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Abstract

What can large language models learn? By def-001
inition, language models (LM) are distributions002
over strings. Therefore, an intuitive way of003
addressing the above question is to formalize004
it as a matter of learnability of classes of distri-005
butions over strings. While prior work in this006
direction focused on assessing the theoretical007
limits, we seek to understand the empirical008
learnability. Unlike prior empirical work, we009
evaluate LMs on their home ground—learning010
probability distributions over strings—rather011
than as classifiers of formal languages. In012
particular, we investigate the learnability of013
finite-state LMs (FSLMs). We first theoret-014
ically quantify the minimal representation size015
of a neural LM necessary for learning an FSLM016
in terms of its rank, which corresponds to the017
size of linear space spanned by the logits of its018
conditional distributions. We then empirically019
test the learnability of FSLMs and find that020
the rank is a strong predictor of learnability021
for both Transformers and RNNs, but the022
significance of other properties of the FSLM023
differs between Transformers and RNNs.024

1 Introduction025

Language models are, definitionally, distributions026

over strings. However, not all neural LMs are ca-027

pable of learning or even representing all possible028

distributions. This raises two natural questions:029

What classes can neural LMs represent and what030

can they learn from training examples? In terms of031

the first question, which distributions over strings032

recurrent neural LMs can encode has been subject033

to study for over three decades (e.g., McCulloch034

and Pitts, 1943; Kleene, 1956; Siegelmann and Son-035

tag, 1992; Hao et al., 2018; Korsky and Berwick,036

2019; Merrill, 2019; Merrill et al., 2020; Hewitt037

et al., 2020; Chung and Siegelmann, 2021; Merrill038

et al., 2022; Merrill and Tsilivis, 2022; Svete and039

Cotterell, 2023; Nowak et al., 2023). Moreover, the040

prevalence of Transformer-based LMs has led to a041

a b ab aa bb aab aba abb
PFSA Neural LM FSA

q0{1

q1

q2{0.3

a{0.
6

b{0.4

b{0.1

a{0.9

b{0.7

Figure 1: A finite-state automaton (an unweighted ver-
sion of the one shown here) defines a set of strings by
assigning string binary weights. A probabilistic finite-
state automaton such as the one in the figure and a neural
LM such as an RNN or a Transformer LM, however,
define a probability distribution over strings.

recent body of work investigating their representa- 042

tional capacity (e.g., Hahn, 2020; Ebrahimi et al., 043

2020; Bhattamishra et al., 2020; Merrill and Sab- 044

harwal, 2023). However, almost all of this work is 045

theoretical, i.e., researchers seek theorems that give 046

exact limitations for the capacity of specific neural 047

LMs. While such work provides a good characteri- 048

zation of what neural LMs could, in principle, learn, 049

it does not speak to what LMs can learn in practice. 050

In contrast to a more theoretically minded re- 051

searcher, an empirically minded researcher might 052

prefer to run a series of controlled experiments. 053

Their goal is to empirically characterize what 054

classes of formal LMs, e.g., probabilistic finite- 055

state automata, neural LMs are able to learn in 056

practice. Such work informs our understanding 057

of what types of languages larger LMs trained on 058

human-written text might represent—specifically, 059

what grammatical structures they can recognize, 060

and how efficiently they can do so. All of the 061

above is crucial for quantifying the practical capa- 062
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bilities, and limits, of neural LMs. While plenty063

