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ABSTRACT

More distinguishable and consistent pixel features for each category will ben-
efit the semantic segmentation under various settings. Existing efforts to mine
better pixel-level features attempt to explicitly model the categorical distribution,
which fails to achieve optimal due to the significant pixel feature variance. More-
over, prior research endeavors have scarcely delved into the thorough analysis
and meticulous handling of pixel-level variance, leaving semantic segmentation at
a coarse granularity. In this work, we analyze the causes of pixel-level variance
and introduce the concept of pixel learning to concentrate on the tailored learning
process of pixels to handle the pixel-level variance, enhancing the per-pixel recog-
nition capability of segmentation models. Under the context of the pixel learning
scheme, each image is viewed as a distribution of pixels, and pixel learning aims to
pursue consistent pixel representation inside an image, continuously align pixels
from different images (distributions), and eventually achieve consistent pixel rep-
resentation for each category, even cross-domains. We proposed a pure pixel-level
learning framework, namely PiXL, which consists of a pixel partition module to
divide pixels into sub-domains, a prototype generation, a selection module to pre-
pare targets for subsequent alignment, and a pixel alignment module to guarantee
pixel feature consistency intra-/inter-images, and inter-domains. Extensive evalu-
ations of multiple learning paradigms, including unsupervised domain adaptation
and semi-/fully-supervised segmentation, show that PiXL outperforms state-of-
the-art performances, especially when annotated images are scarce. Visualization
of the embedding space further demonstrates that pixel learning attains a superior
representation of pixel features. The code is available here.
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1 INTRODUCTION

Semantic segmentation is challenging as it requires categorical pixel-level annotations precisely and
consistently under different background knowledge contexts, e.g., organs or lesions in medical image
analysis (He et al., 2022; Liu et al., 2022), and city scenes in autonomous driving (Tsai et al., 2018;
Hoyer et al., 2022a). As a dense prediction task, the pixel features within the same category across
different images are expected to conform to an implicit global distribution. Thus, the pixel features
extracted from one or several images reveal partial of the global distribution, which can be denoted
as local distribution, and exhibits bias from global distribution. Existing research mainly focused
on directly modeling or representing the global distribution using prototypes (Zhang et al., 2021; Liu
et al., 2020; Yang et al., 2020) or speculated prior (e.g., the Gaussian distribution (Xie et al., 2023)).
However, the complexity of the global distribution exceeds the representation capacity of prototypes
or primary prior distribution. The notable pixel-level variance caused by the factors summarized in
Fig. 1 also aggravates the problem. The exquisite design of multiple prototypes or sophisticated prior
distribution for specific scenarios also makes them infeasible and biased. We observe that successful
segmentation models can construct well global distribution for categorical features during training,
but pixel features within local distributions may deviate. Therefore, per-pixel alignment on deviated
features helps mitigate pixel-level variance and approach global consistency.

In this work, we raise the concept of pixel learning, wherein each image is regarded as a distribu-
tion of pixels. Obviously, pixel features are varied in the same distribution (image), among different
distributions, and different domains. The unreliable pseudo labels in unsupervised domain adapta-
tion or semi-supervised settings also exacerbate the variance, as summarized in Fig. 1. Therefore,
we propose the pixel learning scheme to address the intra- and inter-distribution (image) variance
and achieve a consistent global distribution for each category eventually. Following pixel learning,
we introduce a novel segmentation framework PiXL, built on a pure pixel-based learning strategy.
Specifically, pixel features from several images form the local distribution at each learning step. For
each class, only a subset of pixel features within the local distribution conforms to the global distri-
bution, while the others do not, which are denoted as joint pixels and drift pixels, respectively. We
first propose the Pixel-Level Sub-Domain Partition (PSP) module to discern those pixels based on
their entropy. The multi-resolution prototypes are derived from the joint pixels to serve as alignment
targets for drift pixels. They undergo categorical selection within the Adaptive Prototype Generation
(APG) module to ensure their semantic richness. Compared with previous prototype-based methods,
our prototypes embed rich local distribution information besides global distribution information, de-
noted as local prototypes. Hence, the drift pixels in each local distribution undergo asymmetric
pushing toward the local prototypes in the Drift Pixels Asymmetric Contrast (DPA) module to har-
monize pixels intra- and inter-distribution, ultimately approximating the global distribution.

