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ABSTRACT

We propose a new unifying framework, Birch SGD, for analyzing and designing dis-
tributed SGD methods. The central idea is to represent each method as a weighted
directed tree, referred to as a computation tree. Leveraging this representation, we
introduce a general theoretical result that reduces convergence analysis to studying
the geometry of these trees. This perspective yields a purely graph-based inter-
pretation of optimization dynamics, offering a new and intuitive foundation for
method development. Using Birch SGD, we design eight new methods and analyze
them alongside previously known ones, with at least six of the new methods shown
to have optimal computational time complexity. Our research leads to two key in-
sights: (i) all methods share the same “iteration rate” of O

(
(R+1)L∆/ε + σ2L∆/ε2

)
,

where R the maximum “tree distance” along the main branch of a tree; and (ii) dif-
ferent methods exhibit different trade-offs—for example, some update iterates more
frequently, improving practical performance, while others are more communication-
efficient or focus on other aspects. Birch SGD serves as a unifying framework for
navigating these trade-offs. We believe these results provide a unified foundation
for understanding, analyzing, and designing efficient asynchronous and parallel
optimization methods.

1 INTRODUCTION

Optimization is central to machine learning (ML), data science (DS), and federated learning (FL)
(Konečný et al., 2016; Bottou et al., 2018; Kairouz et al., 2021). In these domains, stochastic
optimization techniques such as stochastic gradient descent (SGD) (Robbins & Monro, 1951) and its
adaptive variants (Adam, AdamW, etc) (Kingma & Ba, 2015; Loshchilov & Hutter, 2019) have become
the standard approach for tackling large-scale problems (Schmidt et al., 2021). Due to the rising
computational demands of modern functions, the theoretical foundation of distributed algorithms
supporting a large number of workers (e.g., CPUs, GPUs, servers) is important (Mayer & Jacobsen,
2020; Kairouz et al., 2021; Douillard et al., 2023).

We consider distributed optimization problems with smooth nonconvex optimization functions:

min
x∈Rd

f(x), (1)

In nonconvex settings, the goal is to find an ε–stationary point, meaning we want to find a random
vector x̄ such that E

[
∥∇f(x̄)∥2

]
≤ ε (Nemirovskij & Yudin, 1983; Murty & Kabadi, 1985). The

function f : Rd → R satisfies the following standard assumptions:
Assumption 1.1. f is differentiable and L–smooth: ∥∇f(x)−∇f(y)∥ ≤ L ∥x− y∥ ∀x, y ∈ Rd.

Assumption 1.2. There exist f∗ ∈ R such that f(x) ≥ f∗ for all x ∈ Rd.

We focus on problems where workers are limited to computing stochastic gradients. Each worker
has access to unbiased stochastic gradients, denoted by ∇f(x; ξ), whose variance is bounded by
σ2. In the context of ML, this implies that all workers can access the same data, which is practical
when training large language and computer vision models. In such scenarios, privacy is not a critical
concern, and devices can sample data from the Internet or shared datasets (Goodfellow et al., 2016).
Assumption 1.3. For all x ∈ Rd, stochastic gradients ∇f(x; ξ) are unbiased and σ2-variance-
bounded, i.e., Eξ[∇f(x; ξ)] = ∇f(x) and Eξ[∥∇f(x; ξ)−∇f(x)∥2] ≤ σ2, where σ2 ≥ 0.
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1.1 RELATED WORK

One worker and optimal oracle complexity. With a single worker, the most standard optimization
method is the Vanilla SGD algorithm, which updates the iterate as wk+1 = wk−γ∇f(wk; ηk), where
{ηk} are i.i.d., w0 ∈ Rd is a starting point, γ is a step size, and ∆ := f(w0) − f∗. Arjevani et al.
(2022); Carmon et al. (2020) showed that Vanilla SGD is optimal in terms of oracle complexity, which
is given by Θ

(
L∆/ε + σ2L∆/ε2

)
for finding an ε-stationary point.

Multiple workers and optimal time complexity. Consider now that we have n workers computing
stochastic gradients asynchronously and in parallel. In this setup, there are numerous ways to
construct a distributed SGD method. The most well-known celebrated and recent approaches include
Synchronized SGD (Minibatch SGD), Local SGD (Zinkevich et al., 2010; Stich, 2019), Asynchronous
SGD (Recht et al., 2011), Picky SGD (Cohen et al., 2021), Rennala SGD (Tyurin & Richtárik, 2023),
and Ringmaster ASGD (Maranjyan et al., 2025). The multi-worker setup is rich and versatile, offering
numerous ways to design distributed SGD methods.

One may naturally ask which method offers the best theoretical performance. In distributed settings,
the standard oracle complexity becomes less informative, as workers compute stochastic gradients
in parallel with varying speeds. A more suitable comparison uses the hi-fixed computation model
(Mishchenko et al., 2022), where each worker i needs at most hi seconds to compute a gradient.
In this model, Mishchenko et al. (2022); Koloskova et al. (2022) showed that Asynchronous SGD
outperforms Synchronized SGD. Its time complexity is further improved by Rennala SGD (Tyurin
& Richtárik, 2023) and Ringmaster ASGD1 (Maranjyan et al., 2025), both optimal under this and
the more general universal computation model (Tyurin, 2025) (see Section A). However, as we will
discuss in more detail later, other factors come into play, such as communication complexity, support
for AllReduce, peak bandwidth, and model update frequency.

These developments raise several important questions. Rennala SGD and Ringmaster ASGD are known
to be optimal, yet differ in design and structure, each with distinct advantages and trade-offs. This
leads to our central questions: Are there other optimal methods? Can we develop a unified framework
that encompasses all distributed SGD methods and offers theoretical guidance? What fundamental
properties make these methods optimal? And, given different system constraints, which method should
one choose?

1.2 CONTRIBUTIONS

♠ New framework: Birch SGD (Section 2). We propose Birch SGD, a unifying framework that
captures virtually all distributed SGD methods. The key idea is that SGD methods can be represented
using weighted directed trees, which we refer to as computation trees (see Figure 1). We develop a
new theoretical result, Theorem 2.4, that reduces the analysis of SGD methods to analyzing of the
structure of these computation trees. The proofs become purely geometric and topological in nature,
offering geometric intuition for the design of new methods. Moreover, this geometric viewpoint leads
to tighter time complexity guarantees even for Local SGD (FedAvg) approaches (McMahan et al.,
2017), as we illustrate in Section H.

♣ Eight new methods (Table 1 and Section 3). Using Birch SGD, we identify eight new methods
in addition to those already known. For the first time, we prove that at least six of these newly
discovered methods are computationally optimal, matching the lower bound (Tyurin & Richtárik,
2023). We compare all methods across several dimensions, including computational and communi-
cation complexity, AllReduce compatibility, peak bandwidth, and model update frequency. Our
improvements: i) our newly developed Async-Local SGD and Async-Batch SGD provably improve the
communication complexity of Ringmaster ASGD while preserving asynchronicity; ii) we introduce
Cycle SGD, which provably reduces peak bandwidth compared to all existing methods; iii) we propose
a key modification to the family of local methods and design Local SGD and Dual-Process SGD that,
for the first time in the literature, achieve the optimal time complexities within this family and improve
upon the classical approach (see Section H); iv) for multi-cluster settings, we introduce Local-Async
SGD and Nested Local-Async SGD, incorporating a carefully designed synchronization mechanism
that guarantees optimality in computational time complexity; v) we develop a flexible meta-algorithm,
Meta Local SGD, which supports arbitrary synchronization strategies, while incorporating a “Hard

1Asynchronous SGD with a key modification; see Alg.7.
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Algorithm 1 Birch SGD framework

Input: starting point w0 ∈ Rd, step size γ ≥ 0
Initialize the set of computed points: V = {w0}
(and the set of edges E = ∅)
for k = 0, 1, 2, . . . do

Choose any point wbase ∈ V from which to compute a new point
Choose any point wgrad ∈ V at which to compute a stochastic gradient
Compute the new point2: wk+1 = wbase − γ∇f(wgrad; η), η ∼ Dξ

Add wk+1 to the set of computed points V
(and add the edge with weight (wbase, w

k+1,∇f(wgrad; η)) to the set of
edges E)

end for February Azure,
Igor Grabar. 1904.
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Figure 1: A possible computation tree G for SGD method after four steps and beyond.

Sync” mechanism to guarantee convergence rates and to temper overly chaotic synchronization. As a
byproduct, we prove that frequent model updates of fully asynchronous methods can lead to faster
convergence and improve optimal Rennala SGD.

♦ Insights and Guidelines (Section 4). We observe that there is no silver bullet—each method has its
own advantages and disadvantages. Some methods update the iterates more frequently, making them
more appealing in practice, while others prioritize communication efficiency, support AllReduce,
or focus on different aspects. Through our new framework, we uncover insights that provide deeper
intuition and a simpler perspective on asynchronous, local, and parallel optimization methods.

2 Birch SGD: A GENERAL VIEW OF SGD METHODS

We begin our work by observing that various SGD methods, including Vanilla SGD, Asynchronous
SGD, Local SGD, among others, can be constructed in the manner described in Algorithm 1.

Let us explain it. Initially, any SGD method starts at some point w0 ∈ Rd, computes a stochastic
gradient at w0, and then finds a new point w1 = w0 − γ∇f(w0; ·), which is added to the set V
of computed points. In the next step, there are four options for choosing the subsequent point w2:
w2 = wi − γ∇f(wj ; ·) for i, j ∈ {0, 1}. This process continues indefinitely, and the number of
possible choices, and hence methods, grows exponentially (see an example in Figure 1).

Note that any instance of Algorithm 1, after any steps, can be represented by a weighted directed tree
G = (V,E), called a computation tree, where V is the set of computed points and E is the set of
edges with weights given by the stochastic gradients used to compute the new points. Our main idea
now is to take any computation tree G and analyze its structure to provide convergence guarantees
for the corresponding SGD method. Intuitively, the structure of the tree, e.g., number of branches,
length of branches, the tree distance between wgrad and wbase in Alg. 1 when we calculate a new point
should be related to the convergence speed of the method.

2.1 MAIN THEORETICAL RESULT ON CONVERGENCE RATES

Before we state our main theorem, we need to introduce sequences and definitions that characterize
the structure of computation trees G.

Definition 2.1 (Main Branch and Auxiliary Sequence). For a given computation tree G, we call a
sequence {xk}k≥0 a main branch if it forms a path in G starting at the initial node w0 ≡ x0. That
is, for each k ≥ 0, the node xk+1 is a direct successor of xk in G. By the construction of tree G, if

3
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{xk}k≥0 is a main branch, then for each k ≥ 0 there exists a unique pair (zk, ξk), where zk ∈ V
and ξk ∼ Dξ, such that xk+1 = xk − γ∇f(zk; ξk). The sequence {(zk, ξk)}k≥0, which generates
the main branch {xk}k≥0, is called an auxiliary sequence.

Although there may be several possible choices and any of them can be chosen in general, the
selection of the main branch is typically unique and straightforward in all reasonable SGD methods,
as it forms the backbone of the tree3.

Let us consider an example. In Figure 1,
we can take a main branch {xk}k≥0 as fol-
lows: x0 = w0, x1 = w2, x2 = w3, x3 =
w8, x4 = w9, x5 = w10. Accordingly, the
auxiliary sequence is given by (z0, ξ0) =
(w0, η0), (z1, ξ1) = (w1, η1), (z2, ξ2) =
(w2, η2), (z3, ξ3) = (w4, η6), (z4, ξ4) =
(w1, η3). See Figure 2.

∇f(w0; η0)

∇f(w1; η3)

∇f(w2; η2)
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∇f(w2; η4)
∇f(w2; η5)

w1

w5

w4

w0

w2 w3 w8 w9 w10

w6 w7

Figure 2: Visualization.
Intuitively, the convergence rate should depend on the distance between xk and zk. When these points
are close (e.g., xk = zk), the stochastic gradient is computed near the update point, typically yielding
descent on average. In contrast, if they are far apart, the gradient at zk may poorly approximate
the local behavior of f at xk, making the update direction irrelevant. Thus, it is crucial to define a
suitable distance metric that is both easy to evaluate for any point pair and directly related to the
convergence speed of the SGD method. We propose the following:
Definition 2.2. For all y, z ∈ V, the tree distance dist(y, z) between y and z is the maximum number
of edges to the common closest ancestor of y and z.

As an example, consider Figure 2, where dist(w9, w4) = max{4, 2} = 4, because the common
ancestor is w0, the number of edges from w9 to w0 is 4, and the number of edges from w4 to w0 is
2. It is left to define the representation of a point y ∈ V.

Definition 2.3. For all y ∈ V, the representation repr(y) is the multiset of stochastic gradients applied
to w0 to get y. In other words, there exist {(m1, κ1), . . . , (mp, κp)} =: repr(y) for some p ≥ 0 such
that y = w0 − γ

∑p
j=1∇f(mj , κj).

We define the representation of points to understand how all points are related. An important
relation that we need is that repr(x) ⊆ repr(y), which essentially means that all stochastic gra-
dients used to compute x are also used to compute y. For instance, in Figure 2, repr(w9) =
{(w0, η0), (w1, η1), (w2, η2), (w4, η6)} and repr(w4) = {(w0, η0), (w2, η2)}, which allows to track
the path from from the starting point w0 to w9 and w4, and show that repr(w4) ⊆ repr(w9).

Theorem 2.4 (Main Theorem). Let Assumptions 1.1, 1.2, and 1.3 hold. Consider any SGD
method represented by computation tree G = (V,E). Let {xk}k≥0 be a main branch of G and
{(zk, ξk)}k≥0 be the corresponding auxiliary sequence (see Def. 2.1) that satisfy the following
conditions:
Condition 1: For all k ≥ 0, ξk is statistically independent of {(xi+1, zi+1, ξi)}k−1

i=0 .
Condition 2: The representation of zk is contained within that of xk, i.e., repr(zk) ⊆ repr(xk)
for all k ≥ 0. Equivalently, all stochastic gradients used in the computation of zk are also
utilized in calculating xk.
Condition 3: There exists a constant R ∈ [0,∞] such that dist(xk, zk) ≤ R for all k ≥ 0.

Then 1
K

∑K−1
k=0 E

[
∥∇f(xk)∥2

]
≤ ε for all K ≥ 4(R+1)L∆

ε + 8σ2L∆
ε2 with step size γ =

min{ 1
2L ,

1
2RL ,

ε
4σ2L}, where ∆ = f(x0)− f∗.

Assumptions 1.1, 1.2, and 1.3 are well-known and standard in the analysis of stochastic optimization
methods (Lan, 2020; Arjevani et al., 2022). Let us explain the conditions of the theorem.

Condition 1. The first condition condition requires that ξk is independent of {(xi+1, zi+1, ξi)}k−1
i=0 ,

which is a weak assumption. In Vanilla SGD, where xk+1 = xk − γ∇f(xk; ξk), it is standard to
assume that each ξk is an independent sample. Our condition generalizes this to other SGD variants.

3A fitting analogy is the Git distributed version control system, which also has a central main branch.
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∇f(z0; ξ0) ∇f(zp−1; ξp−1) ∇f(zk−1; ξk−1)∇f(zp; ξp) ∇f(zp+1; ξp+1) ∇f(zk; ξk)

∇f(ŵ; ξ̂) ∇f(w̄; ξ̄) ∇f(w̃; ξ̃)

x0 . . . xp xkxp+1 . . . xk+1

. . . zk

Figure 3: A general representation of the step xk+1 = xk − γ∇f(zk; ξk) that shows how xk and zk

are graph-geometrically related.

It guarantees that the stochastic gradient ∇f(·; ξk) is not used in computing xk or zk. Notably, this
remains true even in methods like Local SGD, where gradients may be reused.

Condition 2. The second condition is also weak in any reasonable and effective SGD method.
Figure 3 illustrates that there exists p ≥ 0 such that

zk = x0−γ
p−1∑
i=0

∇f(zi; ξi)−γ
∑

(w,ξ)∈Sk

∇f(w; ξ), xk = x0−γ
p−1∑
i=0

∇f(zi; ξi)−γ
k−1∑
i=p

∇f(zi; ξi),

where Sk is the set of points and random variables used to compute zk starting from xp.

Computing each stochastic gradient is time-consuming, so it is desirable to utilize as many computed
gradients as possible, including {∇f(w; ξ)}(w,ξ)∈Sk . Once ∇f(zk; ξk) has been used to compute
xk+1, the first condition prevents further use of {∇f(w; ξ)}(w,ξ)∈Sk in subsequent iterations because
zk depends on ξ for all (w, ξ) ∈ Sk. Thus, it is reasonable to assume that if an SGD method
employs the stochastic gradient ∇f(zk; ξk) to compute xk+1, then it has already used the gradients
{∇f(w; ξ)}(w,ξ)∈Sk in previous iterations to fully leverage all available information. In other words,
all stochastic gradients used in the computation of zk are also utilized in calculating xk. This is
equivalent to the second condition repr(zk) ⊆ repr(xk).

Condition 3. This condition is arguably the most important in Theorem 2.4 because it determines the
iteration rate of the main branch {xk}k≥0. In fact, iteration rate O

(
(R+1)L∆/ε + σ2L∆/ε2

)
depends

on R := supk≥0 dist(xk, zk).

Vanilla SGD (Section E.1). For instance, consider the simplest method, the classical stochastic
gradient descent (Vanilla SGD) method: wk+1 = wk − γ∇f(wk; ηk), where w0 is a starting point
and are {ηk} are i.i.d. random variables. Taking xk = zk = wk and ξk = ηk for all k ≥ 0.

Clearly, all conditions of Theorem 2.4 are satisfied: ξk is independent of {(xi+1, zi+1, ξi)}k−1
i=0 ,

repr(xk) = repr(zk) for all k ≥ 0, and R = 0. We get the iteration rate O
(
L∆/ε + σ2L∆/ε2

)
. The

corresponding tree is in Figure 13.

