
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

BIRCH SGD: A TREE GRAPH FRAMEWORK FOR
LOCAL AND ASYNCHRONOUS SGD METHODS

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose a new unifying framework, Birch SGD, for analyzing and designing dis-
tributed SGD methods. The central idea is to represent each method as a weighted
directed tree, referred to as a computation tree. Leveraging this representation, we
introduce a general theoretical result that reduces convergence analysis to studying
the geometry of these trees. This perspective yields a purely graph-based inter-
pretation of optimization dynamics, offering a new and intuitive foundation for
method development. Using Birch SGD, we design eight new methods and analyze
them alongside previously known ones, with at least six of the new methods shown
to have optimal computational time complexity. Our research leads to two key in-
sights: (i) all methods share the same “iteration rate” of O

(
(R+1)L∆/ε + σ2L∆/ε2

)
,

where R the maximum “tree distance” along the main branch of a tree; and (ii) dif-
ferent methods exhibit different trade-offs—for example, some update iterates more
frequently, improving practical performance, while others are more communication-
efficient or focus on other aspects. Birch SGD serves as a unifying framework for
navigating these trade-offs. We believe these results provide a unified foundation
for understanding, analyzing, and designing efficient asynchronous and parallel
optimization methods.

1 INTRODUCTION

Optimization is central to machine learning (ML), data science (DS), and federated learning (FL)
(Konečný et al., 2016; Bottou et al., 2018; Kairouz et al., 2021). In these domains, stochastic
optimization techniques such as stochastic gradient descent (SGD) (Robbins & Monro, 1951) and its
adaptive variants (Adam, AdamW, etc) (Kingma & Ba, 2015; Loshchilov & Hutter, 2019) have become
the standard approach for tackling large-scale problems (Schmidt et al., 2021). Due to the rising
computational demands of modern functions, the theoretical foundation of distributed algorithms
supporting a large number of workers (e.g., CPUs, GPUs, servers) is important (Mayer & Jacobsen,
2020; Kairouz et al., 2021; Douillard et al., 2023).

We consider distributed optimization problems with smooth nonconvex optimization functions:

min
x∈Rd

f(x), (1)

In nonconvex settings, the goal is to find an ε–stationary point, meaning we want to find a random
vector x̄ such that E

[
∥∇f(x̄)∥2

]
≤ ε (Nemirovskij & Yudin, 1983; Murty & Kabadi, 1985). The

function f : Rd → R satisfies the following standard assumptions:
Assumption 1.1. f is differentiable and L–smooth: ∥∇f(x)−∇f(y)∥ ≤ L ∥x− y∥ ∀x, y ∈ Rd.

Assumption 1.2. There exist f∗ ∈ R such that f(x) ≥ f∗ for all x ∈ Rd.

We focus on problems where workers are limited to computing stochastic gradients. Each worker
has access to unbiased stochastic gradients, denoted by ∇f(x; ξ), whose variance is bounded by
σ2. In the context of ML, this implies that all workers can access the same data, which is practical
when training large language and computer vision models. In such scenarios, privacy is not a critical
concern, and devices can sample data from the Internet or shared datasets (Goodfellow et al., 2016).
Assumption 1.3. For all x ∈ Rd, stochastic gradients ∇f(x; ξ) are unbiased and σ2-variance-
bounded, i.e., Eξ[∇f(x; ξ)] = ∇f(x) and Eξ[∥∇f(x; ξ)−∇f(x)∥2] ≤ σ2, where σ2 ≥ 0.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

1.1 RELATED WORK

One worker and optimal oracle complexity. With a single worker, the most standard optimization
method is the Vanilla SGD algorithm, which updates the iterate as wk+1 = wk−γ∇f(wk; ηk), where
{ηk} are i.i.d., w0 ∈ Rd is a starting point, γ is a step size, and ∆ := f(w0) − f∗. Arjevani et al.
(2022); Carmon et al. (2020) showed that Vanilla SGD is optimal in terms of oracle complexity, which
is given by Θ

(
L∆/ε + σ2L∆/ε2

)
for finding an ε-stationary point.

Multiple workers and optimal time complexity. Consider now that we have n workers computing
stochastic gradients asynchronously and in parallel. In this setup, there are numerous ways to
construct a distributed SGD method. The most well-known celebrated and recent approaches include
Synchronized SGD (Minibatch SGD), Local SGD (Zinkevich et al., 2010; Stich, 2019), Asynchronous
SGD (Recht et al., 2011), Picky SGD (Cohen et al., 2021), Rennala SGD (Tyurin & Richtárik, 2023),
and Ringmaster ASGD (Maranjyan et al., 2025). The multi-worker setup is rich and versatile, offering
numerous ways to design distributed SGD methods.

One may naturally ask which method offers the best theoretical performance. In distributed settings,
the standard oracle complexity becomes less informative, as workers compute stochastic gradients
in parallel with varying speeds. A more suitable comparison uses the hi-fixed computation model
(Mishchenko et al., 2022), where each worker i needs at most hi seconds to compute a gradient.
In this model, Mishchenko et al. (2022); Koloskova et al. (2022) showed that Asynchronous SGD
outperforms Synchronized SGD. Its time complexity is further improved by Rennala SGD (Tyurin
& Richtárik, 2023) and Ringmaster ASGD1 (Maranjyan et al., 2025), both optimal under this and
the more general universal computation model (Tyurin, 2025) (see Section A). However, as we will
discuss in more detail later, other factors come into play, such as communication complexity, support
for AllReduce, peak bandwidth, and model update frequency.

These developments raise several important questions. Rennala SGD and Ringmaster ASGD are known
to be optimal, yet differ in design and structure, each with distinct advantages and trade-offs. This
leads to our central questions: Are there other optimal methods? Can we develop a unified framework
that encompasses all distributed SGD methods and offers theoretical guidance? What fundamental
properties make these methods optimal? And, given different system constraints, which method should
one choose?

1.2 CONTRIBUTIONS

♠ New framework: Birch SGD (Section 2). We propose Birch SGD, a unifying framework that
captures virtually all distributed SGD methods. The key idea is that SGD methods can be represented
using weighted directed trees, which we refer to as computation trees (see Figure 1). We develop a
new theoretical result, Theorem 2.4, that reduces the analysis of SGD methods to analyzing of the
structure of these computation trees. The proofs become purely geometric and topological in nature,
offering geometric intuition for the design of new methods. Moreover, this geometric viewpoint leads
to tighter time complexity guarantees even for Local SGD (FedAvg) approaches (McMahan et al.,
2017), as we illustrate in Section H.

♣ Eight new methods (Table 1 and Section 3). Using Birch SGD, we identify eight new methods
in addition to those already known. For the first time, we prove that at least six of these newly
discovered methods are computationally optimal, matching the lower bound (Tyurin & Richtárik,
2023). We compare all methods across several dimensions, including computational and communi-
cation complexity, AllReduce compatibility, peak bandwidth, and model update frequency. Our
improvements: i) our newly developed Async-Local SGD and Async-Batch SGD provably improve the
communication complexity of Ringmaster ASGD while preserving asynchronicity; ii) we introduce
Cycle SGD, which provably reduces peak bandwidth compared to all existing methods; iii) we propose
a key modification to the family of local methods and design Local SGD and Dual-Process SGD that,
for the first time in the literature, achieve the optimal time complexities within this family and improve
upon the classical approach (see Section H); iv) for multi-cluster settings, we introduce Local-Async
SGD and Nested Local-Async SGD, incorporating a carefully designed synchronization mechanism
that guarantees optimality in computational time complexity; v) we develop a flexible meta-algorithm,
Meta Local SGD, which supports arbitrary synchronization strategies, while incorporating a “Hard

1Asynchronous SGD with a key modification; see Alg.7.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Algorithm 1 Birch SGD framework

Input: starting point w0 ∈ Rd, step size γ ≥ 0
Initialize the set of computed points: V = {w0}
(and the set of edges E = ∅)
for k = 0, 1, 2, . . . do

Choose any point wbase ∈ V from which to compute a new point
Choose any point wgrad ∈ V at which to compute a stochastic gradient
Compute the new point2: wk+1 = wbase − γ∇f(wgrad; η), η ∼ Dξ

Add wk+1 to the set of computed points V
(and add the edge with weight (wbase, w

k+1,∇f(wgrad; η)) to the set of
edges E)

end for February Azure,
Igor Grabar. 1904.

∇f(w0; η0)

w0 w1
∇f(w0; η0)

∇f(w0; η0)

w0

w1

w2

∇f(w0; η0)

∇f(w0; η0) ∇f(w1; η1)

w0

w1

w2 w3

∇f(w0; η0)
∇f(w2; η2)

∇f(w0; η0) ∇f(w1; η1)

w1 w4

w0

w2 w3

. . . ∇f(w0; η0)

∇f(w1; η3)

∇f(w2; η2)

∇f(w0; η0) ∇f(w1; η1) ∇f(w2; η2) ∇f(w4; η6) ∇f(w1; η3)

∇f(w2; η4)
∇f(w2; η5)

w1

w5

w4

w0

w2 w3 w8 w9 w10

w6 w7

Figure 1: A possible computation tree G for SGD method after four steps and beyond.

Sync” mechanism to guarantee convergence rates and to temper overly chaotic synchronization. As a
byproduct, we prove that frequent model updates of fully asynchronous methods can lead to faster
convergence and improve optimal Rennala SGD.

♦ Insights and Guidelines (Section 4). We observe that there is no silver bullet—each method has its
own advantages and disadvantages. Some methods update the iterates more frequently, making them
more appealing in practice, while others prioritize communication efficiency, support AllReduce,
or focus on different aspects. Through our new framework, we uncover insights that provide deeper
intuition and a simpler perspective on asynchronous, local, and parallel optimization methods.

2 Birch SGD: A GENERAL VIEW OF SGD METHODS

We begin our work by observing that various SGD methods, including Vanilla SGD, Asynchronous
SGD, Local SGD, among others, can be constructed in the manner described in Algorithm 1.

Let us explain it. Initially, any SGD method starts at some point w0 ∈ Rd, computes a stochastic
gradient at w0, and then finds a new point w1 = w0 − γ∇f(w0; ·), which is added to the set V
of computed points. In the next step, there are four options for choosing the subsequent point w2:
w2 = wi − γ∇f(wj ; ·) for i, j ∈ {0, 1}. This process continues indefinitely, and the number of
possible choices, and hence methods, grows exponentially (see an example in Figure 1).

Note that any instance of Algorithm 1, after any steps, can be represented by a weighted directed tree
G = (V,E), called a computation tree, where V is the set of computed points and E is the set of
edges with weights given by the stochastic gradients used to compute the new points. Our main idea
now is to take any computation tree G and analyze its structure to provide convergence guarantees
for the corresponding SGD method. Intuitively, the structure of the tree, e.g., number of branches,
length of branches, the tree distance between wgrad and wbase in Alg. 1 when we calculate a new point
should be related to the convergence speed of the method.

2.1 MAIN THEORETICAL RESULT ON CONVERGENCE RATES

Before we state our main theorem, we need to introduce sequences and definitions that characterize
the structure of computation trees G.

Definition 2.1 (Main Branch and Auxiliary Sequence). For a given computation tree G, we call a
sequence {xk}k≥0 a main branch if it forms a path in G starting at the initial node w0 ≡ x0. That
is, for each k ≥ 0, the node xk+1 is a direct successor of xk in G. By the construction of tree G, if

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

{xk}k≥0 is a main branch, then for each k ≥ 0 there exists a unique pair (zk, ξk), where zk ∈ V
and ξk ∼ Dξ, such that xk+1 = xk − γ∇f(zk; ξk). The sequence {(zk, ξk)}k≥0, which generates
the main branch {xk}k≥0, is called an auxiliary sequence.

Although there may be several possible choices and any of them can be chosen in general, the
selection of the main branch is typically unique and straightforward in all reasonable SGD methods,
as it forms the backbone of the tree3.

Let us consider an example. In Figure 1,
we can take a main branch {xk}k≥0 as fol-
lows: x0 = w0, x1 = w2, x2 = w3, x3 =
w8, x4 = w9, x5 = w10. Accordingly, the
auxiliary sequence is given by (z0, ξ0) =
(w0, η0), (z1, ξ1) = (w1, η1), (z2, ξ2) =
(w2, η2), (z3, ξ3) = (w4, η6), (z4, ξ4) =
(w1, η3). See Figure 2.

∇f(w0; η0)

∇f(w1; η3)

∇f(w2; η2)

∇f(w0; η0) ∇f(w1; η1) ∇f(w2; η2) ∇f(w4; η6) ∇f(w1; η3)

∇f(w2; η4)
∇f(w2; η5)

w1

w5

w4

w0

w2 w3 w8 w9 w10

w6 w7

Figure 2: Visualization.
Intuitively, the convergence rate should depend on the distance between xk and zk. When these points
are close (e.g., xk = zk), the stochastic gradient is computed near the update point, typically yielding
descent on average. In contrast, if they are far apart, the gradient at zk may poorly approximate
the local behavior of f at xk, making the update direction irrelevant. Thus, it is crucial to define a
suitable distance metric that is both easy to evaluate for any point pair and directly related to the
convergence speed of the SGD method. We propose the following:
Definition 2.2. For all y, z ∈ V, the tree distance dist(y, z) between y and z is the maximum number
of edges to the common closest ancestor of y and z.

As an example, consider Figure 2, where dist(w9, w4) = max{4, 2} = 4, because the common
ancestor is w0, the number of edges from w9 to w0 is 4, and the number of edges from w4 to w0 is
2. It is left to define the representation of a point y ∈ V.

Definition 2.3. For all y ∈ V, the representation repr(y) is the multiset of stochastic gradients applied
to w0 to get y. In other words, there exist {(m1, κ1), . . . , (mp, κp)} =: repr(y) for some p ≥ 0 such
that y = w0 − γ

∑p
j=1∇f(mj , κj).

We define the representation of points to understand how all points are related. An important
relation that we need is that repr(x) ⊆ repr(y), which essentially means that all stochastic gra-
dients used to compute x are also used to compute y. For instance, in Figure 2, repr(w9) =
{(w0, η0), (w1, η1), (w2, η2), (w4, η6)} and repr(w4) = {(w0, η0), (w2, η2)}, which allows to track
the path from from the starting point w0 to w9 and w4, and show that repr(w4) ⊆ repr(w9).

Theorem 2.4 (Main Theorem). Let Assumptions 1.1, 1.2, and 1.3 hold. Consider any SGD
method represented by computation tree G = (V,E). Let {xk}k≥0 be a main branch of G and
{(zk, ξk)}k≥0 be the corresponding auxiliary sequence (see Def. 2.1) that satisfy the following
conditions:
Condition 1: For all k ≥ 0, ξk is statistically independent of {(xi+1, zi+1, ξi)}k−1

i=0 .
Condition 2: The representation of zk is contained within that of xk, i.e., repr(zk) ⊆ repr(xk)
for all k ≥ 0. Equivalently, all stochastic gradients used in the computation of zk are also
utilized in calculating xk.
Condition 3: There exists a constant R ∈ [0,∞] such that dist(xk, zk) ≤ R for all k ≥ 0.

Then 1
K

∑K−1
k=0 E

[
∥∇f(xk)∥2

]
≤ ε for all K ≥ 4(R+1)L∆

ε + 8σ2L∆
ε2 with step size γ =

min{ 1
2L ,

1
2RL ,

ε
4σ2L}, where ∆ = f(x0)− f∗.

Assumptions 1.1, 1.2, and 1.3 are well-known and standard in the analysis of stochastic optimization
methods (Lan, 2020; Arjevani et al., 2022). Let us explain the conditions of the theorem.

Condition 1. The first condition condition requires that ξk is independent of {(xi+1, zi+1, ξi)}k−1
i=0 ,

which is a weak assumption. In Vanilla SGD, where xk+1 = xk − γ∇f(xk; ξk), it is standard to
assume that each ξk is an independent sample. Our condition generalizes this to other SGD variants.

3A fitting analogy is the Git distributed version control system, which also has a central main branch.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

∇f(z0; ξ0) ∇f(zp−1; ξp−1) ∇f(zk−1; ξk−1)∇f(zp; ξp) ∇f(zp+1; ξp+1) ∇f(zk; ξk)

∇f(ŵ; ξ̂) ∇f(w̄; ξ̄) ∇f(w̃; ξ̃)

x0 . . . xp xkxp+1 . . . xk+1

. . . zk

Figure 3: A general representation of the step xk+1 = xk − γ∇f(zk; ξk) that shows how xk and zk

are graph-geometrically related.

It guarantees that the stochastic gradient ∇f(·; ξk) is not used in computing xk or zk. Notably, this
remains true even in methods like Local SGD, where gradients may be reused.

Condition 2. The second condition is also weak in any reasonable and effective SGD method.
Figure 3 illustrates that there exists p ≥ 0 such that

zk = x0−γ
p−1∑
i=0

∇f(zi; ξi)−γ
∑

(w,ξ)∈Sk

∇f(w; ξ), xk = x0−γ
p−1∑
i=0

∇f(zi; ξi)−γ
k−1∑
i=p

∇f(zi; ξi),

where Sk is the set of points and random variables used to compute zk starting from xp.

Computing each stochastic gradient is time-consuming, so it is desirable to utilize as many computed
gradients as possible, including {∇f(w; ξ)}(w,ξ)∈Sk . Once ∇f(zk; ξk) has been used to compute
xk+1, the first condition prevents further use of {∇f(w; ξ)}(w,ξ)∈Sk in subsequent iterations because
zk depends on ξ for all (w, ξ) ∈ Sk. Thus, it is reasonable to assume that if an SGD method
employs the stochastic gradient ∇f(zk; ξk) to compute xk+1, then it has already used the gradients
{∇f(w; ξ)}(w,ξ)∈Sk in previous iterations to fully leverage all available information. In other words,
all stochastic gradients used in the computation of zk are also utilized in calculating xk. This is
equivalent to the second condition repr(zk) ⊆ repr(xk).

Condition 3. This condition is arguably the most important in Theorem 2.4 because it determines the
iteration rate of the main branch {xk}k≥0. In fact, iteration rate O

(
(R+1)L∆/ε + σ2L∆/ε2

)
depends

on R := supk≥0 dist(xk, zk).

Vanilla SGD (Section E.1). For instance, consider the simplest method, the classical stochastic
gradient descent (Vanilla SGD) method: wk+1 = wk − γ∇f(wk; ηk), where w0 is a starting point
and are {ηk} are i.i.d. random variables. Taking xk = zk = wk and ξk = ηk for all k ≥ 0.

Clearly, all conditions of Theorem 2.4 are satisfied: ξk is independent of {(xi+1, zi+1, ξi)}k−1
i=0 ,

repr(xk) = repr(zk) for all k ≥ 0, and R = 0. We get the iteration rate O
(
L∆/ε + σ2L∆/ε2

)
. The

corresponding tree is in Figure 13.

Conversely, if an SGD method is overly non-conservative, leading to a large tree distance R between
xk and zk, the iteration rate correspondingly increases. The further the maximum tree distance R
between xk and zk, the more iterations are required to achieve the desired accuracy ε.

Proof novelties. In Section D.1, we outline the key novelties, challenges, and the intuition guiding
our choice of conditions. Although our proof in Section D.2 is compact—which we view as a strength
rather than a limitation—it unifies a broad class of methods and provides new insights. Notably, right
at the beginning, we introduce a distinct approach to handling the staleness term ∥xk − zk∥, which
naturally arises from the update xk+1 = xk − γ∇f(zk; ξk) in asynchronous and local methods. This
treatment fundamentally differs from prior work, as it analyzes staleness through geometric graph
reasoning. Moreover, using our framework, we later present our version of Local SGD, which yields
tighter guarantees compared to the classical Local SGD (see Sections 3 and H), further validating both
our framework and proof technique.

3 EXISTING AND NEW ALGORITHMS: SUMMARY AND COMPARISON

In this section, we consider examples of distributed methods. We will show that all of them can be
represented by computation trees and analyzed using Theorem 2.4. The detailed analysis of each
method is provided in Section E.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Summary of distributed optimization methods from Sections 3 and E. In this table, we
compare methods across different metrics. A ✓ indicates a favorable property in the corresponding
metric. As can be seen, each method has its own advantages and disadvantages. Therefore, for any
practical setup, one should choose the most suitable method based on the specific requirements. For
all methods, we use the parameters from the theorems of Section F when deriving the metrics.

