguistic capabilities of modern LMs (e.g., Linzen
et al., 2016; Hewitt and Manning, 2019; Jawahar
etal., 2019; Liu et al., 2019; Icard, 2020; Manning
et al., 2020; Rogers et al., 2021; Belinkov, 2022),
real-world datasets give us limited insight into the
types of distributions a neural LM can learn be-
cause the true distribution that the neural LMs is
modeling is often unclear. For instance, fitting an
LM to Wikipedia leaves it open to interpretation
exactly which probability distribution over strings
the neural LM is modeling. In contrast, learning a
probabilistic formal language in a controlled situa-
tion offers an unparalleled level of control.

A close look at existing work testing the repre-
sentation and empirical learnability of formal lan-
guages (see App. A for an overview) reveals a cate-
gorical mismatch between what LMs are, i.e., prob-
ability distributions over strings, and what learning
a formal language means, i.e., classifying strings as
members of a specific language, i.e., a set of strings
(Ebrahimi et al., 2020; Deletang et al., 2023; Wang
and Steinert-Threlkeld, 2023). Prior work has also
benchmarked the learnability of non-probabilistic
finite-state transducers by sequence-to-sequence
models (Valvoda et al., 2022). We propose to in-
vestigate the practical representation capacity of
neural LMs by testing their ability to learn distri-
butions over strings. By sampling languages from
probabilistic finite-state automata (PFSA) LMs and
training neural LMs on them, we can ask precise
questions about the learnability.

Our paper contributes a large empirical study,
sampling datasets of 20k strings from 6500 ran-
domly generated PFSA, and training Transformer
and RNN LM models with a varying hidden state
size on our datasets. The empirical study is in-
formed by various theoretical results regarding
the representational capacity of RNNs concerning
probabilistic finite-state automata. We assess the
learnability by approximating the KL divergence
between neural LMs and PFSA. We find that a
large number of properties of the automaton, e.g.,
the number of states, the number of transitions, the
rank of its emission matrix, and its entropy con-
tribute to learnability. However, no one factor ap-
pears to be decisively more predictive than another.
Moreover, similar to Deletang et al. (2023), we also
find that RNNs are suited to modeling formal lan-
guages, in comparison to Transformers, which ne-

cessitate language-specific hyperparameter tuning.

2 Preliminaries

We begin with an introduction of the relevant math-
ematical preliminaries.

Definition 2.1. An alphabet X is a finite, non-
empty set of symbols. Its Kleene closure >* is
the set of all strings of its symbols. The length of
the string y = yi ...y € X%, denoted by |y| =T,
is the number of symbols it contains.

Definition 2.2. A language model p is a proba-
bility distribution over ¥*. Two LMs p and q are
weakly equivalent if p (y) = q (y) forall y € ¥*.

Most modern LMs define p (y) as a product of
conditional probability distributions:
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where EOS ¢ 3 is a special end of sequence symbol.
We denote & = X U {EOS}.

2.1 Neural Language Models

Neural LMs define the conditional distributions
p (Yt | y<¢) through a linearly transformed and
softmax-normalized hidden state h,_; € RP—a
representation of the string y,—that is computed
by a neural network:

Py | yet) = softmax(Eh;_1),, (2)

w XD (Eh¢—1),, 3
Zyei exp (Eht_l )y

We will call E € R**D the output matrix.

Neural LMs differ in how h;_; is computed
based on y-;. In this paper, we consider the two
most popular modern language modeling architec-
tures: Transformers (Vaswani et al., 2017), where
h;_; is computed with self-attention, and recur-
rent neural networks (Elman, 1990) (specifically
the LSTM variant (Hochreiter and Schmidhuber,
1997)), where h; is computed recurrently.

2.2 Finite-state Language Models

A classic formalism for defining LMs is probabilis-
tic finite-state automata (PFSAs), a probabilistic
version of finite-state automata that defines string
probabilities. Intuitively, a PFSA defines a finite
number of conditional next-symbol distributions
p (y | q) based on a finite number of states g € Q



that summarize string prefixes analogous to how
the hidden state h; of an RNN summarizes the
prefix y; ... y:. A PESA moves between its states
based on the input symbols according to the tran-
sitions defined by a transition relation. It accepts
a string with the probability equal to the product
of the transition weights along the string’s path in
the automaton and the last state’s final weight (or
the sum over all paths if there are multiple paths ac-
cepting the string).! It is deterministic (a DPFSA)
if the transition relation is a function of the current
state and symbol—if, for all ¢ € ) and y € 3., there
exists at most one ¢’ € @ such thatp (¢’ | ¢,y) > 0.
A PFSA is minimal if it has the smallest number
of states among all its weakly equivalent PESAs.?
The minimal DPFSA is unique up to a renaming of
the states. This gives the distribution encoded by a
DPFSA a distinct canonical distribution.

