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ABSTRACT

Accurate survival prediction is critical for oncology, public health, and reliabil-
ity engineering, yet existing methods remain constrained by limited follow-up,
heavy censoring, and static pseudo-labeling practices. In many clinical datasets,
including Our reconstructed cohort of N = 50,155 patients with observed
follow-up of only 74.742 months (58.8% deceased, 41.2% censored), long-term
outcomes remain unobserved, preventing reliable 10-year (120-month) survival
estimation. We address this gap by introducing a dynamic pseudo-label re-
finement and calibration framework that transforms incomplete follow-up into
extended, biologically consistent survival trajectories. Starting from a hybrid
Weibull–Kaplan–Meier initialization, pseudo-labels are iteratively corrected un-
der survival-theoretic constraints and clinical plausibility rules, including enforc-
ing zero survival beyond death and monotonic survival probabilities for cen-
sored patients. These refined labels are propagated through a deep ensemble
trained with variance-penalizing objectives and monitored via diagnostic feed-
back for stability and uncertainty calibration. This process enables survival la-
bels to evolve adaptively, rather than remain static preprocessing artifacts, and
produces clinically plausible estimates well beyond the observed horizon. We
applied to the 50,155-patient cohort, the framework achieved rapid convergence
and outstanding predictive performance (R2 = 0.9964, MAE = 0.0066, C-index
= 0.9915), with predictions tightly calibrated, biologically consistent, and ro-
bust under long-term censoring. We validated Our proposed framework on two
public datasets of N = 2509 & N = 205 available in Evitan (2021) (Metabric)
& Harrison et al. (2023) (Malignant Melanoma) achieved remarkable results
(R2 = 0.9924 & 0.9781, MAE = 0.0142 & 0.0247, C-index = 0.9633 & 0.8459)
by follow-up to 480 & 240 months respectively. Thus, by bridging the 74.742-
month follow-up limit with reliable 120-month projections on Our dataset, Our
work establishes adaptive pseudo-label refinement as a principled foundation
for long-horizon, interpretable, and clinically reliable survival modeling. More-
over, we are going to publicly publish Our dataset and code at https://doi.
org/10.5281/zenodo.17163267 and https://anonymous.4open.
science/r/Dynamic-Pseudo-Labeling-D2AB/ respectively for the
research community.

1 INTRODUCTION

Time-to-event survival analysis is the cornerstone of medical research, public health, and reliability
engineering, with applications ranging from patient prognosis in oncology to the prediction of ma-
chine failure in industrial systems. Classical statistical models such as the Cox proportional hazards
model remain widely used, but their reliance on proportional hazards and restrictive parametric as-
sumptions limits their utility in heterogeneous real-world settings. To overcome these limitations,
pseudo-observation methods have been developed as a flexible framework for survival prediction.
By transforming censored event times into pseudo-values, they allow the use of standard regression
techniques and modern machine learning algorithms Andersen & Perme (2010).
Building on this foundation, pseudo-observations have been extended to various domains, includ-
ing causal mediation analysis on the restricted mean survival time (RMST) scale Chernofsky &
Lok (2025), ensemble and super-learning frameworks Cwiling et al. (2024), and regression models
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for semicompeting risks Orenti et al. (2021). They have also been integrated into federated learn-
ing systems for privacy-preserving survival prediction Rahman & Purushotham (2022; 2023), and
adapted for robust modeling under noisy or uncertain labels Tjandra & Wiens (2024) and novel
computational paradigms such as broad learning architectures Wu et al. (2021a). Collectively, these
contributions underscore the adaptability of pseudo-observation methods and their growing influ-
ence at the intersection of survival analysis and machine learning.
Despite these advances, several critical weaknesses remain unaddressed. The first limitation is the re-
liance on the assumption of independent censorship. Most pseudo-observation–based models includ-
ing those for single-event and semi-competing risk survival Wycinka & Jurkiewicz (2019); Orenti
et al. (2021)) require censoring to be independent of survival. Yet in clinical practice, censoring of-
ten depends on disease severity, treatment access, or socioeconomic context, introducing bias and
instability in pseudo-values, particularly in long-term survival with high censoring rates. As demon-
strated by Guyot et al. (2012), survival estimates reconstructed from Kaplan–Meier curves are highly
sensitive to censoring distributions, highlighting the fragility of methods that treat censoring as ig-
norable.
A second limitation is the static treatment of pseudo-values. Once generated, pseudo-labels are
typically used as fixed targets without iterative refinement or recalibration. While ensemble and
federated approaches such as Super Learner–based pseudo-observations Cwiling et al. (2024) and
FedPseudo frameworks Rahman & Purushotham (2022; 2023) enhance scalability and privacy, they
do not update pseudo-labels during model training. This results in systematic misalignment between
predictions and observed survival patterns: probabilities may remain nonzero beyond death events
or underestimate uncertainty in censored cases. Without corrective mechanisms, these errors accu-
mulate across iterations, compromising both predictive accuracy and clinical trustworthiness.
A third weakness concerns the lack of interpretability, diagnostics, and clinical plausibility safe-
guards. Recent innovations—such as BroadSurv Wu et al. (2021a) or robustness under noisy labels
Tjandra & Wiens (2024)—improve computational novelty and predictive stability, but they neglect
mechanisms for convergence monitoring, diagnostic feedback, or uncertainty calibration. In high-
stake contexts such as lung cancer prognosis, where mortality remains among the highest worldwide
World Cancer Research Fund International (2022), inaccurate or poorly calibrated survival estimates
can mislead treatment planning, while underestimated uncertainty creates false confidence in clini-
cal decisions.
Ultimately, these specialized advances reveal a fragmented landscape. Causal mediation approaches
Chernofsky & Lok (2025) expand methodological inference but are not tailored to individual-level
prediction. Federated learning systems Rahman & Purushotham (2022; 2023) address privacy but
not censoring robustness or calibration. Ensemble models Cwiling et al. (2024) improve predictive
power but inherit the limitations of static pseudo-labeling. Across these directions, a unifying gap
persists: pseudo-observation methods remain dependent on strong censoring assumptions, lack dy-
namic label refinement, and offer few diagnostic or interpretability safeguards.
In this work, we address these gaps in the specific context of limited follow-up horizons. Our re-
constructed clinical cohort contains N = 50,155 patients with follow-up limited to 74.742 months
(58.8% deceased, 41.2% censored). Yet clinical practice and regulatory benchmarks often require
reliable 10-year (120-month) survival predictions. Current survival models cannot extend beyond
the observed horizon without strong, often unrealistic, parametric assumptions. We hypothesize
that adaptive pseudo-labels, when refined under survival-theoretic constraints and clinical logic,
can bridge this gap by producing biologically consistent, uncertainty-calibrated survival trajectories
even beyond the maximum observed follow-up. Our contributions are fourfold:

• Extended survival prediction beyond observed data: We demonstrate, for the first time,
that adaptive pseudo-label refinement can reliably extend survival prediction from a maxi-
mum of 74.742 months of observed follow-up to 120 months, producing clinically plausible
long-term trajectories without requiring new patient data.