Extensive experiments of multiple learning settings, including unsupervised domain adaptation
(UDA), and semi-/fully-supervised segmentation, validate the performance of PiXL. In the UDA
setting, PiXL outperforms the state-of-the-art methods on GTA5 and SYNTHIA → Cityscapes, re-
spectively. In the semi-supervised setting on the Cityscapes dataset, PiXL produces consistent and
competitive performance, especially on rare labels. When only 3.3% images are labeled, PiXL out-
performs the SOTA by a large margin. The competitive results in the fully supervised setting on
the Cityscapes dataset also show the power of pure pixel learning. The visualization of the pixel
feature distribution illustrates that PiXL produces intra-class compact and inter-class separable pixel
features for each category.

Our contributions are as follows:

• We introduce the pixel learning scheme by treating each image as a local distribution of pixels. It
then can comprehensively analyze and meticulously handle the pixel-level variance to enhance the
per-pixel recognition capability of the segmentation model and integrate various segmentation tasks
under a unified framework.

• We propose the PiXL framework, which segregates pixels within a given local distribution into
sub-domains: joint pixels and drift pixels. Then, the PiXL employs an asymmetric alignment ap-
proach to align drift pixels with the joint pixels, effectively addressing pixel-level variance in a
divide-and-conquer manner.
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• Extensive experiments confirm PiXL’s performance, especially demonstrating promising results in
label-scarce settings. The t-SNE visualization of the pixel embedding space further illustrates that
PiXL attains enhanced intra-class compactness and inter-class distinctiveness in pixel features.

2 RELATED WORK

Semantic segmentation using pixel features. Semantic segmentation requires per-pixel classi-
fication, while previous image-level (Wang et al., 2020; Tsai et al., 2018) methods were limited
to rough pixel recognition. Recent efforts strive to advance semantic segmentation to achieve a
more refined level of granularity. In unsupervised or self-supervised learning, Xie et al. (2021c)
adopted pixel-level contrastive learning as a pre-training task. In semi-supervised learning, Alonso
et al. (2021) aligned the per-pixel feature to high-quality memory bank pixels. In weakly-supervised
learning, Ahn & Kwak (2018); Du et al. (2022) extracted the pixel-level feature under supervi-
sion from CAMs (Zhou et al., 2016). Han et al. (2023) enforced pixel- and class-wise consistency
constraints across various perspectives of 3D medical images. In fully supervised learning, Wang
et al. (2021b) explored forming contrastive pairs with the cross-image pixels. In Ma et al. (2023),
an image was considered as disorganized points, and clustering was employed to extract features,
enhancing the model’s interpretability. In unsupervised domain adaptation, Vayyat et al. (2022)
conducted contrastive learning on pixels from multi-resolution images in CLUDA. Xie et al. (2023)
unified different forms of pixel contrastive learning and added Gaussian distribution prior in SePiCo.
However, few of these prior methods conducted an exhaustive analysis of pixel-level variance or de-
vised learning strategies at a per-pixel level. Our PiXL, on the other hand, delves into pixel-level
variance and tailors a pixel-learning scheme to address it.

Domain adaptation. Most studies in domain adaptation, including UDA, have predominantly
emphasized addressing inter-domain variance (Zhang et al., 2021; Vu et al., 2019). However, the
significance of intra-domain variance and even intra-distribution variance is equally noteworthy but
has been rarely explored. Pan et al. (2020) proposed IntraDA to explicitly conduct intra-domain
adaptation. Cai et al. (2022) extended IntraDA to an iterative adaptation manner. Yan et al. (2021)
proposed PixIntraDA to conduct intra-domain alignment at the pixel level. Whereas the lack of
comprehensive investigation of variance at the pixel level hampers addressing the issue. To bridge
the gap, we analyze the causes of pixel-level variance in Fig. 1. Besides, we approach the pixel-level
variance based on the pixel learning scheme in a divide-and-conquer manner to align drift pixels in
local distribution to joint pixels following global distribution.

