

000 001 002 003 004 005 BIRCH SGD: A TREE GRAPH FRAMEWORK FOR 006 LOCAL AND ASYNCHRONOUS SGD METHODS 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026

ABSTRACT

027 We propose a new unifying framework, Birch SGD, for analyzing and designing dis-
028 tributed SGD methods. The central idea is to represent each method as a weighted
029 directed tree, referred to as a *computation tree*. Leveraging this representation, we
030 introduce a general theoretical result that reduces convergence analysis to studying
031 the geometry of these trees. This perspective yields a purely graph-based inter-
032 pretation of optimization dynamics, offering a new and intuitive foundation for
033 method development. Using Birch SGD, we design eight new methods and analyze
034 them alongside previously known ones, with at least six of the new methods shown
035 to have optimal computational time complexity. Our research leads to two key in-
036 sights: (i) all methods share the same “iteration rate” of $\mathcal{O}((R+1)L\Delta/\varepsilon + \sigma^2 L\Delta/\varepsilon^2)$,
037 where R the maximum “tree distance” along the main branch of a tree; and (ii) dif-
038 ferent methods exhibit different trade-offs—for example, some update iterates more
039 frequently, improving practical performance, while others are more communication-
040 efficient or focus on other aspects. Birch SGD serves as a unifying framework for
041 navigating these trade-offs. We believe these results provide a unified foundation
042 for understanding, analyzing, and designing efficient asynchronous and parallel
043 optimization methods.

1 INTRODUCTION

044 Optimization is central to machine learning (ML), data science (DS), and federated learning (FL)
045 (Konečný et al., 2016; Bottou et al., 2018; Kairouz et al., 2021). In these domains, stochastic
046 optimization techniques such as stochastic gradient descent (SGD) (Robbins & Monro, 1951) and its
047 adaptive variants (Adam, AdamW, etc) (Kingma & Ba, 2015; Loshchilov & Hutter, 2019) have become
048 the standard approach for tackling large-scale problems (Schmidt et al., 2021). Due to the rising
049 computational demands of modern functions, the theoretical foundation of distributed algorithms
050 supporting a large number of workers (e.g., CPUs, GPUs, servers) is important (Mayer & Jacobsen,
051 2020; Kairouz et al., 2021; Douillard et al., 2023).

052 We consider distributed optimization problems with smooth nonconvex optimization functions:

$$\min_{x \in \mathbb{R}^d} f(x), \quad (1)$$

053 In nonconvex settings, the goal is to find an ε -stationary point, meaning we want to find a random
054 vector \bar{x} such that $\mathbb{E}[\|\nabla f(\bar{x})\|^2] \leq \varepsilon$ (Nemirovskij & Yudin, 1983; Murty & Kabadi, 1985). The
055 function $f : \mathbb{R}^d \rightarrow \mathbb{R}$ satisfies the following standard assumptions:

056 **Assumption 1.1.** f is differentiable and L -smooth: $\|\nabla f(x) - \nabla f(y)\| \leq L \|x - y\| \forall x, y \in \mathbb{R}^d$.

057 **Assumption 1.2.** There exist $f^* \in \mathbb{R}$ such that $f(x) \geq f^*$ for all $x \in \mathbb{R}^d$.

058 We focus on problems where workers are limited to computing stochastic gradients. Each worker
059 has access to unbiased stochastic gradients, denoted by $\nabla f(x; \xi)$, whose variance is bounded by
060 σ^2 . In the context of ML, this implies that all workers can access the same data, which is practical
061 when training large language and computer vision models. In such scenarios, privacy is not a critical
062 concern, and devices can sample data from the Internet or shared datasets (Goodfellow et al., 2016).

063 **Assumption 1.3.** For all $x \in \mathbb{R}^d$, stochastic gradients $\nabla f(x; \xi)$ are unbiased and σ^2 -variance-
064 bounded, i.e., $\mathbb{E}_\xi[\nabla f(x; \xi)] = \nabla f(x)$ and $\mathbb{E}_\xi[\|\nabla f(x; \xi) - \nabla f(x)\|^2] \leq \sigma^2$, where $\sigma^2 \geq 0$.

054 1.1 RELATED WORK
055

056 **One worker and optimal oracle complexity.** With a single worker, the most standard optimization
057 method is the Vanilla SGD algorithm, which updates the iterate as $w^{k+1} = w^k - \gamma \nabla f(w^k, \eta^k)$, where
058 $\{\eta^k\}$ are i.i.d., $w^0 \in \mathbb{R}^d$ is a starting point, γ is a step size, and $\Delta := f(w^0) - f^*$. Arjevani et al.
059 (2022); Carmon et al. (2020) showed that Vanilla SGD is *optimal* in terms of oracle complexity, which
060 is given by $\Theta(L\Delta/\varepsilon + \sigma^2 L\Delta/\varepsilon^2)$ for finding an ε -stationary point.

061 **Multiple workers and optimal time complexity.** Consider now that we have n workers computing
062 stochastic gradients asynchronously and in parallel. In this setup, there are numerous ways to
063 construct a distributed SGD method. The most well-known celebrated and recent approaches include
064 Synchronized SGD (Minibatch SGD), Local SGD (Zinkevich et al., 2010; Stich, 2019), Asynchronous
065 SGD (Recht et al., 2011), Picky SGD (Cohen et al., 2021), Rennala SGD (Tyurin & Richtárik, 2023),
066 and Ringmaster ASGD (Maranjan et al., 2025). The multi-worker setup is rich and versatile, offering
067 numerous ways to design distributed SGD methods.

068 One may naturally ask which method offers the best theoretical performance. In distributed settings,
069 the standard oracle complexity becomes less informative, as workers compute stochastic gradients
070 in parallel with varying speeds. A more suitable comparison uses the *h_i -fixed computation model*
071 (Mishchenko et al., 2022), where each worker i needs at most h_i seconds to compute a gradient.
072 In this model, Mishchenko et al. (2022); Koloskova et al. (2022) showed that Asynchronous SGD
073 outperforms Synchronized SGD. Its time complexity is further improved by Rennala SGD (Tyurin
074 & Richtárik, 2023) and Ringmaster ASGD¹ (Maranjan et al., 2025), both optimal under this and
075 the more general *universal computation model* (Tyurin, 2025) (see Section A). However, as we will
076 discuss in more detail later, other factors come into play, such as communication complexity, support
077 for AllReduce, peak bandwidth, and model update frequency.

078 These developments raise several important questions. Rennala SGD and Ringmaster ASGD are known
079 to be optimal, yet differ in design and structure, each with distinct advantages and trade-offs. This
080 leads to our central questions: *Are there other optimal methods? Can we develop a unified framework
081 that encompasses all distributed SGD methods and offers theoretical guidance? What fundamental
082 properties make these methods optimal? And, given different system constraints, which method should
083 one choose?*

084 1.2 CONTRIBUTIONS
085

086 ♠ **New framework: Birch SGD (Section 2).** We propose Birch SGD, a unifying framework that
087 captures a wide range of distributed SGD methods. The key idea is that SGD methods can be
088 represented using weighted directed trees, which we refer to as *computation trees* (see Figure 1). We
089 develop a new theoretical result, Theorem 2.4, that reduces the analysis of SGD methods to analyzing
090 of the structure of these computation trees. The proofs become purely geometric and topological
091 in nature, offering geometric intuition for the design of new methods. Moreover, this geometric
092 viewpoint leads to tighter time complexity guarantees even for Local SGD (FedAvg) approaches
093 (McMahan et al., 2017), as we illustrate in Section H.

094 ♣ **Eight new methods (Table 1 and Section 3).** Using Birch SGD, we identify eight new methods
095 in addition to those already known. For the first time, we prove that at least **six of these newly
096 discovered methods are computationally optimal**, matching the lower bound (Tyurin & Richtárik,
097 2023). We compare all methods across several dimensions, including computational and communica-
098 tion complexity, AllReduce compatibility, peak bandwidth, and model update frequency. Our
099 improvements: i) our newly developed Async-Local SGD and Async-Batch SGD provably improve the
100 communication complexity of Ringmaster ASGD while preserving asynchronicity; ii) we introduce
101 Cycle SGD, which provably reduces peak bandwidth compared to all existing methods; iii) we propose
102 a key modification to the family of local methods and design Local SGD and Dual-Process SGD that,
103 for the first time in the literature, achieve the optimal time complexities within this family and improve
104 upon the classical approach (see Section H); iv) for multi-cluster settings, we introduce Local-Async
105 SGD and Nested Local-Async SGD, incorporating a carefully designed synchronization mechanism
106 that guarantees optimality in computational time complexity; v) we develop a flexible meta-algorithm,
107 Meta Local SGD, which supports arbitrary synchronization strategies, while incorporating a “Hard

¹Asynchronous SGD with a key modification; see Alg.7.

108

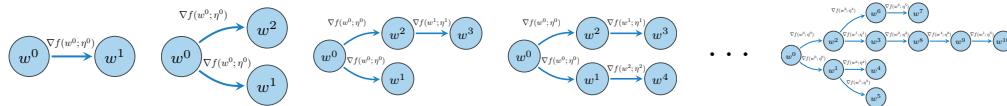
109

110 **Algorithm 1** Birch SGD framework

111 **Input:** starting point $w^0 \in \mathbb{R}^d$, step size $\gamma \geq 0$
112 Initialize the set of computed points: $V = \{w^0\}$
113 (and the set of edges $E = \emptyset$)
114 **for** $k = 0, 1, 2, \dots$ **do**
115 Choose any point $w_{\text{base}} \in V$ from which to compute a new point
116 Choose any point $w_{\text{grad}} \in V$ at which to compute a stochastic gradient
117 Compute the new point²: $w^{k+1} = w_{\text{base}} - \gamma \nabla f(w_{\text{grad}}; \eta)$, $\eta \sim \mathcal{D}_\xi$
118 Add w^{k+1} to the set of computed points V
119 (and add the edge with weight $(w_{\text{base}}, w^{k+1}, \nabla f(w_{\text{grad}}; \eta))$ to the set of
120 edges E)
121 **end for**

122

123

124 Figure 1: A possible computation tree G for SGD method after four steps and beyond.

125

126

127

128

129

130 Sync" mechanism to guarantee convergence rates and to temper overly chaotic synchronization. As a

131 byproduct, we prove that frequent model updates of fully asynchronous methods can lead to faster

132 convergence and improve optimal Rennala SGD.

133

134

135

136

137

138

139

2 Birch SGD: A GENERAL VIEW OF SGD METHODS

140

141

142 We begin our work by observing that various SGD methods, including Vanilla SGD, Asynchronous
143 SGD, Local SGD, among others, can be constructed in the manner described in Algorithm 1.

144

145

146

147

148

149

150

151

152

153

154

155

156 Let us explain it. Initially, any SGD method starts at some point $w^0 \in \mathbb{R}^d$, computes a stochastic
157 gradient at w^0 , and then finds a new point $w^1 = w^0 - \gamma \nabla f(w^0; \cdot)$, which is added to the set V
158 of computed points. In the next step, there are four options for choosing the subsequent point w^2 :
159 $w^2 = w^i - \gamma \nabla f(w^j; \cdot)$ for $i, j \in \{0, 1\}$. This process continues indefinitely, and the number of
160 possible choices, and hence methods, grows exponentially (see an example in Figure 1).

161 Note that any instance of Algorithm 1, after any steps, can be represented by a weighted directed tree
162 $G = (V, E)$, called a *computation tree*, where V is the set of computed points and E is the set of
163 edges with weights given by the stochastic gradients used to compute the new points. Our main idea
164 now is to take any computation tree G and analyze its structure to provide convergence guarantees
165 for the corresponding SGD method. Intuitively, the structure of the tree, e.g., number of branches,
166 length of branches, the tree distance between w_{grad} and w_{base} in Alg. 1 when we calculate a new point
167 should be related to the convergence speed of the method.

168 **Example.** Consider Local SGD from Figure 4. There, we illustrate two global steps of the method with
169 2 workers. In the first round, they compute $M_1 = 2$ and $M_2 = 2$ local steps (first figure in Figure 4).
170 During these steps, worker 1 first calculates $\nabla f(x^0; \eta_1^{0,0})$, finds $z_1^{0,1} = x^0 - \gamma \nabla f(x^0; \eta_1^{0,0})$, then
171 calculates $\nabla f(z_1^{0,1}; \eta_1^{0,1})$ and $z_1^{0,2} = x^0 - \gamma \nabla f(z_1^{0,1}; \eta_1^{0,1})$. Similar steps are performed by worker
172 2. Then, via a parameter-server or AllReduce, LocalSGD aggregates the stochastic gradients and
173 performs the global step $x^0 - \gamma(\nabla f(x^0; \eta_1^{0,0}) + \nabla f(z_1^{0,1}; \eta_1^{0,1}) + \nabla f(x^0; \eta_2^{0,0}) + \nabla f(z_2^{0,1}; \eta_2^{0,1}))$
174 to obtain the new global point x^4 , from which the second global steps will start. The step of

February Azure,
Igor Grabar. 1904.

162 finding x^4 is equivalent to the steps $x^1 = x^0 - \gamma \nabla f(x^0; \eta_1^{0,0})$, $x^2 = x^1 - \gamma \nabla f(z_1^{0,1}; \eta_1^{0,1})$, $x^3 =$
 163 $x^2 - \gamma \nabla f(z_1^{0,1}; \eta_1^{0,1})$, and $x^4 = x^3 - \gamma \nabla f(z_2^{0,1}; \eta_2^{0,1})$. This is how we construct the second figure
 164 in Figure 4, which is a geometric representation of the first global step. Then, the workers compute
 165 $M_1 = 1$ and $M_2 = 3$ local steps, accordingly, and synchronize again (third figure in Figure 4) to find
 166 x^8 , from which the third global steps will start.
 167
 168

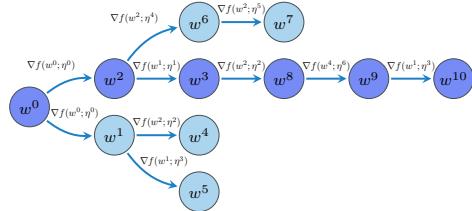
169 2.1 MAIN THEORETICAL RESULT ON CONVERGENCE RATES

170
 171 Before we state our main theorem, we need to introduce sequences and definitions that characterize
 172 the structure of computation trees G .
 173

174 **Definition 2.1 (Main Branch and Auxiliary Sequence).** For a given computation tree G , we call a
 175 sequence $\{x^k\}_{k \geq 0}$ a *main branch* if it forms a path in G starting at the initial node $w^0 \equiv x^0$. That
 176 is, for each $k \geq 0$, the node x^{k+1} is a direct successor of x^k in G . By the construction of tree G , if
 177 $\{x^k\}_{k \geq 0}$ is a *main branch*, then for each $k \geq 0$ there exists a unique pair (z^k, ξ^k) , where $z^k \in V$
 178 and $\xi^k \sim \mathcal{D}_\xi$, such that $x^{k+1} = x^k - \gamma \nabla f(z^k; \xi^k)$. The sequence $\{(z^k, \xi^k)\}_{k \geq 0}$, which generates
 179 the main branch $\{x^k\}_{k \geq 0}$, is called an *auxiliary sequence*.
 180

181 Although there may be several possible choices and any of them can be chosen in general, the
 182 selection of the *main branch* is typically unique and straightforward in all reasonable SGD methods,
 183 as it forms the backbone of the tree³.
 184

185 Let us consider an example. In Figure 1, we can take a main branch $\{x^k\}_{k \geq 0}$ as follows:
 186 $x^0 = w^0, x^1 = w^2, x^2 = w^3, x^3 = w^8, x^4 = w^9, x^5 = w^{10}$. Accordingly, the
 187 auxiliary sequence is given by $(z^0, \xi^0) = (w^0, \eta^0), (z^1, \xi^1) = (w^1, \eta^1), (z^2, \xi^2) =$
 188 $(w^2, \eta^2), (z^3, \xi^3) = (w^4, \eta^6), (z^4, \xi^4) = (w^1, \eta^3)$. See Figure 2.
 189
 190



191 Figure 2: Visualization.
 192

193 Intuitively, the convergence rate should depend on the distance between x^k and z^k . When these points
 194 are close (e.g., $x^k = z^k$), the stochastic gradient is computed near the update point, typically yielding
 195 descent on average. In contrast, if they are far apart, the gradient at z^k may poorly approximate
 196 the local behavior of f at x^k , making the update direction irrelevant. Thus, it is crucial to define a
 197 suitable distance metric that is both easy to evaluate for any point pair and directly related to the
 198 convergence speed of the SGD method. We propose the following:
 199

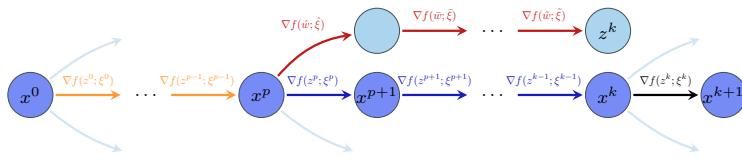
200 **Definition 2.2.** For all $y, z \in V$, the tree distance $\text{dist}(y, z)$ between y and z is the maximum number
 201 of edges to the common closest ancestor of y and z .
 202

203 As an example, consider Figure 2, where $\text{dist}(w^9, w^4) = \max\{4, 2\} = 4$, because the common
 204 ancestor is w^0 , the number of edges from w^9 to w^0 is 4, and the number of edges from w^4 to w^0 is
 205 2. It is left to define the *representation* of a point $y \in V$.
 206

207 **Definition 2.3.** For all $y \in V$, the representation $\text{repr}(y)$ is the multiset of stochastic gradients applied
 208 to w^0 to get y . In other words, there exist $\{(m^1, \kappa^1), \dots, (m^p, \kappa^p)\} =: \text{repr}(y)$ for some $p \geq 0$ such
 209 that $y = w^0 - \gamma \sum_{j=1}^p \nabla f(m^j, \kappa^j)$.
 210

211 We define the representation of points to understand how all points are related. An important
 212 relation that we need is that $\text{repr}(x) \subseteq \text{repr}(y)$, which essentially means that all stochastic
 213 gradients used to compute x are also used to compute y . For instance, in Figure 2, $\text{repr}(w^9) =$
 214 $\{(w^0, \eta^0), (w^1, \eta^1), (w^2, \eta^2), (w^4, \eta^6)\}$ and $\text{repr}(w^4) = \{(w^0, \eta^0), (w^2, \eta^2)\}$, which allows to track
 215 the path from the starting point w^0 to w^9 and w^4 , and show that $\text{repr}(w^4) \subseteq \text{repr}(w^9)$.
 216

217
 218 ³A fitting analogy is the Git distributed version control system, which also has a central main branch.
 219

216
217
218
219
220
221
222223 Figure 3: A general representation of the step $x^{k+1} = x^k - \gamma \nabla f(z^k; \xi^k)$ that shows how x^k and z^k
224 are graph-geometrically related.225
226
227

228 **Theorem 2.4** (Main Theorem). *Let Assumptions 1.1, 1.2, and 1.3 hold. Consider any SGD
229 method represented by computation tree $G = (V, E)$. Let $\{x^k\}_{k \geq 0}$ be a main branch of G and
230 $\{(z^k, \xi^k)\}_{k \geq 0}$ be the corresponding auxiliary sequence (see Def. 2.1) that satisfy the following
231 conditions:*

232 **Condition 1:** *For all $k \geq 0$, ξ^k is statistically independent of $\{(x^{i+1}, z^{i+1}, \xi^i)\}_{i=0}^{k-1}$.*

233 **Condition 2:** *The representation of z^k is contained within that of x^k , i.e., $\text{repr}(z^k) \subseteq \text{repr}(x^k)$
234 for all $k \geq 0$. Equivalently, all stochastic gradients used in the computation of z^k are also
235 utilized in calculating x^k .*

236 **Condition 3:** *There exists a constant $R \in [0, \infty]$ such that $\text{dist}(x^k, z^k) \leq R$ for all $k \geq 0$.*

237 *Then $\frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E} [\|\nabla f(x^k)\|^2] \leq \varepsilon$ for all $K \geq \frac{4(R+1)L\Delta}{\varepsilon} + \frac{8\sigma^2 L\Delta}{\varepsilon^2}$ with step size $\gamma =$
238 $\min\{\frac{1}{2L}, \frac{1}{2RL}, \frac{\varepsilon}{4\sigma^2 L}\}$, where $\Delta = f(x^0) - f^*$.*

239

240 Assumptions 1.1, 1.2, and 1.3 are well-known and standard in the analysis of stochastic optimization
241 methods (Lan, 2020; Arjevani et al., 2022). Let us explain the conditions of the theorem.

242
243
244
245
246

247 **Condition 1.** The first condition condition requires that ξ^k is independent of $\{(x^{i+1}, z^{i+1}, \xi^i)\}_{i=0}^{k-1}$,
248 which is a weak assumption. In Vanilla SGD, where $x^{k+1} = x^k - \gamma \nabla f(x^k; \xi^k)$, it is standard to
249 assume that each ξ^k is an independent sample. Our condition generalizes this to other SGD variants.
250 It guarantees that the stochastic gradient $\nabla f(\cdot; \xi^k)$ is not used in computing x^k or z^k . Notably, this
251 remains true even in methods like Local SGD, where gradients may be reused.

252
253
254
255
256
257
258
259
260

261 **Condition 2.** The second condition is also weak in any *reasonable and effective* SGD method.
262 Figure 3 illustrates that there exists $p \geq 0$ such that

263
$$z^k = x^0 - \gamma \sum_{i=0}^{p-1} \nabla f(z^i; \xi^i) - \gamma \sum_{(w, \xi) \in S^k} \nabla f(w; \xi), \quad x^k = x^0 - \gamma \sum_{i=0}^{p-1} \nabla f(z^i; \xi^i) - \gamma \sum_{i=p}^{k-1} \nabla f(z^i; \xi^i),$$

264 where S^k is the set of points and random variables used to compute z^k starting from x^p .

265
266
267
268
269

270 Computing each stochastic gradient is time-consuming, so it is desirable to utilize as many computed
271 gradients as possible, including $\{\nabla f(w; \xi)\}_{(w, \xi) \in S^k}$. Once $\nabla f(z^k; \xi^k)$ has been used to compute
272 x^{k+1} , the first condition prevents further use of $\{\nabla f(w; \xi)\}_{(w, \xi) \in S^k}$ in subsequent iterations because
273 z^k depends on ξ for all $(w, \xi) \in S^k$. Thus, it is reasonable to assume that if an SGD method
274 employs the stochastic gradient $\nabla f(z^k; \xi^k)$ to compute x^{k+1} , then it has already used the gradients
275 $\{\nabla f(w; \xi)\}_{(w, \xi) \in S^k}$ in previous iterations to fully leverage all available information. In other words,
276 all stochastic gradients used in the computation of z^k are also utilized in calculating x^k . This is
277 equivalent to the second condition $\text{repr}(z^k) \subseteq \text{repr}(x^k)$.

278
279
280
281
282

283 **Condition 3.** This condition is arguably the most important in Theorem 2.4 because it determines the
284 *iteration rate* of the main branch $\{x^k\}_{k \geq 0}$. In fact, *iteration rate* $\mathcal{O}((R+1)L\Delta/\varepsilon + \sigma^2 L\Delta/\varepsilon^2)$ depends
285 on $R := \sup_{k \geq 0} \text{dist}(x^k, z^k)$.

286
287
288
289
290

291 **Vanilla SGD** (Section E.1). For instance, consider the simplest method, the classical stochastic
292 gradient descent (Vanilla SGD) method: $w^{k+1} = w^k - \gamma \nabla f(w^k, \eta^k)$, where w^0 is a starting point
293 and are $\{\eta^k\}$ are i.i.d. random variables. Taking $x^k = z^k = w^k$ and $\xi^k = \eta^k$ for all $k \geq 0$.
294 Clearly, all conditions of Theorem 2.4 are satisfied: ξ^k is independent of $\{(x^{i+1}, z^{i+1}, \xi^i)\}_{i=0}^{k-1}$,
295 $\text{repr}(x^k) = \text{repr}(z^k)$ for all $k \geq 0$, and $R = 0$. We get the *iteration rate* $\mathcal{O}(L\Delta/\varepsilon + \sigma^2 L\Delta/\varepsilon^2)$. The
296 corresponding tree is in Figure 15.

270 Conversely, if an SGD method is overly non-conservative, leading to a large tree distance R between
 271 x^k and z^k , the *iteration rate* correspondingly increases. The further the maximum tree distance R
 272 between x^k and z^k , the more iterations are required to achieve the desired accuracy ε .

273 **Proof novelties.** In Section D.1, we outline the key novelties, challenges, and the intuition guiding
 274 our choice of conditions. Although our proof in Section D.2 is compact—which we view as a strength
 275 rather than a limitation—it unifies a broad class of methods and provides new insights. Notably, right
 276 at the beginning, we introduce a distinct approach to handling the staleness term $\|x^k - z^k\|$, which
 277 naturally arises from the update $x^{k+1} = x^k - \gamma \nabla f(z^k; \xi^k)$ in asynchronous and local methods. This
 278 treatment fundamentally differs from prior work, as it analyzes staleness through geometric graph
 279 reasoning. Moreover, using our framework, we later present our version of Local SGD, which yields
 280 tighter guarantees compared to the classical Local SGD (see Sections 3 and H), further validating both
 281 our framework and proof technique.

283 3 EXISTING AND NEW ALGORITHMS: SUMMARY AND COMPARISON

285 In this section, we consider examples of distributed methods. We will show that all of them can be
 286 represented by computation trees and analyzed using Theorem 2.4. The detailed analysis of each
 287 method is provided in Section E.

288 **Rennala SGD** (Section E.2). Consider Rennala SGD, which can be written as

$$290 \quad w^{k+1} = w^k - \gamma \sum_{i=1}^B \nabla f(w^k; \eta^{k,i}), \quad (2)$$

293 where n workers collaboratively calculate the batch of size B (see Alg. 4). This method pro-
 294 duces a computation tree constructed as follows: $x^1 = x^0 - \gamma \nabla f(x^0; \xi^0), \dots, x^B = x^{B-1} -$
 295 $\gamma \nabla f(x^0; \xi^{B-1}), x^{B+1} = x^B - \gamma \nabla f(x^B; \xi^B), \dots, x^{2B} = x^{2B-1} - \gamma \nabla f(x^B; \xi^{2B-1}), \dots$, where
 296 B is a batch size (see Figure 16) and $\{\xi^k\}$ are i.i.d. from \mathcal{D}_ξ . Notice that the computation tree is
 297 equivalent to (2) because $x^B = w^1, x^{2B} = w^2$, etc. Here, all conditions of Theorem 2.4 are satisfied
 298 for the main branch $\{x^k\}$ with the auxiliary sequence $\{(z^k, \xi^k)\}$ such that $z^0 = \dots = z^{B-1} = x^0$,
 299 $z^B = \dots = z^{2B-1} = x^B$, etc, and $\xi^0 = \eta^{0,0}, \dots, \xi^{B-1} = \eta^{0,B-1}, \xi^B = \eta^{1,0}$, etc. However,
 300 unlike Vanilla SGD, $R = B - 1$ because $\text{dist}(x^0, z^0) = 0, \text{dist}(x^1, z^1) = 1, \dots, \text{dist}(x^{B-1}, z^{B-1}) =$
 301 $B - 1, \text{dist}(x^B, z^B) = 0$, etc. Thus, the *iteration rate* is $\mathcal{O}(BL\Delta/\varepsilon + \sigma^2 L\Delta/\varepsilon^2)$.

