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Abstract

Transformers [1] have become one of the most important architectural innovations
in deep learning and have enabled many breakthroughs over the past few years.
Here we propose a simple network architecture, gMLP, based on MLPs with gating,
and show that it can perform as well as Transformers in key language and vision
applications. Our comparisons show that self-attention is not critical for Vision
Transformers, as gMLP can achieve the same accuracy. For BERT, our model
achieves parity with Transformers on pretraining perplexity and is better on some
downstream NLP tasks. On finetuning tasks where gMLP performs worse, making
the gMLP model substantially larger can close the gap with Transformers. In
general, our experiments show that gMLP can scale as well as Transformers over
increased data and compute.

1 Introduction

Transformers [1] have enabled many breakthroughs in natural language processing (e.g., [2, 3, 4, 5, 6])
and have been shown to work well for computer vision (e.g., [7, 8, 9, 10]). Thanks to this success,
Transformers have largely replaced LSTM-RNN [11] as the default architecture in NLP, and have
become an appealing alternative to ConvNets [12, 13, 14, 15, 16, 17] in computer vision.

The Transformer architecture combines two important concepts: (1) a recurrent-free architecture
which computes the representations for each individual token in parallel, and (2) multi-head self-
attention blocks which aggregate spatial information across tokens. On one hand, the attention
mechanism [18] introduces the inductive bias that the spatial interactions should be dynamically
parameterized based on the input representations. On the other hand, it is known that MLPs with static
parameterization can represent arbitrary functions [19]. It therefore remains an open question whether
the inductive bias in self-attention is essential to the remarkable effectiveness of Transformers.

Here we study the necessity of self-attention modules in key language and vision applications of Trans-
formers. Specifically, we propose an MLP-based alternative to Transformers without self-attention,
which simply consists of channel projections and spatial projections with static parameterization. We
experiment with several design choices for this architecture and find spatial projections work well
when they are linear and paired with multiplicative gating (Figure 1). We name the model gMLP
because it is built out of basic MLP layers with gating.

We apply gMLP to image classification and obtain strong results on ImageNet. gMLP achieves
comparable performance with DeiT [8], namely Vision Transformer (ViT) [7] with improved regular-
ization, in a similar training setup. With 66% less parameters, a gMLP model is 3% more accurate
than MLP-Mixer [20]. Together with Tolstikhin et al. [20], Melas-Kyriazi [21], Touvron et al. [22]
and Ding et. al. [23], our results question the necessity of self-attention layers in Vision Transformers.

We apply gMLP to masked language modeling (MLM) in the BERT [2] setup, one of the most well-
established applications of Transformers, and find that it is as good as Transformers at minimizing
perplexity during pretraining. Our experiments indicate that perplexity is only correlated with model
capacity and is insensitive to the presence of self-attention. As capacity increases, we observe that
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Pseudo-code for the gMLP block
def gmlp_block(x, d_model, d_ffn):

shortcut = x
x = norm(x, axis="channel")
x = proj(x, d_ffn, axis="channel")
x = gelu(x)
x = spatial_gating_unit(x)
x = proj(x, d_model, axis="channel")
return x + shortcut

def spatial_gating_unit(x):
u, v = split(x, axis="channel")
v = norm(v, axis="channel")
n = get_dim(v, axis="spatial")
v = proj(v, n, axis="spatial", init_bias=1)
return u ∗ v

Figure 1: Overview of the gMLP architecture with Spatial Gating Unit (SGU). The model consists
of a stack of L blocks with identical structure and size. All projection operations are linear and “�”
refers to element-wise multiplication (linear gating). The input and output protocols follow BERT for
NLP and ViT for vision. Unlike Transformers, gMLPs do not require positional encodings, nor is it
necessary to mask out the paddings during NLP finetuning.

both pretraining and finetuning metrics for gMLPs improve as quickly as for Transformers. This
is remarkable because it indicates gMLPs scale just as well as Transformers despite the absence of
self-attention, and any performance gap can always be offset by training a larger model with increased
data and compute. With a standard 256-batch size × 1M-step training setup as in original BERT, a
large gMLP model achieves 87.7% accuracy on MNLI and 82.1% F1 on SQuAD v2.0. Note, these
are better than the BERTlarge results reported in Devlin et al. [2] obtained using Transformers.