Method (Sec. E) Optimal Computational
Complexity (Sec. F)

Communication Com-(g)

plexity with Equal Times
Optimal Total

Complexity (Sec. I) AllReduce(a) Update(d)

Frequency
Peak(e)

Bandwidth

Rennala SGD (Alg. 4)
(Tyurin & Richtárik, 2023) ✓ τ L∆

ε ✓ ✗ ✓ ↑ n

Ringmaster ASGD (Alg. 7)
(Maranjyan et al., 2025) ✓ τ

(
σ2L∆
nε2

∨ L∆
ε

)
✗ ✗ ↑↑↑ ✓ n

Local SGD (Alg. 5) (new)(f) ✓ τ L∆
ε ✓ ✗ ✓ ↑↑ n

Cycle SGD (Alg. 8) (new) ✗ τ
(

σ2L∆
nε2

∨ L∆
ε

)
✗ — ↑↑ n2ε

σ2 ∨ 1 ✓

Async-Local/Batch SGD
(Alg. 9 and Sec. E.7) (new) ✓ τ L∆

ε ✓ — ✗ ↑↑ n

(Nested) Local-Async SGD
(Alg. 12 and 14) (new) ✓ —(c) —(c) — ↑↑ —(c)

Dual-Process SGD
(Alg. 18) (new) ✓ τ L∆

ε ✓ ✓ ✗ ↑↑ n

Meta Local SGD(b)

(Alg. 16) (new) — — — — — —

(a) Does a method support AllReduce? Asynchronous SGD-like methods do not support it due to their greedy update nature. Cycle SGD synchronizes only a subset of
workers; thus, we cannot say definitively. We also cannot say definitively in the case of Local-Async SGD because the local asynchronous steps cannot be implemented with
AllReduce, while the global steps can be.
(b) This is an abstract method where all metrics (Computational Complexity, Communication Complexity, etc) depend on the chosen strategy.
(c) Similar to AllReduce, here we also can not say definitely since Local-Async SGD and Nested Local-Async SGD are specially designed multi-cluster learning methods.
(d) This is a slightly less formal metric that indicates how often an algorithm updates its iterate/model. Rennala SGD asks the workers to compute stochastic gradients at the
same point; thus, it updates the iterates less frequently. In contrast, Ringmaster ASGD updates the iterates immediately. All other methods fall somewhere in between. See the
discussion in Section 3.
(e) In the Rennala SGD, Ringmaster ASGD, Local SGD, and Async-Local SGD methods, all workers can start communication simultaneously; thus, their peak bandwidth is
O(n) when n ≤ σ2/ε In the Cycle SGD method, the workers communicate in a circular manner, so the peak bandwidth is O(n2ε/σ2) when n ≤ σ2/ε, which is smaller.
(f) While we recognize that Local SGD is well-known in the literature, what makes our version novel is the better time complexity compared to the classical version (Sec. H),
the stopping criterion

∑n
i=1 Mi = B in Alg. 5, and the analysis in Sec. E.3, F, and G, which leads to the optimal computational time complexities with a proper choice of

B.
(g) We report the terms w.r.t. communication time τ under the (h, τ)-fixed computation model from Section G.

Rennala SGD (Section E.2). Consider Rennala SGD, which can be written as

wk+1 = wk − γ
B∑
i=1

∇f(wk; ηk,i), (2)

where n workers collaboratively calculate the batch of size B (see Alg. 4). This method pro-
duces a computation tree constructed as follows: x1 = x0 − γ∇f(x0; ξ0), . . . , xB = xB−1 −
γ∇f(x0; ξB−1), xB+1 = xB − γ∇f(xB ; ξB), . . . , x2B = x2B−1 − γ∇f(xB ; ξ2B−1), . . . , where
B is a batch size (see Figure 14) and {ξk} are i.i.d. from Dξ. Notice that the computation tree is
equivalent to (2) because xB = w1, x2B = w2, etc. Here, all conditions of Theorem 2.4 are satisfied
for the main branch {xk} with the auxiliary sequence {(zk, ξk)} such that z0 = · · · = zB−1 = x0,
zB = · · · = z2B−1 = xB , etc, and ξ0 = η0,0, . . . , ξB−1 = η0,B−1, ξB = η1,0, etc. However,
unlike Vanilla SGD, R = B − 1 because dist(x0, z0) = 0, dist(x1, z1) = 1, . . . , dist(xB−1, zB−1) =
B − 1, dist(xB , zB) = 0, etc. Thus, the iteration rate is O

(
BL∆/ε + σ2L∆/ε2

)
.

Ringmaster ASGD (Section E.4). This an Asynchronous SGD method with the update rule

wk+1 = wk − γ∇f(wk−δk ; ηk−δk

i), (3)

where δk is a delay such that δk ≤ G− 1, where G ≥ 1 is a hyperparameter (see Alg. 7). We take
xk = wk for all k ≥ 0. Thus, the corresponding auxiliary sequence is defined by zk = xk−δk ≡
wk−δk and ξk = ηk−δk

i for all k ≥ 0. Constructing the computation tree (Figure 15), we can show
that the conditions of Theorem 2.4 hold with R = maxk≥0 δ

k ≤ G − 1 and the iteration rate is
O
(
GL∆/ε + σ2L∆/ε2

)
.

Previously, we presented Rennala SGD and Ringmaster ASGD that can be analyzed using Theorem 2.4.
This raises the question: Which method is most effective, and how should one choose the appropriate
one? In the following sections, we discuss different factors one should consider when selecting a
method, and present new algorithms. The discussion here is summarized in Table 1. Before we begin,
it is important to note that the iteration complexity in Theorem 2.4 does not reflect the true wall-clock
performance. It serves as an intermediate result used to derive the time complexities presented below.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

∇f(x0; η0,02)

∇f(z0,12 ; η0,12)

∇f(x4; η1,02)

∇f(z1,12 ; η1,12) ∇f(z1,22 ; η1,22)

∇f(x0; η0,02) ∇f(z0,12 ; η0,12) ∇f(x0; η0,01) ∇f(z0,11 ; η0,11) ∇f(x4; η1,01) ∇f(x4; η1,02) ∇f(z1,12 ; η1,12) ∇f(z1,22 ; η1,22)

∇f(x0; η0,01)
∇f(z0,11 ; η0,11) ∇f(x4; η1,01)

x0

z0,12 z0,22

x4

z1,12 z1,22 z1,32

x1 x2 x3 x5 x6 x7 x8

z0,11 z0,21 z1,11

Figure 4: An example of a Local SGD computation tree with B = 4 and 2 workers, each performing
local steps over 2 global steps. In first round, they calculate M1 = 2 and M2 = 2 local steps. In the
second round, they calculate M1 = 1 and M2 = 3 local steps. Note that the maximum distances
dist(x3, z0,11) and dist(x7, z1,22), when applying ∇f(z0,11 ; η0,11) to x3 and ∇f(z1,22 ; η1,22) to x7, are
equal to B − 1 =

∑n
i=1 Mi − 1 = 3. Notice that each stochastic gradient is used 2 times in the tree.

1. Computational complexity. One way to compare the methods is to analyze their time
complexity under the hi-fixed computation model (see Sec. 1.1, A, and F). With a proper
choice of the corresponding parameters, i.e., B = max{1, ⌈σ2

/ε⌉}, both Rennala SGD
and Ringmaster ASGD are optimal in terms of wall-clock time with the time complexity
Θ(minm∈[n][(1/m

∑m
i=1

1/hi)−1
(
L∆/ε + σ2L∆/mε2

)
]) provided that communication times are negli-

gible. In the worst-case scenario, on the “very bad function” (Arjevani et al., 2022), all these methods
perform equally well. Next, we discuss the strengths and weaknesses of the methods that are not
captured by the hi-fixed computation model.

2. Number of model updates. At the same time, comparing (3) and (2) reveals that Rennala SGD
computes B stochastic gradients at the same point, while Ringmaster ASGD both computes and
“explores” more by immediately updating the model as in (3). This feature makes Ringmaster ASGD
more practically appealing. In fact, this intuition can be formalized using a simple two-dimensional
strongly convex quadratic function f : R2 → R such that f(x, y) = µx2/2+Ly2/2 for all x, y ∈ R.
For this function, we prove that Rennala SGD requires Θ̃

(
σ2
/εn× h× L/µ

)
seconds to achieve an

ε–solution under the hi-fixed computation model with hi = h for all i ∈ [n], while Ringmaster ASGD
needs Θ̃ (h× L/µ) , which is σ2

/εn seconds less (see formal result in Section J). This is the first
result showing that Ringmaster ASGD/Asynchronous SGD can be strongly better than Rennala SGD.

3. Communication complexity. Communication delays are a major bottleneck in real-world dis-
tributed systems. Thus, minimizing communication and synchronization overhead is crucial. Ring-
master ASGD is the least efficient in this regard, requiring frequent communication and lacking
AllReduce support due to its asynchronous design. In a simple model where sending one stochas-
tic gradient takes τ seconds and all workers have identical speed hi = h, the time complexity of
Ringmaster ASGD is Ω

(
τ
(
L∆/ε + σ2L∆/nε2

)
+ h

(
L∆/ε + σ2L∆/nε2

))
. In contrast, Rennala SGD

achieves O
(
τL∆/ε + h

(
L∆/ε + σ2L∆/nε2

))
(see Sec. G), which is better when τ and σ2

/ε are large.

This is the point where we asked ourselves if it is possible to design a method that has the optimal
computational time complexity of Rennala SGD and updates the iterates more frequently than it. It
turns out this method is well-known and is called Local SGD:

Local SGD (Section E.3). We consider the classical Local SGD strategy, where each worker i ∈ [n]
performs Mi local steps, after which the server aggregates the results (see Alg. 5). Unlike most
previous approaches, however, the number of local steps Mi may vary across workers. Moreover, the
server waits for a specific condition before aggregating:

∑n
i=1 Mi = B. This strategy is adaptive

to fluctuations in the number of local steps performed by individual workers, as the server ensures
the total number of steps across all workers reaches the target sum

∑n
i=1 Mi = B, where B is

a hyperparameter. An example of the computation tree is shown in Figure 4. In Section E.3, we
establish the iteration rate of Local SGD as O

(
BL∆/ε + σ2L∆/ε2

)
. This result follows directly

from Theorem 2.4 via a simple geometric argument. In fact, looking at Figure 4 reveals that
all the conditions of Theorem 2.4 are satisfied. The only minor difficulty is to show that R :=
supk≥0 dist(xk, zk) ≤ B − 1, which is guaranteed by the condition

∑n
i=1 Mi = B.

What is novel in our version of Local SGD is that it achieves better theoretical guarantees within the
family of Local SGD approaches (see Section H). Moreover, our stopping condition and the choice of
B together ensure its optimality under the hi-fixed computation model (see Theorem F.6).

Async-Local SGD (Section E.6). Another idea to leverage the practical benefits of Ringmaster ASGD,
while at the same time reducing the communication overhead, is to use Ringmaster ASGD with

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

∇f(x0; η1,02)

∇f(z1,12 ; η1,12)

∇f(x0; η1,01) ∇f(z1,11 ; η1,11)

∇f(x2; η2,01)

∇f(z2,11 ; η2,11)

∇f(x0; η1,02)
∇f(z1,12 ; η1,12)

∇f(x0; η1,01)
∇f(z1,11 ; η1,11)

∇f(x2; η2,01) ∇f(z2,11 ; η2,11)

x0

z1,12 z1,22

x4

x1 x2

x3

x5 x6

z1,11 z1,21

z2,11 z2,21

Figure 5: An example of the computation tree for Async-Local SGD with M = 2. In this example,
the first worker is significantly faster: before the second worker completes its first set of local steps,
x0 → z1,12 → z1,22 , the first worker already completes two rounds of local updates and sends the cor-
responding stochastic gradients, (∇f(x0; η1,01),∇f(z1,11 ; η1,11)) and (∇f(x2; η2,01),∇f(z2,11 ; η2,11)).

local steps. The idea is to run M local steps on each worker instead of immediately sending the
computed stochastic gradients to the server in an asynchronous fashion (See Figure 5). We formalize
this algorithm and prove the iteration rate in Section E.6. Moreover, in Sections F and G, we
suggest an optimal choice of parameters that leads to optimal computational complexity and reduced
communication complexity, which is better than that of Ringmaster ASGD. We get as similar result
with a new method, Async-Batch SGD (Section E.7).

Dual-Process SGD (Section E.11). We took a step further and developed a new local method inspired
by Local SGD and Async-Local SGD. It is the first local method to achieve the optimal time complexity
in the distributed setting, where workers have varying computation and communication times (see
Section I). However, unlike Local SGD, it is not AllReduce-friendly.

4. Peak bandwidth. Another critical factor is the peak bandwidth. The number of workers the
parameter-server or the AllReduce operation can synchronize may be limited when the number of
workers n is huge. Notice that the worst-case peak bandwidth of Rennala SGD, Ringmaster ASGD,
Local SGD, and Async-Local SGD is Θ(n) .

Cycle SGD (Section E.5). To mitigate this issue, we propose a new method called Cycle SGD. Similar
to Local SGD, each worker performs local steps. However, once the workers finish computing the
initial stochastic gradients {∇f(z0i ; η0i)}, only the first group of s workers sends their gradients to
the server, where s is a hyperparameter. The server then aggregates these gradients and performs the
update w1 = w0 − γ

∑s
i=1∇f(z0i ; η0i). Meanwhile, the first s workers begin computing their local

steps starting from w1, while the remaining workers continue their current local computations. Next,
the second group of s workers sends their locally computed vectors, and this process continues in a
circular manner. A computation tree presented in Figure 16. The peak bandwidth of Cycle SGD is
O (s) with s = min

{
max{⌈n2ε/σ2⌉, 1}, n

}
, which is smaller than Θ(n) when σ2

/ε ≥ n.

5. Optimization with clusters. Consider a setup with many clusters of workers, where intra-cluster
communication (e.g., InfiniBand) is fast and inter-cluster communication (e.g., Ethernet) is slow.

Local-Async SGD (Section E.8) We run Asynchronous SGD within each cluster and synchronize
clusters after a fixed number of local steps. This setup is feasible due to fast intra-cluster links,
while slower inter-cluster links necessitate infrequent synchronization. In Section E.8, we formalize
this method, Local-Async SGD, and establish its iteration rate. Section F proves it achieves optimal
computational time complexity. A key novelty lies in the synchronization mechanism (see Alg. 12).

Nested Local-Async SGD (Section E.9) Our framework extends to a two-level hierarchy: within each
cluster, servers with 4–8 GPUs run Asynchronous SGD locally, synchronize at the server level, and
then synchronize across clusters. Analyzing such a setup using classical optimization tools would be
highly challenging. In contrast, our framework enables a straightforward analysis through geometric
graph reasoning.

6. Flexible synchronization and Meta Local SGD (Section E.10). We noticed that in all previous
methods, the workers are synchronized in a predefined manner or rule. We want to add more
flexibility to the synchronization process. Our idea is that the server (or the workers themselves,
in a decentralized setup) can select any subset of workers based on any strategy (e.g., randomly or
according to current communication speeds), gather their computed stochastic gradients, update the
global model, and ask these workers to continue performing local steps from the new point. However,
such “anarchic synchronization” can result in a computation tree with a large R if the selected strategy
is not chosen carefully. To ensure that R is bounded, in our meta-algorithm (Algorithm 16), we track

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

the current distances {di} to the head of the main branch and the local steps {Mi} performed by each
worker. Then, by tracking the value di +

∑n
i=1 Mi for all i ∈ [n] and comparing it to a parameter B,

we compulsorily synchronize (Hard Sync) all workers for which di +
∑n

i=1 Mi = B. This way, we
can ensure that R is bounded by B, and the iteration rate of this method is O

(
BL∆/ε + σ2L∆/ε2

)
.

4 INSIGHTS AND GUIDELINES

All proposed methods share the same iteration rate of O
(
(R+1)L∆/ε + σ2L∆/ε2

)
, where R is con-

trolled by a method-specific hyperparameter and, at the same time, R is the largest tree distance
between xk and zk. For Rennala SGD, R = B − 1, where B denotes the batch size; for Ringmaster
ASGD, R = B−1, where B is the delay threshold; for Local SGD, R = B−1, where B corresponds to
the number of local steps; for Cycle SGD, R = n2

/s, where s is the group size, etc. In all these methods,
R can be controlled, and to achieve the best possible computational and communication guarantees,
one should always choose R = Θ

(
σ2
/ε
)

(see Sections G and F). We believe this is a fundamental
principle underlying all parallel optimization methods, and it should be considered a guiding rule
when developing new algorithms. This choice is also theoretically justified: by taking R = Θ

(
σ2
/ε
)
,

the iteration rate does not change asymptotically: O
(
(R+1)L∆/ε + σ2L∆/ε2

)
= O

(
L∆/ε + σ2L∆/ε2

)
.

Larger values of R allow the methods to be more “parallel-friendly”. For instance, a large R enables
Ringmaster ASGD to consider stochastic gradients with larger delays, while a large R in Local SGD
allows the method to run more local steps. However, taking R > σ2

/ε results in a worse iteration rate,
suggesting that the corresponding method operates in an overly “anarchic” asynchronous regime,
which may lead to performance degradation. Geometrically, the theory suggests that, to achieve good
performance, the tree distance between xk and zk in Figure 3 should not exceed σ2

/ε.

Notice that there is no single “best” method in Table 1, which we believe is another fundamental
law. Each method has its own strengths and weaknesses, and one should develop or choose the
most appropriate method for the specific task. This process becomes easier with the help of our new
framework, Birch SGD, and insights.

We hope these important observations will support the future development and analysis of asyn-
chronous optimization methods. Building on these insights, we designed at least eight new methods
using our proposed Birch SGD framework and the main result, Theorem 2.4. By reducing the anal-
ysis and design of these methods to computation trees, our entire development becomes purely
graph-geometrical, offering a new and simpler view on asynchronous optimization methods.

5 SUMMARY OF EXPERIMENTAL RESULTS

In Section C, we provide a detailed comparison of methods on logistic regression, image clas-
sification with ResNet18 (He et al., 2016), and next-token prediction with GPT2 (Radford
et al., 2019). When communication times are negligible (Fig. 6), as expected from Table 1
and the previous discussion, Ringmaster ASGD and Async-Local SGD converge faster on the lo-
gistic regression problem. However, when communication times are large (Fig. 7), Ringmas-
ter ASGD becomes less practical due to its frequent updates. Synchronized SGD exhibits the
worst performance across all setups. Rennala SGD and Local SGD are more stable, while Async-
Local SGD performs well due to its effective balance between frequent updates and local steps.

0 2000 4000 6000 8000 10000 12000 14000
times (seconds)

1

4 × 10 1

6 × 10 1

2 × 100

3 × 100

f(x
t)

f(x
*)

Local SGD =0.0078125 B=256
Rennala SGD =0.0078125 B=256
Ringmaster ASGD =0.015625 B=512
Async-Local SGD =0.015625 B=512 M=2
Synchronized SGD =0.5

Figure 6: Computation times hi = 1 or 10 ran-
domly, communication times τi = 0.

2500 5000 7500 10000 12500 15000 17500
times (seconds)

1

2 × 100

3 × 100

4 × 100

f(x
t)

f(x
*)

Local SGD =0.0078125 B=256
Rennala SGD =0.0078125 B=256
Ringmaster ASGD =0.0625 B=256
Async-Local SGD =0.015625 B=256 M=8
Synchronized SGD =1

Figure 7: Computation times hi = 10, commu-
nication times τi = 100.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Yossi Arjevani, Yair Carmon, John C Duchi, Dylan J Foster, Nathan Srebro, and Blake Woodworth.
Lower bounds for non-convex stochastic optimization. Mathematical Programming, pp. 1–50,
2022.

Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale machine
learning. SIAM review, 60(2):223–311, 2018.

Yair Carmon, John C Duchi, Oliver Hinder, and Aaron Sidford. Lower bounds for finding stationary
points i. Mathematical Programming, 184(1):71–120, 2020.

Alon Cohen, Amit Daniely, Yoel Drori, Tomer Koren, and Mariano Schain. Asynchronous stochastic
optimization robust to arbitrary delays. Advances in Neural Information Processing Systems, 34:
9024–9035, 2021.

