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Abstract

A desirable data selection algorithm can efficiently choose the most informative
samples to maximize the utility of limited annotation budgets. However, current
approaches, represented by active learning methods, typically follow a cumbersome
pipeline that iterates the time-consuming model training and batch data selection
repeatedly. In this paper, we challenge this status quo by designing a distinct data
selection pipeline that utilizes existing general-purpose models to select data from
various datasets with a single-pass inference without the need for additional training
or supervision. A novel free data selection (FreeSel) method is proposed following
this new pipeline. Specifically, we define semantic patterns extracted from inter-
mediate features of the general-purpose model to capture subtle local information
in each image. We then enable the selection of all data samples in a single pass
through distance-based sampling at the fine-grained semantic pattern level. FreeSel
bypasses the heavy batch selection process, achieving a significant improvement in
efficiency and being 530× faster than existing active learning methods. Extensive
experiments verify the effectiveness of FreeSel on various computer vision tasks.
Our code is available at https://github.com/yichen928/FreeSel.

1 Introduction

Deep Neural Network (DNN) models have achieved remarkable progress in various tasks, benefiting
from abundant training samples and labels. Unfortunately, data labeling tends to be time-consuming
and costly, especially for dense prediction tasks such as object detection and semantic segmentation,
where experts may spend up to 90 minutes per image [33]. As such, effectively exploiting the limited
annotation budget has become a long-standing problem in the advancement of computer vision.

Many methods have been proposed to identify the most suitable samples for annotation, where
the mainstream follows the active learning [43, 45] or subset selection [42] pipelines. However,
both kinds of methods rely on task-specific models. As the most popular data selection strategy,
active learning algorithms employ a time-consuming and computationally expensive batch selection
strategy [44], as shown in Fig. 1a. Specifically, a task-specific model is first trained using a small
initial set of labeled samples. Then, the model is utilized to select images within a specified batch
budget size. These selected images are annotated and added to the labeled pool, after which the
model is retrained or fine-tuned using all the labeled samples. This iterative process is repeated
multiple times for a large unlabeled data pool. Since the selection of data is tightly coupled with the
task-specific model, the entire pipeline needs to be restarted from scratch and repeated when working
on different tasks or datasets. In many cases, it even requires up to several days to select sufficient
samples from a medium-sized data pool (e.g., Core-Set [44] in Tab. 1).
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(a) Traditional Active Learning Pipeline (b) Our Proposed Pipeline(a) Active Learning Pipeline: It follows the batch-
selection strategy with iterative training.
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(a) Traditional Active Learning Pipeline (b) Our Proposed Pipeline(b) Our Free Data Selection Pipeline: Samples are
selected in a single-pass without extra model training.

Figure 1: Comparisons between active learning pipeline and our proposed free selection pipeline.

In this paper, we challenge this status quo by introducing an efficient data selection pipeline that
enables the selection of data within a single pass (as illustrated in Fig. 1b), therefore achieving
comparable efficiency to random selection. We identify the efficiency bottleneck of data selection
methods as the training of the task-specific model. Building upon insights from recent research
on unsupervised learning [2, 64], we recognize that pretrained models [5, 63] possess the ability
to encode the semantic information of images in a fine-grained level. This observation inspires us
to integrate pretrained models into the data selection process, thereby decoupling data selection
from task-specific models and leveraging the inherent diversity captured by pretrained models. By
leveraging publicly available pretrained models, our pipeline incurs no additional training costs. To
provide a concrete foundation for our design, we consider the following three guiding principles.

• Generality: We strive for decoupling data selection from task-specific models. It is desired
that a general model works on the data selection of multiple tasks or datasets.

• Efficiency: The batch selection setting of active learning (Fig. 1a) is known to be time-
consuming due to its iterative nature. It is expected to be replaced with a single-pass model
inference on unlabeled data pools.

• Non-supervision: Annotators may not always respond in time, and the entire data selection
progress may be delayed by frequent requests for labels. It is preferred that annotations are
not required until the end of data selection.

In view of the above principles, we propose the first free data selection (FreeSel) method, to the best of
our knowledge, satisfying all the above principles simultaneously. FreeSel selects data samples based
on the diversity of local features. The features are extracted by a publicly available pretrained vision
transformer [12], which is generic enough to facilitate data selection for different networks, datasets,
and tasks after pretraining on large-scale datasets [11] in an unsupervised manner, e.g., DINO [5].
We extract our newly defined semantic patterns by clustering the intermediate local features after
an attention filter. The images are selected following a distance-based sampling strategy at the level
of semantic patterns. In pursuit of efficiency, this whole process is finished within a single-pass
model inference without any extra training. The data selection process is indeed unsupervised, which
relieves the troubles of assigning responsive annotators.

As a result, our method pursues a free data selection using public pretrained models with a time
efficiency close to random selection. We conduct extensive experiments on different tasks, datasets,
and networks. When compared with existing active learning methods, our algorithm can achieve
comparable performance with significantly advantageous efficiency.