Definition 2.3. The LM p is finite-state (an FSLM)
if there exists a weakly equivalent PFSA.

Fig. 1 shows an example of a FSLM defining a
distribution over {a, b}* with p (ab™ab™) = 1-0.6-
0.1"-0.9-0.7™-0.3 and p (bb") = 1-0.4-0.7™-0.3.

3 Representing FSLMs with Neural LMs

Neural LMs have demonstrated an ability to model
human language well. However, they are noto-
riously challenging to analyze, making it diffi-
cult to state any formal claims on what they are
(in)capable of. To amend this, a large body of work
has linked neural LMs to formal models of com-
putation. DPFSAs feature particularly often in this
line of research (Merrill, 2019; Merrill et al., 2020;
Svete and Cotterell, 2023). To facilitate a detailed
inspection of how neural LMs can represent DPF-
SAs, we now formalize DPFSAs in a way that is
particularly easy to connect to neural LMs.

The conditional distributions p (y | ¢) defined
by a DPFSA can, in general, be arbitrary distri-
butions over ¥—a DPFSA therefore defines |Q|
distributions, each with || — 1 degrees of freedom.
As we will see, such a parameterization makes the
connection to neural LMs—which define condi-
tional distributions in terms of shared parameters
of the neural network and the output matrix E—
somewhat tricky. To facilitate a formal connection,
we define parametrized PFSAs.

"Final weights of states are analogous to the EOS symbol
which signals the end of string generation in neural LMs.

PFSAs and their relationships to LMs are discussed in
more detail in App. B.
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Figure 2: Linearly transforming h using E results in
vector of logits € RIZI, Eh, hgwever, defines at most
D-dimensional subspace in RI*|.

Definition 3.1. Let X be an alphabet, A a PFSA
with states (), and T € RUEHFDXIRL 4 matrix of
rank R. We say that A isrank R if p(y | q) =
softmax(T.q), forall g € Q and y € %3

Our study focuses on deterministic PFSAs,
whose relationship to neural LMs is better under-
stood. Let A be a rank-R DPFSA with states ()
over the alphabet X and p a neural LM. Further,
let y € X%, q € @ the state reached by A when
reading y, and h the hidden state encoding y by p.
If we want the LM p to match A’s distribution (for
them to be weakly equivalent), it has to hold that

softmax(Eh), = softmax(T.,), 4)
for all y € . Due to the additive invariance prop-
erty of the softmax function, this is equivalent to

Eh=T., +c, )
—

def

=uy

where ¢, = ¢41 € R and cq € R. We define

U e RIZIXIQI a5 the matrix with columns uy.

Minimal representation size. Assuming
|| < |Q|, the columns of U will, in general, span
RI*|. In the special case of rank-R DPFSASs, they
will span at most a (R + 1)-dimensional subspace
of RI%I, For Eq. (5) to hold, it is, therefore, nec-
essary that D > R + 1. If that is not the case, the
neural LM will naturally not be able to match all the
conditional distributions defined by the states of the
DPFSA, which leads us to the following theorem.

Theorem 3.1. Let p be a finite-state LM and that
can be represented by a rank-R, DPFSA A which is
minimal for p. Let q be a neural LM with a hidden
state h. If p and q are weakly equivalent, then h
must in general be of size at least R + 1.

3T, , is the column of the matrix T corresponding to g.



Given a rank-R DPFSA A, Thm. 3.1 says that
a weakly equivalent neural LM needs a hidden
state of size at least R + 1, establishing a general
lower bound on an LM’s hidden state size for
weak equivalence with a DPFSA. Note that a
hidden state of size R + 1, however, does not
mean that the neural LM can implement the
transitions dynamics of the PFSA with a hidden
state of size R + 1—it does not guarantee that
the LM is capable of implementing the transitions
between the subsequent hidden states capturing the
individual states of the automaton. Indeed, the size
of the hidden state must also, in some cases, scale
linearly with the number of states.

Theorem 3.2 (Svete and Cotterell (2023), Thms.
5.1 and 5.2). There exist families of DPFSAs such
that the representation size of any weakly equiva-
lent finite-precision RNN LM must scale linearly
with |Q| and |2|.

