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ABSTRACT

Large language models now solve many benchmark math problems at near-expert
levels, yet this progress has not fully translated into reliable performance in
real-world applications. We study this gap through contextual mathematical rea-
soning, where the mathematical core must be formulated from descriptive sce-
narios. We introduce CORE-MATH, a benchmark that repurposes AIME and
MATH-500 problems into two contextual settings: Scenario Grounding (SG),
which embeds abstract problems into realistic narratives without increasing rea-
soning complexity, and Complexity Scaling (CS), which transforms explicit con-
ditions into sub-problems to capture how constraints often appear in practice.
Evaluating 61 proprietary and open-source models, we observe sharp drops: on
average, open-source models decline by 13 and 34 points on SG and CS, while
proprietary models drop by 13 and 20. Error analysis shows that errors are dom-
inated by incorrect problem formulation, with formulation accuracy declining as
original problem difficulty increases. Correct formulation emerges as a prereq-
uisite for success, and its sufficiency improves with model scale, indicating that
larger models advance in both understanding and reasoning. Nevertheless, formu-
lation and reasoning remain two complementary bottlenecks that limit contextual
mathematical problem solving. Finally, we find that fine-tuning with scenario data
improves performance, whereas formulation-only training is ineffective. How-
ever, performance gaps are only partially alleviated, highlighting contextual math-
ematical reasoning as a central unsolved challenge for LLMs.

1 INTRODUCTION

Large language models (LLMs) now dominate mathematical benchmarks, scoring nearly perfectly
on AIME (OpenAI, 2024; Guo et al., 2025; OpenAI, 2025) and even reaching IMO gold1. Yet
these successes remain confined to well-defined benchmark problems, with little sign of comparable
progress on the broader reasoning skills required for real-world impact (Qian et al., 2025).

This gap reflects a fundamental divide in mathematics. On one side are well-defined abstract prob-
lems, such as algebra or analytic geometry, that can be solved through established strategies and
symbolic manipulation (Polya, 1945; Schoenfeld, 2014). On the other side are scenario-based prob-
lems, ranging from financial analysis to scientific research and engineering design, where the math-
ematical core is conveyed through concrete narrative detail. Existing benchmarks overwhelmingly
target the former (Cobbe et al., 2021a; Lightman et al., 2023; He et al., 2024), leaving the latter
largely unexamined. In this work, we term this underexplored domain contextual mathematical
reasoning: the ability to formulate and solve the mathematical problem when it is embedded in
narrative scenarios with indirect or layered conditions.

To investigate this capability, we introduce CORE-MATH (COntextual Reasoning Evaluation
for Math), a benchmark designed to probe contextual mathematical reasoning systematically.
Rather than seeking massive collections of real-world tasks, CORE-MATH builds on standard
sources—AIME 2024, AIME 2025, and MATH-500 (Lightman et al., 2023)—and instantiates each
problem in two controlled narrative variants: Scenario Grounding (SG) embeds abstract mathemat-
ical structures into concrete narratives with real-world entities and interactions. The reasoning core

1https://x.com/alexwei_/status/1946477742855532918
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(2) Scenario Grounding:
…three distinct components within a sophisticated smart energy system…

…with positive values that do not exceed 729 units...

...raising their output metrics to the third power and summing these values, must yield a 
total that is perfectly divisible by 2,187…

…find the remainder when this number is divided by 1,000 for reporting purposes…

(1) Original Problem:
Let N denote the number of ordered triples of positive integers (a,b,c) such that �, � , � ≤ 36 and �3 + �3 + � 3 is a multiple of 37. 
Find the remainder when N is divided by 1000.

(3) Complexity Scaling:
In a simulation lab, three autonomous drones are sent out along separate axes — one moves north-south, one east-west, and one 
vertically. Each drone travels forward by a positive number of whole steps. These steps must remain below a certain threshold, 
which is known to be a power of 3. It is known that step counts as high as 2000 are not allowed, while 250 is within the 
allowed range. As part of a synchronization test, the system calculates a combined energy score by summing the cubes of the 
step counts of all three drones. Synchronization only succeeds if this total energy is also a multiple of a certain power of 3. 
From prior data, an energy total of 1458 fails to trigger the sync, but 8748 does trigger it. How many such ordered drone 
configurations satisfy both conditions? Report your answer as the remainder when this number is divided by 1000.

Figure 1: Example from CORE-MATH, based on AIME 2025 Problem 15. In Scenario Grounding
(SG), mathematical components are mapped to a narrative. In Complexity Scaling (CS), explicit
conditions are concealed in sub-problems requiring an extra inference step. Consistent color-coding
highlights correspondence between mathematical components across the three versions. LLMs re-
main strong on abstract benchmarks but drop accuracy on SG, with the gap widening further on CS.

remains unchanged, but the problem is situated in descriptions that naturally introduce contextual
detail. Complexity Scaling (CS) conceals explicit conditions within sub-problems in the scenario.
For example, an absolute position may be given relative to a reference point, or a numerical bound
may appear as the result of a short calculation. These sub-problems yield exactly the information
originally explicit, while reflecting how constraints are often expressed in real-world settings. This
format also reduces reliance on surface pattern matching, since models must first interpret the sce-
nario to recover the original conditions. Although demonstrated here for mathematics, the same
approach applies to other domains and datasets, enabling systematic evaluation of contextual rea-
soning beyond math. Figure 1 illustrates such mappings; for example, the variables (a, b, c) in the
original problem correspond to system components in SG and drone movements in CS.

Our results show that both leading open-source and proprietary LLMs experience a substantial de-
cline in contextual mathematical reasoning compared to their strong performance on original bench-
marks. On average, open-source models drop 13% on SG and 34% on CS, while proprietary models
fall 13% and 20%, respectively. For example, Qwen3-32B falls from 81.25% on AIME 2024 prob-
lems to 67.92% on SG and 57.08% on CS. A similar trend holds for proprietary systems: even
DeepSeek-R1 drops from 86.67% to 73.33% (SG) and 53.33% (CS) on AIME 2025.

To better understand these limitations, we analyze models’ ability to formulate the mathematical
core from narrative scenarios. We find that performance declines as problems become harder, and
although larger models perform better, even GPT-5 averages only 81.4% formulation accuracy.
Furthermore, correct formulation proves to be a prerequisite: correctly solved problems show much
higher formulation accuracy than average, establishing formulation as the first bottleneck. We fur-
ther observe that as models scale and formulation accuracy improves, correct formulation increas-
ingly becomes sufficient for solution correctness, indicating progress in both problem understanding
and reasoning. Yet even GPT-5 reaches only 82.7% sufficiency, showing that reasoning remains a
second major bottleneck for real-world mathematical problem solving.

We further explore whether the performance drops can be alleviated via training. Our results show
that fine-tuning with scenario data effectively improves models’ performance on our benchmark, yet
a sizable drop on contextual variants still remains, indicating that contextual mathematical reasoning
is far from solved. In contrast, directly training a dedicated formulation model proves ineffective,
suggesting that formulation ability is difficult to acquire from paired supervision alone.
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Our contributions can be summarized as follows:

• New task. We frame contextual mathematical reasoning, the ability to extract and solve the
mathematical core from narrative descriptions, as a critical but underexplored capacity for LLMs.

• New benchmark. We propose CORE-MATH, which instantiates problems from AIME and
MATH-500 into Scenario Grounding (SG) and Complexity Scaling (CS) variants to probe mathe-
matical formulation and reasoning under contextual challenges. Evaluations show large accuracy
drops on SG and CS relative to abstract benchmarks, revealing a clear and persistent gap between
abstract and contextual mathematical reasoning in current LLMs.

• New insights. Through quantitative and qualitative analysis, we identify formulation and reason-
ing as complementary bottlenecks, and provide evidence that training with scenario data improves
performance, whereas training a dedicated formulation model remains ineffective. These findings
suggest that contextual mathematical reasoning is learnable, but cannot be reduced to isolated
skills, highlighting the need for integrated approaches to advance formulation and reasoning.

2 RELATED WORK

Benchmarks on Abstract Mathematical Problems. Much of the progress in evaluating LLMs’
mathematical ability has been driven by benchmarks centered on abstract, well-specified prob-
lems. GSM8K (Cobbe et al., 2021b) covers grade school arithmetic word problems, while
MATH (Hendrycks et al., 2021b) spans high-school curricula, and AIME, AMC23, and Olympiad-
Bench (He et al., 2024) emphasize challenging competition-style questions. There are also bench-
marks that target formal theorem proving, such as PutnamBench (Tsoukalas et al., 2024), Lean-
Dojo (Yang et al., 2023), and MiniF2F (Zheng et al., 2021). While some existing problems contain
simple narratives such as “Jack had 8 pens and Mary had 5 pens. . . ,” (Patel et al., 2021) these con-
texts are shallow and limited in scope. As such, current benchmarks primarily capture performance
on clearly formulated abstract problems, leaving open the question of how well models can reason
about mathematics when it is embedded in richer contexts.

From Abstract Problems to Scenarios. Across domains, a growing line of work has begun
to examine model reasoning in realistic settings. For example, WebArena (Zhou et al., 2024)
evaluates agents in interactive web environments, while SWE-bench (Jimenez et al., 2024) and
BaxBench (Vero et al., 2025) focus on real-world software engineering tasks. Our work falls within
this broader scope, but focuses specifically on mathematical reasoning in scenarios.