Our contributions are three-fold. 1) We for the first time, introduce a new free data selection pipeline
that adheres to three important principles of generality, efficiency, and non-supervision with negligible
time costs. 2) We propose FreeSel, a novel method following our proposed pipeline. It can fill in the
annotation budget in a single pass based on the inherent diversity of semantic patterns captured by
pretrained models. 3) Extensive experiments on image classification, object detection, and semantic
segmentation demonstrate the effectiveness of our pipeline.

2 Related Work

Active Learning. Active learning aims to choose the most suitable samples for annotation so that
model performance can be optimized with a limited annotation budget. Most existing work in this
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Table 1: Principles of Data Selection Methods: Task Model refers to the coupling between data
selection and a task-specific model. Batch Selection shows whether the method repeats the data
selection in batch multiple times. Multi-time Labeling denotes whether it requests ground-truth
labels in the data selection process. Time estimates the approximate time to select 8000 images from
PASCAL VOC datasets (Sec. 5.5).

Methods Task
Model

Batch
Selection

Multi-time
Labeling Time

Core-Set [44] ✓ ✓ ✓ ∼ 42 hours
+

label query
Learn-Loss [57] ✓ ✓ ✓

CDAL [1] ✓ ✓ ✓

FreeSel (ours) ✗ ✗ ✗ 285 s (∼530× faster)

field [47, 57, 44, 18, 59, 60] follows a pool-based protocol, selecting samples based on the ranking
of the whole dataset. There exist two mainstream sampling strategies for pool-based methods i.e.
uncertainty and diversity. Uncertainty inside the model prediction reflects the difficulty of data
samples, estimated by different heuristics such as probabilistic models [16, 13], entropy [26, 36],
ensembles[3, 32], and loss function [57, 24]. Some other algorithms try to find the diverse subset
which well represents the entire data pool. They measure the diversity with the Euclidean distance
between global features [44], adversarial loss [47], or KL-divergence between local representations
[1]. However, all these methods couple the data selection with a task model and require repetitive
model training in the batch selection pipeline, resulting in inefficiency. Differently, our proposed
pipeline selects samples through a single-pass model inference on each unlabeled pool.

Subset Selection. As another category of data selection algorithms, subset selection methods often
select all the required samples in a single pass with the model trained on a labeled seed set. The
subset is usually selected based on some criterion of uncertainty [27], diversity [6, 4], or their
combination [42]. In contrast, our proposed pipeline needs neither extra training on the target dataset
nor knowledge about the label space.

Unsupervised Learning. Both contrastive methods [17, 20, 61, 53, 25, 48, 39] and generative
models [52, 19, 49] have achieved great success in unsupervised representation learning. Contrastive
methods discriminate different images without using any explicit categories. In contrast, generative
methods directly predict masked visual information inside images. We exploit a general pretrained
model [5] to represent input images for task-agnostic data selection. As a result, we do not train
models specific to each task like the traditional active learning pipeline.

Data Selection with Pretrained Models. There are some attempts to combine unsupervised pretrain-
ing and data selection. [56] selects data samples by the loss of pretext tasks, but requires different
pretext tasks for different downstream tasks. [37] formulates active learning as an integer program-
ming problem in the feature space, handling low-budget cases. [51] and [54] select samples based on
the diversity of global features, targeted for semi-supervised learning and model finetuning settings
respectively. Active labeling proposed in [23] is the most similar to our paper, but their method
considers selective partial labeling in each sample instead of sample selection and is limited to 3D
tasks with the same networks for pretraining and downstream tasks.

3 Preliminary Study: Off-the-Shelf Features for Data Selection
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Figure 2: Core-Set over Off-the-Shelf Features

Active learning work [44, 1] often selects repre-
sentative samples based on the features extracted
by task-specific models trained separately for each
task. A straightforward alternative is to use off-
the-shelf features instead, which are extracted
by general-purpose models pretrained on a large-
scale dataset. If it performs well, we can trivially
improve the efficiency by eliminating the training
step on each dataset.

We conduct this preliminary study on the object
detection task over the PASCAL VOC dataset [14].
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Figure 3: Overview of Our Proposed FreeSel: Our method uses a general pretrained vision
transformer to extract features from images. Semantic patterns are derived from the intermediate
features. Afterwards, we perform a distance-based sampling algorithm to select semantic patterns as
well as the associated images. These selected images are labeled for downstream task model training.

Consistent with our following experiments, we
apply DeiT-S 2 [50] for feature extraction in data selection. The model is pretrained in either
supervised or unsupervised (with DINO framework [5]) manners on ImageNet [11]. For data
selection, we implement the classical Core-Set algorithm [44] over the extracted global features,
i.e. the [CLS] token feature in the last layer. We use Core-Set with these features to select various
numbers of training samples, and train object detection models (SSD-300 [34]) over the selected
subsets.

Fig. 2 shows results in comparison with random selection. Unfortunately, we find that this naive com-
bination of off-the-shelf features and Core-Set algorithms degrades the object detection performance,
especially with relatively low sampling ratios. We consider two potential reasons for this failure: 1)
Complex scenes are hard to represent globally. Images may contain multiple objects including
some very small ones. It is difficult for a global feature to represent all useful details in the image. 2)
K-Center selects corner cases. In the feature space, in order to cover all the data samples with a
small radius, the K-Center algorithm of Core-Set tends to select all the corner cases.