Beyond representational capacity. We see that
the representational capacity of neural LMs can be
theoretically described relatively comprehensively
in terms of formal models of computation. How-
ever, existing theoretical work only considers the
question of which distributions can be represented
by a neural LM. This leaves us with a large gap
in understanding what distributions are learnable
by neural LMs. Compared to pure representational
capacity results, formal claims about learning are
much more difficult to make due to the dependence
on factors such as the learning algorithm and as-
pects of the training data. To nevertheless gain
valuable insights into the problem, we now focus
on the learnability of DPFSAs empirically.

4 Practical Learnability of FSLMs

Our main goal is to provide a principled study of
the ability of neural LMs to learn FSLMs. We now
describe and justify our experimental setup and
then evaluate RNN and Transformer LMs on their
ability to learn FSLMs based on it.

4.1 A Critique of Learning Formal Languages

As discussed in §1, plenty of empirical work has
investigated the ability of neural language models
to learn formal languages such as those described
by finite-state automata, i.e., how well a neural
language model can be used to assess member-
ship of individual strings in a set. There are multi-
ple workarounds for this discrepancy. Most solu-
tions involve measuring some sort of accuracy of

next-symbol prediction. For example, Suzgun et al.
(2019a,b) and Bhattamishra et al. (2020) evaluate
neural LMs on the next-symbol prediction task,
which, intuitively, measures whether all allowed
continuations of the string under the formal model
achieve a large enough probability under the neu-
ral LM. Deletang et al. (2023) evaluate the models
with the proportion of correctly predicted tokens
(where the argmax of the neural LM prediction has
to match the ground-truth label). Unfortunately, all
these approaches inevitably shoehorn a neural LM
into a sort of classifier, mismatching the type of
an LM—a probability distribution—and a discrete
format language—a set, as illustrated in Fig. 1. Ide-
ally, we would like to measure precisely how the
neural LM has learned the distribution induced by a
formal LM. In this section, we outline and motivate
a possible way to approach this challenge.

4.2 Evaluating Probabilistic Learnability

At a high level, we test the learnability of random
FSLMs by training neural LMs on strings sampled
from randomly generated DPFSAs and measuring
the distance between the neural LM and the FSLM.
Crucially, unlike most existing work, we do not
have to rely on classification or next-symbol predic-
tion accuracy-based metrics but rather directly mea-
sure the similarity of distributions which presents a
much cleaner way of evaluating model similarity.
Concretely, given an FSLM p and a neural LM g,
we measure the KL divergence between the FSLM
and the neural LM:

D (p || @) € yeZE:* p(y)log ]; Ez; (6)

= H(p, q) — H(p). @)

The KL divergence is an established and well-
understood measure of the distance* between two
distributions. As such, it lends itself naturally to
evaluating the difference between LMs; in our case,
measuring how well the neural LM has captured
the distribution of the FSLM. Such a holistic treat-
ment of the difference between two LMs gives us a
tangible and interpretable way of understanding
how they differ. To compute, Dk, (p || q), we
use Eq. (7). We estimate the first term H (p, q)
by computing H (p, q), the empirical cross-entropy
between p and ¢. The second term can be computed
exactly by dynamic programming (Eisner, 2002;

4Note, that KL divergence is not a true distance, as it is
not symmetric and does not fulfill the triangle inequality.



Predictor Interpretation

Q| The number states.

Q|2 The number of transitions.

|2 Alphabet size.

R The size of the space that
logp (- | ¢) span for g € Q.

Avg. length  Average length of strings gener-
ated by the PFSA.

min(|Q],|X|) Upper bound of R.

H(A) Entropy of the PFSA.

Table 1: The PFSA-related predictor variables used to
estimate KL divergence with their interpretation.

Zmigrod et al., 2021). However, due to numerical
instability, we find using a Monte Carlo estimator
more accurate. See App. C.4 for further details on
the computation of these evaluation metrics.