302 **Ringmaster ASGD** (Section E.4). This an Asynchronous SGD method with the update rule

$$303 \quad w^{k+1} = w^k - \gamma \nabla f(w^{k-\delta^k}; \eta_i^{k-\delta^k}), \quad (3)$$

305 where δ^k is a delay such that $\delta^k \leq G - 1$, where $G \geq 1$ is a hyperparameter (see Alg. 7). We take
 306 $x^k = w^k$ for all $k \geq 0$. Thus, the corresponding auxiliary sequence is defined by $z^k = x^{k-\delta^k} \equiv$
 307 $w^{k-\delta^k}$ and $\xi^k = \eta_i^{k-\delta^k}$ for all $k \geq 0$. Constructing the computation tree (Figure 17), we can show
 308 that the conditions of Theorem 2.4 hold with $R = \max_{k \geq 0} \delta^k \leq G - 1$ and the *iteration rate* is
 309 $\mathcal{O}(GL\Delta/\varepsilon + \sigma^2 L\Delta/\varepsilon^2)$.

311 Previously, we presented Rennala SGD and Ringmaster ASGD that can be analyzed using Theorem 2.4.
 312 This raises the question: Which method is most effective, and how should one choose the appropriate
 313 one? In the following sections, we discuss different factors one should consider when selecting a
 314 method, and present new algorithms. The discussion here is summarized in Table 1. Before we begin,
 315 it is important to note that the iteration complexity in Theorem 2.4 does not reflect the true wall-clock
 316 performance. It serves as an intermediate result used to derive the time complexities presented below.

317 **1. Computational complexity.** One way to compare the methods is to analyze their time
 318 complexity under the h_i -fixed computation model (see Sec. 1.1, A, and F). With a proper
 319 choice of the corresponding parameters, i.e., $B = \max\{1, \lceil \sigma^2/\varepsilon \rceil\}$, both Rennala SGD
 320 and Ringmaster ASGD are optimal in terms of wall-clock time with the time complexity
 321 $\Theta(\min_{m \in [n]} [(1/m \sum_{i=1}^m 1/h_i)^{-1} (L\Delta/\varepsilon + \sigma^2 L\Delta/m\varepsilon^2)])$ provided that communication times are negli-
 322 gible. In the worst-case scenario, on the “very bad function” (Arjevani et al., 2022), all these methods
 323 perform equally well. Next, we discuss the strengths and weaknesses of the methods that are not
 324 captured by the h_i -fixed computation model.

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1097
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1195
1196
1197
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1288
1289
1290
1291
1292
1293
1294
1295
1295
1296
1297
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1388
1389
1390
1391
1392
1393
1394
1395
1395
1396
1397
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1488
1489
1490
1491
1492
1493
1494
1495
1495
1496
1497
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1588
1589
1590
1591
1592
1593
1594
1595
1595
1596
1597
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1688
1689
1690
1691
1692
1693
1694
1695
1695
1696
1697
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1788
1789
1790
1791
1792
1793
1794
1795
1795
1796
1797
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1888
1889
1890
1891
1892
1893
1894
1895
1895
1896
1897
1898
1899
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2088
2089
2090
2091
2092
2093
2094
2095
2095
2096
2097
2098
2099
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2179
2180
2181

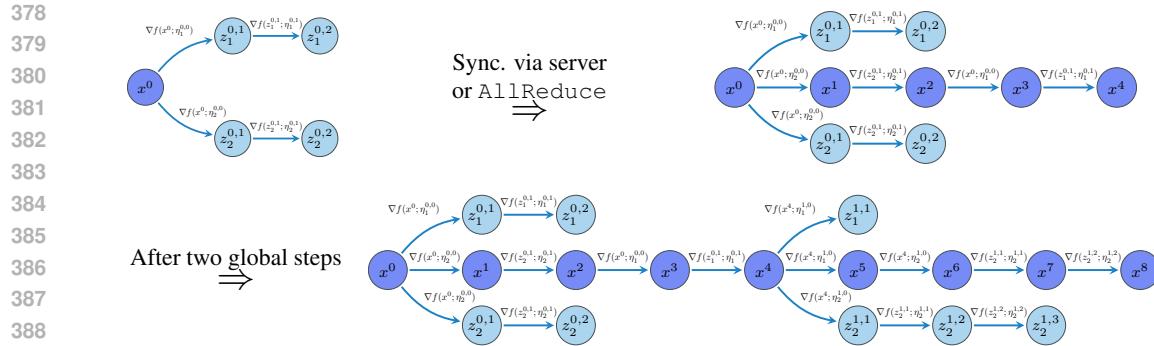


Figure 4: An evolution of a Local SGD computation tree with $B = 4$ and 2 workers, each performing local steps over 2 global steps. In the first round, they compute $M_1 = 2$ and $M_2 = 2$ local steps (first figure), after which they synchronize (second figure). In the second round, they compute $M_1 = 1$ and $M_2 = 3$ local steps and synchronize again (third figure). Note that the maximum distances $\text{dist}(x^3, z_1^{0,1})$ and $\text{dist}(x^7, z_2^{1,2})$, when applying $\nabla f(z_1^{0,1}; \eta_1^{0,1})$ to x^3 and $\nabla f(z_2^{1,2}; \eta_2^{1,2})$ to x^7 , are equal to $B - 1 = \sum_{i=1}^n M_i - 1 = 3$. Notice that each stochastic gradient is used 2 times in the tree.

establish the *iteration rate* of Local SGD as $\mathcal{O}\left(BL\Delta/\varepsilon + \sigma^2 L\Delta/\varepsilon^2\right)$. This result follows directly from Theorem 2.4 via a simple geometric argument. In fact, looking at Figure 4 reveals that all the conditions of Theorem 2.4 are satisfied. The only minor difficulty is to show that $R := \sup_{k>0} \text{dist}(x^k, z^k) \leq B - 1$, which is guaranteed by the condition $\sum_{i=1}^n M_i = B$.

What is novel in our version of Local SGD is that it achieves better theoretical guarantees within the family of Local SGD approaches (see Section H). Moreover, our stopping condition and the choice of B together ensure its optimality under the h_i -fixed computation model (see Theorem F.6).

Async-Local SGD (Section E.6). Another idea to leverage the practical benefits of Ringmaster ASGD, while at the same time reducing the communication overhead, is to use Ringmaster ASGD with local steps. The idea is to run M local steps on each worker instead of immediately sending the computed stochastic gradients to the server in an asynchronous fashion (See Figure 5). We formalize this algorithm and prove the iteration rate in Section E.6. Moreover, in Sections F and G, we suggest an optimal choice of parameters that leads to optimal computational complexity and reduced communication complexity, which is better than that of Ringmaster ASGD. We get a similar result with a new method, Async-Batch SGD (Section E.7).

Dual-Process SGD (Section E.11). We took a step further and developed a new local method inspired by Local SGD and Async-Local SGD. It is the first local method to achieve the optimal time complexity in the distributed setting, where workers have varying computation and communication times (see Section I). However, unlike Local SGD, it is not AllReduce-friendly.

4. Peak bandwidth. Another critical factor is the peak bandwidth. The number of workers the parameter-server or the AllReduce operation can synchronize may be limited when the number of workers n is huge. Notice that the worst-case peak bandwidth of Rennala SGD, Ringmaster ASGD, Local SGD, and Async-Local SGD is $\Theta(n)$.

Cycle SGD (Section E.5). To mitigate this issue, we propose a new method called Cycle SGD. Similar to Local SGD, each worker performs local steps. However, once the workers finish computing the initial stochastic gradients $\{\nabla f(z_i^0; \eta_i^0)\}$, only the first group of s workers sends their gradients to the server, where s is a hyperparameter. The server then aggregates these gradients and performs the update $w^1 = w^0 - \gamma \sum_{i=1}^s \nabla f(z_i^0; \eta_i^0)$. Meanwhile, the first s workers begin computing their local steps starting from w^1 , while the remaining workers continue their current local computations. Next, the second group of s workers sends their locally computed vectors, and this process continues in a circular manner. A computation tree presented in Figure 18. The peak bandwidth of Cycle SGD is $\mathcal{O}(s)$ with $s = \min \left\{ \max \left\{ \lceil \frac{n^2 \varepsilon}{\sigma^2} \rceil, 1 \right\}, n \right\}$, which is smaller than $\Theta(n)$ when $\sigma^2/\varepsilon > n$.

5. Optimization with clusters. Consider a setup with many clusters of workers, where intra-cluster communication (e.g. InfiniBand) is fast and inter-cluster communication (e.g. Ethernet) is slow.

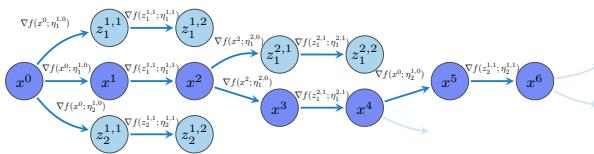


Figure 5: An example of the computation tree for Async-Local SGD with $M = 2$. In this example, the first worker is significantly faster: before the second worker completes its first set of local steps, $x^0 \rightarrow z_2^{1,1} \rightarrow z_2^{1,2}$, the first worker already completes two rounds of local updates and sends the corresponding stochastic gradients, $(\nabla f(x^0; \eta_1^{1,0}), \nabla f(z_1^{1,1}; \eta_1^{1,1}))$ and $(\nabla f(x^2; \eta_1^{2,0}), \nabla f(z_1^{2,1}; \eta_1^{2,1}))$.

Local-Async SGD (Section E.8) We run Asynchronous SGD within each cluster and synchronize clusters after a fixed number of local steps. This setup is feasible due to fast intra-cluster links, while slower inter-cluster links necessitate infrequent synchronization. In Section E.8, we formalize this method, Local-Async SGD, and establish its iteration rate. Section F proves it achieves optimal computational time complexity. A key novelty lies in the synchronization mechanism (see Alg. 12).

Nested Local-Async SGD (Section E.9) Our framework extends to a two-level hierarchy: within each cluster, servers with 4–8 GPUs run Asynchronous SGD locally, synchronize at the server level, and then synchronize across clusters. Analyzing such a setup using classical optimization tools would be highly challenging. In contrast, our framework enables a straightforward analysis through geometric graph reasoning.

6. Flexible synchronization and Meta Local SGD (Section E.10). We noticed that in all previous methods, the workers are synchronized in a predefined manner or rule. We want to add more flexibility to the synchronization process. Our idea is that the server (or the workers themselves, in a decentralized setup) can select any subset of workers based on any strategy (e.g., randomly or according to current communication speeds), gather their computed stochastic gradients, update the global model, and ask these workers to continue performing local steps from the new point. However, such “anarchic synchronization” can result in a computation tree with a large R if the selected strategy is not chosen carefully. To ensure that R is bounded, in our meta-algorithm (Algorithm 16), we track the current distances $\{d_i\}$ to the head of the main branch and the local steps $\{M_i\}$ performed by each worker. Then, by tracking the value $d_i + \sum_{i=1}^n M_i$ for all $i \in [n]$ and comparing it to a parameter B , we compulsorily synchronize (Hard Sync) all workers for which $d_i + \sum_{i=1}^n M_i = B$. This way, we can ensure that R is bounded by B , and the iteration rate of this method is $\mathcal{O}(BL\Delta/\varepsilon + \sigma^2 L\Delta/\varepsilon^2)$.

4 INSIGHTS AND GUIDELINES

All proposed methods share the same iteration rate of $\mathcal{O}((R+1)L\Delta/\varepsilon + \sigma^2 L\Delta/\varepsilon^2)$, where R is controlled by a method-specific hyperparameter and, at the same time, R is the largest tree distance between x^k and z^k . For Rennala SGD, $R = B - 1$, where B denotes the batch size; for Ringmaster ASGD, $R = B - 1$, where B is the delay threshold; for Local SGD, $R = B - 1$, where B corresponds to the number of local steps; for Cycle SGD, $R = n^2/s$, where s is the group size, etc. In all these methods, R can be controlled, and to achieve the best possible computational and communication guarantees, one should always choose $R = \Theta(\sigma^2/\varepsilon)$ (see Sections G and F). We believe this is a fundamental principle underlying all parallel optimization methods, and it should be considered a guiding rule when developing new algorithms. This choice is also theoretically justified: by taking $R = \Theta(\sigma^2/\varepsilon)$, the iteration rate does not change asymptotically: $\mathcal{O}((R+1)L\Delta/\varepsilon + \sigma^2 L\Delta/\varepsilon^2) = \mathcal{O}(L\Delta/\varepsilon + \sigma^2 L\Delta/\varepsilon^2)$. Larger values of R allow the methods to be more “parallel-friendly”. For instance, a large R enables Ringmaster ASGD to consider stochastic gradients with larger delays, while a large R in Local SGD allows the method to run more local steps. However, taking $R > \sigma^2/\varepsilon$ results in a worse iteration rate, suggesting that the corresponding method operates in an overly “anarchic” asynchronous regime, which may lead to performance degradation. Geometrically, the theory suggests that, to achieve good performance, the tree distance between x^k and z^k in Figure 3 should not exceed σ^2/ε .

Notice that there is no single “best” method in Table 1, which we believe is another fundamental law. Each method has its own strengths and weaknesses, and one should develop or choose the

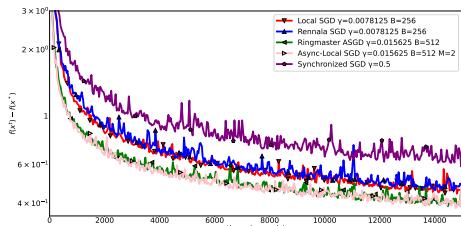
486 most appropriate method for the specific task. This process becomes easier with the help of our new
 487 framework, Birch SGD, and insights.
 488

489 While our primary focus is on training large-scale language and vision models, where the i.i.d.
 490 assumption is usually appropriate, we acknowledge that non-i.i.d. scenarios are also important and
 491 should be investigated in future work, where it may be necessary to add additional assumptions such as
 492 first-order and second-order similarity of the functions (Arjevani & Shamir, 2015; Mishchenko et al.,
 493 2022). Moreover, it would be interesting to extend our framework to methods with preconditioning
 494 (Kingma & Ba, 2015) and non-Euclidean geometry (Jordan et al.).
 495

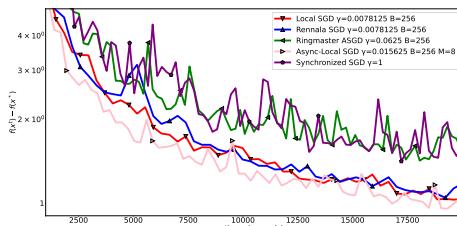
496 We hope our observations will support the future development and analysis of asynchronous optimiza-
 497 tion methods. Building on these insights, we designed at least eight new methods using our proposed
 498 Birch SGD framework and the main result, Theorem 2.4. By reducing the analysis and design of these
 499 methods to computation trees, our entire development becomes purely graph-geometrical, offering a
 500 new and simpler view on asynchronous optimization methods.
 501

5 SUMMARY OF EXPERIMENTAL RESULTS

502 In Section C, we provide a detailed comparison of methods on logistic regression, image clas-
 503 sification with ResNet18 (He et al., 2016), and next-token prediction with GPT2 (Radford
 504 et al., 2019). When communication times are negligible (Fig. 6), as expected from Table 1
 505 and the previous discussion, Ringmaster ASGD and Async-Local SGD converge faster on the lo-
 506 gistic regression problem. However, when communication times are large (Fig. 7), Ringmas-
 507 ter ASGD becomes less practical due to its frequent updates. Synchronized SGD exhibits the
 508 worst performance across all setups. Rennala SGD and Local SGD are more stable, while Async-
 509 Local SGD performs well due to its effective balance between frequent updates and local steps.
 510



511
 512 Figure 6: Computation times $h_i = 1$ or 10 ran-
 513 domly, communication times $\tau_i = 0$.
 514



515 Figure 7: Computation $h_i = 10$, com-
 516 munication times $\tau_i = 100$.
 517

REFERENCES

521
 522 Yossi Arjevani and Ohad Shamir. Communication complexity of distributed convex learning and
 523 optimization. *Advances in Neural Information Processing Systems*, 28, 2015.
 524
 525 Yossi Arjevani, Yair Carmon, John C Duchi, Dylan J Foster, Nathan Srebro, and Blake Woodworth.
 526 Lower bounds for non-convex stochastic optimization. *Mathematical Programming*, pp. 1–50,
 527 2022.
 528
 529 Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale machine
 530 learning. *SIAM review*, 60(2):223–311, 2018.
 531
 532 Yair Carmon, John C Duchi, Oliver Hinder, and Aaron Sidford. Lower bounds for finding stationary
 533 points i. *Mathematical Programming*, 184(1):71–120, 2020.
 534
 535 Alon Cohen, Amit Daniely, Yoel Drori, Tomer Koren, and Mariano Schain. Asynchronous stochastic
 536 optimization robust to arbitrary delays. *Advances in Neural Information Processing Systems*, 34:
 537 9024–9035, 2021.
 538
 539 Arthur Douillard, Qixuan Feng, Andrei A Rusu, Rachita Chhaparia, Yani Donchev, Adhiguna
 Kuncoro, Marc’Aurelio Ranzato, Arthur Szlam, and Jiajun Shen. Diloco: Distributed low-
 communication training of language models. *arXiv preprint arXiv:2311.08105*, 2023.

540 Mathieu Even, Anastasia Koloskova, and Laurent Massoulié. Asynchronous SGD on graphs: a
 541 unified framework for asynchronous decentralized and federated optimization. In *International*
 542 *Conference on Artificial Intelligence and Statistics*, pp. 64–72. PMLR, 2024.

543

544 Hamid Reza Feyzmahdavian, Arda Aytekin, and Mikael Johansson. An asynchronous mini-batch
 545 algorithm for regularized stochastic optimization. *IEEE Transactions on Automatic Control*, 61
 546 (12):3740–3754, 2016.

547 Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. *Deep learning*, volume 1.
 548 MIT Press, 2016.

549 Eduard Gorbunov, Filip Hanzely, and Peter Richtárik. A unified theory of SGD: Variance reduc-
 550 tion, sampling, quantization and coordinate descent. In *International Conference on Artificial*
 551 *Intelligence and Statistics*, pp. 680–690. PMLR, 2020.

552

553 Eduard Gorbunov, Filip Hanzely, and Peter Richtárik. Local sgd: Unified theory and new efficient
 554 methods. In *International Conference on Artificial Intelligence and Statistics*, pp. 3556–3564.
 555 PMLR, 2021.

556 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
 557 recognition. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*
 558 (CVPR), pp. 770–778, 2016.

559

560 Yan Huang, Ying Sun, Zehan Zhu, Changzhi Yan, and Jinming Xu. Tackling data heterogeneity:
 561 A new unified framework for decentralized sgd with sample-induced topology. *arXiv preprint*
 562 *arXiv:2207.03730*, 2022.

563 Rustom Islamov, Mher Safaryan, and Dan Alistarh. AsGrad: A sharp unified analysis of asynchronous-
 564 SGD algorithms. In *International Conference on Artificial Intelligence and Statistics*, pp. 649–657.
 565 PMLR, 2024.

566

567 Keller Jordan, Yuchen Jin, Vlado Boza, You Jiacheng, Franz Cecista, Laker Newhouse, and
 568 Jeremy Bernstein. Muon: An optimizer for hidden layers in neural networks, 2024. *URL*
 569 <https://kellerjordan.github.io/posts/muon>, 6.

570 Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
 571 Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Ad-
 572 vances and open problems in federated learning. *Foundations and Trends® in Machine Learning*,
 573 14(1–2):1–210, 2021.

574 Ahmed Khaled, Othmane Sebbouh, Nicolas Loizou, Robert M Gower, and Peter Richtárik. Unified
 575 analysis of stochastic gradient methods for composite convex and smooth optimization. *arXiv*
 576 *preprint arXiv:2006.11573*, 2020.

577

578 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In *International*
 579 *Conference on Learning Representations*, 2015.

580 Anastasia Koloskova, Nicolas Loizou, Sadra Boreiri, Martin Jaggi, and Sebastian U. Stich. A unified
 581 theory of decentralized SGD with changing topology and local updates. In *Proceedings of the 37th*
 582 *International Conference on Machine Learning*, 2020.

583

584 Anastasiia Koloskova, Sebastian U Stich, and Martin Jaggi. Sharper convergence guarantees for
 585 Asynchronous SGD for distributed and federated learning. *Advances in Neural Information*
 586 *Processing Systems*, 35:17202–17215, 2022.

587 Jakub Konečný, H Brendan McMahan, Felix X Yu, Peter Richtárik, Ananda Theertha Suresh, and
 588 Dave Bacon. Federated learning: Strategies for improving communication efficiency. *arXiv*
 589 *preprint arXiv:1610.05492*, 2016.

590 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
 591 Technical report, University of Toronto, Toronto, 2009.

592

593 Guanghui Lan. *First-order and stochastic optimization methods for machine learning*. Springer,
 2020.

594 Yann LeCun, Corinna Cortes, and CJ Burges. MNIST handwritten digit database. *ATT Labs [Online]*.
 595 Available: <http://yann.lecun.com/exdb/mnist>, 2, 2010.
 596

597 Xiangru Lian, Yijun Huang, Yuncheng Li, and Ji Liu. Asynchronous parallel stochastic gradient for
 598 nonconvex optimization. *Advances in Neural Information Processing Systems*, 28, 2015.

599 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In *International Conference on Learning Representations*, 2019.
 600

602 Ruichen Luo, Sebastian U Stich, Samuel Horváth, and Martin Takáč. Revisiting LocalSGD and
 603 SCAFFOLD: Improved rates and missing analysis. In *International Conference on Artificial
 604 Intelligence and Statistics*, 2025.

605 Artavazd Maranjyan, Alexander Tyurin, and Peter Richtárik. Ringmaster ASGD: The first asyn-
 606 chronous SGD with optimal time complexity. *arXiv preprint arXiv:2501.16168*, 2025.
 607

608 Norm Matloff. Introduction to discrete-event simulation and the simpy language. *Davis, CA. Dept of
 609 Computer Science. University of California at Davis. Retrieved on August*, 2(2009):1–33, 2008.

610 Ruben Mayer and Hans-Arno Jacobsen. Scalable deep learning on distributed infrastructures:
 611 Challenges, techniques, and tools. *ACM Computing Surveys (CSUR)*, 53(1):1–37, 2020.
 612

613 Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
 614 Communication-efficient learning of deep networks from decentralized data. In *Artificial intelligence and statistics*, pp. 1273–1282. PMLR, 2017.
 615

616 Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
 617 models. *arXiv preprint arXiv:1609.07843*, 2016.
 618

619 Konstantin Mishchenko, Francis Bach, Mathieu Even, and Blake Woodworth. Asynchronous SGD
 620 beats minibatch SGD under arbitrary delays. *Advances in Neural Information Processing Systems*,
 621 2022.

622 Katta G Murty and Santosh N Kabadi. Some NP-complete problems in quadratic and nonlinear
 623 programming. Technical report, 1985.
 624

625 Arkadij Semenovič Nemirovskij and David Borisovich Yudin. Problem complexity and method
 626 efficiency in optimization. 1983.

627 Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
 628 models are unsupervised multitask learners. *OpenAI blog*, 1(8):9, 2019.
 629

630 Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hogwild!: A lock-free approach to
 631 parallelizing stochastic gradient descent. *Advances in Neural Information Processing Systems*, 24,
 632 2011.

633 Herbert Robbins and Sutton Monro. A stochastic approximation method. *The Annals of Mathematical
 634 Statistics*, pp. 400–407, 1951.
 635

636 Robin M Schmidt, Frank Schneider, and Philipp Hennig. Descending through a crowded valley-
 637 benchmarking deep learning optimizers. In *International Conference on Machine Learning*, pp.
 638 9367–9376. PMLR, 2021.

639 Suvrit Sra, Adams Wei Yu, Mu Li, and Alex Smola. Adadelay: Delay adaptive distributed stochastic
 640 optimization. In *Artificial Intelligence and Statistics*, pp. 957–965. PMLR, 2016.
 641

642 Sebastian U Stich. Local SGD converges fast and communicates little. In *International Conference
 643 on Learning Representations*, 2019.

644 Sebastian U Stich and Sai Praneeth Karimireddy. The error-feedback framework: SGD with delayed
 645 gradients. *Journal of Machine Learning Research*, 21(237):1–36, 2020.
 646

647 Alexander Tyurin. Tight time complexities in parallel stochastic optimization with arbitrary computa-
 648 tion dynamics. In *International Conference on Learning Representations*, 2025.

648 Alexander Tyurin and Peter Richtárik. Optimal time complexities of parallel stochastic optimization
649 methods under a fixed computation model. *Advances in Neural Information Processing Systems*,
650 36, 2023.

651 Alexander Tyurin and Peter Richtárik. On the optimal time complexities in decentralized stochastic
652 asynchronous optimization. *Advances in Neural Information Processing Systems*, 37, 2024.

653 Alexander Tyurin, Marta Pozzi, Ivan Ilin, and Peter Richtárik. Shadowheart SGD: Distributed
654 asynchronous SGD with optimal time complexity under arbitrary computation and communication
655 heterogeneity. *Advances in Neural Information Processing Systems*, 37, 2024.

656 Jianyu Wang and Gauri Joshi. Cooperative sgd: A unified framework for the design and analysis of
657 communication-efficient sgd algorithms. *arXiv preprint arXiv:1808.07576*, 2018.

658 Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H Vincent Poor. Tackling the objective
659 inconsistency problem in heterogeneous federated optimization. *Advances in neural information
660 processing systems*, 33:7611–7623, 2020.

661 Xuyang Wu, Sindri Magnusson, Hamid Reza Feyzmahdavian, and Mikael Johansson. Delay-adaptive
662 step-sizes for asynchronous learning. In *International Conference on Machine Learning*, 2022.

663 Martin Zinkevich, Markus Weimer, Lihong Li, and Alex Smola. Parallelized stochastic gradient
664 descent. *Advances in Neural Information Processing Systems*, 23, 2010.