The above two concerns motivate our design in Sec. 4. We represent each image with dense semantic
patterns to maintain useful local information. Images are sampled based on some probability related
to the distance between local semantic patterns to relieve the harmful preference for corner cases.

4 Methodology

We detail our new data selection method FreeSel, formulated in Sec. 4.1. We define a concept called
semantic pattern in Sec. 4.2. Afterward, the sample selection strategy is explained in Sec. 4.3. An
overview of our approach is illustrated in Fig. 3.

4.1 Formulation

We aim to select a diverse subset from the unlabeled data pool for annotation, which covers as much
discriminative regional information in the original pool as possible. The regional information inside
an image I is reflected by the local features f I = {f I

r |r = 1, 2, . . . ,HW} of a pretrained DNN.
H,W are the height and width of the feature map. The r-th region feature f I

r ∈ RK in the feature
map mainly describes the r-th region of the image [62, 41]. The discriminative power of all regional
features f I can be represented by countable knowledge points [31]. f I

r is considered as a knowledge
point w.r.t. a pseudo-category c if it is similar enough to the corresponding direction vector µc.

p(c|f I
r ) =

πc · pvMF (f
I
r |c)∑

c′ πc′ · pvMF (f I
r |c′)

> τ, pvMF (f |c) = Cd(κc) · exp(κc · cos(f I
r , µc)) (1)

c is a pseudo-category describing some specific visual patterns, e.g. an object part, which is repre-
sented by a vector µc in the feature space. πc is the prior probability of pseudo-category c, κc is a
concentration parameter, and Cd(κc) is a normalizing constant.

Inversely, given knowledge points inside an image I , they can be clustered to estimate the K pseudo-
categories inside the image as µ̂I

j , j = 1, 2, . . . ,K. We define the estimation as semantic patterns in

2We follow the name of networks in [50] in our paper. DeiT-S is also called ViT-small in [5].
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Figure 4: Visualization of Semantic Patterns: Every two images are considered as a group. Left:
The filtered local features (dots) of each image are grouped into semantic patterns (arrows). Gray
features are eliminated in Eq. 2. Dimensions are reduced by PCA for visualization. Right: Regions
inside images can be associated with corresponding local features and then semantic patterns.

Algorithm 1: Semantic Pattern Extraction
Input: Pretrained transformer g, unlabeled image pool I, attention ratio τ , centroid number K
Output: Semantic patterns µ̂I = {µ̂I

j}, I ∈ I
1 for I ∈ I do
2 caI ,paI , f I = g(I)

/* last layer [CLS] and patch token attention and patch-wise features. */
3 Sort caIr , pa

I
r , f

I
r , r = 1, 2, . . . ,HW in the decreasing order of attention caIr

4 F (f I) = {f I
r |r = 1, 2, . . . , t,

∑t
j=1 ca

I
j ≤ τ <

∑t+1
j=1 ca

I
j}

/* filter important regions based on the sorted attention (Eq. 2). */

5 Derive local similarity p̂a
I
ij with Eq. 3

/* ignore attention between faraway regions. */

6 p̂aI = [p̂a
I
ij ]i,j=1,2,...,t

/* only consider filtered t regions. */

7 {CI
j }Kj=1 = SpectralCluster(p̂aI

,K)
/* divide t regions into K clusters with spectral clustering algorithm. */

8 µ̂I
j = 1

|Cj |
∑

r∈Cj
f I
r , j = 1, 2, . . . ,K

/* calculate the representation of each semantic pattern. */

Sec. 4.2. To ensure the diversity of our selection, our algorithm desires to find a subset of images SI
in Sec. 4.3, whose semantic patterns

⋃
I∈SI

{µ̂I
j}Kj=1 can be representative in the unlabeled pool.

4.2 Per-Image Semantic Patterns Extraction

To estimate the pseudo-categories, we define a novel notion called semantic patterns, which are
extracted from each image separately. Given a pretrained vision transformer [12], we consider its
last layer features for image I as f I = {f I

r }HW
r=1 , where each patch corresponds to a region r.

According to Eq. 1, only a few regional features may be considered as meaningful knowledge points,
while other regions are useless or even distracting. However, it is non-trivial to distill these knowledge
points without any information about the pseudo-categories. To this end, we resort to the [CLS] token
self-attention map of the transformer, which serves as a natural filter for regional importance even
without the supervision of category information [5].

Attention Filter. For image I , the last layer [CLS] token attention map (average of multi-heads)
is denoted as caI = {caIr ∈ R+|r = 1, 2, . . . ,HW},

∑HW
r=1 caIr = 1. We can filter the important

regional features that jointly represent the most useful information in the entire image with Eq. 2.

F (f I) = {f I
r |r = 1, 2, . . . , t,

t∑
j=1

caIj ≤ τ <

t+1∑
j=1

caIj} (2)

where regions r = 1, 2, . . . ,HW are sorted in the decreasing order of caIr , and τ ∈ (0, 1) is a
hyper-parameter, meaning the maintenance ratio of information represented by the filtered important
features. The filtered features F (f I) are considered as the knowledge points inside the images.