• Hybrid pseudo-label initialization: We combine the smoothness of parametric Weibull
models with the fidelity of Kaplan–Meier estimates to generate robust initial pseudo-labels.

• Iterative refinement under survival constraints: Pseudo-labels are dynamically cor-
rected to enforce biological consistency (zero survival beyond death, monotonicity for cen-
sored outcomes) and temporal plausibility across iterations.
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• Ensemble learning with calibration and diagnostics: A deep ensemble trained with
variance-penalizing objectives, isotonic recalibration, and convergence monitoring deliv-
ers uncertainty-aware, interpretable, and clinically trustworthy predictions.

By systematically combining pseudo-label generation with iterative refinement, calibration, and di-
agnostic safeguards, this work establishes a principled framework for long-horizon survival predic-
tion, bridging the 74.742-month data limit with reliable 120-month projections and advancing both
methodological rigor and clinical applicability.

2 METHODOLOGY

2.1 STUDY DESIGN AND DATA SOURCE

Given restricted access to individual patient data (IPD) from pembrolizumab trials, we employed
a validated data synthesis approach. Our systematic review of PubMed pub, Embase emb, and
Cochrane Library coc identified 2,770 records, with 36 studies meeting the inclusion criteria for
time-to-event modeling (see Fig. S1).

Study characteristics, risk of bias assessment, and patient demographics are detailed in the supple-
mentary materials Tables S1, S2, and S3 & Fig. S2. For each included study, we reconstructed IPD
from published Kaplan-Meier curves using established digitization methods Guyot et al. (2012). Co-
variates were simulated to match published statistics: categorical variables from multinomial distri-
butions based on reported proportions, and continuous variables from parametric distributions fitted
to published measures using moment-matching techniques for median/IQR data. To address impu-
tation uncertainty, we generated ten multiply imputed datasets, combining estimates using Rubin’s
rules.

We validated the reconstruction fidelity through 12-month mortality encoding (yi = 1 if death within
12 months, yi = 0 otherwise) and consistency assessment via Kaplan-Meier overlays with root mean
square error calculations.

Our primary objective was to estimate long-term survival beyond the observed follow-up period. The
reconstructed dataset had a maximum observed follow-up of 74.7 months, creating a gap relative
to the clinically relevant 10-year (120-month) horizon. Our framework predicts, for each patient
i with observed follow-up time ti and event indicator δi, the probability of survival beyond τ =
120 months. This approach bridges short-term binary outcomes with long-term continuous survival
probability estimation.

Throughout this study, we refer to this pembrolizumab-treated lung cancer cohort as “Our Dataset.”
We further validated Our framework on two additional datasets: the Breast Cancer Dataset Evitan
(2021) (Public Dataset 1, PD-1) and the Malignant Melanoma Survival Dataset Harrison et al. (2023)
(Public Dataset 2, PD-2), with detailed descriptions provided in the appendix.

2.2 INITIALIZATION OF PSEUDO-OBSERVATIONS

For each patient i, with observed follow-up time ti and event indicator δi (where δi = 1 for death, 0
for censored), we aimed to estimate the probability of survival beyond τ = 120 months, denoted yi.
We propose a novel hybrid initialization strategy to compute the initial pseudo-label ỹ(0)i . This ap-
proach combines the smoothness of a parametric Weibull model with the fidelity of the nonparamet-
ric Kaplan-Meier estimator.
First, a Weibull distribution was fit to the reconstructed IPD to obtain a parametric survival function
SWeibull(t). Second, the standard KM estimator ŜKM(t) was calculated. The initial pseudo-label for
a censored patient (δi = 0) was then defined as:

ỹ
(0)
i = α · SWeibull(120)

SWeibull(ti)
+ (1− α) · ŜKM(120)

ŜKM(ti)
(1)

For a deceased patient (δi = 1), the pseudo-label was set to 0, consistent with the biological im-
possibility of long-term survival after death. The weighting parameter α ∈ [0, 1] was optimized via
5-fold cross-validation.

3
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Algorithm 1 Iterative Pseudo-Label Refinement with Survival Constraints

1: Input: Dataset D = (X, t, δ), threshold τ = 120 months
2: Output: Refined pseudo-labels ỹ, expected survival times e
3: Initialize ỹ(0), e(0) ← create_improved_pseudo_labels(D, τ)
4: Augment features: X← add_time_features(X, t, τ)
5: Select features F← feature_columns(X) excluding IDs and target cols
6: Preprocess: Xproc ← preprocessor(X[F])
7: for k = 1 to Kmax do
8: Set target ytarget ← ỹ(k−1)

9: if k > 1 and k mod 3 = 0 then
10: ytarget ← QuantileTransformer(ytarget) ▷ Periodic distribution reshaping
11: else
12: Normalize ytarget to [0, 1]
13: end if
14: Clip ytarget to [0.01, 0.99]
15: Split stratified train/test sets with δ
16: Compute weights w← compute_weight(ytrain)× 1

1+|ytrain−0.5| ▷ Downweight uncertain
predictions

17: if k = 1 or stagnation > 5 then
18: Initialize ensemble {f (k)

m } ← build_model_ensemble(dim(Xproc)) ▷ Reset models
when progress stalls

19: end if
20: for each model f (k)

m do
21: Set learning rate η ← 0.0005× 0.95⌊k/5⌋ ▷ Decaying learning rate
22: Compile and train f

(k)
m on training data with w

23: Predict test ŷ(k)
m,test, full ŷ(k)

m,full
24: end for
25: Ensemble predictions: ŷ(k)

test ← 1
M

∑
m ŷ

(k)
m,test

26: ŷ
(k)
full ←

1
M

∑
m ŷ

(k)
m,full

27: Calibrate: ŷ(k)
test,cal ← time_dependent_calibration(ytest, ŷ

(k)
test , δtest, ttest)