4.3 Generating Random DPFSAs

We evaluate neural LMs on their ability to learn ran-
dom FSLMs, which we construct by randomly gen-
erating DPFSAs. We vary |Q| € {2,4, 8,16, 32}
and |X| € {2,4,8,16,32}. We then randomly se-
lect the outgoing neighbors of each of the states
(one for each y € X): For each ¢ € @ and
y € X we randomly choose ¢’ € @ and add the
transition q EN q to A. We add weights to the
transition function of A as follows. We gener-
ate a random matrix T € R(ZI+D*IQl For each
R e {2"]|2" <min(|Q|,|X]),r € {0,...,5}},
we compute TR by reducing the rank of T to R
using SVD. We then set transition probability of
¢ ¢ tow,, = softmax(TR:’q)y. Finally, we
set p (¢) = softmax (T ) _ . This process results
in the generation of up to six random DPFSAs, all
sharing the same @), 3, and underlying transition
function. They differ, however, in the rank of the
matrix TR that defines the weights of the transi-
tions. Furthermore, the construction of exactly one
transition for each ¢ and y ensures that the DPFSA
mirrors the nature of a neural LM, which also de-
fines full-support next-symbol probabilities for any
prefix of the string. Altogether, this allows us to
precisely control the quantities from Tab. 1 and thus
the complexity of the DPFSA. At the same time,
the DPFSA are determined through the shared pa-
rameters of the T, making them easy to connect to
neural LMs. See App. C.1 for additional details.

~

Indep. Var. 8 SE  p-value
Intercept 7.67 0.08 <0.001
Q| 4.84 0.19 <0.001
|Q||2] 348 0.21 < 0.001
D3] 1.34 0.21 < 0.001
R 6.29 0.10 < 0.001
D 0.18 0.08 < 0.05
Avg. len. —-0.36 0.17 < 0.05
min(|Q,|Z)) -1.98 0.32 < 0.001
H(A) 4.65 0.22 < 0.001

Table 2: Estimated beta coefficients (B), standard errors
(SE), and p-values for Dkr, generated with a linear re-
gression model for RNNs.

5 Results

5.1 Statistical Evaluation

There are many natural metrics to measure the com-
plexity of DPFSAs. We present the most relevant
ones in Tab. 1. Naturally, we expect the difficulty
of learning and the required size of the hidden state
to increase with all the quantities. We evaluate
the size of this effect by fitting a linear model that
estimates the learnability (as measured by the KL
divergence) from the DPFSA properties shown in
Tab. 1 and the neural LM’s hidden state size D.
Following the experimental setup outlined in
App. C, we obtain Dk, results for 6500 RNN and
6500 Transformer LMs trained on strings sampled
from random DPFSAs with specific sets of com-
plexity parameters. The linear regression model
was fit to the data, separately for the RNN output
and for the Transformer output, to quantitatively
assess the variation in the empirical Dxky, diver-
gence. Each of the predictors was standardized
using a z-score transformation for an interpretable
comparison of the estimated coefficients.

5.2 RNN Findings

As shown in Tab. 2, the linear regression reveals
significant effects of each of the included predictors
for the RNN output. Of these, the number of states,
the number of symbols, the number of transitions,
the rank, the PFSA perplexity, and the hidden state
size were positive in their direction, indicating
an increase in KL divergence with an increase in
the predictor of interest. The average string length
and minimum of the number of states and symbols
were negative in influence, indicating a decrease
in KL. with an increase in the respective predictor.
Overall, the DPFSA rank had the strongest
influence on KL divergence, followed in order



Indep. Var. 15} SE  p-value
Intercept 30.1 0.27 < 0.001
|Q| 0.43 0.60 0.47
|Q||Z] —2.43 0.60 <0.001
%] 7.80 0.69 <0.001
R 125 033 < 0.001
D —10.86 0.27 < 0.001
Avg. len. 31.2 054 < 0.001
min(|Q[,[X[)  —1.89 1.05 0.07
H(A) —14.5 0.71 < 0.001

Table 3: Estimated beta coefficients (B), standard errors
(SE), and p-values for Dkr, generated with a linear re-
gression model for Transformers.

. @l

2 4 8 16 32
RNNs 0.44 1.24 5.11 1041 16.38
Transformers 29.99 33.84 31.00 28.06 29.59

Table 4: KL divergence for RNNs and Transformers as
a function of the number of states of the DPFSA.

by number of states and PFSA perplexity, then
number of transitions. The remaining predictors
were smaller in influence, regardless of direction.

5.3 Transformer Findings

For the Transformer results, the linear regression re-
veals significant effects of the number of symbols,
the number of transitions, the rank, the average
string length, the PFSA perplexity, and the hidden
state size (see Tab. 3). The number of states and
minimum of the number of states and symbols did
not reach significance. Of the significant predictors,
the number of symbols, rank, and average string
length were positive in their influence, indicating
an increase in KL divergence as the predictor of in-
terest increased. The number of transitions, PFSA
perplexity, and hidden state size were negative in
influence, indicating a decrease in KL divergence
with an increase in the predictor of interest. Of the
positive relationships, average string length had the
largest influence, followed in order by rank, then
number of symbols. Of the negative relationships,
PFSA perplexity had the largest influence, followed
by hidden state size, then the number of transitions.