Feature Clustering. To estimate the feature vectors for pseudo-categories, we perform clustering
over the filtered t knowledge points inside each image separately. Since K-Means is unreli-
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able in the high-dimensional feature space (details in supplementary materials), we adopt spectral
clustering instead. The self-attention map provides strong cues about the region-wise similarity
inside each image. We denote the last layer attention map between patch tokens for image I as
paI =

[
paIij ∈ R

]
i,j=1,2,...,HW

,
∑HW

j=1 paIij = 1,∀i. It is more likely for nearby regions to interact
with each other, so we only consider the attention between nearby patches [22].

p̂a
I
ij =

{
paIij d(i, j) ≤ d0
0 d(i, j) > d0

(3)

where d(i, j) is the Chebyshev distance between regions i, j in the feature map. We empirically set
the threshold d0 = 2 in our experiments. Besides, we only consider the t regions after the filter in
Eq. 2. In this case, we denote the new similarity matrix between patches as p̂aI

=
[
p̂a

I
ij

]
i,j=1,2,...,t

.

With this above t× t similarity matrix, we utilize spectral clustering algorithms [38, 55] to divide the
remaining t regions after filtering (Eq. 2) into K clusters Cj , j = 1, 2, . . . ,K, each corresponding to
a pseudo-category, where K is a hyper-parameter. The details of the spectral clustering algorithm
are in our supplementary materials. We average the corresponding feature fr, r = 1, 2, . . . , t of each
region r belonging to each cluster Cj as follows.

µ̂I
j =

1

|Cj |
∑
r∈Cj

f I
r , j = 1, 2, . . . ,K (4)

where f I
r ∈ F (f I), r ∈ Cj are local features of image I grouped into cluster j through spectral

clustering. µ̂I = {µ̂I
j} represents semantic patterns inside the image I . Fig. 4 visualizes some

examples of µ̂I
j . The whole process of semantic pattern extraction is shown in Alg. 1

4.3 Sample Selection with Semantic Patterns

Our main target of data selection is to make the distributions of selected samples diverse and
representative in the level of local semantic patterns instead of the global feature level. This fine-
grained strategy guarantees that our selected subset can cover rich local visual patterns represented
by different pseudo-categories, which are crucial for detection and segmentation tasks.

To this end, we adopt a distance-based sampling strategy at the semantic pattern level. The detailed
algorithm is shown in Alg. 2. Given an unlabeled image pool I, this process starts from randomly
selecting an initial image I0 i.e. selecting all semantic patterns µ̂I0 inside it. Then, we choose the
next semantic pattern µ̂I

j inside image I with probability in proportion to its squared distances from
the nearest already selected semantic pattern (Eq. 5).

p(µ̂I
j ) ∝ min

µ̂∈SK

[
D(µ̂I

j , µ̂)
]2

, I ∈ I, j = 1, 2, . . . ,K (5)

where SK is the pool of all the already selected semantic patterns. When we choose a semantic
pattern µ̂I

j , all the semantic patterns µ̂I inside the image I that contains µ̂I
j are put into the selected

pool SK. We use cosine distance for D(·, ·) as analyzed in the supplementary materials. This process
continues until enough images have been selected. The selection only requires semantic patterns
constructed from intermediate features offline beforehand. Consequently, only a single-pass model
inference without any training or supervision is required in the entire data selection pipeline.

5 Experiments

We evaluate FreeSel on object detection (Sec. 5.2), semantic segmentation (Sec. 5.3), and image
classification (Sec. 5.4). The results of FreeSel are averaged over three independent selections with
different random seeds. Features are extracted by the same general pretrained model for all the tasks
(Sec. 5.1). We make some analysis of our proposed pipeline and method in Sec. 5.5. Finally, we
examine the roles of different modules inside FreeSel in Sec. 5.6. We refer readers to supplementary
materials for more implementation details, results, and ablation studies.

5.1 General Model for Feature Extraction

We adopt DeiT-S [50] (path size 16×16) pretrained with the unsupervised framework DINO [5] on
ImageNet [11] to extract features for data selection. The same pretrained model is used for all tasks.
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Algorithm 2: Distance-based Selection
Input: all semantic patterns µ̂I = {µ̂I

j} for each image I , total annotation budget size b
Output: selected image pool SI

1 Initialize SI = {I0}
/* initialize with a random image I0 */

2 Initialize SK = {µ̂I0
j , j = 1, . . . ,K}

/* initialize selected semantic pattern pool with all semantic patterns in I0 */
3 repeat
4 Sample µ̂I

j with probability p(µ̂I
j ) ∝ minµ̂∈SK

[
D(µ̂I

j , µ̂)
]2

/* sample next semantic pattern µ̂I
j with the distance-based probability. */

5 SI = SI ∪ {I}
/* add image I containing sampled µ̂I

j to selected image pool */
6 SK = SK ∪ {µ̂I

j , j = 1, . . . ,K}
/* add all semantic patterns in image I to selected semantic pattern pool */

7 until |SI | = b;
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Figure 5: Results on Object Detection: The
mAP on 100% training data is 77.43.
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Figure 6: Results on Semantic Segmentation:
The mIoU on 100% training data is 62.95.