Conversely, if an SGD method is overly non-conservative, leading to a large tree distance R between
xk and zk, the iteration rate correspondingly increases. The further the maximum tree distance R
between xk and zk, the more iterations are required to achieve the desired accuracy ε.

Proof novelties. In Section D.1, we outline the key novelties, challenges, and the intuition guiding
our choice of conditions. Although our proof in Section D.2 is compact—which we view as a strength
rather than a limitation—it unifies a broad class of methods and provides new insights. Notably, right
at the beginning, we introduce a distinct approach to handling the staleness term ∥xk − zk∥, which
naturally arises from the update xk+1 = xk − γ∇f(zk; ξk) in asynchronous and local methods. This
treatment fundamentally differs from prior work, as it analyzes staleness through geometric graph
reasoning. Moreover, using our framework, we later present our version of Local SGD, which yields
tighter guarantees compared to the classical Local SGD (see Sections 3 and H), further validating both
our framework and proof technique.

3 EXISTING AND NEW ALGORITHMS: SUMMARY AND COMPARISON

In this section, we consider examples of distributed methods. We will show that all of them can be
represented by computation trees and analyzed using Theorem 2.4. The detailed analysis of each
method is provided in Section E.

5
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Table 1: Summary of distributed optimization methods from Sections 3 and E. In this table, we
compare methods across different metrics. A ✓ indicates a favorable property in the corresponding
metric. As can be seen, each method has its own advantages and disadvantages. Therefore, for any
practical setup, one should choose the most suitable method based on the specific requirements. For
all methods, we use the parameters from the theorems of Section F when deriving the metrics.

Method (Sec. E) Optimal Computational
Complexity (Sec. F)

Communication Com-(g)

plexity with Equal Times
Optimal Total

Complexity (Sec. I) AllReduce(a) Update(d)

Frequency
Peak(e)

Bandwidth

Rennala SGD (Alg. 4)
(Tyurin & Richtárik, 2023) ✓ τ L∆

ε ✓ ✗ ✓ ↑ n

Ringmaster ASGD (Alg. 7)
(Maranjyan et al., 2025) ✓ τ

(
σ2L∆
nε2

∨ L∆
ε

)
✗ ✗ ↑↑↑ ✓ n

Local SGD (Alg. 5) (new)(f) ✓ τ L∆
ε ✓ ✗ ✓ ↑↑ n

Cycle SGD (Alg. 8) (new) ✗ τ
(

σ2L∆
nε2

∨ L∆
ε

)
✗ — ↑↑ n2ε

σ2 ∨ 1 ✓

Async-Local/Batch SGD
(Alg. 9 and Sec. E.7) (new) ✓ τ L∆

ε ✓ — ✗ ↑↑ n

(Nested) Local-Async SGD
(Alg. 12 and 14) (new) ✓ —(c) —(c) — ↑↑ —(c)

Dual-Process SGD
(Alg. 18) (new) ✓ τ L∆

ε ✓ ✓ ✗ ↑↑ n

Meta Local SGD(b)

(Alg. 16) (new) — — — — — —

(a) Does a method support AllReduce? Asynchronous SGD-like methods do not support it due to their greedy update nature. Cycle SGD synchronizes only a subset of
workers; thus, we cannot say definitively. We also cannot say definitively in the case of Local-Async SGD because the local asynchronous steps cannot be implemented with
AllReduce, while the global steps can be.
(b) This is an abstract method where all metrics (Computational Complexity, Communication Complexity, etc) depend on the chosen strategy.
(c) Similar to AllReduce, here we also can not say definitely since Local-Async SGD and Nested Local-Async SGD are specially designed multi-cluster learning methods.
(d) This is a slightly less formal metric that indicates how often an algorithm updates its iterate/model. Rennala SGD asks the workers to compute stochastic gradients at the
same point; thus, it updates the iterates less frequently. In contrast, Ringmaster ASGD updates the iterates immediately. All other methods fall somewhere in between. See the
discussion in Section 3.
(e) In the Rennala SGD, Ringmaster ASGD, Local SGD, and Async-Local SGD methods, all workers can start communication simultaneously; thus, their peak bandwidth is
O(n) when n ≤ σ2/ε In the Cycle SGD method, the workers communicate in a circular manner, so the peak bandwidth is O(n2ε/σ2) when n ≤ σ2/ε, which is smaller.
(f) While we recognize that Local SGD is well-known in the literature, what makes our version novel is the better time complexity compared to the classical version (Sec. H),
the stopping criterion

∑n
i=1 Mi = B in Alg. 5, and the analysis in Sec. E.3, F, and G, which leads to the optimal computational time complexities with a proper choice of

B.
(g) We report the terms w.r.t. communication time τ under the (h, τ)-fixed computation model from Section G.

Rennala SGD (Section E.2). Consider Rennala SGD, which can be written as

wk+1 = wk − γ
B∑
i=1

∇f(wk; ηk,i), (2)

where n workers collaboratively calculate the batch of size B (see Alg. 4). This method pro-
duces a computation tree constructed as follows: x1 = x0 − γ∇f(x0; ξ0), . . . , xB = xB−1 −
γ∇f(x0; ξB−1), xB+1 = xB − γ∇f(xB ; ξB), . . . , x2B = x2B−1 − γ∇f(xB ; ξ2B−1), . . . , where
B is a batch size (see Figure 14) and {ξk} are i.i.d. from Dξ. Notice that the computation tree is
equivalent to (2) because xB = w1, x2B = w2, etc. Here, all conditions of Theorem 2.4 are satisfied
for the main branch {xk} with the auxiliary sequence {(zk, ξk)} such that z0 = · · · = zB−1 = x0,
zB = · · · = z2B−1 = xB , etc, and ξ0 = η0,0, . . . , ξB−1 = η0,B−1, ξB = η1,0, etc. However,
unlike Vanilla SGD, R = B − 1 because dist(x0, z0) = 0, dist(x1, z1) = 1, . . . , dist(xB−1, zB−1) =
B − 1, dist(xB , zB) = 0, etc. Thus, the iteration rate is O

(
BL∆/ε + σ2L∆/ε2

)
.

Ringmaster ASGD (Section E.4). This an Asynchronous SGD method with the update rule

wk+1 = wk − γ∇f(wk−δk ; ηk−δk

i ), (3)

where δk is a delay such that δk ≤ G− 1, where G ≥ 1 is a hyperparameter (see Alg. 7). We take
xk = wk for all k ≥ 0. Thus, the corresponding auxiliary sequence is defined by zk = xk−δk ≡
wk−δk and ξk = ηk−δk

i for all k ≥ 0. Constructing the computation tree (Figure 15), we can show
that the conditions of Theorem 2.4 hold with R = maxk≥0 δ

k ≤ G − 1 and the iteration rate is
O
(
GL∆/ε + σ2L∆/ε2

)
.

Previously, we presented Rennala SGD and Ringmaster ASGD that can be analyzed using Theorem 2.4.
This raises the question: Which method is most effective, and how should one choose the appropriate
one? In the following sections, we discuss different factors one should consider when selecting a
method, and present new algorithms. The discussion here is summarized in Table 1. Before we begin,
it is important to note that the iteration complexity in Theorem 2.4 does not reflect the true wall-clock
performance. It serves as an intermediate result used to derive the time complexities presented below.
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∇f(x0; η0,02 )

∇f(z0,12 ; η0,12 )

∇f(x4; η1,02 )

∇f(z1,12 ; η1,12 ) ∇f(z1,22 ; η1,22 )

∇f(x0; η0,02 ) ∇f(z0,12 ; η0,12 ) ∇f(x0; η0,01 ) ∇f(z0,11 ; η0,11 ) ∇f(x4; η1,01 ) ∇f(x4; η1,02 ) ∇f(z1,12 ; η1,12 ) ∇f(z1,22 ; η1,22 )

∇f(x0; η0,01 )
∇f(z0,11 ; η0,11 ) ∇f(x4; η1,01 )

x0

z0,12 z0,22

x4

z1,12 z1,22 z1,32

x1 x2 x3 x5 x6 x7 x8

z0,11 z0,21 z1,11

Figure 4: An example of a Local SGD computation tree with B = 4 and 2 workers, each performing
local steps over 2 global steps. In first round, they calculate M1 = 2 and M2 = 2 local steps. In the
second round, they calculate M1 = 1 and M2 = 3 local steps. Note that the maximum distances
dist(x3, z0,11 ) and dist(x7, z1,22 ), when applying ∇f(z0,11 ; η0,11 ) to x3 and ∇f(z1,22 ; η1,22 ) to x7, are
equal to B − 1 =

∑n
i=1 Mi − 1 = 3. Notice that each stochastic gradient is used 2 times in the tree.

1. Computational complexity. One way to compare the methods is to analyze their time
complexity under the hi-fixed computation model (see Sec. 1.1, A, and F). With a proper
choice of the corresponding parameters, i.e., B = max{1, ⌈σ2

/ε⌉}, both Rennala SGD
and Ringmaster ASGD are optimal in terms of wall-clock time with the time complexity
Θ(minm∈[n][(1/m

∑m
i=1

1/hi)−1
(
L∆/ε + σ2L∆/mε2

)
]) provided that communication times are negli-

gible. In the worst-case scenario, on the “very bad function” (Arjevani et al., 2022), all these methods
perform equally well. Next, we discuss the strengths and weaknesses of the methods that are not
captured by the hi-fixed computation model.

2. Number of model updates. At the same time, comparing (3) and (2) reveals that Rennala SGD
computes B stochastic gradients at the same point, while Ringmaster ASGD both computes and
“explores” more by immediately updating the model as in (3). This feature makes Ringmaster ASGD
more practically appealing. In fact, this intuition can be formalized using a simple two-dimensional
strongly convex quadratic function f : R2 → R such that f(x, y) = µx2/2+Ly2/2 for all x, y ∈ R.
For this function, we prove that Rennala SGD requires Θ̃

(
σ2
/εn× h× L/µ

)
seconds to achieve an

ε–solution under the hi-fixed computation model with hi = h for all i ∈ [n], while Ringmaster ASGD
needs Θ̃ (h× L/µ) , which is σ2

/εn seconds less (see formal result in Section J). This is the first
result showing that Ringmaster ASGD/Asynchronous SGD can be strongly better than Rennala SGD.

3. Communication complexity. Communication delays are a major bottleneck in real-world dis-
tributed systems. Thus, minimizing communication and synchronization overhead is crucial. Ring-
master ASGD is the least efficient in this regard, requiring frequent communication and lacking
AllReduce support due to its asynchronous design. In a simple model where sending one stochas-
tic gradient takes τ seconds and all workers have identical speed hi = h, the time complexity of
Ringmaster ASGD is Ω

(
τ
(
L∆/ε + σ2L∆/nε2

)
+ h

(
L∆/ε + σ2L∆/nε2

))
. In contrast, Rennala SGD

achieves O
(
τL∆/ε + h

(
L∆/ε + σ2L∆/nε2

))
(see Sec. G), which is better when τ and σ2

/ε are large.

This is the point where we asked ourselves if it is possible to design a method that has the optimal
computational time complexity of Rennala SGD and updates the iterates more frequently than it. It
turns out this method is well-known and is called Local SGD:

Local SGD (Section E.3). We consider the classical Local SGD strategy, where each worker i ∈ [n]
performs Mi local steps, after which the server aggregates the results (see Alg. 5). Unlike most
previous approaches, however, the number of local steps Mi may vary across workers. Moreover, the
server waits for a specific condition before aggregating:

∑n
i=1 Mi = B. This strategy is adaptive

to fluctuations in the number of local steps performed by individual workers, as the server ensures
the total number of steps across all workers reaches the target sum

∑n
i=1 Mi = B, where B is

a hyperparameter. An example of the computation tree is shown in Figure 4. In Section E.3, we
establish the iteration rate of Local SGD as O

(
BL∆/ε + σ2L∆/ε2

)
. This result follows directly

from Theorem 2.4 via a simple geometric argument. In fact, looking at Figure 4 reveals that
all the conditions of Theorem 2.4 are satisfied. The only minor difficulty is to show that R :=
supk≥0 dist(xk, zk) ≤ B − 1, which is guaranteed by the condition

∑n
i=1 Mi = B.

What is novel in our version of Local SGD is that it achieves better theoretical guarantees within the
family of Local SGD approaches (see Section H). Moreover, our stopping condition and the choice of
B together ensure its optimality under the hi-fixed computation model (see Theorem F.6).

Async-Local SGD (Section E.6). Another idea to leverage the practical benefits of Ringmaster ASGD,
while at the same time reducing the communication overhead, is to use Ringmaster ASGD with
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∇f(x0; η1,02 )

∇f(z1,12 ; η1,12 )

∇f(x0; η1,01 ) ∇f(z1,11 ; η1,11 )

∇f(x2; η2,01 )

∇f(z2,11 ; η2,11 )

∇f(x0; η1,02 )
∇f(z1,12 ; η1,12 )

∇f(x0; η1,01 )
∇f(z1,11 ; η1,11 )

∇f(x2; η2,01 ) ∇f(z2,11 ; η2,11 )

x0

z1,12 z1,22

x4

x1 x2

x3

x5 x6

z1,11 z1,21

z2,11 z2,21

Figure 5: An example of the computation tree for Async-Local SGD with M = 2. In this example,
the first worker is significantly faster: before the second worker completes its first set of local steps,
x0 → z1,12 → z1,22 , the first worker already completes two rounds of local updates and sends the cor-
responding stochastic gradients, (∇f(x0; η1,01 ),∇f(z1,11 ; η1,11 )) and (∇f(x2; η2,01 ),∇f(z2,11 ; η2,11 )).

local steps. The idea is to run M local steps on each worker instead of immediately sending the
computed stochastic gradients to the server in an asynchronous fashion (See Figure 5). We formalize
this algorithm and prove the iteration rate in Section E.6. Moreover, in Sections F and G, we
suggest an optimal choice of parameters that leads to optimal computational complexity and reduced
communication complexity, which is better than that of Ringmaster ASGD. We get as similar result
with a new method, Async-Batch SGD (Section E.7).

Dual-Process SGD (Section E.11). We took a step further and developed a new local method inspired
by Local SGD and Async-Local SGD. It is the first local method to achieve the optimal time complexity
in the distributed setting, where workers have varying computation and communication times (see
Section I). However, unlike Local SGD, it is not AllReduce-friendly.

4. Peak bandwidth. Another critical factor is the peak bandwidth. The number of workers the
parameter-server or the AllReduce operation can synchronize may be limited when the number of
workers n is huge. Notice that the worst-case peak bandwidth of Rennala SGD, Ringmaster ASGD,
Local SGD, and Async-Local SGD is Θ(n) .

Cycle SGD (Section E.5). To mitigate this issue, we propose a new method called Cycle SGD. Similar
to Local SGD, each worker performs local steps. However, once the workers finish computing the
initial stochastic gradients {∇f(z0i ; η0i )}, only the first group of s workers sends their gradients to
the server, where s is a hyperparameter. The server then aggregates these gradients and performs the
update w1 = w0 − γ

∑s
i=1∇f(z0i ; η0i ). Meanwhile, the first s workers begin computing their local

steps starting from w1, while the remaining workers continue their current local computations. Next,
the second group of s workers sends their locally computed vectors, and this process continues in a
circular manner. A computation tree presented in Figure 16. The peak bandwidth of Cycle SGD is
O (s) with s = min

{
max{⌈n2ε/σ2⌉, 1}, n

}
, which is smaller than Θ(n) when σ2

/ε ≥ n.

5. Optimization with clusters. Consider a setup with many clusters of workers, where intra-cluster
communication (e.g., InfiniBand) is fast and inter-cluster communication (e.g., Ethernet) is slow.

Local-Async SGD (Section E.8) We run Asynchronous SGD within each cluster and synchronize
clusters after a fixed number of local steps. This setup is feasible due to fast intra-cluster links,
while slower inter-cluster links necessitate infrequent synchronization. In Section E.8, we formalize
this method, Local-Async SGD, and establish its iteration rate. Section F proves it achieves optimal
computational time complexity. A key novelty lies in the synchronization mechanism (see Alg. 12).

Nested Local-Async SGD (Section E.9) Our framework extends to a two-level hierarchy: within each
cluster, servers with 4–8 GPUs run Asynchronous SGD locally, synchronize at the server level, and
then synchronize across clusters. Analyzing such a setup using classical optimization tools would be
highly challenging. In contrast, our framework enables a straightforward analysis through geometric
graph reasoning.

6. Flexible synchronization and Meta Local SGD (Section E.10). We noticed that in all previous
methods, the workers are synchronized in a predefined manner or rule. We want to add more
flexibility to the synchronization process. Our idea is that the server (or the workers themselves,
in a decentralized setup) can select any subset of workers based on any strategy (e.g., randomly or
according to current communication speeds), gather their computed stochastic gradients, update the
global model, and ask these workers to continue performing local steps from the new point. However,
such “anarchic synchronization” can result in a computation tree with a large R if the selected strategy
is not chosen carefully. To ensure that R is bounded, in our meta-algorithm (Algorithm 16), we track
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the current distances {di} to the head of the main branch and the local steps {Mi} performed by each
worker. Then, by tracking the value di +

∑n
i=1 Mi for all i ∈ [n] and comparing it to a parameter B,

we compulsorily synchronize (Hard Sync) all workers for which di +
∑n

i=1 Mi = B. This way, we
can ensure that R is bounded by B, and the iteration rate of this method is O

(
BL∆/ε + σ2L∆/ε2

)
.