28: ŷ
(k)
full,cal ← time_dependent_calibration(ytarget, ŷ

(k)
full , δ, t)

29: Refine: ŷ(k)
full,ref ← time_aware_refinement(D, ŷ

(k)
full,cal, δ, t, k) ▷ Survival-aware correction

30: Update pseudo-labels: ỹ(k) ← 0.7× ŷ
(k)
full,ref + 0.3× ỹ(k−1) ▷ Exponential moving average

31: Update expected times: e(k) ← predict_expected_time(ỹ(k), t, τ)
32: Enforce constraints on D ▷ Ensure survival time consistency
33: Calculate metrics R2, MAE before/after, C-index
34: if R2

after ≥ 0.95 and MAEafter ≤ 0.01 then
35: break ▷ Target met
36: else if stagnation ≥ 15 then
37: break ▷ Stagnation
38: end if
39: end for
40: Load best models and generate final predictions ỹ
41: Final calibration and expected time updates
42: Enforce final constraints on D ▷ Ensure all survival constraints satisfied
43: return ỹ, e

2.3 ITERATIVE PSEUDO-LABEL REFINEMENT FRAMEWORK

The core of Our methodology is an iterative procedure that refines these initial pseudo-labels under
clinical constraints. The overall algorithm is summarized in Algorithm 1.

4
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2.4 PREDICTION FRAMEWORK AND MODEL ARCHITECTURE

Our framework employs an iterative pseudo-label refinement approach specifically designed for sur-
vival analysis, combining deep learning with survival-aware constraints. The architecture was engi-
neered to handle the unique challenges of clinical survival data, including right-censoring, temporal
dependencies, and biological plausibility constraints.

• Input Processing: All features undergo comprehensive preprocessing including median
imputation for missing values, standardization of numerical features, and one-hot encoding
for categorical variables. Additionally, we generate enhanced time-based features including
logarithmic transformations, time progression metrics, decay factors, and temporal interac-
tion terms to capture non-linear survival patterns.

– Basic transformations: logarithmic (log(t+ 1)), quadratic (t2), cubic (t3), square root
(
√
t), and reciprocal (1/(1 + t)) terms to model various non-linear patterns.

– Normalized and proportional features: t/τ , t/tmax, and a saturation curve t/(t+ τ) to
express time relative to the 10-year threshold (τ ), ensuring model generalizability.

– Time decay factors: Exponential decay terms with short (exp(−t/60)) and long
(exp(−t/τ)) half-lives to model the decreasing hazard associated with longer sur-
vival.

– Temporal interaction terms: Multiplicative interactions between time and event status
(e.g., t×δ) allowing the model to learn distinct relationships for deceased and censored
patients, directly addressing the fundamental challenge of censoring.

– Categorical time bins: Non-parametric binning of time to capture arbitrary, discontin-
uous patterns that smooth functions might miss.

This multi-faceted representation of time provides the model with a powerful, pre-
engineered basis for learning complex temporal dynamics efficiently.

• Deep Neural Network Architecture: The model features a carefully designed survival-
optimized network with:

– Input layer with batch normalization for stable training across iterations
– Multiple hidden layers (128, 64, 32, and 16 units) with ReLU activations and progres-

sive dimensionality reduction
– Strategic dropout regularization (0.4, 0.3, 0.2, 0.1 rates) to prevent overfitting during

iterative refinement
– L2 regularization throughout the network (λ = 10−5) to ensure robust generalization
– Final sigmoid activation for bounded probability output between 0 and 1
– Single GPU optimization with memory growth configuration for efficient training

• Ensemble Approach: We employ multiple model instances (n = 3) trained with differ-
ent initializations, with final predictions obtained by averaging their outputs to enhance
stability and reliability. The ensemble approach reduces variance and provides uncertainty
estimates through prediction standard deviations.

• Optimization Strategy: The model uses Nadam optimization with adaptive learning rate
reduction (initial η = 0.0005, decay factor 0.95 every 5 iterations) and early stopping
based on validation MAE with patience of 15 epochs. Sample weighting combines class
balancing with confidence-based weights focusing on uncertain predictions.

2.5 SURVIVAL-AWARE REFINEMENT PROCESS

The iterative refinement process incorporates biologically-informed constraints to ensure clinically
meaningful predictions while maintaining statistical rigor:
Deceased Patient Constraints. For patients with observed events (δi = 1), we enforce progressively
adaptive constraints across iterations:

• Time discrepancy penalties: Predictions are reduced based on absolute difference between
expected and observed survival times using exponential decay factors

• Adaptive blending: Expected survival times are blended toward actual observed times with
increasing weight (β = min(0.9, 0.5 + 0.1 · k)) across iterations

5
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• Biological plausibility: Strict enforcement that expected survival time must exceed ob-
served time for deceased patients

• Progressive tightening: Correction factors increase from 70% to 95% maximum across
iterations to ensure convergence

Censored Patient Handling. For patients with censored outcomes (δi = 0):

• Long-term censored patients (ti ≥ τ ) receive maximum survival probability (1.0)

• Short-term censored patients receive conditional probabilities based on Weibull and
Kaplan-Meier estimates

• Time-dependent smoothing: Continuous decay without artificial plateaus based on time
ratio to threshold

• Conservative constraint: Expected survival times are strictly constrained to exceed observed
follow-up times

• Iterative blending: New predictions are blended with previous pseudo-labels (70% new,
30% previous) to maintain stability

Temporal Calibration: We employ granular time-dependent calibration using quantile-based time
bins (15 intervals) and isotonic regression with sample-size-dependent blending to ensure proper
probability calibration across all time points.

Convergence Criteria: The process continues until either performance targets are achieved (R2 ≥
0.95 and MAE ≤ 0.01), performance plateaus (no significant improvement in R2 or MAE for 15
consecutive iterations), or a maximum of 100 iterations is reached. The framework includes auto-
matic model resetting to escape local minima when stagnation is detected.

2.6 MODEL TRAINING AND VALIDATION

The framework was implemented in Python using TensorFlow/Keras for deep learning components,
scikit-learn for machine learning utilities, and lifelines for survival analysis. All experiments
employed stratified sampling to maintain event rate consistency across splits and prevent data
leakage through one-time preprocessing.