FreeSel can also fit other frameworks as well, as shown in supplementary materials. We emphasize
that this pretrained DeiT-S model is only applied to the data selection process. For the downstream
tasks, we still train the convolutional task models from scratch in accordance with prior work.

5.2 Object Detection

Dataset and Task Model. We carry out experiments on PASCAL VOC [14]. In line with prior work
[1, 57], we combine the training and validation sets of PASCAL VOC 2007 and 2012 as the training
data pool with 16, 551 images. The performance of task model is evaluated on PASCAL VOC 2007
test set using mAP metric. We follow previous work [57, 1] to train an SSD-300 model [34] with
VGG-16 backbone [46] on the selected samples. It reaches 77.43 mAP with 100% training data.

Results and Comparison. We compare our performance with existing active learning methods
(Fig. 5) for multiple sampling ratios. For fairness, we only include task-agnostic methods instead of
those designed specifically for object detection [59, 8] which should naturally perform better. Results
show that FreeSel outperforms most traditional pipeline methods and remains competitive with the
best ones. Besides, all these previous methods require repetitive model training and batch selection
on each target dataset separately, while FreeSel can efficiently select all samples in a single pass.
Sec. 5.6 also shows that FreeSel can outperform other alternative general-purpose model baselines.

5.3 Semantic Segmentation

Dataset and Task Model. We use Cityscapes [9] dataset for semantic segmentation. This dataset is
composed of 3,475 frames with pixel-level annotation of 19 object classes. We report the result using
mIoU metric. We follow previous active learning research to apply DRN [58] model for this task. It
reaches 62.95 mIoU with 100% training data.
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Figure 7: Results on Image Classification:
The accuracy on 100% training data is 93.02%.
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Figure 8: Effect of Pretraining Methods: Ex-
periments are conducted on PASCAL VOC.

Results. We compare the performance of FreeSel with traditional active learning methods in Fig. 6.
Given the domain gap between the pretraining dataset (i.e. ImageNet) and Cityscapes, it is quite
challenging to utilize the general pretrained model for data selection. However, with much higher
efficiency, FreeSel still beats most traditional pipeline methods in performance.

5.4 Image Classification

Dataset and Task Model. We use CIFAR-10 [29] datasets and ResNet-18 [21] model in line with
prior work [35, 57]. CIFAR-10 contains 60,000 images with size 32×32 (50,000 for training and
10,000 for test) belonging to 10 categories. We report the results using Top-1 Accuracy metric. The
model reaches 93.02% Top-1 Accuracy with 100% training data on CIFAR-10.

Results. We demonstrate the results of data selection methods in Fig. 7. Our performance is
compared with traditional active learning methods as well. Since image classification focuses on
global information, the advantage of semantic patterns cannot be fully demonstrated. However, with
most sampling ratios, FreeSel still beats all its counterparts.

5.5 Analysis

Time Efficiency Analysis. Time efficiency of data selection is crucial for its practical use. Tab. 1
shows the comparison between FreeSel and other existing counterparts. The estimation is conducted
on PASCAL VOC to choose 8, 000 samples. We follow prior papers [1, 44, 57] to use SSD [34] as
the task model (same as Sec. 5.2). The time is estimated on a single NVIDIA TITAN RTX GPU.
Since FreeSel directly utilizes the publicly available pretrained model instead of training models
separately for each dataset, only the feature extraction, semantic pattern construction, and data
selection time should be considered, i.e. 285 seconds in total. In contrast, for other active learning
methods, networks are trained repetitively on each dataset. We follow [57, 1] to set their initial set
size and batch selection budget both as 1k, so their model should be trained for 7 times over subsets of
size 1k ∼ 7k to select 8,000 samples. These previous methods have similar time efficiency, requiring
about 42 hours in total. They also need to wait for the oracle for ground-truth labels after selecting
each batch of data. Based on the above information, our method can be 530x faster than prior work.

Single-Pass Data Selection. Unlike prior active learning methods, FreeSel follows the new pipeline
to select all the data samples in a single pass. This allows for great practical use. Firstly, it makes our
method free of a random initial set. For one thing, FreeSel can bring performance gain in the lowest
sampling ratio. This is beneficial in practice when the annotation budget is extremely low. For another
thing, FreeSel would not suffer from the imbalanced initial set. As discussed in [47], low-quality
initial sets would hurt the performance of prior active learning work significantly. Secondly, FreeSel
simplifies the active learning pipeline from the iterative model training→batch data selection→batch
annotation→ · · · · · · to a single-pass data selection→data annotation, which saves notable efforts in
the management, communication, and coordination of traditional sequential steps.

Introduction of Pretrained Model. Our proposed pipeline introduces a pretrained model (Fig. 1b)
to satisfy the three principles of our new pipeline. Since the pretraining is not designed specifically
for the data selection, directly using a publicly available model would not lead to extra time-cost
or expense. According to Sec. 3, it is non-trivial to improve the efficiency of active learning with a
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pretrained model. We further show that our great performance does not come from the pretrained
model in Sec. 5.6.