For BERT’s finetuning, Transformers can be more practically advantageous over gMLPs on tasks
that require cross-sentence alignment (e.g., by 0.8% on MNLI-m in the 300M-param regime), even
with similar pretraining perplexity. This problem can be addressed by making gMLPs substantially
larger—3× as large as Transformers. A more practical solution is to blend in only a tiny bit of self-
attention—a single-head self-attention with size up to 128 is sufficient to make gMLPs outperform
Transformers on all NLP tasks we evaluated with even better parameter efficiency. The improvement
is sometimes very significant (e.g., +4.4% on SQuAD v2.0 over BERTlarge).

Overall, the surprising effectiveness of gMLPs in both vision and NLP domains suggests that self-
attention is not a necessary ingredient for scaling up machine learning models, although it can be a
useful addition depending on the task. With increased data and compute, models with simpler spatial
interaction mechanisms such as gMLP can be as powerful as Transformers and the capacity allocated
to self-attention can be either removed or substantially reduced.

2 Model

Our model, gMLP, consists of a stack of L blocks with identical size and structure. Let X ∈ Rn×d

be the token representations with sequence length n and dimension d. Each block is defined as:

Z = σ(XU), Z̃ = s(Z), Y = Z̃V (1)

where σ is an activation function such as GeLU [24]. U and V define linear projections along the
channel dimension—the same as those in the FFNs of Transformers (e.g., their shapes are 768× 3072
and 3072× 768 for BERTbase). Shortcuts, normalizations and biases are omitted for brevity.

A key ingredient in the aforementioned formulation is s(·), a layer which captures spatial interactions
(see below). When s is an identity mapping, the above transformation degenerates to a regular FFN,
where individual tokens are processed independently without any cross-token communication. One
of our major focuses is therefore to design a good s capable of capturing complex spatial interactions
across tokens. The overall block layout is inspired by inverted bottlenecks [25] which define s(·)
as a spatial depthwise convolution. Note, unlike Transformers, our model does not require position
embeddings because such information will be captured in s(·).
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Our model uses exactly the same input and output protocols as BERT (for NLP) and ViT (for vision).
For example, when finetuning on language tasks, we concatenate together multiple text segments
followed by paddings, and the predictions are deduced from the last-layer representation of a reserved
<cls> symbol. Although many of these protocols were introduced for Transformers and hence can
be suboptimal for gMLPs, strictly following them helps avoid confounding factors in our experiments
and makes our layers more compatible with existing Transformer implementations.

2.1 Spatial Gating Unit

To enable cross-token interactions, it is necessary for the layer s(·) to contain a contraction operation
over the spatial dimension. The simplistic option would be a linear projection:

fW,b(Z) =WZ + b (2)

where W ∈ Rn×n is a matrix for which the size is the same as the sequence length, n, and b refers
token-specific biases. For example, if the padded input sequence has 128 tokens, the shape for W
will be 128×128. Unlike self-attention where W (Z) is dynamically generated from Z, the spatial
projection matrix W here in Equation (2) is independent from the input representations.

In this work, we formulate layer s(·) as the output of linear gating:

s(Z) = Z � fW,b(Z) (3)

where � denotes element-wise multiplication. For training stability, we find it critical to initialize
W as near-zero values and b as ones, meaning that fW,b(Z) ≈ 1 and therefore s(Z) ≈ Z at the
beginning of training. This initialization ensures each gMLP block behaves like a regular FFN at
the early stage of training, where each token is processed independently, and only gradually injects
spatial information across tokens during the course of learning.

We further find it effective to split Z into two independent parts (Z1, Z2) along the channel dimension
for the gating function and for the multiplicative bypass:

s(Z) = Z1 � fW,b(Z2) (4)

We also normalize the input to fW,b which empirically improves stability of large NLP models. This
gives us the unit illustrated in Figure 1, which we refer to as the Spatial Gating Unit (SGU) in the
rest of the paper. In Table 3, we provide ablation studies to compare SGU with several other variants
of s(·), showing that it works better and narrows the performance gap with self-attention.