6 Discussion

Comparison of the RNN and Transformer LMs.
The linear models revealed an overall disparate
pattern of effects between RNNs and Transform-
ers. First to note is the overall performance as

revealed by the model intercept (see Tab. 2, Tab. 3,
and Fig. 7 in App. D). RNNs tend to outperform
Transformers in this task, demonstrating lower av-
erage loss. This difference in performance could
be attributed to two main factors: 1) As previous re-
search has shown, RNNs are better suited to model-
ing formal languages (Deletang et al., 2023), and 2)
Transformers necessitate careful training involving
language-specific hyperparameter tuning, which
poses a severe computational challenge. Despite
the potential suboptimal training of Transformers,
we anticipate that the trend observed here would
persist even with optimal training.

There were some similarities in the pattern of
the model effects, in that the number of symbols
and rank were significant and positive in their influ-
ence on KL for each of the RNN and Transformer
outputs. Otherwise, the influence of the predictors
was fairly different. In particular, several predic-
tors had opposite and significant influences on KL
divergence for each of the LM types. Whereas the
average string length had a negative influence on
KL divergence for the RNN output, it had a pos-
itive, and notably, the strongest influence on KL
divergence for the Transformer output. In addition,
the number of transitions, PFSA perplexity, and
hidden state size were positive for the RNN output,
but negative for the Transformer KL divergence.
The average string length also differed between the
two LM types, with a negative influence for RNN
output, but positive for Transformer output.

Implications of Thm. 3.1. Thm. 3.1 concretely
quantifies the size of the representation space of
any neural LM required for the correct representa-
tion of finite-state LMs. To the best of our knowl-
edge, this is the first result of this generality. Prac-
tical implementations of FSLMs might use state
spaces and alphabets of sizes ranging from thou-
sands to hundreds of thousands (Mohri and Riley,
1999), which is much larger than the representa-
tions used by most modern neural LMs, which tend
to be in the order of a few thousand dimensions
(Groeneveld et al., 2024). The good performance
of much smaller neural LMs on similar datasets in-
dicates that those LMs are indeed low-rank and can
thus be approximated well using smaller hidden
representations. Nevertheless, Thm. 3.1 provides
an interesting limitation on what distributions neu-
ral LMs of finite size can represent and points out
the limitations of parameter sharing in representing
formal models of computation; while neural LMs
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Figure 3: DPFSA’s entropy H and the Dx1, between the neural LMs and the DPFSAs as a function of |Q| and |X].
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Figure 4: DPFSA’s entropy H and the Dy, between the neural LMs and the DPFSAs as a function of |Q| and R.

are good at approximating such models of com-
putation, their inability to represent them exactly
implies that, with increasing string lengths, their
errors will unavoidably accumulate. This leads to
poor length generalization often observed in prior
work (Weiss et al., 2018; Suzgun et al., 2019b;
Bhattamishra et al., 2020; Deletang et al., 2023).

Takeaways from the empirical results. The em-
pirical results in §5.2 complement the theoretical
discussion from §3 and the growing field of litera-
ture characterizing the representational capacity of
neural LMs. In line with the theoretical setting and
in contrast to related work, our approach directly
evaluates the KL divergence between neural LMs
and FSLMs, instead of relying on classification or
next-token prediction accuracy measures. Compar-
ing distributions over strings offers a more holistic
view of a neural LM’s overall ability to emulate
FSLMs allowing us to provide compelling insights
into what aspects of distributions affect the learn-
ability of formal LMs by controlling for various
properties of the FSLLMs being learned. Neatly,

the observed effects of the rank on the KL diver-
gence align with the theoretical results derived in
Thm. 3.1, in that, as the rank of an FSLM grows,
a larger hidden state is required in the neural LM
to model it appropriately. Surprisingly, in con-
trast to theoretical results on representations capac-
ity (Indyk, 1995; Svete and Cotterell, 2023), the
experiments also show that for RNNs, learnabil-
ity is unaffected by the hidden state size. That is,
FSLMs defined by DPFSAs with a large number
of states are well-approximated by RNN LMs of
size smaller than predicted by theory. The the-
ory developed in this paper and in related work,
however, investigates exact representation of the
FSLMs, not their approximation. The good per-
formance of RNN LMs suggests that RNN LMs
manage to learn good approximations of languages
that they theoretically can not fully represent. This
strongly encourages further research into the ap-
proximation abilities of neural LMs; judging from
our results, those would be more relevant for practi-
cal scenarios. Nevertheless, the dependence of the
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Figure 5: DPFSA’s entropy H and the Dxk1, between the neural LMs and the DPFSASs as a function of D and R.

performance on the rank of the DPFSA seens to
demonstrate the utility of formal language theory
in providing interpretable insights into the learning
abilities of neural LMs.