Effect of Different Pretraining Algorithms. In this part, we pay attention to the effect of pretraining
on the final performance of FreeSel. In addition to DeiT-S [50] pretrained with DINO framework [5]
in Sec. 5.1, we also adopt two alternative pretraining frameworks MoCoV3 [7] and iBOT [63] as well
as a larger DeiT-B model [50]. Those different pretrained models are applied to the data selection
on PASCAL VOC dataset [14]. Same as Sec. 5.2, we train an SSD-300 model [34] on the selected
samples for the object detection task. Fig. 8 demonstrates that FreeSel with different pretrained
models for data selection only has marginal differences in the performance of the downstream object
detection task. This result verifies that FreeSel can widely fit different pretraining algorithms. The
great performance of data selection comes from our carefully designed modules in FreeSel instead of
the strong representative ability of some specific pretrained models.

5.6 Ablation Study

We delve into different parts of our method. Firstly, we analyze the contribution of each module inside
FreeSel to the final performance. Then, the role of the pretrained DeiT-S model is also discussed.

Each Module Contribution. Starting from the failure case in Fig. 2, modules of FreeSel are added
to it one by one. Tab. 2 demonstrates the step-by-step performance improvement. This experiment
is conducted on PASCAL VOC in the same setting as Sec. 5.2. The following three modules are
analyzed. More quantitative analysis of hyper-parameters is available in the supplementary materials.

• Feature Extraction Manner: In Sec. 3, the global feature of [CLS] token is directly used.
We replace it with the proposed semantic patterns defined in Eq. 4.

• Attention Filter: We apply the attention filter in Eq. 2 to filter local features.

• Selection Strategy: Apart from the distance-based sampling in Eq. 5, we consider the
alternative farthest-distance-sampling (FDS) w.r.t. semantic patterns, which is theoretically
justified in [44] as an approximation of K-Centers. It chooses the next semantic pattern farthest
from the nearest selected one as µ̂I

j = argmaxµ̂I
j
minµ̂∈sK d(µ̂I

j , µ̂).

Table 2: Module Contribution: We discuss the contribution
of each module inside FreeSel. SP means semantic pattern.
Experiments are conducted on PASCAL VOC.

Feature Filter Select Image Number
3k 5k 7k

global ✗ FDS 60.59 66.65 70.30
SP ✗ FDS 64.15 68.22 70.42
SP τ = 0.5 FDS 64.45 68.49 71.35
SP τ = 0.5 Prob. 65.66 69.24 71.79

random sampling 64.21 67.53 69.32

The failure case of Core-Set on off-
the-shelf features is shown in the first
line of Tab. 2. Then, we extract fea-
tures by constructing semantic pat-
terns (K = 5) without applying the at-
tention filter in the second line. It im-
proves notably compared with the first
line because the semantic patterns can
represent useful local information im-
portant for object detection. However,
it is only slightly better than random
selection since the semantic patterns
are dominated by local noisy information in this stage. We apply attention ratio τ = 0.5 (Eq. 2) in the
third line of the table, and the performance gets improved again. Finally, the FDS selection strategy
is replaced by the distance-based probability sampling in Eq. 5. It provides extra performance gain
because it would select more representative samples with fewer corner cases.

Role of Pretrained Model. There is a concern that the performance gain of FreeSel comes from
the great representation ability of the pretrained vision transformer for data selection instead of our
designed method. About this, we conduct an ablation study on CIFAR-10 in the same setting as
Sec. 5.4. We equip Core-Set [44] and Learn-Loss [57] with the same pretrained network for data
selection, i.e. DeiT-S [50] pretrained with DINO [5]. During the data selection period, pretrained
DeiT-S is finetuned supervisedly to select data samples with Core-Set and Learn-Loss algorithms.
After selection, we still train ResNet-18 [21] over the selected samples from scratch. In Fig. 9, this
pretrained DeiT-S damages the performance of Core-Set and Learn-Loss. A potential explanation
comes from the differences in the representation spaces of pretrained DeiT and from-scratch ResNet.
The samples selected by DeiT-S with Core-Set and Learn-Loss algorithms may not be suitable for the
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from-scratch training of the ResNet-18 model. This reflects that our performance gain does not come
from the use of pretrained DeiT-S. Instead, the proposed FreeSel method plays an important role.

Table 3: Baselines Using General-Purpose Model: We compare
FreeSel with other baselines using the general-purpose model. Experi-
ments are conducted on PASCAL VOC object detection task.

Methods Pretrained Model Image Number
3k 5k 7k

K-Means DeiT-S (DINO) 64.85 68.05 71.50
Inconsistency DeiT-S (DINO) 63.29 67.65 71.35

Entropy DeiT-S (supervised) 56.33 66.03 69.72

FreeSel DeiT-S (DINO) 65.66 69.24 71.79

General-Purpose Model
Baselines. To further dis-
entangle the roles of the
general-purpose model and
our designed FreeSel frame-
work, we compare FreeSel
with the following baselines
which can also select a sub-
set from the data pool using
the general-purpose models.
1) K-Means: We perform
the K-Means algorithm on
the global features extracted
by the pretrained DeiT-S
model [50, 5], choosing the sample closest to each cluster center. 2) Inconsistency: We select
the most difficult samples based on the inconsistency of multiple-time model predictions. To measure
the inconsistency, we perform data augmentations (RandAugment [10]) to generate 10 different
augmented copies for each image and calculate the average pairwise distances of global features
between these copies extracted by the pretrained DeiT-S model [50, 5]. We select data samples
by the order of inconsistency. 3) Entropy: We select the most ambiguous samples based on the
classification uncertainty of the pretrained model. Since the classification score is required, we adopt
the DeiT-S model [50] pretrained on ImageNet in a supervised manner and measure the uncertainty
with the entropy of classification scores. We select data samples by the order of entropy. Experiments
are conducted on object detection task in the same settings as Sec. 5.2. Tab. 3 shows that all the above
baselines perform notably worse than FreeSel, especially with low sampling ratios. This reflects the
importance of our proposed FreeSel algorithm. Trivial utilization of a general-purpose model would
not lead to great performance of data selection.