Arthur Douillard, Qixuan Feng, Andrei A Rusu, Rachita Chhaparia, Yani Donchev, Adhiguna
Kuncoro, Marc’Aurelio Ranzato, Arthur Szlam, and Jiajun Shen. Diloco: Distributed low-
communication training of language models. arXiv preprint arXiv:2311.08105, 2023.

Mathieu Even, Anastasia Koloskova, and Laurent Massoulié. Asynchronous SGD on graphs: a
unified framework for asynchronous decentralized and federated optimization. In International
Conference on Artificial Intelligence and Statistics, pp. 64–72. PMLR, 2024.

Hamid Reza Feyzmahdavian, Arda Aytekin, and Mikael Johansson. An asynchronous mini-batch
algorithm for regularized stochastic optimization. IEEE Transactions on Automatic Control, 61
(12):3740–3754, 2016.

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning, volume 1.
MIT Press, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 770–778, 2016.

Rustem Islamov, Mher Safaryan, and Dan Alistarh. AsGrad: A sharp unified analysis of asynchronous-
SGD algorithms. In International Conference on Artificial Intelligence and Statistics, pp. 649–657.
PMLR, 2024.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Ad-
vances and open problems in federated learning. Foundations and Trends® in Machine Learning,
14(1–2):1–210, 2021.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, 2015.

Anastasia Koloskova, Nicolas Loizou, Sadra Boreiri, Martin Jaggi, and Sebastian U. Stich. A unified
theory of decentralized SGD with changing topology and local updates. In Proceedings of the 37th
International Conference on Machine Learning, 2020.

Anastasiia Koloskova, Sebastian U Stich, and Martin Jaggi. Sharper convergence guarantees for
Asynchronous SGD for distributed and federated learning. Advances in Neural Information
Processing Systems, 35:17202–17215, 2022.

Jakub Konečný, H Brendan McMahan, Felix X Yu, Peter Richtárik, Ananda Theertha Suresh, and
Dave Bacon. Federated learning: Strategies for improving communication efficiency. arXiv
preprint arXiv:1610.05492, 2016.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
Technical report, University of Toronto, Toronto, 2009.

Guanghui Lan. First-order and stochastic optimization methods for machine learning. Springer,
2020.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yann LeCun, Corinna Cortes, and CJ Burges. MNIST handwritten digit database. ATT Labs [Online].
Available: http://yann.lecun.com/exdb/mnist, 2, 2010.

Xiangru Lian, Yijun Huang, Yuncheng Li, and Ji Liu. Asynchronous parallel stochastic gradient for
nonconvex optimization. Advances in Neural Information Processing Systems, 28, 2015.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019.

Ruichen Luo, Sebastian U Stich, Samuel Horváth, and Martin Takáč. Revisiting LocalSGD and
SCAFFOLD: Improved rates and missing analysis. In International Conference on Artificial
Intelligence and Statistics, 2025.

Artavazd Maranjyan, Alexander Tyurin, and Peter Richtárik. Ringmaster ASGD: The first asyn-
chronous SGD with optimal time complexity. arXiv preprint arXiv:2501.16168, 2025.

Norm Matloff. Introduction to discrete-event simulation and the simpy language. Davis, CA. Dept of
Computer Science. University of California at Davis. Retrieved on August, 2(2009):1–33, 2008.

Ruben Mayer and Hans-Arno Jacobsen. Scalable deep learning on distributed infrastructures:
Challenges, techniques, and tools. ACM Computing Surveys (CSUR), 53(1):1–37, 2020.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273–1282. PMLR, 2017.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

Konstantin Mishchenko, Francis Bach, Mathieu Even, and Blake Woodworth. Asynchronous SGD
beats minibatch SGD under arbitrary delays. Advances in Neural Information Processing Systems,
2022.

Katta G Murty and Santosh N Kabadi. Some NP-complete problems in quadratic and nonlinear
programming. Technical report, 1985.

Arkadij Semenovič Nemirovskij and David Borisovich Yudin. Problem complexity and method
efficiency in optimization. 1983.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hogwild!: A lock-free approach to
parallelizing stochastic gradient descent. Advances in Neural Information Processing Systems, 24,
2011.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The Annals of Mathematical
Statistics, pp. 400–407, 1951.

Robin M Schmidt, Frank Schneider, and Philipp Hennig. Descending through a crowded valley-
benchmarking deep learning optimizers. In International Conference on Machine Learning, pp.
9367–9376. PMLR, 2021.

Suvrit Sra, Adams Wei Yu, Mu Li, and Alex Smola. Adadelay: Delay adaptive distributed stochastic
optimization. In Artificial Intelligence and Statistics, pp. 957–965. PMLR, 2016.

Sebastian U Stich. Local SGD converges fast and communicates little. In International Conference
on Learning Representations, 2019.

Sebastian U Stich and Sai Praneeth Karimireddy. The error-feedback framework: SGD with delayed
gradients. Journal of Machine Learning Research, 21(237):1–36, 2020.

Alexander Tyurin. Tight time complexities in parallel stochastic optimization with arbitrary computa-
tion dynamics. In International Conference on Learning Representations, 2025.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Alexander Tyurin and Peter Richtárik. Optimal time complexities of parallel stochastic optimization
methods under a fixed computation model. Advances in Neural Information Processing Systems,
36, 2023.

Alexander Tyurin and Peter Richtárik. On the optimal time complexities in decentralized stochastic
asynchronous optimization. Advances in Neural Information Processing Systems, 37, 2024.

Alexander Tyurin, Marta Pozzi, Ivan Ilin, and Peter Richtárik. Shadowheart SGD: Distributed
asynchronous SGD with optimal time complexity under arbitrary computation and communication
heterogeneity. Advances in Neural Information Processing Systems, 37, 2024.

Xuyang Wu, Sindri Magnusson, Hamid Reza Feyzmahdavian, and Mikael Johansson. Delay-adaptive
step-sizes for asynchronous learning. In International Conference on Machine Learning, 2022.

Martin Zinkevich, Markus Weimer, Lihong Li, and Alex Smola. Parallelized stochastic gradient
descent. Advances in Neural Information Processing Systems, 23, 2010.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

CONTENTS

1 Introduction 1

1.1 Related work . 2

1.2 Contributions . 2

2 Birch SGD: A General View of SGD Methods 3

2.1 Main theoretical result on convergence rates . 3

3 Existing and New Algorithms: Summary and Comparison 5

4 Insights and Guidelines 9

5 Summary of experimental results 9

A Additional Discussion 15

A.1 Discussion of the computational time complexities 15

A.2 More related work . 15

A.3 Relation to other frameworks . 16

B Notations 16

C Experiments 16

C.1 Setup . 16

C.2 Experiments with logistic regression . 17

C.3 Experiments with ResNet18 and image classification 19

C.4 Experiments with GPT2 and token prediction . 20

C.5 Parameters of the experiments . 21

D Proof of Theorem 2.4 23

D.1 Proof technique and reasons for choosing the conditions 23

D.2 Full proof . 23

E Detailed Description of Algorithms and Iteration Rates 26

E.1 Vanilla SGD . 26

E.2 Rennala SGD . 27

E.3 Local SGD . 29

E.4 Ringmaster ASGD . 31

E.5 Cycle SGD . 32

E.6 Async-Local SGD . 34

E.7 Async-Batch SGD . 35

E.8 Local-Async SGD . 36

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

E.9 Nested Local-Async SGD . 38

E.10 Meta Local SGD . 40

E.11 Dual-Process SGD . 43

F Computational Time Complexities of Algorithms under hi-Fixed Computation Model 45

F.1 Rennala SGD . 45

F.2 Ringmaster ASGD . 46

F.3 Local SGD . 47

F.4 Local-Async SGD . 47

F.5 Nested Local-Async SGD . 48

F.6 Async-Local SGD . 48

F.7 Cycle SGD . 50

F.8 Dual-Process SGD . 50

G Total Time Complexities of Algorithms under (h, τ)-Fixed Computation Model 52

G.1 Rennala SGD . 52

G.2 Local SGD . 52

G.3 Cycle SGD . 53

G.4 Async-Local SGD . 53

G.5 Ringmaster ASGD . 54

H Comparison Between Our Local SGD and the Canonical Local SGD 54

I Total Time Complexities of Algorithms under (hi, τi)-Fixed Computation Model 55

I.1 Dual-Process SGD . 56

J Performance of Rennala SGD and Ringmaster ASGD on a Quadratic Function 58

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A ADDITIONAL DISCUSSION

A.1 DISCUSSION OF THE COMPUTATIONAL TIME COMPLEXITIES

In this section, we extend our discussion about the computational time complexities of the methods
discussed in the main part of the paper.

To compare parallel and asynchronous methods, Mishchenko et al. (2022) proposed using the hi-fixed
computation model. The idea is to assume that worker i requires at most hi seconds to calculate
one stochastic gradient for all i ∈ [n] := {1, . . . , n} (without loss of generality, h1 ≤ h2 ≤
· · · ≤ hn). The authors considered Synchronized SGD, an iterative process defined as wk+1 =
wk − γ

n

∑n
i=1∇f(wk; ηki), where each worker calculates one stochastic gradient, synchronize, and

a parameter server aggregates them to update the iterate4. Using the hi-fixed computation model, it
can be easily shown that Synchronized SGD converges after

O
(
max
i∈[n]

hi ×
(
L∆

ε
+

σ2L∆

nε2

))
(4)

seconds, because the method waits for the slowest worker, whose time is maxi∈[n] hi = hn.

Algorithm 2 Asynchronous SGD

Input: point w0 ∈ Rd, stepsizes γk ≥ 0
Workers start computing stochastic gradients at w0

for k = 0, 1, . . . do
Gradient ∇f(wk−δk ; ηk−δk

i) arrives from worker i
Update: wk+1 = wk − γk∇f(wk−δk ; ηk−δk

i)
Worker i begins calculating at wk+1

end for

Mishchenko et al. (2022); Koloskova et al. (2022) provided new analyses of Asynchronous SGD (see
Algorithm 2) and Cohen et al. (2021) developed Picky SGD to show that this time complexity can be
improved to

O
((

1
n

n∑
i=1

1
hi

)−1 (
L∆
ε + σ2L∆

nε2

))
,

where the dependence on {hi} is harmonic instead of being based on the maximum. It turns out that
this complexity can be further improved5 to

Θ

(
min
m∈[n]

[(
1
m

m∑
i=1

1
hi

)−1 (
L∆
ε + σ2L∆

mε2

)])
, (5)

which is achieved by the Rennala SGD method (Tyurin & Richtárik, 2023). Moreover, Tyurin &
Richtárik (2023) proved a matching lower bound demonstrating that both this complexity and Rennala
SGD are optimal. Recently, Maranjyan et al. (2025) developed a new optimal Ringmaster ASGD
method, which is essentially Asynchronous SGD with a key modification. Additionally, under the
universal computation model, Tyurin (2025); Maranjyan et al. (2025) showed that both Rennala SGD
and Ringmaster ASGD remain optimal even when computation times are arbitrary, time-varying, and
random.

A.2 MORE RELATED WORK

Our focus is on the homogeneous setting, where all workers have access to the same data distribution
or dataset. The heterogeneous data setting is equally important, especially in federated learning (FL)
(Konečný et al., 2016) due to privacy constraints. In this context, many other methods have been

4Alternatively, there is no physical parameter server, and all workers perform an Allreduce.
5Note that min

m∈[n]
g(m) ≤ g(n) for any function g : N → R

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

proposed, including Asynchronous SGD (Mishchenko et al., 2022; Koloskova et al., 2022), Asgrad
(Islamov et al., 2024), PIAG (Wu et al., 2022), and Malenia SGD (Tyurin & Richtárik, 2023). Notably,
Tyurin & Richtárik (2023); Tyurin (2025) showed that Malenia SGD is optimal under both the fixed
and universal computation models, without requiring assumptions of bounded gradients or gradients
dissimilarity.

In the homogeneous setting, numerous other works have studied asynchronous SGD methods, in-
cluding (Lian et al., 2015; Feyzmahdavian et al., 2016; Stich & Karimireddy, 2020; Sra et al., 2016).
However, these methods typically require the assumption that the delays in the indices of stochastic
gradients are bounded (on average in (Sra et al., 2016)). As a result, their theoretical guarantees in
terms of computational time complexity are weaker than those in (Cohen et al., 2021; Koloskova
et al., 2022; Mishchenko et al., 2022; Tyurin & Richtárik, 2023; Maranjyan et al., 2025), which do
not rely on such assumptions.

A.3 RELATION TO OTHER FRAMEWORKS

Another interesting work that analyzes SGD methods is (Even et al., 2024). Their work and ours both
use graphs; however, we use graphs in completely different, orthogonal, and unrelated contexts. In
their case, nodes represent computers (GPUs, CPUs, servers), and edges represent communication
links. In our case, nodes represent points of an algorithm, and (directed) edges indicate how one
point was calculated from another. These are two different and orthogonal approaches. Another
important difference is that they compare methods using iteration complexities, whereas we use time
complexities in Table 1, a more robust and suitable metric for asynchronous and parallel methods.

B NOTATIONS

N := {1, 2, . . . }; ∥x∥ is the output of the standard Euclidean norm for all x ∈ Rd; ⟨x, y⟩ =∑d
i=1 xiyi is the standard dot product; g = O(f) : exist C > 0 such that g(z) ≤ C × f(z) for all

z ∈ Z; g = Ω(f) : exist C > 0 such that g(z) ≥ C × f(z) for all z ∈ Z; g = Θ(f) : g = O(f) and
g = Ω(f); g = Θ̃(f) : the same as g = Ω(f) but up to logarithmic factors; a ∨ b := max{a, b}.

C EXPERIMENTS

C.1 SETUP

The experiments were prepared in Python. The distributed environment was simulated with the Simpy
Python library (Matloff, 2008). There are two hardware setups:

• CPU Setup: Intel(R) Xeon(R) Gold 6348 CPU @ 2.60GHz 52 cores (for logistic regression
experiments)

• GPU Setup: 2 × Nvidia A100 80 Gb, CPU: Intel(R) Xeon(R) Platinum 8358 CPU @ 2.60GHz 128
cores (for ResNet18 and GPT2 experiments)

The distributed environment is simulated with the help of Simpy. To compare the methods, we
consider different computation and communication scenarios by taking different computation times
{hi} and communication times {τi} of the workers.

For each task, we perform a grid search to identify the best parameters and report the top results
across all runs of each algorithm. The individual grid search parameters are drawn from a set of
values specified in Section C.5. We plot the convergence rates against the elapsed time.

We evaluate the convergence speeds of all algorithms in four regimes:

• Classical: hi = 10 and τi = 0 for all i ∈ [n]. All workers have the same computation times, and
the communication times are ignored.

• Slow Communications: hi = 10 and τi = 100 for all i ∈ [n]. The communication takes time.

• Heterogeneous Computations: hi = random_choice({1, 10}) and τi = 0 for all i ∈ [n]. All workers
have the different computation times randomly sampled from the set {1, 10}.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

• Heterogeneous Communications: hi = 10 and τi = random_choice([1,100]) for all i ∈ [n]. All
workers have the different communication times randomly sampled from the set {1, 10}.
This setup allows us to observe how different algorithms perform across various regimes and to
compare their convergence behaviors under differing computational and communication conditions.

C.2 EXPERIMENTS WITH LOGISTIC REGRESSION

We begin our experiments with one the simplest ML problems—logistic regression on the MNIST
dataset LeCun et al. (2010). In this setting, we evaluate three different numbers of workers: n ∈
{16, 64, 256}. We use the standard linear model with the logistic loss.

Starting with n = 16 workers, we perform a grid search over the parameters specified in Table 2
across all four regimes. The corresponding results are shown in Figure 8. In the classical setup
(Figure 8a), all algorithms perform similarly. However, Rennala SGD and Local SGD underperform
slightly due to the inability to interrupt an already initiated local step, resulting in occasional update
losses. In the slow communications setup (Figure 8b), Rennala SGD, Local SGD, and Async-Local
SGD perform better, as they aggregate local steps and reduce communication overhead. In contrast,
Synchronized SGD and Ringmaster ASGD perform poorly due to excessive communication. In both
the heterogeneous computations (Figure 8c) and heterogeneous communications (Figure 8d) regimes,
Async-Local SGD and Ringmaster ASGD achieve the fastest performance. Synchronized SGD, as
expected, is the slowest because it is not robust to heterogeneous computations and communications.

For n = 64 (grid search parameters in Table 3, results shown in Figure 9) and n = 256 (grid search
parameters in Table 4, results shown in Figure 10), we observe behavior similar to the n = 16 case
across all four regimes.

1000 2000 3000 4000 5000 6000
times (seconds)

1

2 × 100

3 × 100

4 × 100

f(x
t)

f(x
*)

Local SGD =0.015625 B=128
Rennala SGD =0.015625 B=128
Ringmaster ASGD =0.03125 B=256
Async-Local SGD =0.03125 B=128 M=1
Synchronized SGD =0.5

(a) Classical regime: hi = 10, τi = 0

2500 5000 7500 10000 12500 15000 17500
times (seconds)

1

2 × 100

3 × 100

4 × 100

f(x
t)

f(x
*)

Local SGD =0.0078125 B=256
Rennala SGD =0.0078125 B=256
Ringmaster ASGD =0.0625 B=256
Async-Local SGD =0.015625 B=256 M=8
Synchronized SGD =1

(b) Slow Communications regime: hi = 10, τi = 100

0 2000 4000 6000 8000 10000 12000 14000
times (seconds)

1

4 × 10 1

6 × 10 1

2 × 100

3 × 100

f(x
t)

f(x
*)

Local SGD =0.0078125 B=256
Rennala SGD =0.0078125 B=256
Ringmaster ASGD =0.015625 B=512
Async-Local SGD =0.015625 B=512 M=2
Synchronized SGD =0.5

(c) Heterogeneous Computations regime: hi =
random_choice({1, 10}), τi = 0

0 2000 4000 6000 8000 10000 12000 14000 16000
times (seconds)

1

6 × 10 1

2 × 100

3 × 100

4 × 100

6 × 100

f(x
t)

f(x
*)

Local SGD =0.0078125 B=256
Rennala SGD =0.0078125 B=256
Ringmaster ASGD =0.03125 B=512
Async-Local SGD =0.03125 B=512 M=1
Synchronized SGD =1

(d) Heterogeneous Communications regime: hi = 10,
τi = random_choice([1,100])

Figure 8: Comparison of different optimization algorithms across various distributed computing
regimes with n = 16. Each plot shows the convergence behavior in terms of loss versus simulated
wall-clock time.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

0 1000 2000 3000 4000 5000
times (seconds)

1

4 × 10 1

6 × 10 1

2 × 100

3 × 100

f(x
t)

f(x
*)

Local SGD =0.0078125 B=128
Rennala SGD =0.0078125 B=128
Ringmaster ASGD =0.015625 B=1024
Async-Local SGD =0.015625 B=1024 M=1
Synchronized SGD =1

(a) Classical regime: hi = 10, τi = 0

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
times (seconds)

1

2 × 100

3 × 100

4 × 100

f(x
t)

f(x
*)

Local SGD =0.0078125 B=256
Rennala SGD =0.0078125 B=256
Ringmaster ASGD =0.03125 B=256
Async-Local SGD =0.0078125 B=4096 M=4
Synchronized SGD =2

(b) Slow Communications regime: hi = 10, τi = 100

0 1000 2000 3000 4000 5000
times (seconds)

1

4 × 10 1

6 × 10 1

2 × 100

3 × 100

f(x
t)

f(x
*)

Local SGD =0.0078125 B=128
Rennala SGD =0.0078125 B=128
Ringmaster ASGD =0.015625 B=1024
Async-Local SGD =0.015625 B=1024 M=1
Synchronized SGD =1

(c) Heterogeneous Computations regime: hi =
random_choice({1, 10}), τi = 0

2000 4000 6000 8000 10000 12000
times (seconds)

1

6 × 10 1

2 × 100

3 × 100

4 × 100

f(x
t)

f(x
*)

Local SGD =0.015625 B=128
Rennala SGD =0.015625 B=128
Ringmaster ASGD =0.015625 B=1024
Async-Local SGD =0.015625 B=4096 M=2
Synchronized SGD =2

(d) Heterogeneous Communications regime: hi = 10,
τi = random_choice([1,100])

Figure 9: Comparison of different optimization algorithms across various distributed computing
regimes with n = 64. Each plot shows the convergence behavior in terms of loss versus simulated
wall-clock time.