Model performance was evaluated through comprehensive survival-specific metrics including:

• Concordance Index (C-index): Measuring discrimination ability for survival predictions by
evaluating the ranking of predicted risk scores (1 - survival probability)

• Mean Absolute Error: Evaluating precision in probability estimation between predicted and
refined survival probabilities

• Determination Coefficient (R2): Quantifying the proportion of variance in pseudo-labels
explained by the model predictions

• Spearman Rank Correlation: Measuring the monotonic relationship between predicted and
actual survival probabilities without assuming linearity

• Explained Variance Score: Assessing the model’s ability to account for variations in the
survival probability estimates

• Time-Dependent Metrics: Monitoring performance across critical time intervals (30, 60,
90, 120 months) to ensure temporal consistency

We employed rigorous validation protocols including stratified train-validation-test splits (85%-
15%) and tracked multiple convergence metrics simultaneously. The calibration of predictions was
continuously monitored and improved through time-dependent isotonic regression adjustments. Ex-
tensive visualization techniques tracked deceased patient convergence, temporal patterns, and distri-
bution changes across iterations to ensure biologically plausible results.

6
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3 RESULTS

Our proposed survival modeling framework, grounded in time-dependent calibration and ensemble
neural architectures, demonstrates robust predictive performance and thorough calibration over a
large cohort (N = 50,155), with 58.8% observed event rate (deceased) and 41. 2% censored cases in
our dataset and also validated in the PD-1 & PD-2 with N = 2509 & N = 205 ( 25.7% & 71% observed
event and 74.3% & 134 (65.4%) censored cases respectively). Unlike traditional pseudo-observation
methods that treat labels as static artifacts, our framework enables dynamic label refinement under
biologically informed constraints.

3.1 PERFORMANCE METRICS

The best models achieved an exceptional R2 of Our = 0.9964 & PD-1=9924, PD-2= 0.9781, indicat-
ing highly linear fit between actual and predicted probabilities, along with a minimal mean absolute
error (MAE) of Our = 0.0066 & PD-1 = 0.0142 & PD-2 = 0.0247, Concordance index (C-index)
reached Our = 0.9915 & PD-1 = 0.9633 & PD-2 = 0.8459, confirming excellent discriminatory
ability between survival times, final explained variance and Spearman correlation further support
reliability at Our = 0.9966 & PD-1 = 0.9743 & PD-2 = 0.9178 and Our = 0.9988 & PD-1 = 0.9805
& PD-2 = 0.9910 as results also explicitly shown in Tab. 1.

3.2 PROBABILITY DISTRIBUTION AND CALIBRATION

Predicted survival probabilities spanned a realistic range on Our and PD-1 & PD-2 (min: 0.0110
& 0.0037 & 0.0129; max: 0.9453 & 0.9759 & 0.3139; median: 0.1600 & 0.3884 & 0.2838; mean:
0.2197 & 0.4031 & 0.2438, SD: 0.1789 & 0.2455 & 0.0833) respectively, with clear separation
between events and censored cases. The calibration curve shows close agreement to the identity line
for both dataset, signifying that the pseudo-labels for survival probability are well-calibrated across
all risk strata. Histogram analysis of prediction errors reveals a sharply centered, symmetrical error
profile around zero, with no outliers or skew. Residuals distributed by observed survival probabilities
reveal no systematic bias at extreme predictions, verified through the residual plot as shown in Fig.
1 for Our, PD-1 and PD-2 respectively and results shown in Tab. 1.

3.3 EXPECTED SURVIVAL TIME AND EVENT-SPECIFIC RESULTS

Expected survival times covered on Our= 0.2 to 113.4 & PD-1=0.7 to 468.4 & PD-2= 6.5-182.8
months, with no constraint violations across event groups, indicating rigorous enforcement of tem-
poral plausibility for Our PD-2 but 20 constraint violations across event groups found on PD-1. For
deceased patients on both Our, PD-1 & PD-2 datasetS, the model reliably limits predicted proba-
bility above the nominal risk threshold, with 26,747 & 574 & 60 patients above 0.05 probability
and universal coverage above 0.01 for all 29,484 & 645 & 71 true events respectively. Ensemble ap-
proaches and time-aware refinements ensure the expected time estimates reflect patient reality rather
than statistical artifact as shown in Tab. 1.

3.4 MODEL CONVERGENCE AND ROBUSTNESS

The framework converged in only two on Our & 100 on PD-1 & PD-2 major iterations, with a rapid
and stable improvement in R2 (Our= +0.9797, PD-1= +0.3815 & PD-2= +1256) and consistent
reduction in time-error metrics across deceased and censored cohorts on both datasets. All model
robustness indicators (Spearman correlation, explained variance, C-index) remained at excellent lev-
els throughout final evaluation.

Table 1: Comparison of dataset characteristics and model performance between Our proposed cohort
and two public datasets (PD-1 Evitan (2021) & PD-2 Harrison et al. (2023))

Cohort / Events Performance Predicted Prob. Dist. Convergence & Robustness

Metric Our PD-1 PD-2 Metric Our PD-1 PD-2 Metric Our PD-1 PD-2 Metric Our PD-1 PD-2

Cohort Size (N) 50,155 2,509 205 R2 0.9964 0.9924 0.9781 Minimum 0.0110 0.0037 0.0129 Exp. Survival (mo.) 0.2–113.4 0.7–468.4 6.5–182.8
Event Rate (%) 58.8% 25.7% 34.6% MAE 0.0066 0.0142 0.0247 Maximum 0.9453 0.9759 0.3139 Constraint Violations None 20 None
Censored Cases (%) 41.2% 74.3% 65.4% C-index 0.9915 0.9633 0.8459 Median 0.1600 0.3884 0.2838 Major Iterations Required 2 100 100
— — — — Explained Var. 0.9966 0.9743 0.9178 Mean 0.2197 0.4031 0.2438 Convergence R2 Gain +0.9797 +0.3815 +0.1256
— — — — Spearman 0.9988 0.9805 0.9910 Std. Dev. 0.1789 0.2455 0.0833 Robustness (C-index, EV, Spearman) Excellent Excellent V. Good
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(Our) 

(PD-1) 

(PD-2) 

Figure 1: Model calibration and error diagnostics on Our, PD-1 and PD-2. (Left) Final cali-
bration curve showing close adherence to the identity line across risk strata on Our and PD-1 but
slightly deviated for PD-2. (Middle) Error distribution with tightly centered, symmetric deviations
and low mean absolute error. (Right) Residual plot indicating no systematic bias over the prediction
range.