3 PROBING LLMS’ ABILITY TO SOLVE MATH IN SCENARIOS

3.1 OVERVIEW

A central question of this work is whether LLMs possess contextual mathematical reasoning—the
ability to formulate and solve the mathematical core when problems are embedded in descriptive sce-
narios. This capacity is crucial for applying mathematics in practical domains, where tasks rarely ap-
pear as ready-made equations. Collecting large numbers of real-world instances, however, is costly
and difficult to scale. We therefore leverage established benchmarks with guaranteed correctness and
systematically transform them into contextual variants. Concretely, we build CORE-MATH, which
instantiates each benchmark problem in two forms: Scenario Grounding, preserving the original
structure but embedding it in narrative context; and Complexity Scaling, encoding explicit condi-
tions into simple sub-problems. We then evaluate a diverse set of 46 open-source models and 15
proprietary models, including GPT-5 and DeepSeek-R1.

3.2 BENCHMARK CONSTRUCTION

Our benchmark is constructed from AIME 2024, AIME 2025, and MATH-5002. Our design follows
two principles: preserving mathematical equivalence and embedding problems in realistic narrative
contexts. To realize this, we employ a series of structured prompts that guide an LLM (o1-mini)

2We select only problems with difficulty level ≥3 from MATH-500, since easier items are less suitable for
embedding into meaningful scenarios. For simplicity, we continue to refer to this filtered subset as MATH-500
throughout the paper. We do not construct the CS set for MATH-500 because some remaining items are too
trivial to transform further, e.g., ‘Evaluate (1 + 2i)(6− 3i).‘.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Model AIME 2024 (%) AIME 2025 (%)

Ori SG SG Avg@3 CS Ori SG CS

Copilot 30.0 30.0 ( -0% ) 28.9 ( -4% ) 23.3 ( -22% ) 33.3 20.0 ( -40% ) 16.7 ( -50% )

gpt-4o-mini 6.7 3.3 ( -50% ) 6.7 ( -0% ) 3.3 ( -50% ) 10.0 6.7 ( -33% ) 0.0 ( -100% )

o1-mini 60.0 53.3 ( -11% ) 53.3 ( -11% ) 40.0 ( -33% ) 40.0 33.3 ( -17% ) 23.3 ( -42% )

gpt-4o 16.7 13.3 ( -20% ) 11.1 ( -33% ) 3.3 ( -80% ) 10.0 6.7 ( -33% ) 0.0 ( -100% )

gpt-4.1-mini 46.7 26.7 ( -43% ) 34.4 ( -26% ) 30.0 ( -36% ) 53.3 30.0 ( -44% ) 16.7 ( -69% )

gpt-4.1-nano 26.7 23.3 ( -13% ) 18.9 ( -29% ) 6.7 ( -75% ) 33.3 20.0 ( -40% ) 13.3 ( -60% )

R1 93.3 70.0 ( -25% ) 70.0 ( -25% ) 66.7 ( -29% ) 86.7 73.3 ( -15% ) 53.3 ( -38% )

Doubao-1.5 90.0 70.0 ( -22% ) 66.7 ( -26% ) 56.7 ( -37% ) 76.7 53.3 ( -30% ) 43.3 ( -43% )

Qwen-max 23.3 16.7 ( -29% ) 14.4 ( -38% ) 6.7 ( -71% ) 13.3 10.0 ( -25% ) 0.0 ( -100% )

QwQ-plus 86.7 56.7 ( -35% ) 60.0 ( -31% ) 46.7 ( -46% ) 73.3 53.3 ( -27% ) 43.3 ( -41% )

Grok3 43.3 23.3 ( -46% ) 22.2 ( -49% ) 23.3 ( -46% ) 26.7 13.3 ( -50% ) 20.0 ( -25% )

Gemini 2.5 Flash 70.0 63.3 ( -10% ) 61.1 ( -13% ) 53.3 ( -24% ) 70.0 43.3 ( -38% ) 30.0 ( -57% )

Gemini 2.5 Pro 83.3 73.3 ( -12% ) 68.9 ( -17% ) 76.7 ( -8% ) 83.3 56.7 ( -32% ) 50.0 ( -40% )

o3 83.3 70.0 ( -16% ) 73.3 ( -12% ) 66.7 ( -20% ) 76.7 70.0 ( -9% ) 60.0 ( -22% )

gpt-5 90.0 83.3 ( -7% ) 82.2 ( -9% ) 80.0 ( -11% ) 90.0 80.0 ( -11% ) 66.7 ( -26% )

Table 1: Accuracy of proprietary models on CORE-MATH. Best and second-best results per column
are in bold and underlined, respectively. Parentheses indicate the relative performance change from
Ori, with larger drops highlighted in a deeper shade of red. To verify that our findings are consistent
and not an artifact of specific scenarios, we additionally generated and annotated two AIME2024-
SG sets, reporting the average accuracy across all three in the SG Avg@3 column.

through iterative scenario generation, self-verification, and revision. Human experts then review and
refine each item to guarantee mathematical equivalence, clarity and conciseness3.

Scenario Grounding (SG): Evaluating the Application of Math in Context. The primary goal
of scenario grounding is to assess whether a model can apply its mathematical knowledge when
problems are presented in a narrative context, without increasing the core reasoning difficulty. To
achieve this, our generation process is guided by a multi-step prompt that instructs the model to
first explicitly map all abstract mathematical elements to specific real-world objects (e.g., mapping
”a variable x” to ”the initial number of barrels of oil”). The prompt then directs the model to
define the rules of interaction between these objects based on the attributes and relationship in the
problem. This structured approach ensures that all mathematical components of the original problem
are preserved in the final scenario (see Appendix A.2 for the full prompt).

Complexity Scaling (CS): Encoding Implicit Constraints through Sub-Problems. In many
real-world settings, quantitative conditions must be inferred from indirect descriptions, such as sim-
ple calculations, relative positions, or everyday facts. To reflect this natural form of complexity, CS
problems transform some direct conditions into the outputs of simple, self-contained sub-problems.
For example, instead of stating there are ”25 indicator lights”, the problem may specify that ”the
total number of unique pairs of indicator lights is exactly 300”. Our generation prompt provides
principled strategies for such transformations, including encoding values as the solutions to num-
ber theory or combinatorics problems, replacing explicit functions or constants with variables to be
determined from given data points, and rephrasing geometric relationships in terms of physical or
structural descriptions. This design also provides a more faithful and robust test of a model’s rea-
soning ability by reducing reliance on superficial pattern matching, a behavior widely documented
in prior studies showing the limited generalization of LLMs (Sun et al., 2025; Huan et al., 2025).

3.3 EVALUATION SETUP

Models. We evaluate 46 advanced open-source models (including base, SFT, and RL-tuned) and
15 frontier proprietary models4. Details are provided in Appendix A.3.

3The average lengths of SG and CS problems are 133 and 176 words, respectively, both well within the
processing capabilities of current LLMs.

4Since AIME 2024 and AIME 2025 results already established a performance trend for proprietary models,
and given the high API costs of Math-500, we excluded proprietary models from this part of the evaluation.
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Model AIME 2024 (%) AIME 2025 (%) Math-500 (%)

Ori SG CS Ori SG CS Ori SG

≤4B

Qwen3-0.6B 7.9 6.2 ( -21% ) 0.4 ( -95% ) 15.4 5.4 ( -65% ) 2.5 ( -84% ) 62.4 42.6 ( -32% )

Qwen2.5-Math-1.5B 11.5 2.5 ( -79% ) 0.4 ( -96% ) 4.6 0.8 ( -82% ) 0.0 ( -100% ) 32.5 25.8 ( -21% )

↪→R1-Distil-Qwen-1.5B 28.3 20.0 ( -29% ) 7.1 ( -75% ) 19.6 9.6 ( -51% ) 5.8 ( -70% ) 74.0 57.6 ( -22% )

↪→DeepScaleR-1.5B-Preview 41.5 23.3 ( -44% ) 7.5 ( -82% ) 30.4 15.4 ( -49% ) 7.5 ( -75% ) 80.1 64.2 ( -20% )

↪→OpenMath-Nemotron-1.5B 62.5 34.2 ( -45% ) 14.6 ( -77% ) 50.4 21.2 ( -58% ) 11.2 ( -78% ) 87.3 70.1 ( -20% )

↪→DeepMath-Omn-1.5B 62.9 33.8 ( -46% ) 13.8 ( -78% ) 55.8 20.8 ( -63% ) 12.5 ( -78% ) 87.1 73.0 ( -16% )

Qwen3-1.5B 46.2 29.6 ( -36% ) 12.5 ( -73% ) 34.6 24.6 ( -29% ) 11.2 ( -67% ) 84.1 67.4 ( -20% )

Qwen3-4B 70.4 52.5 ( -25% ) 34.6 ( -51% ) 64.2 39.6 ( -38% ) 33.8 ( -47% ) 90.9 78.8 ( -13% )

7B/8B

Qwen2.5-Math-7B 10.8 6.7 ( -38% ) 1.5 ( -85% ) 5.0 3.3 ( -33% ) 0.8 ( -83% ) 44.8 36.7 ( -18% )