4 INSIGHTS AND GUIDELINES

All proposed methods share the same iteration rate of O
(
(R+1)L∆/ε + σ2L∆/ε2

)
, where R is con-

trolled by a method-specific hyperparameter and, at the same time, R is the largest tree distance
between xk and zk. For Rennala SGD, R = B − 1, where B denotes the batch size; for Ringmaster
ASGD, R = B−1, where B is the delay threshold; for Local SGD, R = B−1, where B corresponds to
the number of local steps; for Cycle SGD, R = n2

/s, where s is the group size, etc. In all these methods,
R can be controlled, and to achieve the best possible computational and communication guarantees,
one should always choose R = Θ

(
σ2
/ε
)

(see Sections G and F). We believe this is a fundamental
principle underlying all parallel optimization methods, and it should be considered a guiding rule
when developing new algorithms. This choice is also theoretically justified: by taking R = Θ

(
σ2
/ε
)
,

the iteration rate does not change asymptotically: O
(
(R+1)L∆/ε + σ2L∆/ε2

)
= O

(
L∆/ε + σ2L∆/ε2

)
.

Larger values of R allow the methods to be more “parallel-friendly”. For instance, a large R enables
Ringmaster ASGD to consider stochastic gradients with larger delays, while a large R in Local SGD
allows the method to run more local steps. However, taking R > σ2

/ε results in a worse iteration rate,
suggesting that the corresponding method operates in an overly “anarchic” asynchronous regime,
which may lead to performance degradation. Geometrically, the theory suggests that, to achieve good
performance, the tree distance between xk and zk in Figure 3 should not exceed σ2

/ε.

Notice that there is no single “best” method in Table 1, which we believe is another fundamental
law. Each method has its own strengths and weaknesses, and one should develop or choose the
most appropriate method for the specific task. This process becomes easier with the help of our new
framework, Birch SGD, and insights.

We hope these important observations will support the future development and analysis of asyn-
chronous optimization methods. Building on these insights, we designed at least eight new methods
using our proposed Birch SGD framework and the main result, Theorem 2.4. By reducing the anal-
ysis and design of these methods to computation trees, our entire development becomes purely
graph-geometrical, offering a new and simpler view on asynchronous optimization methods.

5 SUMMARY OF EXPERIMENTAL RESULTS

In Section C, we provide a detailed comparison of methods on logistic regression, image clas-
sification with ResNet18 (He et al., 2016), and next-token prediction with GPT2 (Radford
et al., 2019). When communication times are negligible (Fig. 6), as expected from Table 1
and the previous discussion, Ringmaster ASGD and Async-Local SGD converge faster on the lo-
gistic regression problem. However, when communication times are large (Fig. 7), Ringmas-
ter ASGD becomes less practical due to its frequent updates. Synchronized SGD exhibits the
worst performance across all setups. Rennala SGD and Local SGD are more stable, while Async-
Local SGD performs well due to its effective balance between frequent updates and local steps.

0 2000 4000 6000 8000 10000 12000 14000
times (seconds)

1

4 × 10 1

6 × 10 1

2 × 100

3 × 100

f(x
t )

f(x
* )

Local SGD =0.0078125 B=256
Rennala SGD =0.0078125 B=256
Ringmaster ASGD =0.015625 B=512
Async-Local SGD =0.015625 B=512 M=2
Synchronized SGD =0.5

Figure 6: Computation times hi = 1 or 10 ran-
domly, communication times τi = 0.

2500 5000 7500 10000 12500 15000 17500
times (seconds)

1

2 × 100

3 × 100

4 × 100

f(x
t )

f(x
* )

Local SGD =0.0078125 B=256
Rennala SGD =0.0078125 B=256
Ringmaster ASGD =0.0625 B=256
Async-Local SGD =0.015625 B=256 M=8
Synchronized SGD =1

Figure 7: Computation times hi = 10, commu-
nication times τi = 100.
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A ADDITIONAL DISCUSSION

A.1 DISCUSSION OF THE COMPUTATIONAL TIME COMPLEXITIES

In this section, we extend our discussion about the computational time complexities of the methods
discussed in the main part of the paper.

To compare parallel and asynchronous methods, Mishchenko et al. (2022) proposed using the hi-fixed
computation model. The idea is to assume that worker i requires at most hi seconds to calculate
one stochastic gradient for all i ∈ [n] := {1, . . . , n} (without loss of generality, h1 ≤ h2 ≤
· · · ≤ hn). The authors considered Synchronized SGD, an iterative process defined as wk+1 =
wk − γ

n

∑n
i=1∇f(wk; ηki ), where each worker calculates one stochastic gradient, synchronize, and

a parameter server aggregates them to update the iterate4. Using the hi-fixed computation model, it
can be easily shown that Synchronized SGD converges after

O
(
max
i∈[n]

hi ×
(
L∆

ε
+

σ2L∆

nε2

))
(4)

seconds, because the method waits for the slowest worker, whose time is maxi∈[n] hi = hn.

Algorithm 2 Asynchronous SGD

Input: point w0 ∈ Rd, stepsizes γk ≥ 0
Workers start computing stochastic gradients at w0

for k = 0, 1, . . . do
Gradient ∇f(wk−δk ; ηk−δk

i ) arrives from worker i
Update: wk+1 = wk − γk∇f(wk−δk ; ηk−δk

i )
Worker i begins calculating at wk+1

end for

Mishchenko et al. (2022); Koloskova et al. (2022) provided new analyses of Asynchronous SGD (see
Algorithm 2) and Cohen et al. (2021) developed Picky SGD to show that this time complexity can be
improved to

O
((

1
n

n∑
i=1

1
hi

)−1 (
L∆
ε + σ2L∆

nε2

))
,

where the dependence on {hi} is harmonic instead of being based on the maximum. It turns out that
this complexity can be further improved5 to

Θ

(
min
m∈[n]

[(
1
m

m∑
i=1

1
hi

)−1 (
L∆
ε + σ2L∆

mε2

)])
, (5)

which is achieved by the Rennala SGD method (Tyurin & Richtárik, 2023). Moreover, Tyurin &
Richtárik (2023) proved a matching lower bound demonstrating that both this complexity and Rennala
SGD are optimal. Recently, Maranjyan et al. (2025) developed a new optimal Ringmaster ASGD
method, which is essentially Asynchronous SGD with a key modification. Additionally, under the
universal computation model, Tyurin (2025); Maranjyan et al. (2025) showed that both Rennala SGD
and Ringmaster ASGD remain optimal even when computation times are arbitrary, time-varying, and
random.

A.2 MORE RELATED WORK

Our focus is on the homogeneous setting, where all workers have access to the same data distribution
or dataset. The heterogeneous data setting is equally important, especially in federated learning (FL)
(Konečný et al., 2016) due to privacy constraints. In this context, many other methods have been

4Alternatively, there is no physical parameter server, and all workers perform an Allreduce.
5Note that min

m∈[n]
g(m) ≤ g(n) for any function g : N → R
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proposed, including Asynchronous SGD (Mishchenko et al., 2022; Koloskova et al., 2022), Asgrad
(Islamov et al., 2024), PIAG (Wu et al., 2022), and Malenia SGD (Tyurin & Richtárik, 2023). Notably,
Tyurin & Richtárik (2023); Tyurin (2025) showed that Malenia SGD is optimal under both the fixed
and universal computation models, without requiring assumptions of bounded gradients or gradients
dissimilarity.

In the homogeneous setting, numerous other works have studied asynchronous SGD methods, in-
cluding (Lian et al., 2015; Feyzmahdavian et al., 2016; Stich & Karimireddy, 2020; Sra et al., 2016).
However, these methods typically require the assumption that the delays in the indices of stochastic
gradients are bounded (on average in (Sra et al., 2016)). As a result, their theoretical guarantees in
terms of computational time complexity are weaker than those in (Cohen et al., 2021; Koloskova
et al., 2022; Mishchenko et al., 2022; Tyurin & Richtárik, 2023; Maranjyan et al., 2025), which do
not rely on such assumptions.

A.3 RELATION TO OTHER FRAMEWORKS

Another interesting work that analyzes SGD methods is (Even et al., 2024). Their work and ours both
use graphs; however, we use graphs in completely different, orthogonal, and unrelated contexts. In
their case, nodes represent computers (GPUs, CPUs, servers), and edges represent communication
links. In our case, nodes represent points of an algorithm, and (directed) edges indicate how one
point was calculated from another. These are two different and orthogonal approaches. Another
important difference is that they compare methods using iteration complexities, whereas we use time
complexities in Table 1, a more robust and suitable metric for asynchronous and parallel methods.

B NOTATIONS

N := {1, 2, . . . }; ∥x∥ is the output of the standard Euclidean norm for all x ∈ Rd; ⟨x, y⟩ =∑d
i=1 xiyi is the standard dot product; g = O(f) : exist C > 0 such that g(z) ≤ C × f(z) for all

z ∈ Z; g = Ω(f) : exist C > 0 such that g(z) ≥ C × f(z) for all z ∈ Z; g = Θ(f) : g = O(f) and
g = Ω(f); g = Θ̃(f) : the same as g = Ω(f) but up to logarithmic factors; a ∨ b := max{a, b}.

C EXPERIMENTS

C.1 SETUP

The experiments were prepared in Python. The distributed environment was simulated with the Simpy
Python library (Matloff, 2008). There are two hardware setups:

• CPU Setup: Intel(R) Xeon(R) Gold 6348 CPU @ 2.60GHz 52 cores (for logistic regression
experiments)

• GPU Setup: 2 × Nvidia A100 80 Gb, CPU: Intel(R) Xeon(R) Platinum 8358 CPU @ 2.60GHz 128
cores (for ResNet18 and GPT2 experiments)

The distributed environment is simulated with the help of Simpy. To compare the methods, we
consider different computation and communication scenarios by taking different computation times
{hi} and communication times {τi} of the workers.

For each task, we perform a grid search to identify the best parameters and report the top results
across all runs of each algorithm. The individual grid search parameters are drawn from a set of
values specified in Section C.5. We plot the convergence rates against the elapsed time.

We evaluate the convergence speeds of all algorithms in four regimes:

• Classical: hi = 10 and τi = 0 for all i ∈ [n]. All workers have the same computation times, and
the communication times are ignored.

• Slow Communications: hi = 10 and τi = 100 for all i ∈ [n]. The communication takes time.

• Heterogeneous Computations: hi = random_choice({1, 10}) and τi = 0 for all i ∈ [n]. All workers
have the different computation times randomly sampled from the set {1, 10}.
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• Heterogeneous Communications: hi = 10 and τi = random_choice([1,100]) for all i ∈ [n]. All
workers have the different communication times randomly sampled from the set {1, 10}.
This setup allows us to observe how different algorithms perform across various regimes and to
compare their convergence behaviors under differing computational and communication conditions.

C.2 EXPERIMENTS WITH LOGISTIC REGRESSION

We begin our experiments with one the simplest ML problems—logistic regression on the MNIST
dataset LeCun et al. (2010). In this setting, we evaluate three different numbers of workers: n ∈
{16, 64, 256}. We use the standard linear model with the logistic loss.

Starting with n = 16 workers, we perform a grid search over the parameters specified in Table 2
across all four regimes. The corresponding results are shown in Figure 8. In the classical setup
(Figure 8a), all algorithms perform similarly. However, Rennala SGD and Local SGD underperform
slightly due to the inability to interrupt an already initiated local step, resulting in occasional update
losses. In the slow communications setup (Figure 8b), Rennala SGD, Local SGD, and Async-Local
SGD perform better, as they aggregate local steps and reduce communication overhead. In contrast,
Synchronized SGD and Ringmaster ASGD perform poorly due to excessive communication. In both
the heterogeneous computations (Figure 8c) and heterogeneous communications (Figure 8d) regimes,
Async-Local SGD and Ringmaster ASGD achieve the fastest performance. Synchronized SGD, as
expected, is the slowest because it is not robust to heterogeneous computations and communications.

For n = 64 (grid search parameters in Table 3, results shown in Figure 9) and n = 256 (grid search
parameters in Table 4, results shown in Figure 10), we observe behavior similar to the n = 16 case
across all four regimes.
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(a) Classical regime: hi = 10, τi = 0
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(b) Slow Communications regime: hi = 10, τi = 100
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(c) Heterogeneous Computations regime: hi =
random_choice({1, 10}), τi = 0
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(d) Heterogeneous Communications regime: hi = 10,
τi = random_choice([1,100])

Figure 8: Comparison of different optimization algorithms across various distributed computing
regimes with n = 16. Each plot shows the convergence behavior in terms of loss versus simulated
wall-clock time.
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(a) Classical regime: hi = 10, τi = 0
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(b) Slow Communications regime: hi = 10, τi = 100
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(c) Heterogeneous Computations regime: hi =
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Figure 9: Comparison of different optimization algorithms across various distributed computing
regimes with n = 64. Each plot shows the convergence behavior in terms of loss versus simulated
wall-clock time.
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(a) Classical regime: hi = 10, τi = 0
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(b) Slow Communications regime: hi = 10, τi = 100
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Figure 10: Comparison of different optimization algorithms across various distributed computing
regimes with n = 256. Each plot shows the convergence behavior in terms of loss versus simulated
wall-clock time.
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C.3 EXPERIMENTS WITH RESNET18 AND IMAGE CLASSIFICATION

We test the algorithms on the CIFAR10 (Krizhevsky et al., 2009) image recognition task with
the ResNet18 (He et al., 2016) deep neural network. For ResNet18, we similarly report the best
convergence results from a grid search over the parameters listed in Table 5, using a setup with n = 8
workers. Results for all algorithms across the four regimes are presented in Figure 11.

The conclusions largely mirror those from the logistic regression experiments, with a few additional
observations. In the classical setup (Figure 11a), Ringmaster ASGD outperforms all other methods.
We believe that this is due to the frequent updates of the method. In the slow communications
regime (Figure 11b), the trends are consistent with those observed in the MNIST experiments:
Ringmaster ASGD becomes slower, while methods that are less communication-intensive achieve
better performance. In the heterogeneous communications (Figure 11d) regime, Async-Local SGD has
the best performance due to the good balance of frequent model updates and local steps.
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(a) Classical regime: hi = 10, τi = 0
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(d) Heterogeneous Communications regime:
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Figure 11: ResNet18 experiments with n = 8
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C.4 EXPERIMENTS WITH GPT2 AND TOKEN PREDICTION

We also evaluate the algorithms on the Wikitext-2 (Merity et al., 2016) next token prediction task
with GPT2 (Radford et al., 2019). For GPT2, we evaluate all four regimes using a setup with n = 8
workers. To achieve faster and more robust convergence, we use the AdamW normalization strategy6

only in these experiments with GPT2. The resulting convergence curves are shown in Figure 12.
Once again, the results are similar to those of the previous experiments. Due to hardware limitations,
a narrower grid search range is used; therefore, it is possible that convergence could be further
improved with a more extensive search.
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(a) Classical regime: hi = 10, τi = 0
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(b) Slow Communications regime: hi = 10, τi = 100
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(c) Heterogeneous Computations regime: hi =
random_choice({1, 10}), τi = 0
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(d) Heterogeneous Communications regime: hi = 10,
τi = random_choice({1, 100})

Figure 12: GPT-2 experiments with n = 8

6Instead of the SGD step wk+1 = wk − γgk, where gk is a descent direction, we use the AdamW strategy
with gk.
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C.5 PARAMETERS OF THE EXPERIMENTS

Table 2: Experimental configuration for logistic regression on MNIST with n = 16 workers.

Parameter Value
Batch size 1
Optimizer SGD
Number of workers 16

Algorithm-specific configurations:

Synchronized SGD γ range: [2−5, 24]

Rennala SGD γ range: [2−15, 2−3]
B set: {128, 256, 512, 1024}

Local SGD γ range: [2−15, 2−3]
B set: {128, 256, 512, 1024}

Ringmaster ASGD γ range: [2−15, 21]
B set: {128, 256, 512, 1024}

Async-Local SGD γ range: [2−10, 21]
B set: {64, 128, 256, 512, 1024}
M set: {1, 2, 4, 8}

Table 3: Experimental configuration for logistic regression on MNIST with n = 64 workers.

Parameter Value
Batch size 1
Optimizer SGD
Number of workers 64

Algorithm-specific configurations:

Synchronized SGD γ range: [2−5, 24]

Rennala SGD γ range: [2−15, 2−3]
B set: {1024, 2048, 4096}

Local SGD γ range: [2−15, 2−3]
B set: {1024, 2048, 4096}

Ringmaster ASGD γ range: [2−15, 21]
B set: {512, 1024, 2048, 4096}

Async-Local SGD γ range: [2−10, 21]
B set: {64, 128, 256, 512, 1024, 4096}
M set: {1, 2, 4, 8}
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Table 4: Experimental configuration for logistic regression on MNIST with n = 256 workers.

Parameter Value
Batch size 1
Optimizer SGD
Number of workers 256

Algorithm-specific configurations:

Synchronized SGD γ range: [2−5, 24]

Rennala SGD γ range: [2−15, 2−3]
B set: {1024, 2048, 4096, 8192, 16384}

Local SGD γ range: [2−15, 2−3]
B set: {1024, 2048, 4096, 8192, 16384}

Ringmaster ASGD γ range: [2−15, 21]
B set: {512, 1024, 2048, 4096, 8192}

Async-Local SGD γ range: [2−10, 21]
B set: {128, 256, 512, 1024, 4096, 8192}
M set: {1, 2, 4, 8}

Table 5: Experimental configuration for
ResNet18 with n = 8 workers.

Parameter Value
Batch size 16
Optimizer SGD
Number of workers 8

Algorithm-specific configurations:

Synchronized SGD γ range: [2−6, 2−3]

Rennala SGD γ range: [2−6, 2−3]
B set: {16, 32, 64}

Local SGD γ range: [2−6, 2−3]
B set: {16, 32, 64}

Ringmaster ASGD γ range: [2−6, 2−3]
B set: {16, 32, 64}

Async-Local SGD γ range: [2−6, 2−3]
B set: {16, 32, 64}
M set: {2, 4, 8}

Table 6: Experimental configuration for GPT-2
with n = 8 workers.