4 DISCUSSION

This study shows that treating pseudo-labels as iteratively refined, constraint-regularized tar-
gets—rather than static artifacts—yields survival estimates that are discriminative, well-calibrated,
and clinically plausible beyond the maximum follow-up. Using a reconstructed cohort of 50,155 pa-
tients and two public datasets (PD-1, PD-2), Our framework reliably extended prediction horizons
to 120, 480, and 240 months, achieving near-perfect accuracy across cohorts.
Expected survival times remained within biologically consistent bounds (Our=0.2–113.4, PD-
1=0.7–468.4, PD-2=6.5–182.8 months), with no violations except 20 on PD-1. Iterative refine-
ment collapsed implausible probabilities within two (Our) or 100 (PD-1/PD-2) iterations, resid-
ual diagnostics confirmed unbiased predictions, and calibration curves adhered closely to the iden-
tity line (Fig. 1). Performance metrics were consistently strong: R2 = 0.9964, 0.9924, 0.9781,
MAE=0.0066, 0.0142, 0.0247, C-index=0.9915, 0.9633, 0.8459, explained variance=0.9966,
0.9743, 0.9178, and Spearman correlation=0.9988, 0.9805, 0.9910 for Our, PD-1, and PD-2 re-
spectively (Tab. 1).
The framework combined hybrid Weibull–Kaplan–Meier initialization, constraint-based refinement
(eliminating survival mass post-death and enforcing monotonicity for censored cases), and time-
dependent isotonic calibration. This corrected implausible tails, reduced overconfidence in censored
cases, and stabilized labels through an EM-like cycle of initialization, ensemble training, calibra-
tion, correction, and moving-average updates. Variance was further controlled with lightweight en-
sembling, decaying learning rates, early stopping, and granular calibration. Predicted distributions
showed clear separation between events and censored cases, supporting biological plausibility.
Data were reconstructed from Kaplan–Meier curves with simulated covariates and multiple impu-
tations, inheriting source-trial censoring and reporting structures but validated with RMSE overlays
(Guyot et al., 2012). Horizons were fixed at 120, 480, 240 months, though extension to other end-
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points is straightforward with re-initialization and calibration.
Overall, this work closes a gap in pseudo-observation practice by treating labels as adaptive quan-
tities refined under survival theory and calibration feedback. Hybrid initialization reduced vari-
ance, constraint-guided corrections enforced plausibility, and ensemble training improved robust-
ness, yielding low MAE, high R2, and rapid convergence. Practically, dynamic pseudo-labeling
bridges limited follow-up (74.7, 355.2, 182.8 months) to clinically relevant horizons (120, 480,
240 months), producing calibrated, trustworthy predictions for large censored cohorts. The method-
ological recipe—hybrid initialization, iterative refinement, calibration, and ensembling—provides
a reproducible survival pipeline. Future work will extend subgroup calibration, integrate richer co-
variates, and enable real-time updating, with the model’s transparency and diagnostic safeguards
supporting clinical adoption for long-term survival prediction.

5 LIMITATIONS AND FUTURE WORK

This study acknowledges limitations stemming from data accessibility. The primary constraint was
lacking direct access to individual patient data (IPD) from pembrolizumab trials, necessitating syn-
thetic dataset reconstruction from Kaplan-Meier curves in 36 out of 2770 eligible studies. While
rigorously validated, this evidence-based approach inherently depends on source publication accu-
racy.
Furthermore, validation on two public datasets (PD-1, PD-2) faces generalizability constraints,
as these datasets lack established benchmarks for Our specific pseudo-labeling context, limiting
broader applicability assessment.
Future work will pursue validation on authentic IPD through clinical trial collaborations and ap-
plication to public datasets with established pseudo-labeling baselines, enabling direct comparison
with state-of-the-art methods.

6 CONCLUSION

This study introduced a dynamic pseudo-label refinement and calibration framework that treats
pseudo-observations as evolving constructs rather than static preprocessing inputs. By combining
hybrid Weibull–Kaplan–Meier initialization, survival-consistency corrections, and ensemble cal-
ibration with diagnostic safeguards, Our approach directly addresses key limitations of existing
methods—namely reliance on independent censoring, static pseudo-values, and lack of calibration
or interpretability.
We validated the framework on a large reconstructed cohort (N = 50,155) and two public datasets
(PD-1:N = 2,509, PD-2: N = 205), with event rates of 58.8%, 25.7%, and 34.6% respectively. Despite
maximum observed follow-ups of only 74.7, 355.2, and 182.8 months, Our method successfully ex-
tended survival predictions to 120, 480, and 240 months. Performance was consistently strong across
datasets: R2 = 0.9964, 0.9924, 0.9781, MAE = 0.0066, 0.0142, 0.0247, C-index = 0.9915, 0.9633,
0.8459, Spearman = 0.9988, 0.9805, 0.9910, and explained variance = 0.9966, 0.9743, 0.9178 for
Our, PD-1, and PD-2 respectively. Predictions were well-calibrated, residuals showed no system-
atic bias, and constraint enforcement preserved biological plausibility (zero survival beyond death,
monotonicity for censored cases). These findings demonstrate that adaptive pseudo-label refinement
can transform incomplete follow-up data into reliable long-horizon survival trajectories.
Beyond numerical accuracy, the real strength of this framework lies in its transparency and robust-
ness. Embedding survival-theoretic rules and continuous calibration yields predictions that are not
only accurate but also interpretable and clinically meaningful. The methodological recipe—hybrid
initialization, constraint-guided refinement, and lightweight ensemble calibration—offers a repro-
ducible pipeline where credibility matters as much as accuracy.
In summary, dynamic pseudo-labeling establishes a principled bridge between limited follow-up
(74.7 months) and extended clinical horizons (120 months), enabling trustworthy, individualized
survival modeling without requiring additional long-term data collection. While demonstrated here
in lung cancer prognosis, the approach is broadly adaptable to other clinical and engineering domains
where censored outcomes and uncertainty demand robust, transparent, and long-horizon prediction.
Validation on multiple datasets further supports its readiness for real-world applications.
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7 REPRODUCIBILITY STATEMENT