↪→OpenMath-Nemotron-7B 72.9 52.1 ( -29% ) 30.0 ( -59% ) 60.0 40.4 ( -33% ) 29.2 ( -51% ) 90.5 78.5 ( -13% )

↪→R1-Distil-Qwen-7B 48.8 40.0 ( -18% ) 23.3 ( -52% ) 41.5 22.5 ( -46% ) 15.0 ( -64% ) 87.4 73.9 ( -15% )

↪→AceMath-RL-Nemotron-7B 69.2 48.8 ( -30% ) 32.9 ( -52% ) 54.2 26.7 ( -51% ) 22.5 ( -58% ) 89.9 79.0 ( -12% )

Qwen3-8B 73.8 61.5 ( -16% ) 42.9 ( -42% ) 64.6 48.3 ( -25% ) 35.8 ( -45% ) 91.0 81.0 ( -11% )

↪→R1-0528-Qwen3-8B 75.0 55.0 ( -27% ) 39.6 ( -47% ) 65.8 48.3 ( -27% ) 32.9 ( -50% ) 90.7 77.2 ( -15% )

↪→AReaL-boba-2-8B 74.2 58.3 ( -21% ) 41.5 ( -44% ) 67.9 47.9 ( -29% ) 37.1 ( -45% ) 91.5 82.0 ( -11% )

14B

Qwen2.5-14B 6.2 3.8 ( -40% ) 1.5 ( -73% ) 3.3 1.5 ( -50% ) 0.0 ( -100% ) 48.5 34.9 ( -28% )

↪→R1-Distil-Qwen-14B 67.5 47.1 ( -30% ) 35.4 ( -48% ) 50.8 26.2 ( -48% ) 25.8 ( -49% ) 89.5 76.9 ( -14% )

↪→OpenMath-Nemotron-14B 73.8 51.5 ( -30% ) 42.1 ( -43% ) 63.8 42.5 ( -33% ) 29.2 ( -54% ) 90.8 80.8 ( -11% )

Qwen3-14B 80.0 64.6 ( -19% ) 50.8 ( -36% ) 72.9 49.2 ( -33% ) 42.1 ( -42% ) 92.6 81.9 ( -12% )

↪→AReaL-boba-2-14B 82.9 65.8 ( -21% ) 53.8 ( -35% ) 73.3 52.1 ( -29% ) 39.2 ( -47% ) 91.9 82.9 ( -10% )

Phi-4-reasoning-plus 80.4 60.4 ( -25% ) 52.9 ( -34% ) 71.5 55.4 ( -22% ) 39.6 ( -45% ) 92.6 83.1 ( -10% )

≥32B

Qwen2.5-32B 11.2 6.7 ( -41% ) 3.3 ( -70% ) 3.8 2.9 ( -22% ) 0.0 ( -100% ) 45.2 37.8 ( -16% )

↪→OpenMath-Nemotron-32B 57.1 42.5 ( -26% ) 27.9 ( -51% ) 52.1 34.6 ( -34% ) 27.5 ( -47% ) 75.8 61.8 ( -18% )

↪→R1-Distil-Qwen-32B 69.6 52.5 ( -25% ) 39.2 ( -44% ) 56.2 39.6 ( -30% ) 30.0 ( -47% ) 89.4 78.9 ( -12% )

Qwen3-32B 81.2 67.9 ( -16% ) 57.1 ( -30% ) 70.0 54.4 ( -22% ) 45.0 ( -36% ) 92.1 82.7 ( -10% )

↪→AReaL-boba-2-32B 81.5 65.4 ( -20% ) 58.3 ( -29% ) 77.1 55.0 ( -29% ) 43.8 ( -43% ) 92.3 82.9 ( -10% )

QwQ-32B 80.4 58.3 ( -27% ) 53.3 ( -34% ) 66.2 53.3 ( -20% ) 39.2 ( -41% ) 92.5 82.9 ( -10% )

R1-Distill-Llama-70B 65.4 48.8 ( -25% ) 38.8 ( -41% ) 50.0 38.8 ( -22% ) 29.2 ( -42% ) 89.8 77.3 ( -14% )

Table 2: Accuracy of open-source models on CORE-MATH. Models are grouped by parameter
scale, and best and second-best results within each group are shown in bold and underlined, respec-
tively. Parentheses indicate the relative performance change from Ori, with larger drops highlighted
by a deeper shade of red. Arrows (↪→) denote variants obtained from the model listed directly above.
Full results are provided in Appendix A.4

Metrics. We use accuracy as the performance metric. For open-source models, we sample 16
solutions per problem using their recommended generation configurations and report the average
accuracy. For proprietary models, which are accessed via APIs or client interfaces that often have
rate limits or higher costs, we report the accuracy of a single-pass evaluation.

3.4 RESULTS

Our main experimental results, presented in Table 1 and 2, reveal three clear insights:

Contextual Complexity as a Universal Bottleneck. Both open-source and proprietary mod-
els show consistent and severe performance drops on contextual scenarios. For instance,
DeepSeek-R1-0528-Qwen3-8B falls from 75.0% on AIME 2024 to 39.6% on its CS vari-
ant, and QwQ-plus from 86.7% to 46.7%. Even GPT-5, with an estimated 1.8T parameters, drops
26% on AIME 2025-CS. These findings make clear that contextual mathematical reasoning remains
a fundamental and unresolved challenge, underscoring that progress on abstract math does not fully
translate into robust performance in contextual settings.
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Scale Mitigates but Does Not Solve the Problem. In open-source evaluations, larger
models retain more robustness, but scaling does not eliminate contextual failure. In the
OpenMath-Nemotron series on AIME 2024-CS, the 1.5B model drops 77%, compared to 43%
and 51% for 14B and 32B. Similar trends hold for R1-Distil-Qwen2.5 and Qwen3 families.
Larger models are more resilient, but interpreting complex narratives remains a core bottleneck.

Initial SFT Improves Robustness, but Further Specialization Does Not. A first stage of su-
pervised fine-tuning consistently improves both original and contextual accuracy. For example,
Qwen2.5-Math-7B→R1-Distil-Qwen-7B not only boosts AIME accuracy but also reduces
contextual drop. However, further SFT or RL for advanced reasoning does not improve con-
textual tasks. Models such as R1-Distil-Qwen-7B→AceMath-RL-Nemotron-7B and
Qwen3-8B→DeepSeek-R1-0528-Qwen3-8B improve on AIME 2024/25 but not on SG or
CS, often with even larger drops. This suggests current post-training can over-specialize to canoni-
cal formats, reinforcing pattern recognition rather than contextual reasoning.

4 ANALYSIS OF FAILURE MODES: THE FORMULATION BOTTLENECK

The performance degradation observed in Section 3 motivates an analysis of the underlying failure
modes. Our central hypothesis is that these failures do not primarily stem from flawed computational
reasoning, but from the incorrect interpretation of the problem’s mathematical structure from its
narrative context. This section validates this hypothesis through a combination of qualitative analysis
and quantitative experiments that isolate contextual mathematical problem formulation skill.

4.1 QUALITATIVE ANALYSIS: INCORRECT MATHEMATICAL INTERPRETATION

DeepSeek R1 Gemini 2.5 Pro Qwen3-32B
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Figure 2: Distribution of error types in failure cases
on AIME 2024/2025 SG and CS problems, where
ratios indicate the proportion of cases exhibiting
each error type.

To examine how such failures occur, we
ask GPT-5 to categorize the errors made by
DeepSeek R1, Gemini 2.5 Pro, and
Qwen3-32B on the SG and CS sets of AIME
2024 and 2025, restricted to cases where the
same models solve the original version cor-
rectly. Errors are grouped into four categories:
formulation (incorrect mapping from narrative
to math), calculation, logic, and other (e.g.,
truncation, repetition). Figure 2 shows that
formulation errors dominate, accounting for
roughly 80% of failures across all three mod-
els and far exceeding any other type. A typ-
ical case is given in Appendix A.5, where
DeepSeek R1 fails to recognize that “the
time for a gear to complete one rotation is ad-
justable, but it must not exceed six rotations
per minute” implies the inequality x ≥ 10,
with x denoting seconds per rotation. This consistent pattern confirms that formulation is the pri-
mary weakness in contextual reasoning.

4.2 QUANTITATIVE VALIDATION: EVALUATING PROBLEM FORMULATION FROM CONTEXT

In this section, we evaluate a model’s ability to abstract a mathematical formulation from a given
scenario. For each problem in the SG and CS test sets, the model is prompted to output only the
core formulation, stripped of all narrative details. In addition to reporting formulation accuracy, we
analyze the necessity and sufficiency of correct formulations for correct reasoning, highlighting the
fundamental relationship between them.

Evaluation Setups. We carefully design the instructions and examples to prompt o1-mini as
an automated judger, which determines whether the model’s output is mathematically equivalent
to the original problem.5 For each problem, we evaluate 16 samples using the same seed set

5We manually annotated the outputs of Qwen3-14B and Qwen3-32B and found that the judger’s assess-
ments align with human judgments in over 90% of cases.
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Model Formulation Accuracy (%) Formulation Necessity (%) Formulation Sufficiency (%)

MATH AIME24 AIME25 Avg. MATH AIME24 AIME25 Avg. MATH AIME24 AIME25 Avg.