of empirical work has provided insights into the064

linguistic capabilities of modern LMs (e.g., Linzen065

et al., 2016; Hewitt and Manning, 2019; Jawahar066

et al., 2019; Liu et al., 2019; Icard, 2020; Manning067

et al., 2020; Rogers et al., 2021; Belinkov, 2022),068

real-world datasets give us limited insight into the069

types of distributions a neural LM can learn be-070

cause the true distribution that the neural LMs is071

modeling is often unclear. For instance, fitting an072

LM to Wikipedia leaves it open to interpretation073

exactly which probability distribution over strings074

the neural LM is modeling. In contrast, learning a075

probabilistic formal language in a controlled situa-076

tion offers an unparalleled level of control.077

A close look at existing work testing the repre-078

sentation and empirical learnability of formal lan-079

guages (see App. A for an overview) reveals a cate-080

gorical mismatch between what LMs are, i.e., prob-081

ability distributions over strings, and what learning082

a formal language means, i.e., classifying strings as083

members of a specific language, i.e., a set of strings084

(Ebrahimi et al., 2020; Deletang et al., 2023; Wang085

and Steinert-Threlkeld, 2023). Prior work has also086

benchmarked the learnability of non-probabilistic087

finite-state transducers by sequence-to-sequence088

models (Valvoda et al., 2022). We propose to in-089

vestigate the practical representation capacity of090

neural LMs by testing their ability to learn distri-091

butions over strings. By sampling languages from092

probabilistic finite-state automata (PFSA) LMs and093

training neural LMs on them, we can ask precise094

questions about the learnability.095

Our paper contributes a large empirical study,096

sampling datasets of 20k strings from 6500 ran-097

domly generated PFSA, and training Transformer098

and RNN LM models with a varying hidden state099

size on our datasets. The empirical study is in-100

formed by various theoretical results regarding101

the representational capacity of RNNs concerning102

probabilistic finite-state automata. We assess the103

learnability by approximating the KL divergence104

between neural LMs and PFSA. We find that a105

large number of properties of the automaton, e.g.,106

the number of states, the number of transitions, the107

rank of its emission matrix, and its entropy con-108

tribute to learnability. However, no one factor ap-109

pears to be decisively more predictive than another.110

Moreover, similar to Deletang et al. (2023), we also111

find that RNNs are suited to modeling formal lan-112

guages, in comparison to Transformers, which ne-113

cessitate language-specific hyperparameter tuning. 114

2 Preliminaries 115

We begin with an introduction of the relevant math- 116

ematical preliminaries. 117

Definition 2.1. An alphabet Σ is a finite, non- 118

empty set of symbols. Its Kleene closure Σ˚ is 119

the set of all strings of its symbols. The length of 120

the string y “ y1 . . . yT P Σ˚, denoted by |y| “ T , 121

is the number of symbols it contains. 122

Definition 2.2. A language model p is a proba- 123

bility distribution over Σ˚. Two LMs p and q are 124

weakly equivalent if p pyq “ q pyq for all y P Σ˚. 125

Most modern LMs define p pyq as a product of 126

conditional probability distributions: 127

p pyq
def
“ p pEOS | yq

|y|
ź

t“1

p pyt | yătq , (1) 128

where EOS R Σ is a special end of sequence symbol. 129

We denote Σ
def
“ Σ Y tEOSu. 130

2.1 Neural Language Models 131

Neural LMs define the conditional distributions 132

p pyt | yătq through a linearly transformed and 133

softmax-normalized hidden state ht´1 P RD—a 134

representation of the string yăt—that is computed 135

by a neural network: 136

p pyt | yătq
def
“ softmaxpEht´1qyt (2) 137

def
“

exp pEht´1qyt
ř

yPΣ exp pEht´1qy
(3) 138

We will call E P R|Σ|ˆD the output matrix. 139

Neural LMs differ in how ht´1 is computed 140

based on yăt. In this paper, we consider the two 141

most popular modern language modeling architec- 142

tures: Transformers (Vaswani et al., 2017), where 143

ht´1 is computed with self-attention, and recur- 144

rent neural networks (Elman, 1990) (specifically 145

the LSTM variant (Hochreiter and Schmidhuber, 146

1997)), where ht is computed recurrently. 147

2.2 Finite-state Language Models 148

A classic formalism for defining LMs is probabilis- 149

tic finite-state automata (PFSAs), a probabilistic 150

version of finite-state automata that defines string 151

probabilities. Intuitively, a PFSA defines a finite 152

number of conditional next-symbol distributions 153

p py | qq based on a finite number of states q P Q 154
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that summarize string prefixes analogous to how155

the hidden state ht of an RNN summarizes the156

prefix y1 . . . yt. A PFSA moves between its states157

based on the input symbols according to the tran-158

sitions defined by a transition relation. It accepts159

a string with the probability equal to the product160

of the transition weights along the string’s path in161

the automaton and the last state’s final weight (or162

the sum over all paths if there are multiple paths ac-163

cepting the string).1 It is deterministic (a DPFSA)164

if the transition relation is a function of the current165

state and symbol—if, for all q P Q and y P Σ, there166

exists at most one q1 P Q such that p pq1 | q, yq ą 0.167

A PFSA is minimal if it has the smallest number168

of states among all its weakly equivalent PFSAs.2169

The minimal DPFSA is unique up to a renaming of170

the states. This gives the distribution encoded by a171

DPFSA a distinct canonical distribution.172

Definition 2.3. The LM p is finite-state (an FSLM)173

if there exists a weakly equivalent PFSA.174

Fig. 1 shows an example of a FSLM defining a175

distribution over ta, bu˚ with p pabnabmq “ 1¨0.6¨176

0.1n ¨0.9¨0.7m ¨0.3 and p pbbmq “ 1¨0.4¨0.7m ¨0.3.177

3 Representing FSLMs with Neural LMs178

Neural LMs have demonstrated an ability to model179

human language well. However, they are noto-180

riously challenging to analyze, making it diffi-181

cult to state any formal claims on what they are182

(in)capable of. To amend this, a large body of work183

has linked neural LMs to formal models of com-184

putation. DPFSAs feature particularly often in this185

line of research (Merrill, 2019; Merrill et al., 2020;186

Svete and Cotterell, 2023). To facilitate a detailed187

inspection of how neural LMs can represent DPF-188

SAs, we now formalize DPFSAs in a way that is189

particularly easy to connect to neural LMs.190

The conditional distributions p py | qq defined191

by a DPFSA can, in general, be arbitrary distri-192

butions over Σ—a DPFSA therefore defines |Q|193

distributions, each with |Σ| ´1 degrees of freedom.194

As we will see, such a parameterization makes the195

connection to neural LMs—which define condi-196

tional distributions in terms of shared parameters197

of the neural network and the output matrix E—198

somewhat tricky. To facilitate a formal connection,199

we define parametrized PFSAs.200

1Final weights of states are analogous to the EOS symbol
which signals the end of string generation in neural LMs.

2PFSAs and their relationships to LMs are discussed in
more detail in App. B.
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Figure 2: Linearly transforming h using E results in
vector of logits P R|Σ|. Eh, however, defines at most
D-dimensional subspace in R|Σ|.