We have taken extensive measures to ensure the reproducibility of Our work. The main paper pro-
vides detailed descriptions of data preprocessing, pseudo-label refinement, survival analysis metrics,
model architectures, and ensemble training procedures. Additional implementation details, consis-
tency proofs, and extended analyses are included in the supplementary material. To further sup-
port reproducibility, we will make the complete source code available as supplementary material,
including preprocessing pipelines, pseudo-label generation and refinement modules, model train-
ing scripts, calibration routines, and evaluation workflows. All models, intermediate outputs, and
evaluation metrics are automatically stored and logged, with fixed random seeds to guarantee deter-
ministic replication. Dependencies and package versions are explicitly documented within the code.
Because individual patient-level clinical data are not publicly available, we provide reconstruction
scripts to generate the synthesized datasets used in Our experiments. Together, the descriptions in
the main text, and supplementary materials provide sufficient detail for independent researchers to
fully reproduce and extend Our findings.
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8 SUPPLEMENTARY MATERIAL

• Supplementary Tab S1. Summary of included clinical trials for time-to-event modeling
• Supplementary Fig S1. PRISMA flow diagram of study selection for the systematic review

of pembrolizumab trials of pembrolizumab in non-small cell lung cancer.
• Supplementary Tab S2. Methodological quality assessment of included studies using the

Methodological Index for Non-Randomized Studies (MINORS) tool
• Supplementary Fig S2. Risk of bias assessment of included randomized trials using the

Cochrane RoB 2.0 tool.

8.1 A. IMPLEMENTATION DETAILS

Our experiments were conducted using Python 3.12.9 with the following key dependencies:

• TensorFlow 2.19.0 for neural network implementation
• scikit-learn 1.6.1 for preprocessing and metrics
• lifelines 0.30.0 for Weibull fitting and Kaplan-Meier estimation
• PyTorch 2.7.1 for GPU acceleration (CUDA 12.8)

Experiments were run on single NVIDIA RTX 4090 GPU with 24GB memory. The code developed
for this study, including the full implementation of the iterative pseudo-label refinement framework,
neural network architectures, data preprocessing pipelines, and analysis scripts, is publicly available
at https://anonymous.4open.science/r/Dynamic-Pseudo-Labeling-D2AB/.
Moreover, we are going to also publicly share Our data set at https://doi.org/10.5281/
zenodo.17163267 for the research community.
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Supplementary Fig. S1: PRISMA flow diagram of study selection for the systematic review of pem-
brolizumab trials of pembrolizumab in non-small cell lung cancer

Supplementary Tab. S1: Summary of included clinical trials for time-to-event modeling

Study (Year)
Number and
location of

centers

Follow-up
(months) Study arms

Patient characteristics

Number of
patients

Age
(median)

Male
(%)

Non-
squamous
cell (%)

TPS
≥ 50%

(%)

Previous
Therapy

(%)

Langer CJ (2016) 26, USA/Taiwan 25
Arm A: Pembro + chemo 60 62.5 37 97 33 0
Arm B: Chemo 63 63.2 41 87 27 (Naive)

Gadgeel SM (2018) 12, USA/Taiwan 35
Arm A: Pembro + carbo +
pacli

25 66 48 52 36 0

Arm B: +bev 25 62 52 84 32 0 (Naive)

Continued on next page
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Table S1 – continued from previous page

Study (Year)
Number and
location of

centers

Follow-up
(months) Study arms Patient characteristics

Number of
patients

Age
(median)

Male
(%)

Non-
squamous
cell (%)

TPS
≥ 50%

(%)

Previous
Therapy

(%)

Arm C: +pemet 24 59.5 50 79 33 0 (Naive)

Mok TSK (2019) 213, Multi 42
Arm A: Pembro 200mg 637 63 71 62 47 0 (Naive)
Arm B: Chemo 637 63 71 61 47 0(Naive)

Garon EB (2019) NA 65
0 (Naive) Arm A: Naïve 101 64 53 81 30 71.6
Arm B: Pretreated 449 64 53 81 30

Gubens MA (2019) 11, USA 30
Arm A: Pembro 10mg + ipili 6 64 50 67 67 100
Arm B: Pembro 2mg + ipili 45 61 51 82 13 0 (Naive)

Nishio M (2019) NA 36 Pembro 10mg 38 66 68 82 32 0 (Naive)
Levy BP (2019) 33, Multi 17 Pembro 200mg 100 66 63.3 83.7 18.4 100
Theelen WSME
(2019)

3, NL 18 Pembro 200mg 76 62 57 88 20 100

Gadgeel S (2020) NA 30
0 (Naive) Arm A: Pembro
combo

410 65 62 100 32 0 (Naive)

Arm B: Placebo combo 206 64 53 100 34
Goldberg SB
(2020)

1, USA 24 Pembro 10mg 42 60 33 86 88
(TPS≥
1%

0 (Naive)

Herbst RS (2020) 202, Multi 55
Arm A: Pembro 690 57 62 70 42 100
Arm B: Docetaxel 343 61 61 70 44 100

Arrieta O (2020) 1, Mexico 30
Arm A: Pembro + docet 40 50 48 93 21 100
Arm B: Docetaxel 38 62 34 87 38 100

Middleton G
(2020)

10, UK 25 Pembro 200mg 60 72 55 68 25 0 (Naive)

JabbOur SK
(2020)

10, UK 30 Pembro + carbo/pacli 21 70 48 52 26 0 (Naive)

Durm GA (2020) NA 42 Pembro 200mg 92 66 64 55 58.5 100

Reck M (2021) NA 72
Arm A: Pembro 154 65 60 81.2 100 0 (Naive)
Arm B: Chemo 151 66 63 82.1 100 0 (Naive)

Horinouchi H (2021) NA 36
Arm A: Pembro combo 25 64 76 92 40

(TPS≥
1%

0 (Naive)

Arm B: Placebo combo 15 66 80 93 40
(TPS≥
1%

0 (Naive)

Wu YL (2021) NA 42
Arm A: Pembro combo 128 82 45 56 100 0 (Naive)
Arm B: Placebo combo 135 89 43 55 100 0 (Naive)

Boyer M (2021) 171, Multi 33
Arm A: Pembro + ipili 284 64 64 73 100 0 (Naive)
Arm B: Pembro 284 65 65 72 100 0 (Naive)

Masuda T (2022) NA 36 Pembro 200mg 26 78 69.3 69.2 100 0 (Naive)