Extensions. We focus on the learnability of deter-
ministic PESAs. This makes the theoretical results
from §3 particularly interpretable. Extensions to
the non-deterministic automata, however, are an
interesting next step. Note that in this case, the
PFSA rank analysis is slightly more nuanced. A
non-deterministic PFSA can, at any point, be in
any of the |Q| states (with a probability distribu-
tion over them), meaning that the probability of
the next symbol is a convex combination of the
individual conditional probability distributions (not
their logits). This makes the analysis trickier and
less interpretable; we leave it for future work to
make the current exposition more concise. A fur-
ther interesting follow-up is also the study of the
learnability of (deterministic) context-free LMs rep-
resented by probabilistic pushdown automata (PP-
DAs). PPDAs augment PFSAs by implementing
a stack that gives the automaton infinitely many
configurations. Despite the infinitely many config-
urations, controlling for their rank analogously to
the rank of a PFSA could elucidate how efficiently
they are representable by neural LMs.

7 Conclusion

We provide a comprehensive empirical study of
the learnability of FSLMs by neural LMs. More
concretely, we investigate how well LMs learn to
match the distributions over strings generated by
FSLMs of varying complexity. For this purpose,
we first propose to use KL divergence between
such distributions over strings as a more holistic
measure of evaluating the similarity of LMs. We

establish that for weak equivalence, a neural LM’s
hidden state size is theoretically lower-bounded
by the DPFSA’s rank. We find this to be consis-
tent with the results of our controlled experiments
on the effects of FSLM properties on learnability.
Other theoretical results on the representational
capacity of neural LMs (the dependence of the rep-
resentation size on the number of states and the size
of the alphabet), however, seem to be less relevant
to the learnability. Overall, our results showcase
the utility of using formal language theory to create
interpretable insights into the learning abilities of
neural LMs but call for theoretical investigations
closer to practical applications.

Limitations

We point out some limitations of the presented
study. To keep our work concise and results self-
contained, we focus only on deterministic FSLMs.
Similar and more comprehensive investigations
could of course include non-deterministic automata
and languages higher up on the Chomsky hierar-
chy, such as context-free LMs, or even context-
sensitive LMs. Our experiments also omit the effect
of training dataset size, which might be an interest-
ing quantity to consider when training neural LMs.
We leave those considerations to future work.

Moreover, due to computational constraints and
the substantial computation load imposed by our
experiments, we could not fine-tune our models
with language-specific hyperparameters, which
are particularly important for transformers. For
the same reason, we had to refrain from optimising
larger and more capable models. However, we
believe that this should not impair the validity of
our results, as the trend we observed would hold
even with optimal training.
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A Additional Related Work

A.1 Representational Capacity of Neural LMs

Plenty of theoretical work has investigated the representational capacity of various neural LM architectures
(Merrill, 2023; Strobl et al., 2023). Finite-state languages (and, to a lesser extent, finite-state LMs) have
been linked to neural LMs particularly often, especially to recurrent neural LMs, but similar connections
have also been made for Transformers (Merrill, 2019; Merrill et al., 2020; Liu et al., 2023). Distinctively
interesting are the bounds on the space requirements for emulating FSAs (Dewdney, 1977; Indyk, 1995;
Hewitt et al., 2020; Svete and Cotterell, 2023). This work bridges the theoretical work with practice, tests
its applicability, and uses its insights for an informed study of the practical representational capacity of
neural LMs.

A.2 Learning Formal Languages

Work similar to ours in spirit is that of Jumelet and Zuidema (2023), where the authors train and evaluate
neural LMs with probabilistic context-free grammars. They use the underlying data-generating distribution
(the probabilistic grammar) to evaluate how well the model has learned the distribution. Moreover, the
knowledge of grammar allows them to probe the model for the encodings of individual constituents,
similar to how we probe for the states of the automaton. In contrast to our work, however, Jumelet and
Zuidema (2023) focus on learning human-language-based grammars, which do not provide a holistic
picture of the representability of general formal LMs by neural LMs.