R1-Distill-Qwen-1.5B 62.3 48.8 40.4 48.1 70.6 52.6 58.3 58.5 65.0 13.8 12.5 23.5

R1-Distill-Qwen-7B 75.7 57.9 47.1 57.1 82.9 67.0 60.8 67.7 81.1 38.7 24.5 41.5

R1-Distill-Qwen-14B 85.7 68.8 51.7 65.3 90.1 76.2 79.8 80.4 80.8 47.9 37.0 50.1

R1-Distill-Qwen-32B 87.3 71.7 59.6 70.0 91.8 78.5 73.9 79.3 83.5 48.8 42.7 53.3

Qwen3-0.6B 57.4 37.9 40.4 42.8 69.2 76.4 29.2 56.1 52.2 6.0 1.7 13.5

Qwen3-1.7B 82.5 57.1 56.7 62.0 90.1 79.1 75.8 80.0 73.8 28.6 20.8 34.5

Qwen3-4B 84.8 64.6 47.1 61.6 90.3 85.5 67.4 79.2 83.6 57.1 54.2 61.3

Qwen3-8B 86.3 77.9 63.3 73.8 91.3 86.7 77.2 83.8 86.3 57.7 51.0 60.7

Qwen3-14B 87.1 72.9 64.6 72.4 90.4 78.5 88.4 84.8 85.2 61.0 62.2 66.3

Qwen3-32B 89.3 77.1 65.8 75.0 92.0 77.2 81.4 81.9 85.0 63.0 56.6 64.9

gpt5 90.5 85.0 73.3 81.4 94.5 87.6 79.2 85.6 86.9 84.2 79.2 82.7

Table 3: Problem formulation performance across different models. Formulation Accuracy denotes
how often a model correctly translates a scenario into its formulation. Formulation Necessity quan-
tifies the extent to which correct formulations are required for correct reasoning, while Formulation
Sufficiency evaluates whether correct formulations reliably lead to correct reasoning. The AIME24
and AIME25 columns show the average of their SG and CS sets, while the ‘Avg.’ column is the
mean over all sets. Darker cell colors indicate higher values.

as in our benchmark evaluation (Section 3) and report three complementary metrics. The first is
Formulation Accuracy , defined as the mean of the judger’s assessments across samples. The sec-

ond is Formulation Necessity, which measures how often a correct problem formulation is required
for a correct solution. Formally, let F denote whether the formulation is correct and R whether the
reasoning produces the correct answer. Necessity is defined as the conditional probability

Formulation Necessity = P (F = True | R = True). (1)

This quantifies the consistency of the relation R⇒F . The third is Formulation Sufficiency, which
evaluates whether a correct formulation reliably leads to a correct solution. It is given by

Formulation Sufficiency = P (R = True | F = True). (2)

This corresponds to the coverage of the relation F ⇒ R. Together, these three metrics offer a
coherent perspective: accuracy captures overall performance, while necessity and sufficiency jointly
characterize the directional dependency between formulation and reasoning.
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Figure 3: Relationship between reasoning accuracy
and formulation metrics. Each point represents a
model, with the x-axis showing its average reason-
ing accuracy across all subsets and the y-axis show-
ing the corresponding values of formulation accu-
racy (orange), necessity (green), and sufficiency
(blue). The fitted lines indicate the overall trends.

Results. To present an overview of model
behavior, we report aggregated formulation
metrics in Table 3, where the AIME24 and
AIME25 scores are averaged over their SG
and CS sets for simplicity, while the full break-
down is provided in Appendix A.6. To further
analyze the relationship between formulation
and overall task performance, we also com-
bine these metrics with the reasoning accura-
cies from Section 3 and visualize the correla-
tions in Figure 3. Our findings can be summa-
rized into three key insights:

(i) Formulation accuracy declines with
problem difficulty. Table 3 shows that for-
mulation accuracy (orange) decreases steadily
from MATH-500 to AIME24 to AIME25 (e.g.,
Qwen3-4B: 84.8% → 64.6% → 47.1%), con-
sistent with the increasing difficulty of the
underlying problems. This trend shows that
problems with a harder mathematical core re-
main more difficult for models to formulate

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

correctly. Scaling improves performance (e.g., Qwen3-0.6B averages 42.8% vs. 75.0% for
Qwen3-32B), but even GPT-5 remains below 75% on AIME25, underscoring that the formula-
tion challenge grows with problem difficulty and cannot be resolved by scale alone.

(ii) Correct formulation is highly necessary for correct reasoning. On average, necessity (green)
is consistently above accuracy across all models. For example, Qwen3-4B achieves 61.6% accuracy
vs. 79.2% necessity, and GPT-5 81.4% vs. 85.6%. Figure 3 confirms this pattern: necessity
closely tracks reasoning accuracy but is consistently higher, indicating that correct reasoning greatly
depends on having a correct formulation.

(iii) Beyond formulation, reasoning ability still limits success. Sufficiency (blue) improves with
scale but lags behind both accuracy and necessity. In Table 3, Qwen3-8B records 73.8% accuracy
and 83.8% necessity but only 60.7% sufficiency, while GPT-5 achieves 82.7% sufficiency. Figure 3
further highlights this gap: sufficiency rises with reasoning performance but consistently trails ne-
cessity, indicating that while correct formulation is indispensable, reliably completing the reasoning
process remains challenging even for the strongest models, thus forming a second bottleneck.

5 IMPROVING CONTEXTUAL MATHEMATICAL REASONING

Our analysis in Section 4 reveals two bottlenecks: (i) formulating the mathematical core from a sce-
nario, and (ii) carrying out the subsequent reasoning. In this section, we explore training strategies
addressing these challenges, through both end-to-end fine-tuning and dedicated formulation models.

5.1 END-TO-END TRAINING

Data. (i) Original Data: We use DeepMath-103K (He et al., 2025), a large-scale dataset of chal-
lenging mathematical problems spanning Algebra, Calculus, and Geometry. Each problem is paired
with three solutions generated by DeepSeek R1; we randomly sample one per problem as the ref-
erence solution. (ii) Synthetic Scenarios: We generate contextual scenarios for DeepMath problems
following the procedure in Section 3. To enable scalable data generation without manual verifica-
tion, we use Qwen3-32B to solve the generated scenarios and retain only those whose final answers
match the original problems, ensuring a high likelihood of equivalence. This yields 50k validated
contextual problems with model-provided reference solutions. For fairness, we also restrict the
original dataset to the corresponding 50k subset when training.

Experimental Setup. We fine-tune the Qwen3-Base series under three training regimes for con-
trolled comparison: (1) original data only (+SFTOri, 50k), (2) synthetic scenario data only (+SFTSyn,
50k), and (3) a balanced mixture of both (+SFTMix, 100k). All settings are trained with the same
number of steps for a fair comparison. In addition to our own benchmark, we further evaluate models
on AMC23 and Math-Perturb (Huang et al., 2025) to assess whether the improvements generalize
beyond our benchmark. AMC23 measures abstract mathematical reasoning independent of con-
textualization. Math-Perturb tests generalization under data shifts, with two variants derived from
level-5 MATH problems (Hendrycks et al., 2021a): Simple, which alters only non-critical surface
parameters (e.g., numbers), and Hard, which modifies the underlying mathematical core. Imple-
mentation details are provided in Appendix A.7.

Results Table 4 shows that SFT markedly boosts contextual reasoning, e.g., Qwen3-14B-Base
solves only 11.0% of AIME 2024-SG problems, but rises to 52.5% with SFTMix. Comparing
regimes, scenario supervision (SFTSyn.) is more effective than original problems (SFTOri.) on con-
textual problems, showing that models must see narratives explicitly to acquire this skill. The mix-
ture regime (SFTMix) provides the best overall balance—achieving the strongest averages across all
sizes—suggesting complementarity between abstract and scenario data. Beyond our benchmark,
models also improve on AMC23 and Math-Perturb, indicating that targeted scenario training does
not degrade abstract reasoning and even enhances robustness to distribution shifts. Larger mod-
els benefit more from scenario supervision, but even with SFTMix they solve under 40% of AIME
2024/25-CS problems, highlighting both clear progress and substantial remaining headroom.
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Model AIME 2024 (%) AIME 2025 (%) Math (%) Math-P (%) AMC23 Average
Ori SG CS Ori SG CS Ori SG Simple Hard

Qwen3-4B-Base 9.8 6.2 3.3 8.1 4.0 0.8 51.7 40.3 53.5 34.6 43.4 23.3 (+ 0.0%)
+ SFTOri. 32.5 27.3 14.2 27.9 18.5 11.5 80.5 65.5 81.2 66.3 75.6 45.6 (+22.3%)
+ SFTSyn. 34.2 32.1 17.3 31.7 20.2 11.9 78.8 70.8 80.0 65.1 74.7 47.0 (+23.7%)
+ SFTMix 36.9 31.7 19.2 30.2 22.1 12.7 81.4 72.3 82.7 69.0 78.1 48.8 (+25.5%)

Qwen3-8B-Base 13.3 7.5 2.9 10.2 6.0 1.2 58.5 46.2 61.1 38.9 54.4 27.3 (+ 0.0%)
+ SFTOri. 44.4 35.4 20.0 32.7 21.2 15.0 85.7 74.0 86.9 73.6 83.9 52.1 (+24.8%)
+ SFTSyn. 47.7 44.8 30.6 37.5 25.8 20.6 84.4 76.4 85.6 72.8 83.3 55.4 (+27.9%)
+ SFTMix 46.2 42.4 29.5 35.9 26.8 20.5 85.9 76.7 86.9 74.4 86.6 55.6 (+28.3%)

Qwen3-14B-Base 14.8 11.0 4.8 10.2 7.1 1.2 60.8 50.2 63.5 43.9 55.9 29.4 (+ 0.0%)
+ SFTOri. 50.4 39.0 25.2 41.7 25.2 20.4 85.9 73.4 85.5 75.0 89.1 55.5 (+26.1%)
+ SFTSyn. 58.3 46.4 38.8 50.0 30.3 23.9 85.5 77.5 88.7 76.3 88.9 60.4 (+31.0%)
+ SFTMix 56.5 52.5 38.8 47.2 34.6 26.5 86.7 77.8 88.2 76.1 89.8 61.3 (+31.9%)

Table 4: Performance of Qwen3-Base models after supervised fine-tuning. Each base model is
compared with variants trained on original problems (SFTOri), synthetic scenario problems (SFTSyn),
or their mixture (SFTMix). The best result within each block is highlighted in bold.