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702	CONTENTS	
703		
704		
705	1 Introduction	1
706	1.1 Related work	2
707	1.2 Contributions	2
708		
709		
710	2 Birch SGD: A General View of SGD Methods	3
711	2.1 Main theoretical result on convergence rates	4
712		
713	3 Existing and New Algorithms: Summary and Comparison	6
714		
715	4 Insights and Guidelines	9
716		
717		
718	5 Summary of experimental results	10
719		
720		
721	A Additional Discussion	16
722	A.1 Discussion of the computational time complexities	16
723	A.2 More related work	16
724	A.3 Relation to other frameworks	17
725		
726		
727	B Notations	17
728		
729		
730	C Experiments	17
731	C.1 Setup	17
732	C.2 Experiments with logistic regression	18
733		
734	C.3 Experiments with ResNet18 and image classification	21
735	C.4 Experiments with GPT2 and token prediction	22
736		
737	C.5 Experiments with Cycle SGD and peak bandwidth	22
738	C.6 Sensitivity to the choice of B in Rennala SGD	23
739		
740	C.7 Parameters of the experiments	24
741		
742	D Proof of Theorem 2.4	26
743	D.1 Proof technique and reasons for choosing the conditions	26
744	D.2 Full proof	26
745		
746		
747	E Detailed Description of Algorithms and Iteration Rates	29
748	E.1 Vanilla SGD	29
749	E.2 Rennala SGD	30
750	E.3 Local SGD	32
751	E.4 Ringmaster ASGD	34
752		
753	E.5 Cycle SGD	35
754		
755	E.6 Async-Local SGD	37

756	E.7	Async-Batch SGD	38
757	E.8	Local-Async SGD	39
758	E.9	Nested Local-Async SGD	41
759	E.10	Meta Local SGD	43
760	E.11	Dual-Process SGD	46
761			
762			
763			
764	F	Computational Time Complexities of Algorithms under h_i-Fixed Computation Model	48
765			
766	F.1	Rennala SGD	48
767	F.2	Ringmaster ASGD	49
768	F.3	Local SGD	50
769	F.4	Local-Async SGD	50
770	F.5	Nested Local-Async SGD	51
771	F.6	Async-Local SGD	51
772	F.7	Cycle SGD	53
773	F.8	Dual-Process SGD	53
774			
775			
776			
777	G	Total Time Complexities of Algorithms under (h, τ)-Fixed Computation Model	55
778			
779	G.1	Rennala SGD	55
780	G.2	Local SGD	55
781	G.3	Cycle SGD	56
782	G.4	Async-Local SGD	56
783	G.5	Ringmaster ASGD	57
784			
785			
786			
787	H	Comparison Between Our Local SGD and the Canonical Local SGD	57
788			
789	I	Total Time Complexities of Algorithms under (h_i, τ_i)-Fixed Computation Model	58
790			
791	I.1	Dual-Process SGD	59
792			
793	J	Performance of Rennala SGD and Ringmaster ASGD on a Quadratic Function	61
794			
795			
796			
797			
798			
799			
800			
801			
802			
803			
804			
805			
806			
807			
808			
809			

810 A ADDITIONAL DISCUSSION
811812 A.1 DISCUSSION OF THE COMPUTATIONAL TIME COMPLEXITIES
813814 In this section, we extend our discussion about the computational time complexities of the methods
815 discussed in the main part of the paper.816 To compare parallel and asynchronous methods, Mishchenko et al. (2022) proposed using the h_i -fixed
817 computation model. The idea is to assume that worker i requires at most h_i seconds to calculate
818 one stochastic gradient for all $i \in [n] := \{1, \dots, n\}$ (without loss of generality, $h_1 \leq h_2 \leq \dots \leq h_n$). The authors considered Synchronized SGD, an iterative process defined as $w^{k+1} =$
819 $w^k - \frac{\gamma}{n} \sum_{i=1}^n \nabla f(w^k; \eta_i^k)$, where each worker calculates one stochastic gradient, synchronize, and
820 a parameter server aggregates them to update the iterate⁴. Using the h_i -fixed computation model, it
821 can be easily shown that Synchronized SGD converges after
822

823
$$\mathcal{O} \left(\max_{i \in [n]} h_i \times \left(\frac{L\Delta}{\varepsilon} + \frac{\sigma^2 L\Delta}{n\varepsilon^2} \right) \right) \quad (4)$$

825

826 seconds, because the method waits for the slowest worker, whose time is $\max_{i \in [n]} h_i = h_n$.
827828 **Algorithm 2** Asynchronous SGD
829830 **Input:** point $w^0 \in \mathbb{R}^d$, stepsizes $\gamma_k \geq 0$
831 Workers start computing stochastic gradients at w^0
832 **for** $k = 0, 1, \dots$ **do**
833 Gradient $\nabla f(w^{k-\delta^k}; \eta_i^{k-\delta^k})$ arrives from worker i
834 Update: $w^{k+1} = w^k - \gamma_k \nabla f(w^{k-\delta^k}; \eta_i^{k-\delta^k})$
835 Worker i begins calculating at w^{k+1}
836 **end for**837
838 Mishchenko et al. (2022); Koloskova et al. (2022) provided new analyses of Asynchronous SGD (see
839 Algorithm 2) and Cohen et al. (2021) developed Picky SGD to show that this time complexity can be
840 improved to

841
$$\mathcal{O} \left(\left(\frac{1}{n} \sum_{i=1}^n \frac{1}{h_i} \right)^{-1} \left(\frac{L\Delta}{\varepsilon} + \frac{\sigma^2 L\Delta}{n\varepsilon^2} \right) \right),$$

842

843 where the dependence on $\{h_i\}$ is harmonic instead of being based on the maximum. It turns out that
844 this complexity can be further improved⁵ to

845
$$\Theta \left(\min_{m \in [n]} \left[\left(\frac{1}{m} \sum_{i=1}^m \frac{1}{h_i} \right)^{-1} \left(\frac{L\Delta}{\varepsilon} + \frac{\sigma^2 L\Delta}{m\varepsilon^2} \right) \right] \right), \quad (5)$$

846

847 which is achieved by the Rennala SGD method (Tyurin & Richtárik, 2023). Moreover, Tyurin &
848 Richtárik (2023) proved a matching lower bound demonstrating that both this complexity and Rennala
849 SGD are optimal. Recently, Maranjyan et al. (2025) developed a new optimal Ringmaster ASGD
850 method, which is essentially Asynchronous SGD with a key modification. Additionally, under the
851 universal computation model, Tyurin (2025); Maranjyan et al. (2025) showed that both Rennala SGD
852 and Ringmaster ASGD remain optimal even when computation times are arbitrary, time-varying, and
853 random.854 A.2 MORE RELATED WORK
855856 Our focus is on the homogeneous setting, where all workers have access to the same data distribution
857 or dataset. The heterogeneous data setting is equally important, especially in federated learning (FL)
858 (Konečný et al., 2016) due to privacy constraints. In this context, many other methods have been
859860 ⁴Alternatively, there is no physical parameter server, and all workers perform an Allreduce.
861862 ⁵Note that $\min_{m \in [n]} g(m) \leq g(n)$ for any function $g : \mathbb{N} \rightarrow \mathbb{R}$

864 proposed, including Asynchronous SGD (Mishchenko et al., 2022; Koloskova et al., 2022), Asgrad
 865 (Islamov et al., 2024), PIAG (Wu et al., 2022), and Malenia SGD (Tyurin & Richtárik, 2023). Notably,
 866 Tyurin & Richtárik (2023); Tyurin (2025) showed that Malenia SGD is optimal under both the fixed
 867 and universal computation models, without requiring assumptions of bounded gradients or gradients
 868 dissimilarity.

869 In the homogeneous setting, numerous other works have studied asynchronous SGD methods, in-
 870 cluding (Lian et al., 2015; Feyzmahdavian et al., 2016; Stich & Karimireddy, 2020; Sra et al., 2016).
 871 However, these methods typically require the assumption that the delays in the indices of stochastic
 872 gradients are bounded (on average in (Sra et al., 2016)). As a result, their theoretical guarantees in
 873 terms of computational time complexity are weaker than those in (Cohen et al., 2021; Koloskova
 874 et al., 2022; Mishchenko et al., 2022; Tyurin & Richtárik, 2023; Maranjyan et al., 2025), which do
 875 not rely on such assumptions.

877 A.3 RELATION TO OTHER FRAMEWORKS

879 There were several previous approaches to unify SGD methods. Gorbunov et al. (2021) proposed using
 880 a parametric assumption to unify the analysis of local methods, Wang et al. (2020) unified FedAvg-
 881 like methods, Wang & Joshi (2018) proposed Cooperative SGD to analyze different synchronization
 882 mechanisms through mixing matrices, Huang et al. (2022) analyzed a general sample-wise Push–Pull
 883 framework in the heterogeneous setting using two-level augmented graphs, and Khaled et al. (2020);
 884 Gorbunov et al. (2020) analyzed SGD methods with variance-reduction and compression techniques.
 885 These approaches are related to, but not directly comparable with ours, and, to the best of our
 886 knowledge, our approach is new and orthogonal.

887 Another interesting work that analyzes SGD methods is (Even et al., 2024). Their work and ours both
 888 use graphs; however, we use graphs in completely different, orthogonal, and unrelated contexts. In
 889 their case, nodes represent computers (GPUs, CPUs, servers), and edges represent communication
 890 links. In our case, nodes represent points of an algorithm, (directed) edges indicate how one point
 891 is calculated from another, and the graphs evolve with every iteration. Similarly, Huang et al.
 892 (2022) also use a graph abstraction but with a different meaning for nodes and edges: in their case,
 893 nodes correspond to devices and iterates of data samples, edges represent both communication and
 894 computation links, and the number of nodes is fixed from the beginning since every node corresponds
 895 to one sample or worker. These are different and orthogonal approaches. Another important difference
 896 is that they compare methods using iteration complexities, whereas we use time complexities in
 897 Table 1, which is a more robust and suitable metric for asynchronous and parallel methods.

900 B NOTATIONS

901 $\mathbb{N} := \{1, 2, \dots\}$; $\|x\|$ is the output of the standard Euclidean norm for all $x \in \mathbb{R}^d$; $\langle x, y \rangle =$
 902 $\sum_{i=1}^d x_i y_i$ is the standard dot product; $g = \mathcal{O}(f)$: exist $C > 0$ such that $g(z) \leq C \times f(z)$ for all
 903 $z \in \mathcal{Z}$; $g = \Omega(f)$: exist $C > 0$ such that $g(z) \geq C \times f(z)$ for all $z \in \mathcal{Z}$; $g = \Theta(f)$: $g = \mathcal{O}(f)$ and
 904 $g = \Omega(f)$; $g = \tilde{\Theta}(f)$: the same as $g = \Omega(f)$ but up to logarithmic factors; $a \vee b := \max\{a, b\}$.

907 C EXPERIMENTS

910 C.1 SETUP

912 The experiments were prepared in Python. The distributed environment was simulated with the Simpy
 913 Python library (Matloff, 2008). There are two hardware setups:

- 914 • CPU Setup: Intel(R) Xeon(R) Gold 6348 CPU @ 2.60GHz 52 cores (for logistic regression
 915 experiments)
- 916 • GPU Setup: 2 × Nvidia A100 80 Gb, CPU: Intel(R) Xeon(R) Platinum 8358 CPU @ 2.60GHz 128
 917 cores (for ResNet18 and GPT2 experiments)

918 The distributed environment is simulated with the help of Simpy. To compare the methods, we
 919 consider different computation and communication scenarios by taking different computation times
 920 $\{h_i\}$ and communication times $\{\tau_i\}$ of the workers.
 921

922 For each task, we perform a grid search to identify the best parameters and report the top results
 923 across all runs of each algorithm. The individual grid search parameters are drawn from a set of
 924 values specified in Section C.7. We plot the convergence rates against the elapsed time.
 925

We evaluate the convergence speeds of all algorithms in four regimes:

926 • *Classical*: $h_i = 10$ and $\tau_i = 0$ for all $i \in [n]$. All workers have the same computation times, and
 927 the communication times are ignored.
 928

929 • *Slow Communications*: $h_i = 10$ and $\tau_i = 100$ for all $i \in [n]$. The communication takes time.
 930

931 • *Heterogeneous Computations*: $h_i = \text{random_choice}(\{1, 10\})$ and $\tau_i = 0$ for all $i \in [n]$. All workers
 932 have the different computation times randomly sampled from the set $\{1, 10\}$.
 933

934 • *Heterogeneous Communications*: $h_i = 10$ and $\tau_i = \text{random_choice}([1, 100])$ for all $i \in [n]$. All
 935 workers have the different communication times randomly sampled from the set $\{1, 10\}$.
 936

937 This setup allows us to observe how different algorithms perform across various regimes and to
 938 compare their convergence behaviors under differing computational and communication conditions.
 939

940 C.2 EXPERIMENTS WITH LOGISTIC REGRESSION

941 We begin our experiments with one the simplest ML problems—logistic regression on the MNIST
 942 dataset [LeCun et al. \(2010\)](#). In this setting, we evaluate three different numbers of workers: $n \in$
 943 $\{16, 64, 256\}$. We use the standard linear model with the logistic loss.
 944

945 Starting with $n = 16$ workers, we perform a grid search over the parameters specified in Table 2
 946 across all four regimes. The corresponding results are shown in Figure 8. In the *classical* setup
 947 (Figure 8a), all algorithms perform similarly. However, Rennala SGD and Local SGD underperform
 948 slightly due to the inability to interrupt an already initiated local step, resulting in occasional update
 949 losses. In the *slow communications* setup (Figure 8b), Rennala SGD, Local SGD, and Async-Local
 950 SGD perform better, as they aggregate local steps and reduce communication overhead. In contrast,
 951 Synchronized SGD and Ringmaster ASGD perform poorly due to excessive communication. In both
 952 the *heterogeneous computations* (Figure 8c) and *heterogeneous communications* (Figure 8d) regimes,
 953 Async-Local SGD and Ringmaster ASGD achieve the fastest performance. Synchronized SGD, as
 954 expected, is the slowest because it is not robust to heterogeneous computations and communications.
 955

956 For $n = 64$ (grid search parameters in Table 3, results shown in Figure 9) and $n = 256$ (grid search
 957 parameters in Table 4, results shown in Figure 10), we observe behavior similar to the $n = 16$ case
 958 across all four regimes.
 959

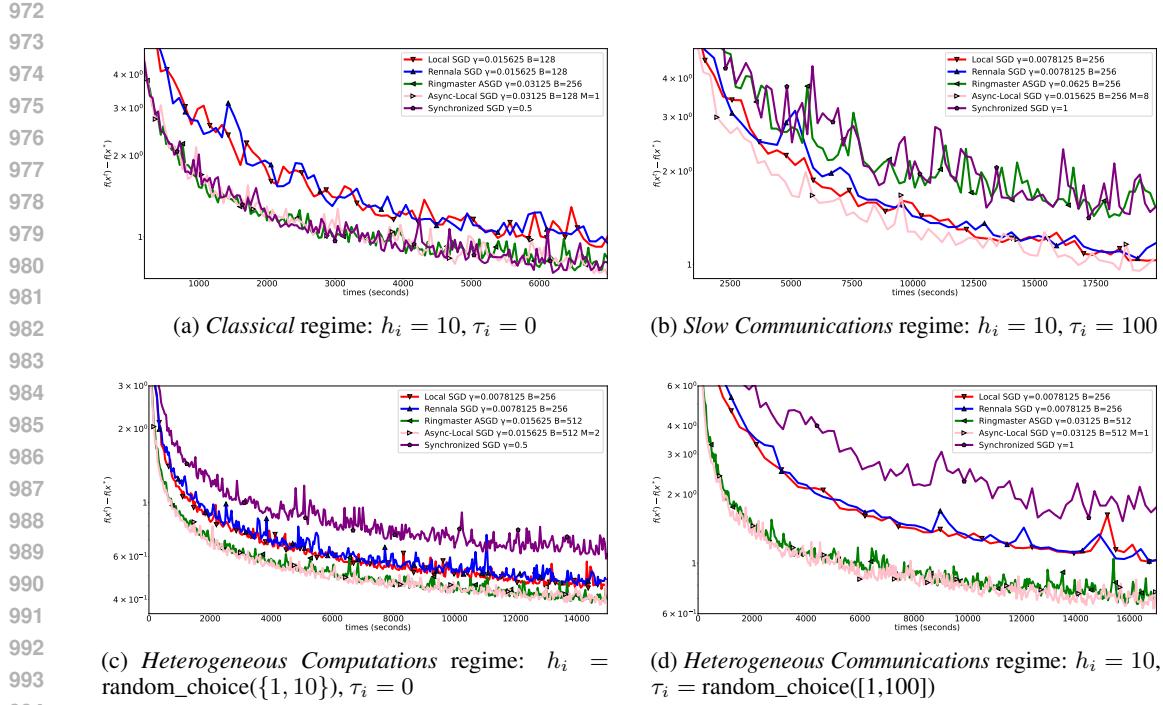


Figure 8: Comparison of different optimization algorithms across various distributed computing regimes with $n = 16$. Each plot shows the convergence behavior in terms of loss versus simulated wall-clock time.

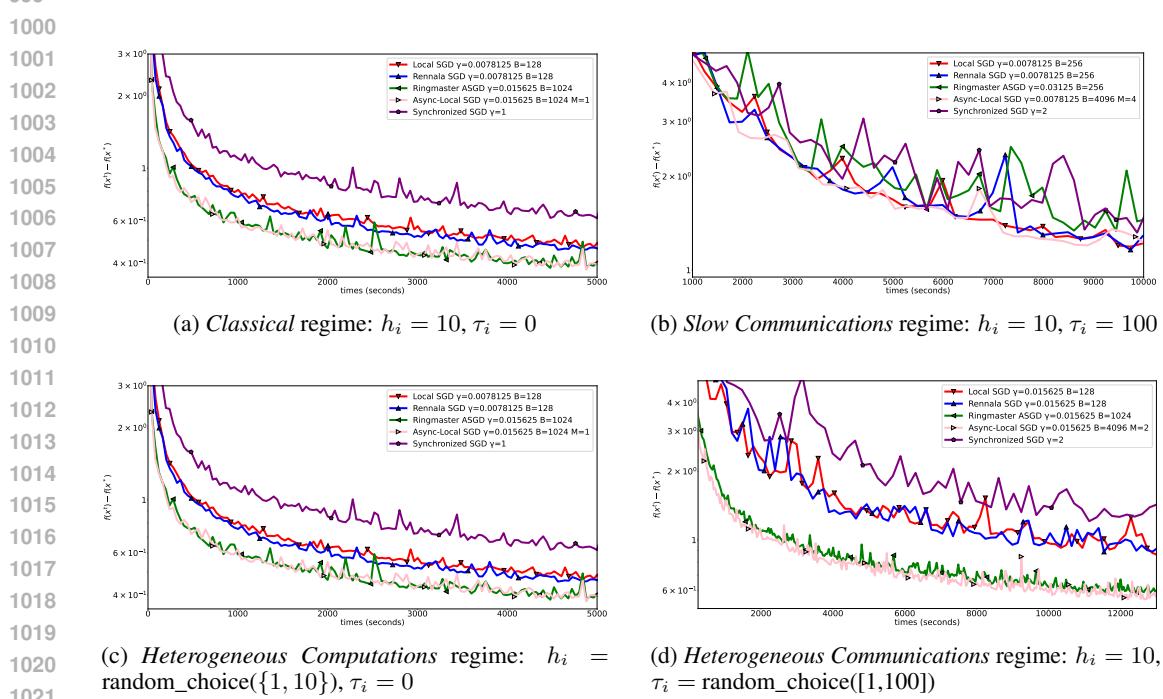
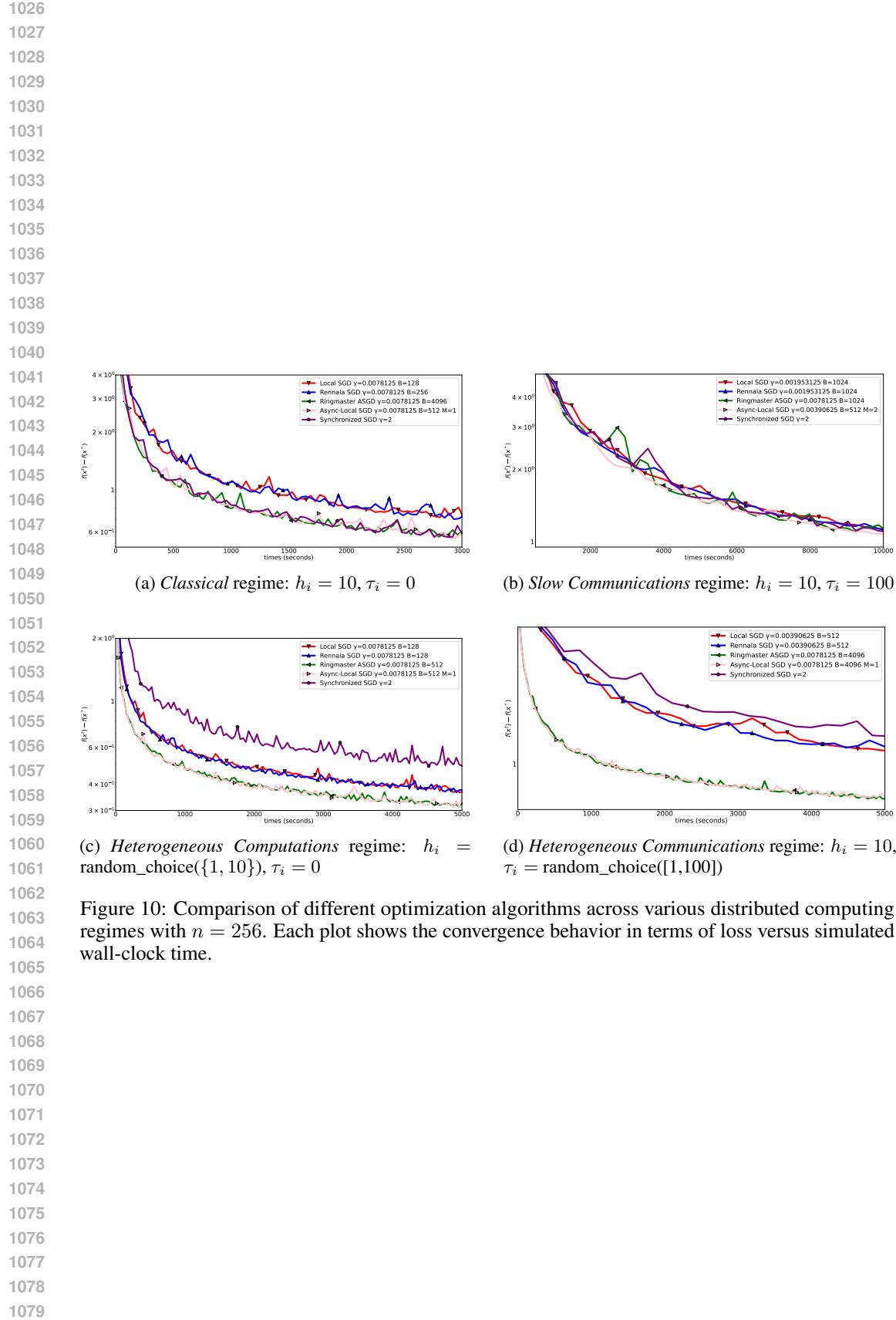


Figure 9: Comparison of different optimization algorithms across various distributed computing regimes with $n = 64$. Each plot shows the convergence behavior in terms of loss versus simulated wall-clock time.



1080
1081

C.3 EXPERIMENTS WITH RESNET18 AND IMAGE CLASSIFICATION

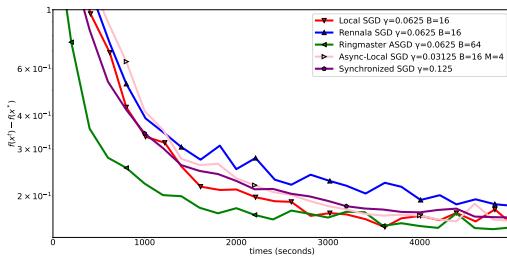
1082
1083
1084
1085

We test the algorithms on the CIFAR10 (Krizhevsky et al., 2009) image recognition task with the ResNet18 (He et al., 2016) deep neural network. For ResNet18, we similarly report the best convergence results from a grid search over the parameters listed in Table 5, using a setup with $n = 8$ workers. Results for all algorithms across the four regimes are presented in Figure 11.

1086
1087
1088
1089
1090
1091
1092

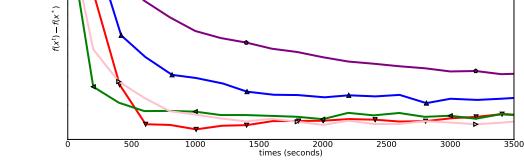
The conclusions largely mirror those from the logistic regression experiments, with a few additional observations. In the *classical* setup (Figure 11a), Ringmaster ASGD outperforms all other methods. We believe that this is due to the frequent updates of the method. In the *slow communications* regime (Figure 11b), the trends are consistent with those observed in the MNIST experiments: Ringmaster ASGD becomes slower, while methods that are less communication-intensive achieve better performance. In the *heterogeneous communications* (Figure 11d) regime, Async-Local SGD has the best performance due to the good balance of frequent model updates and local steps.