Definition 3.1. Let Σ be an alphabet, A a PFSA 201

with states Q, and T P Rp|Σ|`1qˆ|Q| a matrix of 202

rank R. We say that A is rank R if p py | qq “ 203

softmaxpT:,qqy for all q P Q and y P Σ.3 204

Our study focuses on deterministic PFSAs, 205

whose relationship to neural LMs is better under- 206

stood. Let A be a rank-R DPFSA with states Q 207

over the alphabet Σ and p a neural LM. Further, 208

let y P Σ˚, q P Q the state reached by A when 209

reading y, and h the hidden state encoding y by p. 210

If we want the LM p to match A’s distribution (for 211

them to be weakly equivalent), it has to hold that 212

softmaxpEhqy “ softmaxpT:,qqy (4) 213

for all y P Σ. Due to the additive invariance prop- 214

erty of the softmax function, this is equivalent to 215

Eh “ T:,q ` cq
looomooon

def
“uq

(5) 216

where cq “ cq1 P R|Σ| and cq P R. We define 217

U P R|Σ|ˆ|Q| as the matrix with columns uq. 218

Minimal representation size. Assuming 219

|Σ| ď |Q|, the columns of U will, in general, span 220

R|Σ|. In the special case of rank-R DPFSAs, they 221

will span at most a pR ` 1q-dimensional subspace 222

of R|Σ|. For Eq. (5) to hold, it is, therefore, nec- 223

essary that D ě R ` 1. If that is not the case, the 224

neural LM will naturally not be able to match all the 225

conditional distributions defined by the states of the 226

DPFSA, which leads us to the following theorem. 227

Theorem 3.1. Let p be a finite-state LM and that 228

can be represented by a rank-R DPFSA A which is 229

minimal for p. Let q be a neural LM with a hidden 230

state h. If p and q are weakly equivalent, then h 231

must in general be of size at least R ` 1. 232

3T:,q is the column of the matrix T corresponding to q.
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Given a rank-R DPFSA A, Thm. 3.1 says that233