6 Conclusion and Limitations
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Figure 9: Effect of Pretraining Methods: Ex-
periments are conducted on PASCAL VOC.

The main goal of this paper is to enable a free data
selection pipeline by proposing a novel pipeline
with three key principles: generality, efficiency,
and non-supervision. We verify its feasibility by
designing the first method FreeSel following this
new pipeline. Through a single-pass model infer-
ence, the semantic patterns are constructed based
on the intermediate features of a general pretrained
model, over which a distance-based selection strat-
egy is performed to find the most diverse and in-
formative data samples. Our method outperforms
most existing counterparts with remarkably supe-
rior efficiency on different tasks including detec-
tion, segmentation, and classification.

We realize that FreeSel cannot beat all the other
data selection methods in current stage due to the
absence of training on the target datasets. Never-
theless, this direction matters in boosting the training of downstream models without any extra time
and cost on the shoulders of existing general pretrained models. It gains more significance given the
current landscape dominated by large foundation models pretrained on multi-modality data [40, 15],
which we believe can help to extend our method to a wide range of domains and modalities.
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In this supplementary material, we first explain the details of spectral clustering algorithm (Sec. 4.2)
in Sec. A. We then analyze the sensitivity of FreeSel to the values of hyperparameters in Sec. B.
Finally, implementation details of our experiments are explained in Sec. C.

A Spectral Clustering Algorithm

In this section, we explain the spectral clustering algorithm [38, 55] in the semantic pattern extraction
process for each image I (Sec. 4.2 and Alg. 1). The detailed spectral clustering algorithm is shown in
Alg. 3. This spectral clustering algorithm should be inserted into line 7 of Alg. 1.

To justify the use of spectral clustering algorithm for semantic pattern extraction, we also try another
alternative which directly performs K-Means w.r.t. the local features f I

r , r = 1, 2, . . . , t to divide the t
regions of image I into K clusters without using the patch token attention to achieve the same feature
clustering goal in Sec. 4.2. Tab. 4 shows the comparison between spectral clustering and K-Means.
Interestingly, these two feature clustering strategies lead to similar data selection performance on
PASCAL VOC [14] object detection task. However, spectral clustering is stably superior when
selecting data samples for Cityscapes [9] semantic segmentation task. We attribute this difference
to the large domain gap between Cityscapes dataset and ImageNet dataset [11]. The DeiT-S model
pretrained on ImageNet may extract local features with weaker discriminative ability from images
inside Cityscapes dataset. Since spectral clustering algorithm depends less on the feature quality, it
can bring better performance than direct K-Means over intermediate local features on Cityscapes.

Algorithm 3: Spectral Clustering

Input: Similarity matrix between patches p̂aI
=

[
p̂aij

]
i,j=1,2,...,t

, semantic pattern number K

Output: Clusters CI
j , j = 1, 2, . . . ,K, where each region r = 1, 2, . . . , t of image I belongs to

a unique CI
j .

1 Derive the symmetric adjacent matrix A from p̂aI :

A = (p̂aI
+ p̂aIT

)/2, A ∈ Rt×t

2 Derive the diagonal degree matrix D:

Dij =

{∑t
l=1 Ail i = j

0 i ̸= j
, D ∈ Rt×t

3 Calculate the normalized Laplacian matrix L:

L = D− 1
2 (D−A)D− 1

2 , L ∈ Rt×t

4 Obtain the K eigenvectors vl, l = 1, 2, . . . ,K corresponding to the K smallest eigenvalues
σl, l = 1, 2, . . . ,K of matrix L.

5 Compose the matrix V based on the K eigenvectors

V = [v1, v2, . . . , vK ],V ∈ Rt×K

6 Denote uT
i as the i-th row of V, i = 1, 2, . . . , t

7 Normalize each row of V: ûi = ui/
√∑K

j=1 u
2
i,j

8 Perform K-Means to divide ûi, i = 1, 2, . . . , t into K clusters CI
j , j = 1, 2, . . . ,K:

{CI
j }j=1,2,...,K = KMeans({ûi}i=1,2,...,t)

B Sensitivity to Hyperparameters

In this part, we analyze the sensitivity of our FreeSel to some hyperparameters including the mainte-
nance ratio τ in the attention filter (Eq. 2), the semantic pattern number K (Eq. 4), the neighborhood
threshold d0 (Eq. 3), the distance function D(·, ·) (Eq. 5), and pretraining manner for the general
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Table 4: Effect of Feature Clustering Strategies: We compare spectral clustering and K-Means for
feature clustering. Experiments are conducted on PASCAL VOC object detection task and Cityscapes
semantic segmentation task.