Connections to Existing Layers. The overall formulation of SGU resembles Gated Linear Units
(GLUs) [26, 27, 28] as well as earlier works including Highway Networks [29] and LSTM-RNNs [11].
A key distinction is that our gating is computed based on a projection over the spatial (cross-token)
dimension rather than the channel (hidden) dimension. SGU is also related to Squeeze-and-Excite
(SE) blocks [30] in terms of element-wise multiplication. However, different from SE blocks, SGU
does not contain cross-channel projections at all, nor does it enforce permutation invariance (a
key feature for content-based attentive modules) due to its static parameterization for the spatial
transformation. The spatial projection in SGU could in theory learn to express superficial depthwise
convolutions—unlike typical depthwise convolutions with channel-specific filters, SGU learns only a
single transformation shared across channels. Finally, we note SGUs offer an alternative mechanism
to capture high-order relationships other than self-attention. Specifically, the output for Equation (3)
contains up to 2nd-order interactions (e.g., zizj) whereas output for self-attention (assuming no
nonlinearity) contains up to 3rd-order interactions (e.g., qikjvk). In terms of computation cost, SGU
has n2e/2 multiply-adds which is comparable to the 2n2d of dot-product self-attention.1 Both are
linear over the input channel size and quadratic over the sequence length n.

3 Image Classification

Here we examine gMLP in the vision domain by applying it to the image classification task on
ImageNet [31] without using extra data. We compare our MLP-like models with recent attentive

1The input channel size e for SGU is typically larger than the input channel size d for self-attention, because
the former is applied in the middle of the block after a channel expansion.
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models based on vanilla Transformers, including Vision Transformer (ViT) [7], DeiT [8] (ViT with
improved regularization), and several other representative convolutional networks.

Table 1 summarizes the configurations of our gMLP image classification models. The input and
output protocols follow ViT/B16 where the raw image is converted into 16×16 patches at the stem.
The depth and width are chosen so that the models are comparable with ViT/DeiT in capacity. Like
Transformers, we find gMLPs tend to drastically overfit the training data. We therefore apply a
similar regularization recipe as the one used in DeiT.2 To avoid extensive tuning, we adjust only the
strengths of stochastic depth [32] as we move from smaller to larger models in Table 1. All the other
hyperparameters remain shared across our three models. See Appendix A.1 for details.

Table 1: Architecture specifications of gMLP models for vision.

#L dmodel dffn Params (M) FLOPs (B) Survival Prob

gMLP-Ti 30 128 768 5.9 2.7 1.00
gMLP-S 30 256 1536 19.5 8.9 0.95
gMLP-B 30 512 3072 73.4 31.6 0.80

Our ImageNet results are summarized in Table 1 and Figure 2.3 It is interesting to see that gMLPs are
comparable with DeiT [8], namely ViT [7] trained using improved regularization. The results suggest
that models without self-attention can be as data-efficient as Transformers for image classification. In
fact, when the models are properly regularized, their accuracies seem better correlated with capacity
instead of the presence of self-attention. Moreover, the accuracy-parameter/FLOPs tradeoff of gMLPs
surpasses all concurrently proposed MLP-like architectures [20, 21, 22], which we attribute to the
effectiveness of our Spatial Gating Unit (see Table 3 in the next section for an ablation). We also note
while gMLPs are competitive with vanilla Transformers, their performance is behind the best existing
ConvNet models (e.g., [33, 34]) or hybrid models (e.g., [35, 36, 37, 38, 10]).

Table 2: ImageNet-1K results without extra data.

Model ImageNet Top-1 (%)∗ Input Resolution Params (M) MAdds (B)

ConvNets

ResNet-152 [16] 78.3 224 60 11.3
RegNetY-8GF [39] 81.7 224 39 8.0
EfficientNet-B0 [17] 77.1 224 5 0.39
EfficientNet-B3 [17] 81.6 300 12 1.8
EfficientNet-B7 [17] 84.3 600 66 37.0
NFNet-F0 [33] 83.6 192 72 12.4

Transformers

ViT-B/16 [7] 77.9 384 86 55.4
ViT-L/16 [7] 76.5 384 307 190.7
DeiT-Ti [8] (ViT+reg) 72.2 224 5 1.3
DeiT-S [8] (ViT+reg) 79.8 224 22 4.6
DeiT-B [8] (ViT+reg) 81.8 224 86 17.5