a weakly equivalent neural LM needs a hidden234

state of size at least R ` 1, establishing a general235

lower bound on an LM’s hidden state size for236

weak equivalence with a DPFSA. Note that a237

hidden state of size R ` 1, however, does not238

mean that the neural LM can implement the239

transitions dynamics of the PFSA with a hidden240

state of size R ` 1—it does not guarantee that241

the LM is capable of implementing the transitions242

between the subsequent hidden states capturing the243

individual states of the automaton. Indeed, the size244

of the hidden state must also, in some cases, scale245

linearly with the number of states.246

Theorem 3.2 (Svete and Cotterell (2023), Thms.247

5.1 and 5.2). There exist families of DPFSAs such248

that the representation size of any weakly equiva-249

lent finite-precision RNN LM must scale linearly250

with |Q| and |Σ|.251

Beyond representational capacity. We see that252

the representational capacity of neural LMs can be253

theoretically described relatively comprehensively254

in terms of formal models of computation. How-255

ever, existing theoretical work only considers the256

question of which distributions can be represented257

by a neural LM. This leaves us with a large gap258

in understanding what distributions are learnable259

by neural LMs. Compared to pure representational260

capacity results, formal claims about learning are261

much more difficult to make due to the dependence262

on factors such as the learning algorithm and as-263

pects of the training data. To nevertheless gain264

valuable insights into the problem, we now focus265

on the learnability of DPFSAs empirically.266

4 Practical Learnability of FSLMs267

Our main goal is to provide a principled study of268

the ability of neural LMs to learn FSLMs. We now269

describe and justify our experimental setup and270

then evaluate RNN and Transformer LMs on their271

ability to learn FSLMs based on it.272

4.1 A Critique of Learning Formal Languages273

As discussed in §1, plenty of empirical work has274

investigated the ability of neural language models275

to learn formal languages such as those described276

by finite-state automata, i.e., how well a neural277

language model can be used to assess member-278

ship of individual strings in a set. There are multi-279

ple workarounds for this discrepancy. Most solu-280

tions involve measuring some sort of accuracy of281

next-symbol prediction. For example, Suzgun et al. 282

(2019a,b) and Bhattamishra et al. (2020) evaluate 283

neural LMs on the next-symbol prediction task, 284

which, intuitively, measures whether all allowed 285

continuations of the string under the formal model 286

achieve a large enough probability under the neu- 287

ral LM. Deletang et al. (2023) evaluate the models 288

with the proportion of correctly predicted tokens 289

(where the argmax of the neural LM prediction has 290

to match the ground-truth label). Unfortunately, all 291

these approaches inevitably shoehorn a neural LM 292

into a sort of classifier, mismatching the type of 293

an LM—a probability distribution—and a discrete 294

format language—a set, as illustrated in Fig. 1. Ide- 295

ally, we would like to measure precisely how the 296

neural LM has learned the distribution induced by a 297

formal LM. In this section, we outline and motivate 298

a possible way to approach this challenge. 299

4.2 Evaluating Probabilistic Learnability 300

At a high level, we test the learnability of random 301

FSLMs by training neural LMs on strings sampled 302

from randomly generated DPFSAs and measuring 303

the distance between the neural LM and the FSLM. 304

Crucially, unlike most existing work, we do not 305

have to rely on classification or next-symbol predic- 306

tion accuracy-based metrics but rather directly mea- 307

sure the similarity of distributions which presents a 308

much cleaner way of evaluating model similarity. 309

Concretely, given an FSLM p and a neural LM q, 310

we measure the KL divergence between the FSLM 311

and the neural LM: 312

DKL pp || qq
def
“

ÿ

yPΣ˚

p pyq log
p pyq

q pyq
(6) 313

“ Hpp, qq ´ Hppq. (7) 314

The KL divergence is an established and well- 315

understood measure of the distance4 between two 316

distributions. As such, it lends itself naturally to 317

evaluating the difference between LMs; in our case, 318

measuring how well the neural LM has captured 319

the distribution of the FSLM. Such a holistic treat- 320

ment of the difference between two LMs gives us a 321

tangible and interpretable way of understanding 322

how they differ. To compute, DKL pp || qq, we 323

use Eq. (7). We estimate the first term H pp, qq 324

by computing pH pp, qq, the empirical cross-entropy 325

between p and q. The second term can be computed 326

exactly by dynamic programming (Eisner, 2002; 327

4Note, that KL divergence is not a true distance, as it is
not symmetric and does not fulfill the triangle inequality.
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Predictor Interpretation

|Q| The number states.
|Q||Σ| The number of transitions.
|Σ| Alphabet size.
R The size of the space that

log p p¨ | qq span for q P Q.
Avg. length Average length of strings gener-

ated by the PFSA.
minp|Q|, |Σ|q Upper bound of R.
HpAq Entropy of the PFSA.

Table 1: The PFSA-related predictor variables used to
estimate KL divergence with their interpretation.

Zmigrod et al., 2021). However, due to numerical328

instability, we find using a Monte Carlo estimator329

more accurate. See App. C.4 for further details on330

the computation of these evaluation metrics.331

4.3 Generating Random DPFSAs332

We evaluate neural LMs on their ability to learn ran-333

dom FSLMs, which we construct by randomly gen-334

erating DPFSAs. We vary |Q| P t2, 4, 8, 16, 32u335

and |Σ| P t2, 4, 8, 16, 32u. We then randomly se-336

lect the outgoing neighbors of each of the states337

(one for each y P Σ): For each q P Q and338

y P Σ we randomly choose q1 P Q and add the339

transition q
y
ÝÑ q1 to A. We add weights to the340

transition function of A as follows. We gener-341

ate a random matrix T P Rp|Σ|`1qˆ|Q|. For each342

R P t2r | 2r ď min p|Q|, |Σ|q , r P t0, . . . , 5uu,343

we compute TR by reducing the rank of T to R344

using SVD. We then set transition probability of345

q
y
ÝÑ q1 to wq,y “ softmax

`

TR
:,q

˘

y
. Finally, we346

set ρ pqq “ softmax
`

TR
:,q

˘

EOS
. This process results347

in the generation of up to six random DPFSAs, all348

sharing the same Q,Σ, and underlying transition349

function. They differ, however, in the rank of the350

matrix TR that defines the weights of the transi-351

tions. Furthermore, the construction of exactly one352

transition for each q and y ensures that the DPFSA353

mirrors the nature of a neural LM, which also de-354

fines full-support next-symbol probabilities for any355

prefix of the string. Altogether, this allows us to356

precisely control the quantities from Tab. 1 and thus357

the complexity of the DPFSA. At the same time,358

the DPFSA are determined through the shared pa-359

rameters of the T, making them easy to connect to360

neural LMs. See App. C.1 for additional details.361

Indep. Var. pβ SE p-value

Intercept 7.67 0.08 ă 0.001
|Q| 4.84 0.19 ă 0.001
|Q||Σ| 3.48 0.21 ă 0.001
|Σ| 1.34 0.21 ă 0.001
R 6.29 0.10 ă 0.001
D 0.18 0.08 ă 0.05
Avg. len. ´0.36 0.17 ă 0.05
minp|Q|, |Σ|q ´1.98 0.32 ă 0.001
pHpAq 4.65 0.22 ă 0.001

Table 2: Estimated beta coefficients (pβ), standard errors
(SE), and p-values for DKL generated with a linear re-
gression model for RNNs.

5 Results 362

5.1 Statistical Evaluation 363

There are many natural metrics to measure the com- 364

plexity of DPFSAs. We present the most relevant 365

ones in Tab. 1. Naturally, we expect the difficulty 366

of learning and the required size of the hidden state 367

to increase with all the quantities. We evaluate 368

the size of this effect by fitting a linear model that 369

estimates the learnability (as measured by the KL 370

divergence) from the DPFSA properties shown in 371

Tab. 1 and the neural LM’s hidden state size D. 372

Following the experimental setup outlined in 373

App. C, we obtain DKL results for 6500 RNN and 374

6500 Transformer LMs trained on strings sampled 375

from random DPFSAs with specific sets of com- 376

plexity parameters. The linear regression model 377

was fit to the data, separately for the RNN output 378

and for the Transformer output, to quantitatively 379

assess the variation in the empirical DKL diver- 380

gence. Each of the predictors was standardized 381

using a z-score transformation for an interpretable 382

comparison of the estimated coefficients. 383

5.2 RNN Findings 384

As shown in Tab. 2, the linear regression reveals 385

significant effects of each of the included predictors 386

for the RNN output. Of these, the number of states, 387

the number of symbols, the number of transitions, 388

the rank, the PFSA perplexity, and the hidden state 389

size were positive in their direction, indicating 390

an increase in KL divergence with an increase in 391

the predictor of interest. The average string length 392

and minimum of the number of states and symbols 393

were negative in influence, indicating a decrease 394

in KL with an increase in the respective predictor. 395

Overall, the DPFSA rank had the strongest 396

influence on KL divergence, followed in order 397
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Indep. Var. pβ SE p-value