5.2 TRAINING A DEDICATED FORMULATION MODEL

With formulation identified as a bottleneck, a natural question is whether a model trained solely for
formulation, combined with an existing solver, can improve contextual reasoning. This experiment
offers a preliminary test of that idea.

Data. We use scenario–original pairs from Section 5.1, where each training instance maps a con-
textual scenario to its equivalent abstract problem.

Experimental Setup. We fine-tune Qwen3-8B and Qwen3-14B as formulation models, and also
employ them as reasoning models. We compare three settings: (i) w/o formulation: the reasoning
model solves the scenario directly; (ii) w/ formulation, training-free: the formulation model is
used without fine-tuning, and its output is solved by the reasoning model; (iii) w/ formulation,
trained: the formulation model is fine-tuned on scenario–original pairs before handing outputs to
the reasoning model. At evaluation, we sample one formulation per scenario and report the average
accuracy of 16 reasoning outputs. Implementation details are provided in Appendix A.7.

Reasoning
Model

Formulation Model (Qwen3-8/14B)

w/o Untuned Tuned

8B 14B 8B 14B

Qwen3-8B 53.9 48.9 53.4 20.8 22.3
Qwen3-14B 57.7 51.8 56.2 21.8 24.6

Figure 4: Average accuracy on CORE-
MATH. “w/o” denotes directly solving
the scenario with the reasoning model.

Results. As shown in Table 4, the best performance
comes from solving scenarios directly (w/o formula-
tion). Adding an untuned formulation stage leads to a
slight drop, indicating that the pipeline introduces extra
errors that propagate to reasoning. With a tuned formula-
tion model, performance collapses further. Since training
is stable and shows no signs of overfitting, we conclude
that formulation is difficult to learn effectively from sce-
nario–original pairs alone, and we leave the exploration
of other approaches to future work.

6 CONCLUSION

In this paper, we investigate LLMs’ ability to perform contextual mathematical reasoning, where
the mathematical core must be extracted from narrative context before solving. Through the CORE-
MATH benchmark, we shows that models which perform strongly on abstract math exhibit large
drops on contextual variants, with errors dominated by problem formulation. Our analyses identify
formulation and reasoning as two complementary bottlenecks that jointly constrain performance.
Although these processes may intertwine in complex problems, our controlled framework provides
a first step toward disentangling them and demonstrates that formulation constitutes a key obstacle.
We further show that end-to-end training with contextual data improves robustness, while directly
training a dedicated formulation model is ineffective. Overall, our study establishes contextual
mathematical reasoning as a central unsolved capability of LLMs and highlights it as a key frontier
for progress toward reliable real-world applications.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work studies LLMs through the lens of contextual mathematical reasoning. All data used are
derived from publicly available math benchmarks (AIME and MATH-500), with additional scenario
variants generated automatically and verified for mathematical equivalence. No private or sensi-
tive data were used. We evaluate only open-source and commercially available models, and all
experiments are conducted under non-interactive settings without user data collection. While our
results reveal limitations of current LLMs, these findings are intended to encourage more rigorous
evaluation and robust model design, not to promote unsafe deployment. We will release our bench-
mark openly to facilitate reproducibility and further research, subject to the same usage terms as the
underlying datasets.

REPRODUCIBILITY STATEMENT

We take reproducibility seriously in this work. The construction pipeline of CORE-MATH, includ-
ing all generation, verification, and revision prompts, is detailed in Section 3 and Appendix A.2.
Evaluation setups are described in Appendix A.3, with complete accuracy results for open-source
models reported in Appendix A.4, and results for proprietary models in Table 1. The analysis of
formulation metrics is presented in Section 4, with full breakdowns in Appendix 6. Implementation
details of all training experiments are provided in Appendix A.7. We will release our benchmark
publicly, ensuring that independent researchers can fully reproduce our benchmark, analyses, and
training results.
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A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS (LLMS)

In preparing this paper, we made limited use of LLMs to support the writing process. Specifically,
LLMs were applied to check grammar, improve clarity, and polish the style of drafts. All technical
content, experimental design, analysis, and conclusions are our own work, and the role of LLMs
was restricted to language refinement.

A.2 PROMPTS FOR DATA CONSTRUCTION

This section provides the generation, verification, and revision prompts used to transform orig-
inal AIME and MATH problems into Scenario Grounding (SG; see sections A.2.1 to A.2.3) and
Complexity Scaling (CS; see sections A.2.4 to A.2.6) versions.

A.2.1 SCENARIO GROUNDING: GENERATION PROMPT

SG Scenario Generation Prompt

Your Goal: Convert an abstract math problem into a concrete, real-world story. The new
story must be mathematically identical to the original. You can draft the story first, then use
the following steps to ensure accuracy and format your final output correctly.

[Step 1] Map All Mathematical Components
List every single mathematical element from the original problem: numbers, variables,
shapes, and operations. For each, assign a specific real-world analogue. Do not omit any
numbers or symbols.

Bad Mapping (Vague): x → initial quantity
Good Mapping (Specific): x → The initial number of barrels of oil
Bad Mapping: sqrt(2) → a multiplier
Good Mapping: sqrt(2) → A special efficiency boost calculated as the square root of 2

Output Format for Step 1:
[Step 1] [Mathematical Element] → [Specific Real-World Analogue]
...

[Step 2] Define the Real-World Rules of Interaction
Combine the analogues from Step 1 into a coherent narrative context (e.g., engineering,
physics, logistics). Explicitly define how the mathematical operations translate into actions
or rules within your story. This step bridges the gap between individual components and the
final narrative.

Example Math: f(x) = 2x + 3
Example Rule: ”The output of a machine for any given input is found by doubling the input
value and then adding a fixed calibration offset of 3.”

Output Format for Step 2:
[Step 2] [Mathematical Operations] → [Specific Real-World Rule]
...

13
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SG Scenario Generation Prompt (continued)

[Step 3] Write the Final Problem
Combine the elements from the previous steps into a concise story. Strict Requirements:
- Perfectly Equivalent: All numbers, relationships (like perpendicularity), and constraints
from the original problem must be present and unambiguous in your story.
- No Math Language: Avoid mathematical terms (triangle, variable, x, cos) and symbols.
Use descriptive names (a triangular field, the initial investment, a cosine-wave).
- Clear Question: The final question must ask for the same value as the original (with the
same output format).

Output Format for Step 3:
[Step 3] Question: [The complete, final real-world problem in plain text.]

Now, apply this process to the following problem:
{original problem placeholder}

A.2.2 SCENARIO GROUNDING: VERIFICATION PROMPT

SG Scenario Verification Prompt

You are a quality checker. Your task is to verify if a real-world story is a correct and clear
representation of an original math problem.

Your Primary Goal:
Ensure perfect mathematical equivalence in a clear and concise narrative. The story does not
need to be a hyper-realistic scientific model; it only needs to be a coherent and unambiguous
scenario.

Please review the provided materials by considering these key questions:
1. Mathematical Integrity: Does the story perfectly preserve all numbers, relationships (e.g.,
perpendicularity, equality), and operations from the original problem? Is anything missing
or changed?
2. Clarity & Language: Is the story easy to understand? Does it successfully avoid math-
ematical jargon and symbols, using clear descriptions instead? Is the final question unam-
biguous?
3. Conciseness: Is the story direct and to the point, without unnecessary details that
overcomplicate the problem?

Your Output:
Please provide your review as a brief summary of your findings. After your summary,
conclude with the mandatory [Overall Assessment] line.

Here is the output Format:
[Your findings] [Overall Assessment] - [Pass/Fail]

Here is the input for your review:
1. Original Math Problem {original problem placeholder}
2. Conversion Mappings:
2.1 Concept Mappings: {concept mappings list placeholder}
2.2 Relationship and Attribute Mappings: {relationship mappings list placeholder}
3. Real-World Problem: {real world problem text placeholder}
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A.2.3 SCENARIO GROUNDING: REVISION PROMPT

SG Scenario Revision Prompt

Carefully analyze the following feedback to revise your previous response to address all
problems.