0 500 1000 1500 2000 2500 3000
times (seconds)

1

6 × 10 1

2 × 100

3 × 100

4 × 100

f(x
t)

f(x
*)

Local SGD =0.0078125 B=128
Rennala SGD =0.0078125 B=256
Ringmaster ASGD =0.0078125 B=4096
Async-Local SGD =0.0078125 B=512 M=1
Synchronized SGD =2

(a) Classical regime: hi = 10, τi = 0

2000 4000 6000 8000 10000
times (seconds)

1

2 × 100

3 × 100

4 × 100

f(x
t)

f(x
*)

Local SGD =0.001953125 B=1024
Rennala SGD =0.001953125 B=1024
Ringmaster ASGD =0.0078125 B=1024
Async-Local SGD =0.00390625 B=512 M=2
Synchronized SGD =2

(b) Slow Communications regime: hi = 10, τi = 100

0 1000 2000 3000 4000 5000
times (seconds)

1

3 × 10 1

4 × 10 1

6 × 10 1

2 × 100

f(x
t)

f(x
*)

Local SGD =0.0078125 B=128
Rennala SGD =0.0078125 B=128
Ringmaster ASGD =0.0078125 B=512
Async-Local SGD =0.0078125 B=512 M=1
Synchronized SGD =2

(c) Heterogeneous Computations regime: hi =
random_choice({1, 10}), τi = 0

0 1000 2000 3000 4000 5000
times (seconds)

1

f(x
t)

f(x
*)

Local SGD =0.00390625 B=512
Rennala SGD =0.00390625 B=512
Ringmaster ASGD =0.0078125 B=4096
Async-Local SGD =0.0078125 B=4096 M=1
Synchronized SGD =2

(d) Heterogeneous Communications regime: hi = 10,
τi = random_choice([1,100])

Figure 10: Comparison of different optimization algorithms across various distributed computing
regimes with n = 256. Each plot shows the convergence behavior in terms of loss versus simulated
wall-clock time.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

C.3 EXPERIMENTS WITH RESNET18 AND IMAGE CLASSIFICATION

We test the algorithms on the CIFAR10 (Krizhevsky et al., 2009) image recognition task with
the ResNet18 (He et al., 2016) deep neural network. For ResNet18, we similarly report the best
convergence results from a grid search over the parameters listed in Table 5, using a setup with n = 8
workers. Results for all algorithms across the four regimes are presented in Figure 11.

The conclusions largely mirror those from the logistic regression experiments, with a few additional
observations. In the classical setup (Figure 11a), Ringmaster ASGD outperforms all other methods.
We believe that this is due to the frequent updates of the method. In the slow communications
regime (Figure 11b), the trends are consistent with those observed in the MNIST experiments:
Ringmaster ASGD becomes slower, while methods that are less communication-intensive achieve
better performance. In the heterogeneous communications (Figure 11d) regime, Async-Local SGD has
the best performance due to the good balance of frequent model updates and local steps.

0 1000 2000 3000 4000
times (seconds)

1

2 × 10 1

3 × 10 1

4 × 10 1

6 × 10 1

f(x
t)

f(x
*)

Local SGD =0.0625 B=16
Rennala SGD =0.0625 B=16
Ringmaster ASGD =0.0625 B=64
Async-Local SGD =0.03125 B=16 M=4
Synchronized SGD =0.125

(a) Classical regime: hi = 10, τi = 0

3000 4000 5000 6000 7000 8000 9000 10000
times (seconds)

1

f(x
t)

f(x
*)

Local SGD =0.03125 B=32
Rennala SGD =0.03125 B=32
Ringmaster ASGD =0.0625 B=16
Async-Local SGD =0.0625 B=64 M=2
Synchronized SGD =0.125

(b) Slow Communications regime: hi = 10, τi =
100

0 500 1000 1500 2000 2500 3000 3500
times (seconds)

1

f(x
t)

f(x
*)

Local SGD =0.0625 B=64
Rennala SGD =0.015625 B=64
Ringmaster ASGD =0.0625 B=32
Async-Local SGD =0.03125 B=16 M=4
Synchronized SGD =0.125

(c) Heterogeneous Computations regime: hi =
random_choice({1, 10}), τi = 0

2000 4000 6000 8000 10000
times (seconds)

1

f(x
t)

f(x
*)

Local SGD =0.015625 B=32
Rennala SGD =0.015625 B=32
Ringmaster ASGD =0.03125 B=32
Async-Local SGD =0.0625 B=16 M=2
Synchronized SGD =0.125

(d) Heterogeneous Communications regime:
hi = 10, τi = random_choice({1, 100})

Figure 11: ResNet18 experiments with n = 8

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

C.4 EXPERIMENTS WITH GPT2 AND TOKEN PREDICTION

We also evaluate the algorithms on the Wikitext-2 (Merity et al., 2016) next token prediction task
with GPT2 (Radford et al., 2019). For GPT2, we evaluate all four regimes using a setup with n = 8
workers. To achieve faster and more robust convergence, we use the AdamW normalization strategy6

only in these experiments with GPT2. The resulting convergence curves are shown in Figure 12.
Once again, the results are similar to those of the previous experiments. Due to hardware limitations,
a narrower grid search range is used; therefore, it is possible that convergence could be further
improved with a more extensive search.

20000 40000 60000 80000 100000
times (seconds)

4 × 100

5 × 100

6 × 100

7 × 100

8 × 100

f(x
t)

f(x
*)

Local SGD =0.00048828125 B=16
Rennala SGD =0.00048828125 B=16
Ringmaster ASGD =0.00048828125 B=64
Async-Local SGD =0.00048828125 B=16 M=2
Synchronized SGD =0.00048828125

(a) Classical regime: hi = 10, τi = 0

20000 40000 60000 80000 100000
times (seconds)

6 × 100

7 × 100

8 × 100

f(x
t)

f(x
*)

Local SGD =0.00048828125 B=64
Rennala SGD =0.00048828125 B=64
Ringmaster ASGD =0.00048828125 B=32
Async-Local SGD =0.0009765625 B=16 M=4
Synchronized SGD =0.00048828125

(b) Slow Communications regime: hi = 10, τi = 100

5000 10000 15000 20000 25000 30000
times (seconds)

3 × 100

4 × 100

6 × 100

f(x
t)

f(x
*)

Local SGD =0.00048828125 B=32
Rennala SGD =0.00048828125 B=16
Ringmaster ASGD =0.00048828125 B=64
Async-Local SGD =0.00048828125 B=16 M=4
Synchronized SGD =0.00048828125

(c) Heterogeneous Computations regime: hi =
random_choice({1, 10}), τi = 0

20000 40000 60000 80000 100000
times (seconds)

4 × 100

5 × 100

6 × 100

7 × 100

8 × 100

f(x
t)

f(x
*)

Local SGD =0.00048828125 B=16
Rennala SGD =0.00048828125 B=32
Ringmaster ASGD =0.00048828125 B=16
Async-Local SGD =0.0009765625 B=16 M=2
Synchronized SGD =0.00048828125

(d) Heterogeneous Communications regime: hi = 10,
τi = random_choice({1, 100})

Figure 12: GPT-2 experiments with n = 8

6Instead of the SGD step wk+1 = wk − γgk, where gk is a descent direction, we use the AdamW strategy
with gk.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

C.5 PARAMETERS OF THE EXPERIMENTS

Table 2: Experimental configuration for logistic regression on MNIST with n = 16 workers.

Parameter Value
Batch size 1
Optimizer SGD
Number of workers 16

Algorithm-specific configurations:

Synchronized SGD γ range: [2−5, 24]

Rennala SGD γ range: [2−15, 2−3]
B set: {128, 256, 512, 1024}

Local SGD γ range: [2−15, 2−3]
B set: {128, 256, 512, 1024}

Ringmaster ASGD γ range: [2−15, 21]
B set: {128, 256, 512, 1024}

Async-Local SGD γ range: [2−10, 21]
B set: {64, 128, 256, 512, 1024}
M set: {1, 2, 4, 8}

Table 3: Experimental configuration for logistic regression on MNIST with n = 64 workers.

Parameter Value
Batch size 1
Optimizer SGD
Number of workers 64

Algorithm-specific configurations:

Synchronized SGD γ range: [2−5, 24]

Rennala SGD γ range: [2−15, 2−3]
B set: {1024, 2048, 4096}

Local SGD γ range: [2−15, 2−3]
B set: {1024, 2048, 4096}

Ringmaster ASGD γ range: [2−15, 21]
B set: {512, 1024, 2048, 4096}

Async-Local SGD γ range: [2−10, 21]
B set: {64, 128, 256, 512, 1024, 4096}
M set: {1, 2, 4, 8}

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 4: Experimental configuration for logistic regression on MNIST with n = 256 workers.

Parameter Value
Batch size 1
Optimizer SGD
Number of workers 256

Algorithm-specific configurations:

Synchronized SGD γ range: [2−5, 24]

Rennala SGD γ range: [2−15, 2−3]
B set: {1024, 2048, 4096, 8192, 16384}

Local SGD γ range: [2−15, 2−3]
B set: {1024, 2048, 4096, 8192, 16384}

Ringmaster ASGD γ range: [2−15, 21]
B set: {512, 1024, 2048, 4096, 8192}

Async-Local SGD γ range: [2−10, 21]
B set: {128, 256, 512, 1024, 4096, 8192}
M set: {1, 2, 4, 8}

Table 5: Experimental configuration for
ResNet18 with n = 8 workers.

Parameter Value
Batch size 16
Optimizer SGD
Number of workers 8

Algorithm-specific configurations:

Synchronized SGD γ range: [2−6, 2−3]

Rennala SGD γ range: [2−6, 2−3]
B set: {16, 32, 64}

Local SGD γ range: [2−6, 2−3]
B set: {16, 32, 64}

Ringmaster ASGD γ range: [2−6, 2−3]
B set: {16, 32, 64}

Async-Local SGD γ range: [2−6, 2−3]
B set: {16, 32, 64}
M set: {2, 4, 8}

Table 6: Experimental configuration for GPT-2
with n = 8 workers.

Parameter Value
Batch size 32
Optimizer AdamW
Number of workers 8

Algorithm-specific configurations:

Synchronized SGD γ range: [2−11, 2−10]

Rennala SGD γ range: [2−11, 2−10]
B set: {16, 32, 64}

Local SGD γ range: [2−11, 2−10]
B set: {16, 32, 64}

Ringmaster ASGD γ range: [2−11, 2−10]
B set: {16, 32, 64}

Async-Local SGD γ range: [2−11, 2−10]
B set: {16, 32, 64}
M set: {2, 4}

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

D PROOF OF THEOREM 2.4

D.1 PROOF TECHNIQUE AND REASONS FOR CHOOSING THE CONDITIONS

Before we state the main theorem and provide the proof, let us explain the intuition, the novelty, and
how we identified the conditions of the theorem. The proof of the result is given in Section D.2 and
is relatively compact. We believe that the simplicity of our result, together with its ability to unify
methods, constitutes an important contribution to the optimization community. While the initial part
of the proof follows the same structure as in most related works, starting from (7), our treatment of
the staleness term ∥xk − zk∥, which naturally arises from the step xk+1 = xk − γ∇f(zk; ξk), is
novel.

After many attempts to develop a universal theory, let us illustrate how we arrived at our conditions.
Looking at Figure 3, which provides all possible relations between xk and zk, one can easily get

∥∥xk − zk
∥∥ = γ

∥∥∥∥∥∥
k−1∑
i=p

∇f(zi; ξi)−
∑

(w,ξ)∈Sk

∇f(w; ξ)

∥∥∥∥∥∥ .
First, we noticed that any reasonable method should utilize

∑
(w,ξ)∈Sk ∇f(w; ξ) in the computation

of zk before applying ∇f(zk; ξk) (see the previous discussion about Condition 2 in Section 2.1).
This implies {(w; ξ)}(w,ξ)∈Sk ⊆ {(zi; ξi)}k−1

i=p , leading to the following identity:

∥∥xk − zk
∥∥ = γ

∥∥∥∥∥∥
∑
j∈S̄k

∇f(zj ; ξj)

∥∥∥∥∥∥
for some set S̄k ⊆ {p, . . . , k − 1} such that S̄k ∪ Sk = {p, . . . , k − 1}. The identity says that the
distance is roughly proportional to the number

∣∣S̄k
∣∣ of stochastic gradients applied after xp and

before zk, which is tightly bounded by the tree distance from xk to the common ancestor xp, i.e., it is
bounded by |{p, . . . , k − 1}| since S̄k ⊆ {p, . . . , k − 1}.
Under Condition 2, notice that |{p, . . . , k − 1}| = max{|{p, . . . , k − 1}| ,

∣∣Sk
∣∣} =: dist(xk, zk),

where we use Sk ⊆ {p, . . . , k − 1} and Definition 2.2. Thus, to get a bound for ∥xk − zk∥, it is
natural to introduce Condition 3, which allows us to conclude that

∣∣S̄k
∣∣ ≤ dist(xk, zk) ≤ R. It

remains to use classical mathematical tools to obtain

E
[∥∥xk − zk

∥∥2] ≤ 2γ2R

k−1∑
j=k−R

E
[∥∥∇f(zj)∥∥2]+ 2γ2Rσ2,

where the first term will be canceled by the corresponding term −γ
4E
[∥∥∇f(zk)∥∥2] from (6).

D.2 FULL PROOF

Theorem 2.4 (Main Theorem). Let Assumptions 1.1, 1.2, and 1.3 hold. Consider any SGD method
represented by computation tree G = (V,E). Let {xk}k≥0 be a main branch of G and {(zk, ξk)}k≥0

be the corresponding auxiliary sequence (see Def. 2.1) that satisfy the following conditions:
Condition 1: For all k ≥ 0, ξk is statistically independent of {(xi+1, zi+1, ξi)}k−1

i=0 .
Condition 2: The representation of zk is contained within that of xk, i.e., repr(zk) ⊆ repr(xk) for
all k ≥ 0. Equivalently, all stochastic gradients used in the computation of zk are also utilized in
calculating xk.
Condition 3: There exists a constant R ∈ [0,∞] such that dist(xk, zk) ≤ R for all k ≥ 0.

Then 1
K

∑K−1
k=0 E

[
∥∇f(xk)∥2

]
≤ ε for all K ≥ 4(R+1)L∆

ε + 8σ2L∆
ε2 with step size γ =

min{ 1
2L ,

1
2RL ,

ε
4σ2L}, where ∆ = f(x0)− f∗.

Proof. As the beginning, the analysis is standard. Using Assumption 1.1, we have

f(xk+1) ≤ f(xk)− γ
〈
∇f(xk),∇f(zk; ξk)

〉
+

Lγ2

2

∥∥∇f(zk; ξk)∥∥2
23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

for xk+1 = xk − γ∇f(zk; ξk). Due to Condition 1 of the theorem and the variance decomposition
equality,

Ek

[
f(xk+1)

]
≤ f(xk)− γ

〈
∇f(xk),∇f(zk)

〉
+

Lγ2

2
Ek

[∥∥∇f(zk; ξk)∥∥2]
= f(xk)− γ

〈
∇f(xk),∇f(zk)

〉
+

Lγ2

2

∥∥∇f(zk)∥∥2 + Lγ2

2
Ek

[∥∥∇f(zk; ξk)−∇f(zk)∥∥2]
≤ f(xk)− γ

〈
∇f(xk),∇f(zk)

〉
+

Lγ2

2

∥∥∇f(zk)∥∥2 + Lγ2σ2

2
,

where Ek [·] is the expectation conditioned on (xk, zk). In the last inequality, we use Assumption 1.3.
Rewriting the dot product and using γ ≤ 1

2L , we obtain

Ek

[
f(xk+1)

]
≤ f(xk)− γ

2

(∥∥∇f(xk)
∥∥2 + ∥∥∇f(zk)∥∥2 − ∥∥∇f(xk)−∇f(zk)

∥∥2)+ Lγ2

2

∥∥∇f(zk)∥∥2 + Lγ2σ2

2

≤ f(xk)− γ

2

∥∥∇f(xk)
∥∥2 − γ

4

∥∥∇f(zk)∥∥2 + γ

2

∥∥∇f(xk)−∇f(zk)
∥∥2 + Lγ2σ2

2
. (6)

In the rest of the proof, we focus on
∥∥∇f(xk)−∇f(zk)

∥∥2 . Using Assumption 1.1, we obtain∥∥∇f(xk)−∇f(zk)
∥∥2 ≤ L2

∥∥xk − zk
∥∥2 . (7)

Notice that there exist p ∈ {0, . . . , k} and the closest common ancestor xp such that

xk = xp − γ

k−1∑
i=p

∇f(zi; ξi) = x0 − γ

p−1∑
i=0

∇f(zi; ξi)− γ

k−1∑
i=p

∇f(zi; ξi)

and

zk = xp − γ
∑

(w,ξ)∈Sk

∇f(w; ξ) = x0 − γ

p−1∑
i=0

∇f(zi; ξi)− γ
∑

(w,ξ)∈Sk

∇f(w; ξ),

where Sk is the set of points and random variables used to compute zk starting from xp (see Figure 3).
Moreover, due to Condition 3, we have dist(xk, zk) ≤ max{k− p,

∣∣Sk
∣∣} ≤ R, meaning p ≥ k−R.

In total,

k ≥ p ≥ k −R, (8)

which we use later. Condition 2 assumes

repr(zk) := {(zi; ξi)}p−1
i=0︸ ︷︷ ︸

A

⊎{(w; ξ)}(w,ξ)∈Sk︸ ︷︷ ︸
C

⊆ repr(xk) := {(zi; ξi)}p−1
i=0︸ ︷︷ ︸

A

⊎{(zi; ξi)}k−1
i=p︸ ︷︷ ︸

B

,

where ⊎ is the multiset union operation. Thus

{(w; ξ)}(w,ξ)∈Sk︸ ︷︷ ︸
C

⊆ {(zi; ξi)}k−1
i=p︸ ︷︷ ︸

B

and

xk − zk = −γ

k−1∑
i=p

∇f(zi; ξi)−
∑

(w,ξ)∈Sk

∇f(w; ξ)

 = −γ
∑
j∈S̄k

∇f(zj ; ξj), (9)

where S̄k is a set such that S̄k ⊆ {p, . . . , k − 1}. Substituting (9) to (7),

∥∥∇f(xk)−∇f(zk)
∥∥2 ≤ L2γ2

∥∥∥∥∥∥
∑
j∈S̄k

∇f(zj ; ξj)

∥∥∥∥∥∥
2

.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Next, using Young’s inequality ∥x+ y∥2 ≤ 2 ∥x∥2 + 2 ∥y∥2 for all x, y ∈ Rd, we get

E
[∥∥∇f(xk)−∇f(zk)

∥∥2] ≤ 2L2γ2E


∥∥∥∥∥∥
∑
j∈S̄k

∇f(zj)

∥∥∥∥∥∥
2
+ 2L2γ2E


∥∥∥∥∥∥
∑
j∈S̄k

(∇f(zj ; ξj)−∇f(zj))

∥∥∥∥∥∥
2
 .

Since ξj is statistically independent of {(xi+1, zi+1, ξi)}j−1
i=0 for all j ∈ S̄k (Condition 1) and using

Assumption 1.3,

E
[∥∥∇f(xk)−∇f(zk)

∥∥2] ≤ 2L2γ2E


∥∥∥∥∥∥
∑
j∈S̄k

∇f(zj)

∥∥∥∥∥∥
2
+ 2L2γ2

∣∣S̄k
∣∣σ2

Jensen’s ineq.
≤ 2L2γ2

∣∣S̄k
∣∣ ∑
j∈S̄k

E
[∥∥∇f(zj)∥∥2]+ 2L2γ2

∣∣S̄k
∣∣σ2.

Due to S̄k ⊆ {p, . . . , k − 1} and (8):

E
[∥∥∇f(xk)−∇f(zk)

∥∥2] ≤ 2L2γ2R

k−1∑
j=k−R

E
[∥∥∇f(zj)∥∥2]+ 2L2γ2Rσ2.