Parameter Value
Batch size 32
Optimizer AdamW
Number of workers 8

Algorithm-specific configurations:

Synchronized SGD γ range: [2−11, 2−10]

Rennala SGD γ range: [2−11, 2−10]
B set: {16, 32, 64}

Local SGD γ range: [2−11, 2−10]
B set: {16, 32, 64}

Ringmaster ASGD γ range: [2−11, 2−10]
B set: {16, 32, 64}

Async-Local SGD γ range: [2−11, 2−10]
B set: {16, 32, 64}
M set: {2, 4}
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D PROOF OF THEOREM 2.4

D.1 PROOF TECHNIQUE AND REASONS FOR CHOOSING THE CONDITIONS

Before we state the main theorem and provide the proof, let us explain the intuition, the novelty, and
how we identified the conditions of the theorem. The proof of the result is given in Section D.2 and
is relatively compact. We believe that the simplicity of our result, together with its ability to unify
methods, constitutes an important contribution to the optimization community. While the initial part
of the proof follows the same structure as in most related works, starting from (7), our treatment of
the staleness term ∥xk − zk∥, which naturally arises from the step xk+1 = xk − γ∇f(zk; ξk), is
novel.

After many attempts to develop a universal theory, let us illustrate how we arrived at our conditions.
Looking at Figure 3, which provides all possible relations between xk and zk, one can easily get

∥∥xk − zk
∥∥ = γ

∥∥∥∥∥∥
k−1∑
i=p

∇f(zi; ξi)−
∑

(w,ξ)∈Sk

∇f(w; ξ)

∥∥∥∥∥∥ .
First, we noticed that any reasonable method should utilize

∑
(w,ξ)∈Sk ∇f(w; ξ) in the computation

of zk before applying ∇f(zk; ξk) (see the previous discussion about Condition 2 in Section 2.1).
This implies {(w; ξ)}(w,ξ)∈Sk ⊆ {(zi; ξi)}k−1

i=p , leading to the following identity:

∥∥xk − zk
∥∥ = γ

∥∥∥∥∥∥
∑
j∈S̄k

∇f(zj ; ξj)

∥∥∥∥∥∥
for some set S̄k ⊆ {p, . . . , k − 1} such that S̄k ∪ Sk = {p, . . . , k − 1}. The identity says that the
distance is roughly proportional to the number

∣∣S̄k
∣∣ of stochastic gradients applied after xp and

before zk, which is tightly bounded by the tree distance from xk to the common ancestor xp, i.e., it is
bounded by |{p, . . . , k − 1}| since S̄k ⊆ {p, . . . , k − 1}.
Under Condition 2, notice that |{p, . . . , k − 1}| = max{|{p, . . . , k − 1}| ,

∣∣Sk
∣∣} =: dist(xk, zk),

where we use Sk ⊆ {p, . . . , k − 1} and Definition 2.2. Thus, to get a bound for ∥xk − zk∥, it is
natural to introduce Condition 3, which allows us to conclude that

∣∣S̄k
∣∣ ≤ dist(xk, zk) ≤ R. It

remains to use classical mathematical tools to obtain

E
[∥∥xk − zk

∥∥2] ≤ 2γ2R

k−1∑
j=k−R

E
[∥∥∇f(zj)∥∥2]+ 2γ2Rσ2,

where the first term will be canceled by the corresponding term −γ
4E
[∥∥∇f(zk)∥∥2] from (6).

D.2 FULL PROOF

Theorem 2.4 (Main Theorem). Let Assumptions 1.1, 1.2, and 1.3 hold. Consider any SGD method
represented by computation tree G = (V,E). Let {xk}k≥0 be a main branch of G and {(zk, ξk)}k≥0

be the corresponding auxiliary sequence (see Def. 2.1) that satisfy the following conditions:
Condition 1: For all k ≥ 0, ξk is statistically independent of {(xi+1, zi+1, ξi)}k−1

i=0 .
Condition 2: The representation of zk is contained within that of xk, i.e., repr(zk) ⊆ repr(xk) for
all k ≥ 0. Equivalently, all stochastic gradients used in the computation of zk are also utilized in
calculating xk.
Condition 3: There exists a constant R ∈ [0,∞] such that dist(xk, zk) ≤ R for all k ≥ 0.

Then 1
K

∑K−1
k=0 E

[
∥∇f(xk)∥2

]
≤ ε for all K ≥ 4(R+1)L∆

ε + 8σ2L∆
ε2 with step size γ =

min{ 1
2L ,

1
2RL ,

ε
4σ2L}, where ∆ = f(x0)− f∗.

Proof. As the beginning, the analysis is standard. Using Assumption 1.1, we have

f(xk+1) ≤ f(xk)− γ
〈
∇f(xk),∇f(zk; ξk)

〉
+

Lγ2

2

∥∥∇f(zk; ξk)∥∥2
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for xk+1 = xk − γ∇f(zk; ξk). Due to Condition 1 of the theorem and the variance decomposition
equality,

Ek

[
f(xk+1)

]
≤ f(xk)− γ

〈
∇f(xk),∇f(zk)

〉
+

Lγ2

2
Ek

[∥∥∇f(zk; ξk)∥∥2]
= f(xk)− γ

〈
∇f(xk),∇f(zk)

〉
+

Lγ2

2

∥∥∇f(zk)∥∥2 + Lγ2

2
Ek

[∥∥∇f(zk; ξk)−∇f(zk)∥∥2]
≤ f(xk)− γ

〈
∇f(xk),∇f(zk)

〉
+

Lγ2

2

∥∥∇f(zk)∥∥2 + Lγ2σ2

2
,

where Ek [·] is the expectation conditioned on (xk, zk). In the last inequality, we use Assumption 1.3.
Rewriting the dot product and using γ ≤ 1

2L , we obtain

Ek

[
f(xk+1)

]
≤ f(xk)− γ

2

(∥∥∇f(xk)
∥∥2 + ∥∥∇f(zk)∥∥2 − ∥∥∇f(xk)−∇f(zk)

∥∥2)+ Lγ2

2

∥∥∇f(zk)∥∥2 + Lγ2σ2

2

≤ f(xk)− γ

2

∥∥∇f(xk)
∥∥2 − γ

4

∥∥∇f(zk)∥∥2 + γ

2

∥∥∇f(xk)−∇f(zk)
∥∥2 + Lγ2σ2

2
. (6)

In the rest of the proof, we focus on
∥∥∇f(xk)−∇f(zk)

∥∥2 . Using Assumption 1.1, we obtain∥∥∇f(xk)−∇f(zk)
∥∥2 ≤ L2

∥∥xk − zk
∥∥2 . (7)

Notice that there exist p ∈ {0, . . . , k} and the closest common ancestor xp such that

xk = xp − γ

k−1∑
i=p

∇f(zi; ξi) = x0 − γ

p−1∑
i=0

∇f(zi; ξi)− γ

k−1∑
i=p

∇f(zi; ξi)

and

zk = xp − γ
∑

(w,ξ)∈Sk

∇f(w; ξ) = x0 − γ

p−1∑
i=0

∇f(zi; ξi)− γ
∑

(w,ξ)∈Sk

∇f(w; ξ),

where Sk is the set of points and random variables used to compute zk starting from xp (see Figure 3).
Moreover, due to Condition 3, we have dist(xk, zk) ≤ max{k− p,

∣∣Sk
∣∣} ≤ R, meaning p ≥ k−R.

In total,

k ≥ p ≥ k −R, (8)

which we use later. Condition 2 assumes

repr(zk) := {(zi; ξi)}p−1
i=0︸ ︷︷ ︸

A

⊎{(w; ξ)}(w,ξ)∈Sk︸ ︷︷ ︸
C

⊆ repr(xk) := {(zi; ξi)}p−1
i=0︸ ︷︷ ︸

A

⊎{(zi; ξi)}k−1
i=p︸ ︷︷ ︸

B

,

where ⊎ is the multiset union operation. Thus

{(w; ξ)}(w,ξ)∈Sk︸ ︷︷ ︸
C

⊆ {(zi; ξi)}k−1
i=p︸ ︷︷ ︸

B

and

xk − zk = −γ

k−1∑
i=p

∇f(zi; ξi)−
∑

(w,ξ)∈Sk

∇f(w; ξ)

 = −γ
∑
j∈S̄k

∇f(zj ; ξj), (9)

where S̄k is a set such that S̄k ⊆ {p, . . . , k − 1}. Substituting (9) to (7),

∥∥∇f(xk)−∇f(zk)
∥∥2 ≤ L2γ2

∥∥∥∥∥∥
∑
j∈S̄k

∇f(zj ; ξj)

∥∥∥∥∥∥
2

.
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Next, using Young’s inequality ∥x+ y∥2 ≤ 2 ∥x∥2 + 2 ∥y∥2 for all x, y ∈ Rd, we get

E
[∥∥∇f(xk)−∇f(zk)

∥∥2] ≤ 2L2γ2E


∥∥∥∥∥∥
∑
j∈S̄k

∇f(zj)

∥∥∥∥∥∥
2
+ 2L2γ2E


∥∥∥∥∥∥
∑
j∈S̄k

(∇f(zj ; ξj)−∇f(zj))

∥∥∥∥∥∥
2
 .

Since ξj is statistically independent of {(xi+1, zi+1, ξi)}j−1
i=0 for all j ∈ S̄k (Condition 1) and using

Assumption 1.3,

E
[∥∥∇f(xk)−∇f(zk)

∥∥2] ≤ 2L2γ2E


∥∥∥∥∥∥
∑
j∈S̄k

∇f(zj)

∥∥∥∥∥∥
2
+ 2L2γ2

∣∣S̄k
∣∣σ2

Jensen’s ineq.
≤ 2L2γ2

∣∣S̄k
∣∣ ∑
j∈S̄k

E
[∥∥∇f(zj)∥∥2]+ 2L2γ2

∣∣S̄k
∣∣σ2.

Due to S̄k ⊆ {p, . . . , k − 1} and (8):

E
[∥∥∇f(xk)−∇f(zk)

∥∥2] ≤ 2L2γ2R

k−1∑
j=k−R

E
[∥∥∇f(zj)∥∥2]+ 2L2γ2Rσ2.

Substituting this inequality to (6) and taking the full expectation, we obtain

E
[
f(xk+1)

]
≤ E

[
f(xk)

]
− γ

2
E
[∥∥∇f(xk)

∥∥2]− γ

4
E
[∥∥∇f(zk)∥∥2]+ Lγ2σ2

2

+
γ

2

2L2γ2R

k−1∑
j=k−R

E
[∥∥∇f(zj)∥∥2]+ 2L2γ2Rσ2


≤ E

[
f(xk)

]
− γ

2
E
[∥∥∇f(xk)

∥∥2]− γ

4
E
[∥∥∇f(zk)∥∥2]+ Lγ2σ2

+ L2γ3R

k−1∑
j=k−R

E
[∥∥∇f(zj)∥∥2] (10)

because γ ≤ 1
2RL . Note that

∑K−1
k=0

∑k−1
j=k−R E

[∥∥∇f(zj)∥∥2] ≤ R
∑K−1

k=0 E
[∥∥∇f(zk)∥∥2] . Thus,

summing (10) for k = 0, . . . ,K − 1 and substituting f∗,

E
[
f(xK)− f∗] ≤ f(x0)− f∗ − γ

2

K−1∑
k=0

E
[∥∥∇f(xk)

∥∥2]− γ

4

K−1∑
k=0

E
[∥∥∇f(zk)∥∥2]+KLγ2σ2

+ L2γ3R2
K−1∑
k=0

E
[∥∥∇f(zk)∥∥2]

≤ f(x0)− f∗ − γ

2

K−1∑
k=0

E
[∥∥∇f(xk)

∥∥2]+KLγ2σ2

because γ ≤ 1
2LR . Finally, since E

[
f(xK)− f∗] ≥ 0,

1

K

K−1∑
k=0

E
[∥∥∇f(xk)

∥∥2] ≤ 2∆

Kγ
+ 2Lγσ2.

It is left to use that γ = min{ 1
2L ,

1
2RL ,

ε
4σ2L} and the bound on K from the theorem statement.
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E DETAILED DESCRIPTION OF ALGORITHMS AND ITERATION RATES

In this section, we provide a detailed description together with theoretical analysis of the algorithms
from the main part.

E.1 Vanilla SGD

We start we the celebrated Vanilla SGD algorithm, which formally can be implemented in the following
way:

Algorithm 3 Vanilla SGD

1: Input: starting point w0 ∈ Rd, step size γ > 0
2: for k = 0, 1, 2, . . . do
3: Sample ηk ∼ Dξ ({ηk} are i.i.d.)
4: Compute stochastic gradient∇f(wk; ηk)
5: Update wk+1 = wk − γ∇f(wk; ηk)
6: end for

The corresponding computation tree can defined by the recursion

wk+1 = wk − γ∇f(wk; ηk) (11)

for all k ≥ 0.

∇f(x0; ξ0) ∇f(x1; ξ1) ∇f(x2; ξ2) ∇f(xk; ξk)

x0 x1 x2 . . . xk+1

Figure 13: The computation tree of Vanilla SGD

While the iteration rate of Vanilla SGD is well-known (Lan, 2020), we prove its convergence using our
new framework for clarity.
Theorem E.1. Let Assumptions 1.1, 1.2, and 1.3 hold. Consider the computation tree (11) of Vanilla
SGD. Then, {xk}k≥0 is a main branch with xk = wk, {(zk, ξk)}k≥0 is the corresponding auxiliary
sequence with (zk, ξk) = (wk, ηk) (see Def. 2.1), and 1

K

∑K−1
k=0 E

[
∥∇f(xk)∥2

]
≤ ε for all

K ≥ 4L∆

ε
+

8σ2L∆

ε2
.

with step size γ = min{ 1
2L ,

ε
4σ2L}.

Proof. Indeed, {xk}k≥0 and {(zk, ξk)}k≥0 satisfy Def. 2.1 (see Fig. 13). Moreover, all conditions of
Theorem 2.4 are fulfilled: Condition 1 holds because the sequence {ηk} is i.i.d., we have repr(zk) =
repr(xk) since xk = zk, and consequently, R = supk≥0 dist(xk, zk) = 0.
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E.2 Rennala SGD

We now apply Theorem 2.4 to Rennala SGD. The iteration rate of Rennala SGD is also well-known
(Tyurin & Richtárik, 2023), but we provide a proof for completness. Rennala SGD can be formally
described as follows:

Algorithm 4 Rennala SGD (Tyurin & Richtárik, 2023)

1: Input: point w0 ∈ Rd, stepsize γ > 0, batch size B ∈ N
2: Workers start computing stochastic gradients at w0

3: for k = 0, . . . ,K − 1 do
4: gki = 0 for all i ∈ [n]; b = 0
5: while b < B do
6: Wait for the moment when stochastic gradient is computed by worker
7: Gradient∇f(wk−δ; η) is computed by worker i, η ∼ Dξ

8: if δ = 0 then
9: Update gki = gki +∇f(wk−δ; η) locally in worker i

10: b = b+ 1
11: else
12: Ignore ∇f(wk−δ; η)
13: end if
14: Worker i begins calculating gradient at wk

15: end while
16: Aggregate: gk =

∑n
i=1 g

k
i (e.g, via AllReduce)

17: Update: wk+1 = wk − γgk

18: end for

To use Theorem 2.4, we have to construct the computation tree of Rennala SGD. It can be constructed
in the following way:

x1 = x0 − γ∇f(x0; ξ0), . . . , xB = xB−1 − γ∇f(x0; ξB−1), (12)

xB+1 = xB − γ∇f(xB ; ξB), . . . , x2B = x2B−1 − γ∇f(xB ; ξ2B−1), . . . ,

where {ξi} are i.i.d. from Dξ. See also a visualization in Figure 14. One can easily show that
w1 = x0, w1 = xB , w2 = x2B , etc.

∇f(x0; ξ0) ∇f(x0; ξ1) ∇f(x0; ξB−1) ∇f(xB ; ξB) ∇f(xB ; ξB+1) ∇f(xB ; ξ2B−1)

x0 x1 . . . xB xB+1 . . . x2B

Figure 14: The computation tree of Rennala SGD

Theorem E.2. Let Assumptions 1.1, 1.2, and 1.3 hold. Consider the computation tree (12) of
Rennala SGD, then {xk}k≥0 is a main branch, {(zk, ξk)}k≥0 with (zk, ξk) = (xB⌊k/B⌋, ξk) is the
corresponding auxiliary sequence, and 1

K

∑K−1
k=0 E

[
∥∇f(xk)∥2

]
≤ ε for all

K ≥ 4BL∆

ε
+

8σ2L∆

ε2
.

with step size γ = min{ 1
2BL ,

ε
4σ2L}.

Proof. Clearly, {xk}k≥0 is a main branch and {(zk, ξk)}k≥0 is the corresponding sequence by the
construction in (12). Moreover, ξk is independent of {(xi+1, zi+1, ξi)}k−1

i=0 in (12) because {ξi} are
i.i.d. (Condition 1 is satisfied). Next, notice that

repr(z0) = repr(x0) = ∅,
repr(z1) = repr(x0) = ∅ ⊆ repr(x1),

...
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repr(zB−1) = repr(x0) = ∅ ⊆ repr(xB−1)

because zk = x0 for all k < B. Next,

repr(zB) = repr(xB),

repr(zB+1) = repr(xB) ⊆ repr(xB+1),

...

repr(z2B−1) = repr(xB) ⊆ repr(x2B−1),

because zk = xB for all B ≤ k < 2B, where repr(xB) ⊆ repr(xB+1), . . . , repr(xB) ⊆
repr(x2B−1) due to (12). We can continue and show that repr(zk) ⊆ repr(xk) for all k ≥ 0
(Condition 2 is satisfied). It is left to notice that

sup
k≥0

dist(xk, zk) ≤ B − 1,

because

dist(x0, z0) = 0,

dist(x1, z1) = dist(x1, x0) = 1,

...

dist(xB−1, zB−1) = dist(xB−1, x0) = B − 1,

dist(xB , zB) = dist(xB , xB) = 0,

dist(xB+1, zB+1) = dist(xB+1, xB) = 1,

...