Deletang et al. (2023) provide a comprehensive survey of the learnability of diverse formal languages.
Unlike us, they focus on learning discrete languages, particularly from the perspective of learning
algorithms and investigating LMs’ inductive biases. They formulate this as a transduction—a string-
to-string mapping. They arrive at interesting results showing that popular neural LMs are hard to place
on the standard Chomsky hierarchy of languages. This can partly be explained by the mismatch of the
training task—transduction—and the probabilistic nature of a neural LM, since the probabilistic Chomsky
hierarchy is known to differ from the discrete one (Icard, 2020). In contrast to our work, Deletang et al.
(2023) also only consider a limited set of hand-picked languages which, while providing algorithmic
insights into how LMs work, do not extensively probe the learnability of the language classes.

Testing the compositional generalization of NNs, Valvoda et al. (2022) sample an infinite number
of finite languages. Thereby they can draw conclusions about the learnability of an entire class of
languages—sub-regular ones encoded by subsequential finite state transducers. Their work connects
Montague’s theory of compositional generalization (Montague, 1970) with the popular SCAN benchmark
of compositional behavior (Lake and Baroni, 2018). Unlike our work, they investigate deterministic
transducers and seq2seq models.

Another similar work is that of White and Cotterell (2021), who use artificial languages to identify
the biases of neural LMs. By modifying a base grammar, they experiment with the learnability of 64
languages. Unlike us, their work focuses solely on topological aspects of the language, which limits their
findings to observations over the word order.

In a different line of work, Akyiirek et al. (2024) evaluate neural LMs’ abilities to learn finite-state
languages in context. Rather than learning one particular distribution from the training dataset, they
train neural LMs to model the language of any finite-state automaton given a number of samples from
it—that is, to infer the generating mechanism from the context. They consider only discrete languages
(even though their generative setup is probabilistic) and due to the in-context learning setting, they do not
analyze the dynamics of the neural LM implementing individual languages.

B Probabilistic Finite-state Automata

We begin by more formally defining the notion of probabilistic finite-state automata (PFSAs), which were
only informally introduced in §2.

Definition B.1. A probabilistic finite-state automaton (PFSA) is a 5-tuple (X, Q, 0, A, p) where ¥ is
an alphabet, Q a finite set of states, § < Q) x X x [0,1] x Q a finite set of weighted transitions and
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A, p: Q — [0,1] the initial and final weighting functions. Moreover, §, A and p are required to satisfy
that 3,0 A (q) = 1, and, forall g € Q, 33y p.qhes W + P (a) = L.

We denote (q,y,w,q") € § with ¢ ylw, q.

Definition B.2. A path w in a PFSA A is a sequence of consecutive transitions

q1 yifun, G2, QN njn, qnN+1- Its length || is the number of transitions in it and its scan

s (7) the concatenation of the symbols on them. We denote with 11(.A) the set of all paths in A and with
II(A, y) the set of all paths that scan y € X*.

The weights of the transitions along a path are multiplicatively combined to form the weight of the
path. The weights of all the paths scanning the same string are combined additively to form the weight of
that string.

Definition B.3. The path weight of w € II(A) isw (m) = A (¢1) [1_.[7]1\[:1 wn] p (qn+1). The stringsum
ofyeY*is A(y) £ Dimeli(Ay) W ().

It is easy to see that the final weights p (¢) play an analogous role to the EOS symbol in the context of
autoregressive LMs—they both correspond to the probabilities of ending the generation of the string.

Definition B.4. A PFSA A = (X,Q, 0, \, p) is deterministic if |{q | A (q) > 0}| = 1 and, for every

q€ Q,y €Y, there is at most one q' € Q such that q Y, q € 6 withw > 0.

In general, there can be infinitely many PFSAs that define a given FSLM. However, in the deterministic
case, there is a unique minimal DPFSA.

Definition B.5. A DPFSA A = (X,Q,, \, p) is minimal for the FSLM p if there is no weakly equivalent
DPFSA A" = (X,Q", N, p/, ) with |Q'| < |Q)|.

C Experimental Details

C.1 Sampling DPFSAs of varying complexity

The DPFSAs we used in our experiments were sampled with |Q| € {2,4,8,16,32} over alphabets
alphabets of sizes |X| € {2,4, 8,16, 32}. Given a sampled DPFSA A with |Q| states over an alphabet
Y., we randomly set its unweighted transition function. That is, for each ¢ € Q and y € ¥ we randomly
choose ¢’ €  and add the transition ¢ EN q to A.