Substituting this inequality to (6) and taking the full expectation, we obtain

E
[
f(xk+1)

]
≤ E

[
f(xk)

]
− γ

2
E
[∥∥∇f(xk)

∥∥2]− γ

4
E
[∥∥∇f(zk)∥∥2]+ Lγ2σ2

2

+
γ

2

2L2γ2R

k−1∑
j=k−R

E
[∥∥∇f(zj)∥∥2]+ 2L2γ2Rσ2


≤ E

[
f(xk)

]
− γ

2
E
[∥∥∇f(xk)

∥∥2]− γ

4
E
[∥∥∇f(zk)∥∥2]+ Lγ2σ2

+ L2γ3R

k−1∑
j=k−R

E
[∥∥∇f(zj)∥∥2] (10)

because γ ≤ 1
2RL . Note that

∑K−1
k=0

∑k−1
j=k−R E

[∥∥∇f(zj)∥∥2] ≤ R
∑K−1

k=0 E
[∥∥∇f(zk)∥∥2] . Thus,

summing (10) for k = 0, . . . ,K − 1 and substituting f∗,

E
[
f(xK)− f∗] ≤ f(x0)− f∗ − γ

2

K−1∑
k=0

E
[∥∥∇f(xk)

∥∥2]− γ

4

K−1∑
k=0

E
[∥∥∇f(zk)∥∥2]+KLγ2σ2

+ L2γ3R2
K−1∑
k=0

E
[∥∥∇f(zk)∥∥2]

≤ f(x0)− f∗ − γ

2

K−1∑
k=0

E
[∥∥∇f(xk)

∥∥2]+KLγ2σ2

because γ ≤ 1
2LR . Finally, since E

[
f(xK)− f∗] ≥ 0,

1

K

K−1∑
k=0

E
[∥∥∇f(xk)

∥∥2] ≤ 2∆

Kγ
+ 2Lγσ2.

It is left to use that γ = min{ 1
2L ,

1
2RL ,

ε
4σ2L} and the bound on K from the theorem statement.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

E DETAILED DESCRIPTION OF ALGORITHMS AND ITERATION RATES

In this section, we provide a detailed description together with theoretical analysis of the algorithms
from the main part.

E.1 Vanilla SGD

We start we the celebrated Vanilla SGD algorithm, which formally can be implemented in the following
way:

Algorithm 3 Vanilla SGD

1: Input: starting point w0 ∈ Rd, step size γ > 0
2: for k = 0, 1, 2, . . . do
3: Sample ηk ∼ Dξ ({ηk} are i.i.d.)
4: Compute stochastic gradient∇f(wk; ηk)
5: Update wk+1 = wk − γ∇f(wk; ηk)
6: end for

The corresponding computation tree can defined by the recursion

wk+1 = wk − γ∇f(wk; ηk) (11)

for all k ≥ 0.

∇f(x0; ξ0) ∇f(x1; ξ1) ∇f(x2; ξ2) ∇f(xk; ξk)

x0 x1 x2 . . . xk+1

Figure 13: The computation tree of Vanilla SGD

While the iteration rate of Vanilla SGD is well-known (Lan, 2020), we prove its convergence using our
new framework for clarity.
Theorem E.1. Let Assumptions 1.1, 1.2, and 1.3 hold. Consider the computation tree (11) of Vanilla
SGD. Then, {xk}k≥0 is a main branch with xk = wk, {(zk, ξk)}k≥0 is the corresponding auxiliary
sequence with (zk, ξk) = (wk, ηk) (see Def. 2.1), and 1

K

∑K−1
k=0 E

[
∥∇f(xk)∥2

]
≤ ε for all

K ≥ 4L∆

ε
+

8σ2L∆

ε2
.

with step size γ = min{ 1
2L ,

ε
4σ2L}.

Proof. Indeed, {xk}k≥0 and {(zk, ξk)}k≥0 satisfy Def. 2.1 (see Fig. 13). Moreover, all conditions of
Theorem 2.4 are fulfilled: Condition 1 holds because the sequence {ηk} is i.i.d., we have repr(zk) =
repr(xk) since xk = zk, and consequently, R = supk≥0 dist(xk, zk) = 0.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

E.2 Rennala SGD

We now apply Theorem 2.4 to Rennala SGD. The iteration rate of Rennala SGD is also well-known
(Tyurin & Richtárik, 2023), but we provide a proof for completness. Rennala SGD can be formally
described as follows:

Algorithm 4 Rennala SGD (Tyurin & Richtárik, 2023)

1: Input: point w0 ∈ Rd, stepsize γ > 0, batch size B ∈ N
2: Workers start computing stochastic gradients at w0

3: for k = 0, . . . ,K − 1 do
4: gki = 0 for all i ∈ [n]; b = 0
5: while b < B do
6: Wait for the moment when stochastic gradient is computed by worker
7: Gradient∇f(wk−δ; η) is computed by worker i, η ∼ Dξ

8: if δ = 0 then
9: Update gki = gki +∇f(wk−δ; η) locally in worker i

10: b = b+ 1
11: else
12: Ignore ∇f(wk−δ; η)
13: end if
14: Worker i begins calculating gradient at wk

15: end while
16: Aggregate: gk =

∑n
i=1 g

k
i (e.g, via AllReduce)

17: Update: wk+1 = wk − γgk

18: end for

To use Theorem 2.4, we have to construct the computation tree of Rennala SGD. It can be constructed
in the following way:

x1 = x0 − γ∇f(x0; ξ0), . . . , xB = xB−1 − γ∇f(x0; ξB−1), (12)

xB+1 = xB − γ∇f(xB ; ξB), . . . , x2B = x2B−1 − γ∇f(xB ; ξ2B−1), . . . ,

where {ξi} are i.i.d. from Dξ. See also a visualization in Figure 14. One can easily show that
w1 = x0, w1 = xB , w2 = x2B , etc.

∇f(x0; ξ0) ∇f(x0; ξ1) ∇f(x0; ξB−1) ∇f(xB ; ξB) ∇f(xB ; ξB+1) ∇f(xB ; ξ2B−1)

x0 x1 . . . xB xB+1 . . . x2B

Figure 14: The computation tree of Rennala SGD

Theorem E.2. Let Assumptions 1.1, 1.2, and 1.3 hold. Consider the computation tree (12) of
Rennala SGD, then {xk}k≥0 is a main branch, {(zk, ξk)}k≥0 with (zk, ξk) = (xB⌊k/B⌋, ξk) is the
corresponding auxiliary sequence, and 1

K

∑K−1
k=0 E

[
∥∇f(xk)∥2

]
≤ ε for all

K ≥ 4BL∆

ε
+

8σ2L∆

ε2
.

with step size γ = min{ 1
2BL ,

ε
4σ2L}.

Proof. Clearly, {xk}k≥0 is a main branch and {(zk, ξk)}k≥0 is the corresponding sequence by the
construction in (12). Moreover, ξk is independent of {(xi+1, zi+1, ξi)}k−1

i=0 in (12) because {ξi} are
i.i.d. (Condition 1 is satisfied). Next, notice that

repr(z0) = repr(x0) = ∅,
repr(z1) = repr(x0) = ∅ ⊆ repr(x1),

...

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

repr(zB−1) = repr(x0) = ∅ ⊆ repr(xB−1)

because zk = x0 for all k < B. Next,

repr(zB) = repr(xB),

repr(zB+1) = repr(xB) ⊆ repr(xB+1),

...

repr(z2B−1) = repr(xB) ⊆ repr(x2B−1),

because zk = xB for all B ≤ k < 2B, where repr(xB) ⊆ repr(xB+1), . . . , repr(xB) ⊆
repr(x2B−1) due to (12). We can continue and show that repr(zk) ⊆ repr(xk) for all k ≥ 0
(Condition 2 is satisfied). It is left to notice that

sup
k≥0

dist(xk, zk) ≤ B − 1,

because

dist(x0, z0) = 0,

dist(x1, z1) = dist(x1, x0) = 1,

...

dist(xB−1, zB−1) = dist(xB−1, x0) = B − 1,

dist(xB , zB) = dist(xB , xB) = 0,

dist(xB+1, zB+1) = dist(xB+1, xB) = 1,

...

The maximum tree distance between xk and zk is B − 1. Thus, R = B − 1 in Condition 3.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

E.3 Local SGD

The Local SGD method is described in the following algorithm:

Algorithm 5 Local SGD

Require: Initial model w0, step size γ, parameter B
1: for k = 0, 1, 2, . . . do
2: Broadcast wk to all workers
3: for each worker i ∈ [n] in parallel do
4: Worker i starts LocalSGDWorker(wk, γ) from Algorithm 6
5: end for
6: Wait for the moment when

∑n
i=1 Mi = B ({Mi} from LocalSGDWorker(wk, γ))

7: Ask workers to stop7running LocalSGDWorker(wk, γ)
8: Aggregate γ

∑n
i=1

∑Mi−1
j=0 ∇f(z

k,j
i ; ηk,ji) from the workers (e.g, via AllReduce)

9: Update wk+1 = wk − γ
∑n

i=1

∑Mi−1
j=0 ∇f(z

k,j
i ; ηk,ji)

10: end for

Algorithm 6 LocalSGDWorker(w, γ) in worker i at round k

1: zk,0i = w
2: Mi ← 0
3: while True do
4: zk,Mi+1

i = zk,Mi

i − γ∇f(zk,Mi

i ; ηk,Mi

i), ηk,Mi

i ∼ Dξ

5: Mi = Mi + 1
6: end while

One key change compared to the previous work is that individual local steps Mi are not predefined.
Moreover, the server tracks the sum

∑n
i=1 Mi and waits for the moment

∑n
i=1 Mi = B before

collecting the locally calculated gradients. With a proper choice of B, we will prove the optimal
computational time complexity of the method in Section F.

The corresponding computation tree of Local SGD can be constructed in the following way. Define
Nk := k ×B and take k = 0. Then

zk,1i = zk,0i − γ∇f(xNk ; ηk,0i),

zk,2i = zk,1i − γ∇f(zk,1i ; ηk,1i),

...

zk,Mi

i = zk,Mi−1
i − γ∇f(zk,Mi−1

i ; ηk,Mi−1
i),

(13)

7Alternatively, allow the workers to finish computing their stochastic gradients without waiting for them
(since AllReduce can be run in parallel), but discard these gradients in subsequent iterations, as they are no
longer relevant. This approach may introduce a delay before the workers begin their next local steps.

Another option is to allow the workers to finish computing their stochastic gradients without waiting for them,
and send these gradients in the next iteration. If some gradients are still not computed by then due to delays,
simply discard them.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

for all i ∈ [n], and

xNk+1 = xNk − γ∇f(zk,01 ; ηk,01),

...

xNk+M1 = xNk+M1−1 − γ∇f(zk,M1−1
1 ; ηk,M1−1

1),

xNk+M1+1 = xNk+M1 − γ∇f(zk,02 ; ηk,02),

...

xNk+M1+M2 = xNk+M1+M2−1 − γ∇f(zk,M2−1
2 ; ηk,M2−1

2),

...

xNk+1 = xNk+
∑n

i=1 Mi−1 − γ∇f(zk,Mn−1
n ; ηk,Mn−1

n).

(14)

Repeat the previous steps with k = k + 1 starting at xNk+1 = xNk+B . See illustration in Figure 4.
One can easily show that w1 = xB , w2 = x2B , . . . , wk = xkB , . . . , where wk is the sequence from
Algorithm 5.
Theorem E.3. Let Assumptions 1.1, 1.2, and 1.3 hold. Consider the computation tree ((13) and (14))
of Local SGD, then {xk}k≥0 is a main branch and 1

K

∑K−1
k=0 E

[
∥∇f(xk)∥2

]
≤ ε for all

K ≥ 4BL∆

ε
+

8σ2L∆

ε2
.

with step size γ = min{ 1
2BL ,

ε
4σ2L}.

Although the proof may seem technical due to the heavy notation in (14), it is actually straightforward
when you refer to Figure 4. This figure clearly shows that all conditions of Theorem 2.4 are satisfied
with R = B − 1 because

∑n
i=1 Mi = B in every global iteration. The condition

∑n
i=1 Mi = B

helps us to insure that the maximum tree distance supk≥0 dist(xk, zk) ≤ B − 1.

Proof. Clearly, {xk}k≥0 is a main branch by Definition 2.1. The corresponding auxiliary sequence
can be inferred from (14): (z0, ξ0) = (z0,01 , η0,01), . . . , (zM1 , ξM1) = (z0,M1

1 , η0,M1

1), and etc. Con-
dition 1 is satisfied because {ηk,ji } are i.i.d., and by the construction (14). Condition 2 of Theorem 2.4
holds because the same stochastic gradients used for computing zk are also used for xk, as shown in
Figure 4. This can be formally verified using (14) and (13). It is left to notice that

sup
k≥0

dist(xk, zk) ≤ B − 1

because the maximum number of edges to the common closest ancestor can not exit B − 1.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

E.4 Ringmaster ASGD

Algorithm 7 Ringmaster ASGD (Maranjyan et al., 2025)

1: Input: point w0 ∈ Rd, stepsize γ > 0, delay threshold G ∈ N
2: Set k = 0
3: Workers start computing stochastic gradients at w0

4: while True do
5: Gradient ∇f(wk−δk ; ηk−δk

i) arrives from worker i
6: if δk < G then
7: Update: wk+1 = wk − γ∇f(wk−δk ; ηk−δk

i)
8: Worker i begins calculating at wk+1 ({ηki } are i.i.d.)
9: Update the iteration number k = k + 1

10: else
11: Ignore the outdated gradient∇f(wk−δk ; ηk−δk

i)
12: Worker i begins calculating at wk

13: end if
14: end while

In this method, a main branch can be defined as

xk = wk (15)

and the auxiliary sequence is defined as (zk, ξk) = (xk−δk , ηk−δk

i) for all k ≥ 0.

∇f(x0−δ0 ; ξ0) ∇f(x1−δ1 ; ξ1) ∇f(x2−δ2 ; ξ2) ∇f(xk−δk ; ξk)

x0 x1 x2 . . . xk+1

Figure 15: The computation tree of Ringmaster ASGD

Theorem E.4. Let Assumptions 1.1, 1.2, and 1.3 hold. Consider the computation tree of Ringmaster
ASGD, then {xk}k≥0, defined in (15), is a main branch and 1

K

∑K−1
k=0 E

[
∥∇f(xk)∥2

]
≤ ε for all

K ≥ 4GL∆

ε
+

8σ2L∆

ε2
.

with step size γ = min{ 1
2GL ,

ε
4σ2L}.

Proof. Condition 1 is satisfied because {ηk−δk

i } are i.i.d., xk = wk and zk = xk−δk do not depend
on ξk = ηk−δk

i . Condition 2 is satisfied because repr(zk) = repr(wk−δk) ⊆ repr(wk) = repr(xk).
Condition 3 is satisfied with R = G− 1 because

dist(xk, zk) = dist(xk, xk−δk) = δk ≤ G− 1,

where the second equality due to the number of edges between xk and xk−δk and the last inequality
due to the fact that δk is bounded by B in Algorithm 7.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

E.5 Cycle SGD

We now present a new method, called Cycle SGD:

Algorithm 8 Cycle SGD

Require: Initial model w0, step size γ, group size s
1: Partition workers into groups of size s:

G1 = {1, . . . , s}, G2 = {s+ 1, . . . , 2s}, . . . , G⌈n/s⌉ = {(⌈n/s⌉ − 1)s+ 1, . . . , n}
in a circular manner.

2: Broadcast w0 to all workers and assign the local variables z0i = w0 and Mi = 0 for all i ∈ [n]
3: while True do
4: for group index g = 1 to ⌈n/s⌉ do
5: for each worker i ∈ [n] in parallel do
6: zMi+1

i = zMi
i − γ∇f(zMi

i ; ηMi
i), ηMi

i ∼ Dξ

7: Mi = Mi + 1
8: end for
9: Aggregate γ

∑
i∈Gg

∑Mi

j=1∇f(z
j
i ; η

j
i) from the workers of group Gg only

10: Server aggregates and updates the model:

wr+1 = wr − γ
∑
i∈Gg

Mi−1∑
j=0

∇f(zji ; ηji)

11: Broadcast wr+1 to all workers of group g and assign the local variables z0i = wr+1 and
Mi = 0 for all i ∈ Gg

12: r = r + 1
13: end for
14: end while

This method operates similarly to Local SGD, with workers performing local steps. However, a key
difference is that only s workers synchronize at each step, rather than all n workers. This strategy
can be advantageous in scenarios where reducing peak bandwidth is desirable. A visualization of the
corresponding computation tree is in Figure 16. For this algorithm, the first

∑n
i=1 Mi nodes of the

main branch can be defined as
x1 = x0 − γ∇f(z01 ; η01),

...

xM1 = xM1−1 − γ∇f(zM1−1
1 ; ηM1−1

1),

...

x
∑s−1

i=1 Mi+1 = x
∑s−1

i=1 Mi − γ∇f(z0s ; η0s),
...

x
∑s

i=1 Mi = x
∑s

i=1 Mi−1 − γ∇f(zMs−1
s ; ηMs−1

s),

...

(16)

Notice that x
∑s

i=1 Mi ≡ w1, where we capture and unroll all stochastic gradients from the first group.
The next nodes of the main branch can be defined in a similar way going through all groups circularly.
Theorem E.5. Let Assumptions 1.1, 1.2, and 1.3 hold. Consider the computation tree of Cycle SGD
(Alg. 8), then {xk}k≥0, defined in (16), is a main branch and 1

K

∑K−1
k=0 E

[
∥∇f(xk)∥2

]
≤ ε for all

K ≥ 8n2L∆

sε
+

8σ2L∆

ε2
.

with step size γ = min{ s
4n2L ,

ε
4σ2L}.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

∇f(x0; η1,02)

∇f(z1,12 ; η1,12)

∇f(x3; η2,02) ∇f(z2,12 ; η2,12)

∇f(x0; η1,01)
∇f(x0; η1,02)

∇f(z1,12 ; η1,12)

∇f(x1; η2,01)
∇f(z2,11 ; η2,11)

∇f(x0; η1,01)

∇f(x1; η2,01) ∇f(z2,11 ; η2,11)

x0

z1,12 z1,22

x3

z2,12 z2,22

x1

x2

x4 x5

z1,11

z2,11 z2,21

Figure 16: An example of Cycle SGD computation tree.

Proof. Once again, the proof is geometric. As an example, consider Figure 16 together with
Algorithm 8. One can easily show that Conditions 1 and 2 are satisfied similarly to the proof of
Theorem 5. However, the maximum tree distance is different since we synchronize the workers in a
circular manner.

First, the number of local steps Mi ≤
⌈
n
s

⌉
≤ 2n

s because each worker computes one stochastic
gradient in the inner loop and synchronizes every

⌈
n
s

⌉
loops.

Next, the maximum tree distance between a point xk on the main branch and the corresponding point
of the auxiliary sequence zk is at most 2n2

s . Let us explain this step. Consider any xk and zk, and
their closest common ancestor wk (in Figure 16, for instance, take x5, z2,22 , and x3 accordingly).

The number of edges from zk to wk never exceeds 2n
s due to the bound on the number of local steps.

The number of edges from xk to wk never exceeds 2n2

s because, while one worker performs local
steps, other workers can grow the main branch by at most

⌈
n
s

⌉
× (n− 1) ≤ 2n(n−1)

s points before
the worker that computed zk is synchronized8.

Thus, we can take R = 2n2

s in Condition 3 of Theorem 2.4.

8For instance, see Figure 16, where, before the algorithm applies ∇f(z2,12 ; ξ2,12) from the second worker, the
main branch grows by two edges, from x3 to x5, due to gradients computed by the first worker.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

E.6 Async-Local SGD

The following algorithm is a mixture of Asynchronous SGD and Local SGD, which we formalize in
the following way.