The maximum tree distance between xk and zk is B − 1. Thus, R = B − 1 in Condition 3.
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E.3 Local SGD

The Local SGD method is described in the following algorithm:

Algorithm 5 Local SGD

Require: Initial model w0, step size γ, parameter B
1: for k = 0, 1, 2, . . . do
2: Broadcast wk to all workers
3: for each worker i ∈ [n] in parallel do
4: Worker i starts LocalSGDWorker(wk, γ) from Algorithm 6
5: end for
6: Wait for the moment when

∑n
i=1 Mi = B ({Mi} from LocalSGDWorker(wk, γ))

7: Ask workers to stop7running LocalSGDWorker(wk, γ)
8: Aggregate γ

∑n
i=1

∑Mi−1
j=0 ∇f(z

k,j
i ; ηk,ji ) from the workers (e.g, via AllReduce)

9: Update wk+1 = wk − γ
∑n

i=1

∑Mi−1
j=0 ∇f(z

k,j
i ; ηk,ji )

10: end for

Algorithm 6 LocalSGDWorker(w, γ) in worker i at round k

1: zk,0i = w
2: Mi ← 0
3: while True do
4: zk,Mi+1

i = zk,Mi

i − γ∇f(zk,Mi

i ; ηk,Mi

i ), ηk,Mi

i ∼ Dξ

5: Mi = Mi + 1
6: end while

One key change compared to the previous work is that individual local steps Mi are not predefined.
Moreover, the server tracks the sum

∑n
i=1 Mi and waits for the moment

∑n
i=1 Mi = B before

collecting the locally calculated gradients. With a proper choice of B, we will prove the optimal
computational time complexity of the method in Section F.

The corresponding computation tree of Local SGD can be constructed in the following way. Define
Nk := k ×B and take k = 0. Then

zk,1i = zk,0i − γ∇f(xNk ; ηk,0i ),

zk,2i = zk,1i − γ∇f(zk,1i ; ηk,1i ),

...

zk,Mi

i = zk,Mi−1
i − γ∇f(zk,Mi−1

i ; ηk,Mi−1
i ),

(13)

7Alternatively, allow the workers to finish computing their stochastic gradients without waiting for them
(since AllReduce can be run in parallel), but discard these gradients in subsequent iterations, as they are no
longer relevant. This approach may introduce a delay before the workers begin their next local steps.

Another option is to allow the workers to finish computing their stochastic gradients without waiting for them,
and send these gradients in the next iteration. If some gradients are still not computed by then due to delays,
simply discard them.
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for all i ∈ [n], and

xNk+1 = xNk − γ∇f(zk,01 ; ηk,01 ),

...

xNk+M1 = xNk+M1−1 − γ∇f(zk,M1−1
1 ; ηk,M1−1

1 ),

xNk+M1+1 = xNk+M1 − γ∇f(zk,02 ; ηk,02 ),

...

xNk+M1+M2 = xNk+M1+M2−1 − γ∇f(zk,M2−1
2 ; ηk,M2−1

2 ),

...

xNk+1 = xNk+
∑n

i=1 Mi−1 − γ∇f(zk,Mn−1
n ; ηk,Mn−1

n ).

(14)

Repeat the previous steps with k = k + 1 starting at xNk+1 = xNk+B . See illustration in Figure 4.
One can easily show that w1 = xB , w2 = x2B , . . . , wk = xkB , . . . , where wk is the sequence from
Algorithm 5.
Theorem E.3. Let Assumptions 1.1, 1.2, and 1.3 hold. Consider the computation tree ((13) and (14))
of Local SGD, then {xk}k≥0 is a main branch and 1

K

∑K−1
k=0 E

[
∥∇f(xk)∥2

]
≤ ε for all

K ≥ 4BL∆

ε
+

8σ2L∆

ε2
.

with step size γ = min{ 1
2BL ,

ε
4σ2L}.

Although the proof may seem technical due to the heavy notation in (14), it is actually straightforward
when you refer to Figure 4. This figure clearly shows that all conditions of Theorem 2.4 are satisfied
with R = B − 1 because

∑n
i=1 Mi = B in every global iteration. The condition

∑n
i=1 Mi = B

helps us to insure that the maximum tree distance supk≥0 dist(xk, zk) ≤ B − 1.

Proof. Clearly, {xk}k≥0 is a main branch by Definition 2.1. The corresponding auxiliary sequence
can be inferred from (14): (z0, ξ0) = (z0,01 , η0,01 ), . . . , (zM1 , ξM1) = (z0,M1

1 , η0,M1

1 ), and etc. Con-
dition 1 is satisfied because {ηk,ji } are i.i.d., and by the construction (14). Condition 2 of Theorem 2.4
holds because the same stochastic gradients used for computing zk are also used for xk, as shown in
Figure 4. This can be formally verified using (14) and (13). It is left to notice that

sup
k≥0

dist(xk, zk) ≤ B − 1

because the maximum number of edges to the common closest ancestor can not exit B − 1.
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E.4 Ringmaster ASGD

Algorithm 7 Ringmaster ASGD (Maranjyan et al., 2025)

1: Input: point w0 ∈ Rd, stepsize γ > 0, delay threshold G ∈ N
2: Set k = 0
3: Workers start computing stochastic gradients at w0

4: while True do
5: Gradient ∇f(wk−δk ; ηk−δk

i ) arrives from worker i
6: if δk < G then
7: Update: wk+1 = wk − γ∇f(wk−δk ; ηk−δk

i )
8: Worker i begins calculating at wk+1 ({ηki } are i.i.d.)
9: Update the iteration number k = k + 1

10: else
11: Ignore the outdated gradient∇f(wk−δk ; ηk−δk

i )
12: Worker i begins calculating at wk

13: end if
14: end while

In this method, a main branch can be defined as

xk = wk (15)

and the auxiliary sequence is defined as (zk, ξk) = (xk−δk , ηk−δk

i ) for all k ≥ 0.

∇f(x0−δ0 ; ξ0) ∇f(x1−δ1 ; ξ1) ∇f(x2−δ2 ; ξ2) ∇f(xk−δk ; ξk)

x0 x1 x2 . . . xk+1

Figure 15: The computation tree of Ringmaster ASGD

Theorem E.4. Let Assumptions 1.1, 1.2, and 1.3 hold. Consider the computation tree of Ringmaster
ASGD, then {xk}k≥0, defined in (15), is a main branch and 1

K

∑K−1
k=0 E

[
∥∇f(xk)∥2

]
≤ ε for all

K ≥ 4GL∆

ε
+

8σ2L∆

ε2
.

with step size γ = min{ 1
2GL ,

ε
4σ2L}.

Proof. Condition 1 is satisfied because {ηk−δk

i } are i.i.d., xk = wk and zk = xk−δk do not depend
on ξk = ηk−δk

i . Condition 2 is satisfied because repr(zk) = repr(wk−δk) ⊆ repr(wk) = repr(xk).
Condition 3 is satisfied with R = G− 1 because

dist(xk, zk) = dist(xk, xk−δk) = δk ≤ G− 1,

where the second equality due to the number of edges between xk and xk−δk and the last inequality
due to the fact that δk is bounded by B in Algorithm 7.
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E.5 Cycle SGD

We now present a new method, called Cycle SGD:

Algorithm 8 Cycle SGD

Require: Initial model w0, step size γ, group size s
1: Partition workers into groups of size s:

G1 = {1, . . . , s}, G2 = {s+ 1, . . . , 2s}, . . . , G⌈n/s⌉ = {(⌈n/s⌉ − 1)s+ 1, . . . , n}
in a circular manner.

2: Broadcast w0 to all workers and assign the local variables z0i = w0 and Mi = 0 for all i ∈ [n]
3: while True do
4: for group index g = 1 to ⌈n/s⌉ do
5: for each worker i ∈ [n] in parallel do
6: zMi+1

i = zMi
i − γ∇f(zMi

i ; ηMi
i ), ηMi

i ∼ Dξ

7: Mi = Mi + 1
8: end for
9: Aggregate γ

∑
i∈Gg

∑Mi

j=1∇f(z
j
i ; η

j
i ) from the workers of group Gg only

10: Server aggregates and updates the model:

wr+1 = wr − γ
∑
i∈Gg

Mi−1∑
j=0

∇f(zji ; ηji )

11: Broadcast wr+1 to all workers of group g and assign the local variables z0i = wr+1 and
Mi = 0 for all i ∈ Gg

12: r = r + 1
13: end for
14: end while

This method operates similarly to Local SGD, with workers performing local steps. However, a key
difference is that only s workers synchronize at each step, rather than all n workers. This strategy
can be advantageous in scenarios where reducing peak bandwidth is desirable. A visualization of the
corresponding computation tree is in Figure 16. For this algorithm, the first

∑n
i=1 Mi nodes of the

main branch can be defined as
x1 = x0 − γ∇f(z01 ; η01),

...

xM1 = xM1−1 − γ∇f(zM1−1
1 ; ηM1−1

1 ),

...

x
∑s−1

i=1 Mi+1 = x
∑s−1

i=1 Mi − γ∇f(z0s ; η0s),
...

x
∑s

i=1 Mi = x
∑s

i=1 Mi−1 − γ∇f(zMs−1
s ; ηMs−1

s ),

...

(16)

Notice that x
∑s

i=1 Mi ≡ w1, where we capture and unroll all stochastic gradients from the first group.
The next nodes of the main branch can be defined in a similar way going through all groups circularly.
Theorem E.5. Let Assumptions 1.1, 1.2, and 1.3 hold. Consider the computation tree of Cycle SGD
(Alg. 8), then {xk}k≥0, defined in (16), is a main branch and 1

K

∑K−1
k=0 E

[
∥∇f(xk)∥2

]
≤ ε for all

K ≥ 8n2L∆

sε
+

8σ2L∆

ε2
.

with step size γ = min{ s
4n2L ,

ε
4σ2L}.
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∇f(x0; η1,02 )

∇f(z1,12 ; η1,12 )

∇f(x3; η2,02 ) ∇f(z2,12 ; η2,12 )

∇f(x0; η1,01 )
∇f(x0; η1,02 )

∇f(z1,12 ; η1,12 )

∇f(x1; η2,01 )
∇f(z2,11 ; η2,11 )

∇f(x0; η1,01 )

∇f(x1; η2,01 ) ∇f(z2,11 ; η2,11 )

x0

z1,12 z1,22

x3

z2,12 z2,22

x1

x2

x4 x5

z1,11

z2,11 z2,21

Figure 16: An example of Cycle SGD computation tree.

Proof. Once again, the proof is geometric. As an example, consider Figure 16 together with
Algorithm 8. One can easily show that Conditions 1 and 2 are satisfied similarly to the proof of
Theorem 5. However, the maximum tree distance is different since we synchronize the workers in a
circular manner.

First, the number of local steps Mi ≤
⌈
n
s

⌉
≤ 2n

s because each worker computes one stochastic
gradient in the inner loop and synchronizes every

⌈
n
s

⌉
loops.

Next, the maximum tree distance between a point xk on the main branch and the corresponding point
of the auxiliary sequence zk is at most 2n2

s . Let us explain this step. Consider any xk and zk, and
their closest common ancestor wk (in Figure 16, for instance, take x5, z2,22 , and x3 accordingly).

The number of edges from zk to wk never exceeds 2n
s due to the bound on the number of local steps.

The number of edges from xk to wk never exceeds 2n2

s because, while one worker performs local
steps, other workers can grow the main branch by at most

⌈
n
s

⌉
× (n− 1) ≤ 2n(n−1)

s points before
the worker that computed zk is synchronized8.

Thus, we can take R = 2n2

s in Condition 3 of Theorem 2.4.

8For instance, see Figure 16, where, before the algorithm applies ∇f(z2,12 ; ξ2,12 ) from the second worker, the
main branch grows by two edges, from x3 to x5, due to gradients computed by the first worker.
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E.6 Async-Local SGD

The following algorithm is a mixture of Asynchronous SGD and Local SGD, which we formalize in
the following way.

Algorithm 9 Async-Local SGD

1: Input: point x0 ∈ Rd, stepsize γ > 0, delay threshold B ∈ N, number of local steps M
2: Set k = 0
3: Workers start running local steps at w0 with Alg. 10 for M steps
4: while True do
5: Sum γ

∑M−1
p=0 ∇f(z

p
ik
; ηpik) arrives from some worker ik

6: Find the tree distance δk = dist(wk, z0ik)

(delay δk of wk−δk , at which point worker ik started local steps)
7: if δk < B then
8: Update: wk+1 = wk − γ

∑M−1
p=0 ∇f(z

p
ik
; ηpik)

9: Worker i starts running local steps at wk+1 with Alg. 10 for M steps
10: Update the iteration number k = k + 1
11: else
12: Ignore the outdated sum γ

∑M−1
p=0 ∇f(z

p
ik
; ηpik)

13: Worker i starts running local steps at wk with Alg. 10 for M steps
14: end if
15: end while

Algorithm 10 LocalSGDWorker(w, γ,M ) in worker i

1: z0i = w
2: for p = 0, . . .M − 1 do
3: zp+1

i = zpi − γ∇f(zpi ; ηpi ), ηpi ∼ Dξ

4: end for
5: Send to the server γ

∑M−1
p=0 ∇f(z

p
i ; η

p
i )

If M = 1, then this method reduces to Ringmaster ASGD (Alg. 7). Taking M > 1, we can improve the
time complexity of Ringmaster ASGD by decreasing the number of times when workers synchronize
with the server. For this method, it is natural to take a main branch as

x1 = x0 − γ∇f(z0i1 ; η0i1),
...

xM = xM−1 − γ∇f(zM−1
i1

; ηM−1
i1

),

...

xM(k−1)+1 = xM(k−1) − γ∇f(z0ik ; η0ik),
...,

xMk = xMk−1 − γ∇f(zM−1
ik

; ηM−1
ik

),

...

(17)

and so on. Notice that x0 ≡ w0, xM ≡ w1, etc.
Theorem E.6. Let Assumptions 1.1, 1.2, and 1.3 hold. Consider the computation tree of Async-Local
SGD (Alg. 9), then {xk}k≥0, defined in (17), is a main branch and 1

K

∑K−1
k=0 E

[
∥∇f(xk)∥2

]
≤ ε

for all

K ≥ 4(B +M − 1)L∆

ε
+

8σ2L∆

ε2
.

34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

with step size γ = min{ 1
4(B+M−1)L ,

ε
4σ2L}.

Proof. Similar to the previous proofs, Condition 1 is satisfied for the main branch {xk}k≥0 because
all random variables {ηij} in (17) are i.i.d., and x0 and z0i1 do not depend on η0i1 . Points xM−1 and
zM−1
i1

do not depend on ηM−1
i1

, and so on. Conditions 2 is satisfied because all stochastic gradients
used to compute zpik are also used to compute the corresponding point on the main branch for all
p ∈ {0, . . . ,M − 1} and k ≥ 0 (see Figure 5). Condition 3 is satisfied with R = B − 1 +M − 1 =
B + M − 2 due to the inequality δk = dist(wk, z0ik) < B in Algorithm 9 and the fact every
worker calculates M stochastic gradients, which ensures that the tree distance between z0ik and the
corresponding point from the main brain branch is at most B − 1, the tree distance between z1ik and
the corresponding point from the main brain branch is at most B − 2, . . . , the tree distance between
zM−1
ik

and the corresponding point from the main brain branch is at most B +M − 2.

E.7 Async-Batch SGD

This method does the same steps as Async-Local SGD with the only difference that the workers
calculate mini-batches instead of local steps:

Algorithm 11 BatchSGDWorker(w, γ,M ) in worker i

1: z0i = w
2: for p = 0, . . .M − 1 do
3: Calculate∇f(zpi ; ηpi ), ηpi ∼ Dξ

4: zp+1
i = zpi

5: end for
6: Send to the server γ

∑M−1
p=0 ∇f(z

p
i ; η

p
i )

One can easily show that these methods share the same theoretical guarantees (Sections E.6, F, and
G) as Async-Local SGD.
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E.8 Local-Async SGD

One way to interpret the following algorithm is that the workers are partitioned into groups, with
each group running Asynchronous SGD. Then, at certain points, all workers synchronize, and start
running Asynchronous SGD at a new point. One of the important novelties here is the condition∑s

g=1 mg = B, which, with a proper B, leads to the optimal computational time complexity
(Section F).

Algorithm 12 Local-Async SGD

Require: Initial model w0, step size γ, parameter B, group partitions G1, . . . , Gs

1: for k = 0, 1, 2, . . . do
2: Broadcast wk to all groups
3: for each worker g ∈ [s] in parallel do
4: Group g starts AsynchronousSGDGroup(wk, γ) from Algorithm 13
5: end for
6: Wait for the moment when

∑s
g=1 mg = B ({mg} from AsynchronousSGDGroup(wk, γ))

7: Ask the groups to stop9running AsynchronousSGDGroup(wk, γ)
8: Aggregate γ

∑s
g=1

∑mg−1
j=0 ∇f(vj−δj

g ; ηjg) from the groups ({ηjg} are i.i.d.)

9: Update wk+1 = wk − γ
∑s

g=1

∑mg−1
j=0 ∇f(vj−δj

g ; ηjg)
10: end for

Algorithm 13 AsynchronousSGDGroup(w, γ) in group g

Input: point v0g ∈ Rd, stepsize γ > 0
Set mg = 0
Workers from group g start computing stochastic gradients at v0g
while True do

Gradient ∇f(vmg−δmg

g ; η
mg
g ) arrives from worker i with delay δmg

Update: vmg+1
g = v

mg
g − γ∇f(vmg−δmg

g ; η
mg
g )

Worker i begins calculating stochastic gradient at vmg+1
g

Update the iteration number mg = mg + 1
end while

For this method, it is natural to take a main branch of the computation tree as

x1 = x0 − γ∇f(v0−δ0

1 ; η01),

...

xm1 = xm1−1 − γ∇f(vm1−1−δm1−1

1 ; ηm1−1
1 ),

...

x
∑s−1

g=1 mi+1 = x
∑s−1

g=1 mi − γ∇f(v0−δ0

s ; η0s),

...,

x
∑s

g=1 mi = x
∑s

g=1 mi−1 − γ∇f(vms−1−δms−1

s ; ηms−1
s )

...,

(18)

9Alternatively, allow the workers to finish computing their stochastic gradients without waiting for them
(since AllReduce can be run in parallel), but discard these gradients in subsequent iterations, as they are no
longer relevant. This approach may introduce a delay before the workers begin their next local steps.