MLP-like†

Mixer-B/16 [20] 76.4 224 59 12.7
Mixer-B/16 (our setup) 77.3 224 59 12.7
Mixer-L/16 [20] 71.8 224 207 44.8
ResMLP-12 [22] 76.6 224 15 3.0
ResMLP-24 [22] 79.4 224 30 6.0
ResMLP-36 [22] 79.7 224 45 8.9
gMLP-Ti (ours) 72.3 224 6 1.4
gMLP-S (ours) 79.6 224 20 4.5
gMLP-B (ours) 81.6 224 73 15.8

* Standard deviation across multiple independent runs is around 0.1.
† Tokenization & embedding process at the stem can be viewed as a convolution.

Figure 3 visualizes the spatial projection matrices in gMLP-B. Remarkably, the spatial weights after
learning exhibit both locality and spatial invariance. In other words, each spatial projection matrix
effectively learns to perform convolution with a data-driven, irregular (non-square) kernel shape.

2Unlike DeiT, we do not use repeated augmentation or random erasing.
3Additional results on ImageNet-21K and COCO are available in Appendix E.
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Figure 2: ImageNet accuracy vs model capacity.

Figure 3: Spatial projection weights in gMLP-
B. Each row shows the filters (reshaped into 2D)
for a selected set of tokens in the same layer.

4 Masked Language Modeling with BERT

Here we conduct empirical studies over the masked language modeling (MLM) task. The input/output
protocol for both pretraining and finetuning follows BERT [2]. Different from Transformer-based
models, we do not use positional encodings. We also find it unnecessary to mask out <pad> tokens
in gMLP blocks during finetuning as the model can quickly learn to ignore them. For ablations and
case studies, all models are trained with batch size 2048, max length 128 for 125K steps over the
RealNews-like subset of C4 [5]. For main results, models are trained with batch size 256, max length
512 for 1M steps over the full English C4 dataset. See Appendix A.2 for details.

Our preliminary MLM experiments show that gMLPs always learn Toeplitz-like matrices as the
spatial weights (Appendix C). This means gMLPs are able to learn the notion of shift invariance from
data, a property naturally implied by the MLM task where any offset of the input sequence does not
affect the slot filling outcome. In this case, the learned fW,b(·) acts like a 1-d convolution whose
kernel size equals the entire sequence length (unlike depthwise convolution with channel-specific
filters, here the same W is shared across channels). In the following MLM experiments, we restrict
W to be a Toeplitz matrix to avoid redundant model parameterization (since W will be Toeplitz-like
regardless after learning). Note this constraint is empirically quality-neutral.

4.1 Ablation: The Importance of Gating in gMLP for BERT’s Pretraining

In Table 3 below, we establish baselines for our ablation studies. These include:

1. BERT with a Transformer architecture and learnable absolute position embeddings.

2. BERT with a Transformer architecture and T5-style learnable relative position biases [5].
The biases are both layer- and head-specific as we find this yields the best results.

3. Same as above, but we remove all content-dependent terms inside the softmax and only retain
the relative positional biases. This baseline is a straightforward variant of Transformers
without self-attention, which can also be viewed as a Random Synthesizer [40].

4. MLP-Mixer [20] which replaces the multi-head self-attention module in Transformers with
a two-layer spatial MLP. This model was developed for image classification and here we
investigate it on MLM tasks using the same training setup with BERT and gMLP.

We compare these baselines against several versions of gMLPs with similar sizes in Table 3. Note that
Multiplicative, Split (last row) is the Spatial Gating Unit we describe in the method section and use in
the rest of the paper. First, SGU outperforms other variants in perplexity. Secondly and remarkably,
gMLP with SGU also achieves perplexity comparable to Transformer. Note the difference between
the strongest baseline (perplexity=4.26) and ours (perplexity=4.35) is insignificant relative to the
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Table 3: MLM validation perplexities of Transformer baselines and four versions of gMLPs. f refers
to the spatial linear projection in Equation (2) with input normalization. The MLP-Mixer baseline
model has L=24 layers with dmodel=768, dspatial=384 and dffn=3072. Each gMLP model has L=36
layers with dmodel=512 and dffn = 3072. No positional encodings are used for Mixer or gMLPs.