Algorithm 9 Async-Local SGD

1: Input: point x0 ∈ Rd, stepsize γ > 0, delay threshold B ∈ N, number of local steps M
2: Set k = 0
3: Workers start running local steps at w0 with Alg. 10 for M steps
4: while True do
5: Sum γ

∑M−1
p=0 ∇f(z

p
ik
; ηpik) arrives from some worker ik

6: Find the tree distance δk = dist(wk, z0ik)

(delay δk of wk−δk , at which point worker ik started local steps)
7: if δk < B then
8: Update: wk+1 = wk − γ

∑M−1
p=0 ∇f(z

p
ik
; ηpik)

9: Worker i starts running local steps at wk+1 with Alg. 10 for M steps
10: Update the iteration number k = k + 1
11: else
12: Ignore the outdated sum γ

∑M−1
p=0 ∇f(z

p
ik
; ηpik)

13: Worker i starts running local steps at wk with Alg. 10 for M steps
14: end if
15: end while

Algorithm 10 LocalSGDWorker(w, γ,M) in worker i

1: z0i = w
2: for p = 0, . . .M − 1 do
3: zp+1

i = zpi − γ∇f(zpi ; ηpi), ηpi ∼ Dξ

4: end for
5: Send to the server γ

∑M−1
p=0 ∇f(z

p
i ; η

p
i)

If M = 1, then this method reduces to Ringmaster ASGD (Alg. 7). Taking M > 1, we can improve the
time complexity of Ringmaster ASGD by decreasing the number of times when workers synchronize
with the server. For this method, it is natural to take a main branch as

x1 = x0 − γ∇f(z0i1 ; η0i1),
...

xM = xM−1 − γ∇f(zM−1
i1

; ηM−1
i1

),

...

xM(k−1)+1 = xM(k−1) − γ∇f(z0ik ; η0ik),
...,

xMk = xMk−1 − γ∇f(zM−1
ik

; ηM−1
ik

),

...

(17)

and so on. Notice that x0 ≡ w0, xM ≡ w1, etc.
Theorem E.6. Let Assumptions 1.1, 1.2, and 1.3 hold. Consider the computation tree of Async-Local
SGD (Alg. 9), then {xk}k≥0, defined in (17), is a main branch and 1

K

∑K−1
k=0 E

[
∥∇f(xk)∥2

]
≤ ε

for all

K ≥ 4(B +M − 1)L∆

ε
+

8σ2L∆

ε2
.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

with step size γ = min{ 1
4(B+M−1)L ,

ε
4σ2L}.

Proof. Similar to the previous proofs, Condition 1 is satisfied for the main branch {xk}k≥0 because
all random variables {ηij} in (17) are i.i.d., and x0 and z0i1 do not depend on η0i1 . Points xM−1 and
zM−1
i1

do not depend on ηM−1
i1

, and so on. Conditions 2 is satisfied because all stochastic gradients
used to compute zpik are also used to compute the corresponding point on the main branch for all
p ∈ {0, . . . ,M − 1} and k ≥ 0 (see Figure 5). Condition 3 is satisfied with R = B − 1 +M − 1 =
B + M − 2 due to the inequality δk = dist(wk, z0ik) < B in Algorithm 9 and the fact every
worker calculates M stochastic gradients, which ensures that the tree distance between z0ik and the
corresponding point from the main brain branch is at most B − 1, the tree distance between z1ik and
the corresponding point from the main brain branch is at most B − 2, . . . , the tree distance between
zM−1
ik

and the corresponding point from the main brain branch is at most B +M − 2.

E.7 Async-Batch SGD

This method does the same steps as Async-Local SGD with the only difference that the workers
calculate mini-batches instead of local steps:

Algorithm 11 BatchSGDWorker(w, γ,M) in worker i

1: z0i = w
2: for p = 0, . . .M − 1 do
3: Calculate∇f(zpi ; ηpi), ηpi ∼ Dξ

4: zp+1
i = zpi

5: end for
6: Send to the server γ

∑M−1
p=0 ∇f(z

p
i ; η

p
i)

One can easily show that these methods share the same theoretical guarantees (Sections E.6, F, and
G) as Async-Local SGD.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

E.8 Local-Async SGD

One way to interpret the following algorithm is that the workers are partitioned into groups, with
each group running Asynchronous SGD. Then, at certain points, all workers synchronize, and start
running Asynchronous SGD at a new point. One of the important novelties here is the condition∑s

g=1 mg = B, which, with a proper B, leads to the optimal computational time complexity
(Section F).

Algorithm 12 Local-Async SGD

Require: Initial model w0, step size γ, parameter B, group partitions G1, . . . , Gs

1: for k = 0, 1, 2, . . . do
2: Broadcast wk to all groups
3: for each worker g ∈ [s] in parallel do
4: Group g starts AsynchronousSGDGroup(wk, γ) from Algorithm 13
5: end for
6: Wait for the moment when

∑s
g=1 mg = B ({mg} from AsynchronousSGDGroup(wk, γ))

7: Ask the groups to stop9running AsynchronousSGDGroup(wk, γ)
8: Aggregate γ

∑s
g=1

∑mg−1
j=0 ∇f(vj−δj

g ; ηjg) from the groups ({ηjg} are i.i.d.)

9: Update wk+1 = wk − γ
∑s

g=1

∑mg−1
j=0 ∇f(vj−δj

g ; ηjg)
10: end for

Algorithm 13 AsynchronousSGDGroup(w, γ) in group g

Input: point v0g ∈ Rd, stepsize γ > 0
Set mg = 0
Workers from group g start computing stochastic gradients at v0g
while True do

Gradient ∇f(vmg−δmg

g ; η
mg
g) arrives from worker i with delay δmg

Update: vmg+1
g = v

mg
g − γ∇f(vmg−δmg

g ; η
mg
g)

Worker i begins calculating stochastic gradient at vmg+1
g

Update the iteration number mg = mg + 1
end while

For this method, it is natural to take a main branch of the computation tree as

x1 = x0 − γ∇f(v0−δ0

1 ; η01),

...

xm1 = xm1−1 − γ∇f(vm1−1−δm1−1

1 ; ηm1−1
1),

...

x
∑s−1

g=1 mi+1 = x
∑s−1

g=1 mi − γ∇f(v0−δ0

s ; η0s),

...,

x
∑s

g=1 mi = x
∑s

g=1 mi−1 − γ∇f(vms−1−δms−1

s ; ηms−1
s)

...,

(18)

9Alternatively, allow the workers to finish computing their stochastic gradients without waiting for them
(since AllReduce can be run in parallel), but discard these gradients in subsequent iterations, as they are no
longer relevant. This approach may introduce a delay before the workers begin their next local steps.

Another option is to allow the workers to finish computing their stochastic gradients without waiting for them,
and send these gradients in the next iteration. If some gradients are still not computed by then due to delays,
simply discard them.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

where one can see that x
∑s

g=1 mi ≡ xB ≡ w1, and {vjg} is defined in Algorithm 13.

∇f(v0−δ0

2 ; η02)

∇f(v1−δ1

2 ; η12) ∇f(v2−δ2

2 ; η22)

∇f(v0−δ0

2 ; η02) ∇f(v1−δ1

2 ; η12) ∇f(v2−δ2

2 ; η22) ∇f(v0−δ0

1 ; η01) ∇f(v1−δ1

1 ; η11)

∇f(v0−δ0

1 ; η01)
∇f(v1−δ1

1 ; η11)

x0

v12 v22 v32

x5x1 x2 x3 x4

v11 v21

Figure 17: An example of a Local-Async SGD computation tree with two groups and B = 5. One
group performs m1 = 3 steps of Asynchronous SGD, while the other performs m2 = 2 steps. Note
that the maximum tree distance is dist(x4, v1−δ1

1) when applying∇f(v1−δ1

1 ; η11) to x4, and it equals
B − 1 = m1 +m2 − 1 = 4. Then, the groups synchronize and continue from x5.

Theorem E.7. Let Assumptions 1.1, 1.2, and 1.3 hold. Consider the computation tree of Local-Async
SGD (Alg. 12), then {xk}k≥0, defined in (18), is a main branch and 1

K

∑K−1
k=0 E

[
∥∇f(xk)∥2

]
≤ ε

for all

K ≥ 4BL∆

ε
+

8σ2L∆

ε2
.

with step size γ = min{ 1
4BL ,

ε
4σ2L}.

Proof. The proof closely follows that of Theorem E.3, with the only difference being that the
auxiliary branches in Algorithm 13 are constructed using asynchronous steps rather than local steps
(compare Figure 4 and Figure 17). As in Theorem E.3, the condition

∑s
g=1 mg = B ensures that

supk≥0 dist(xk, zk) ≤ B − 1.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

E.9 Nested Local-Async SGD

In this section, we formalize a hierarchical version of Algorithm 12. Our framework, Theorem 2.4, is
flexible enough to support such a two-level structure, where each cluster consists of servers equipped
with (4–8) GPUs. The GPUs run Asynchronous SGD, the servers synchronize within their clusters,
and finally, the clusters synchronize with each other.

In the following algorithm, all workers are partitioned into {Gij} groups, where i is the cluster index
and j is the server index within the cluster. The set Gij contains the indices of the workers (GPUs).

Algorithm 14 Nested Local-Async SGD

Require: Initial model w0, step size γ, parameters Bi, global parameter B, group partitions {Gij}
1: for k = 0, 1, 2, . . . do
2: Broadcast wk to all clusters
3: for each cluster i in parallel do
4: Set w0

i = wk

5: for pi = 0, 1, 2, . . . do
6: Broadcast wpi

i to all local groups
7: for each server j in parallel do
8: Group Gij starts AsynchronousSGDGroup(wpi

i , γ) from Algorithm 13
9: end for

10: Cluster i waits for the moment when
∑

j mij = Bi

11: Ask the groups in cluster i to stop running AsynchronousSGDGroup(wpi

i , γ)
12: Update wpi+1

i = wpi

i − γ
∑

j

∑mijpi
−1

ℓ=0 ∇f(vℓ−δℓ

ijpi
; ηℓijpi

)
13: end for
14: end for
15: Wait for the moment the total number of local steps in the clusters starting from the last

broadcast is B
16: Ask all groups in all servers to stop running AsynchronousSGDGroup(wk, γ)
17: Update wk+1 = wk −∑i(w

pi

i − w0
i) = wk − γ

∑
i

∑pi−1
k=0

∑
j

∑mijk−1
ℓ=0 ∇f(vℓ−δℓ

ijk ; ηℓijk)
18: end for

Algorithm 15 AsynchronousSGDGroup(w, γ) in group Gij

Input: point v0ijpi
∈ Rd, stepsize γ > 0

Set mij = 0
Workers from group Gij start computing stochastic gradients at v0ijpi

while True do
Gradient ∇f(vmijpi

−δ
mijpi

ijpi
; η

mijpi
ijpi

) arrives from worker i with delay δmijpi

Update: v
mijpi

+1

ijpi
= v

mijpi
ijpi

− γ∇f(vmijpi
−δ

mijpi

ijpi
; η

mijpi
ijpi

)

Worker i begins calculating stochastic gradient at v
mijpi

+1

ijpi

Update the iteration number mijpi
= mijpi

+ 1
end while

We believe that analyzing this algorithm directly using classical optimization tools would be chal-
lenging due to heavy notations. However, using our framework and geometrical graph reasoning,
we can easily prove the iteration rate of this algorithm. As in all previous cases, a main branch xk

can be defined by taking each component of the sum
∑

i

∑pi−1
k=0

∑
j

∑mijk−1
ℓ=0 ∇f(vℓ−δℓ

ijk ; ηℓijk) and
applying each stochastic gradient to x0, x1 = x0 − γ∇f(v0110; η0110), and so on.
Theorem E.8. Let Assumptions 1.1, 1.2, and 1.3 hold. Consider the computation tree of Nested
Local-Async SGD (Alg. 14), then 1

K

∑K−1
k=0 E

[
∥∇f(xk)∥2

]
≤ ε for all

K ≥ 4BL∆

ε
+

8σ2L∆

ε2
.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

with step size γ = min{ 1
4BL ,

ε
4σ2L} for the main branch {xk} (slightly informally) defined above.

Proof. Similarly to the previous proofs, Conditions 1 and 2 are satisfied by the construction of
the algorithm. Using geometric graph reasoning, Condition 3 is satisfied with R ≤ B due to the
requirement that “the total number of local steps in the clusters starting from the last broadcast is B.”
This ensures that the distance between the points of the main branch and the corresponding points of
the auxiliary sequence defined by v·· does not exceed B.

Remark E.9. One can see that the converge rate does not depend on {Bi}. Theoretically, it is sufficient
to take Bi = ∞. However, practically, it may be better to take Bi < ∞ to ensure that the GPUs
synchronize more often and share information with others, but it can lead to communication overhead
and less efficient utilization of the GPUs.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

E.10 Meta Local SGD

Compared to previous algorithms, Meta Local SGD is an abstract or meta-method, as it includes one
abstract step: “Wait if needed and take any set of workers S.” This step is not explicitly defined,
allowing users to apply any strategy they prefer. It may be random, where the algorithm chooses
a uniformly random subset; it may follow a condition as in Local SGD, where the algorithm waits
until

∑n
i=1 Mi = B; or it may be based on the current communication speeds of the workers, where

the algorithm selects the workers with the fastest communication speeds at the current optimization
moment.

However, as we explain in the main part, this can lead to a computation tree with a large R. That
is why we check the condition maxj∈[n] dj +

∑n
i=1 Mi < B in the algorithm, where {di} are the

current distances to the head of the main branch and {Mi} are the local steps performed by each
worker. If this condition is satisfied, we can take any set of workers S. Otherwise, we find a set
of workers S = {j ∈ [n] | dj +

∑n
i=1 Mi = B} and ask them to send their calculated stochastic

gradients. The latter case is required to synchronize workers with “very old stochastic gradients”.
Intuitively, if we do not synchronize them, their stochastic gradients may become too outdated and
harmful to the optimization process.

Algorithm 16 Meta Local SGD

1: Input: point w0 ∈ Rd, stepsize γ > 0, parameter B ∈ N
2: Set an auxiliary distance variable di = 0 for all i ∈ [n]
3: Workers start running local steps at w0 with Alg. 17
4: for k = 0, 1, . . . do
5: if maxj∈[n] dj +

∑n
i=1 Mi < B then

6: Wait if needed and take any set of workers S (Soft Sync)
(Here, we do not specify the selection method, it could be random or based on the current
communication speeds. One can choose any strategy.)

7: else
8: Find a set of workers S = {j ∈ [n] | dj +

∑n
i=1 Mi = B} (Hard Sync)

9: end if
10: Ask workers from S to send the calculated stochastic gradients and stop the loops in Alg. 17
11: Receive γ

∑
i∈S

∑Mi−1
p=0 ∇f(z

p
i ; η

p
i)

12: Update: wk+1 = wk − γ
∑Mi−1

p=0 ∇f(z
p
i ; η

p
i)

13: Worker from S start running local steps at wk+1 with Alg. 17
14: Set di = 0 for all i ∈ S
15: Update di = di +

∑
j∈S Mj for all i ̸∈ S

16: end for

Algorithm 17 LocalSGDWorker(w, γ) in worker i

1: z0i = w
2: Mi = 0
3: while True do
4: Calculate∇f(zMi

i ; ηMi
i), ηMi ∼ Dξ

5: if maxj∈[n] dj +
∑n

i=1 Mi < B then
6: zMi+1

i = zMi
i − γ∇f(zMi

i ; ηMi
i)

7: Mi = Mi + 1
8: end if
9: end while

A main branch in the computation tree can be defined as follows. Assume that Sk = {i1, . . . , ipk
} is

the set of workers participating in iteration k. Then, the computation tree with the main branch {xk}

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

can be constructed as

x1 = x0 − γ∇f(z0i1 ; η0i1),
x2 = x1 − γ∇f(z1i1 ; η1i1),

...

xMi1 = xMi1−1 − γ∇f(zMi1−1
i1

; η
Mi1−1
i1

),

...

x
∑pk−1

j=1 Mij
+1 = x

∑pk−1

j=1 Mij − γ∇f(z0ipk ; η
0
ipk

),

...

x
∑pk

j=1 Mij = x
∑pk

j=1 Mij
−1 − γ∇f(zMipk

−1

ipk
; η

Mipk
−1

ipk
),

...

(19)

Notice that the end of each iteration block can be written as

w1 ≡ x
∑p0

j=1 Mij , w2 ≡ x
∑p0

j=1 Mij
+
∑p1

j=1 Mij , and so on.

∇f(x0; η1,02)

∇f(z1,12 ; η1,12)

∇f(x0; η1,01) ∇f(z1,11 ; η1,11)

∇f(x2; η2,01)

∇f(z2,11 ; η2,11)

∇f(x0; η1,01)
∇f(z1,11 ; η1,11)

∇f(x2; η2,01) ∇f(z2,11 ; η2,11)

x0

z1,12 z1,22

x1 x2

x3 x4

z1,11 z1,21

z2,11 z2,21

Figure 18: An example of the computation tree for Meta Local SGD with two workers. In this example,
the first worker completes its first set of local steps, x0 → z1,12 → z1,22 , and sends the stochastic
gradients, which are used to calculate x1 and x2. A similar sequence of steps is repeated by the
first worker to produce x2 → z2,12 → z2,22 , followed by x3 and x4. At the same time, the second
worker has only completed x0 → z1,11 → z1,21 and has not yet synchronized or sent the corresponding
stochastic gradients. At this moment in time, the number of local steps is M2 = 2 and d2 = 4,
because d2 is the number of edges between the current main branch head x4 and the point x0, where
the local branch of the second worker started. At the same time, M1 = 0 and d1 = 0, because the
first worker has just started the third set of local steps at x4 and has not yet calculated local stochastic
gradients.

Theorem E.10. Let Assumptions 1.1, 1.2, and 1.3 hold. Consider the computation tree of Meta Local
SGD (Alg. 16), then {xk}k≥0, defined in (19), is a main branch and 1

K

∑K−1
k=0 E

[
∥∇f(xk)∥2

]
≤ ε

for all

K ≥ 4BL∆

ε
+

8σ2L∆

ε2
.

with step size γ = min{ 1
4BL ,

ε
4σ2L}.

Proof. Similarly to the previous proofs, it is clear that Conditions 1 and 2 from Theorem 2.4 are
satisfied for the main branch (19).

It remains to show that dist(xk, zk) ≤ B for all k ≥ 0. In the algorithm, we track two key sets of
variables: {di} and {Mi}. The variable Mi denotes the current number of local steps performed by
worker i, while di represents the number of edges between the current end of the main branch and
the point where worker i began its local updates. When worker i /∈ S, the distance di increases as
follows: di = di +

∑
j∈S Mj , since the workers in S extend the main branch with their accumulated

local updates.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

The algorithm is constructed so that the quantity maxj∈[n] dj +
∑n

i=1 Mi remains bounded by
B throughout the entire optimization process, ensuring that Condition 3 is satisfied with R = B.
To clarify, assume that i ∈ S in Algorithm 16. In the worst-case scenario, all other workers
j ∈ S, with j ̸= i, apply their local updates, increasing the tree distance from worker i’s branch
to the main branch by at most

∑
j∈S,j ̸=i Mj . Thus, the updated tree distance becomes at most

di +
∑

j∈[n],j ̸=i Mj . Since worker i has also performed Mi local steps, the tree distance is bounded
by di +

∑
j∈[n],j ̸=i Mj +Mi ≤ B.

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

E.11 Dual-Process SGD

We now present a new method, Dual-Process SGD, which is very similar to Local SGD. In fact, when
communication is free, the two methods are equivalent. However, Local SGD requires all workers to
send the sum of stochastic gradients only at the end of each round. In contrast, in Dual-Process SGD,
workers do not wait until the end of the round; instead, they begin communicating sequentially as
soon as possible.

Initially, each worker waits for the first stochastic gradients with index 0 and immediately sends them
once available. Then, while these are being transmitted, the workers continue their local computations.
After the server receives the gradients with index 0, the workers begin sending the next batch of
stochastic gradients, starting from index 1 up to the latest index they have computed at that moment.
This process continues until the server has received a total of B stochastic gradients, accumulated
through the communicated sums. This logic is implemented in Algorithm 19.