1093

(a) Classical regime: $h_i = 10, \tau_i = 0$

1102

1103

1104
1105
1106
1107
1108
1109
1110
1111
1112
1113(c) Heterogeneous Computations regime: $h_i = \text{random_choice}(\{1, 10\}), \tau_i = 0$

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

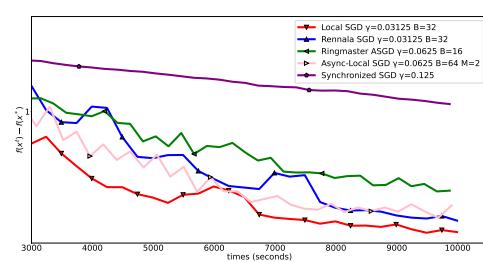
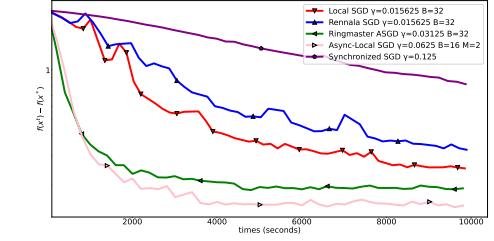
1129

1130

1131

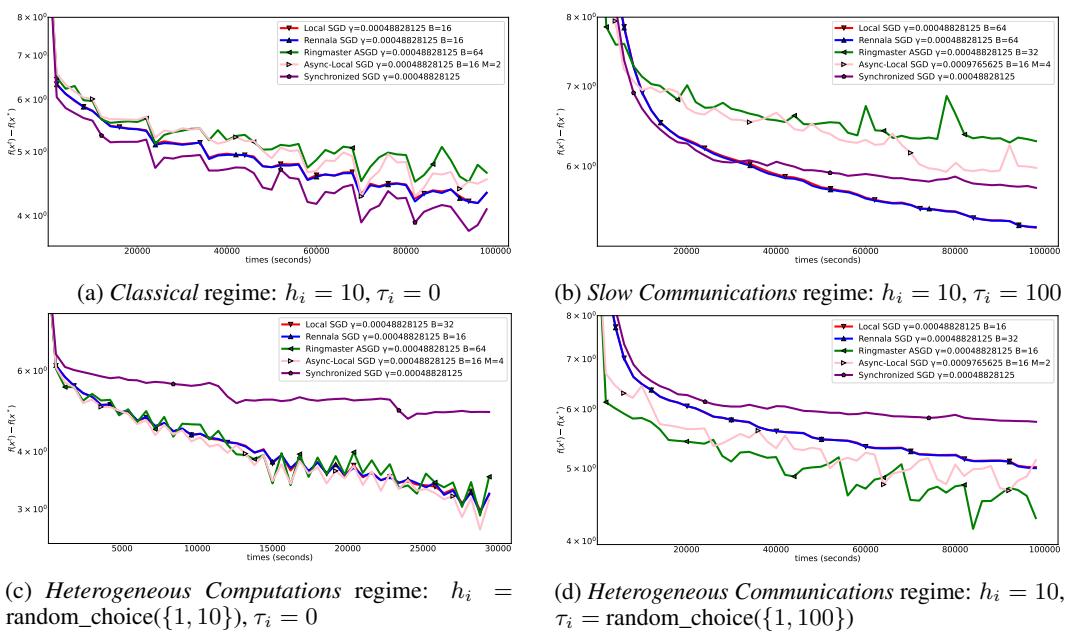
1132

1133

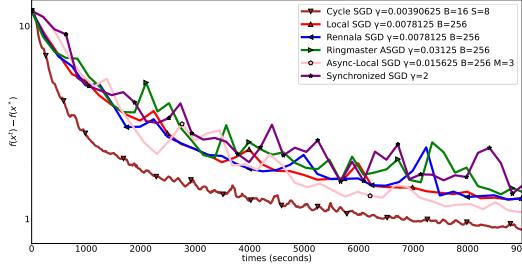
(b) Slow Communications regime: $h_i = 10, \tau_i = 100$ (d) Heterogeneous Communications regime: $h_i = 10, \tau_i = \text{random_choice}(\{1, 100\})$ Figure 11: ResNet18 experiments with $n = 8$

1134 C.4 EXPERIMENTS WITH GPT2 AND TOKEN PREDICTION
1135

1136 We also evaluate the algorithms on the Wikitext-2 (Merity et al., 2016) next token prediction task
1137 with GPT2 (Radford et al., 2019). For GPT2, we evaluate all four regimes using a setup with $n = 8$
1138 workers. To achieve faster and more robust convergence, we use the AdamW normalization strategy⁶
1139 only in these experiments with GPT2. The resulting convergence curves are shown in Figure 12.
1140 Once again, the results are similar to those of the previous experiments. Due to hardware limitations,
1141 a narrower grid search range is used; therefore, it is possible that convergence could be further
1142 improved with a more extensive search.

1161 Figure 12: GPT-2 experiments with $n = 8$

1162 C.5 EXPERIMENTS WITH Cycle SGD AND PEAK BANDWIDTH



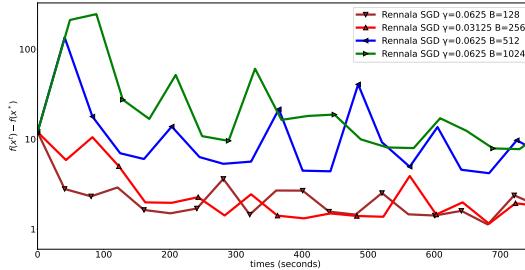
1178 Figure 13: Comparison of methods in the setup, where the communication time depends on the
1179 number of synchronized workers. It takes $h_i = 10$ seconds to compute a stochastic gradient, and the
1180 communication time is $1.5 \times k$ seconds, where k is the number of synchronized workers.

1181 In Figure 13, we present the comparison of Cycle SGD with other methods to verify the advantageous
1182 theoretical property of Cycle SGD. For this particular regime, when the computational times are the
1183 same, all methods except Cycle SGD require all the 64 workers to synchronize at the same time,
1184 leading to high peak bandwidth. At the same time, Cycle SGD synchronizes only 8 workers and

1185 ⁶Instead of the SGD step $w^{k+1} = w^k - \gamma g^k$, where g^k is a descent direction, we use the AdamW strategy
1186 with g^k .

1188 reduces the communication time and the total time complexity, which we observe in Figure 13 with
 1189 logistic regression on the MNIST dataset.
 1190

1191 **C.6 SENSITIVITY TO THE CHOICE OF B IN RENNALA SGD**
 1192



1202 Figure 14: *Slow Communications* regime: $h_i = 10, \tau_i = 100$
 1203

1204
 1205 In this section, we aim to understand the sensitivity of the choice of the value B in Rennala SGD.
 1206 From the proof of Theorem E.2, we know that $R := \sup_{k \geq 0} \text{dist}(x^k, z^k) = \Theta(B)$. By increasing
 1207 $B = \Theta(R)$, we can examine whether the method starts to slow down. This slowdown is expected
 1208 due to the discussion in Section 4. In Figure 14, we present our results on logistic regression problem
 1209 on the MNIST dataset and $n = 100$ workers, where we see that if we take B too large, the method
 1210 slows down accordingly.
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241

1242 C.7 PARAMETERS OF THE EXPERIMENTS
12431244 Table 2: Experimental configuration for logistic regression on MNIST with $n = 16$ workers.
1245

Parameter	Value
Batch size	1
Optimizer	SGD
Number of workers	16
Algorithm-specific configurations:	
Synchronized SGD	γ range: $[2^{-5}, 2^4]$
Rennala SGD	γ range: $[2^{-15}, 2^{-3}]$ B set: {128, 256, 512, 1024}
Local SGD	γ range: $[2^{-15}, 2^{-3}]$ B set: {128, 256, 512, 1024}
Ringmaster ASGD	γ range: $[2^{-15}, 2^1]$ B set: {128, 256, 512, 1024}
Async-Local SGD	γ range: $[2^{-10}, 2^1]$ B set: {64, 128, 256, 512, 1024} M set: {1, 2, 4, 8}

1265 Table 3: Experimental configuration for logistic regression on MNIST with $n = 64$ workers.
1266

Parameter	Value
Batch size	1
Optimizer	SGD
Number of workers	64
Algorithm-specific configurations:	
Synchronized SGD	γ range: $[2^{-5}, 2^4]$
Rennala SGD	γ range: $[2^{-15}, 2^{-3}]$ B set: {1024, 2048, 4096}
Local SGD	γ range: $[2^{-15}, 2^{-3}]$ B set: {1024, 2048, 4096}
Ringmaster ASGD	γ range: $[2^{-15}, 2^1]$ B set: {512, 1024, 2048, 4096}
Async-Local SGD	γ range: $[2^{-10}, 2^1]$ B set: {64, 128, 256, 512, 1024, 4096} M set: {1, 2, 4, 8}

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

1296
1297
1298
1299
1300Table 4: Experimental configuration for logistic regression on MNIST with $n = 256$ workers.1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328

Parameter	Value
Batch size	1
Optimizer	SGD
Number of workers	256
Algorithm-specific configurations:	
Synchronized SGD	γ range: $[2^{-5}, 2^4]$
Rennala SGD	γ range: $[2^{-15}, 2^{-3}]$ B set: {1024, 2048, 4096, 8192, 16384}
Local SGD	γ range: $[2^{-15}, 2^{-3}]$ B set: {1024, 2048, 4096, 8192, 16384}
Ringmaster ASGD	γ range: $[2^{-15}, 2^1]$ B set: {512, 1024, 2048, 4096, 8192}
Async-Local SGD	γ range: $[2^{-10}, 2^1]$ B set: {128, 256, 512, 1024, 4096, 8192} M set: {1, 2, 4, 8}

Table 5: Experimental configuration for ResNet18 with $n = 8$ workers.1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Parameter	Value
Batch size	16
Optimizer	SGD
Number of workers	8
Algorithm-specific configurations:	
Synchronized SGD	γ range: $[2^{-6}, 2^{-3}]$
Rennala SGD	γ range: $[2^{-6}, 2^{-3}]$ B set: {16, 32, 64}
Local SGD	γ range: $[2^{-6}, 2^{-3}]$ B set: {16, 32, 64}
Ringmaster ASGD	γ range: $[2^{-6}, 2^{-3}]$ B set: {16, 32, 64}
Async-Local SGD	γ range: $[2^{-6}, 2^{-3}]$ B set: {16, 32, 64} M set: {2, 4, 8}

Table 6: Experimental configuration for GPT-2 with $n = 8$ workers.

Parameter	Value
Batch size	32
Optimizer	AdamW
Number of workers	8
Algorithm-specific configurations:	
Synchronized SGD	γ range: $[2^{-11}, 2^{-10}]$
Rennala SGD	γ range: $[2^{-11}, 2^{-10}]$ B set: {16, 32, 64}
Local SGD	γ range: $[2^{-11}, 2^{-10}]$ B set: {16, 32, 64}
Ringmaster ASGD	γ range: $[2^{-11}, 2^{-10}]$ B set: {16, 32, 64}
Async-Local SGD	γ range: $[2^{-11}, 2^{-10}]$ B set: {16, 32, 64} M set: {2, 4}

1350 **D PROOF OF THEOREM 2.4**
 1351

1352 **D.1 PROOF TECHNIQUE AND REASONS FOR CHOOSING THE CONDITIONS**
 1353

1354 Before we state the main theorem and provide the proof, let us explain the intuition, the novelty, and
 1355 how we identified the conditions of the theorem. The proof of the result is given in Section D.2 and
 1356 is relatively compact. We believe that the simplicity of our result, together with its ability to unify
 1357 methods, constitutes an important contribution to the optimization community. While the initial part
 1358 of the proof follows the same structure as in most related works, starting from (7), our treatment of
 1359 the staleness term $\|x^k - z^k\|$, which naturally arises from the step $x^{k+1} = x^k - \gamma \nabla f(z^k; \xi^k)$, is
 1360 novel.
 1361

1362 After many attempts to develop a universal theory, let us illustrate how we arrived at our conditions.
 1363 Looking at Figure 3, which provides all possible relations between x^k and z^k , one can easily get
 1364

$$1365 \|x^k - z^k\| = \gamma \left\| \sum_{i=p}^{k-1} \nabla f(z^i; \xi^i) - \sum_{(w, \xi) \in S^k} \nabla f(w; \xi) \right\|.$$

1366 First, we noticed that any reasonable method should utilize $\sum_{(w, \xi) \in S^k} \nabla f(w; \xi)$ in the computation
 1367 of z^k before applying $\nabla f(z^k; \xi^k)$ (see the previous discussion about Condition 2 in Section 2.1).
 1368 This implies $\{(w; \xi)\}_{(w, \xi) \in S^k} \subseteq \{(z^i; \xi^i)\}_{i=p}^{k-1}$, leading to the following *identity*:
 1369

$$1370 \|x^k - z^k\| = \gamma \left\| \sum_{j \in \bar{S}^k} \nabla f(z^j; \xi^j) \right\|$$

1371 for some set $\bar{S}^k \subseteq \{p, \dots, k-1\}$ such that $\bar{S}^k \cup S^k = \{p, \dots, k-1\}$. The *identity* says that the
 1372 distance is roughly proportional to the number $|\bar{S}^k|$ of stochastic gradients applied after x^p and
 1373 before z^k , which is *tightly* bounded by the tree distance from x^k to the common ancestor x^p , i.e., it is
 1374 bounded by $|\{p, \dots, k-1\}|$ since $\bar{S}^k \subseteq \{p, \dots, k-1\}$.
 1375

1376 Under Condition 2, notice that $|\{p, \dots, k-1\}| = \max\{|\{p, \dots, k-1\}|, |S^k|\} =: \text{dist}(x^k, z^k)$,
 1377 where we use $S^k \subseteq \{p, \dots, k-1\}$ and Definition 2.2. Thus, to get a bound for $\|x^k - z^k\|$, it is
 1378 natural to introduce Condition 3, which allows us to conclude that $|\bar{S}^k| \leq \text{dist}(x^k, z^k) \leq R$. It
 1379 remains to use classical mathematical tools to obtain
 1380

$$1381 \mathbb{E} \left[\|x^k - z^k\|^2 \right] \leq 2\gamma^2 R \sum_{j=k-R}^{k-1} \mathbb{E} \left[\|\nabla f(z^j)\|^2 \right] + 2\gamma^2 R\sigma^2,$$

1382 where the first term will be canceled by the corresponding term $-\frac{\gamma}{4} \mathbb{E} \left[\|\nabla f(z^k)\|^2 \right]$ from (6).
 1383

1384 **D.2 FULL PROOF**
 1385

1386 **Theorem 2.4** (Main Theorem). *Let Assumptions 1.1, 1.2, and 1.3 hold. Consider any SGD method
 1387 represented by computation tree $G = (V, E)$. Let $\{x^k\}_{k \geq 0}$ be a main branch of G and $\{(z^k, \xi^k)\}_{k \geq 0}$
 1388 be the corresponding auxiliary sequence (see Def. 2.1) that satisfy the following conditions:*

1389 **Condition 1:** *For all $k \geq 0$, ξ^k is statistically independent of $\{(x^{i+1}, z^{i+1}, \xi^i)\}_{i=0}^{k-1}$.*

1390 **Condition 2:** *The representation of z^k is contained within that of x^k , i.e., $\text{repr}(z^k) \subseteq \text{repr}(x^k)$ for
 1391 all $k \geq 0$. Equivalently, all stochastic gradients used in the computation of z^k are also utilized in
 1392 calculating x^k .*

1393 **Condition 3:** *There exists a constant $R \in [0, \infty]$ such that $\text{dist}(x^k, z^k) \leq R$ for all $k \geq 0$.
 1394 Then $\frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E} \left[\|\nabla f(x^k)\|^2 \right] \leq \varepsilon$ for all $K \geq \frac{4(R+1)L\Delta}{\varepsilon} + \frac{8\sigma^2 L\Delta}{\varepsilon^2}$ with step size $\gamma =$
 1395 $\min\{\frac{1}{2L}, \frac{1}{2RL}, \frac{\varepsilon}{4\sigma^2 L}\}$, where $\Delta = f(x^0) - f^*$.*

1396 *Proof.* As the beginning, the analysis is standard. Using Assumption 1.1, we have
 1397

$$1398 f(x^{k+1}) \leq f(x^k) - \gamma \langle \nabla f(x^k), \nabla f(z^k; \xi^k) \rangle + \frac{L\gamma^2}{2} \|\nabla f(z^k; \xi^k)\|^2$$

for $x^{k+1} = x^k - \gamma \nabla f(z^k; \xi^k)$. Due to Condition 1 of the theorem and the variance decomposition equality,

$$\begin{aligned} \mathbb{E}_k[f(x^{k+1})] &\leq f(x^k) - \gamma \langle \nabla f(x^k), \nabla f(z^k) \rangle + \frac{L\gamma^2}{2} \mathbb{E}_k[\|\nabla f(z^k; \xi^k)\|^2] \\ &= f(x^k) - \gamma \langle \nabla f(x^k), \nabla f(z^k) \rangle + \frac{L\gamma^2}{2} \|\nabla f(z^k)\|^2 + \frac{L\gamma^2}{2} \mathbb{E}_k[\|\nabla f(z^k; \xi^k) - \nabla f(z^k)\|^2] \\ &\leq f(x^k) - \gamma \langle \nabla f(x^k), \nabla f(z^k) \rangle + \frac{L\gamma^2}{2} \|\nabla f(z^k)\|^2 + \frac{L\gamma^2\sigma^2}{2}, \end{aligned}$$

where $\mathbb{E}_k[\cdot]$ is the expectation conditioned on (x^k, z^k) . In the last inequality, we use Assumption 1.3. Rewriting the dot product and using $\gamma \leq \frac{1}{2L}$, we obtain

$$\begin{aligned} \mathbb{E}_k[f(x^{k+1})] &\leq f(x^k) - \frac{\gamma}{2} \left(\|\nabla f(x^k)\|^2 + \|\nabla f(z^k)\|^2 - \|\nabla f(x^k) - \nabla f(z^k)\|^2 \right) + \frac{L\gamma^2}{2} \|\nabla f(z^k)\|^2 + \frac{L\gamma^2\sigma^2}{2} \\ &\leq f(x^k) - \frac{\gamma}{2} \|\nabla f(x^k)\|^2 - \frac{\gamma}{4} \|\nabla f(z^k)\|^2 + \frac{\gamma}{2} \|\nabla f(x^k) - \nabla f(z^k)\|^2 + \frac{L\gamma^2\sigma^2}{2}. \end{aligned} \quad (6)$$

In the rest of the proof, we focus on $\|\nabla f(x^k) - \nabla f(z^k)\|^2$. Using Assumption 1.1, we obtain

$$\|\nabla f(x^k) - \nabla f(z^k)\|^2 \leq L^2 \|x^k - z^k\|^2. \quad (7)$$

Notice that there exist $p \in \{0, \dots, k\}$ and the closest common ancestor x^p such that

$$x^k = x^p - \gamma \sum_{i=p}^{k-1} \nabla f(z^i; \xi^i) = x^0 - \gamma \sum_{i=0}^{p-1} \nabla f(z^i; \xi^i) - \gamma \sum_{i=p}^{k-1} \nabla f(z^i; \xi^i)$$

and

$$z^k = x^p - \gamma \sum_{(w, \xi) \in S^k} \nabla f(w; \xi) = x^0 - \gamma \sum_{i=0}^{p-1} \nabla f(z^i; \xi^i) - \gamma \sum_{(w, \xi) \in S^k} \nabla f(w; \xi),$$

where S^k is the set of points and random variables used to compute z^k starting from x^p (see Figure 3). Moreover, due to Condition 3, we have $\text{dist}(x^k, z^k) \leq \max\{k-p, |S^k|\} \leq R$, meaning $p \geq k-R$. In total,

$$k \geq p \geq k-R, \quad (8)$$

which we use later. Condition 2 assumes

$$\begin{aligned} \text{repr}(z^k) &:= \underbrace{\{(z^i; \xi^i)\}_{i=0}^{p-1}}_A \uplus \underbrace{\{(w; \xi)\}_{(w, \xi) \in S^k}}_C \\ &\subseteq \text{repr}(x^k) := \underbrace{\{(z^i; \xi^i)\}_{i=0}^{p-1}}_A \uplus \underbrace{\{(z^i; \xi^i)\}_{i=p}^{k-1}}_B, \end{aligned}$$

where \uplus is the multiset union operation. Thus

$$\underbrace{\{(w; \xi)\}_{(w, \xi) \in S^k}}_C \subseteq \underbrace{\{(z^i; \xi^i)\}_{i=p}^{k-1}}_B$$

and

$$x^k - z^k = -\gamma \left(\sum_{i=p}^{k-1} \nabla f(z^i; \xi^i) - \sum_{(w, \xi) \in S^k} \nabla f(w; \xi) \right) = -\gamma \sum_{j \in \bar{S}^k} \nabla f(z^j; \xi^j), \quad (9)$$

where \bar{S}^k is a set such that $\bar{S}^k \subseteq \{p, \dots, k-1\}$. Substituting (9) to (7),

$$\|\nabla f(x^k) - \nabla f(z^k)\|^2 \leq L^2 \gamma^2 \left\| \sum_{j \in \bar{S}^k} \nabla f(z^j; \xi^j) \right\|^2.$$

1458 Next, using Young's inequality $\|x + y\|^2 \leq 2\|x\|^2 + 2\|y\|^2$ for all $x, y \in \mathbb{R}^d$, we get
 1459

$$1460 \mathbb{E} [\|\nabla f(x^k) - \nabla f(z^k)\|^2] \leq 2L^2\gamma^2 \mathbb{E} \left[\left\| \sum_{j \in \bar{S}^k} \nabla f(z^j) \right\|^2 \right] + 2L^2\gamma^2 \mathbb{E} \left[\left\| \sum_{j \in \bar{S}^k} (\nabla f(z^j; \xi^j) - \nabla f(z^j)) \right\|^2 \right].$$

$$1461$$

$$1462$$

$$1463$$

1464 Since ξ^j is statistically independent of $\{(x^{i+1}, z^{i+1}, \xi^i)\}_{i=0}^{j-1}$ for all $j \in \bar{S}^k$ (Condition 1) and using
 1465 Assumption 1.3,

$$1466 \mathbb{E} [\|\nabla f(x^k) - \nabla f(z^k)\|^2] \leq 2L^2\gamma^2 \mathbb{E} \left[\left\| \sum_{j \in \bar{S}^k} \nabla f(z^j) \right\|^2 \right] + 2L^2\gamma^2 |\bar{S}^k| \sigma^2$$

$$1467$$

$$1468$$

$$1469$$

$$1470 \stackrel{\text{Jensen's ineq.}}{\leq} 2L^2\gamma^2 |\bar{S}^k| \sum_{j \in \bar{S}^k} \mathbb{E} [\|\nabla f(z^j)\|^2] + 2L^2\gamma^2 |\bar{S}^k| \sigma^2.$$

$$1471$$

$$1472$$

$$1473$$

$$1474$$

Due to $\bar{S}^k \subseteq \{p, \dots, k-1\}$ and (8):

$$1475 \mathbb{E} [\|\nabla f(x^k) - \nabla f(z^k)\|^2] \leq 2L^2\gamma^2 R \sum_{j=k-R}^{k-1} \mathbb{E} [\|\nabla f(z^j)\|^2] + 2L^2\gamma^2 R \sigma^2.$$

$$1476$$

$$1477$$

Substituting this inequality to (6) and taking the full expectation, we obtain

$$1478 \mathbb{E} [f(x^{k+1})] \leq \mathbb{E} [f(x^k)] - \frac{\gamma}{2} \mathbb{E} [\|\nabla f(x^k)\|^2] - \frac{\gamma}{4} \mathbb{E} [\|\nabla f(z^k)\|^2] + \frac{L\gamma^2\sigma^2}{2}$$

$$1479$$

$$1480$$

$$1481$$

$$1482 + \frac{\gamma}{2} \left(2L^2\gamma^2 R \sum_{j=k-R}^{k-1} \mathbb{E} [\|\nabla f(z^j)\|^2] + 2L^2\gamma^2 R \sigma^2 \right)$$

$$1483$$

$$1484$$

$$1485 \leq \mathbb{E} [f(x^k)] - \frac{\gamma}{2} \mathbb{E} [\|\nabla f(x^k)\|^2] - \frac{\gamma}{4} \mathbb{E} [\|\nabla f(z^k)\|^2] + L\gamma^2\sigma^2$$

$$1486$$

$$1487$$

$$1488 + L^2\gamma^3 R \sum_{j=k-R}^{k-1} \mathbb{E} [\|\nabla f(z^j)\|^2] \tag{10}$$

$$1489$$

$$1490$$

1491 because $\gamma \leq \frac{1}{2RL}$. Note that $\sum_{k=0}^{K-1} \sum_{j=k-R}^{k-1} \mathbb{E} [\|\nabla f(z^j)\|^2] \leq R \sum_{k=0}^{K-1} \mathbb{E} [\|\nabla f(z^k)\|^2]$. Thus,
 1492 summing (10) for $k = 0, \dots, K-1$ and substituting f^* ,

$$1493 \mathbb{E} [f(x^K) - f^*] \leq f(x^0) - f^* - \frac{\gamma}{2} \sum_{k=0}^{K-1} \mathbb{E} [\|\nabla f(x^k)\|^2] - \frac{\gamma}{4} \sum_{k=0}^{K-1} \mathbb{E} [\|\nabla f(z^k)\|^2] + KL\gamma^2\sigma^2$$

$$1494$$

$$1495$$

$$1496$$

$$1497 + L^2\gamma^3 R^2 \sum_{k=0}^{K-1} \mathbb{E} [\|\nabla f(z^k)\|^2]$$

$$1498$$

$$1499$$

$$1500 \leq f(x^0) - f^* - \frac{\gamma}{2} \sum_{k=0}^{K-1} \mathbb{E} [\|\nabla f(x^k)\|^2] + KL\gamma^2\sigma^2$$

$$1501$$

$$1502$$

1503 because $\gamma \leq \frac{1}{2LR}$. Finally, since $\mathbb{E} [f(x^K) - f^*] \geq 0$,

$$1504$$

$$1505 \frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E} [\|\nabla f(x^k)\|^2] \leq \frac{2\Delta}{K\gamma} + 2L\gamma\sigma^2.$$

$$1506$$

$$1507$$

1508 It is left to use that $\gamma = \min\{\frac{1}{2L}, \frac{1}{2RL}, \frac{\varepsilon}{4\sigma^2 L}\}$ and the bound on K from the theorem statement. \square

1509

1510

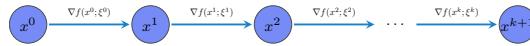
1511

1512 E DETAILED DESCRIPTION OF ALGORITHMS AND ITERATION RATES
15131514 In this section, we provide a detailed description together with theoretical analysis of the algorithms
1515 from the main part.
15161517 E.1 Vanilla SGD
15181519 We start we the celebrated Vanilla SGD algorithm, which formally can be implemented in the following
1520 way:
15211522 **Algorithm 3** Vanilla SGD
1523

 1: **Input:** starting point $w^0 \in \mathbb{R}^d$, step size $\gamma > 0$
 2: **for** $k = 0, 1, 2, \dots$ **do** ($\{\eta^k\}$ are i.i.d.)
 3: Sample $\eta^k \sim \mathcal{D}_\xi$
 4: Compute stochastic gradient $\nabla f(w^k; \eta^k)$
 5: Update $w^{k+1} = w^k - \gamma \nabla f(w^k; \eta^k)$
 6: **end for**

1531 The corresponding computation tree can defined by the recursion
1532

1533
$$w^{k+1} = w^k - \gamma \nabla f(w^k; \eta^k) \quad (11)$$

1534 for all $k \geq 0$.
15351538 Figure 15: The computation tree of Vanilla SGD
15391540 While the iteration rate of Vanilla SGD is well-known (Lan, 2020), we prove its convergence using our
1541 new framework for clarity.
15421543 **Theorem E.1.** *Let Assumptions 1.1, 1.2, and 1.3 hold. Consider the computation tree (11) of Vanilla
1544 SGD. Then, $\{x^k\}_{k \geq 0}$ is a main branch with $x^k = w^k$, $\{(z^k, \xi^k)\}_{k \geq 0}$ is the corresponding auxiliary
1545 sequence with $(z^k, \xi^k) = (w^k, \eta^k)$ (see Def. 2.1), and $\frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E} [\|\nabla f(x^k)\|^2] \leq \varepsilon$ for all*

1546
$$K \geq \frac{4L\Delta}{\varepsilon} + \frac{8\sigma^2 L\Delta}{\varepsilon^2}.$$

1547

1548 with step size $\gamma = \min\{\frac{1}{2L}, \frac{\varepsilon}{4\sigma^2 L}\}$.
15491550 *Proof.* Indeed, $\{x^k\}_{k \geq 0}$ and $\{(z^k, \xi^k)\}_{k \geq 0}$ satisfy Def. 2.1 (see Fig. 15). Moreover, all conditions of
1551 Theorem 2.4 are fulfilled: Condition 1 holds because the sequence $\{\eta^k\}$ is i.i.d., we have $\text{repr}(z^k) =$
1552 $\text{repr}(x^k)$ since $x^k = z^k$, and consequently, $R = \sup_{k \geq 0} \text{dist}(x^k, z^k) = 0$. \square
15531554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

1566 E.2 Rennala SGD

1567

1568 We now apply Theorem 2.4 to Rennala SGD. The iteration rate of Rennala SGD is also well-known
 1569 (Tyurin & Richtárik, 2023), but we provide a proof for completeness. Rennala SGD can be formally
 1570 described as follows:

1571

Algorithm 4 Rennala SGD (Tyurin & Richtárik, 2023)

```

1573 1: Input: point  $w^0 \in \mathbb{R}^d$ , stepsize  $\gamma > 0$ , batch size  $B \in \mathbb{N}$ 
1574 2: Workers start computing stochastic gradients at  $w^0$ 
1575 3: for  $k = 0, \dots, K - 1$  do
1576 4:    $g_i^k = 0$  for all  $i \in [n]$ ;  $b = 0$ 
1577 5:   while  $b < B$  do
1578 6:     Wait for the moment when stochastic gradient is computed by worker
1579 7:     Gradient  $\nabla f(w^{k-\delta}; \eta)$  is computed by worker  $i$ ,  $\eta \sim \mathcal{D}_\xi$ 
1580 8:     if  $\delta = 0$  then
1581 9:       Update  $g_i^k = g_i^k + \nabla f(w^{k-\delta}; \eta)$  locally in worker  $i$ 
1582 10:       $b = b + 1$ 
1583 11:    else
1584 12:      Ignore  $\nabla f(w^{k-\delta}; \eta)$ 
1585 13:    end if
1586 14:    Worker  $i$  begins calculating gradient at  $w^k$ 
1587 15:  end while
1588 16:  Aggregate:  $g^k = \sum_{i=1}^n g_i^k$  (e.g, via AllReduce)
1589 17:  Update:  $w^{k+1} = w^k - \gamma g^k$ 
1590 18: end for

```

1590

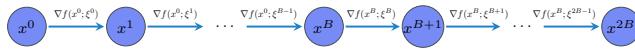
1591

1592 To use Theorem 2.4, we have to construct the computation tree of Rennala SGD. It can be constructed
 1593 in the following way:

$$\begin{aligned}
 1594 \quad x^1 &= x^0 - \gamma \nabla f(x^0; \xi^0), \quad \dots, \quad x^B = x^{B-1} - \gamma \nabla f(x^0; \xi^{B-1}), \\
 1595 \quad x^{B+1} &= x^B - \gamma \nabla f(x^B; \xi^B), \quad \dots, \quad x^{2B} = x^{2B-1} - \gamma \nabla f(x^B; \xi^{2B-1}), \quad \dots,
 \end{aligned} \tag{12}$$

1597 where $\{\xi^i\}$ are i.i.d. from \mathcal{D}_ξ . See also a visualization in Figure 16. One can easily show that
 1598 $w^1 = x^0, w^1 = x^B, w^2 = x^{2B}$, etc.