Intercept 30.1 0.27 ă 0.001
|Q| 0.43 0.60 0.47
|Q||Σ| ´2.43 0.60 ă 0.001
|Σ| 7.80 0.69 ă 0.001
R 12.5 0.33 ă 0.001
D ´10.86 0.27 ă 0.001
Avg. len. 31.2 0.54 ă 0.001
minp|Q|, |Σ|q ´1.89 1.05 0.07
pHpAq ´14.5 0.71 ă 0.001

Table 3: Estimated beta coefficients (pβ), standard errors
(SE), and p-values for DKL generated with a linear re-
gression model for Transformers.

DKL
|Q|

2 4 8 16 32

RNNs 0.44 1.24 5.11 10.41 16.38
Transformers 29.99 33.84 31.00 28.06 29.59

Table 4: KL divergence for RNNs and Transformers as
a function of the number of states of the DPFSA.

by number of states and PFSA perplexity, then398

number of transitions. The remaining predictors399

were smaller in influence, regardless of direction.400

5.3 Transformer Findings401

For the Transformer results, the linear regression re-402

veals significant effects of the number of symbols,403

the number of transitions, the rank, the average404

string length, the PFSA perplexity, and the hidden405

state size (see Tab. 3). The number of states and406

minimum of the number of states and symbols did407

not reach significance. Of the significant predictors,408

the number of symbols, rank, and average string409

length were positive in their influence, indicating410

an increase in KL divergence as the predictor of in-411

terest increased. The number of transitions, PFSA412

perplexity, and hidden state size were negative in413

influence, indicating a decrease in KL divergence414

with an increase in the predictor of interest. Of the415

positive relationships, average string length had the416

largest influence, followed in order by rank, then417

number of symbols. Of the negative relationships,418

PFSA perplexity had the largest influence, followed419

by hidden state size, then the number of transitions.420

6 Discussion421

Comparison of the RNN and Transformer LMs.422

The linear models revealed an overall disparate423

pattern of effects between RNNs and Transform-424

ers. First to note is the overall performance as425

revealed by the model intercept (see Tab. 2, Tab. 3, 426

and Fig. 7 in App. D). RNNs tend to outperform 427

Transformers in this task, demonstrating lower av- 428

erage loss. This difference in performance could 429

be attributed to two main factors: 1) As previous re- 430

search has shown, RNNs are better suited to model- 431

ing formal languages (Deletang et al., 2023), and 2) 432

Transformers necessitate careful training involving 433

language-specific hyperparameter tuning, which 434

poses a severe computational challenge. Despite 435

the potential suboptimal training of Transformers, 436

we anticipate that the trend observed here would 437

persist even with optimal training. 438

There were some similarities in the pattern of 439

the model effects, in that the number of symbols 440

and rank were significant and positive in their influ- 441

ence on KL for each of the RNN and Transformer 442

outputs. Otherwise, the influence of the predictors 443

was fairly different. In particular, several predic- 444

tors had opposite and significant influences on KL 445

divergence for each of the LM types. Whereas the 446

average string length had a negative influence on 447

KL divergence for the RNN output, it had a pos- 448

itive, and notably, the strongest influence on KL 449

divergence for the Transformer output. In addition, 450

the number of transitions, PFSA perplexity, and 451

hidden state size were positive for the RNN output, 452

but negative for the Transformer KL divergence. 453

The average string length also differed between the 454

two LM types, with a negative influence for RNN 455

output, but positive for Transformer output. 456

Implications of Thm. 3.1. Thm. 3.1 concretely 457

quantifies the size of the representation space of 458

any neural LM required for the correct representa- 459

tion of finite-state LMs. To the best of our knowl- 460

edge, this is the first result of this generality. Prac- 461

tical implementations of FSLMs might use state 462

spaces and alphabets of sizes ranging from thou- 463

sands to hundreds of thousands (Mohri and Riley, 464

1999), which is much larger than the representa- 465

tions used by most modern neural LMs, which tend 466

to be in the order of a few thousand dimensions 467

(Groeneveld et al., 2024). The good performance 468

of much smaller neural LMs on similar datasets in- 469

dicates that those LMs are indeed low-rank and can 470

thus be approximated well using smaller hidden 471

representations. Nevertheless, Thm. 3.1 provides 472

an interesting limitation on what distributions neu- 473

ral LMs of finite size can represent and points out 474

the limitations of parameter sharing in representing 475

formal models of computation; while neural LMs 476
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Figure 3: DPFSA’s entropy pH and the DKL between the neural LMs and the DPFSAs as a function of |Q| and |Σ|.
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Figure 4: DPFSA’s entropy pH and the DKL between the neural LMs and the DPFSAs as a function of |Q| and R.