Here is the feedback:
{feedback placeholder}

Output your revised version in plain text in the following format:
[Step 1]
[Mathematical Element] → [Specific Real-World Analogue]
...
[Step 2]
[Mathematical Operations] → [Specific Real-World Rule]
...
[Step 3]
Question: [The complete, final real-world problem in plain text.]

A.2.4 COMPLEXITY SCALING: GENERATION PROMPT

CS Scenario Generation Prompt

Task: Enhancing Math Problem Difficulty through Contextual Embedding

Your goal is to increase the difficulty of a given mathematical problem’s real-world version,
while preserving its core mathematical structure and the integrity of its real-world mapping.
Employ the following strategies:

—

1. Maintain Core Alignment
Ensure all mathematical quantities, variables, and relationships directly correspond to
elements within the real-world context. The underlying mathematical problem must remain
solvable and equivalent to the original.

—

2. Embed Conditions through Layered Obfuscation
Replace direct mathematical statements and values with more natural, layered, and context-
rich descriptions that require deductive reasoning from the solver.

* A. Contextualized Numerical Properties (Disguising Specific Values):
* This technique involves disguising specific numerical values by describing them

through a property they possess within a realistic, tangible scenario. The goal is for the
solver to derive the original number based solely on the provided context, using common
knowledge or fundamental mathematical principles. Avoid creating custom or overly ob-
scure scenarios that would require information beyond general understanding. Apply this
method only when it naturally fits the number in question; don’t force its application.

* Example (for the value ’4’ hours): Rather than stating ”lasts 4 hours,” describe it
as ”lasts a number of hours equivalent to the unique combinations on the drone’s two-digit
pre-flight security keypad, where each digit can only be ’1’ or ’2’.” (This naturally leads to
2× 2 = 4 combinations/hours).

* Example (for the value ’2’): ”The unique positive whole number that, if you square
it, then subtract one time itself, and finally subtract two, the result is zero.”

* Example (for the value ’16’): ”smallest integer such that C! is divisible by 215.”
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CS Scenario Generation Prompt (continued)

* B. Relational & Functional Reverse Engineering (Disguising Variables/Formulas):
* If the original problem involves analyzing a function with specific constants (e.g.,

f(x) = (x − A)(x − B)...), make these constants unknown (e.g., describe them as ”labels
are blurred,”, ”calibration is missing”, etc.).

* Provide a minimal set of realistic data points or observed behaviors sufficient for the
solver to uniquely determine these unknown constants or the full function’s form.

* Example: Instead of giving f(x) = (x−18)(x−72)...
x , describe it as a system’s perfor-

mance, providing P (22) and P (33) values, requiring deduction of the hidden constants 18
and 72.

* C. Structural & Conceptual Reinterpretation (Disguising Geometric/Abstract Rela-
tions):

* For geometric problems or abstract relationships, rephrase mathematical properties
in terms of tangible real-world structures or processes.

* Example (Symmetry): Describe a figure’s symmetry as ”a balanced design around a
central axis” or ”perfectly mirrored components.” Then, we only describe half of the plot.

* Example (Transformations): If there are scaling or rotation relationships, we can only
describe a smaller prototype that is a scaled replica of other graphics.

* Example (Equivalent Constraints): Reinterpret mathematical constraints using
scenario-specific terms. For example, ”a movable point lies along the perpendicular bisector
of AC” instead of AL = CL. Another example is translating xk + 1

xk
to 2 cos θk, if we let

xk = eiθk .

—

3. Introduce Plausible, Irrelevant Information
Incorporate details that are contextually relevant to the scenario but mathematically extra-
neous to the problem’s solution. This increases cognitive load and realism. Example: For a
drone problem, mention its battery capacity, wing span, payload weight, or the color of the
packages being delivered, provided these details do not influence the distance-speed-time
calculations.

—

4. Language Refinement and Simplicity:
Make sure all descriptions are concise and clear. Avoid redundancy and unnecessary repeti-
tion.
Avoid using mathematical variables (such as x, k, A, B, etc.) directly in the situation de-
scription, but give them specific real-world meanings (such as temperature, size, threshold,
etc.).

—

Output Format:
First think about how to apply these strategies to the math problem. Then output the
enhanced problem in plain text after ”Enhanced Contextual Math Problem:”.

—

Here’s the input:
- Original Math Problem: {original problem placeholder}
- Real-World Version: {real world problem text placeholder}
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A.2.5 COMPLEXITY SCALING: VERIFICATION PROMPT

CS Scenario Verification Prompt

You are tasked with verifying the quality and accuracy of a real-world version of an abstract
math problem.

Issue Types Defined:

* EQUIVALENCE ERROR: The enhanced problem’s mathematical core is not equivalent
to the original, or it’s unsolvable. Crucially, you must solve any nested or abstract sub-
problems to confirm the derived mathematical information uniquely matches the original
problem’s data.

* Example Suggestion: ”The definition for ’standard mission duration’ should lead to a
value of 4. Consider linking it to a 2 x 2 matrix operation if the context allows.”

* REALISM ERROR: The context or embedded condition feels contrived, unnatural, or
like a ”brain teaser” and isn’t a plausible real-world scenario.

* Example Suggestion: ”Instead of an overly abstract or obscure derivation for a value
(e.g., a specific dimension or time), consider linking it to a more common measurement, a
simple calculation based on widely known facts, or a basic geometric property that naturally
fits the scenario.”

* CONCISENESS ERROR: The problem statement is unnecessarily long, verbose, or
unclear.

* Example Suggestion: ”Condense the description of the speed increment’s derivation by
directly stating the polynomial’s property more concisely.”

* FORMAT ERROR: The output doesn’t follow specified formatting (e.g., uses math
variables, incorrect header, ask for different value).

* Example Suggestion: ”Avoid using variable m in the context.”

* OTHER: Any other issues.

Review Output Format:
Start your output with an ‘ASSESSMENT‘ status. If the ‘ASSESSMENT‘ is ‘FAIL‘, you
must provide ‘FEEDBACK‘ in the specified parseable format.

[Overall Assessment]
- [Pass/Fail]

If ASSESSMENT is FAIL, provide FEEDBACK like this:

[FEEDBACK]

- ISSUE TYPE:
[EQUIVALENCE ERROR/REALISM ERROR/...]

- DESCRIPTION: [Concise description of the specific issue.]
- LOCATION: [Optional: Specific phrase or section from the problem.]

- ISSUE TYPE: [Another ISSUE TYPE if applicable]
- DESCRIPTION: [Another concise description.]

Here is the input:
- Original Math Problem {original problem placeholder}
- Real-World Problem Scenario: {real world problem text placeholder}
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A.2.6 COMPLEXITY SCALING: REVISION PROMPT

CS Scenario Revision Prompt

Carefully analyze the following feedback to revise your previous response to address all
problems.

Here is the feedback:
{feedback placeholder}

Output Format:
Output the enhanced problem in plain text after ”Enhanced Contextual Math Problem:”.

A.3 MODEL EVALUATION DETAILS

All open-source models tested were sourced from the Hugging Face Hub. We used the optimal
generation parameters (e.g., temperature, top p, top k) for each model, following the configurations
recommended in their respective papers or official GitHub repositories. The maximum response
length was set to 32,768, or capped at the model’s maximum supported length if shorter.

All proprietary models were evaluated using their official APIs or publicly available client interfaces.
Unless specified otherwise, inference was conducted using greedy decoding (temperature = 0) with
a maximum response length of 32,768 tokens.

Some proprietary models were accessed via their web or client interfaces using default parameters
during specific time windows. These include Copilot, Grok3, and Gemini (2.5 flash and 2.5 pro),
which were evaluated for AIME 2024 between June 4th and June 11th, 2025, and for AIME 2025
between June 18th and June 24th, 2025.

For models accessed via API, we used their specified versions. These include Doubao-1.5-thinking-
pro (version 2025-04-15, 16k max tokens), Qwen-max (version qwen-max-latest on
2025-04-09, 8k max tokens), QwQ-plus (version qwq-plus-latest on 2025-03-05, 8k
max tokens), DeepSeek-R1 (version 250528, 16k max tokens), gpt-4o-mini (2024-07-18),
o1-mini (2024-09-12), gpt-4o (2024-08-06), gpt-4.1-mini (2025-04-14), gpt-4.1-nano
(2025-04-14), and o3 (2025-04-16).

Notably, o1-mini and GPT-5 were accessed via shared endpoints that only support a temperature
of 1.0.