1599



1600

1601

1602

1603

Figure 16: The computation tree of Rennala SGD

1604

1605

1606 **Theorem E.2.** *Let Assumptions 1.1, 1.2, and 1.3 hold. Consider the computation tree (12) of
 1607 Rennala SGD, then $\{x^k\}_{k \geq 0}$ is a main branch, $\{(z^k, \xi^k)\}_{k \geq 0}$ with $(z^k, \xi^k) = (x^{B\lfloor k/B \rfloor}, \xi^k)$ is the
 1608 corresponding auxiliary sequence, and $\frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E} [\|\nabla f(x^k)\|^2] \leq \varepsilon$ for all*

1609

1610

1611

1612

$$K \geq \frac{4BL\Delta}{\varepsilon} + \frac{8\sigma^2 L\Delta}{\varepsilon^2}.$$

1613 with step size $\gamma = \min\{\frac{1}{2BL}, \frac{\varepsilon}{4\sigma^2 L}\}$.

1614

1615

1616 *Proof.* Clearly, $\{x^k\}_{k \geq 0}$ is a main branch and $\{(z^k, \xi^k)\}_{k \geq 0}$ is the corresponding sequence by the
 1617 construction in (12). Moreover, ξ^k is independent of $\{(x^{i+1}, z^{i+1}, \xi^i)\}_{i=0}^{k-1}$ in (12) because $\{\xi^i\}$ are
 1618 i.i.d. (Condition 1 is satisfied). Next, notice that

1619

$$\begin{aligned}
 \text{repr}(z^0) &= \text{repr}(x^0) = \emptyset, \\
 \text{repr}(z^1) &= \text{repr}(x^0) = \emptyset \subseteq \text{repr}(x^1), \\
 &\vdots
 \end{aligned}$$

1620 $\text{repr}(z^{B-1}) = \text{repr}(x^0) = \emptyset \subseteq \text{repr}(x^{B-1})$
 1621

1622 because $z^k = x^0$ for all $k < B$. Next,

1623 $\text{repr}(z^B) = \text{repr}(x^B),$
 1624 $\text{repr}(z^{B+1}) = \text{repr}(x^B) \subseteq \text{repr}(x^{B+1}),$
 1625 \vdots
 1628 $\text{repr}(z^{2B-1}) = \text{repr}(x^B) \subseteq \text{repr}(x^{2B-1}),$
 1629

1630 because $z^k = x^B$ for all $B \leq k < 2B$, where $\text{repr}(x^B) \subseteq \text{repr}(x^{B+1}), \dots, \text{repr}(x^B) \subseteq$
 1631 $\text{repr}(x^{2B-1})$ due to (12). We can continue and show that $\text{repr}(z^k) \subseteq \text{repr}(x^k)$ for all $k \geq 0$
 1632 (Condition 2 is satisfied). It is left to notice that

1633 $\sup_{k \geq 0} \text{dist}(x^k, z^k) \leq B - 1,$
 1634

1635 because

1636 $\text{dist}(x^0, z^0) = 0,$
 1637 $\text{dist}(x^1, z^1) = \text{dist}(x^1, x^0) = 1,$
 1638 \vdots
 1639
 1640
 1641 $\text{dist}(x^{B-1}, z^{B-1}) = \text{dist}(x^{B-1}, x^0) = B - 1,$
 1642 $\text{dist}(x^B, z^B) = \text{dist}(x^B, x^B) = 0,$
 1643 $\text{dist}(x^{B+1}, z^{B+1}) = \text{dist}(x^{B+1}, x^B) = 1,$
 1644 \vdots
 1645
 1646

1647 The maximum tree distance between x^k and z^k is $B - 1$. Thus, $R = B - 1$ in Condition 3. \square
 1648

1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673

1674 E.3 Local SGD

1675

1676 The Local SGD method is described in the following algorithm:

1677

1678

1679

1680

Algorithm 5 Local SGD

1681

Require: Initial model w^0 , step size γ , parameter B

1682

1: **for** $k = 0, 1, 2, \dots$ **do**

1683

2: Broadcast w^k to all workers

1684

3: **for each worker** $i \in [n]$ **in parallel do**

1685

4: Worker i starts $\text{LocalSGDWorker}(w^k, \gamma)$ from Algorithm 6

1686

5: **end for**

1687

6: Wait for the moment when $\sum_{i=1}^n M_i = B$ ($\{M_i\}$ from $\text{LocalSGDWorker}(w^k, \gamma)$)

1688

7: Ask workers to stop⁷ running $\text{LocalSGDWorker}(w^k, \gamma)$

1689

8: Aggregate $\gamma \sum_{i=1}^n \sum_{j=0}^{M_i-1} \nabla f(z_i^{k,j}; \eta_i^{k,j})$ from the workers (e.g, via `AllReduce`)

1690

9: Update $w^{k+1} = w^k - \gamma \sum_{i=1}^n \sum_{j=0}^{M_i-1} \nabla f(z_i^{k,j}; \eta_i^{k,j})$

1691

10: **end for**

1692

1693

1694

1695

1696

Algorithm 6 $\text{LocalSGDWorker}(w, \gamma)$ in worker i at round k

1697

1: $z_i^{k,0} = w$

1698

2: $M_i \leftarrow 0$

1699

3: **while** True **do**

1700

4: $z_i^{k,M_i+1} = z_i^{k,M_i} - \gamma \nabla f(z_i^{k,M_i}; \eta_i^{k,M_i})$, $\eta_i^{k,M_i} \sim \mathcal{D}_\xi$

1701

5: $M_i = M_i + 1$

1702

6: **end while**

1703

1704

1705

1706

One key change compared to the previous work is that individual local steps M_i are not predefined. Moreover, the server tracks the sum $\sum_{i=1}^n M_i$ and waits for the moment $\sum_{i=1}^n M_i = B$ before collecting the locally calculated gradients. With a proper choice of B , we will prove the optimal computational time complexity of the method in Section F.

1707

The corresponding computation tree of Local SGD can be constructed in the following way. Define $N_k := k \times B$ and take $k = 0$. Then

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

$$\begin{aligned} z_i^{k,1} &= z_i^{k,0} - \gamma \nabla f(x^{N_k}; \eta_i^{k,0}), \\ z_i^{k,2} &= z_i^{k,1} - \gamma \nabla f(z_i^{k,1}; \eta_i^{k,1}), \\ &\vdots \\ z_i^{k,M_i} &= z_i^{k,M_i-1} - \gamma \nabla f(z_i^{k,M_i-1}; \eta_i^{k,M_i-1}), \end{aligned} \tag{13}$$

1724

1725

⁷Alternatively, allow the workers to finish computing their stochastic gradients without waiting for them (since `AllReduce` can be run in parallel), but discard these gradients in subsequent iterations, as they are no longer relevant. This approach may introduce a delay before the workers begin their next local steps.

1726

1727

Another option is to allow the workers to finish computing their stochastic gradients without waiting for them, and send these gradients in the next iteration. If some gradients are still not computed by then due to delays, simply discard them.

1728 for all $i \in [n]$, and
 1729

$$\begin{aligned}
 1730 \quad x^{N_k+1} &= x^{N_k} - \gamma \nabla f(z_1^{k,0}; \eta_1^{k,0}), \\
 1731 \quad &\vdots \\
 1732 \quad x^{N_k+M_1} &= x^{N_k+M_1-1} - \gamma \nabla f(z_1^{k,M_1-1}; \eta_1^{k,M_1-1}), \\
 1733 \quad x^{N_k+M_1+1} &= x^{N_k+M_1} - \gamma \nabla f(z_2^{k,0}; \eta_2^{k,0}), \\
 1734 \quad &\vdots \\
 1735 \quad x^{N_k+M_1+M_2} &= x^{N_k+M_1+M_2-1} - \gamma \nabla f(z_2^{k,M_2-1}; \eta_2^{k,M_2-1}), \\
 1736 \quad &\vdots \\
 1737 \quad x^{N_k+1} &= x^{N_k+\sum_{i=1}^n M_i-1} - \gamma \nabla f(z_n^{k,M_n-1}; \eta_n^{k,M_n-1}).
 \end{aligned} \tag{14}$$

1738 Repeat the previous steps with $k = k + 1$ starting at $x^{N_k+1} = x^{N_k+B}$. See illustration in Figure 4.
 1739 One can easily show that $w^1 = x^B, w^2 = x^{2B}, \dots, w^k = x^{kB}, \dots$, where w^k is the sequence from
 1740 Algorithm 5.

1741 **Theorem E.3.** *Let Assumptions 1.1, 1.2, and 1.3 hold. Consider the computation tree ((13) and (14))
 1742 of Local SGD, then $\{x^k\}_{k \geq 0}$ is a main branch and $\frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E} [\|\nabla f(x^k)\|^2] \leq \varepsilon$ for all*

$$1743 \quad K \geq \frac{4BL\Delta}{\varepsilon} + \frac{8\sigma^2 L\Delta}{\varepsilon^2}.$$

1744 with step size $\gamma = \min\{\frac{1}{2BL}, \frac{\varepsilon}{4\sigma^2 L}\}$.

1745 Although the proof may seem technical due to the heavy notation in (14), it is actually straightforward
 1746 when you refer to Figure 4. This figure clearly shows that all conditions of Theorem 2.4 are satisfied
 1747 with $R = B - 1$ because $\sum_{i=1}^n M_i = B$ in every global iteration. The condition $\sum_{i=1}^n M_i = B$
 1748 helps us to insure that the maximum tree distance $\sup_{k \geq 0} \text{dist}(x^k, z^k) \leq B - 1$.

1749 *Proof.* Clearly, $\{x^k\}_{k \geq 0}$ is a main branch by Definition 2.1. The corresponding auxiliary sequence
 1750 can be inferred from (14): $(z^0, \xi^0) = (z_1^{0,0}, \eta_1^{0,0}), \dots, (z^{M_1}, \xi^{M_1}) = (z_1^{0,M_1}, \eta_1^{0,M_1})$, and etc. Con-
 1751 dition 1 is satisfied because $\{\eta_i^{k,j}\}$ are i.i.d., and by the construction (14). Condition 2 of Theorem 2.4
 1752 holds because the same stochastic gradients used for computing z^k are also used for x^k , as shown in
 1753 Figure 4. This can be formally verified using (14) and (13). It is left to notice that

$$1754 \quad \sup_{k \geq 0} \text{dist}(x^k, z^k) \leq B - 1$$

1755 because the maximum number of edges to the common closest ancestor can not exit $B - 1$. \square

1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781

1782 E.4 Ringmaster ASGD
17831784 **Algorithm 7** Ringmaster ASGD (Maranjyan et al., 2025)
1785

```

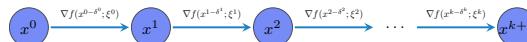
1786 1: Input: point  $w^0 \in \mathbb{R}^d$ , stepsize  $\gamma > 0$ , delay threshold  $G \in \mathbb{N}$ 
1787 2: Set  $k = 0$ 
1788 3: Workers start computing stochastic gradients at  $w^0$ 
1789 4: while True do
1790 5:   Gradient  $\nabla f(w^{k-\delta^k}; \eta_i^{k-\delta^k})$  arrives from worker  $i$ 
1791 6:   if  $\delta^k < G$  then
1792 7:     Update:  $w^{k+1} = w^k - \gamma \nabla f(w^{k-\delta^k}; \eta_i^{k-\delta^k})$ 
1793 8:     Worker  $i$  begins calculating at  $w^{k+1}$  ( $\{\eta_i^k\}$  are i.i.d.)
1794 9:     Update the iteration number  $k = k + 1$ 
1795 10:  else
1796 11:    Ignore the outdated gradient  $\nabla f(w^{k-\delta^k}; \eta_i^{k-\delta^k})$ 
1797 12:    Worker  $i$  begins calculating at  $w^k$ 
1798 13:  end if
1799 14: end while

```

1800

1801 In this method, a main branch can be defined as
1802

$$x^k = w^k \quad (15)$$

1803 and the auxiliary sequence is defined as $(z^k, \xi^k) = (x^{k-\delta^k}, \eta_i^{k-\delta^k})$ for all $k \geq 0$.
18041805 Figure 17: The computation tree of Ringmaster ASGD
18061807 **Theorem E.4.** *Let Assumptions 1.1, 1.2, and 1.3 hold. Consider the computation tree of Ringmaster
1808 ASGD, then $\{x^k\}_{k \geq 0}$, defined in (15), is a main branch and $\frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E} [\|\nabla f(x^k)\|^2] \leq \varepsilon$ for all
1809*

$$1810 K \geq \frac{4GL\Delta}{\varepsilon} + \frac{8\sigma^2 L\Delta}{\varepsilon^2}.$$

1811 with step size $\gamma = \min\{\frac{1}{2GL}, \frac{\varepsilon}{4\sigma^2 L}\}$.
18121813 *Proof.* Condition 1 is satisfied because $\{\eta_i^{k-\delta^k}\}$ are i.i.d., $x^k = w^k$ and $z^k = x^{k-\delta^k}$ do not depend
1814 on $\xi^k = \eta_i^{k-\delta^k}$. Condition 2 is satisfied because $\text{repr}(z^k) = \text{repr}(w^{k-\delta^k}) \subseteq \text{repr}(w^k) = \text{repr}(x^k)$.
1815 Condition 3 is satisfied with $R = G - 1$ because
1816

$$1817 \text{dist}(x^k, z^k) = \text{dist}(x^k, x^{k-\delta^k}) = \delta^k \leq G - 1,$$

1818 where the second equality due to the number of edges between x^k and $x^{k-\delta^k}$ and the last inequality
1819 due to the fact that δ^k is bounded by B in Algorithm 7. \square
1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836 E.5 Cycle SGD

1837

1838 We now present a new method, called Cycle SGD:

1839

1840 **Algorithm 8** Cycle SGD1841 **Require:** Initial model w^0 , step size γ , group size s 1842 1: Partition workers into groups of size s :

1843

1844
$$G_1 = \{1, \dots, s\}, G_2 = \{s+1, \dots, 2s\}, \dots, G_{\lceil n/s \rceil} = \{(\lceil n/s \rceil - 1)s + 1, \dots, n\}$$

1845 in a circular manner.

1846 2: Broadcast w^0 to all workers and assign the local variables $z_i^0 = w^0$ and $M_i = 0$ for all $i \in [n]$ 1847 3: **while** True **do**1848 4: **for** group index $g = 1$ to $\lceil n/s \rceil$ **do**1849 5: **for** each worker $i \in [n]$ **in parallel do**

1850 6:
$$z_i^{M_i+1} = z_i^{M_i} - \gamma \nabla f(z_i^{M_i}; \eta_i^{M_i}), \quad \eta_i^{M_i} \sim \mathcal{D}_\xi$$

1851 7:
$$M_i = M_i + 1$$

1852 8: **end for**1853 9: Aggregate $\gamma \sum_{i \in G_g} \sum_{j=1}^{M_i} \nabla f(z_i^j; \eta_i^j)$ from the workers of group G_g only

1854 10: Server aggregates and updates the model:

1855

1856
$$w^{r+1} = w^r - \gamma \sum_{i \in G_g} \sum_{j=0}^{M_i-1} \nabla f(z_i^j; \eta_i^j)$$

1857

1858 11: Broadcast w^{r+1} to all workers of group g and assign the local variables $z_i^0 = w^{r+1}$ and1859 $M_i = 0$ for all $i \in G_g$ 1860 12: $r = r + 1$ 1861 13: **end for**1862 14: **end while**

1863

1864

1865 This method operates similarly to Local SGD, with workers performing local steps. However, a key
1866 difference is that only s workers synchronize at each step, rather than all n workers. This strategy
1867 can be advantageous in scenarios where reducing peak bandwidth is desirable. A visualization of the
1868 corresponding computation tree is in Figure 18. For this algorithm, the first $\sum_{i=1}^n M_i$ nodes of the
1869 main branch can be defined as

$$\begin{aligned}
x^1 &= x^0 - \gamma \nabla f(z_1^0; \eta_1^0), \\
&\vdots \\
x^{M_1} &= x^{M_1-1} - \gamma \nabla f(z_1^{M_1-1}; \eta_1^{M_1-1}), \\
&\vdots \\
x^{\sum_{i=1}^{s-1} M_i + 1} &= x^{\sum_{i=1}^{s-1} M_i} - \gamma \nabla f(z_s^0; \eta_s^0), \\
&\vdots \\
x^{\sum_{i=1}^s M_i} &= x^{\sum_{i=1}^s M_i-1} - \gamma \nabla f(z_s^{M_s-1}; \eta_s^{M_s-1}),
\end{aligned} \tag{16}$$

1883 Notice that $x^{\sum_{i=1}^s M_i} \equiv w^1$, where we capture and unroll all stochastic gradients from the first group.
1884 The next nodes of the main branch can be defined in a similar way going through all groups circularly.1885 **Theorem E.5.** *Let Assumptions 1.1, 1.2, and 1.3 hold. Consider the computation tree of Cycle SGD
(Alg. 8), then $\{x^k\}_{k \geq 0}$, defined in (16), is a main branch and $\frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E} [\|\nabla f(x^k)\|^2] \leq \varepsilon$ for all*

1886

1887

1888
$$K \geq \frac{8n^2 L \Delta}{s \varepsilon} + \frac{8\sigma^2 L \Delta}{\varepsilon^2}.$$

1889 with step size $\gamma = \min\{\frac{s}{4n^2 L}, \frac{\varepsilon}{4\sigma^2 L}\}$.

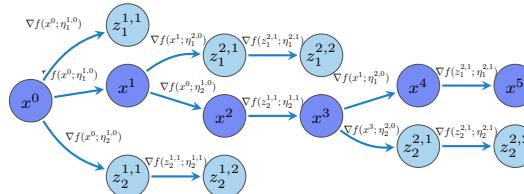


Figure 18: An example of Cycle SGD computation tree.

Proof. Once again, the proof is geometric. As an example, consider Figure 18 together with Algorithm 8. One can easily show that Conditions 1 and 2 are satisfied similarly to the proof of Theorem 5. However, the maximum tree distance is different since we synchronize the workers in a circular manner.

First, the number of local steps $M_i \leq \lceil \frac{n}{s} \rceil \leq \frac{2n}{s}$ because each worker computes one stochastic gradient in the inner loop and synchronizes every $\lceil \frac{n}{s} \rceil$ loops.

Next, the maximum tree distance between a point x^k on the main branch and the corresponding point of the auxiliary sequence z^k is at most $\frac{2n^2}{s}$. Let us explain this step. Consider any x^k and z^k , and their closest common ancestor w^k (in Figure 18, for instance, take x^5 , $z_2^{2,2}$, and x^3 accordingly).

The number of edges from z^k to w^k never exceeds $\frac{2n}{s}$ due to the bound on the number of local steps. The number of edges from x^k to w^k never exceeds $\frac{2n^2}{s}$ because, while one worker performs local steps, other workers can grow the main branch by at most $\lceil \frac{n}{s} \rceil \times (n - 1) \leq \frac{2n(n-1)}{s}$ points before the worker that computed z^k is synchronized⁸.

Thus, we can take $R = \frac{2n^2}{s}$ in Condition 3 of Theorem 2.4. \square

⁸For instance, see Figure 18, where, before the algorithm applies $\nabla f(z_2^{2,1}; \xi_2^{2,1})$ from the second worker, the main branch grows by two edges, from x^3 to x^5 , due to gradients computed by the first worker.

1944 E.6 Async-Local SGD
19451946 The following algorithm is a mixture of Asynchronous SGD and Local SGD, which we formalize in
1947 the following way.

1948

1949 **Algorithm 9** Async-Local SGD

1950 1: **Input:** point $x^0 \in \mathbb{R}^d$, stepsize $\gamma > 0$, delay threshold $B \in \mathbb{N}$, number of local steps M
1951 2: Set $k = 0$
1952 3: Workers start running local steps at w^0 with Alg. 10 for M steps
1953 4: **while** True **do**
1954 5: Sum $\gamma \sum_{p=0}^{M-1} \nabla f(z_{i_k}^p; \eta_{i_k}^p)$ arrives from some worker i_k
1955 6: Find the tree distance $\delta^k = \text{dist}(w^k, z_{i_k}^0)$
1956 (delay δ^k of $w^{k-\delta^k}$, at which point worker i_k started local steps)
1957 7: **if** $\delta^k < B$ **then**
1958 8: Update: $w^{k+1} = w^k - \gamma \sum_{p=0}^{M-1} \nabla f(z_{i_k}^p; \eta_{i_k}^p)$
1959 9: Worker i starts running local steps at w^{k+1} with Alg. 10 for M steps
1960 10: Update the iteration number $k = k + 1$
1961 11: **else**
1962 12: Ignore the outdated sum $\gamma \sum_{p=0}^{M-1} \nabla f(z_{i_k}^p; \eta_{i_k}^p)$
1963 13: Worker i starts running local steps at w^k with Alg. 10 for M steps
1964 14: **end if**
1965 15: **end while**
1966
1967

1968 **Algorithm 10** LocalSGDWorker(w, γ, M) in worker i

1969 1: $z_i^0 = w$
1970 2: **for** $p = 0, \dots, M-1$ **do**
1971 3: $z_i^{p+1} = z_i^p - \gamma \nabla f(z_i^p; \eta_i^p)$, $\eta_i^p \sim \mathcal{D}_\xi$
1972 4: **end for**
1973 5: Send to the server $\gamma \sum_{p=0}^{M-1} \nabla f(z_i^p; \eta_i^p)$
1974

1975
1976 If $M = 1$, then this method reduces to Ringmaster ASGD (Alg. 7). Taking $M > 1$, we can improve the
1977 time complexity of Ringmaster ASGD by decreasing the number of times when workers synchronize
1978 with the server. For this method, it is natural to take a main branch as
1979

$$\begin{aligned}
x^1 &= x^0 - \gamma \nabla f(z_{i_1}^0; \eta_{i_1}^0), \\
&\vdots \\
x^M &= x^{M-1} - \gamma \nabla f(z_{i_1}^{M-1}; \eta_{i_1}^{M-1}), \\
&\vdots \\
x^{M(k-1)+1} &= x^{M(k-1)} - \gamma \nabla f(z_{i_k}^{M-1}; \eta_{i_k}^{M-1}), \\
&\vdots \\
x^{Mk} &= x^{Mk-1} - \gamma \nabla f(z_{i_k}^{M-1}; \eta_{i_k}^{M-1}),
\end{aligned} \tag{17}$$

1993 and so on. Notice that $x^0 \equiv w^0, x^M \equiv w^1$, etc.1994 **Theorem E.6.** Let Assumptions 1.1, 1.2, and 1.3 hold. Consider the computation tree of Async-Local
1995 SGD (Alg. 9), then $\{x^k\}_{k \geq 0}$, defined in (17), is a main branch and $\frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E} [\|\nabla f(x^k)\|^2] \leq \varepsilon$
1996 for all

1997
$$K \geq \frac{4(B+M-1)L\Delta}{\varepsilon} + \frac{8\sigma^2 L\Delta}{\varepsilon^2}.$$

1998 with step size $\gamma = \min\{\frac{1}{4(B+M-1)L}, \frac{\varepsilon}{4\sigma^2 L}\}$.
 1999

2000 *Proof.* Similar to the previous proofs, Condition 1 is satisfied for the main branch $\{x^k\}_{k \geq 0}$ because
 2001 all random variables $\{\eta_j^i\}$ in (17) are i.i.d., and x^0 and $z_{i_1}^0$ do not depend on $\eta_{i_1}^0$. Points x^{M-1} and
 2002 $z_{i_1}^{M-1}$ do not depend on $\eta_{i_1}^{M-1}$, and so on. Conditions 2 is satisfied because all stochastic gradients
 2003 used to compute $z_{i_k}^p$ are also used to compute the corresponding point on the main branch for all
 2004 $p \in \{0, \dots, M-1\}$ and $k \geq 0$ (see Figure 5). Condition 3 is satisfied with $R = B-1+M-1 =$
 2005 $B+M-2$ due to the inequality $\delta^k = \text{dist}(w^k, z_{i_k}^0) < B$ in Algorithm 9 and the fact every
 2006 worker calculates M stochastic gradients, which ensures that the tree distance between $z_{i_k}^0$ and the
 2007 corresponding point from the main brain branch is at most $B-1$, the tree distance between $z_{i_k}^1$ and the
 2008 corresponding point from the main brain branch is at most $B-2, \dots$, the tree distance between
 2009 $z_{i_k}^{M-1}$ and the corresponding point from the main brain branch is at most $B+M-2$. \square
 2010

2011 E.7 Async-Batch SGD

2012 This method does the same steps as Async-Local SGD with the only difference that the workers
 2013 calculate mini-batches instead of local steps:

2014 **Algorithm 11** BatchSGDWorker(w, γ, M) in worker i

2015 1: $z_i^0 = w$
 2016 2: **for** $p = 0, \dots, M-1$ **do**
 2017 3: Calculate $\nabla f(z_i^p; \eta_i^p)$, $\eta_i^p \sim \mathcal{D}_\xi$
 2018 4: $z_i^{p+1} = z_i^p$
 2019 5: **end for**
 2020 6: Send to the server $\gamma \sum_{p=0}^{M-1} \nabla f(z_i^p; \eta_i^p)$

2021 One can easily show that these methods share the same theoretical guarantees (Sections E.6, F, and
 2022 G) as Async-Local SGD.