are good at approximating such models of com-477

putation, their inability to represent them exactly478

implies that, with increasing string lengths, their479

errors will unavoidably accumulate. This leads to480

poor length generalization often observed in prior481

work (Weiss et al., 2018; Suzgun et al., 2019b;482

Bhattamishra et al., 2020; Deletang et al., 2023).483

Takeaways from the empirical results. The em-484

pirical results in §5.2 complement the theoretical485

discussion from §3 and the growing field of litera-486

ture characterizing the representational capacity of487

neural LMs. In line with the theoretical setting and488

in contrast to related work, our approach directly489

evaluates the KL divergence between neural LMs490

and FSLMs, instead of relying on classification or491

next-token prediction accuracy measures. Compar-492

ing distributions over strings offers a more holistic493

view of a neural LM’s overall ability to emulate494

FSLMs allowing us to provide compelling insights495

into what aspects of distributions affect the learn-496

ability of formal LMs by controlling for various497

properties of the FSLMs being learned. Neatly,498

the observed effects of the rank on the KL diver- 499

gence align with the theoretical results derived in 500

Thm. 3.1, in that, as the rank of an FSLM grows, 501

a larger hidden state is required in the neural LM 502

to model it appropriately. Surprisingly, in con- 503

trast to theoretical results on representations capac- 504

ity (Indyk, 1995; Svete and Cotterell, 2023), the 505

experiments also show that for RNNs, learnabil- 506

ity is unaffected by the hidden state size. That is, 507

FSLMs defined by DPFSAs with a large number 508

of states are well-approximated by RNN LMs of 509

size smaller than predicted by theory. The the- 510

ory developed in this paper and in related work, 511

however, investigates exact representation of the 512

FSLMs, not their approximation. The good per- 513

formance of RNN LMs suggests that RNN LMs 514

manage to learn good approximations of languages 515

that they theoretically can not fully represent. This 516

strongly encourages further research into the ap- 517

proximation abilities of neural LMs; judging from 518

our results, those would be more relevant for practi- 519

cal scenarios. Nevertheless, the dependence of the 520
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Figure 5: DPFSA’s entropy pH and the DKL between the neural LMs and the DPFSAs as a function of D and R.

performance on the rank of the DPFSA seens to521

demonstrate the utility of formal language theory522

in providing interpretable insights into the learning523

abilities of neural LMs.524

Extensions. We focus on the learnability of deter-525

ministic PFSAs. This makes the theoretical results526

from §3 particularly interpretable. Extensions to527

the non-deterministic automata, however, are an528

interesting next step. Note that in this case, the529

PFSA rank analysis is slightly more nuanced. A530

non-deterministic PFSA can, at any point, be in531

any of the |Q| states (with a probability distribu-532

tion over them), meaning that the probability of533

the next symbol is a convex combination of the534

individual conditional probability distributions (not535

their logits). This makes the analysis trickier and536

less interpretable; we leave it for future work to537

make the current exposition more concise. A fur-538

ther interesting follow-up is also the study of the539

learnability of (deterministic) context-free LMs rep-540

resented by probabilistic pushdown automata (PP-541

DAs). PPDAs augment PFSAs by implementing542

a stack that gives the automaton infinitely many543

configurations. Despite the infinitely many config-544

urations, controlling for their rank analogously to545

the rank of a PFSA could elucidate how efficiently546

they are representable by neural LMs.547

7 Conclusion548

We provide a comprehensive empirical study of549

the learnability of FSLMs by neural LMs. More550

concretely, we investigate how well LMs learn to551

match the distributions over strings generated by552

FSLMs of varying complexity. For this purpose,553

we first propose to use KL divergence between554

such distributions over strings as a more holistic555

measure of evaluating the similarity of LMs. We556

establish that for weak equivalence, a neural LM’s 557

hidden state size is theoretically lower-bounded 558

by the DPFSA’s rank. We find this to be consis- 559

tent with the results of our controlled experiments 560

on the effects of FSLM properties on learnability. 561

Other theoretical results on the representational 562

capacity of neural LMs (the dependence of the rep- 563

resentation size on the number of states and the size 564

of the alphabet), however, seem to be less relevant 565

to the learnability. Overall, our results showcase 566

the utility of using formal language theory to create 567

interpretable insights into the learning abilities of 568

neural LMs but call for theoretical investigations 569

closer to practical applications. 570

Limitations 571

We point out some limitations of the presented 572

study. To keep our work concise and results self- 573

contained, we focus only on deterministic FSLMs. 574

Similar and more comprehensive investigations 575

could of course include non-deterministic automata 576

and languages higher up on the Chomsky hierar- 577

chy, such as context-free LMs, or even context- 578

sensitive LMs. Our experiments also omit the effect 579

of training dataset size, which might be an interest- 580

ing quantity to consider when training neural LMs. 581

We leave those considerations to future work. 582

Moreover, due to computational constraints and 583

the substantial computation load imposed by our 584

experiments, we could not fine-tune our models 585

with language-specific hyperparameters, which 586

are particularly important for transformers. For 587

the same reason, we had to refrain from optimising 588

larger and more capable models. However, we 589

believe that this should not impair the validity of 590

our results, as the trend we observed would hold 591

even with optimal training. 592
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A Additional Related Work854

A.1 Representational Capacity of Neural LMs855

Plenty of theoretical work has investigated the representational capacity of various neural LM architectures856

(Merrill, 2023; Strobl et al., 2023). Finite-state languages (and, to a lesser extent, finite-state LMs) have857

been linked to neural LMs particularly often, especially to recurrent neural LMs, but similar connections858

have also been made for Transformers (Merrill, 2019; Merrill et al., 2020; Liu et al., 2023). Distinctively859

interesting are the bounds on the space requirements for emulating FSAs (Dewdney, 1977; Indyk, 1995;860