Model Perplexity∗ Params (M)

BERTbase 4.37 110
BERTbase + rel pos 4.26 110
BERTbase + rel pos - attn 5.64 96

MLP-Mixer 5.34 112

Linear gMLP, s(Z) = f(Z) 5.14 92
Additive gMLP, s(Z) = Z + f(Z) 4.97 92
Multiplicative gMLP, s(Z) = Z � f(Z) 4.53 92
Multiplicative, Split gMLP, s(Z) = Z1 � f(Z2), Z = Z1‖Z2 4.35 102

* Standard deviation across multiple independent runs is around 0.01.

perplexity change when the models are scaled (see Table 4 in the next section). Spatial projection
weights learned by gMLPs are visualized in Figure 4.

Figure 4: Visualization of the spatial filters in gMLP learned on the MLM task. For each layer in the
model we plot the row in W associated with the token in the middle of the sequence. The x-axis of
each subplot has a length of 128 which equal the number of tokens in the sequence. The learned filters
appear to be smooth and have several types: forward-looking (e.g., 1st in 2nd row), backward-looking
(e.g., 5th in 2nd row) and bi-directional (e.g., 2nd last in the last row).

4.2 Case Study: The Behavior of gMLP as Model Size Increases

In Table 4, we investigate the scaling properties of Transformers and gMLPs in BERT as their model
capacity grows. Specifically, we scale the depth of these models by a factor of {0.5, 1, 2, 4}× and
report the their pretraining MLM perplexities on the validation set as well as finetuning results on
the dev sets of two tasks in GLUE [41]. Note each individual Transformer layer is effectively two
consecutive blocks: one for self-attention and one for FFN. In the table below we use the notation of
12 + 12 to refer to 12 of self-attention blocks plus 12 of FFN blocks in the Transformer baselines.

Table 4: Pretraining and dev-set finetuning results over increased model capacity. We use the relative
positional encoding scheme for Transformers which performs the best in Table 3.

Model #L Params (M) Perplexity SST-2 MNLI-m

Transformer 6+6 67 4.91 90.4 81.5
gMLP 18 59 5.25 91.2 77.7

Transformer 12+12 110 4.26 91.3 83.3
gMLP 36 102 4.35 92.3 80.9

Transformer 24+24 195 3.83 92.1 85.2
gMLP 72 187 3.79 93.5 82.8

Transformer 48+48 365 3.47 92.8 86.3
gMLP 144 357 3.43 95.1 84.6

The results above show that a deep enough gMLP is able to match and even outperform the perplexity
of Transformers with comparable capacity.4 In addition, the perplexity-parameter relationships for

4We also experimented with deeper-and-thinner Transformers (with capacity fixed) but found increasing
depth further does not improve perplexity. See Appendix B for more details.
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both architecture families approximately follow a power law (left of Figure 5). This implies the
empirical scaling laws originally observed for Transformer-based language models [42] might be
broadly applicable across different model families.
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Figure 5: Scaling properties with respect to perplexity and finetuning accuracies. The figures show
that for pretraining, gMLPs are equally good at optimizing perplexity as Transformers. For finetuning,
the two model families exhibit comparable scalability despite task-specific offsets.

Table 4 also leads to an interesting observation that the pretraining perplexities across different model
families are not equal in terms of finetuning. While gMLPs outperform Transformers on SST-2, they
are worse on MNLI. The results imply that the finetuning performance for NLP tasks is a function of
not only the perplexity but also the inductive bias in the architecture. Figure 5 shows that despite
the architecture-specific discrepancies between pretraining and finetuning, gMLPs and Transformers
exhibit comparable scalability (slope) on both finetuning tasks. This means one can always offset the
gap by enlarging the model capacity. In other words, the results indicate that model scalability with
respect to downstream metrics can be independent from the presence of self-attention.

4.3 Ablation: The Usefulness of Tiny Attention in BERT’s Finetuning

So far we have found that self-attention is not a required component to achieve strong MLM perplexity
or scalability. At the meantime, we also identified NLP finetuning tasks where gMLPs transfer less
well than Transformers (Table 4). The fact that our MLP-like model is advantageous on SST-2 but
worse on MNLI is particularly informative—the former is a single-sentence task whereas the latter
involves sentence pairs (premise and hypothesis) [43]. We suspect the role of self-attention during
finetuning is related to cross-sentence alignment.