2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051

2052 E.8 Local-Async SGD
20532054 One way to interpret the following algorithm is that the workers are partitioned into groups, with
2055 each group running Asynchronous SGD. Then, at certain points, all workers synchronize, and start
2056 running Asynchronous SGD at a new point. One of the important novelties here is the condition
2057 $\sum_{g=1}^s m_g = B$, which, with a proper B , leads to the optimal computational time complexity
2058 (Section F).2059
2060 **Algorithm 12** Local-Async SGD2061 **Require:** Initial model w^0 , step size γ , parameter B , group partitions G_1, \dots, G_s
2062 1: **for** $k = 0, 1, 2, \dots$ **do**
2063 2: Broadcast w^k to all groups
2064 3: **for** each worker $g \in [s]$ **in parallel do**
2065 4: Group g starts AsynchronousSGDGroup(w^k, γ) from Algorithm 13
2066 5: **end for**
2067 6: Wait for the moment when $\sum_{g=1}^s m_g = B$ ($\{m_g\}$ from AsynchronousSGDGroup(w^k, γ))
2068 7: Ask the groups to stop⁹ running AsynchronousSGDGroup(w^k, γ)
2069 8: Aggregate $\gamma \sum_{g=1}^s \sum_{j=0}^{m_g-1} \nabla f(v_g^{j-\delta^j}; \eta_g^j)$ from the groups
2070 9: Update $w^{k+1} = w^k - \gamma \sum_{g=1}^s \sum_{j=0}^{m_g-1} \nabla f(v_g^{j-\delta^j}; \eta_g^j)$ ($\{\eta_g^j\}$ are i.i.d.)
2071 10: **end for**2072
2073 **Algorithm 13** AsynchronousSGDGroup(w, γ) in group g 2074
2075 **Input:** point $v_g^0 \in \mathbb{R}^d$, stepsize $\gamma > 0$
2076 Set $m_g = 0$
2077 Workers from group g start computing stochastic gradients at v_g^0
2078 **while** True **do**
2079 Gradient $\nabla f(v_g^{m_g-\delta^{m_g}}; \eta_g^{m_g})$ arrives from worker i with delay δ^{m_g}
2080 Update: $v_g^{m_g+1} = v_g^{m_g} - \gamma \nabla f(v_g^{m_g-\delta^{m_g}}; \eta_g^{m_g})$
2081 Worker i begins calculating stochastic gradient at $v_g^{m_g+1}$
2082 Update the iteration number $m_g = m_g + 1$
2083 **end while**2084
2085 For this method, it is natural to take a main branch of the computation tree as

2086
2087
$$x^1 = x^0 - \gamma \nabla f(v_1^{0-\delta^0}; \eta_1^0),$$

2088
2089
$$\vdots$$

2090
2091
$$x^{m_1} = x^{m_1-1} - \gamma \nabla f(v_1^{m_1-1-\delta^{m_1-1}}; \eta_1^{m_1-1}),$$

2092
2093
$$\vdots$$

2094
2095
$$x^{\sum_{g=1}^{s-1} m_i + 1} = x^{\sum_{g=1}^{s-1} m_i} - \gamma \nabla f(v_s^{0-\delta^0}; \eta_s^0),$$

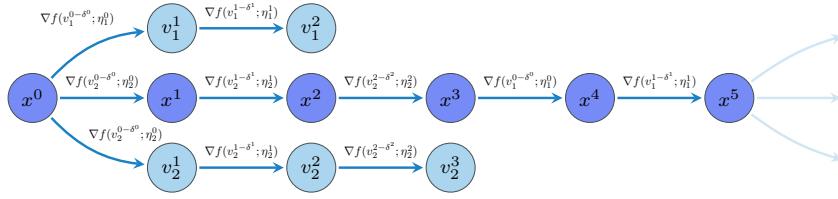
2096
2097
$$\vdots$$

2098
2099
$$x^{\sum_{g=1}^s m_i} = x^{\sum_{g=1}^s m_i - 1} - \gamma \nabla f(v_s^{m_s-1-\delta^{m_s-1}}; \eta_s^{m_s-1})$$

2100
2101
$$\vdots$$

2102 ⁹Alternatively, allow the workers to finish computing their stochastic gradients without waiting for them
2103 (since AllReduce can be run in parallel), but discard these gradients in subsequent iterations, as they are no
longer relevant. This approach may introduce a delay before the workers begin their next local steps.2104 Another option is to allow the workers to finish computing their stochastic gradients without waiting for them,
2105 and send these gradients in the next iteration. If some gradients are still not computed by then due to delays,
simply discard them.

2106 where one can see that $x^{\sum_{g=1}^s m_i} \equiv x^B \equiv w^1$, and $\{v_g^j\}$ is defined in Algorithm 13.
 2107



2115 Figure 19: An example of a Local-Async SGD computation tree with two groups and $B = 5$. One
 2116 group performs $m_1 = 3$ steps of Asynchronous SGD, while the other performs $m_2 = 2$ steps. Note
 2117 that the maximum tree distance is $\text{dist}(x^4, v_1^{1-\delta^1})$ when applying $\nabla f(v_1^{1-\delta^1}; \eta_1^1)$ to x^4 , and it equals
 2118 $B - 1 = m_1 + m_2 - 1 = 4$. Then, the groups synchronize and continue from x^5 .
 2119

2120 **Theorem E.7.** *Let Assumptions 1.1, 1.2, and 1.3 hold. Consider the computation tree of Local-Async
 2121 SGD (Alg. 12), then $\{x^k\}_{k \geq 0}$, defined in (18), is a main branch and $\frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E} [\|\nabla f(x^k)\|^2] \leq \varepsilon$
 2122 for all*

$$2124 K \geq \frac{4BL\Delta}{\varepsilon} + \frac{8\sigma^2 L\Delta}{\varepsilon^2}.$$

2126 with step size $\gamma = \min\{\frac{1}{4BL}, \frac{\varepsilon}{4\sigma^2 L}\}$.

2127 *Proof.* The proof closely follows that of Theorem E.3, with the only difference being that the
 2128 *auxiliary branches* in Algorithm 13 are constructed using asynchronous steps rather than local steps
 2129 (compare Figure 4 and Figure 19). As in Theorem E.3, the condition $\sum_{g=1}^s m_g = B$ ensures that
 2130 $\sup_{k \geq 0} \text{dist}(x^k, z^k) \leq B - 1$. \square

2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159

2160 E.9 Nested Local-Async SGD
2161

2162 In this section, we formalize a hierarchical version of Algorithm 12. Our framework, Theorem 2.4, is
2163 flexible enough to support such a two-level structure, where each cluster consists of servers equipped
2164 with (4–8) GPUs. The GPUs run Asynchronous SGD, the servers synchronize within their clusters,
2165 and finally, the clusters synchronize with each other.

2166 In the following algorithm, all workers are partitioned into $\{G_{ij}\}$ groups, where i is the cluster index
2167 and j is the server index within the cluster. The set G_{ij} contains the indices of the workers (GPUs).
2168

2169 **Algorithm 14** Nested Local-Async SGD
2170

2171 **Require:** Initial model w^0 , step size γ , parameters B_i , global parameter B , group partitions $\{G_{ij}\}$
2172 1: **for** $k = 0, 1, 2, \dots$ **do**
2173 2: Broadcast w^k to all clusters
2174 3: **for** each cluster i **in parallel do**
2175 4: Set $w_i^0 = w^k$
2176 5: **for** $p_i = 0, 1, 2, \dots$ **do**
2177 6: Broadcast $w_i^{p_i}$ to all local groups
2178 7: **for** each server j **in parallel do**
2179 8: Group G_{ij} starts AsynchronousSGDGroup($w_i^{p_i}, \gamma$) from Algorithm 13
2180 9: **end for**
2181 10: Cluster i waits for the moment when $\sum_j m_{ij} = B_i$
2182 11: Ask the groups in cluster i to stop running AsynchronousSGDGroup($w_i^{p_i}, \gamma$)
2183 12: Update $w_i^{p_i+1} = w_i^{p_i} - \gamma \sum_j \sum_{\ell=0}^{m_{ijp_i}-1} \nabla f(v_{ijp_i}^{\ell-\delta^\ell}; \eta_{ijp_i}^\ell)$
2184 13: **end for**
2185 14: **end for**
2186 15: Wait for the moment the total number of local steps in the clusters starting from the last
2187 broadcast is B
2188 16: Ask all groups in all servers to stop running AsynchronousSGDGroup(w^k, γ)
2189 17: Update $w^{k+1} = w^k - \sum_i (w_i^{p_i} - w_i^0) = w^k - \gamma \sum_i \sum_{k=0}^{p_i-1} \sum_j \sum_{\ell=0}^{m_{ijk}-1} \nabla f(v_{ijk}^{\ell-\delta^\ell}; \eta_{ijk}^\ell)$
2190 18: **end for**

2191
2192 **Algorithm 15** AsynchronousSGDGroup(w, γ) in group G_{ij}
2193

2194 **Input:** point $v_{ijp_i}^0 \in \mathbb{R}^d$, stepsize $\gamma > 0$
2195 Set $m_{ij} = 0$
2196 Workers from group G_{ij} start computing stochastic gradients at $v_{ijp_i}^0$
2197 **while** True **do**
2198 Gradient $\nabla f(v_{ijp_i}^{m_{ijp_i}-\delta^{m_{ijp_i}}}; \eta_{ijp_i}^{m_{ijp_i}})$ arrives from worker i with delay $\delta^{m_{ijp_i}}$
2199 Update: $v_{ijp_i}^{m_{ijp_i}+1} = v_{ijp_i}^{m_{ijp_i}} - \gamma \nabla f(v_{ijp_i}^{m_{ijp_i}-\delta^{m_{ijp_i}}}; \eta_{ijp_i}^{m_{ijp_i}})$
2200 Worker i begins calculating stochastic gradient at $v_{ijp_i}^{m_{ijp_i}+1}$
2201 Update the iteration number $m_{ijp_i} = m_{ijp_i} + 1$
2202 **end while**

2203
2204 We believe that analyzing this algorithm directly using classical optimization tools would be chal-
2205 lenging due to heavy notations. However, using our framework and geometrical graph reasoning,
2206 we can easily prove the iteration rate of this algorithm. As in all previous cases, a main branch x^k
2207 can be defined by taking each component of the sum $\sum_i \sum_{k=0}^{p_i-1} \sum_j \sum_{\ell=0}^{m_{ijk}-1} \nabla f(v_{ijk}^{\ell-\delta^\ell}; \eta_{ijk}^\ell)$ and
2208 applying each stochastic gradient to $x^0, x^1 = x^0 - \gamma \nabla f(v_{110}^0; \eta_{110}^0)$, and so on.

2209
2210 **Theorem E.8.** *Let Assumptions 1.1, 1.2, and 1.3 hold. Consider the computation tree of Nested
2211 Local-Async SGD (Alg. 14), then $\frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E} [\|\nabla f(x^k)\|^2] \leq \varepsilon$ for all
2212*

$$2213 K \geq \frac{4BL\Delta}{\varepsilon} + \frac{8\sigma^2 L\Delta}{\varepsilon^2}.$$

2214 with step size $\gamma = \min\{\frac{1}{4BL}, \frac{\varepsilon}{4\sigma^2 L}\}$ for the main branch $\{x^k\}$ (slightly informally) defined above.
 2215

2216 *Proof.* Similarly to the previous proofs, Conditions 1 and 2 are satisfied by the construction of
 2217 the algorithm. Using geometric graph reasoning, Condition 3 is satisfied with $R \leq B$ due to the
 2218 requirement that “the total number of local steps in the clusters starting from the last broadcast is B .”
 2219 This ensures that the distance between the points of the main branch and the corresponding points of
 2220 the auxiliary sequence defined by v does not exceed B . \square

2221 *Remark E.9.* One can see that the converge rate does not depend on $\{B_i\}$. Theoretically, it is sufficient
 2222 to take $B_i = \infty$. However, practically, it may be better to take $B_i < \infty$ to ensure that the GPUs
 2223 synchronize more often and share information with others, but it can lead to communication overhead
 2224 and less efficient utilization of the GPUs.

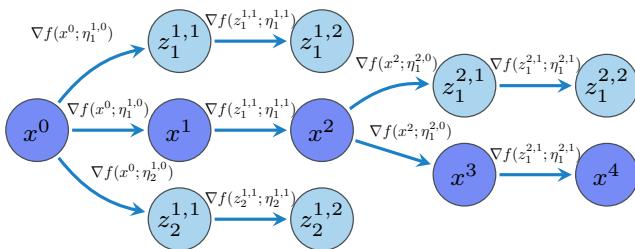
2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267

2322 can be constructed as
 2323

$$\begin{aligned}
 x^1 &= x^0 - \gamma \nabla f(z_{i_1}^0; \eta_{i_1}^0), \\
 x^2 &= x^1 - \gamma \nabla f(z_{i_1}^1; \eta_{i_1}^1), \\
 &\vdots \\
 x^{M_{i_1}} &= x^{M_{i_1}-1} - \gamma \nabla f(z_{i_1}^{M_{i_1}-1}; \eta_{i_1}^{M_{i_1}-1}), \\
 &\vdots \\
 x^{\sum_{j=1}^{p_k-1} M_{i_j} + 1} &= x^{\sum_{j=1}^{p_k-1} M_{i_j}} - \gamma \nabla f(z_{i_{p_k}}^0; \eta_{i_{p_k}}^0), \\
 &\vdots \\
 x^{\sum_{j=1}^{p_k} M_{i_j}} &= x^{\sum_{j=1}^{p_k} M_{i_j}-1} - \gamma \nabla f(z_{i_{p_k}}^{M_{i_{p_k}}-1}; \eta_{i_{p_k}}^{M_{i_{p_k}}-1}), \\
 &\vdots
 \end{aligned} \tag{19}$$

2339 Notice that the end of each iteration block can be written as
 2340

$$w^1 \equiv x^{\sum_{j=1}^{p_0} M_{i_j}}, \quad w^2 \equiv x^{\sum_{j=1}^{p_0} M_{i_j} + \sum_{j=1}^{p_1} M_{i_j}}, \quad \text{and so on.}$$



2351 Figure 20: An example of the computation tree for Meta Local SGD with two workers. In this example,
 2352 the first worker completes its first set of local steps, $x^0 \rightarrow z_1^{1,1} \rightarrow z_1^{1,2}$, and sends the stochastic
 2353 gradients, which are used to calculate x^1 and x^2 . A similar sequence of steps is repeated by the
 2354 first worker to produce $x^2 \rightarrow z_1^{2,1} \rightarrow z_1^{2,2}$, followed by x^3 and x^4 . At the same time, the second
 2355 worker has only completed $x^0 \rightarrow z_2^{1,1} \rightarrow z_2^{1,2}$ and has not yet synchronized or sent the corresponding
 2356 stochastic gradients. At this moment in time, the number of local steps is $M_2 = 2$ and $d_2 = 4$,
 2357 because d_2 is the number of edges between the current main branch head x^4 and the point x^0 , where
 2358 the local branch of the second worker started. At the same time, $M_1 = 0$ and $d_1 = 0$, because the
 2359 first worker has just started the third set of local steps at x^4 and has not yet calculated local stochastic
 2360 gradients.

2361 **Theorem E.10.** *Let Assumptions 1.1, 1.2, and 1.3 hold. Consider the computation tree of Meta Local
 2362 SGD (Alg. 16), then $\{x^k\}_{k \geq 0}$, defined in (19), is a main branch and $\frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E} [\|\nabla f(x^k)\|^2] \leq \varepsilon$
 2363 for all*

$$K \geq \frac{4BL\Delta}{\varepsilon} + \frac{8\sigma^2 L\Delta}{\varepsilon^2}.$$

2364 with step size $\gamma = \min\{\frac{1}{4BL}, \frac{\varepsilon}{4\sigma^2 L}\}$.

2365 *Proof.* Similarly to the previous proofs, it is clear that Conditions 1 and 2 from Theorem 2.4 are
 2366 satisfied for the main branch (19).

2367 It remains to show that $\text{dist}(x^k, z^k) \leq B$ for all $k \geq 0$. In the algorithm, we track two key sets of
 2368 variables: $\{d_i\}$ and $\{M_i\}$. The variable M_i denotes the current number of local steps performed by
 2369 worker i , while d_i represents the number of edges between the current end of the main branch and
 2370 the point where worker i began its local updates. When worker $i \notin S$, the distance d_i increases as
 2371 follows: $d_i = d_i + \sum_{j \in S} M_j$, since the workers in S extend the main branch with their accumulated
 2372 local updates.

2376 The algorithm is constructed so that the quantity $\max_{j \in [n]} d_j + \sum_{i=1}^n M_i$ remains bounded by
 2377 B throughout the entire optimization process, ensuring that Condition 3 is satisfied with $R = B$.
 2378 To clarify, assume that $i \in S$ in Algorithm 16. In the worst-case scenario, all other workers
 2379 $j \in S$, with $j \neq i$, apply their local updates, increasing the tree distance from worker i 's branch
 2380 to the main branch by at most $\sum_{j \in S, j \neq i} M_j$. Thus, the updated tree distance becomes at most
 2381 $d_i + \sum_{j \in [n], j \neq i} M_j$. Since worker i has also performed M_i local steps, the tree distance is bounded
 2382 by $d_i + \sum_{j \in [n], j \neq i} M_j + M_i \leq B$. \square
 2383

2384

2385

2386

2387

2388

2389

2390

2391

2392

2393

2394

2395

2396

2397

2398

2399

2400

2401

2402

2403

2404

2405

2406

2407

2408

2409

2410

2411

2412

2413

2414

2415

2416

2417

2418

2419

2420

2421

2422

2423

2424

2425

2426

2427

2428

2429

2430 E.11 Dual-Process SGD
24312432 We now present a new method, Dual-Process SGD, which is very similar to Local SGD. In fact, when
2433 communication is free, the two methods are equivalent. However, Local SGD requires all workers to
2434 send the sum of stochastic gradients only at the end of each round. In contrast, in Dual-Process SGD,
2435 workers do not wait until the end of the round; instead, they begin communicating sequentially as
2436 soon as possible.2437 Initially, each worker waits for the first stochastic gradients with index 0 and immediately sends them
2438 once available. Then, while these are being transmitted, the workers continue their local computations.
2439 After the server receives the gradients with index 0, the workers begin sending the next batch of
2440 stochastic gradients, starting from index 1 up to the latest index they have computed at that moment.
2441 This process continues until the server has received a total of B stochastic gradients, accumulated
2442 through the communicated sums. This logic is implemented in Algorithm 19.
24432444 **Algorithm 18** Dual-Process SGD2445 **Require:** Initial model w^0 , step size γ , parameter B
2446 1: **for** $k = 0, 1, 2, \dots$ **do**
2447 2: Broadcast w^k to all workers
2448 3: **for** each worker $i \in [n]$ **in parallel do**
2449 4: Worker i starts $\text{DualProcessLocalSGDWorker}(w^k, \gamma)$ from Algorithm 19
2450 5: **end for**
2451 6: Start receiving the sum from the workers
2452 7: Wait for the moment when the total # of received gradients $\sum_{i=1}^n M_i = B$
2453 8: Ask workers to stop running $\text{DualProcessLocalSGDWorker}(w^k, \gamma)$
2454 9: Update $w^{k+1} = w^k - \gamma \sum_{i=1}^n \sum_{j=0}^{M_i-1} \nabla f(z_i^{k,j}; \eta_i^{k,j})$
2455 10: **end for**2456
2457
2458 **Algorithm 19** $\text{DualProcessLocalSGDWorker}(w, \gamma)$ in worker i at round k 2459
2460 1: $\tilde{z}_i^{k,0} = w$
2461 2: $\tilde{M}_i = \bar{M}_i = M_i = 0$
2462 3: **Launch in parallel the following two processes:**
2463 4: **Process 1:**
2464 5: **while** True **do**
2465 6: Calculate $\nabla f(\tilde{z}_i^{k,\bar{M}_i}; \eta_i^{k,\bar{M}_i})$, $\eta_i^{k,\bar{M}_i} \sim \mathcal{D}_\xi$
2466 7: $\tilde{z}_i^{k,\bar{M}_i+1} = \tilde{z}_i^{k,\bar{M}_i} - \gamma \nabla f(\tilde{z}_i^{k,\bar{M}_i}; \eta_i^{k,\bar{M}_i})$
2467 8: $\bar{M}_i = \tilde{M}_i + 1$
2468 9: **end while**
2469 10:
2470 11: **Process 2:**
2471 12: **while** True **do**
2472 13: Wait until at least one new stochastic gradient is computed in Process 1.
2473 14: Set temporary variable $\bar{M}_i = \tilde{M}_i$
2474 15: Send $\sum_{j=M_i}^{\bar{M}_i-1} \nabla f(z_i^{k,j}; \eta_i^{k,j})$
2475 16: Wait until the transmission is complete
2476 17: Update $M_i = \bar{M}_i$
2477 18: **end while**2480
2481 The computation tree of Dual-Process SGD defined in (13) and (14) is similar to Local SGD.
24822483 **Theorem E.11.** *Let Assumptions 1.1, 1.2, and 1.3 hold. Consider the computation tree ((13) and
(14)) of Dual-Process SGD, then $\{x^k\}_{k \geq 0}$ is a main branch and $\frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E} [\|\nabla f(x^k)\|^2] \leq \varepsilon$ for*

2484 *all*

2485
$$K \geq \frac{4BL\Delta}{\varepsilon} + \frac{8\sigma^2 L\Delta}{\varepsilon^2}.$$

2486 *with step size* $\gamma = \min\{\frac{1}{2BL}, \frac{\varepsilon}{4\sigma^2 L}\}$.

2487

2488 *Proof.* The proof is exactly the same as in Theorem E.3 since the computation tree of Dual-Process
2489 SGD is similar to Local SGD. \square

2490

2491

2492

2493

2494

2495

2496

2497

2498

2499

2500

2501

2502

2503

2504

2505

2506

2507

2508

2509

2510

2511

2512

2513

2514

2515

2516

2517

2518

2519

2520

2521

2522

2523

2524

2525

2526

2527

2528

2529

2530

2531

2532

2533

2534

2535

2536

2537

2538 **F COMPUTATIONAL TIME COMPLEXITIES OF ALGORITHMS UNDER h_i -FIXED**
 2539 **COMPUTATION MODEL**
 2540

2541 To compare methods, we consider the h_i -fixed computation model (Mishchenko et al., 2022). In this
 2542 model, it is assumed that

2544 worker i takes no more than h_i seconds to compute a single stochastic gradient (20)

2545 and

$$2546 \quad 0 < h_1 \leq h_2 \leq \dots \leq h_n, \quad (21)$$

2547 without loss of generality.

2548 Note that it is possible to consider the universal computation model (Tyurin, 2025) and capture
 2549 virtually all possible computation behaviors of the workers. While the h_i -fixed computation model
 2550 may seem more restrictive, it turns out that all optimal methods (Maranjyan et al., 2025) in the
 2551 universal computation model are also optimal in the h_i -fixed computation model. Thus, for simplicity,
 2552 we stick to the h_i -fixed computation model.

2554 **F.1 Rennala SGD**

2555 **Theorem F.1** (Rennala SGD). *Consider Theorem E.2 and its conditions. Under the h_i -fixed computation model (20), the computational time complexity of Rennala SGD (Alg. 4) is*

$$2558 \quad \mathcal{O} \left(\min_{m \in [n]} \left[\left(\frac{1}{m} \sum_{i=1}^m \frac{1}{h_i} \right)^{-1} \left(\frac{L\Delta}{\varepsilon} + \frac{\sigma^2 L \Delta}{m \varepsilon^2} \right) \right] \right) \quad (22)$$

2561 with $B = \max \left\{ \left\lceil \frac{\sigma^2}{\varepsilon} \right\rceil, 1 \right\}$.

2564 We start with the following lemma.

2565 **Lemma F.2.** *Let us define*

$$2567 \quad T_R(B) := 2 \min_{m \in [n]} \left[\left(\sum_{i=1}^m \frac{1}{h_i} \right)^{-1} (B + m) \right] \quad (23)$$

2570 Under the h_i -fixed computation model (20), the time required to calculate x^1, \dots, x^B of the main
 2571 branch is at most $T_R(B)$ seconds, the time required to calculate x^{B+1}, \dots, x^{2B} is at most $T_R(B)$
 2572 seconds, and so on.