(a) Performance on PASCAL VOC Object Detec-
tion Task: The task model is SSD-300 [34].

Feature Clustering Image Number
3k 5k 7k

K-Means 65.35 69.43 71.76
Spectral Clustering 65.66 69.24 71.79

(b) Performance on Cityscapes Semantic Segmen-
tation Task: The task model is DRN [58].

Feature Clustering Sampling Ratio
15% 25% 35%

K-Means 51.43 54.84 57.96
Spectral Clustering 51.77 55.72 58.58

Table 5: Sensitivity to Hyperparameters: τ,K, d0, D(·, ·) separately denote the maintenance ratio,
semantic pattern number, neighborhood threshold, and distance function. Experiments are conducted
on the PASCAL VOC object detection task.

τ K d0 D(·, ·) Pretraining Image Number
3k 5k 7k

0.3
5 2 cos. unsupervised

65.22 69.00 70.69
0.5 65.66 69.24 71.79
0.7 64.77 69.33 71.64

0.5 1 2 cos. unsupervised 64.90 69.01 71.02
10 65.21 69.13 71.50

0.5 5 1 cos. unsupervised 65.48 68.73 71.39
3 65.37 69.41 71.74

0.5 5 2 euc. unsupervised 64.77 69.42 71.31

0.5 5 2 cos. supervised 64.40 68.82 71.43

model. Experiments are conducted on the object detection task, where samples are selected from
PASCAL VOC dataset and SSD-300 is the downstream task model in the same settings as Sec. 5.2.
Results are shown in Tab. 5.

Maintenance Ratio τ (Eq. 2) Maintenance ratio τ notably affects the final performance of FreeSel.
Too low ratios lead to the ignorance of some crucial local visual patterns, while too high ratios
introduce some harmful noisy information to the semantic patterns. Thus, a moderate attention ratio
plays an important role in the high performance of FreeSel.

Semantic Pattern Number K (Eq. 4) When K = 1, the performance is hurt since semantic
patterns degrade to global features in this case. When K = 10, a slight performance drop may be
witnessed in comparison with K = 5.

Neighborhood Threshold d0 (Eq. 3) When d0 = 1, the neighborhood is too small to represent the
relationship between nearby regions. When d0 = 3, the performance is a little worse than d0 = 2.
We think each region feature mainly interacts with nearby regions with distance d ≤ 2.

Distance Function D(·, ·) (Eq. 5) We find the cosine distance can lead to better performance than
Euclidean distance. This result shows that the directions of local feature vectors are important to
reflect the diversity of local visual patterns.

Pretraining Manner Instead of using the unsupervised pretraining framework DINO [5], we
also try the DeiT-S model [50] pretrained in a supervised manner on ImageNet [30]. Results show
a performance drop with supervised pretraining. We think this is because supervised pretraining
introduces some biases of categories to the pretrained model.
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C Implementation Details

C.1 Object Detection Implementation

C.1.1 Implementation of FreeSel

We set attention ratio τ = 0.5 and semantic pattern number K = 5. The input images are resized to
224× 224 when fed into the pretrained DeiT-S [50] model in the data selection process.

C.1.2 Implementation of Task Model

The implementation of task model is same as previous active learning research [57, 1]. The SSD-300
model [34] with VGG-16 [46] backbone is adopted for this experiment. The model is implemented
based on mmdetection 3. We follow [57, 1] to train the model for 300 epochs with batch size 32 using
SGD optimizer (momentum 0.9). The initial learning rate is 0.001, which decays to 0.0001 after 240
epochs.

C.2 Semantic Segmentation Implementation

C.2.1 Implementation of FreeSel

The input images are resized to 448× 224 in line with their original aspect ratios when fed into the
pretrained DeiT-S [50] model in the data selection process. Same as object detection, we set attention
ratio τ = 0.5 and semantic pattern number is doubled to K = 10 in line with the doubled input size
compared to object detection task.

C.2.2 Implementation of Task Model

We follow prior active learning work [47, 24] to apply DRN [58] model 4 for semantic segmentation
task. The model is trained for 50 epochs with batch size 8 and learning rate 5e-4 using Adam
optimizer [28].

C.3 Image Classification Implementation

C.3.1 Implementation of FreeSel

We follow previous tasks to set attention ratio τ = 0.5. Since image classification depends less on
local information, we directly set the semantic pattern number K = 1. The input images are resized
to 224× 224 when fed into the pretrained DeiT-S [50] model in the data selection process.

C.3.2 Implementation of Task Model

We follow [57, 35] to use ResNet-18 [21] classification model in this task, which is implemented
based on mmclassification 5. The model is trained for 200 epochs with batch size 128 using an SGD
optimizer (momentum 0.9, weight decay 5e-4). The initial learning rate is 0.1, which decays to 0.01
after 160 epochs. We apply standard data augmentation to the training including 32×32 size random
crop from 36×36 zero-padded images and random horizontal flip.

3https://github.com/open-mmlab/mmdetection
4https://github.com/fyu/drn
5https://github.com/open-mmlab/mmclassification
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