A.4 FULL RESULTS FOR OPEN-SOURCE MODELS

Table 5 reports the complete CORE-MATH results for all evaluated open-source models, includ-
ing: Qwen3-0.6B/1.7B/4B/8B/14B/32B (Yang et al., 2025), Qwen2.5-Math-1.5/7B/14B, Qwen2.5-
Math-7B/72B-Instruct (Yang et al., 2024), DeepSeek-R1-Distil-Qwen-1.5B/7B/14B/32B, R1-Distil-
Llama-8B/70B,DeepSeek-R1-0528-Qwen3-8B (Guo et al., 2025), DeepScaleR-1.5B-Preview (Luo
et al., 2025), Still-3-1.5B-Preview (Team, 2025b), Phi-4-reasoning-plus (Abdin et al., 2025b),
Qwen2.5-7B/14B/32B, Qwen2.5-32B-Instruct (Team, 2024), Open-Reasoner-Zero-7B/32B (Hu
et al., 2025), DeepMath-1.5B, DeepMath-Zero-7B, DeepMath-Omn-1.5B (He et al., 2025),
OpenMath-Nemotron-1.5B/7B/14B/32B (Moshkov et al., 2025), AceMath-RL-Nemotron-7B (Liu
et al., 2024), Qwen2.5-Math-7B-SRL-Zero, Qwen2.5-Math-7B-SRL (Zeng et al., 2025), Qwen2.5-
Math-7B-Oat-ZeroL (Liu et al., 2025), Eurus-2-7B-PRIME-Zero, Eurus-2-7B-SFT, Eurus-2-7B-
PRIME (Cui et al., 2025), AReaL-boba-2-8B/14B/32B (Fu et al., 2025), Phi-4-reasoning-plus (Ab-
din et al., 2025a), QwQ-32B (Team, 2025a), and s1.1-32B (Muennighoff et al., 2025). Across
architectures and training variants, accuracy drops sharply on both SG and CS tasks compared to
the original problems, with the CS setting consistently causing the largest degradation. Larger mod-
els generally achieve higher accuracy, yet significant performance gaps remain. We also observe
that while an initial stage of supervised fine-tuning tends to improve robustness, additional special-
ized tuning (e.g., RL or further SFT) often yields little benefit for contextual tasks. Overall, these
expanded results provide a comprehensive view of model behavior that underlies the key findings
discussed in Section 3.4.
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Model AIME2024 (%) AIME2025 (%) Math-500 (%)

Q0 Q1 Q2 Q0 Q1 Q2 Q0 Q1

≤4B

Qwen3-0.6B 7.9 6.2 ( -21% ) 0.4 ( -95% ) 15.4 5.4 ( -65% ) 2.5 ( -84% ) 62.4 42.6 ( -32% )

Qwen2.5-Math-1.5B 11.7 2.5 ( -79% ) 0.4 ( -96% ) 4.6 0.8 ( -82% ) 0.0 ( -100% ) 32.5 25.8 ( -21% )

↪→R1-Distil-Qwen-1.5B 28.3 20.0 ( -29% ) 7.1 ( -75% ) 19.6 9.6 ( -51% ) 5.8 ( -70% ) 74.0 57.6 ( -22% )

↪→DeepScaleR-1.5B-Preview 41.7 23.3 ( -44% ) 7.5 ( -82% ) 30.4 15.4 ( -49% ) 7.5 ( -75% ) 80.1 64.2 ( -20% )

↪→DeepMath-1.5B 38.3 24.6 ( -36% ) 10.8 ( -72% ) 28.3 13.8 ( -51% ) 5.0 ( -82% ) 81.9 65.4 ( -20% )

↪→Still-3-1.5B-Preview 38.3 18.8 ( -51% ) 7.9 ( -79% ) 24.6 11.2 ( -54% ) 2.5 ( -90% ) 75.8 59.7 ( -21% )

↪→OpenMath-Nemotron-1.5B 62.5 34.2 ( -45% ) 14.6 ( -77% ) 50.4 21.2 ( -58% ) 11.2 ( -78% ) 87.3 70.1 ( -20% )

↪→DeepMath-Omn-1.5B 62.9 33.8 ( -46% ) 13.8 ( -78% ) 55.8 20.8 ( -63% ) 12.5 ( -78% ) 87.1 73.0 ( -16% )

Qwen3-1.7B 46.2 29.6 ( -36% ) 12.5 ( -73% ) 34.6 24.6 ( -29% ) 11.2 ( -67% ) 84.1 67.4 ( -20% )

Qwen3-4B 70.4 52.5 ( -25% ) 34.6 ( -51% ) 64.2 39.6 ( -38% ) 33.8 ( -47% ) 90.9 78.8 ( -13% )

7B/8B

Qwen2.5-7B 5.8 4.6 ( -21% ) 1.7 ( -71% ) 3.3 0.0 ( -100% ) 0.4 ( -87% ) 43.9 30.4 ( -31% )

↪→Open-Reasoner-Zero-7B 15.8 12.5 ( -21% ) 6.2 ( -61% ) 14.6 7.1 ( -51% ) 2.5 ( -83% ) 69.3 53.0 ( -23% )

↪→DeepMath-Zero-7B 18.8 7.5 ( -60% ) 5.8 ( -69% ) 15.8 9.2 ( -42% ) 2.1 ( -87% ) 74.2 59.6 ( -20% )

Qwen2.5-Math-7B 10.8 6.7 ( -38% ) 1.7 ( -85% ) 5.0 3.3 ( -33% ) 0.8 ( -83% ) 44.8 36.7 ( -18% )

↪→OpenMath-Nemotron-7B 72.9 52.1 ( -29% ) 30.0 ( -59% ) 60.0 40.4 ( -33% ) 29.2 ( -51% ) 90.5 78.5 ( -13% )

↪→R1-Distil-Qwen-7B 48.8 40.0 ( -18% ) 23.3 ( -52% ) 41.7 22.5 ( -46% ) 15.0 ( -64% ) 87.4 73.9 ( -15% )

↪→AceMath-RL-Nemotron-7B 69.2 48.8 ( -30% ) 32.9 ( -52% ) 54.2 26.7 ( -51% ) 22.5 ( -58% ) 89.9 79.0 ( -12% )

↪→Qwen2.5-Math-7B-SRL-Zero 16.2 6.7 ( -59% ) 0.8 ( -95% ) 4.6 3.3 ( -27% ) 0.0 ( -100% ) 49.6 33.4 ( -33% )

↪→Qwen2.5-Math-7B-SRL 20.8 14.2 ( -32% ) 9.2 ( -56% ) 17.5 10.4 ( -40% ) 2.9 ( -83% ) 70.7 58.3 ( -18% )

↪→DeepMath-Zero-Math-7B 30.4 18.8 ( -38% ) 9.2 ( -70% ) 22.1 15.8 ( -28% ) 7.1 ( -68% ) 77.4 63.8 ( -18% )

↪→Qwen2.5-Math-7B-Oat-Zero 32.5 18.8 ( -42% ) 2.9 ( -91% ) 11.2 9.2 ( -18% ) 0.4 ( -96% ) 66.2 44.2 ( -33% )

↪→Eurus-2-7B-PRIME-Zero 20.0 13.3 ( -33% ) 6.7 ( -67% ) 6.7 10.0 ( -50% ) 0.0 ( -100% ) 59.9 39.7 ( -34% )

↪→Eurus-2-7B-SFT 6.7 3.3 ( -50% ) 3.3 ( -50% ) 3.3 0.0 ( -100% ) 0.0 ( -100% ) 50.0 38.5 ( -23% )

↪→Eurus-2-7B-PRIME 20.0 13.3 ( -33% ) 6.7 ( -67% ) 10.0 3.3 ( -67% ) 3.3 ( -67% ) 68.3 57.6 ( -16% )

R1-Distil-Llama-8B 43.3 29.2 ( -33% ) 10.8 ( -75% ) 30.4 17.5 ( -42% ) 11.2 ( -63% ) 81.6 65.6 ( -20% )

Qwen3-8B 73.8 61.7 ( -16% ) 42.9 ( -42% ) 64.6 48.3 ( -25% ) 35.8 ( -45% ) 91.0 81.0 ( -11% )

↪→DeepSeek-R1-0528-Qwen3-8B 75.0 55.0 ( -27% ) 39.6 ( -47% ) 65.8 48.3 ( -27% ) 32.9 ( -50% ) 90.7 77.2 ( -15% )

↪→AReaL-boba-2-8B 74.2 58.3 ( -21% ) 41.7 ( -44% ) 67.9 47.9 ( -29% ) 37.1 ( -45% ) 91.8 82.0 ( -11% )

Qwen2.5-Math-7B-Instruct 11.2 6.2 ( -44% ) 2.5 ( -78% ) 9.2 5.0 ( -45% ) 0.0 ( -100% ) 72.0 54.0 ( -25% )

14B

Qwen2.5-14B 6.2 3.8 ( -40% ) 1.7 ( -73% ) 3.3 1.7 ( -50% ) 0.0 ( -100% ) 48.5 34.9 ( -28% )

↪→R1-Distil-Qwen-14B 67.5 47.1 ( -30% ) 35.4 ( -48% ) 50.8 26.2 ( -48% ) 25.8 ( -49% ) 89.5 76.9 ( -14% )

↪→OpenMath-Nemotron-14B 73.8 51.7 ( -30% ) 42.1 ( -43% ) 63.8 42.5 ( -33% ) 29.2 ( -54% ) 90.8 80.8 ( -11% )

Qwen3-14B 80.0 64.6 ( -19% ) 50.8 ( -36% ) 72.9 49.2 ( -33% ) 42.1 ( -42% ) 92.6 81.9 ( -12% )

↪→AReaL-boba-2-14B 82.9 65.8 ( -21% ) 53.8 ( -35% ) 73.3 52.1 ( -29% ) 39.2 ( -47% ) 91.9 82.9 ( -10% )

Phi-4-reasoning-plus 80.4 60.4 ( -25% ) 52.9 ( -34% ) 71.7 55.4 ( -22% ) 39.6 ( -45% ) 92.6 83.1 ( -10% )

≥32B

Qwen2.5-32B 11.2 6.7 ( -41% ) 3.3 ( -70% ) 3.8 2.9 ( -22% ) 0.0 ( -100% ) 45.2 37.8 ( -16% )