2573 *Proof.* The idea of Rennala SGD (Alg. 4) is pretty simple. Notice that all workers calculate stochastic
 2574 gradients at the same point in parallel until the server collects a batch of size B (condition $\delta = 0$
 2575 ensures that). Since they work in parallel, under the fixed computational model, after t seconds the
 2576 workers will calculate

$$2578 \quad \sum_{i=1}^n \max \left\{ \left\lfloor \frac{t}{h_i} \right\rfloor - 1, 0 \right\} \quad (24)$$

2581 stochastic gradients because $\left\lfloor \frac{t}{h_i} \right\rfloor$ is the number of stochastic gradients computed by worker i in t
 2582 seconds. We subtract 1 because at most one stochastic gradient can be ignored due to the condition
 2583 $\delta = 0$ in Alg. 4.

2584 Notice that

$$2586 \quad T_R(B) = 2 \left(\sum_{i=1}^{m^*} \frac{1}{h_i} \right)^{-1} (B + m^*)$$

2589 for some $m^* \in [n]$. Substituting it to (24), we get

$$2590 \quad \sum_{i=1}^n \max \left\{ \left\lfloor \frac{T_R(B)}{h_i} \right\rfloor - 1, 0 \right\} \geq \sum_{i=1}^{m^*} \max \left\{ \left\lfloor \frac{T_R(B)}{h_i} \right\rfloor - 1, 0 \right\} \geq \sum_{i=1}^{m^*} \left\lfloor \frac{T_R(B)}{h_i} \right\rfloor - m^*$$

$$\geq \sum_{i=1}^{m^*} \frac{T_R(B)}{h_i} - 2m^* = 2(B + m^*) - 2m^* \geq B.$$

Thus, after $T_R(B)$ seconds, the server collects B stochastic gradients, which is equivalent to calculating x^1, \dots, x^B of the main branch. The same argument can be applied to the next B point of the main branch, and so on. \square

Proof of Theorem F.1. Due to Theorem E.2, we know that $\frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E} [\|\nabla f(x^k)\|^2] \leq \varepsilon$ for

$$K = \left\lceil \frac{4BL\Delta}{\varepsilon} + \frac{8\sigma^2 L\Delta}{\varepsilon^2} \right\rceil.$$

From Lemma F.2, we know that the time required to calculate x^1, \dots, x^B of the main branch is at most $T_R(B)$ seconds, the time required to calculate x^{B+1}, \dots, x^{2B} is at most $T_R(B)$ seconds, and so on. Thus, the total time to find an ε -stationary point is

$$\mathcal{O} \left(T_R(B) \times \frac{K}{B} \right) = \mathcal{O} \left(T_R(B) \times \left(\frac{L\Delta}{\varepsilon} + \frac{\sigma^2 L\Delta}{B\varepsilon^2} \right) \right).$$

Using the choice of B ,

$$\begin{aligned} \mathcal{O} \left(T_R(B) \times \frac{K}{B} \right) &= \mathcal{O} \left(\min_{m \in [n]} \left[\left(\sum_{i=1}^m \frac{1}{h_i} \right)^{-1} (B + m) \right] \times \frac{L\Delta}{\varepsilon} \right) \\ &= \mathcal{O} \left(\min_{m \in [n]} \left[\left(\frac{1}{m} \sum_{i=1}^m \frac{1}{h_i} \right)^{-1} \left(\frac{L\Delta}{\varepsilon} + \frac{\sigma^2 L\Delta}{m\varepsilon^2} \right) \right] \right). \end{aligned}$$

\square

F.2 Ringmaster ASGD

Theorem F.3 (Ringmaster ASGD). *Consider Theorem E.4 and its conditions. Under the h_i -fixed computation model (20), the computational time complexity of Ringmaster ASGD is*

$$\mathcal{O} \left(\min_{m \in [n]} \left[\left(\frac{1}{m} \sum_{i=1}^m \frac{1}{h_i} \right)^{-1} \left(\frac{L\Delta}{\varepsilon} + \frac{\sigma^2 L\Delta}{m\varepsilon^2} \right) \right] \right)$$

with $B = \max \left\{ \left\lceil \frac{\sigma^2}{\varepsilon} \right\rceil, 1 \right\}$.

We use Lemma 4.1 from (Maranjyan et al., 2025).

Lemma F.4. ((Maranjyan et al., 2025)) *Let the workers' computation times satisfy the h_i -fixed computation model ((20) and (21)). Let B be the delay threshold of Alg. 7. The time required to complete any B consecutive iterate updates of Alg. 7 is at most*

$$T_A(B) := 2 \min_{m \in [n]} \left[\left(\frac{1}{m} \sum_{i=1}^m \frac{1}{\tau_i} \right)^{-1} \left(1 + \frac{R}{m} \right) \right]. \quad (25)$$

Corollary F.5. *In view of Lemma F.4, Under the h_i -fixed computation model (20), the time required to calculate x^1, \dots, x^B of the main branch is at most $T_A(B)$ seconds, the time required to calculate x^{B+1}, \dots, x^{2B} is at most $T_A(B)$ seconds, and so on.*

Proof of Theorem F.3. The proof of Theorem F.3 is similar to the proof of Theorem F.1. From Corollary F.5, we know that the time required to calculate x^1, \dots, x^B of the main branch is at most $T_A(B)$ seconds, the time required to calculate x^{B+1}, \dots, x^{2B} is at most $T_A(B)$ seconds, and so on. Thus, the total time to find an ε -stationary point is

$$\mathcal{O} \left(T_A(B) \times \frac{K}{B} \right) = \mathcal{O} \left(\min_{m \in [n]} \left[\left(\frac{1}{m} \sum_{i=1}^m \frac{1}{h_i} \right)^{-1} \left(\frac{L\Delta}{\varepsilon} + \frac{\sigma^2 L\Delta}{m\varepsilon^2} \right) \right] \right).$$

\square

2646 F.3 Local SGD

2647

2648 **Theorem F.6** (Local SGD). *Consider Theorem E.3 and its conditions. Under the h_i -fixed computation*
2649 *model (20), the computational time complexity of Local SGD (Alg. 5) is*

2650
2651
$$\mathcal{O} \left(\min_{m \in [n]} \left[\left(\frac{1}{m} \sum_{i=1}^m \frac{1}{h_i} \right)^{-1} \left(\frac{L\Delta}{\varepsilon} + \frac{\sigma^2 L\Delta}{m\varepsilon^2} \right) \right] \right)$$

2652
2653

2654 with $B = \max \left\{ \left\lceil \frac{\sigma^2}{\varepsilon} \right\rceil, 1 \right\}$.
26552656 **Lemma F.7.** *Let us define*

2657
2658
$$T_L(B) := 2 \min_{m \in [n]} \left[\left(\sum_{i=1}^m \frac{1}{h_i} \right)^{-1} (B + m) \right] \quad (26)$$

2659
2660

2661 *Under the h_i -fixed computation model (20), the time required to calculate x^1, \dots, x^B of the main*
2662 *branch is at most $T_L(B)$ seconds, the time required to calculate x^{B+1}, \dots, x^{2B} is at most $T_L(B)$*
2663 *seconds, and so on.*

2664

2665 *Proof.* The idea is the same as in Lemma F.2. All workers calculate stochastic gradients in parallel,
2666 with the only difference being that the points at which they compute the stochastic gradients differ
2667 due to the local steps. If the server can stop the workers, then after t seconds it is possible to collect

2668
2669
$$\sum_{i=1}^n \left\lfloor \frac{t}{h_i} \right\rfloor \quad (27)$$

2670

2671 stochastic gradients. If it is infeasible to stop the calculations (see footnote 7), then after t seconds it
2672 is possible to collect

2673
2674
$$\sum_{i=1}^n \max \left\{ \left\lfloor \frac{t}{h_i} \right\rfloor - 1, 0 \right\}, \quad (28)$$

2675

2676 where we subtract 1 because at most one stochastic gradient can be ignored if it is nonrelevant.
2677 Similarly to Lemma F.2, substituting $T_L(B)$ into (27) and (28), one can show that $T_L(B)$ is sufficient
2678 to collect $B = \sum_{i=1}^n M_i$ stochastic gradients, or, in other words, to calculate x^1, \dots, x^B of the main
2679 branch. The same argument can be applied to the next B points of the main branch, and so on. \square
26802681 *Proof of Theorem F.6.* The proof essentially the same as the proof of Theorem F.1. \square
2682

2683 F.4 Local-Async SGD

2684

2685 **Theorem F.8** (Local-Async SGD). *Consider Theorem E.7 and its conditions. Under the h_i -fixed*
2686 *computation model (20), the computational time complexity of Local-Async SGD (Alg. 12) is*

2687
2688
$$\mathcal{O} \left(\min_{m \in [n]} \left[\left(\frac{1}{m} \sum_{i=1}^m \frac{1}{h_i} \right)^{-1} \left(\frac{L\Delta}{\varepsilon} + \frac{\sigma^2 L\Delta}{m\varepsilon^2} \right) \right] \right)$$

2689
2690

2691 with $B = \max \left\{ \left\lceil \frac{\sigma^2}{\varepsilon} \right\rceil, 1 \right\}$.
26922693 **Lemma F.9.** *Let us define*

2694
2695
$$T_{LA}(B) := 2 \min_{m \in [n]} \left[\left(\sum_{i=1}^m \frac{1}{h_i} \right)^{-1} (B + m) \right] \quad (29)$$

2696
2697

2698 *Under the h_i -fixed computation model (20), the time required to calculate x^1, \dots, x^B of the main*
2699 *branch is at most $T_{LA}(B)$ seconds, the time required to calculate x^{B+1}, \dots, x^{2B} is at most $T_{LA}(B)$*
seconds, and so on.

2700 *Proof.* The idea is the same as in Lemmas F.2 and F.7. All workers calculate stochastic gradients in
 2701 parallel, with the only difference being that the points at which they compute the stochastic gradients
 2702 differ due to the asynchronous steps in the groups. Similarly, one can show that $T_{LA}(B)$ is sufficient
 2703 time to calculate $B = \sum_{g=1}^s m_g$ stochastic gradients in Algorithm 12, or, equivalently, to calculate
 2704 x^1, \dots, x^B of the main branch. The same argument can be applied to the next B point of the main
 2705 branch. \square
 2706

2707 *Proof of Theorem F.8.* The proof essentially the same as the proof of Theorem F.1. \square
 2708

2709 F.5 Nested Local-Async SGD

2711 **Theorem F.10** (Nested Local-Async SGD). *Consider Theorem E.8 and its conditions. Under the*
 2712 *h_i -fixed computation model (20), the computational time complexity of Nested Local-Async SGD*
 2713 *(Alg. 14) is*

$$2714 \quad 2715 \quad 2716 \quad 2717 \quad \mathcal{O} \left(\min_{m \in [n]} \left[\left(\frac{1}{m} \sum_{i=1}^m \frac{1}{h_i} \right)^{-1} \left(\frac{L\Delta}{\varepsilon} + \frac{\sigma^2 L\Delta}{m\varepsilon^2} \right) \right] \right)$$

2718 with $B = \max \left\{ \left\lceil \frac{\sigma^2}{\varepsilon} \right\rceil, 1 \right\}$ and $B_i = \infty$ ¹⁰ for all $i \in [n]$.
 2719

2720 *Proof.* The proof essentially the same as the proof of Theorem F.1. \square
 2721

2722 F.6 Async-Local SGD

2724 **Theorem F.11** (Async-Local SGD). *Consider Theorem E.6 and its conditions. Under the h_i -fixed*
 2725 *computation model (20), the computational time complexity of Async-Local SGD (Alg. 9) is*

$$2726 \quad 2727 \quad 2728 \quad 2729 \quad \mathcal{O} \left(\min_{m \in [n]} \left[\left(\frac{1}{m} \sum_{i=1}^m \frac{1}{h_i} \right)^{-1} \left(\frac{L\Delta}{\varepsilon} + \frac{\sigma^2 L\Delta}{m\varepsilon^2} \right) \right] \right)$$

2730 with $B = \max \left\{ \left\lceil \frac{\sigma^2}{\varepsilon} \right\rceil, 1 \right\}$ and $M = \max \left\{ \left\lceil \frac{\sigma^2}{n\varepsilon} \right\rceil, 1 \right\}$.
 2731

2732 **Lemma F.12.** *Let us define*

$$2733 \quad 2734 \quad 2735 \quad 2736 \quad T_{AL}(B, M) := 2 \min_{m \in [n]} \left[\left(\sum_{i=1}^m \frac{1}{h_i} \right)^{-1} (B + Mm) \right] \quad (30)$$

2737 *Under the h_i -fixed computation model (20), the time required to calculate x^1, \dots, x^B of the main*
 2738 *branch is at most $T_{AL}(B, M)$ seconds, the time required to calculate x^{B+1}, \dots, x^{2B} is at most*
 2739 *$T_{AL}(B, M)$ seconds, and so on.*

2740 *Proof.* Let us fix B and $M \geq 1$. Note that

$$2742 \quad 2743 \quad 2744 \quad T_{AL}(B, M) := 2 \min_{m \in [n]} \left[\left(\sum_{i=1}^m \frac{1}{h_i} \right)^{-1} (B + Mm) \right] = 2 \left(\sum_{i=1}^{m^*} \frac{1}{h_i} \right)^{-1} (B + Mm^*) \quad (31)$$

2745 for some $m^* \in [n]$, which depends on B and M .
 2746

2747 For any $k \geq 1$, consider the sequence x^k, \dots, x^{k+B} on the main branch. Using a proof by contradiction,
 2748 assume that it requires more than $T_{AL}(B, M)$ seconds to calculate x^{k+1}, \dots, x^{k+B} . Thus, the
 2749 algorithm can progress up to x^{k+B-1} after $T_{AL}(B, M)$ seconds.

2750 In Algorithm 9, each worker computes M stochastic gradients and sends their sum to the server.
 2751 The server then performs the update $w^{k+1} = w^k - \gamma \sum_{p=0}^{M-1} \nabla f(z_{i_k}^p; \eta_{i_k}^p)$, which is equivalent to
 2752

2753 ¹⁰It is possible to take $B_i < \infty$, but the computational time complexity may decrease due to less utilization
 2754 of workers. For simplicity, in this theorem, we take $B_i = \infty$. See also Remark E.9.

extending the main branch by M points. Therefore, after t seconds, the main branch will have progressed by at least

$$\sum_{i=1}^n \max \left\{ M \left\lfloor \frac{t}{Mh_i} \right\rfloor - M, 0 \right\}, \quad (32)$$

points (which is less than B by assumption). This is because worker i requires at most Mh_i seconds to compute M stochastic gradients before sending them to the server. Note that during any $B - 1$ consecutive updates on the main branch, the server may ignore M gradients from each worker at most once, because δ^k can be $\geq B$ at most once during $B - 1$ consecutive updates. This explains the subtraction of M in the formula.

Substituting $T_{\text{AL}}(B, M)$ to (32),

$$\begin{aligned} \sum_{i=1}^n \max \left\{ M \left\lfloor \frac{T_{\text{AL}}(B, M)}{Mh_i} \right\rfloor - M, 0 \right\} &\geq \sum_{i=1}^{m^*} \max \left\{ M \left\lfloor \frac{T_{\text{AL}}(B, M)}{Mh_i} \right\rfloor - M, 0 \right\} \\ &\geq \sum_{i=1}^{m^*} M \left\lfloor \frac{T_{\text{AL}}(B, M)}{Mh_i} \right\rfloor - Mm^* \geq \sum_{i=1}^{m^*} \frac{T_{\text{AL}}(B, M)}{h_i} - 2Mm^* \end{aligned}$$

because $\lfloor x \rfloor \geq x - 1$ for all $x \in \mathbb{R}$. Using (31),

$$\sum_{i=1}^n \max \left\{ M \left\lfloor \frac{T_{\text{AL}}(B, M)}{Mh_i} \right\rfloor - M, 0 \right\} \geq 2(B + Mm^*) - 2Mm^* \geq B.$$

Thus, after $T_{\text{AL}}(B, M)$ seconds, the server collects B stochastic gradients. It is equivalent to calculating x^{k+1}, \dots, x^{k+B} , which contradicts the assumption. \square

Proof of Theorem F.11. Due to Theorem E.6, we know that $\frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E} [\|\nabla f(x^k)\|^2] \leq \varepsilon$ for

$$K = \left\lceil \frac{4(B + M - 1)L\Delta}{\varepsilon} + \frac{8\sigma^2 L\Delta}{\varepsilon^2} \right\rceil.$$

From Lemma F.2, we know that the time required to calculate x^1, \dots, x^B of the main branch is at most $T_{\text{AL}}(B, M)$ seconds, the time required to calculate x^{B+1}, \dots, x^{2B} is at most $T_{\text{AL}}(B, M)$ seconds, and so on. Thus, the total time to find an ε -stationary point is

$$\mathcal{O} \left(T_{\text{AL}}(B, M) \times \frac{K}{B} \right) = \mathcal{O} \left(T_{\text{AL}}(B, M) \times \left(\frac{L\Delta(B + M)}{B\varepsilon} + \frac{\sigma^2 L\Delta}{B\varepsilon^2} \right) \right).$$

Using the choice of B and M , we obtain $M \leq B$ and

$$\begin{aligned} \mathcal{O} \left(T_{\text{R}}(B) \times \frac{K}{B} \right) &= \mathcal{O} \left(T_{\text{AL}}(B, M) \times \left(\frac{L\Delta}{\varepsilon} + \frac{\sigma^2 L\Delta}{B\varepsilon^2} \right) \right) \\ &= \mathcal{O} \left(\min_{m \in [n]} \left[\left(\sum_{i=1}^m \frac{1}{h_i} \right)^{-1} (B + Mm) \right] \times \left(\frac{L\Delta}{\varepsilon} + \frac{\sigma^2 L\Delta}{B\varepsilon^2} \right) \right) \\ &= \mathcal{O} \left(\min_{m \in [n]} \left[\left(\sum_{i=1}^m \frac{1}{h_i} \right)^{-1} (B + Mm) \right] \times \frac{L\Delta}{\varepsilon} \right) \end{aligned}$$

because $B \geq \frac{\sigma^2}{\varepsilon}$. Since $M \leq \frac{\sigma^2}{n\varepsilon} + 1$ and $B \leq \frac{\sigma^2}{\varepsilon} + 1$,

$$\begin{aligned} \mathcal{O} \left(T_{\text{R}}(B) \times \frac{K}{B} \right) &= \mathcal{O} \left(\min_{m \in [n]} \left[\left(\sum_{i=1}^m \frac{1}{h_i} \right)^{-1} \left(1 + \frac{\sigma^2}{\varepsilon} + m + \frac{m\sigma^2}{n\varepsilon} \right) \right] \times \frac{L\Delta}{\varepsilon} \right) \\ &= \mathcal{O} \left(\min_{m \in [n]} \left[\left(\sum_{i=1}^m \frac{1}{h_i} \right)^{-1} \left(\frac{\sigma^2}{\varepsilon} + m \right) \right] \times \frac{L\Delta}{\varepsilon} \right) \end{aligned}$$

$$= \mathcal{O} \left(\min_{m \in [n]} \left[\left(\frac{1}{m} \sum_{i=1}^m \frac{1}{h_i} \right)^{-1} \left(\frac{L\Delta}{\varepsilon} + \frac{\sigma^2 L\Delta}{m\varepsilon^2} \right) \right] \right),$$

where we use that $m \leq n$ for all $m \in [n]$. \square

F.7 Cycle SGD

Theorem F.13 (Cycle SGD). *Consider Theorem E.5 and its conditions. Under the h_i -fixed computation model (20), the computational time complexity of Cycle SGD (Alg. 8) is*

$$\mathcal{O} \left(\max_{i \in [n]} h_i \left(\frac{L\Delta}{\varepsilon} + \frac{\sigma^2 L\Delta}{m\varepsilon^2} \right) \right)$$

with $s = \min \left\{ \max \left\{ \left\lceil \frac{n^2 \varepsilon}{\sigma^2} \right\rceil, 1 \right\}, n \right\}$.

Proof. According to Theorem E.5, $\frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E} [\|\nabla f(x^k)\|^2] \leq \varepsilon$ for

$$K = \left\lceil \frac{8n^2 L\Delta}{s\varepsilon} + \frac{8\sigma^2 L\Delta}{\varepsilon^2} \right\rceil.$$

In the beginning, the algorithm has “warm-up”, where, in the first iteration of the inner loop, the server collects s stochastic gradients from s workers, which is equivalent to calculating x^1, \dots, x^s of the main branch. Then, the server collects $2s$ stochastic gradients from the next group of s workers because they calculated s stochastic in the previous iteration. Starting from the $\lceil \frac{n}{s} \rceil^{\text{th}}$ iteration, each group of s workers will return $s \times \lceil \frac{n}{s} \rceil$ stochastic gradients in every subsequent iteration. Every iterations takes at most $\max_{i \in [n]} h_i$ seconds, because they work in parallel and calculate one stochastic gradient.

Thus, the total time to calculate x^1, \dots, x^K and find an ε -stationary point is

$$\begin{aligned} & \mathcal{O} \left(\underbrace{\max_{i \in [n]} h_i \times \lceil \frac{n}{s} \rceil}_{\text{“warm-up” phase}} + \max_{i \in [n]} h_i \times \frac{K}{(s \times \lceil \frac{n}{s} \rceil)} \right) \\ &= \mathcal{O} \left(\max_{i \in [n]} h_i \times \frac{n}{s} + \max_{i \in [n]} h_i \times \left(\frac{nL\Delta}{s\varepsilon} + \frac{\sigma^2 L\Delta}{n\varepsilon^2} \right) \right) \\ &= \mathcal{O} \left(\max_{i \in [n]} h_i \times \left(\frac{nL\Delta}{s\varepsilon} + \frac{\sigma^2 L\Delta}{n\varepsilon^2} \right) \right). \end{aligned}$$

because $\frac{L\Delta}{\varepsilon} \geq \frac{1}{2}$ without loss of generality (if $\frac{L\Delta}{\varepsilon} < \frac{1}{2}$, then x^0 is an ε -stationary point). Finally,

$$\mathcal{O} \left(\max_{i \in [n]} h_i \times \left(\frac{nL\Delta}{s\varepsilon} + \frac{\sigma^2 L\Delta}{n\varepsilon^2} \right) \right) = \mathcal{O} \left(\max_{i \in [n]} h_i \times \left(\frac{L\Delta}{\varepsilon} + \frac{\sigma^2 L\Delta}{n\varepsilon^2} \right) \right)$$

due to the choice of s . \square

F.8 Dual-Process SGD

Theorem F.14 (Dual-Process SGD). *Consider Theorem E.11 and its conditions. Under the h_i -fixed computation model (20), the computational time complexity of Dual-Process SGD (Alg. 18) is*

$$\mathcal{O} \left(\min_{m \in [n]} \left[\left(\frac{1}{m} \sum_{i=1}^m \frac{1}{h_i} \right)^{-1} \left(\frac{L\Delta}{\varepsilon} + \frac{\sigma^2 L\Delta}{m\varepsilon^2} \right) \right] \right)$$

with $B = \max \left\{ \left\lceil \frac{\sigma^2}{\varepsilon} \right\rceil, 1 \right\}$.

2862 *Proof.* The proof is essentially the same as the proof of Theorem F.6 since Dual-Process SGD is
2863 equivalent to Local SGD if the communication times are ignored. \square
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

2916 **G TOTAL TIME COMPLEXITIES OF ALGORITHMS UNDER (h, τ) -FIXED**
 2917 **COMPUTATION MODEL**

2919 To compare the communication complexities and the total time complexities of the methods, we now
 2920 assume that it takes τ seconds to send a vector from a worker to a parameter server and τ seconds
 2921 to send a vector from the server to the workers in the centralized setting. Alternatively, it takes τ
 2922 seconds to send a vector to all other workers in the decentralized setting. Moreover, we assume that
 2923 all workers have the same computational performance: worker i takes h seconds to compute a single
 2924 stochastic gradient for all $i \in [n]$. We refer to this as the (h, τ) -fixed computation model.

2925 Note that it is possible to assume that each worker has its own communication time bound τ_i and
 2926 computation time bound h_i and consider (h_i, τ_i) -fixed computation model (Tyurin et al., 2024).
 2927 However, for simplicity, we assume $\tau_i = \tau$ and $h_i = h$ for all $i \in [n]$. See Section I for a more
 2928 general case (h_i, τ_i) -fixed computation model.

2930 **G.1 Rennala SGD**

2932 **Theorem G.1.** Consider Theorem E.2 and its conditions. Under (h, τ) -fixed computation model, the
 2933 total time complexity of Rennala SGD (Alg. 4) is

$$2935 \quad \mathcal{O} \left(\tau \times \frac{L\Delta}{\varepsilon} + h \times \left(\frac{L\Delta}{\varepsilon} + \frac{\sigma^2 L\Delta}{n\varepsilon^2} \right) \right)$$

2938 with $B = \max \left\{ \left\lceil \frac{\sigma^2}{\varepsilon} \right\rceil, 1 \right\}$.

2940 *Proof.* Note that the communication between of vectors happens every B calculated stochastic
 2941 gradients, which is equivalent to every B updates of the main branch. Thus the total number of
 2942 communications is

$$2944 \quad \mathcal{O} \left(\frac{K}{B} \right),$$

2947 where $K = \Theta \left(\frac{BL\Delta}{\varepsilon} + \frac{\sigma^2 L\Delta}{\varepsilon^2} \right)$ due to Theorem E.2. The total communication complexity is

$$2949 \quad \mathcal{O} \left(\tau \times \frac{K}{B} \right) = \mathcal{O} \left(\frac{\tau}{B} \times \left(\frac{BL\Delta}{\varepsilon} + \frac{\sigma^2 L\Delta}{\varepsilon^2} \right) \right) = \mathcal{O} \left(\tau \times \frac{L\Delta}{\varepsilon} \right),$$

2952 where we use the choice of B . It left to take into account the computation factor, which is the same
 2953 as in Theorem F.1.

$$2954 \quad (22) = \mathcal{O} \left(h \times \left(\frac{L\Delta}{\varepsilon} + \frac{\sigma^2 L\Delta}{n\varepsilon^2} \right) \right)$$

2957 under the (h, τ) -fixed computation model. □

2959 **G.2 Local SGD**

2961 **Theorem G.2.** Consider Theorem E.3 and its conditions. Under (h, τ) -fixed computation model, the
 2962 total time complexity of Local SGD (Alg. 5) is

$$2964 \quad \mathcal{O} \left(\tau \times \frac{L\Delta}{\varepsilon} + h \times \left(\frac{L\Delta}{\varepsilon} + \frac{\sigma^2 L\Delta}{n\varepsilon^2} \right) \right)$$

2967 with $B = \max \left\{ \left\lceil \frac{\sigma^2}{\varepsilon} \right\rceil, 1 \right\}$.