Algorithm 18 Dual-Process SGD

Require: Initial model w0, step size γ, parameter B
1: for k = 0, 1, 2, . . . do
2: Broadcast wk to all workers
3: for each worker i ∈ [n] in parallel do
4: Worker i starts DualProcessLocalSGDWorker(wk, γ) from Algorithm 19
5: end for
6: Start receiving the sum from the workers
7: Wait for the moment when the total # of received gradients

∑n
i=1 Mi = B

8: Ask workers to stop running DualProcessLocalSGDWorker(wk, γ)
9: Update wk+1 = wk − γ

∑n
i=1

∑Mi−1
j=0 ∇f(z

k,j
i ; ηk,ji)

10: end for

Algorithm 19 DualProcessLocalSGDWorker(w, γ) in worker i at round k

1: zk,0i = w

2: M̃i = M̄i = Mi = 0
3: Launch in parallel the following two processes:
4: Process 1:
5: while True do
6: Calculate∇f(zk,M̃i

i ; ηk,M̃i

i), ηk,M̃i

i ∼ Dξ

7: zk,M̃i+1
i = zk,M̃i

i − γ∇f(zk,M̃i

i ; ηk,M̃i

i)

8: M̃i = M̃i + 1
9: end while

10:
11: Process 2:
12: while True do
13: Wait until at least one new stochastic gradient is computed in Process 1.
14: Set temporary variable M̄i = M̃i

15: Send
M̄i−1∑
j=Mi

∇f(zk,ji ; ηk,ji)

16: Wait until the transmission is complete
17: Update Mi = M̄i

18: end while

The computation tree of Dual-Process SGD defined in (13) and (14) is similar to Local SGD.

Theorem E.11. Let Assumptions 1.1, 1.2, and 1.3 hold. Consider the computation tree ((13) and
(14)) of Dual-Process SGD, then {xk}k≥0 is a main branch and 1

K

∑K−1
k=0 E

[
∥∇f(xk)∥2

]
≤ ε for

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

all

K ≥ 4BL∆

ε
+

8σ2L∆

ε2
.

with step size γ = min{ 1
2BL ,

ε
4σ2L}.

Proof. The proof is exactly the same as in Theorem E.3 since the computation tree of Dual-Process
SGD is similar to Local SGD.

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

F COMPUTATIONAL TIME COMPLEXITIES OF ALGORITHMS UNDER hi-FIXED
COMPUTATION MODEL

To compare methods, we consider the hi-fixed computation model (Mishchenko et al., 2022). In this
model, it is assumed that

worker i takes no more than hi seconds to compute a single stochastic gradient (20)

and
0 < h1 ≤ h2 ≤ · · · ≤ hn, (21)

without loss of generality.

Note that it is possible to consider the universal computation model (Tyurin, 2025) and capture
virtually all possible computation behaviors of the workers. While the hi-fixed computation model
may seem more restrictive, it turns out that all optimal methods (Maranjyan et al., 2025) in the
universal computation model are also optimal in the hi-fixed computation model. Thus, for simplicity,
we stick to the hi-fixed computation model.

F.1 Rennala SGD

Theorem F.1 (Rennala SGD). Consider Theorem E.2 and its conditions. Under the hi-fixed computa-
tion model (20), the computational time complexity of Rennala SGD (Alg. 4) is

O

 min
m∈[n]

(1

m

m∑
i=1

1

hi

)−1(
L∆

ε
+

σ2L∆

mε2

) (22)

with B = max
{⌈

σ2

ε

⌉
, 1
}
.

We start with the following lemma.
Lemma F.2. Let us define

TR(B) := 2 min
m∈[n]

(m∑
i=1

1

hi

)−1

(B +m)

 (23)

Under the hi-fixed computation model (20), the time required to calculate x1, . . . , xB of the main
branch is at most TR(B) seconds, the time required to calculate xB+1, . . . , x2B is at most TR(B)
seconds, and so on.

Proof. The idea of Rennala SGD (Alg. 4) is pretty simple. Notice that all workers calculate stochastic
gradients at the same point in parallel until the server collects a batch of size B (condition δ = 0
ensures that). Since they work in parallel, under the fixed computational model, after t seconds the
workers will calculate

n∑
i=1

max

{⌊
t

hi

⌋
− 1, 0

}
(24)

stochastic gradients because
⌊

t
hi

⌋
is the number of stochastic gradients computed by worker i in t

seconds. We subtract 1 because at most one stochastic gradient be can be ignored due to the condition
δ = 0 in Alg. 4.

Notice that

TR(B) = 2

(
m∗∑
i=1

1

hi

)−1

(B +m∗)

for some m∗ ∈ [n]. Substituting it to (24), we get
n∑

i=1

max

{⌊
TR(B)

hi

⌋
− 1, 0

}
≥

m∗∑
i=1

max

{⌊
TR(B)

hi

⌋
− 1, 0

}
≥

m∗∑
i=1

⌊
TR(B)

hi

⌋
−m∗

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

≥
m∗∑
i=1

TR(B)

hi
− 2m∗ = 2(B +m∗)− 2m∗ ≥ B.

Thus, after TR(B) seconds, the server collects B stochastic gradients, which is equivalent to calcu-
lating x1, . . . , xB of the main branch. The same argument can be applied to the next B point of the
main branch, and so on.

Proof of Theorem F.1. Due to Theorem E.2, we know that 1
K

∑K−1
k=0 E

[
∥∇f(xk)∥2

]
≤ ε for

K =

⌈
4BL∆

ε
+

8σ2L∆

ε2

⌉
.

From Lemma F.2, we know that the time required to calculate x1, . . . , xB of the main branch is at
most TR(B) seconds, the time required to calculate xB+1, . . . , x2B is at most TR(B) seconds, and so
on. Thus, the total time to find an ε–stationary point is

O
(
TR(B)× K

B

)
= O

(
TR(B)×

(
L∆

ε
+

σ2L∆

Bε2

))
.

Using the choice of B,

O
(
TR(B)× K

B

)
= O

 min
m∈[n]

(m∑
i=1

1

hi

)−1

(B +m)

× L∆

ε


= O

 min
m∈[n]

(1

m

m∑
i=1

1

hi

)−1(
L∆

ε
+

σ2L∆

mε2

) .

F.2 Ringmaster ASGD

Theorem F.3 (Ringmaster ASGD). Consider Theorem E.4 and its conditions. Under the hi-fixed
computation model (20), the computational time complexity of Ringmaster ASGD is

O

 min
m∈[n]

(1

m

m∑
i=1

1

hi

)−1(
L∆

ε
+

σ2L∆

mε2

)
with B = max

{⌈
σ2

ε

⌉
, 1
}
.

We use Lemma 4.1 from (Maranjyan et al., 2025).
Lemma F.4. ((Maranjyan et al., 2025)) Let the workers’ computation times satisfy the hi-fixed
computation model ((20) and (21)). Let B be the delay threshold of Alg. 7. The time required to
complete any B consecutive iterate updates of Alg. 7 is at most

TA(B) := 2 min
m∈[n]

(1

m

m∑
i=1

1

τi

)−1(
1 +

R

m

) . (25)

Corollary F.5. In view of Lemma F.4, Under the hi-fixed computation model (20), the time required
to calculate x1, . . . , xB of the main branch is at most TA(B) seconds, the time required to calculate
xB+1, . . . , x2B is at most TA(B) seconds, and so on.

Proof of Theorem F.3. The proof of Theorem F.3 is similar to the proof of Theorem F.1. From
Corollary F.5, we know that the time required to calculate x1, . . . , xB of the main branch is at most
TA(B) seconds, the time required to calculate xB+1, . . . , x2B is at most TA(B) seconds, and so on.
Thus, the total time to find an ε–stationary point is

O
(
TA(B)× K

B

)
= O

 min
m∈[n]

(1

m

m∑
i=1

1

hi

)−1(
L∆

ε
+

σ2L∆

mε2

) .

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

F.3 Local SGD

Theorem F.6 (Local SGD). Consider Theorem E.3 and its conditions. Under the hi-fixed computation
model (20), the computational time complexity of Local SGD (Alg. 5) is

O

 min
m∈[n]

(1

m

m∑
i=1

1

hi

)−1(
L∆

ε
+

σ2L∆

mε2

)
with B = max

{⌈
σ2

ε

⌉
, 1
}
.

Lemma F.7. Let us define

TL(B) := 2 min
m∈[n]

(m∑
i=1

1

hi

)−1

(B +m)

 (26)

Under the hi-fixed computation model (20), the time required to calculate x1, . . . , xB of the main
branch is at most TL(B) seconds, the time required to calculate xB+1, . . . , x2B is at most TL(B)
seconds, and so on.

Proof. The idea is the same as in Lemma F.2. All workers calculate stochastic gradients in parallel,
with the only difference being that the points at which they compute the stochastic gradients differ
due to the local steps. If the server can stop the workers, then after t seconds it is possible to collect

n∑
i=1

⌊
t

hi

⌋
(27)

stochastic gradients. If it is infeasible to stop the calculations (see footnote 7), then after t seconds it
is possible to collect

n∑
i=1

max

{⌊
t

hi

⌋
− 1, 0

}
, (28)

where we subtract 1 because at most one stochastic gradient can be ignored if it is nonrelevant.
Similarly to Lemma F.2, substituting TL(B) into (27) and (28), one can show that TL(B) is sufficient
to collect B =

∑n
i=1 Mi stochastic gradients, or, in other words, to calculate x1, . . . , xB of the main

branch. The same argument can be applied to the next B points of the main branch, and so on.

Proof of Theorem F.6. The proof essentially the same as the proof of Theorem F.1.

F.4 Local-Async SGD

Theorem F.8 (Local-Async SGD). Consider Theorem E.7 and its conditions. Under the hi-fixed
computation model (20), the computational time complexity of Local-Async SGD (Alg. 12) is

O

 min
m∈[n]

(1

m

m∑
i=1

1

hi

)−1(
L∆

ε
+

σ2L∆

mε2

)
with B = max

{⌈
σ2

ε

⌉
, 1
}
.

Lemma F.9. Let us define

TLA(B) := 2 min
m∈[n]

(m∑
i=1

1

hi

)−1

(B +m)

 (29)

Under the hi-fixed computation model (20), the time required to calculate x1, . . . , xB of the main
branch is at most TLA(B) seconds, the time required to calculate xB+1, . . . , x2B is at most TLA(B)
seconds, and so on.

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2026

Proof. The idea is the same as in Lemmas F.2 and F.7. All workers calculate stochastic gradients in
parallel, with the only difference being that the points at which they compute the stochastic gradients
differ due to the asynchronous steps in the groups. Similarly, one can show that TLA(B) is sufficient
time to calculate B =

∑s
g=1 mg stochastic gradients in Algorithm 12, or, equivalently, to calculate

x1, . . . , xB of the main branch. The same argument can be applied to the next B point of the main
branch.

Proof of Theorem F.8. The proof essentially the same as the proof of Theorem F.1.

F.5 Nested Local-Async SGD

Theorem F.10 (Nested Local-Async SGD). Consider Theorem E.8 and its conditions. Under the
hi-fixed computation model (20), the computational time complexity of Nested Local-Async SGD
(Alg. 14) is

O

 min
m∈[n]

(1

m

m∑
i=1

1

hi

)−1(
L∆

ε
+

σ2L∆

mε2

)
with B = max

{⌈
σ2

ε

⌉
, 1
}

and Bi =∞10 for all i ∈ [n].

Proof. The proof essentially the same as the proof of Theorem F.1.

F.6 Async-Local SGD

Theorem F.11 (Async-Local SGD). Consider Theorem E.6 and its conditions. Under the hi-fixed
computation model (20), the computational time complexity of Async-Local SGD (Alg. 9) is

O

 min
m∈[n]

(1

m

m∑
i=1

1

hi

)−1(
L∆

ε
+

σ2L∆

mε2

)
with B = max

{⌈
σ2

ε

⌉
, 1
}

and M = max
{⌈

σ2

nε

⌉
, 1
}
.

Lemma F.12. Let us define

TAL(B,M) := 2 min
m∈[n]

(m∑
i=1

1

hi

)−1

(B +Mm)

 (30)

Under the hi-fixed computation model (20), the time required to calculate x1, . . . , xB of the main
branch is at most TAL(B,M) seconds, the time required to calculate xB+1, . . . , x2B is at most
TAL(B,M) seconds, and so on.

Proof. Let us fix B and M ≥ 1. Note that

TAL(B,M) := 2 min
m∈[n]

(m∑
i=1

1

hi

)−1

(B +Mm)

 = 2

(
m∗∑
i=1

1

hi

)−1

(B +Mm∗) (31)

for some m∗ ∈ [n], which depends on B and M.

For any k ≥ 1, consider the sequence xk, . . . , xk+B on the main branch. Using a proof by contradic-
tion, assume that it requires more than TAL(B,M) seconds to calculate xk+1, . . . , xk+B . Thus, the
algorithm can progress up to xk+B−1 after TAL(B,M) seconds.

In Algorithm 9, each worker computes M stochastic gradients and sends their sum to the server.
The server then performs the update wk+1 = wk − γ

∑M−1
p=0 ∇f(z

p
ik
; ηpik), which is equivalent to

10It is possible to take Bi < ∞, but the computational time complexity may decrease due to less utilization
of workers. For simplicity, in this theorem, we take Bi = ∞. See also Remark E.9.

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2026

extending the main branch by M points. Therefore, after t seconds, the main branch will have
progressed by at least

n∑
i=1

max

{
M

⌊
t

Mhi

⌋
−M, 0

}
, (32)

points (which is less than B by assumption). This is because worker i requires at most Mhi seconds
to compute M stochastic gradients before sending them to the server. Note that during any B − 1
consecutive updates on the main branch, the server may ignore M gradients from each worker at
most once, because δk can be ≥ B at most once during B − 1 consecutive updates. This explains the
subtraction of M in the formula.

Substituting TAL(B,M) to (32),

n∑
i=1

max

{
M

⌊
TAL(B,M)

Mhi

⌋
−M, 0

}
≥

m∗∑
i=1

max

{
M

⌊
TAL(B,M)

Mhi

⌋
−M, 0

}

≥
m∗∑
i=1

M

⌊
TAL(B,M)

Mhi

⌋
−Mm∗ ≥

m∗∑
i=1

TAL(B,M)

hi
− 2Mm∗

because ⌊x⌋ ≥ x− 1 for all x ∈ R. Using (31),
n∑

i=1

max

{
M

⌊
TAL(B,M)

Mhi

⌋
−M, 0

}
≥ 2(B +Mm∗)− 2Mm∗ ≥ B.

Thus, after TAL(B,M) seconds, the server collects B stochastic gradients. It is equivalent to
calculating xk+1, . . . , xk+B , which contradicts the assumption.

Proof of Theorem F.11. Due to Theorem E.6, we know that 1
K

∑K−1
k=0 E

[
∥∇f(xk)∥2

]
≤ ε for

K =

⌈
4(B +M − 1)L∆

ε
+

8σ2L∆

ε2

⌉
.

From Lemma F.2, we know that the time required to calculate x1, . . . , xB of the main branch is
at most TAL(B,M) seconds, the time required to calculate xB+1, . . . , x2B is at most TAL(B,M)
seconds, and so on. Thus, the total time to find an ε–stationary point is

O
(
TAL(B,M)× K

B

)
= O

(
TAL(B,M)×

(
L∆(B +M)

Bε
+

σ2L∆

Bε2

))
.

Using the choice of B and M, we obtain M ≤ B and

O
(
TR(B)× K

B

)
= O

(
TAL(B,M)×

(
L∆

ε
+

σ2L∆

Bε2

))

= O

 min
m∈[n]

(m∑
i=1

1

hi

)−1

(B +Mm)

× (L∆

ε
+

σ2L∆

Bε2

)
= O

 min
m∈[n]

(m∑
i=1

1

hi

)−1

(B +Mm)

× L∆

ε


because B ≥ σ2

ε . Since M ≤ σ2

nε + 1 and B ≤ σ2

ε + 1,

O
(
TR(B)× K

B

)
= O

 min
m∈[n]

(m∑
i=1

1

hi

)−1(
1 +

σ2

ε
+m+

mσ2

nε

)× L∆

ε


= O

 min
m∈[n]

(m∑
i=1

1

hi

)−1(
σ2

ε
+m

)× L∆

ε


49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2026

= O

 min
m∈[n]

(1

m

m∑
i=1

1

hi

)−1(
L∆

ε
+

σ2L∆

mε2

) ,

where we use that m ≤ n for all m ∈ [n].

F.7 Cycle SGD

Theorem F.13 (Cycle SGD). Consider Theorem E.5 and its conditions. Under the hi-fixed computa-
tion model (20), the computational time complexity of Cycle SGD (Alg. 8) is

O
(
max
i∈[n]

hi

(
L∆

ε
+

σ2L∆

mε2

))
with s = min

{
max

{⌈
n2ε
σ2

⌉
, 1
}
, n
}
.

Proof. According to Theorem E.5, 1
K

∑K−1
k=0 E

[
∥∇f(xk)∥2

]
≤ ε for

K =

⌈
8n2L∆

sε
+

8σ2L∆

ε2

⌉
.

In the beginning, the algorithm has “warm-up”, where, in the first iteration of the inner loop, the
server collects s stochastic gradients from s workers, which is equivalent to calculating x1, . . . , xs of
the main branch. Then, the server collects 2s stochastic gradients from the next group of s workers
because they calculated s stochastic in the previous iteration. Starting from the

⌈
n
s

⌉
th iteration, each

group of s workers will return s ×
⌈
n
s

⌉
stochastic gradients in every subsequent iteration. Every

iterations takes at most max
i∈[n]

hi seconds, because they work in parallel and calculate one stochastic

gradient.

Thus, the total time to calculate x1, . . . , xK and find an ε–stationary point is

O

max
i∈[n]

hi ×
⌈n
s

⌉
︸ ︷︷ ︸

“warm-up” phase

+max
i∈[n]

hi ×
K(

s×
⌈
n
s

⌉)


= O
(
max
i∈[n]

hi ×
n

s
+max

i∈[n]
hi ×

(
nL∆

sε
+

σ2L∆

nε2

))
= O

(
max
i∈[n]

hi ×
(
nL∆

sε
+

σ2L∆

nε2

))
.

because L∆
ε ≥ 1

2 without loss of generality (if L∆
ε < 1

2 , then x0 is an ε–stationary point). Finally,

O
(
max
i∈[n]

hi ×
(
nL∆

sε
+

σ2L∆

nε2

))
= O

(
max
i∈[n]

hi ×
(
L∆

ε
+

σ2L∆

nε2

))
due to the choice of s.

F.8 Dual-Process SGD

Theorem F.14 (Dual-Process SGD). Consider Theorem E.11 and its conditions. Under the hi-fixed
computation model (20), the computational time complexity of Dual-Process SGD (Alg. 18) is

O

 min
m∈[n]

(1

m

m∑
i=1

1

hi

)−1(
L∆

ε
+

σ2L∆

mε2

)
with B = max

{⌈
σ2

ε

⌉
, 1
}
.

50

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2026

Proof. The proof is essentially the same as the proof of Theorem F.6 since Dual-Process SGD is
equivalent to Local SGD if the communication times are ignored.

51

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2026

G TOTAL TIME COMPLEXITIES OF ALGORITHMS UNDER (h, τ)-FIXED
COMPUTATION MODEL

To compare the communication complexities and the total time complexities of the methods, we now
assume that it takes τ seconds to send a vector from a worker to a parameter server and τ seconds
to send a vector from the server to the workers in the centralized setting. Alternatively, it takes τ
seconds to send a vector to all other workers in the decentralized setting. Moreover, we assume that
all workers have the same computational performance: worker i takes h seconds to compute a single
stochastic gradient for all i ∈ [n]. We refer to this as the (h, τ)-fixed computation model.

Note that it is possible to assume that each worker has its own communication time bound τi and
computation time bound hi and consider (hi, τi)-fixed computation model (Tyurin et al., 2024).
However, for simplicity, we assume τi = τ and hi = h for all i ∈ [n]. See Section I for a more
general case (hi, τi)-fixed computation model.

G.1 Rennala SGD

Theorem G.1. Consider Theorem E.2 and its conditions. Under (h, τ)-fixed computation model, the
total time complexity of Rennala SGD (Alg. 4) is

O
(
τ × L∆

ε
+ h×

(
L∆

ε
+

σ2L∆

nε2

))
with B = max

{⌈
σ2

ε

⌉
, 1
}
.

Proof. Note that the communication between of vectors happens every B calculated stochastic
gradients, which is equivalent to every B updates of the main branch. Thus the total number of
communications is

O
(
K

B

)
,

where K = Θ
(

BL∆
ε + σ2L∆

ε2

)
due to Theorem E.2. The total communication complexity is

O
(
τ × K

B

)
= O

(
τ

B
×
(
BL∆

ε
+

σ2L∆

ε2

))
= O

(
τ × L∆

ε

)
,

where we use the choice of B. It left to take into account the computation factor, which is the same
as in Theorem F.1.