Hewitt et al., 2020; Svete and Cotterell, 2023). This work bridges the theoretical work with practice, tests861

its applicability, and uses its insights for an informed study of the practical representational capacity of862

neural LMs.863

A.2 Learning Formal Languages864

Work similar to ours in spirit is that of Jumelet and Zuidema (2023), where the authors train and evaluate865

neural LMs with probabilistic context-free grammars. They use the underlying data-generating distribution866

(the probabilistic grammar) to evaluate how well the model has learned the distribution. Moreover, the867

knowledge of grammar allows them to probe the model for the encodings of individual constituents,868

similar to how we probe for the states of the automaton. In contrast to our work, however, Jumelet and869

Zuidema (2023) focus on learning human-language-based grammars, which do not provide a holistic870

picture of the representability of general formal LMs by neural LMs.871

Deletang et al. (2023) provide a comprehensive survey of the learnability of diverse formal languages.872

Unlike us, they focus on learning discrete languages, particularly from the perspective of learning873

algorithms and investigating LMs’ inductive biases. They formulate this as a transduction—a string-874

to-string mapping. They arrive at interesting results showing that popular neural LMs are hard to place875

on the standard Chomsky hierarchy of languages. This can partly be explained by the mismatch of the876

training task—transduction—and the probabilistic nature of a neural LM, since the probabilistic Chomsky877

hierarchy is known to differ from the discrete one (Icard, 2020). In contrast to our work, Deletang et al.878

(2023) also only consider a limited set of hand-picked languages which, while providing algorithmic879

insights into how LMs work, do not extensively probe the learnability of the language classes.880

Testing the compositional generalization of NNs, Valvoda et al. (2022) sample an infinite number881

of finite languages. Thereby they can draw conclusions about the learnability of an entire class of882

languages—sub-regular ones encoded by subsequential finite state transducers. Their work connects883

Montague’s theory of compositional generalization (Montague, 1970) with the popular SCAN benchmark884

of compositional behavior (Lake and Baroni, 2018). Unlike our work, they investigate deterministic885

transducers and seq2seq models.886

Another similar work is that of White and Cotterell (2021), who use artificial languages to identify887

the biases of neural LMs. By modifying a base grammar, they experiment with the learnability of 64888

languages. Unlike us, their work focuses solely on topological aspects of the language, which limits their889

findings to observations over the word order.890

In a different line of work, Akyürek et al. (2024) evaluate neural LMs’ abilities to learn finite-state891

languages in context. Rather than learning one particular distribution from the training dataset, they892

train neural LMs to model the language of any finite-state automaton given a number of samples from893

it—that is, to infer the generating mechanism from the context. They consider only discrete languages894

(even though their generative setup is probabilistic) and due to the in-context learning setting, they do not895

analyze the dynamics of the neural LM implementing individual languages.896

B Probabilistic Finite-state Automata897

We begin by more formally defining the notion of probabilistic finite-state automata (PFSAs), which were898

only informally introduced in §2.899

Definition B.1. A probabilistic finite-state automaton (PFSA) is a 5-tuple pΣ, Q, δ, λ, ρq where Σ is900

an alphabet, Q a finite set of states, δ Ď Q ˆ Σ ˆ r0, 1s ˆ Q a finite set of weighted transitions and901
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λ, ρ : Q Ñ r0, 1s the initial and final weighting functions. Moreover, δ, λ and ρ are required to satisfy 902

that
ř

qPQ λ pqq “ 1, and, for all q P Q,
ř

pq,y,w,q1qPδ w ` ρ pqq “ 1. 903

We denote pq, y, w, q1q P δ with q
y{w
ÝÝÑ q1. 904

Definition B.2. A path π in a PFSA A is a sequence of consecutive transitions 905

q1
y1{w1
ÝÝÝÑ q2, ¨ ¨ ¨ , qN

yN {wN
ÝÝÝÝÑ qN`1. Its length |π| is the number of transitions in it and its scan 906

s pπq the concatenation of the symbols on them. We denote with ΠpAq the set of all paths in A and with 907

ΠpA,yq the set of all paths that scan y P Σ˚. 908

The weights of the transitions along a path are multiplicatively combined to form the weight of the 909

path. The weights of all the paths scanning the same string are combined additively to form the weight of 910

that string. 911

Definition B.3. The path weight of π P ΠpAq is w pπq “ λ pq1q

”

śN
n“1wn

ı

ρ pqN`1q. The stringsum 912

of y P Σ˚ is A pyq
def
“

ř

πPΠpA,yq w pπq. 913

It is easy to see that the final weights ρ pqq play an analogous role to the EOS symbol in the context of 914

autoregressive LMs—they both correspond to the probabilities of ending the generation of the string. 915

Definition B.4. A PFSA A “ pΣ, Q, δ, λ, ρq is deterministic if |tq | λ pqq ą 0u| “ 1 and, for every 916

q P Q, y P Σ, there is at most one q1 P Q such that q
y{w
ÝÝÑ q1 P δ with w ą 0. 917

In general, there can be infinitely many PFSAs that define a given FSLM. However, in the deterministic 918

case, there is a unique minimal DPFSA. 919

Definition B.5. A DPFSA A “ pΣ, Q, δ, λ, ρq is minimal for the FSLM p if there is no weakly equivalent 920