2969 *Proof.* The proof essentially the same as the proof of Theorem G.1. □

2970 G.3 Cycle SGD
29712972 **Theorem G.3.** Consider Theorem E.5 and its conditions. Under (h, τ) -fixed computation model, the
2973 total time complexity of Cycle SGD (Alg. 8) is

2974
$$\mathcal{O} \left(\tau \times \left(\frac{L\Delta}{\varepsilon} + \frac{\sigma^2 L\Delta}{n\varepsilon^2} \right) + h \times \left(\frac{L\Delta}{\varepsilon} + \frac{\sigma^2 L\Delta}{n\varepsilon^2} \right) \right)$$

2975

2976 with $s = \min \left\{ \max \left\{ \left\lceil \frac{n^2 \varepsilon}{\sigma^2} \right\rceil, 1 \right\}, n \right\}$.
29772978 *Proof.* Similarly to the proof of Theorem F.13, one can show that the total time complexity is
2979

2980
$$\mathcal{O} \left(\underbrace{(\tau + h) \times \left\lceil \frac{n}{s} \right\rceil}_{\text{"warm-up" phase}} + (\tau + h) \times \frac{K}{(s \times \lceil \frac{n}{s} \rceil)} \right)$$

2981

2982 because every worker from group s sends one vector $\sum_{j=1}^{M_i} \nabla f(z_i^j; \eta_i^j)$ to the server in the inner loop.
2983 Substituting the choice of s , one can get the final result. \square
29842985 G.4 Async-Local SGD
29862987 **Theorem G.4.** Consider Theorem E.6 and its conditions. Under (h, τ) -fixed computation model, the
2988 total time complexity of Async-Local SGD (Alg. 9) is
2989

2990
$$\mathcal{O} \left(\tau \times \frac{L\Delta}{\varepsilon} + h \times \left(\frac{L\Delta}{\varepsilon} + \frac{\sigma^2 L\Delta}{n\varepsilon^2} \right) \right)$$

2991

2992 with $B = \max \left\{ \left\lceil \frac{\sigma^2}{\varepsilon} \right\rceil, 1 \right\}$ and $M = \max \left\{ \left\lceil \frac{\sigma^2}{n\varepsilon} \right\rceil, 1 \right\}$.
29933000 *Proof.* Under (h, τ) -fixed computation model, all workers send the sums of M stochastic gradients
3001 at the same time. According to Theorem E.6, the server should collect
3002

3003
$$\mathcal{O} \left(\frac{(B + M - 1)L\Delta}{\varepsilon} + \frac{\sigma^2 L\Delta}{\varepsilon^2} \right) = \mathcal{O} \left(\frac{L\Delta}{\varepsilon} + \frac{\sigma^2 L\Delta}{\varepsilon^2} \right)$$

3004

3005 stochastic gradients, where the last equality due to the choice of B and due to $B \geq M$.
3006 Since the workers work in parallel and have the equal performance, only $\Theta(\min\{\frac{B}{M}, n\}) =$
3007 $\Theta(\min\{\max\{1, \frac{\sigma^2}{M\varepsilon}\}, n\})$ workers will participate in optimization. Thus, every worker, which
3008 participates in optimization, has to send
3009

3010
$$\mathcal{O} \left(\frac{L\Delta}{\min\{\frac{B}{M}, n\}\varepsilon} + \frac{\sigma^2 L\Delta}{\min\{\frac{B}{M}, n\}\varepsilon^2} \right) = \mathcal{O} \left(\frac{L\Delta}{\varepsilon} + \frac{\sigma^2 L\Delta}{n\varepsilon^2} + \frac{ML\Delta}{\varepsilon} \right)$$

3011

3012 stochastic gradients. Such a worker calculates M stochastic gradients and only then sends the sum;
3013 thus, the maximum number of communications by one worker is
3014

3015
$$\mathcal{O} \left(\frac{L\Delta}{M\varepsilon} + \frac{\sigma^2 L\Delta}{Mn\varepsilon^2} + \frac{L\Delta}{\varepsilon} \right).$$

3016

3017 For every communication, the worker needs to send M stochastic gradients, which takes h seconds,
3018 and sends a sum, which takes τ seconds. Thus, the total time complexity is
3019

3020
$$\mathcal{O} \left((\tau + Mh) \left(\frac{L\Delta}{M\varepsilon} + \frac{\sigma^2 L\Delta}{Mn\varepsilon^2} + \frac{L\Delta}{\varepsilon} \right) \right). \quad (33)$$

3021

3022 Substituting the choice of M , we get the final result. \square
3023

3024 G.5 Ringmaster ASGD
30253026 **Theorem G.5.** Consider Theorem E.4 and its conditions. Under (h, τ) -fixed computation model, the
3027 total time complexity of Ringmaster ASGD is

3028
$$\mathcal{O} \left(\tau \times \left(\frac{L\Delta}{\varepsilon} + \frac{\sigma^2 L\Delta}{n\varepsilon^2} \right) + h \times \left(\frac{L\Delta}{\varepsilon} + \frac{\sigma^2 L\Delta}{n\varepsilon^2} \right) \right) \quad (34)$$

3029
3030

3031 with $B = \max \left\{ \left\lceil \frac{\sigma^2}{\varepsilon} \right\rceil, 1 \right\}$.
30323033 *Proof.* The proof repeats the proof of Theorem G.4. The only difference is that the workers send
3034 $M = 1$ stochastic gradients. Substituting $M = 1$ to (33), we get the final result. \square
30353036 *Remark G.6.* While (34) is only an upper bound, using the same steps as in the proof of Theorem G.4,
3037 one can easily show that the total time complexity of Ringmaster ASGD is lower bounded by
3038

3039
$$\Omega \left(\tau \times \left(\frac{L\Delta}{\varepsilon} + \frac{\sigma^2 L\Delta}{n\varepsilon^2} \right) + h \times \left(\frac{L\Delta}{\varepsilon} + \frac{\sigma^2 L\Delta}{n\varepsilon^2} \right) \right), \quad (35)$$

3040

3041 assuming that the iteration rate $\Theta \left(\frac{BL\Delta}{\varepsilon} + \frac{\sigma^2 L\Delta}{\varepsilon^2} \right)$ from Theorem E.4 is tight. As far as we know,
3042 this is the current state-of-the-art iteration rate of an Asynchronous SGD-like method (Maranjyan
3043 et al., 2025; Mishchenko et al., 2022; Koloskova et al., 2022; Cohen et al., 2021).
30443045 H COMPARISON BETWEEN OUR Local SGD AND THE CANONICAL Local SGD
30463047 In this section, we show that our version of Local SGD (Algorithm 5) achieves a better time complexity
3048 than the classical Local SGD. Although we focus in this section only on Local SGD, we expect similar
3049 improvements to extend to other new methods from Table 1. The purpose of this section is to highlight
3050 the tightness of the Birch SGD framework, using Local SGD as a case study.
30513052 In Section G.2, we prove that our version of Local SGD yields the total time complexity
3053

3054
$$\Theta \left(\tau \frac{L\Delta}{\varepsilon} + h \left(\frac{L\Delta}{\varepsilon} + \frac{\sigma^2 L\Delta}{n\varepsilon^2} \right) \right). \quad (36)$$

3055

3056 We now illustrate that this result is provably better than the best theoretical result for the canonical
3057 version of Local SGD (Algorithm 20) known to us.
30583059 **Algorithm 20** Local SGD (FedAvg) (McMahan et al., 2017)
30603061 **Require:** initial model x^0 , step size γ , # of local steps K
1: **for** $k = 0, 1, 2, \dots$ **do**
2: Broadcast x^k to all workers
3: **for** each worker $i \in \{1, \dots, n\}$ **in parallel do**
4: $z_i^{k,0} = x^k$
5: **for** $j = 0, \dots, K - 1$ **do**
6: $z_i^{k,j+1} = z_i^{k,j} - \gamma \nabla f(z_i^{k,j}; \eta_i^{k,j})$
7: **end for**
8: **end for**
9: $x^{k+1} = \frac{1}{n} \sum_{i=1}^n z_i^{k,K}$
10: **end for**3071
3072 To the best of our knowledge, the state-of-the-art analysis of Algorithm 20 in the nonconvex setting
3073 is provided by Koloskova et al. (2020); Luo et al. (2025). Under Assumptions 1.1, 1.2, and 1.3, with
3074 a proper γ , they establish the state-of-the-art iteration complexity
3075

3076
$$\Theta \left(\frac{L\Delta}{\varepsilon} + \frac{L\sigma^2\Delta}{nK\varepsilon^2} + \frac{L\sigma\Delta}{K^{1/2}\varepsilon^{3/2}} \right)$$

3077

3078 for finding an ε -stationary point for all $K \geq 1$. Next, under (h, τ) -fixed computation model, this
 3079 iteration complexity yields the time complexity
 3080

$$3081 \bar{T} := \tau \left(\frac{L\Delta}{\varepsilon} + \frac{L\sigma^2\Delta}{nK\varepsilon^2} + \frac{L\sigma\Delta}{K^{\frac{1}{2}}\varepsilon^{\frac{3}{2}}} \right) + hK \left(\frac{L\Delta}{\varepsilon} + \frac{L\sigma^2\Delta}{nK\varepsilon^2} + \frac{L\sigma\Delta}{K^{\frac{1}{2}}\varepsilon^{\frac{3}{2}}} \right)$$

3083 (up to constant factors) because in each iteration the workers communicate, which takes τ seconds,
 3084 and each worker (in parallel) computes K stochastic gradients, which takes $h \times K$ seconds. Ignoring
 3085 non-negative terms,
 3086

$$3087 \bar{T} \geq \tau \left(\frac{L\Delta}{\varepsilon} + \frac{L\sigma\Delta}{K^{\frac{1}{2}}\varepsilon^{\frac{3}{2}}} \right) + h \left(\frac{KL\Delta}{\varepsilon} + \frac{L\sigma^2\Delta}{n\varepsilon^2} + \frac{K^{\frac{1}{2}}L\sigma\Delta}{\varepsilon^{\frac{3}{2}}} \right)$$

3090 and \bar{T} is lower bounded by
 3091

$$3092 \Theta \left(\sqrt{\tau h \frac{L^2\sigma^2\Delta^2}{\varepsilon^3}} + \tau \frac{L\Delta}{\varepsilon} + h \left(\frac{L\Delta}{\varepsilon} + \frac{\sigma^2 L\Delta}{n\varepsilon^2} \right) \right) \quad (37)$$

3095 for all $K \geq 1$ due to the AM-GM inequality. Notice that (36) \leq (37). However, (37) can be arbitrarily
 3096 larger due to the first term. Indeed, for sufficiently large n , we have
 3097

$$3098 (36) = \Theta \left(\tau \frac{L\Delta}{\varepsilon} + h \left(\frac{L\Delta}{\varepsilon} \right) \right),$$

3100 while
 3101

$$3102 (37) = \Theta \left(\sqrt{\tau h \frac{L^2\sigma^2\Delta^2}{\varepsilon^3}} + \tau \frac{L\Delta}{\varepsilon} + h \left(\frac{L\Delta}{\varepsilon} \right) \right).$$

3105 Note that the latter expression has a $1/\varepsilon^{3/2}$ dependency, whereas our result has a $1/\varepsilon$ dependency. Thus,
 3106 our result is provably tighter.
 3107

3108 Note that we obtain the time complexity (36) for several other new methods, including Async-Local
 3109 SGD, Async-Batch SGD, and Dual-Process SGD.
 3110

3111 I TOTAL TIME COMPLEXITIES OF ALGORITHMS UNDER (h_i, τ_i) -FIXED 3112 COMPUTATION MODEL

3114 We now assume that each worker has its own communication time bound τ_i and computation time
 3115 bound h_i and consider the (h_i, τ_i) -fixed computation model (Tyurin et al., 2024). It takes τ_i seconds
 3116 to send a vector from worker i to a parameter server and τ_i seconds to send a vector from the server
 3117 to worker i in the centralized setting. Alternatively, it takes τ_i seconds to send a vector to all other
 3118 workers in the decentralized setting.
 3119

3120 This setting reduces to h_i -fixed computation model when $\tau_i = 0$ for all $i \in [n]$, and reduces to
 3121 (h, τ) -fixed computation model when $h_i = h$ and $\tau_i = \tau$ for all $i \in [n]$. Without loss of generality,
 3122 we assume that $\max\{h_1, \tau_1\} \leq \dots \leq \max\{h_n, \tau_n\}$. Otherwise, the workers can be sorted according
 3123 to these inequalities.

3124 Notice that Rennala SGD, Local SGD, and Cycle SGD wait for the slowest worker by the designs.
 3125 If $\max_{i \in [n]} \tau_i \rightarrow \infty$, then their total complexity tends to ∞ . Thus, they are suboptimal under
 3126 the (h_i, τ_i) -fixed computation model. Ringmaster ASGD is suboptimal even under the (h, τ) -fixed
 3127 computation model. Async-Local SGD and Async-Batch SGD are optimal under the (h, τ) -fixed
 3128 computation model, but we conjecture that they are suboptimal under the (h_i, τ_i) -fixed computation
 3129 model.

3130 We now prove that Dual-Process SGD is optimal under the (h_i, τ_i) -fixed computation model within
 3131 the family of methods that communicate either with a server (centralized setting) or with each other
 (decentralized setting).

3132 I.1 Dual-Process SGD
31333134 **Theorem I.1** (Dual-Process SGD). *Consider Theorem E.11 and its conditions. Under the (h_i, τ_i) -fixed
3135 computation model, the total time complexity of Dual-Process SGD (Alg. 18) is*

3136
$$\mathcal{O} \left(\min_{m \in [n]} \left[\max \left\{ \max\{h_m, \tau_m\}, \left(\sum_{i=1}^m \frac{1}{h_i} \right)^{-1} \frac{\sigma^2}{\varepsilon} \right\} \right] \frac{L\Delta}{\varepsilon} \right)$$

3137

3138 with $B = \max \left\{ \left\lceil \frac{\sigma^2}{\varepsilon} \right\rceil, 1 \right\}$.
31393140 This complexity is optimal for distributed methods without compression communicating with a server
3141 (centralized setting) or with each other (decentralized setting) (Tyurin et al., 2024; Tyurin & Richtárik,
3142 2024). Notice that it is robust to slow communications. Indeed, if $\tau_n \rightarrow \infty$, then this complexity will
3143 ignore worker n due to the $\min_{m \in [n]}$ operation.
31443145 **Lemma I.2.** *Let us define*

3146
$$T(B) := 4 \min_{m \in [n]} \left[\max \left\{ \max\{h_m, \tau_m\}, \left(\sum_{i=1}^m \frac{1}{h_i} \right)^{-1} B \right\} \right]. \quad (38)$$

3147

3148 Under the (h_i, τ_i) -fixed computation model, the time required to calculate x^1, \dots, x^B of the main
3149 branch is at most $3T(B)$ seconds, the time required to calculate x^{B+1}, \dots, x^{2B} is at most $3T(B)$
3150 seconds, and so on.
31513152 *Proof.* Notice that
3153

3154
$$T(B) = 4 \max \left\{ \max\{h_{m^*}, \tau_{m^*}\}, \left(\sum_{i=1}^{m^*} \frac{1}{h_i} \right)^{-1} B \right\}.$$

3155

3156 for some $m^* \in [n]$. The idea is similar as in Lemmas F.2 and F.7. All workers calculate stochastic
3157 gradients in parallel. For all $t \geq 0$, after t seconds the first m^* workers can calculate at least
3158

3159
$$\sum_{i=1}^{m^*} \max \left\{ \left\lfloor \frac{t}{h_i} \right\rfloor - 1, 0 \right\}, \quad (39)$$

3160

3161 stochastic gradients, where we subtract 1 because at most one stochastic gradient can be ignored.
3162 Substituting $T(B)$ into (39), we have
3163

3164
$$\sum_{i=1}^{m^*} \max \left\{ \left\lfloor \frac{T(B)}{h_i} \right\rfloor - 1, 0 \right\} \geq \sum_{i=1}^{m^*} \left\lfloor \frac{T(B)}{h_i} \right\rfloor - m^* \geq \sum_{i=1}^{m^*} \frac{T(B)}{h_i} - 2m^*.$$

3165

3166 Recall that $\max\{h_1, \tau_1\} \leq \dots \leq \max\{h_{m^*}, \tau_{m^*}\}$. Thus,
3167

3168
$$T(B) \geq 2 \max\{h_{m^*}, \tau_{m^*}\} + 2 \left(\sum_{i=1}^{m^*} \frac{1}{h_i} \right)^{-1} B \geq 2h_i + 2 \left(\sum_{i=1}^{m^*} \frac{1}{h_i} \right)^{-1} B$$

3169

3170 for all $i \leq m^*$, and
3171

3172
$$\sum_{i=1}^{m^*} \max \left\{ \left\lfloor \frac{T(B)}{h_i} \right\rfloor - 1, 0 \right\} \geq \sum_{i=1}^{m^*} \left(2 + \frac{2}{h_i} \left(\sum_{i=1}^{m^*} \frac{1}{h_i} \right)^{-1} B \right) - 2m^* \geq B.$$

3173

3174 Thus, by the time $T(B)$, the first m^* workers can calculate B stochastic gradients.
31753176 Next, we need to estimate the communication time. It takes at most $\max_{i \in [m^*]} \tau_i \leq$
3177 $\max\{h_{m^*}, \tau_{m^*}\} \leq T(B)$ seconds to receive a vector from the server (in the decentralized setting,
3178 we do not account this time). Similarly, it takes at most $\max_{i \in [m^*]} \tau_i \leq T(B)$ seconds to send a
3179 vector to the server (in the decentralized setting, to send a vector to other workers). Thus, one round
3180 in Alg 18 takes at most $3 \times T(B)$ seconds, which is equivalent to calculating x^1, \dots, x^B of the main
3181 branch. The same argument can be applied to the next B point of the main branch, and so on. \square
3182

3186 *Proof of Theorem I.1.* The proof is similar to the proof of Lemma F.2. Due to Theorem E.2, we know
 3187 that $\frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E} [\|\nabla f(x^k)\|^2] \leq \varepsilon$ for
 3188

$$3189 \quad K = \left\lceil \frac{4BL\Delta}{\varepsilon} + \frac{8\sigma^2 L\Delta}{\varepsilon^2} \right\rceil.$$

3190 Using Lemma I.2, the total time to find an ε -stationary point is
 3191

$$3193 \quad \mathcal{O} \left(T(B) \times \frac{K}{B} \right) = \mathcal{O} \left(T(B) \times \left(\frac{L\Delta}{\varepsilon} + \frac{\sigma^2 L\Delta}{B\varepsilon^2} \right) \right).$$

3192 Using the choice of B ,
 3193

$$3194 \quad \mathcal{O} \left(T(B) \times \frac{K}{B} \right) = \mathcal{O} \left(\min_{m \in [n]} \left[\max \left\{ \max\{h_m, \tau_m\}, \left(\sum_{i=1}^m \frac{1}{h_i} \right)^{-1} \frac{\sigma^2}{\varepsilon} \right\} \right] \times \frac{L\Delta}{\varepsilon} \right).$$

3195 \square

3196
 3197
 3198
 3199
 3200
 3201
 3202
 3203
 3204
 3205
 3206
 3207
 3208
 3209
 3210
 3211
 3212
 3213
 3214
 3215
 3216
 3217
 3218
 3219
 3220
 3221
 3222
 3223
 3224
 3225
 3226
 3227
 3228
 3229
 3230
 3231
 3232
 3233
 3234
 3235
 3236
 3237
 3238
 3239

3240 **J PERFORMANCE OF Rennala SGD AND Ringmaster ASGD ON A QUADRATIC**
 3241 **FUNCTION**
 3242

3243 In this section, we formally prove that the convergence of Ringmaster ASGD can be provably faster
 3244 than Rennala SGD due to the frequent model updates.
 3245

3246 **Theorem J.1.** *Consider Rennala SGD (Alg. 4) and Ringmaster ASGD (Alg. 7) with the optimal*
 3247 *parameters B from Sec. F. Then, there exists a μ -strongly convex function and corresponding*
 3248 *stochastic gradients that satisfy Assumptions 1.1, 1.2, and 1.3 with $\sigma^2/\varepsilon \geq n$, such that Rennala SGD,*
 3249 *with any step size γ , requires*

$$3250 \tilde{\Theta}\left(\frac{\sigma^2}{n\varepsilon} \times h \times \frac{L}{\mu}\right)$$

3252 *seconds to find ε -stationary point under the h_i -fixed computation model (20) with $h_i = h$ for all*
 3253 *$i \in [n]$. At the same time, there exists a step size for Ringmaster ASGD such that it requires at most*
 3254

$$3255 \tilde{\mathcal{O}}\left(h \times \frac{L}{\mu}\right)$$

3257 *seconds to find ε -stationary point.*

3259 *Proof.* In this construction, we take $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ such that

$$3261 f(w \equiv (x, y)) = \frac{\mu x^2}{2} + \frac{Ly^2}{2} \quad (40)$$

3263 for all $x, y \in \mathbb{R}$. Moreover, we assume that the stochastic gradients $\nabla f(w; \xi)$ are equal to the true
 3264 gradient $\nabla f(w)$; thus, there is no randomness. Note that *a priori*, both methods do not have this
 3265 information and therefore must choose $B = \Theta\left(\frac{\sigma^2}{\varepsilon}\right)$, even though the effective variance is zero.
 3266

3267 By the design of Rennala SGD, its algorithm is equivalent to the following steps:

$$3268 w^{t+1} = w^t - \gamma B \nabla f(w^t) \quad (41)$$

3270 because the workers calculate B gradients in every global round. Each round takes

$$3271 \Theta\left(h \times \frac{B}{n}\right) = \Theta\left(h \frac{\sigma^2}{n\varepsilon}\right)$$

3274 seconds, because the workers have the computation speed h and $B = \Theta\left(\frac{\sigma^2}{\varepsilon}\right)$ in Theorem F.1.
 3275

3276 It is well known that the sequence (41) requires

$$3277 \tilde{\Theta}\left(\frac{L}{\mu}\right)$$

3280 iterations (up to logarithmic factors) to find an ε -solution or ε -stationary point with the function (40),
 3281 even when the step size γ can be tuned. Thus, the computational time complexity of Rennala SGD is

$$3282 \tilde{\Theta}\left(\frac{\sigma^2}{n\varepsilon} \times h \times \frac{L}{\mu}\right)$$

3285 seconds.

3286 Consider now the steps of Ringmaster ASGD w.r.t. the first argument x . In this algorithm, we take
 3287 $\gamma = \frac{1}{2Ln}$. In the case when the computation time is equal for all workers, the first n steps are
 3288

$$3289 x^1 = x^0 - \gamma \mu x^0 = (1 - \gamma \mu)x^0, \\ 3290 x^2 = x^1 - \gamma \mu x^0 = (1 - 2\gamma \mu)x^0, \\ 3291 \vdots \\ 3293 x^n = x^{n-1} - \gamma \mu x^0 = (1 - n\gamma \mu)x^0,$$

3294 because the workers start calculating at the same point and return the gradients at the same time.
 3295 Notice that $0 \leq x^n \leq \dots \leq x^2 \leq x^1$. Then, the first worker starts calculating at x^1 , the seconds
 3296 worker starts calculating at x^2 , and so on. Therefore, the next steps are
 3297

$$\begin{aligned} 3298 \quad x^{n+1} &= x^n - \gamma\mu x^1 \\ 3299 &= (1 - n\gamma\mu)x^0 - \gamma\mu(1 - \gamma\mu)x^0 = (1 - (n+1)\gamma\mu + \gamma^2\mu^2)x^0, \\ 3300 \quad x^{n+2} &= x^{n+1} - \gamma\mu x^2 \\ 3301 &= (1 - (n+1)\gamma\mu + \gamma^2\mu^2)x^0 - \gamma\mu(1 - 2\gamma\mu)x^0 = (1 - (n+2)\gamma\mu + 3\gamma^2\mu^2)x^0, \\ 3303 &\vdots \\ 3304 \\ 3305 \quad x^{2n} &= x^{2n-1} - \gamma\mu x^n = \left(1 - 2n\gamma\mu + \frac{n(n+1)}{2}\gamma^2\mu^2\right)x^0 \leq (1 - n\gamma\mu)^2 x^0. \\ 3306 \end{aligned}$$

3307 For $\gamma = 1/2Ln$, we have $0 \leq x^{2n} \leq \dots \leq x^{n+1} \leq x^n \leq \dots \leq x^2 \leq x^1$. Using mathematical
 3308 induction, assume that $0 \leq x^{kn} \leq \dots \leq x^1$ for some $k \geq 1$ and $x^{pn} \leq (1 - n\gamma\mu)^p x^0$ for all $p \leq k$,
 3309 which is true for $k = 2$ (base case). We now prove it for $k + 1$. Ringmaster ASGD calculates x^{kn+1}
 3310 as follows:

$$3311 \quad x^{kn+1} = x^{kn} - \gamma\mu x^{(k-1)n+1},$$

3313 which ensures that $x^{kn+1} \leq (1 - \gamma\mu)x^{kn} \leq x^{kn}$ and $x^{kn+1} \geq x^{(k-1)n+1} - \gamma\mu x^{(k-1)n+1} \geq 0$ for
 3314 $\gamma = 1/2Ln$. We can continue:

$$3316 \quad x^{kn+2} = x^{kn+1} - \gamma\mu x^{(k-1)n+2},$$

3317 which ensures that

$$3319 \quad x^{kn+2} \leq x^{kn+1} - \gamma\mu x^{kn} \leq (1 - \gamma\mu)x^{kn} - \gamma\mu x^{kn} = (1 - 2\gamma\mu)x^{kn}$$

3320 and $x^{kn+2} \geq x^{(k-1)n+2} - \gamma\mu x^{(k-1)n+2}$. Continuing, we have

$$3322 \quad x^{(k+1)n} = x^{(k+1)n-1} - \gamma\mu x^{kn}.$$

3324 One can show that

$$3325 \quad x^{(k+1)n} \leq (1 - (n-1)\gamma\mu)x^{kn} - \gamma\mu x^{kn} \leq (1 - n\gamma\mu)x^{kn},$$

3327 and $x^{(k+1)n} \geq x^{kn} - \gamma\mu x^{kn} \geq 0$. We have proved the next case, $k + 1$, of the mathematical
 3328 induction.

3329 Thus, the sequence $\{x^{pn}\}_{p \geq 2}$ monotonically decreases with the rate

$$3331 \quad x^{pn} \leq (1 - n\gamma\mu)^p x^0.$$

3332 Using the same reasoning, we one can show the similar result holds for the second argument y of the
 3333 function but with L instead of μ .

3334 Recall that it takes h seconds to calculate x^n because n workers work in parallel, it takes h seconds
 3335 to calculate x^{2n} , and so on. Thus, the computational time complexity of Ringmaster ASGD is

$$3337 \quad \tilde{\mathcal{O}}\left(h \times \frac{L}{\mu}\right)$$

3340 with step size $\gamma = \frac{1}{2Ln}$. □

3341

3342

3343

3344

3345

3346

3347