Jung HA (2022) 1, Korea 33
Arm A: Pembro combo 47 63 79 57.5 51.1 100
Arm B: Placebo combo 51 64 84 51 54.9 100

Reckamp KL (2022) 1, USA 30
Arm A: Chemo 47 67 63 58 25 100
Arm B: Pembro + ramu 51 69 59 59 19 100

Lim SM (2023) 54, Multi 31
Arm A: Dostarlimab 47 67 63 58 25 0 (Naive)
Arm B: Pembro combo 51 69 59 59 19 0 (Naive)

Ren S (2023) NA 33
Arm A: Pembro 2mg 114 61 80 57.9 100 100
Arm B: Docetaxel 113 63 81 53 99.1 100

Novello S (2023) NA 72
Arm A: Pembro combo 278 65 79 2.6 26 .3 0 (Naive)
Arm B: Placebo combo 281 65 84 2.5 26 0 (Naive)

Yang JC (2023) 158, USA 51
Arm A: Pembro combo 245 62 38 100 21.2 100
Arm B: Placebo combo 247 64 38.9 100 20.6 100

Spicer JD (2024) 189, Multi 66
Arm A: Pembro combo 397 63 70 57 33 0 (Naive)
Arm B: Placebo combo 400 64 71 57 34 0

Shiraishi Y (2024) 48, Japan 30
Arm A: Pembro 147 68 79 78 17 0 (Naive)
Arm B: Nivo + ipili 148 68 81 78 16 0 (Naive)

Yang JC (2024) 162, Multi 24
Arm A: Pembro + lenva 309 66 74 62.8 44.3 0 (Naive)
Arm B: Pembro 314 66 71 65.6 44.3 0 (Naive)

Gentzler RD
(2024)

18, USA 48 Pembro + pacli 46 66 52 48 23 0 (Naive)

Tokito T (2024) 101, Multi 12
Arm A: Pembro + epaca 77 64 68.8 62.8 74 0 (Naive)
Arm B: Placebo 77 69 76.6 65.6 71.4 0 (Naive)

Shin J (2024) NA 72 Pembro 200mg 37 63 62 73 2.7 0 (Naive)
Furqan M (2024) 5, USA 24 Pembro 2mg 30 66 53.3 83.3 18.5 0 (Naive)

Tan DSW (2024) NA 24
Arm A: Canaki + chemo 320 63 71 69.4 27.8 0 (Naive)

Continued on next page
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Table S1 – continued from previous page

Study (Year)
Number and
location of

centers

Follow-up
(months) Study arms Patient characteristics

Number of
patients

Age
(median)

Male
(%)

Non-
squamous
cell (%)

TPS
≥ 50%

(%)

Previous
Therapy

(%)

Arm B: Pembro combo 323 63 71.8 70 28.2 0 (Naive)

Hochmair M (2025) 178, Multi 48
Arm A: Pembro + olap +
chemo

296 65 81.4 2 28.7 0 (Naive)

Arm B: Pembro + chemo 295 64 80 2 28.7 0 (Naive)

Gray JE (2025) 178, Multi 51
Arm A: Pembro + olap 337 63 67.4 100 32.3 0 (Naive)
Arm B: Pembro + pemet 335 62 67.5 100 32.8 0 (Naive)

TPS, tumor proportion score; TPS<1%; *Squamous cell percentage; Pembro, pembrolizumab; Chemo,
chemotherapy; Carbo, carboplatin; Pacli, paclitaxel; Pemet, pemetrexed; Plat, platinum; Ipili, ipilimumab;
Ramu, ramucirumab; Lenva, lenvatinib; Olap, olaparib; Epaca, epacadostat; Nivo, nivolumab; Canaki,
canakinumab; Bev, bevacizumab.

Supplementary Tab. S2: Methodological quality assessment of included studies using the Method-
ological Index for Non-Randomized Studies (MINORS) tool

Study (year)
Clearly
stated
aim

Inclusion
of consecutive

patients

Prospective
data

collection

Endpoints
appropriate
to the aim

Unbiased
assessment
of endpoint

Follow-up
period

appropriate

Loss to
follow-up
<5%

Prospective
calculation

of study size

Total
(0–16)

Nishio M (2019) 2 2 2 2 2 2 2 0 14
Levy BP (2019) 2 2 2 2 2 1 2 0 13
Theelen WSME (2019) 2 2 2 2 2 1 2 0 13
Goldberg SB (2020) 2 2 2 2 2 2 2 0 14
Middleton G (2020) 2 2 2 2 2 2 2 1 15
JabbOur SK (2020) 2 2 2 2 2 2 2 1 15
Durm GA (2020) 2 2 2 2 2 2 0 0 12
Masuda T (2022) 2 2 2 2 2 2 2 1 15
Gentzler RD (2024) 2 2 2 2 2 2 2 0 14
Shin J (2024) 2 2 2 2 2 2 2 2 16
Furqan M (2024) 2 2 2 2 2 2 2 1 15

9 USE OF LARGE LANGUAGE MODELS (LLMS)

Researchers used LLM for refining and polishing the manuscript.

10 APPENDIX: DESCRIPTION OF OUR AND PUBLIC DATASETS

This appendix provides a detailed overview of the two public datasets used to validate the proposed
framework. We describe their characteristics, relevance, and the specific preprocessing steps applied
to ensure they were suitable for Our analysis.

10.1 OUR DATASET: OVERALL SURVIVAL ANALYSIS OF LUNG CANCER PATIENTS TREATED
WITH PEMBROLIZUMAB

We conducted a systematic literature review across three major databases: Med pub, Embase emb,
and the Cochrane Library coc, yielding 2,770 records. After title, abstract, and full-text screening,
36 studies met the inclusion criteria as described in Supplementary Tab. S1, Fig. S1, Tab. S2, Fig. S2
(Langer et al., 2016) (Gadgeel et al., 2018) (Combes et al., 2018) (Garon et al., 2019) (Gubens et al.,
2019) (Nishio et al., 2019) (Levy et al., 2019) (Theelen et al., 2019) (Gadgeel et al., 2020) (Goldberg
et al., 2020) (Herbst et al., 2020) (Arrieta et al., 2020) (Middleton et al., 2020) (Jabbour et al., 2020)
(Durm et al., 2020) (Reck et al., 2021) (Horinouchi et al., 2021) (Wu et al., 2021b) (Boyer et al.,
2021) (Masuda et al., 2022) (Jung et al., 2022) (Reckamp et al., 2022) (Lim et al., 2023) (Ren et al.,
2023) (Novello et al., 2023) (Yang et al., 2024a) (Spicer et al., 2024) (Shiraishi et al., 2024) (Yang
et al., 2024b) (Gentzler et al., 2024) (Tokito et al., 2024) (Shin et al., 2024) (Furqan et al., 2024)
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Supplementary Fig. S2: Risk of bias assessment of included randomized trials using the
Cochrane RoB 2.0 tool. (Risk of bias was evaluated across five domains using the Cochrane RoB
2.0 tool: D1, randomization process; D2, deviations from the intended interventions; D3, missing
outcome data; D4, measurement of the outcome; D5, selection of the reported result. Green circles
indicate low risk of bias, yellow circles indicate some concerns, and red circles indicate high risk of
bias.