Another option is to allow the workers to finish computing their stochastic gradients without waiting for them,
and send these gradients in the next iteration. If some gradients are still not computed by then due to delays,
simply discard them.
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where one can see that x
∑s

g=1 mi ≡ xB ≡ w1, and {vjg} is defined in Algorithm 13.

∇f(v0−δ0

2 ; η02)

∇f(v1−δ1

2 ; η12) ∇f(v2−δ2

2 ; η22)

∇f(v0−δ0

2 ; η02) ∇f(v1−δ1

2 ; η12) ∇f(v2−δ2

2 ; η22) ∇f(v0−δ0

1 ; η01) ∇f(v1−δ1

1 ; η11)

∇f(v0−δ0

1 ; η01)
∇f(v1−δ1

1 ; η11)

x0

v12 v22 v32

x5x1 x2 x3 x4

v11 v21

Figure 17: An example of a Local-Async SGD computation tree with two groups and B = 5. One
group performs m1 = 3 steps of Asynchronous SGD, while the other performs m2 = 2 steps. Note
that the maximum tree distance is dist(x4, v1−δ1

1 ) when applying∇f(v1−δ1

1 ; η11) to x4, and it equals
B − 1 = m1 +m2 − 1 = 4. Then, the groups synchronize and continue from x5.

Theorem E.7. Let Assumptions 1.1, 1.2, and 1.3 hold. Consider the computation tree of Local-Async
SGD (Alg. 12), then {xk}k≥0, defined in (18), is a main branch and 1

K

∑K−1
k=0 E

[
∥∇f(xk)∥2

]
≤ ε

for all

K ≥ 4BL∆

ε
+

8σ2L∆

ε2
.

with step size γ = min{ 1
4BL ,

ε
4σ2L}.

Proof. The proof closely follows that of Theorem E.3, with the only difference being that the
auxiliary branches in Algorithm 13 are constructed using asynchronous steps rather than local steps
(compare Figure 4 and Figure 17). As in Theorem E.3, the condition

∑s
g=1 mg = B ensures that

supk≥0 dist(xk, zk) ≤ B − 1.
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E.9 Nested Local-Async SGD

In this section, we formalize a hierarchical version of Algorithm 12. Our framework, Theorem 2.4, is
flexible enough to support such a two-level structure, where each cluster consists of servers equipped
with (4–8) GPUs. The GPUs run Asynchronous SGD, the servers synchronize within their clusters,
and finally, the clusters synchronize with each other.

In the following algorithm, all workers are partitioned into {Gij} groups, where i is the cluster index
and j is the server index within the cluster. The set Gij contains the indices of the workers (GPUs).

Algorithm 14 Nested Local-Async SGD

Require: Initial model w0, step size γ, parameters Bi, global parameter B, group partitions {Gij}
1: for k = 0, 1, 2, . . . do
2: Broadcast wk to all clusters
3: for each cluster i in parallel do
4: Set w0

i = wk

5: for pi = 0, 1, 2, . . . do
6: Broadcast wpi

i to all local groups
7: for each server j in parallel do
8: Group Gij starts AsynchronousSGDGroup(wpi

i , γ) from Algorithm 13
9: end for

10: Cluster i waits for the moment when
∑

j mij = Bi

11: Ask the groups in cluster i to stop running AsynchronousSGDGroup(wpi

i , γ)
12: Update wpi+1

i = wpi

i − γ
∑

j

∑mijpi
−1

ℓ=0 ∇f(vℓ−δℓ

ijpi
; ηℓijpi

)
13: end for
14: end for
15: Wait for the moment the total number of local steps in the clusters starting from the last

broadcast is B
16: Ask all groups in all servers to stop running AsynchronousSGDGroup(wk, γ)
17: Update wk+1 = wk −∑i(w

pi

i − w0
i ) = wk − γ

∑
i

∑pi−1
k=0

∑
j

∑mijk−1
ℓ=0 ∇f(vℓ−δℓ

ijk ; ηℓijk)
18: end for

Algorithm 15 AsynchronousSGDGroup(w, γ) in group Gij

Input: point v0ijpi
∈ Rd, stepsize γ > 0

Set mij = 0
Workers from group Gij start computing stochastic gradients at v0ijpi

while True do
Gradient ∇f(vmijpi

−δ
mijpi

ijpi
; η

mijpi
ijpi

) arrives from worker i with delay δmijpi

Update: v
mijpi

+1

ijpi
= v

mijpi
ijpi

− γ∇f(vmijpi
−δ

mijpi

ijpi
; η

mijpi
ijpi

)

Worker i begins calculating stochastic gradient at v
mijpi

+1

ijpi

Update the iteration number mijpi
= mijpi

+ 1
end while

We believe that analyzing this algorithm directly using classical optimization tools would be chal-
lenging due to heavy notations. However, using our framework and geometrical graph reasoning,
we can easily prove the iteration rate of this algorithm. As in all previous cases, a main branch xk

can be defined by taking each component of the sum
∑

i

∑pi−1
k=0

∑
j

∑mijk−1
ℓ=0 ∇f(vℓ−δℓ

ijk ; ηℓijk) and
applying each stochastic gradient to x0, x1 = x0 − γ∇f(v0110; η0110), and so on.
Theorem E.8. Let Assumptions 1.1, 1.2, and 1.3 hold. Consider the computation tree of Nested
Local-Async SGD (Alg. 14), then 1

K

∑K−1
k=0 E

[
∥∇f(xk)∥2

]
≤ ε for all

K ≥ 4BL∆

ε
+

8σ2L∆

ε2
.
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with step size γ = min{ 1
4BL ,

ε
4σ2L} for the main branch {xk} (slightly informally) defined above.

Proof. Similarly to the previous proofs, Conditions 1 and 2 are satisfied by the construction of
the algorithm. Using geometric graph reasoning, Condition 3 is satisfied with R ≤ B due to the
requirement that “the total number of local steps in the clusters starting from the last broadcast is B.”
This ensures that the distance between the points of the main branch and the corresponding points of
the auxiliary sequence defined by v·· does not exceed B.

Remark E.9. One can see that the converge rate does not depend on {Bi}. Theoretically, it is sufficient
to take Bi = ∞. However, practically, it may be better to take Bi < ∞ to ensure that the GPUs
synchronize more often and share information with others, but it can lead to communication overhead
and less efficient utilization of the GPUs.
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E.10 Meta Local SGD

Compared to previous algorithms, Meta Local SGD is an abstract or meta-method, as it includes one
abstract step: “Wait if needed and take any set of workers S.” This step is not explicitly defined,
allowing users to apply any strategy they prefer. It may be random, where the algorithm chooses
a uniformly random subset; it may follow a condition as in Local SGD, where the algorithm waits
until

∑n
i=1 Mi = B; or it may be based on the current communication speeds of the workers, where

the algorithm selects the workers with the fastest communication speeds at the current optimization
moment.

However, as we explain in the main part, this can lead to a computation tree with a large R. That
is why we check the condition maxj∈[n] dj +

∑n
i=1 Mi < B in the algorithm, where {di} are the

current distances to the head of the main branch and {Mi} are the local steps performed by each
worker. If this condition is satisfied, we can take any set of workers S. Otherwise, we find a set
of workers S = {j ∈ [n] | dj +

∑n
i=1 Mi = B} and ask them to send their calculated stochastic

gradients. The latter case is required to synchronize workers with “very old stochastic gradients”.
Intuitively, if we do not synchronize them, their stochastic gradients may become too outdated and
harmful to the optimization process.

Algorithm 16 Meta Local SGD

1: Input: point w0 ∈ Rd, stepsize γ > 0, parameter B ∈ N
2: Set an auxiliary distance variable di = 0 for all i ∈ [n]
3: Workers start running local steps at w0 with Alg. 17
4: for k = 0, 1, . . . do
5: if maxj∈[n] dj +

∑n
i=1 Mi < B then

6: Wait if needed and take any set of workers S (Soft Sync)
(Here, we do not specify the selection method, it could be random or based on the current
communication speeds. One can choose any strategy.)

7: else
8: Find a set of workers S = {j ∈ [n] | dj +

∑n
i=1 Mi = B} (Hard Sync)

9: end if
10: Ask workers from S to send the calculated stochastic gradients and stop the loops in Alg. 17
11: Receive γ

∑
i∈S

∑Mi−1
p=0 ∇f(z

p
i ; η

p
i )

12: Update: wk+1 = wk − γ
∑Mi−1

p=0 ∇f(z
p
i ; η

p
i )

13: Worker from S start running local steps at wk+1 with Alg. 17
14: Set di = 0 for all i ∈ S
15: Update di = di +

∑
j∈S Mj for all i ̸∈ S

16: end for

Algorithm 17 LocalSGDWorker(w, γ) in worker i

1: z0i = w
2: Mi = 0
3: while True do
4: Calculate∇f(zMi

i ; ηMi
i ), ηMi ∼ Dξ

5: if maxj∈[n] dj +
∑n

i=1 Mi < B then
6: zMi+1

i = zMi
i − γ∇f(zMi

i ; ηMi
i )

7: Mi = Mi + 1
8: end if
9: end while

A main branch in the computation tree can be defined as follows. Assume that Sk = {i1, . . . , ipk
} is

the set of workers participating in iteration k. Then, the computation tree with the main branch {xk}
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can be constructed as

x1 = x0 − γ∇f(z0i1 ; η0i1),
x2 = x1 − γ∇f(z1i1 ; η1i1),

...

xMi1 = xMi1−1 − γ∇f(zMi1−1
i1

; η
Mi1−1
i1

),

...

x
∑pk−1

j=1 Mij
+1 = x

∑pk−1

j=1 Mij − γ∇f(z0ipk ; η
0
ipk

),

...

x
∑pk

j=1 Mij = x
∑pk

j=1 Mij
−1 − γ∇f(zMipk

−1

ipk
; η

Mipk
−1

ipk
),

...

(19)

Notice that the end of each iteration block can be written as

w1 ≡ x
∑p0

j=1 Mij , w2 ≡ x
∑p0

j=1 Mij
+
∑p1

j=1 Mij , and so on.

∇f(x0; η1,02 )

∇f(z1,12 ; η1,12 )

∇f(x0; η1,01 ) ∇f(z1,11 ; η1,11 )

∇f(x2; η2,01 )

∇f(z2,11 ; η2,11 )

∇f(x0; η1,01 )
∇f(z1,11 ; η1,11 )

∇f(x2; η2,01 ) ∇f(z2,11 ; η2,11 )

x0

z1,12 z1,22

x1 x2

x3 x4

z1,11 z1,21

z2,11 z2,21

Figure 18: An example of the computation tree for Meta Local SGD with two workers. In this example,
the first worker completes its first set of local steps, x0 → z1,12 → z1,22 , and sends the stochastic
gradients, which are used to calculate x1 and x2. A similar sequence of steps is repeated by the
first worker to produce x2 → z2,12 → z2,22 , followed by x3 and x4. At the same time, the second
worker has only completed x0 → z1,11 → z1,21 and has not yet synchronized or sent the corresponding
stochastic gradients. At this moment in time, the number of local steps is M2 = 2 and d2 = 4,
because d2 is the number of edges between the current main branch head x4 and the point x0, where
the local branch of the second worker started. At the same time, M1 = 0 and d1 = 0, because the
first worker has just started the third set of local steps at x4 and has not yet calculated local stochastic
gradients.

Theorem E.10. Let Assumptions 1.1, 1.2, and 1.3 hold. Consider the computation tree of Meta Local
SGD (Alg. 16), then {xk}k≥0, defined in (19), is a main branch and 1

K

∑K−1
k=0 E

[
∥∇f(xk)∥2

]
≤ ε

for all

K ≥ 4BL∆

ε
+

8σ2L∆

ε2
.

with step size γ = min{ 1
4BL ,

ε
4σ2L}.

Proof. Similarly to the previous proofs, it is clear that Conditions 1 and 2 from Theorem 2.4 are
satisfied for the main branch (19).

It remains to show that dist(xk, zk) ≤ B for all k ≥ 0. In the algorithm, we track two key sets of
variables: {di} and {Mi}. The variable Mi denotes the current number of local steps performed by
worker i, while di represents the number of edges between the current end of the main branch and
the point where worker i began its local updates. When worker i /∈ S, the distance di increases as
follows: di = di +

∑
j∈S Mj , since the workers in S extend the main branch with their accumulated

local updates.
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The algorithm is constructed so that the quantity maxj∈[n] dj +
∑n

i=1 Mi remains bounded by
B throughout the entire optimization process, ensuring that Condition 3 is satisfied with R = B.
To clarify, assume that i ∈ S in Algorithm 16. In the worst-case scenario, all other workers
j ∈ S, with j ̸= i, apply their local updates, increasing the tree distance from worker i’s branch
to the main branch by at most

∑
j∈S,j ̸=i Mj . Thus, the updated tree distance becomes at most

di +
∑

j∈[n],j ̸=i Mj . Since worker i has also performed Mi local steps, the tree distance is bounded
by di +

∑
j∈[n],j ̸=i Mj +Mi ≤ B.
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E.11 Dual-Process SGD

We now present a new method, Dual-Process SGD, which is very similar to Local SGD. In fact, when
communication is free, the two methods are equivalent. However, Local SGD requires all workers to
send the sum of stochastic gradients only at the end of each round. In contrast, in Dual-Process SGD,
workers do not wait until the end of the round; instead, they begin communicating sequentially as
soon as possible.

Initially, each worker waits for the first stochastic gradients with index 0 and immediately sends them
once available. Then, while these are being transmitted, the workers continue their local computations.
After the server receives the gradients with index 0, the workers begin sending the next batch of
stochastic gradients, starting from index 1 up to the latest index they have computed at that moment.
This process continues until the server has received a total of B stochastic gradients, accumulated
through the communicated sums. This logic is implemented in Algorithm 19.

Algorithm 18 Dual-Process SGD

Require: Initial model w0, step size γ, parameter B
1: for k = 0, 1, 2, . . . do
2: Broadcast wk to all workers
3: for each worker i ∈ [n] in parallel do
4: Worker i starts DualProcessLocalSGDWorker(wk, γ) from Algorithm 19
5: end for
6: Start receiving the sum from the workers
7: Wait for the moment when the total # of received gradients

∑n
i=1 Mi = B

8: Ask workers to stop running DualProcessLocalSGDWorker(wk, γ)
9: Update wk+1 = wk − γ

∑n
i=1

∑Mi−1
j=0 ∇f(z

k,j
i ; ηk,ji )

10: end for

Algorithm 19 DualProcessLocalSGDWorker(w, γ) in worker i at round k

1: zk,0i = w

2: M̃i = M̄i = Mi = 0
3: Launch in parallel the following two processes:
4: Process 1:
5: while True do
6: Calculate∇f(zk,M̃i

i ; ηk,M̃i

i ), ηk,M̃i

i ∼ Dξ

7: zk,M̃i+1
i = zk,M̃i

i − γ∇f(zk,M̃i

i ; ηk,M̃i

i )

8: M̃i = M̃i + 1
9: end while

10:
11: Process 2:
12: while True do
13: Wait until at least one new stochastic gradient is computed in Process 1.
14: Set temporary variable M̄i = M̃i

15: Send
M̄i−1∑
j=Mi

∇f(zk,ji ; ηk,ji )

16: Wait until the transmission is complete
17: Update Mi = M̄i

18: end while

The computation tree of Dual-Process SGD defined in (13) and (14) is similar to Local SGD.

Theorem E.11. Let Assumptions 1.1, 1.2, and 1.3 hold. Consider the computation tree ((13) and
(14)) of Dual-Process SGD, then {xk}k≥0 is a main branch and 1

K

∑K−1
k=0 E

[
∥∇f(xk)∥2

]
≤ ε for
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all

K ≥ 4BL∆

ε
+

8σ2L∆

ε2
.

with step size γ = min{ 1
2BL ,

ε
4σ2L}.

Proof. The proof is exactly the same as in Theorem E.3 since the computation tree of Dual-Process
SGD is similar to Local SGD.
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F COMPUTATIONAL TIME COMPLEXITIES OF ALGORITHMS UNDER hi-FIXED
COMPUTATION MODEL

To compare methods, we consider the hi-fixed computation model (Mishchenko et al., 2022). In this
model, it is assumed that

worker i takes no more than hi seconds to compute a single stochastic gradient (20)

and
0 < h1 ≤ h2 ≤ · · · ≤ hn, (21)

without loss of generality.

Note that it is possible to consider the universal computation model (Tyurin, 2025) and capture
virtually all possible computation behaviors of the workers. While the hi-fixed computation model
may seem more restrictive, it turns out that all optimal methods (Maranjyan et al., 2025) in the
universal computation model are also optimal in the hi-fixed computation model. Thus, for simplicity,
we stick to the hi-fixed computation model.

F.1 Rennala SGD

Theorem F.1 (Rennala SGD). Consider Theorem E.2 and its conditions. Under the hi-fixed computa-
tion model (20), the computational time complexity of Rennala SGD (Alg. 4) is

O

 min
m∈[n]

( 1

m

m∑
i=1

1

hi

)−1(
L∆

ε
+

σ2L∆

mε2

) (22)

with B = max
{⌈

σ2

ε

⌉
, 1
}
.