(22) = O
(
h×

(
L∆

ε
+

σ2L∆

nε2

))
under the (h, τ)-fixed computation model.

G.2 Local SGD

Theorem G.2. Consider Theorem E.3 and its conditions. Under (h, τ)-fixed computation model, the
total time complexity of Local SGD (Alg. 5) is

O
(
τ × L∆

ε
+ h×

(
L∆

ε
+

σ2L∆

nε2

))
with B = max

{⌈
σ2

ε

⌉
, 1
}
.

Proof. The proof essentially the same as the proof of Theorem G.1.

52

2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2026

G.3 Cycle SGD

Theorem G.3. Consider Theorem E.5 and its conditions. Under (h, τ)-fixed computation model, the
total time complexity of Cycle SGD (Alg. 8) is

O
(
τ ×

(
L∆

ε
+

σ2L∆

nε2

)
+ h×

(
L∆

ε
+

σ2L∆

nε2

))
with s = min

{
max

{⌈
n2ε
σ2

⌉
, 1
}
, n
}
.

Proof. Similarly to the proof of Theorem F.13, one can show that the total time complexity is

O

(τ + h)×
⌈n
s

⌉
︸ ︷︷ ︸

“warm-up” phase

+(τ + h)× K(
s×

⌈
n
s

⌉)


because every worker from group s sends one vector
∑Mi

j=1∇f(z
j
i ; η

j
i) to the server in the inner loop.

Substituting the choice of s, one can get the final result.

G.4 Async-Local SGD

Theorem G.4. Consider Theorem E.6 and its conditions. Under (h, τ)-fixed computation model, the
total time complexity of Async-Local SGD (Alg. 9) is

O
(
τ × L∆

ε
+ h×

(
L∆

ε
+

σ2L∆

nε2

))
with B = max

{⌈
σ2

ε

⌉
, 1
}

and M = max
{⌈

σ2

nε

⌉
, 1
}
.

Proof. Under (h, τ)-fixed computation model, all workers send the sums of M stochastic gradients
at the same time. According to Theorem E.6, the server should collect

O
(
(B +M − 1)L∆

ε
+

σ2L∆

ε2

)
= O

(
L∆

ε
+

σ2L∆

ε2

)
stochastic gradients, where the last equality due to the choice of B and due to B ≥ M.
Since the workers work in parallel and have the equal performance, only Θ

(
min

{
B
M , n

})
=

Θ
(
min

{
max

{
1, σ2

Mε

}
, n
})

workers will participate in optimization. Thus, every worker, which
participates in optimization, has to send

O
(

L∆

min
{

B
M , n

}
ε
+

σ2L∆

min
{

B
M , n

}
ε2

)
= O

(
L∆

ε
+

σ2L∆

nε2
+

ML∆

ε

)
stochastic gradients. Such a worker calculates M stochastic gradients and only then sends the sum;
thus, the maximum number of communications by one worker is

O
(
L∆

Mε
+

σ2L∆

Mnε2
+

L∆

ε

)
.

For every communication, the worker needs to send M stochastic gradients, which takes h seconds,
and sends a sum, which takes τ seconds. Thus, the total time complexity is

O
(
(τ +Mh)

(
L∆

Mε
+

σ2L∆

Mnε2
+

L∆

ε

))
. (33)

Substituting the choice of M, we get the final result.

53

2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

Under review as a conference paper at ICLR 2026

G.5 Ringmaster ASGD

Theorem G.5. Consider Theorem E.4 and its conditions. Under (h, τ)-fixed computation model, the
total time complexity of Ringmaster ASGD is

O
(
τ ×

(
L∆

ε
+

σ2L∆

nε2

)
+ h×

(
L∆

ε
+

σ2L∆

nε2

))
(34)

with B = max
{⌈

σ2

ε

⌉
, 1
}
.

Proof. The proof repeats the proof of Theorem G.4. The only difference is that the workers send
M = 1 stochastic gradients. Substituting M = 1 to (33), we get the final result.

Remark G.6. While (34) is only an upper bound, using the same steps as in the proof of Theorem G.4,
one can easily show that the total time complexity of Ringmaster ASGD is lower bounded by

Ω

(
τ ×

(
L∆

ε
+

σ2L∆

nε2

)
+ h×

(
L∆

ε
+

σ2L∆

nε2

))
, (35)

assuming that the iteration rate Θ
(

BL∆
ε + σ2L∆

ε2

)
from Theorem E.4 is tight. As far as we know,

this is the current state-of-the-art iteration rate of an Asynchronous SGD-like method (Maranjyan
et al., 2025; Mishchenko et al., 2022; Koloskova et al., 2022; Cohen et al., 2021).

H COMPARISON BETWEEN OUR Local SGD AND THE CANONICAL Local SGD

In this section, we show that our version of Local SGD (Algorithm 5) achieves a better time complexity
than the classical Local SGD. Although we focus in this section only on Local SGD, we expect similar
improvements to extend to other new methods from Table 1. The purpose of this section is to highlight
the tightness of the Birch SGD framework, using Local SGD as a case study.

In Section G.2, we prove that our version of Local SGD yields the total time complexity

Θ

(
τ
L∆

ε
+ h

(
L∆

ε
+

σ2L∆

nε2

))
. (36)

We now illustrate that this result is provably better than the best theoretical result for the canonical
version of Local SGD (Algorithm 20) known to us.

Algorithm 20 Local SGD (FedAvg) (McMahan et al., 2017)

Require: initial model x0, step size γ, # of local steps K
1: for k = 0, 1, 2, . . . do
2: Broadcast xk to all workers
3: for each worker i ∈ {1, . . . , n} in parallel do
4: zk,0i = xk

5: for j = 0, . . . ,K − 1 do
6: zk,j+1

i = zk,ji − γ∇f(zk,ji ; ηk,ji)
7: end for
8: end for
9: xk+1 = 1

n

∑n
i=1 z

k,K
i

10: end for

To the best of our knowledge, the state-of-the-art analysis of Algorithm 20 in the nonconvex setting
is provided by Koloskova et al. (2020); Luo et al. (2025). Under Assumptions 1.1, 1.2, and 1.3, with
a proper γ, they establish the state-of-the-art iteration complexity

Θ

(
L∆

ε
+

Lσ2∆

nKε2
+

Lσ∆

K1/2ε3/2

)

54

2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969

Under review as a conference paper at ICLR 2026

for finding an ε–stationary point for all K ≥ 1. Next, under (h, τ)-fixed computation model, this
iteration complexity yields the time complexity

T̄ := τ

(
L∆

ε
+

Lσ2∆

nKε2
+

Lσ∆

K
1
2 ε

3
2

)
+ hK

(
L∆

ε
+

Lσ2∆

nKε2
+

Lσ∆

K
1
2 ε

3
2

)
(up to constant factors) because in each iteration the workers communicate, which takes τ seconds,
and each worker (in parallel) computes K stochastic gradients, which takes h×K seconds. Ignoring
non-negative terms,

T̄ ≥ τ

(
L∆

ε
+

Lσ∆

K
1
2 ε

3
2

)
+ h

(
KL∆

ε
+

Lσ2∆

nε2
+

K
1
2Lσ∆

ε
3
2

)

and T̄ is lower bounded by

Θ

(√
τh

L2σ2∆2

ε3
+ τ

L∆

ε
+ h

(
L∆

ε
+

σ2L∆

nε2

))
(37)

for all K ≥ 1 due to the AM-GM inequality. Notice that (36) ≤ (37). However, (37) can be arbitrarily
larger due to the first term. Indeed, for sufficiently large n, we have

(36) = Θ

(
τ
L∆

ε
+ h

(
L∆

ε

))
,

while

(37) = Θ

(√
τh

L2σ2∆2

ε3
+ τ

L∆

ε
+ h

(
L∆

ε

))
.

Note that the latter expression has a 1/ε3/2 dependency, whereas our result has a 1/ε dependency. Thus,
our result is provably tighter.

Note that we obtain the time complexity (36) for several other new methods, including Async-Local
SGD, Async-Batch SGD, and Dual-Process SGD.

I TOTAL TIME COMPLEXITIES OF ALGORITHMS UNDER (hi, τi)-FIXED
COMPUTATION MODEL

We now assume that each worker has its own communication time bound τi and computation time
bound hi and consider the (hi, τi)-fixed computation model (Tyurin et al., 2024). It takes τi seconds
to send a vector from worker i to a parameter server and τi seconds to send a vector from the server
to worker i in the centralized setting. Alternatively, it takes τi seconds to send a vector to all other
workers in the decentralized setting.

This setting reduces to hi-fixed computation model when τi = 0 for all i ∈ [n], and reduces to
(h, τ)-fixed computation model when hi = h and τi = τ for all i ∈ [n]. Without loss of generality,
we assume that max{h1, τ1} ≤ · · · ≤ max{hn, τn}. Otherwise, the workers can be sorted according
to these inequalities.

Notice that Rennala SGD, Local SGD, and Cycle SGD wait for the slowest worker by the designs.
If maxi∈[n] τi → ∞, then their total complexity tends to ∞. Thus, they are suboptimal under
the (hi, τi)-fixed computation model. Ringmaster ASGD is suboptimal even under the (h, τ)-fixed
computation model. Async-Local SGD and Async-Batch SGD are optimal under the (h, τ)-fixed
computation model, but we conjecture that they are suboptimal under the (hi, τi)-fixed computation
model.

We now prove that Dual-Process SGD is optimal under the (hi, τi)-fixed computation model within
the family of methods that communicate either with a server (centralized setting) or with each other
(decentralized setting).

55

2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023

Under review as a conference paper at ICLR 2026

I.1 Dual-Process SGD

Theorem I.1 (Dual-Process SGD). Consider Theorem E.11 and its conditions. Under the (hi, τi)-fixed
computation model, the total time complexity of Dual-Process SGD (Alg. 18) is

O

 min
m∈[n]

max

max{hm, τm},
(

m∑
i=1

1

hi

)−1
σ2

ε


 L∆

ε


with B = max

{⌈
σ2

ε

⌉
, 1
}
.

This complexity is optimal for distributed methods without compression communicating with a server
(centralized setting) or with each other (decentralized setting) (Tyurin et al., 2024; Tyurin & Richtárik,
2024). Notice that it is robust to slow communications. Indeed, if τn →∞, then this complexity will
ignore worker n due to the min

m∈[n]
operation.

Lemma I.2. Let us define

T (B) := 4 min
m∈[n]

max

max{hm, τm},
(

m∑
i=1

1

hi

)−1

B


 . (38)

Under the (hi, τi)-fixed computation model, the time required to calculate x1, . . . , xB of the main
branch is at most 3T (B) seconds, the time required to calculate xB+1, . . . , x2B is at most 3T (B)
seconds, and so on.

Proof. Notice that

T (B) = 4max

max{hm∗ , τm∗},
(

m∗∑
i=1

1

hi

)−1

B

 .

for some m∗ ∈ [n]. The idea is similar as in Lemmas F.2 and F.7. All workers calculate stochastic
gradients in parallel. For all t ≥ 0, after t seconds the first m∗ workers can calculate at at least

m∗∑
i=1

max

{⌊
t

hi

⌋
− 1, 0

}
, (39)

stochastic gradients, where we subtract 1 because at most one stochastic gradient can be ignored.
Substituting T (B) into (39), we have

m∗∑
i=1

max

{⌊
T (B)

hi

⌋
− 1, 0

}
≥

m∗∑
i=1

⌊
T (B)

hi

⌋
−m∗ ≥

m∗∑
i=1

T (B)

hi
− 2m∗.

Recall that max{h1, τ1} ≤ · · · ≤ max{hm∗ , τm∗}. Thus,

T (B) ≥ 2max{hm∗ , τm∗}+ 2

(
m∗∑
i=1

1

hi

)−1

B ≥ 2hi + 2

(
m∗∑
i=1

1

hi

)−1

B

for all i ≤ m∗, and

m∗∑
i=1

max

{⌊
T (B)

hi

⌋
− 1, 0

}
≥

m∗∑
i=1

2 +
2

hi

(
m∗∑
i=1

1

hi

)−1

B

− 2m∗ ≥ B.

Thus, by the time T (B), the first m∗ workers can calculate B stochastic gradients.

Next, we need to estimate the communication time. It takes at most maxi∈[m∗] τi ≤
max{hm∗ , τm∗} ≤ T (B) seconds to receive a vector from the server (in the decentralized set-
ting, we do not account this time). Similarly, it takes at most maxi∈[m∗] τi ≤ T (B) seconds to send a
vector to the server (in the decentralized setting, to send a vector to other workers). Thus, one round
in Alg 18 takes at most 3× T (B) seconds, which is equivalent to calculating x1, . . . , xB of the main
branch. The same argument can be applied to the next B point of the main branch, and so on.

56

3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077

Under review as a conference paper at ICLR 2026

Proof of Theorem I.1. The proof is similar to the proof of Lemma F.2. Due to Theorem E.2, we know
that 1

K

∑K−1
k=0 E

[
∥∇f(xk)∥2

]
≤ ε for

K =

⌈
4BL∆

ε
+

8σ2L∆

ε2

⌉
.

Using Lemma I.2, the total time to find an ε–stationary point is

O
(
T (B)× K

B

)
= O

(
T (B)×

(
L∆

ε
+

σ2L∆

Bε2

))
.

Using the choice of B,

O
(
T (B)× K

B

)
= O

 min
m∈[n]

max

max{hm, τm},
(

m∑
i=1

1

hi

)−1
σ2

ε


× L∆

ε

 .

57

3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131

Under review as a conference paper at ICLR 2026

J PERFORMANCE OF Rennala SGD AND Ringmaster ASGD ON A QUADRATIC
FUNCTION

In this section, we formally prove that the convergence of Ringmaster ASGD can be provably faster
than Rennala SGD due to the frequent model updates.
Theorem J.1. Consider Rennala SGD (Alg. 4) and Ringmaster ASGD (Alg. 7) with the optimal
parameters B from Sec. F. Then, there exists a µ-strongly convex function and corresponding
stochastic gradients that satisfy Assumptions 1.1, 1.2, and 1.3 with σ2

/ε ≥ n, such that Rennala SGD,
with any step size γ, requires

Θ̃

(
σ2

nε
× h× L

µ

)
seconds to find ε-stationary point under the hi-fixed computation model (20) with hi = h for all
i ∈ [n]. At the same time, there exists a step size for Ringmaster ASGD such that it requires at most

Õ
(
h× L

µ

)
seconds to find ε-stationary point.

Proof. In this construction, we take f : R2 → R such that

f(w ≡ (x, y)) =
µx2

2
+

Ly2

2
(40)

for all x, y ∈ R. Moreover, we assume that the stochastic gradients ∇f(w; ξ) are equal to the true
gradient ∇f(w); thus, there is no randomness. Note that a priori, both methods do not have this
information and therefore must choose B = Θ

(
σ2

ε

)
, even though the effective variance is zero.

By the design of Rennala SGD, its algorithm is equivalent to the following steps:

wt+1 = wt − γB∇f(wt) (41)

because the workers calculate B gradients in every global round. Each round takes

Θ

(
h× B

n

)
= Θ

(
h
σ2

nε

)
seconds, because the workers have the computation speed h and B = Θ

(
σ2

ε

)
in Theorem F.1.

It is well known that the sequence (41) requires

Θ̃

(
L

µ

)
iterations (up to logarithmic factors) to find an ε-solution or ε-stationary point with the function (40),
even when the step size γ can be tuned. Thus, the computational time complexity of Rennala SGD is

Θ̃

(
σ2

nε
× h× L

µ

)
seconds.

Consider now the steps of Ringmaster ASGD w.r.t. the first argument x. In this algorithm, we take
γ = 1

2Ln . In the case when the computation time is equal for all workers, the first n steps are

x1 = x0 − γµx0 = (1− γµ)x0,

x2 = x1 − γµx0 = (1− 2γµ)x0,

...

xn = xn−1 − γµx0 = (1− nγµ)x0,

58

3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185

Under review as a conference paper at ICLR 2026

because the workers start calculating at the same point and return the gradients at the same time.
Notice that 0 ≤ xn ≤ · · · ≤ x2 ≤ x1. Then, the first worker starts calculating at x1, the seconds
worker starts calculating at x2, and so on. Therefore, the next steps are

xn+1 = xn − γµx1

= (1− nγµ)x0 − γµ(1− γµ)x0 = (1− (n+ 1)γµ+ γ2µ2)x0,

xn+2 = xn+1 − γµx2

= (1− (n+ 1)γµ+ γ2µ2)x0 − γµ(1− 2γµ)x0 = (1− (n+ 2)γµ+ 3γ2µ2)x0,

...

x2n = x2n−1 − γµxn =

(
1− 2nγµ+

n(n+ 1)

2
γ2µ2

)
x0 ≤ (1− nγµ)

2
x0.

For γ = 1/2Ln, we have 0 ≤ x2n ≤ · · · ≤ xn+1 ≤ xn ≤ · · · ≤ x2 ≤ x1. Using mathematical
induction, assume that 0 ≤ xkn ≤ · · · ≤ x1 for some k ≥ 1 and xpn ≤ (1− nγµ)

p
x0 for all p ≤ k,

which is true for k = 2 (base case). We now prove it for k + 1. Ringmaster ASGD calculates xkn+1

as follows:

xkn+1 = xkn − γµx(k−1)n+1,

which ensures that xkn+1 ≤ (1− γµ)xkn ≤ xkn and xkn+1 ≥ x(k−1)n+1 − γµx(k−1)n+1 ≥ 0 for
γ = 1/2Ln. We can continue:

xkn+2 = xkn+1 − γµx(k−1)n+2,

which ensures that

xkn+2 ≤ xkn+1 − γµxkn ≤ (1− γµ)xkn − γµxkn = (1− 2γµ)xkn

and xkn+2 ≥ x(k−1)n+2 − γµx(k−1)n+2. Continuing, we have

x(k+1)n = x(k+1)n−1 − γµxkn.

One can show that

x(k+1)n ≤ (1− (n− 1)γµ)xkn − γµxkn ≤ (1− nγµ)xkn,

and x(k+1)n ≥ xkn − γµxkn ≥ 0. We have proved the next case, k + 1, of the mathematical
induction.

Thus, the sequence {xpn}p≥2 monotonically decreases with the rate

xpn ≤ (1− nγµ)
p
x0.

Using the same reasoning, we one can show the similar result holds for the second argument y of the
function but with L instead of µ.

Recall that it takes h seconds to calculate xn because n workers work in parallel, it takes h seconds
to calculate x2n, and so on. Thus, the computational time complexity of Ringmaster ASGD is

Õ
(
h× L

µ

)
with step size γ = 1

2Ln .

59

	Introduction
	Related work
	Contributions

	Birch SGD: A General View of SGD Methods
	Main theoretical result on convergence rates

	Existing and New Algorithms: Summary and Comparison
	Insights and Guidelines
	Summary of experimental results
	Additional Discussion
	Discussion of the computational time complexities
	More related work
	Relation to other frameworks

	Notations
	Experiments
	Setup
	Experiments with logistic regression
	Experiments with ResNet18 and image classification
	Experiments with GPT2 and token prediction
	Parameters of the experiments

	Proof of Theorem 2.4
	Proof technique and reasons for choosing the conditions
	Full proof

	Detailed Description of Algorithms and Iteration Rates
	Vanilla SGD
	Rennala SGD
	Local SGD
	Ringmaster ASGD
	Cycle SGD
	Async-Local SGD
	Async-Batch SGD
	Local-Async SGD
	Nested Local-Async SGD
	Meta Local SGD
	Dual-Process SGD

	Computational Time Complexities of Algorithms under hi-Fixed Computation Model
	Rennala SGD
	Ringmaster ASGD
	Local SGD
	Local-Async SGD
	Nested Local-Async SGD
	Async-Local SGD
	Cycle SGD
	Dual-Process SGD

	Total Time Complexities of Algorithms under (h,)-Fixed Computation Model
	Rennala SGD
	Local SGD
	Cycle SGD
	Async-Local SGD
	Ringmaster ASGD

	Comparison Between Our Local SGD and the Canonical Local SGD
	Total Time Complexities of Algorithms under (hi,i)-Fixed Computation Model
	Dual-Process SGD

	Performance of Rennala SGD and Ringmaster ASGD on a Quadratic Function