↪→OpenMath-Nemotron-32B 57.1 42.5 ( -26% ) 27.9 ( -51% ) 52.1 34.6 ( -34% ) 27.5 ( -47% ) 75.8 61.8 ( -18% )

↪→R1-Distil-Qwen-32B 69.6 52.5 ( -25% ) 39.2 ( -44% ) 56.2 39.6 ( -30% ) 30.0 ( -47% ) 89.4 78.9 ( -12% )

↪→Open-Reasoner-Zero-32B 43.8 30.4 ( -30% ) 25.4 ( -42% ) 32.9 25.4 ( -23% ) 15.0 ( -54% ) 84.3 75.1 ( -11% )

Qwen3-32B 81.2 67.9 ( -16% ) 57.1 ( -30% ) 70.0 54.4 ( -22% ) 45.0 ( -36% ) 92.1 82.7 ( -10% )

↪→AReaL-boba-2-32B 81.7 65.4 ( -20% ) 58.3 ( -29% ) 77.1 55.0 ( -29% ) 43.8 ( -43% ) 92.3 82.9 ( -10% )

QwQ-32B 80.4 58.3 ( -27% ) 53.3 ( -34% ) 66.2 53.3 ( -20% ) 39.2 ( -41% ) 92.5 82.9 ( -10% )

Qwen2.5-32B-Instruct 15.4 14.2 ( -8% ) 5.4 ( -65% ) 15.8 9.2 ( -42% ) 1.7 ( -89% ) 70.3 54.5 ( -23% )

↪→s1.1-32B 58.8 47.9 ( -18% ) 38.3 ( -35% ) 46.7 36.2 ( -22% ) 32.1 ( -31% ) 88.8 77.9 ( -12% )

DeepSeek-R1-Distill-Llama-70B 65.4 48.8 ( -25% ) 38.8 ( -41% ) 50.0 38.8 ( -22% ) 29.2 ( -42% ) 89.8 77.3 ( -14% )

Qwen2.5-Math-72B-Instruct 19.2 13.8 ( -28% ) 6.7 ( -65% ) 14.6 7.5 ( -49% ) 3.3 ( -77% ) 74.7 60.5 ( -19% )

Table 5: Full results of open-source models on CORE-MATH. Models are grouped by parameter
scale. Parentheses indicate the relative change from Ori, with larger drops highlighted by deeper
red. Arrows (↪→) denote variants obtained from the model listed directly above.
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A.5 REASONING ERROR EXAMPLE OF DEEPSEEK R1

We provide an example in A.5.1 to illustrate a typical failure mode of DeepSeek R1. The model’s
algebraic reasoning was largely correct, but it misinterpreted how geometric constraints in the sce-
nario map back to the original problem, leading to an incorrect answer. This case highlights how
formulation errors can propagate even when subsequent reasoning is valid.

A.5.1 CASE STUDY: MISINTERPRETING GEOMETRIC CONSTRAINTS

An example of R1 reasoning error

Original question:
Rectangles ABCD and EFGH are drawn such that D,E,C, F are collinear. Also,
A,D,H,G all lie on a circle. If BC = 16,AB = 107,FG = 17, and EF = 184, what is
the length of CE?

Generated Scenario:
At a large construction site, two rectangular platforms are being assembled for a robotics
demonstration. The first platform, called the Alpha Pad, is 107 meters long and 16 meters
wide. The second platform, the Echo Deck, is 184 meters long and 17 meters wide.
The platforms are being arranged in a very specific layout:
The back-right corner of the Alpha Pad, the front-left corner of the Echo Deck, the
front-right corner of the Alpha Pad, and the front-right corner of the Echo Deck all lie along
this straight track.
Meanwhile, the back-left and the back-right corners of both platforms are all positioned
along the edge of a circular fountain that marks the center of the plaza.
Given this setup, how far apart are the front-right corner of the Alpha Pad and the front-left
corner of the Echo Deck?

R1 response:
The platforms are arranged such that the back-right corner of the Alpha Pad (BR A), the
front-left corner of the Echo Deck (FL E), the front-right corner of the Alpha Pad (FR A),
and the front-right corner of the Echo Deck (FR E) lie on a straight track. Additionally, the
back-left and back-right corners of both platforms lie on a circular fountain centered at the
plaza’s center.
The Alpha Pad is 107 meters long and 16 meters wide, and the Echo Deck is 184 meters
long and 17 meters wide. The straight track is treated as the x-axis in a coordinate system,
with the fountain center at (h, k) and radius r. The back corners on the fountain and the
points on the track are used to determine the positions.
For the Alpha Pad:
- BR A is at (0, 0).
- FR A is at (107, 0), as the distance along the length is 107 meters.
- BL A is at (0, 16), assuming the platform is above the track (y > 0).
This gives k = 8 from the circle conditions, and r2 = h2 + 64.
For the Echo Deck:
- FL E is at (b, 0).
- FR E is at (b + 17, 0), as the width is 17 meters. Incorrect mathematical interpretation
- BL E is at (b, 184), assuming the platform is above the track (y > 0).
The subsequent reasoning process is correct, but based on wrong conditions.

GPT-5 analysis:
Primary error type: Incorrect mathematical interpretation (with a secondary logical/rounding
issue at the end).
What went wrong:
1) Misassigning which side of the Echo Deck lies along the straight track. ...
2) Misassigning which Echo Deck side forms the chord on the circle. ...
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An example of R1 reasoning error (continued)

3) Additional logical issue (unjustified ”nice fraction”.) ...
How this led to the wrong answer:
- By putting 17 along the track instead of 184 and using a 17-length chord for the circle
instead of 184, the computed b (the x-position of FL E) shifted incorrectly, producing |107−
b| ≈ 60.5, rather than the correct CE = 104. The mistake is structural (wrong mapping of
sides to the line and circle), not just arithmetic.

Model Formulation Accuracy (%) Formulation Necessity (%) Formulation Sufficiency (%)

AIME24 AIME25 MATH AIME24 AIME25 MATH AIME24 AIME25 MATH
SG CS SG CS SG SG CS SG CS SG SG CS SG CS SG

R1-Distil-Qwen-1.5B 57.5 40.0 49.2 31.7 62.3 61.4 43.8 41.7 75.0 70.6 17.5 10.1 9.1 15.9 65.0

R1-Distil-Qwen-7B 60.0 55.8 53.3 40.8 75.7 67.8 66.2 63.2 58.3 82.9 46.3 31.1 26.7 22.2 81.1

R1-Distil-Qwen-14B 74.2 63.3 53.3 50.0 85.7 80.8 71.7 78.3 81.3 90.1 53.7 42.2 31.7 42.3 80.8

R1-Distil-Qwen-32B 77.5 65.8 59.2 60.0 87.3 80.1 77.0 69.8 78.0 91.8 51.7 45.9 46.1 39.4 83.5

Qwen3-0.6B 46.7 29.2 45.8 35.0 57.4 52.8 100.0 33.3 25.0 69.2 8.4 3.6 1.5 1.9 52.2

Qwen3-1.7B 66.7 47.5 60.0 53.3 82.5 73.7 84.5 68.4 83.3 90.1 32.4 24.8 27.6 14.1 73.8

Qwen3-4B 74.2 55.0 51.7 42.5 84.8 91.1 79.9 63.7 71.0 90.3 65.5 48.8 50.7 57.8 83.6

Qwen3-8B 81.7 74.2 66.7 60.0 86.3 89.8 83.6 77.3 77.2 91.3 66.0 49.3 54.2 47.7 86.3

Qwen3-14B 77.5 68.3 66.7 62.5 87.1 82.1 74.8 81.0 95.8 90.4 64.6 57.4 62.4 62.0 85.2

Qwen3-32B 84.2 70.0 72.5 59.2 89.3 80.5 74.0 86.2 76.6 92.0 66.4 59.6 57.5 55.7 85.0

gpt-5 93.3 76.7 80.0 66.7 90.5 96.0 79.2 83.3 75.0 94.5 85.7 82.6 83.3 75.0 86.9

Table 6: Problem formulation performance comparison across different models. Formulation Accu-
racy denotes the proportion of cases in which a model correctly translates a scenario into its mathe-
matical formulation. Formulation Necessity quantifies the extent to which correct formulations are
required for correct reasoning. Formulation Sufficiency evaluates whether correct formulations reli-
ably lead to correct reasoning. Darker cell colors correspond to higher values.

A.6 FULL RESULTS FOR PROBLEM FORMULATION ANALYSIS

Table 6 reports the complete formulation performance results. The finer granularity confirms the
same overall trends: formulation accuracy decreases with problem difficulty, necessity consistently
exceeds accuracy, and sufficiency improves with scale but remains lower overall. These detailed
results provide a comprehensive view of model behavior underlying the averaged metrics discussed
in Section 4.2.

A.7 IMPLEMENTATION DETAILS.

We fine-tuned the model in the full-parameter SFT setting on 4×A100 80GB GPUs. We adopted a
per-device batch size of 1, accumulated over 32 steps, yielding an effective global batch size of 128.
The model was optimized for 1200 steps with a cosine scheduler, 10% warmup, and a peak learning
rate of 5e-5. Mixed-precision training with bf16 was enabled.
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