We start with the following lemma.
Lemma F.2. Let us define

TR(B) := 2 min
m∈[n]

( m∑
i=1

1

hi

)−1

(B +m)

 (23)

Under the hi-fixed computation model (20), the time required to calculate x1, . . . , xB of the main
branch is at most TR(B) seconds, the time required to calculate xB+1, . . . , x2B is at most TR(B)
seconds, and so on.

Proof. The idea of Rennala SGD (Alg. 4) is pretty simple. Notice that all workers calculate stochastic
gradients at the same point in parallel until the server collects a batch of size B (condition δ = 0
ensures that). Since they work in parallel, under the fixed computational model, after t seconds the
workers will calculate

n∑
i=1

max

{⌊
t

hi

⌋
− 1, 0

}
(24)

stochastic gradients because
⌊

t
hi

⌋
is the number of stochastic gradients computed by worker i in t

seconds. We subtract 1 because at most one stochastic gradient be can be ignored due to the condition
δ = 0 in Alg. 4.

Notice that

TR(B) = 2

(
m∗∑
i=1

1

hi

)−1

(B +m∗)

for some m∗ ∈ [n]. Substituting it to (24), we get
n∑

i=1

max

{⌊
TR(B)

hi

⌋
− 1, 0

}
≥

m∗∑
i=1

max

{⌊
TR(B)

hi

⌋
− 1, 0

}
≥

m∗∑
i=1

⌊
TR(B)

hi

⌋
−m∗
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≥
m∗∑
i=1

TR(B)

hi
− 2m∗ = 2(B +m∗)− 2m∗ ≥ B.

Thus, after TR(B) seconds, the server collects B stochastic gradients, which is equivalent to calcu-
lating x1, . . . , xB of the main branch. The same argument can be applied to the next B point of the
main branch, and so on.

Proof of Theorem F.1. Due to Theorem E.2, we know that 1
K

∑K−1
k=0 E

[
∥∇f(xk)∥2

]
≤ ε for

K =

⌈
4BL∆

ε
+

8σ2L∆

ε2

⌉
.

From Lemma F.2, we know that the time required to calculate x1, . . . , xB of the main branch is at
most TR(B) seconds, the time required to calculate xB+1, . . . , x2B is at most TR(B) seconds, and so
on. Thus, the total time to find an ε–stationary point is

O
(
TR(B)× K

B

)
= O

(
TR(B)×

(
L∆

ε
+

σ2L∆

Bε2

))
.

Using the choice of B,

O
(
TR(B)× K

B

)
= O

 min
m∈[n]

( m∑
i=1

1

hi

)−1

(B +m)

× L∆

ε


= O

 min
m∈[n]

( 1

m

m∑
i=1

1

hi

)−1(
L∆

ε
+

σ2L∆

mε2

) .

F.2 Ringmaster ASGD

Theorem F.3 (Ringmaster ASGD). Consider Theorem E.4 and its conditions. Under the hi-fixed
computation model (20), the computational time complexity of Ringmaster ASGD is

O

 min
m∈[n]

( 1

m

m∑
i=1

1

hi

)−1(
L∆

ε
+

σ2L∆

mε2

)
with B = max

{⌈
σ2

ε

⌉
, 1
}
.

We use Lemma 4.1 from (Maranjyan et al., 2025).
Lemma F.4. ((Maranjyan et al., 2025)) Let the workers’ computation times satisfy the hi-fixed
computation model ((20) and (21)). Let B be the delay threshold of Alg. 7. The time required to
complete any B consecutive iterate updates of Alg. 7 is at most

TA(B) := 2 min
m∈[n]

( 1

m

m∑
i=1

1

τi

)−1(
1 +

R

m

) . (25)

Corollary F.5. In view of Lemma F.4, Under the hi-fixed computation model (20), the time required
to calculate x1, . . . , xB of the main branch is at most TA(B) seconds, the time required to calculate
xB+1, . . . , x2B is at most TA(B) seconds, and so on.

Proof of Theorem F.3. The proof of Theorem F.3 is similar to the proof of Theorem F.1. From
Corollary F.5, we know that the time required to calculate x1, . . . , xB of the main branch is at most
TA(B) seconds, the time required to calculate xB+1, . . . , x2B is at most TA(B) seconds, and so on.
Thus, the total time to find an ε–stationary point is

O
(
TA(B)× K

B

)
= O

 min
m∈[n]

( 1

m

m∑
i=1

1

hi

)−1(
L∆

ε
+

σ2L∆

mε2

) .
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F.3 Local SGD

Theorem F.6 (Local SGD). Consider Theorem E.3 and its conditions. Under the hi-fixed computation
model (20), the computational time complexity of Local SGD (Alg. 5) is

O

 min
m∈[n]

( 1

m

m∑
i=1

1

hi

)−1(
L∆

ε
+

σ2L∆

mε2

)
with B = max

{⌈
σ2

ε

⌉
, 1
}
.

Lemma F.7. Let us define

TL(B) := 2 min
m∈[n]

( m∑
i=1

1

hi

)−1

(B +m)

 (26)

Under the hi-fixed computation model (20), the time required to calculate x1, . . . , xB of the main
branch is at most TL(B) seconds, the time required to calculate xB+1, . . . , x2B is at most TL(B)
seconds, and so on.

Proof. The idea is the same as in Lemma F.2. All workers calculate stochastic gradients in parallel,
with the only difference being that the points at which they compute the stochastic gradients differ
due to the local steps. If the server can stop the workers, then after t seconds it is possible to collect

n∑
i=1

⌊
t

hi

⌋
(27)

stochastic gradients. If it is infeasible to stop the calculations (see footnote 7), then after t seconds it
is possible to collect

n∑
i=1

max

{⌊
t

hi

⌋
− 1, 0

}
, (28)

where we subtract 1 because at most one stochastic gradient can be ignored if it is nonrelevant.
Similarly to Lemma F.2, substituting TL(B) into (27) and (28), one can show that TL(B) is sufficient
to collect B =

∑n
i=1 Mi stochastic gradients, or, in other words, to calculate x1, . . . , xB of the main

branch. The same argument can be applied to the next B points of the main branch, and so on.

Proof of Theorem F.6. The proof essentially the same as the proof of Theorem F.1.

F.4 Local-Async SGD

Theorem F.8 (Local-Async SGD). Consider Theorem E.7 and its conditions. Under the hi-fixed
computation model (20), the computational time complexity of Local-Async SGD (Alg. 12) is

O

 min
m∈[n]

( 1

m

m∑
i=1

1

hi

)−1(
L∆

ε
+

σ2L∆

mε2

)
with B = max

{⌈
σ2

ε

⌉
, 1
}
.

Lemma F.9. Let us define

TLA(B) := 2 min
m∈[n]

( m∑
i=1

1

hi

)−1

(B +m)

 (29)

Under the hi-fixed computation model (20), the time required to calculate x1, . . . , xB of the main
branch is at most TLA(B) seconds, the time required to calculate xB+1, . . . , x2B is at most TLA(B)
seconds, and so on.
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Proof. The idea is the same as in Lemmas F.2 and F.7. All workers calculate stochastic gradients in
parallel, with the only difference being that the points at which they compute the stochastic gradients
differ due to the asynchronous steps in the groups. Similarly, one can show that TLA(B) is sufficient
time to calculate B =

∑s
g=1 mg stochastic gradients in Algorithm 12, or, equivalently, to calculate

x1, . . . , xB of the main branch. The same argument can be applied to the next B point of the main
branch.

Proof of Theorem F.8. The proof essentially the same as the proof of Theorem F.1.

F.5 Nested Local-Async SGD

Theorem F.10 (Nested Local-Async SGD). Consider Theorem E.8 and its conditions. Under the
hi-fixed computation model (20), the computational time complexity of Nested Local-Async SGD
(Alg. 14) is

O

 min
m∈[n]

( 1

m

m∑
i=1

1

hi

)−1(
L∆

ε
+

σ2L∆

mε2

)
with B = max

{⌈
σ2

ε

⌉
, 1
}

and Bi =∞10 for all i ∈ [n].

Proof. The proof essentially the same as the proof of Theorem F.1.

F.6 Async-Local SGD

Theorem F.11 (Async-Local SGD). Consider Theorem E.6 and its conditions. Under the hi-fixed
computation model (20), the computational time complexity of Async-Local SGD (Alg. 9) is

O

 min
m∈[n]

( 1

m

m∑
i=1

1

hi

)−1(
L∆

ε
+

σ2L∆

mε2

)
with B = max

{⌈
σ2

ε

⌉
, 1
}

and M = max
{⌈

σ2

nε

⌉
, 1
}
.

Lemma F.12. Let us define

TAL(B,M) := 2 min
m∈[n]

( m∑
i=1

1

hi

)−1

(B +Mm)

 (30)

Under the hi-fixed computation model (20), the time required to calculate x1, . . . , xB of the main
branch is at most TAL(B,M) seconds, the time required to calculate xB+1, . . . , x2B is at most
TAL(B,M) seconds, and so on.

Proof. Let us fix B and M ≥ 1. Note that

TAL(B,M) := 2 min
m∈[n]

( m∑
i=1

1

hi

)−1

(B +Mm)

 = 2

(
m∗∑
i=1

1

hi

)−1

(B +Mm∗) (31)

for some m∗ ∈ [n], which depends on B and M.

For any k ≥ 1, consider the sequence xk, . . . , xk+B on the main branch. Using a proof by contradic-
tion, assume that it requires more than TAL(B,M) seconds to calculate xk+1, . . . , xk+B . Thus, the
algorithm can progress up to xk+B−1 after TAL(B,M) seconds.

In Algorithm 9, each worker computes M stochastic gradients and sends their sum to the server.
The server then performs the update wk+1 = wk − γ

∑M−1
p=0 ∇f(z

p
ik
; ηpik), which is equivalent to

10It is possible to take Bi < ∞, but the computational time complexity may decrease due to less utilization
of workers. For simplicity, in this theorem, we take Bi = ∞. See also Remark E.9.
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extending the main branch by M points. Therefore, after t seconds, the main branch will have
progressed by at least

n∑
i=1

max

{
M

⌊
t

Mhi

⌋
−M, 0

}
, (32)

points (which is less than B by assumption). This is because worker i requires at most Mhi seconds
to compute M stochastic gradients before sending them to the server. Note that during any B − 1
consecutive updates on the main branch, the server may ignore M gradients from each worker at
most once, because δk can be ≥ B at most once during B − 1 consecutive updates. This explains the
subtraction of M in the formula.

Substituting TAL(B,M) to (32),

n∑
i=1

max

{
M

⌊
TAL(B,M)

Mhi

⌋
−M, 0

}
≥

m∗∑
i=1

max

{
M

⌊
TAL(B,M)

Mhi

⌋
−M, 0

}

≥
m∗∑
i=1

M

⌊
TAL(B,M)

Mhi

⌋
−Mm∗ ≥

m∗∑
i=1

TAL(B,M)

hi
− 2Mm∗

because ⌊x⌋ ≥ x− 1 for all x ∈ R. Using (31),
n∑

i=1

max

{
M

⌊
TAL(B,M)

Mhi

⌋
−M, 0

}
≥ 2(B +Mm∗)− 2Mm∗ ≥ B.

Thus, after TAL(B,M) seconds, the server collects B stochastic gradients. It is equivalent to
calculating xk+1, . . . , xk+B , which contradicts the assumption.

Proof of Theorem F.11. Due to Theorem E.6, we know that 1
K

∑K−1
k=0 E

[
∥∇f(xk)∥2

]
≤ ε for

K =

⌈
4(B +M − 1)L∆

ε
+

8σ2L∆

ε2

⌉
.

From Lemma F.2, we know that the time required to calculate x1, . . . , xB of the main branch is
at most TAL(B,M) seconds, the time required to calculate xB+1, . . . , x2B is at most TAL(B,M)
seconds, and so on. Thus, the total time to find an ε–stationary point is

O
(
TAL(B,M)× K

B

)
= O

(
TAL(B,M)×

(
L∆(B +M)

Bε
+

σ2L∆

Bε2

))
.

Using the choice of B and M, we obtain M ≤ B and

O
(
TR(B)× K

B

)
= O

(
TAL(B,M)×

(
L∆

ε
+

σ2L∆

Bε2

))

= O

 min
m∈[n]

( m∑
i=1

1

hi

)−1

(B +Mm)

× (L∆

ε
+

σ2L∆

Bε2

)
= O

 min
m∈[n]

( m∑
i=1

1

hi

)−1

(B +Mm)

× L∆

ε


because B ≥ σ2

ε . Since M ≤ σ2

nε + 1 and B ≤ σ2

ε + 1,

O
(
TR(B)× K

B

)
= O

 min
m∈[n]

( m∑
i=1

1

hi

)−1(
1 +

σ2

ε
+m+

mσ2

nε

)× L∆

ε


= O

 min
m∈[n]

( m∑
i=1

1

hi

)−1(
σ2

ε
+m

)× L∆

ε


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= O

 min
m∈[n]

( 1

m

m∑
i=1

1

hi

)−1(
L∆

ε
+

σ2L∆

mε2

) ,

where we use that m ≤ n for all m ∈ [n].

F.7 Cycle SGD

Theorem F.13 (Cycle SGD). Consider Theorem E.5 and its conditions. Under the hi-fixed computa-
tion model (20), the computational time complexity of Cycle SGD (Alg. 8) is

O
(
max
i∈[n]

hi

(
L∆

ε
+

σ2L∆

mε2

))
with s = min

{
max

{⌈
n2ε
σ2

⌉
, 1
}
, n
}
.

Proof. According to Theorem E.5, 1
K

∑K−1
k=0 E

[
∥∇f(xk)∥2

]
≤ ε for

K =

⌈
8n2L∆

sε
+

8σ2L∆

ε2

⌉
.

In the beginning, the algorithm has “warm-up”, where, in the first iteration of the inner loop, the
server collects s stochastic gradients from s workers, which is equivalent to calculating x1, . . . , xs of
the main branch. Then, the server collects 2s stochastic gradients from the next group of s workers
because they calculated s stochastic in the previous iteration. Starting from the

⌈
n
s

⌉
th iteration, each

group of s workers will return s ×
⌈
n
s

⌉
stochastic gradients in every subsequent iteration. Every

iterations takes at most max
i∈[n]

hi seconds, because they work in parallel and calculate one stochastic

gradient.

Thus, the total time to calculate x1, . . . , xK and find an ε–stationary point is

O

max
i∈[n]

hi ×
⌈n
s

⌉
︸ ︷︷ ︸

“warm-up” phase

+max
i∈[n]

hi ×
K(

s×
⌈
n
s

⌉)


= O
(
max
i∈[n]

hi ×
n

s
+max

i∈[n]
hi ×

(
nL∆

sε
+

σ2L∆

nε2

))
= O

(
max
i∈[n]

hi ×
(
nL∆

sε
+

σ2L∆

nε2

))
.

because L∆
ε ≥ 1

2 without loss of generality (if L∆
ε < 1

2 , then x0 is an ε–stationary point). Finally,

O
(
max
i∈[n]

hi ×
(
nL∆

sε
+

σ2L∆

nε2

))
= O

(
max
i∈[n]

hi ×
(
L∆

ε
+

σ2L∆

nε2

))
due to the choice of s.

F.8 Dual-Process SGD

Theorem F.14 (Dual-Process SGD). Consider Theorem E.11 and its conditions. Under the hi-fixed
computation model (20), the computational time complexity of Dual-Process SGD (Alg. 18) is

O

 min
m∈[n]

( 1

m

m∑
i=1

1

hi

)−1(
L∆

ε
+

σ2L∆

mε2

)
with B = max

{⌈
σ2

ε

⌉
, 1
}
.
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Proof. The proof is essentially the same as the proof of Theorem F.6 since Dual-Process SGD is
equivalent to Local SGD if the communication times are ignored.
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G TOTAL TIME COMPLEXITIES OF ALGORITHMS UNDER (h, τ)-FIXED
COMPUTATION MODEL

To compare the communication complexities and the total time complexities of the methods, we now
assume that it takes τ seconds to send a vector from a worker to a parameter server and τ seconds
to send a vector from the server to the workers in the centralized setting. Alternatively, it takes τ
seconds to send a vector to all other workers in the decentralized setting. Moreover, we assume that
all workers have the same computational performance: worker i takes h seconds to compute a single
stochastic gradient for all i ∈ [n]. We refer to this as the (h, τ)-fixed computation model.

Note that it is possible to assume that each worker has its own communication time bound τi and
computation time bound hi and consider (hi, τi)-fixed computation model (Tyurin et al., 2024).
However, for simplicity, we assume τi = τ and hi = h for all i ∈ [n]. See Section I for a more
general case (hi, τi)-fixed computation model.

G.1 Rennala SGD

Theorem G.1. Consider Theorem E.2 and its conditions. Under (h, τ)-fixed computation model, the
total time complexity of Rennala SGD (Alg. 4) is

O
(
τ × L∆

ε
+ h×

(
L∆

ε
+

σ2L∆

nε2

))
with B = max

{⌈
σ2

ε

⌉
, 1
}
.

Proof. Note that the communication between of vectors happens every B calculated stochastic
gradients, which is equivalent to every B updates of the main branch. Thus the total number of
communications is

O
(
K

B

)
,

where K = Θ
(

BL∆
ε + σ2L∆

ε2

)
due to Theorem E.2. The total communication complexity is

O
(
τ × K

B

)
= O

(
τ

B
×
(
BL∆

ε
+

σ2L∆

ε2

))
= O

(
τ × L∆

ε

)
,

where we use the choice of B. It left to take into account the computation factor, which is the same
as in Theorem F.1.

(22) = O
(
h×

(
L∆

ε
+

σ2L∆

nε2

))
under the (h, τ)-fixed computation model.

G.2 Local SGD

Theorem G.2. Consider Theorem E.3 and its conditions. Under (h, τ)-fixed computation model, the
total time complexity of Local SGD (Alg. 5) is

O
(
τ × L∆

ε
+ h×

(
L∆

ε
+

σ2L∆

nε2

))
with B = max

{⌈
σ2

ε

⌉
, 1
}
.