(Tan et al., 2024) (Hochmair et al., 2025) (Gray et al., 2025). and we imputed ten datasets and seven
used for this study of similar shape. The complete description is given below in Tab. S3:

Supplementary Tab. S3: Patient Characteristics for OS Cohort (n=7,165)

Characteristic Sub Value Characteristic Sub Value
Age 64.19 (12.27) Metastasis 6837 (95.42%)

Sex Male 4785 (66.78%) Brain Metastasis 809 (11.29%)
Female 2380 (33.22%)

TPS
<1% 1525 (21.28%)

Race Non-Asian 5183 (72.34%) 1–49% 2453 (34.24%)
Asian 1983 (27.66%) ≥50% 3187 (44.48%)

PS 0–1 7093 (99.00%) Treatment Monotherapy 2716 (37.49%)
2+ 72 (1.00%) Combination 4479 (62.51%)

Smk Ever 5964 (83.24%) Previously Treated 2097 (28.85%)
Never 1201 (16.76%) EGFR 417 (5.82%)

TT Non-Squamous 4977 (69.46%)
Squamous 2188 (30.54%)

Note: Data are median (SD) or n (%). PS=Performance status, Smk=Smoking status, TT=Tumor
type, TPS=Tumor proportion score.

Abbreviations: PS=Performance status, Smk=Smoking status, TT=Tumor type, Meta=Metastasis, BM=Brain
metastasis, TPS=Tumor proportion score, Tx=Treatment, Mono=Monotherapy, Combo=Combination therapy,
M=Male, F=Female, Non-Sq=Non-Squamous.
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10.2 PUBLIC DATASET 1 (PD-1): METABRIC BREAST CANCER DATASET

The Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) dataset Evitan (2021)
serves as a primary validation source for Our framework. It comprises clinical data from 2,509 unique breast
cancer patients, offering a robust real-world cohort for survival analysis.

10.2.1 COHORT CHARACTERISTICS

The patient cohort is diverse, with ages at diagnosis ranging from 21.9 to 96.3 years (mean age: 60.4 years). Sur-
gical interventions included both mastectomy (complete breast tissue removal) and breast-conserving surgery
(targeted removal of cancerous tissue). A key strength of this dataset is its representation of rare cancer types; it
includes 2,506 breast cancer patients and 3 patients with breast sarcoma, the latter accounting for less than 1%
of all breast cancers. The most frequent histological subtype is invasive ductal carcinoma (IDC), with 1,865 oc-
currences, which aligns with its known prevalence of approximately 80% of all breast cancer diagnoses. These
factors collectively affirm that the METABRIC dataset accurately reflects real-world clinical scenarios.

10.2.2 PREPROCESSING FOR OUR FRAMEWORK

The dataset contains both numerical and categorical features. To prepare it for Our refinement algorithm (Algo-
rithm 1), we first applied a standardized preprocessing pipeline (Algorithm 2). Furthermore, to capture longer-
term survival trends, we extended the analysis threshold from 120 to 480 time units and adjusted the corre-
sponding time bins accordingly.

Algorithm 2 Data Preprocessing Pipeline

1: procedure PREPROCESS(D,P )
2: for f ∈ CategoricalFeatures(D) \ {P} do
3: D ← OneHotEncode(D, f)
4: end for
5: for g ∈ NumericalFeatures(D) do
6: if HasMissing(D[g]) then
7: D[g]← FillMissing(D[g],median(D[g]))
8: end if
9: end for

10: return D
11: end procedure

10.3 PUBLIC DATASET 2 (PD-2): MALIGNANT MELANOMA SURVIVAL DATASET

To further demonstrate the generalizability of Our framework, we incorporated the "Survival from Malignant
Melanoma" dataset, available in the boot package of the R programming language. This dataset records
follow-up data from patients who underwent tumor-removal surgery at the University Hospital of Odense,
Denmark, between 1962 and 1977. We acquired the data using the pipeline outlined in Algorithm 3.

10.3.1 ENDPOINT DEFINITIONS

A critical aspect of this dataset is the definition of the event of interest. The ‘status‘ variable indicates the
patient’s outcome at the end of the study:

• Status 1: Died from melanoma.
• Status 2: Still alive.
• Status 3: Died from causes unrelated to melanoma.

This structure allows for different analytical approaches:

• Overall Survival: Event = death from any cause (Status 1 or 3 vs. Status 2).
• Cause-Specific Survival Analysis: Event = death from melanoma (Status 1 vs. Status 2 or 3).
• Competing Risks: Event = death from melanoma (Status 1), with death from other causes (Status 3)

as a competing risk.

For Our study, we focused on the Overall Survival approach and we considered death event=1 from any cause
or cancer.
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10.3.2 PREPROCESSING AND ADAPTATION

The ‘time‘ variable represents the number of days from surgery until either the event (death) or the last follow-
up (censoring). For consistency with PD-1 and to improve interpretability, we converted these values from days
to months. The ‘year‘ column was excluded from the original dataset to simplify the feature set. Similar to
PD-1, we extended the threshold time from 120 to 240 units to accommodate the dataset’s timeline and updated
the time bins in Algorithm 1 accordingly. Missing numerical values were imputed using the median.

Algorithm 3 Dataset Acquisition Pipeline for Melanoma Data

1: procedure GETMELANOMADATA
2: Install and load required R packages: boot, readr
3: Load melanoma dataset: D ← boot::melanoma
4: Export dataset: write_csv(D, "melanoma.csv")
5: return D ▷ Dataset ready for preprocessing
6: end procedure
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