To isolate the effect of self-attention, we experiment with a hybrid model where a tiny self-attention
block is attached to the gating function of gMLP (Figure 6). Since gMLP itself is already capable in
capturing spatial relationships, we hypothesize that this extra self-attention module does not have to
be heavy, and that its presence is more relevant than its capacity. A typical tiny attention module in
our experiments has only a single head with size 64, significantly smaller than a typical multi-head
self-attention in Transformers with 12 heads and a total size of 768. In the following, we refer to the
hybrid model, namely gMLP with a tiny self-attention, as aMLP (“a” for attention).

Spatial Proj

Norm

split

Tiny 
Attn

Pseudo-code for the tiny attention module
def tiny_attn(x, d_out, d_attn=64):

qkv = proj(x, 3 ∗ d_attn, axis="channel")
q, k, v = split(qkv, 3, axis="channel")
w = einsum("bnd,bmd−>bnm", q, k)
a = softmax(w ∗ rsqrt(d_attn))
x = einsum("bnm,bmd−>bnd", a, v)
return proj(x, d_out, axis="channel")

Figure 6: Hybrid spatial gating unit with a tiny self-attention module. We use the normalized input of
the gMLP block (endpoint after the input normalization and right before the channel expansion) as
the input to the tiny self-attention. For SGU we have dout = dffn/2 due to the channel split.

In Figure 7, we investigate the transferability of MLM models via the calibration plots between
their pretraining perplexities and finetuning metrics. Models evaluated include BERTbase, gMLP
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and its hybrid version aMLP with a 64-d single-head self-attention (Figure 6). The data points were
collected by varying the model depth by {0.5, 1, 2}× or data by {1, 2, 4, 8}×. It can be seen that
gMLPs transfer better to SST-2 than Transformers regardless of the presence of self-attention, While
gMLP performs worse on MNLI, attaching a tiny bit of self-attention is sufficient to close the gap. In
Appendix D we visualize the tiny self-attention modules in aMLP over MNLI examples, showing
that they are primarily responsible for the alignment between sentence pairs.

Negative Perplexity

S
S

T-
2 

A
cc

 (%
)

90

92

94

96

-5.0 -4.5 -4.0 -3.5

Transformer gMLP aMLP

Negative Perplexity

M
N

LI
-m

 A
cc

 (%
)

80

82

84

86

88

-5.0 -4.5 -4.0 -3.5

Transformer gMLP aMLP

Figure 7: Transferability from MLM pretraining perpexity to finetuning accuracies on GLUE. aMLP
refers to gMLP enhanced with a 64-d single-head self-attention, as illustrated in Figure 6. In contrast,
each self-attention module in the BERT baseline contains 12 heads with a total size of 768.

In Figure 8 we put together the scaling properties of the three models, showing that aMLP (gMLP +
tiny attention) consistently outperforms Transformer on both finetuning tasks.
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Figure 8: Comparing the scaling properties of Transformers, gMLPs and aMLPs (with 64-d, single-
head attention). Results were obtained using the same setup in Section 4.2.

4.4 Main Results for MLM in the BERT Setup

Below we present pretraining and finetuning results in the full BERT setup. Different from ablation
and case studies, here we use the full English C4 dataset and adopt a common MLM setup with
batch size 256, max length 512 and 1M training steps. For fair comparison, we adjust the depth and
width of gMLPs to ensure comparable model capacity with the Transformer baselines. The model
specifications are given in Table 5 and hyperparameters are detailed in Appendix A.2. For finetuning,
we report the dev-set performance for SST-2 and MNLI in GLUE [41] and each result entry was
obtained by taking the median of five independent runs. In addition, we report finetuning results on
SQuAD [44, 45] to test the models’ ability in reasoning over a longer context.

Results are presented in Table 6. Consistent with our findings earlier in Section 4.1 and Section 4.2,
gMLPs are competitive with Transformers in terms of perplexity, especially in the larger scale setup.
There are several observations related to the finetuning results:

First, on finetuning tasks where gMLPs underperform Transformers, the performance gap tends to
narrow as the model capacity increases. For example, while gMLP performs worse by 8.5% on
SQuAD-v2.0 in the base scale, the performance gap relative to the baseline decreases to 2.7% at the
larger scale. Notably, our gMLPlarge achieves 89.5% F1 on SQuAD-v1.1 without any self-attention or
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Table 5: Model specifications in the full BERT setup.