Proof. The proof essentially the same as the proof of Theorem G.1.
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G.3 Cycle SGD

Theorem G.3. Consider Theorem E.5 and its conditions. Under (h, τ)-fixed computation model, the
total time complexity of Cycle SGD (Alg. 8) is

O
(
τ ×

(
L∆

ε
+

σ2L∆

nε2

)
+ h×

(
L∆

ε
+

σ2L∆

nε2

))
with s = min

{
max

{⌈
n2ε
σ2

⌉
, 1
}
, n
}
.

Proof. Similarly to the proof of Theorem F.13, one can show that the total time complexity is

O

(τ + h)×
⌈n
s

⌉
︸ ︷︷ ︸

“warm-up” phase

+(τ + h)× K(
s×

⌈
n
s

⌉)


because every worker from group s sends one vector
∑Mi

j=1∇f(z
j
i ; η

j
i ) to the server in the inner loop.

Substituting the choice of s, one can get the final result.

G.4 Async-Local SGD

Theorem G.4. Consider Theorem E.6 and its conditions. Under (h, τ)-fixed computation model, the
total time complexity of Async-Local SGD (Alg. 9) is

O
(
τ × L∆

ε
+ h×

(
L∆

ε
+

σ2L∆

nε2

))
with B = max

{⌈
σ2

ε

⌉
, 1
}

and M = max
{⌈

σ2

nε

⌉
, 1
}
.

Proof. Under (h, τ)-fixed computation model, all workers send the sums of M stochastic gradients
at the same time. According to Theorem E.6, the server should collect

O
(
(B +M − 1)L∆

ε
+

σ2L∆

ε2

)
= O

(
L∆

ε
+

σ2L∆

ε2

)
stochastic gradients, where the last equality due to the choice of B and due to B ≥ M.
Since the workers work in parallel and have the equal performance, only Θ

(
min

{
B
M , n

})
=

Θ
(
min

{
max

{
1, σ2

Mε

}
, n
})

workers will participate in optimization. Thus, every worker, which
participates in optimization, has to send

O
(

L∆

min
{

B
M , n

}
ε
+

σ2L∆

min
{

B
M , n

}
ε2

)
= O

(
L∆

ε
+

σ2L∆

nε2
+

ML∆

ε

)
stochastic gradients. Such a worker calculates M stochastic gradients and only then sends the sum;
thus, the maximum number of communications by one worker is

O
(
L∆

Mε
+

σ2L∆

Mnε2
+

L∆

ε

)
.

For every communication, the worker needs to send M stochastic gradients, which takes h seconds,
and sends a sum, which takes τ seconds. Thus, the total time complexity is

O
(
(τ +Mh)

(
L∆

Mε
+

σ2L∆

Mnε2
+

L∆

ε

))
. (33)

Substituting the choice of M, we get the final result.
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G.5 Ringmaster ASGD

Theorem G.5. Consider Theorem E.4 and its conditions. Under (h, τ)-fixed computation model, the
total time complexity of Ringmaster ASGD is

O
(
τ ×

(
L∆

ε
+

σ2L∆

nε2

)
+ h×

(
L∆

ε
+

σ2L∆

nε2

))
(34)

with B = max
{⌈

σ2

ε

⌉
, 1
}
.

Proof. The proof repeats the proof of Theorem G.4. The only difference is that the workers send
M = 1 stochastic gradients. Substituting M = 1 to (33), we get the final result.

Remark G.6. While (34) is only an upper bound, using the same steps as in the proof of Theorem G.4,
one can easily show that the total time complexity of Ringmaster ASGD is lower bounded by

Ω

(
τ ×

(
L∆

ε
+

σ2L∆

nε2

)
+ h×

(
L∆

ε
+

σ2L∆

nε2

))
, (35)

assuming that the iteration rate Θ
(

BL∆
ε + σ2L∆

ε2

)
from Theorem E.4 is tight. As far as we know,

this is the current state-of-the-art iteration rate of an Asynchronous SGD-like method (Maranjyan
et al., 2025; Mishchenko et al., 2022; Koloskova et al., 2022; Cohen et al., 2021).

H COMPARISON BETWEEN OUR Local SGD AND THE CANONICAL Local SGD

In this section, we show that our version of Local SGD (Algorithm 5) achieves a better time complexity
than the classical Local SGD. Although we focus in this section only on Local SGD, we expect similar
improvements to extend to other new methods from Table 1. The purpose of this section is to highlight
the tightness of the Birch SGD framework, using Local SGD as a case study.

In Section G.2, we prove that our version of Local SGD yields the total time complexity

Θ

(
τ
L∆

ε
+ h

(
L∆

ε
+

σ2L∆

nε2

))
. (36)

We now illustrate that this result is provably better than the best theoretical result for the canonical
version of Local SGD (Algorithm 20) known to us.

Algorithm 20 Local SGD (FedAvg) (McMahan et al., 2017)

Require: initial model x0, step size γ, # of local steps K
1: for k = 0, 1, 2, . . . do
2: Broadcast xk to all workers
3: for each worker i ∈ {1, . . . , n} in parallel do
4: zk,0i = xk

5: for j = 0, . . . ,K − 1 do
6: zk,j+1

i = zk,ji − γ∇f(zk,ji ; ηk,ji )
7: end for
8: end for
9: xk+1 = 1

n

∑n
i=1 z

k,K
i

10: end for

To the best of our knowledge, the state-of-the-art analysis of Algorithm 20 in the nonconvex setting
is provided by Koloskova et al. (2020); Luo et al. (2025). Under Assumptions 1.1, 1.2, and 1.3, with
a proper γ, they establish the state-of-the-art iteration complexity

Θ

(
L∆

ε
+

Lσ2∆

nKε2
+

Lσ∆

K1/2ε3/2

)
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for finding an ε–stationary point for all K ≥ 1. Next, under (h, τ)-fixed computation model, this
iteration complexity yields the time complexity

T̄ := τ

(
L∆

ε
+

Lσ2∆

nKε2
+

Lσ∆

K
1
2 ε

3
2

)
+ hK

(
L∆

ε
+

Lσ2∆

nKε2
+

Lσ∆

K
1
2 ε

3
2

)
(up to constant factors) because in each iteration the workers communicate, which takes τ seconds,
and each worker (in parallel) computes K stochastic gradients, which takes h×K seconds. Ignoring
non-negative terms,

T̄ ≥ τ

(
L∆

ε
+

Lσ∆

K
1
2 ε

3
2

)
+ h

(
KL∆

ε
+

Lσ2∆

nε2
+

K
1
2Lσ∆

ε
3
2

)

and T̄ is lower bounded by

Θ

(√
τh

L2σ2∆2

ε3
+ τ

L∆

ε
+ h

(
L∆

ε
+

σ2L∆

nε2

))
(37)

for all K ≥ 1 due to the AM-GM inequality. Notice that (36) ≤ (37). However, (37) can be arbitrarily
larger due to the first term. Indeed, for sufficiently large n, we have

(36) = Θ

(
τ
L∆

ε
+ h

(
L∆

ε

))
,

while

(37) = Θ

(√
τh

L2σ2∆2

ε3
+ τ

L∆

ε
+ h

(
L∆

ε

))
.

Note that the latter expression has a 1/ε3/2 dependency, whereas our result has a 1/ε dependency. Thus,
our result is provably tighter.

Note that we obtain the time complexity (36) for several other new methods, including Async-Local
SGD, Async-Batch SGD, and Dual-Process SGD.

I TOTAL TIME COMPLEXITIES OF ALGORITHMS UNDER (hi, τi)-FIXED
COMPUTATION MODEL

We now assume that each worker has its own communication time bound τi and computation time
bound hi and consider the (hi, τi)-fixed computation model (Tyurin et al., 2024). It takes τi seconds
to send a vector from worker i to a parameter server and τi seconds to send a vector from the server
to worker i in the centralized setting. Alternatively, it takes τi seconds to send a vector to all other
workers in the decentralized setting.

This setting reduces to hi-fixed computation model when τi = 0 for all i ∈ [n], and reduces to
(h, τ)-fixed computation model when hi = h and τi = τ for all i ∈ [n]. Without loss of generality,
we assume that max{h1, τ1} ≤ · · · ≤ max{hn, τn}. Otherwise, the workers can be sorted according
to these inequalities.

Notice that Rennala SGD, Local SGD, and Cycle SGD wait for the slowest worker by the designs.
If maxi∈[n] τi → ∞, then their total complexity tends to ∞. Thus, they are suboptimal under
the (hi, τi)-fixed computation model. Ringmaster ASGD is suboptimal even under the (h, τ)-fixed
computation model. Async-Local SGD and Async-Batch SGD are optimal under the (h, τ)-fixed
computation model, but we conjecture that they are suboptimal under the (hi, τi)-fixed computation
model.

We now prove that Dual-Process SGD is optimal under the (hi, τi)-fixed computation model within
the family of methods that communicate either with a server (centralized setting) or with each other
(decentralized setting).
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I.1 Dual-Process SGD

Theorem I.1 (Dual-Process SGD). Consider Theorem E.11 and its conditions. Under the (hi, τi)-fixed
computation model, the total time complexity of Dual-Process SGD (Alg. 18) is

O

 min
m∈[n]

max

max{hm, τm},
(

m∑
i=1

1

hi

)−1
σ2

ε


 L∆

ε


with B = max

{⌈
σ2

ε

⌉
, 1
}
.

This complexity is optimal for distributed methods without compression communicating with a server
(centralized setting) or with each other (decentralized setting) (Tyurin et al., 2024; Tyurin & Richtárik,
2024). Notice that it is robust to slow communications. Indeed, if τn →∞, then this complexity will
ignore worker n due to the min

m∈[n]
operation.

Lemma I.2. Let us define

T (B) := 4 min
m∈[n]

max

max{hm, τm},
(

m∑
i=1

1

hi

)−1

B


 . (38)

Under the (hi, τi)-fixed computation model, the time required to calculate x1, . . . , xB of the main
branch is at most 3T (B) seconds, the time required to calculate xB+1, . . . , x2B is at most 3T (B)
seconds, and so on.

Proof. Notice that

T (B) = 4max

max{hm∗ , τm∗},
(

m∗∑
i=1

1

hi

)−1

B

 .

for some m∗ ∈ [n]. The idea is similar as in Lemmas F.2 and F.7. All workers calculate stochastic
gradients in parallel. For all t ≥ 0, after t seconds the first m∗ workers can calculate at at least

m∗∑
i=1

max

{⌊
t

hi

⌋
− 1, 0

}
, (39)

stochastic gradients, where we subtract 1 because at most one stochastic gradient can be ignored.
Substituting T (B) into (39), we have

m∗∑
i=1

max

{⌊
T (B)

hi

⌋
− 1, 0

}
≥

m∗∑
i=1

⌊
T (B)

hi

⌋
−m∗ ≥

m∗∑
i=1

T (B)

hi
− 2m∗.

Recall that max{h1, τ1} ≤ · · · ≤ max{hm∗ , τm∗}. Thus,

T (B) ≥ 2max{hm∗ , τm∗}+ 2

(
m∗∑
i=1

1

hi

)−1

B ≥ 2hi + 2

(
m∗∑
i=1

1

hi

)−1

B

for all i ≤ m∗, and

m∗∑
i=1

max

{⌊
T (B)

hi

⌋
− 1, 0

}
≥

m∗∑
i=1

2 +
2

hi

(
m∗∑
i=1

1

hi

)−1

B

− 2m∗ ≥ B.

Thus, by the time T (B), the first m∗ workers can calculate B stochastic gradients.

Next, we need to estimate the communication time. It takes at most maxi∈[m∗] τi ≤
max{hm∗ , τm∗} ≤ T (B) seconds to receive a vector from the server (in the decentralized set-
ting, we do not account this time). Similarly, it takes at most maxi∈[m∗] τi ≤ T (B) seconds to send a
vector to the server (in the decentralized setting, to send a vector to other workers). Thus, one round
in Alg 18 takes at most 3× T (B) seconds, which is equivalent to calculating x1, . . . , xB of the main
branch. The same argument can be applied to the next B point of the main branch, and so on.
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Proof of Theorem I.1. The proof is similar to the proof of Lemma F.2. Due to Theorem E.2, we know
that 1

K

∑K−1
k=0 E

[
∥∇f(xk)∥2

]
≤ ε for

K =

⌈
4BL∆

ε
+

8σ2L∆

ε2

⌉
.

Using Lemma I.2, the total time to find an ε–stationary point is

O
(
T (B)× K

B

)
= O

(
T (B)×

(
L∆

ε
+

σ2L∆

Bε2

))
.

Using the choice of B,

O
(
T (B)× K

B

)
= O

 min
m∈[n]

max

max{hm, τm},
(

m∑
i=1

1

hi

)−1
σ2

ε


× L∆

ε

 .
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J PERFORMANCE OF Rennala SGD AND Ringmaster ASGD ON A QUADRATIC
FUNCTION

In this section, we formally prove that the convergence of Ringmaster ASGD can be provably faster
than Rennala SGD due to the frequent model updates.
Theorem J.1. Consider Rennala SGD (Alg. 4) and Ringmaster ASGD (Alg. 7) with the optimal
parameters B from Sec. F. Then, there exists a µ-strongly convex function and corresponding
stochastic gradients that satisfy Assumptions 1.1, 1.2, and 1.3 with σ2

/ε ≥ n, such that Rennala SGD,
with any step size γ, requires

Θ̃

(
σ2

nε
× h× L

µ

)
seconds to find ε-stationary point under the hi-fixed computation model (20) with hi = h for all
i ∈ [n]. At the same time, there exists a step size for Ringmaster ASGD such that it requires at most

Õ
(
h× L

µ

)
seconds to find ε-stationary point.

Proof. In this construction, we take f : R2 → R such that

f(w ≡ (x, y)) =
µx2

2
+

Ly2

2
(40)

for all x, y ∈ R. Moreover, we assume that the stochastic gradients ∇f(w; ξ) are equal to the true
gradient ∇f(w); thus, there is no randomness. Note that a priori, both methods do not have this
information and therefore must choose B = Θ

(
σ2

ε

)
, even though the effective variance is zero.

By the design of Rennala SGD, its algorithm is equivalent to the following steps:

wt+1 = wt − γB∇f(wt) (41)

because the workers calculate B gradients in every global round. Each round takes

Θ

(
h× B

n

)
= Θ

(
h
σ2

nε

)
seconds, because the workers have the computation speed h and B = Θ

(
σ2

ε

)
in Theorem F.1.

It is well known that the sequence (41) requires

Θ̃

(
L

µ

)
iterations (up to logarithmic factors) to find an ε-solution or ε-stationary point with the function (40),
even when the step size γ can be tuned. Thus, the computational time complexity of Rennala SGD is

Θ̃

(
σ2

nε
× h× L

µ

)
seconds.

Consider now the steps of Ringmaster ASGD w.r.t. the first argument x. In this algorithm, we take
γ = 1

2Ln . In the case when the computation time is equal for all workers, the first n steps are

x1 = x0 − γµx0 = (1− γµ)x0,

x2 = x1 − γµx0 = (1− 2γµ)x0,

...

xn = xn−1 − γµx0 = (1− nγµ)x0,
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because the workers start calculating at the same point and return the gradients at the same time.
Notice that 0 ≤ xn ≤ · · · ≤ x2 ≤ x1. Then, the first worker starts calculating at x1, the seconds
worker starts calculating at x2, and so on. Therefore, the next steps are

xn+1 = xn − γµx1

= (1− nγµ)x0 − γµ(1− γµ)x0 = (1− (n+ 1)γµ+ γ2µ2)x0,

xn+2 = xn+1 − γµx2

= (1− (n+ 1)γµ+ γ2µ2)x0 − γµ(1− 2γµ)x0 = (1− (n+ 2)γµ+ 3γ2µ2)x0,

...

x2n = x2n−1 − γµxn =

(
1− 2nγµ+

n(n+ 1)

2
γ2µ2

)
x0 ≤ (1− nγµ)

2
x0.

For γ = 1/2Ln, we have 0 ≤ x2n ≤ · · · ≤ xn+1 ≤ xn ≤ · · · ≤ x2 ≤ x1. Using mathematical
induction, assume that 0 ≤ xkn ≤ · · · ≤ x1 for some k ≥ 1 and xpn ≤ (1− nγµ)

p
x0 for all p ≤ k,

which is true for k = 2 (base case). We now prove it for k + 1. Ringmaster ASGD calculates xkn+1

as follows:

xkn+1 = xkn − γµx(k−1)n+1,

which ensures that xkn+1 ≤ (1− γµ)xkn ≤ xkn and xkn+1 ≥ x(k−1)n+1 − γµx(k−1)n+1 ≥ 0 for
γ = 1/2Ln. We can continue:

xkn+2 = xkn+1 − γµx(k−1)n+2,

which ensures that

xkn+2 ≤ xkn+1 − γµxkn ≤ (1− γµ)xkn − γµxkn = (1− 2γµ)xkn

and xkn+2 ≥ x(k−1)n+2 − γµx(k−1)n+2. Continuing, we have

x(k+1)n = x(k+1)n−1 − γµxkn.

One can show that

x(k+1)n ≤ (1− (n− 1)γµ)xkn − γµxkn ≤ (1− nγµ)xkn,

and x(k+1)n ≥ xkn − γµxkn ≥ 0. We have proved the next case, k + 1, of the mathematical
induction.

Thus, the sequence {xpn}p≥2 monotonically decreases with the rate

xpn ≤ (1− nγµ)
p
x0.

Using the same reasoning, we one can show the similar result holds for the second argument y of the
function but with L instead of µ.

Recall that it takes h seconds to calculate xn because n workers work in parallel, it takes h seconds
to calculate x2n, and so on. Thus, the computational time complexity of Ringmaster ASGD is

Õ
(
h× L

µ

)
with step size γ = 1

2Ln .
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