We add weights to the transition function of .4 as follows. We generate a random matrix T €
RUIZHDXIQL A (1 = 0, 0% = 4), and define Ryax = rank (T) (Note that Ryay < min(|Q|,|%])).
For each R € {27]2" < Rppax, 7 € {0,1,2,3,4,5}}, we compute T by reducing the rank of T to R
using SVD. Next, we add weights to the transition function of A by replacing each unweighted transition

g % ¢ with g AR q', where wg,, = softmax(TR:7q)y. Finally, we set p (¢) = softmax(Tf—"fq)Eos.
This process results with the generation of up to six® random DPFSAs, all sharing the same @, ¥ and
underlying transition function. They differ, however, in the rank of the matrix T® that defines the weights

of the transitions.

C.2 Generating the Data

For a given DPFSA A, we sample 20k random strings, terminating the generation process of each string
when EOS is sampled. We divide the dataset into train and test splits, such that no string is shared between
the sets, and the test set has at least 2k strings. We truncate the strings to 128 symbols to accommodate
the limited context length of the Transformer model we used. Fig. 6 shows a histogram of the average
length of strings generated for each DPFSA.

’1{2712" < Rmax, 7 € {0,1,2,3,4,5}} | <6
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Figure 6: The statistics of the training dataset.

C.3 Training the Neural LMs

We train neural LMs on our dataset using the following procedure, repeated 6500 times:

1. Sample a random DPFSA A with |@)|, |X| and rank R using the process described in App. C.1.

2. Sample 20k strings from .4 and split them to train set and test set using the process described in
App. C.2.

3. Train an RNN with a random hidden state size D sampled from {2, 4, 8,16, 32, 64} on the train set
strings.

4. Train a Transformer model with the same hidden state size D on the train set strings.

5. Compute the Dk, between A and each of the two trained neural LMs on the test set strings.
We train the RNN and Transformer models using the following hyperparameters:

* RNNs: We use a unidirectional LSTM with two hidden layers, each with 64-dimensional hidden
states and an embedding size of 64. We trained each model for two epochs using a batch size of 32
and a learning rate of 0.001, an Adam optimizer with default settings, and a standard cross-entropy
loss (Kingma and Ba, 2014).

* Transformers: We use the GPT-2 model architecture (Radford et al., 2019) with six attention layers,
each with four attention heads and 256-dimensional representations. We use an embedding size of
64 and an input context length of 128. We trained each model for three epochs using a batch size
of 32, an AdamW (Loshchilov and Hutter, 2018) optimizer with default settings, and a standard
cross-entropy loss.

C.4 Evaluation

~

H (p(Dyest)) is calculated by aggregating all the weights along the paths of each string in Diest =

{y1,..,yn}. Thatis,
~ 1 X L
H (p(Drest)) = Z —log (p(m;)) = N Z —log (w(m;)) ®)

N i=1 i=1

where 7r; is the unique path in .4 accepting ;.

b7r; is unique as A is deterministic.
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Loss as a function of DPFSA complexity
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Figure 7: Validation performance of RNNs and Transformers as a function of the PFSA’s complexity, computed as
|Z] + Q| + R.

KL divergence as a function of average string length
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Figure 8: Dxkr, of RNNs and Transformers as a function of the average string length of the DPFSA.

Similarly, we calculate

N |yl
H (p(Dtest) (Dtebt Z Z yt | y<t) (yt | y<t)) (9)
i=1t=1
1N |y
= N; ; | y<t)logq (vt | y<t) (10)
where p (y; | y<¢) = wy is the weight of the transition ¢;—; LN q: in m;, and q (y; | y<¢) is

softmax(Eh;_1),, given by the neural LM.

D Additional Results

This section includes figures presenting the results of additional experiments augmenting and supporting
the claims in the main paper:

Fig. 7 Overall performance of the neural LM models as a function of the “total complexity” of the PFSA
they were optimised for, which we define as the sum of |X|, |@Q|, and R. Performance is measured as
the cross-entropy of the neural model on a held-out test set. We compute the loss by summing it over
symbols and dividing this sum by the number of sequences in the test set. We can see that RNNs tend to
overperform Transformers, especially for more complex PFSAs.

Fig. 8 The Dk, of RNNs and Transformers as a function of the average string length of the DPFSA.
Similarly to Tab. 3, we see that Transformers are much more sensitive to string length compared to RNNs.
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