Params (M) FLOPs (B) #L dmodel dffn

BERTbase 110 100.8 12+12 768 3072
gMLPbase 130 158.0 48 512 3072
aMLPbase 109 128.9 36 512 3072

BERTlarge 336 341.2 24+24 1024 4096
gMLPlarge 365 430.1 96 768 3072
aMLPlarge 316 370.3 72 768 3072

gMLPxlarge 941 1091.3 144 1024 4096

Table 6: Pretraining perplexities and dev-set results for finetuning. “ours” indicates models trained
using our setup. We report accuracies for SST-2 and MNLI, and F1 scores for SQuAD v1.1/2.0.

Perplexity SST-2 MNLI SQuAD Attn Size Params

(m/mm) v1.1 v2.0 (M)

BERTbase [2] – 92.7 84.4/- 88.5 76.3 768 (64 × 12) 110

BERTbase (ours) 4.17 93.8 85.6/85.7 90.2 78.6 768 (64 × 12) 110
gMLPbase 4.28 94.2 83.7/84.1 86.7 70.1 – 130
aMLPbase 3.95 93.4 85.9/85.8 90.7 80.9 64 109

BERTlarge [2] – 93.7 86.6/- 90.9 81.8 1024 (64 × 16) 336

BERTlarge (ours) 3.35 94.3 87.0/87.4 92.0 81.0 1024 (64 × 16) 336
gMLPlarge 3.32 94.8 86.2/86.5 89.5 78.3 – 365
aMLPlarge 3.19 94.8 88.4/88.4 92.2 85.4 128 316

gMLPxlarge 2.89 95.6 87.7/87.7 90.9 82.1 – 941

dynamic spatial parameterization [28], which is well above the 88.5% reported for BERTbase in Devlin
et al. [2] and is only 1.4% away from the original result for BERTlarge. We also include one additional
data point by scaling up gMLP even further. The resulting model, gMLPxlarge, outperforms BERTlarge
on SQuAD-v2.0—a difficult task involving question-answer pairs—without any self-attention. While
this is not a fair comparison due to different model sizes, it is an existence proof that MLP-like
models can be competitive with Transformers on challenging NLP tasks.

Furthermore, we show that blending in a tiny single-head self-attention of size either 64 or 128 is
sufficient to make gMLPs outperform Transformers of similar capacity, sometimes by a significant
margin. For example, our hybrid model aMLPlarge achieves 4.4% higher F1 than Transformers on
SQuAD-v2.0. The results suggest that the capacity in the multi-head self-attention of Transformers
can be largely redundant, and that the majority of its functionalities can be captured by the spatial
gating unit in gMLPs. The results also imply that the inductive biases in the spatial gating unit of
gMLPs and the tiny attention are complementary to each other. While the benefits of architectural
inductive bias may vanish over increased compute, tiny attention does improve the practical value of
gMLPs in the regime that we investigate in this work.

5 Conclusion

Since the seminal work of Vaswani et al. [1], Transformers have been widely adopted across NLP
and computer vision. This adoption has enabled many impressive results especially in NLP. To date,
it is still unclear what empowers such success: is it the feedforward nature of Transformers or is it the
multi-head self-attention layers in Transformers?

Our work suggests a simpler alternative to the multi-head self-attention layers in Transformers. We
show that gMLPs, a simple variant of MLPs with gating, can be competitive with Transformers
in terms of BERT’s pretraining perplexity and ViT’s accuracy. gMLPs are also comparable with
Transformers in terms of the scalability over increased data and compute. As for BERT finetuning, we
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find gMLPs can achieve appealing results on challenging tasks such as SQuAD without self-attention,
and can significantly outperform Transformers in certain cases. We also find the inductive bias in
Transformer’s multi-head self-attention useful on downstream tasks that require cross-sentence align-
ment. However in those cases, making gMLP substantially larger closes the gap with Transformers.
More practically, blending a small single-head self-attention into gMLP allows for an even better
architecture without the need for increasing model size.
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