DPFSA A1 “ pΣ, Q1, λ1, ρ1, δ1q with |Q1| ă |Q|. 921

C Experimental Details 922

C.1 Sampling DPFSAs of varying complexity 923

The DPFSAs we used in our experiments were sampled with |Q| P t2, 4, 8, 16, 32u over alphabets 924

alphabets of sizes |Σ| P t2, 4, 8, 16, 32u. Given a sampled DPFSA A with |Q| states over an alphabet 925

Σ, we randomly set its unweighted transition function. That is, for each q P Q and y P Σ we randomly 926

choose q1 P Q and add the transition q
y
ÝÑ q1 to A. 927

We add weights to the transition function of A as follows. We generate a random matrix T P 928

Rp|Σ|`1qˆ|Q| „ N pµ “ 0, σ2 “ 4q , and define Rmax “ rank pTq (Note that Rmax ď minp|Q|, |Σ|q). 929

For each R P t2r|2r ď Rmax, r P t0, 1, 2, 3, 4, 5uu, we compute TR by reducing the rank of T to R 930

using SVD. Next, we add weights to the transition function of A by replacing each unweighted transition 931

q
y
ÝÑ q1 with q

y{wq,y
ÝÝÝÝÑ q1, where wq,y “ softmax

`

TR
:,q

˘

y
. Finally, we set ρ pqq “ softmax

`

TR
:,q

˘

EOS
. 932

This process results with the generation of up to six5 random DPFSAs, all sharing the same Q,Σ and 933

underlying transition function. They differ, however, in the rank of the matrix TR that defines the weights 934

of the transitions. 935

C.2 Generating the Data 936

For a given DPFSA A, we sample 20k random strings, terminating the generation process of each string 937

when EOS is sampled. We divide the dataset into train and test splits, such that no string is shared between 938

the sets, and the test set has at least 2k strings. We truncate the strings to 128 symbols to accommodate 939

the limited context length of the Transformer model we used. Fig. 6 shows a histogram of the average 940

length of strings generated for each DPFSA. 941

5
| t2r|2r ď Rmax, r P t0, 1, 2, 3, 4, 5uu | ď 6
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Figure 6: The statistics of the training dataset.

C.3 Training the Neural LMs942

We train neural LMs on our dataset using the following procedure, repeated 6500 times:943

1. Sample a random DPFSA A with |Q|, |Σ| and rank R using the process described in App. C.1.944

2. Sample 20k strings from A and split them to train set and test set using the process described in945

App. C.2.946

3. Train an RNN with a random hidden state size D sampled from t2, 4, 8, 16, 32, 64u on the train set947

strings.948

4. Train a Transformer model with the same hidden state size D on the train set strings.949

5. Compute the DKL between A and each of the two trained neural LMs on the test set strings.950

We train the RNN and Transformer models using the following hyperparameters:951

• RNNs: We use a unidirectional LSTM with two hidden layers, each with 64-dimensional hidden952

states and an embedding size of 64. We trained each model for two epochs using a batch size of 32953

and a learning rate of 0.001, an Adam optimizer with default settings, and a standard cross-entropy954

loss (Kingma and Ba, 2014).955

• Transformers: We use the GPT-2 model architecture (Radford et al., 2019) with six attention layers,956

each with four attention heads and 256-dimensional representations. We use an embedding size of957

64 and an input context length of 128. We trained each model for three epochs using a batch size958

of 32, an AdamW (Loshchilov and Hutter, 2018) optimizer with default settings, and a standard959

cross-entropy loss.960

C.4 Evaluation961

pH pppDtestqq is calculated by aggregating all the weights along the paths of each string in Dtest “962

ty1, . . . ,yNu. That is,963

pH pppDtestqq “
1

N

N
ÿ

i“1

´ log pppπiqq “
1

N

N
ÿ

i“1

´ log pwpπiqq (8)964

where πi is the unique path in A accepting yi.6965

6πi is unique as A is deterministic.
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Figure 7: Validation performance of RNNs and Transformers as a function of the PFSA’s complexity, computed as
|Σ| ` |Q| ` R.
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Figure 8: DKL of RNNs and Transformers as a function of the average string length of the DPFSA.

Similarly, we calculate 966

pH pppDtestq, qpDtestqq “
1

N

N
ÿ

i“1

|yi|
ÿ

t“1

H pp pyt | yătq , q pyt | yătqq (9) 967

“ ´
1

N

N
ÿ

i“1

|yi|
ÿ

t“1

p pyt | yătq log q pyt | yătq (10) 968

where p pyt | yătq “ wt is the weight of the transition qt´1
yt{wt
ÝÝÝÑ qt in πi, and q pyt | yătq is 969

softmaxpEht´1qyt given by the neural LM. 970

D Additional Results 971

This section includes figures presenting the results of additional experiments augmenting and supporting 972

the claims in the main paper: 973

Fig. 7 Overall performance of the neural LM models as a function of the “total complexity” of the PFSA 974

they were optimised for, which we define as the sum of |Σ|, |Q|, and R. Performance is measured as 975

the cross-entropy of the neural model on a held-out test set. We compute the loss by summing it over 976

symbols and dividing this sum by the number of sequences in the test set. We can see that RNNs tend to 977

overperform Transformers, especially for more complex PFSAs. 978

Fig. 8 The DKL of RNNs and Transformers as a function of the average string length of the DPFSA. 979

Similarly to Tab. 3, we see that Transformers are much more sensitive to string length compared to RNNs. 980
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