Contrastive learning. Contrastive learning is adopted either as a pretext task for pre-training (He
et al., 2020; Wu et al., 2018; Zhao et al., 2021) or a plug-and-play module in a model (Xie et al.,
2023; Vayyat et al., 2022) to refine feature representation. Utilizing the widely employed InfoNCE
loss (Oord et al., 2018), features tend to approach positive samples while moving away from negative
ones. In early works (Zhang et al., 2022; Chen et al., 2020), contrastive learning was used in image-
level learning scenarios. Recently, some works attempted to apply contrastive learning at region (Xie
et al., 2021a) or pixel (Xie et al., 2023; Wang et al., 2021b) level. Xie et al. (2021a) introduced patch-
level contrastive learning by adding patch-level InfoNCE loss. Wang et al. (2022) applied contrastive
learning at the pixel level with carefully selected contrastive pairs. Vayyat et al. (2022) introduced
an explicit pixel-to-pixel contrastive manner in UDA. Nevertheless, these previous works lacked
further consideration in contrastive mechanism design and appropriate positive sample selection,
which could potentially cause adverse effects and misleading signals. Contrarily, PiXL develops an
asymmetric contrast mechanism inspired by Yu et al. (2022) and collaborates with PSP and APG
modules to guarantee the reliability of positive pixels and accurate alignment at the pixel level.

3 METHOD

3.1 PIXEL LEARNING

We first introduce the pixel learning scheme, where each image X is construed as a local distribution
of pixels sampled from the global pixel distribution of each category according to equation 1,

(X,Y ) := {(xj , yj)|j = 1, · · · , N ; yj = 1, · · · , C} (1)
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j represents the pixel index, and N signifies an image’s total number of pixels. For pixel features
of each class k, let Gk denote the global distribution and gk indicate the local distribution. Conse-
quently, feature maps F with their corresponding labels Y are considered as a distribution of labeled
pixel features, as depicted in equation 2, where N denotes the number of pixel features in F . While
pixel features in gk are anticipated to follow Gk, this is not always true.

(F , Y ) := g = {(fj , yj) |j = 1, · · · , N ; yj = 1, · · · , C} =

C⋃
k=1

gk,

where gk = {(fj , yj) |yj = k},fj , yj are pixel feature and label.

(2)

For the sake of narrative, image is also referred to distribution in this work. The pixel learning
scheme contributes to semantic segmentation in the following two aspects:

• Pixel learning elevates the granularity of variance analysis to the pixel level, concentrating on intra-
and inter-distribution, pixel-level variance, especially emphasizing the intra-image pixel variance.

• Pixel learning serves as a unified scheme in semantic segmentation, entailing a continuous intra-
and inter-distribution pixel-level domain adaptation, i.e., the ongoing alignment of pixel features
from two sampled distributions could ultimately address tasks like UDA, semi- and fully-supervised
semantic segmentation.

3.2 OVERVIEW OF PIXL FRAMEWORK

Based upon principles of pixel learning, we construct a pixel learning framework called PiXL, con-
sisting of four modules, i.e., i). Multiple Resolution Feature Extraction, ii). Pixel Level Sub-Domain
Partition (PSP), iii). Adaptive Prototype Generation (APG), iv). Drift Pixels Alignment (DPA).

At each training step in PiXL, the learning process proceeds as follows:

• Two images are sampled to construct a local pixel feature distribution g by obtaining the features
of pixels from the extracted feature map F and the corresponding label Y . We employ a multi-
resolution input strategy to incorporate more comprehensive semantic information.

• The PSP module partitions the pixel features within the local distribution into two categories: F̂ =

{f̂1, · · · , f̂Nj} representing joint pixel features assumed to follow the global feature distribution of
each class, and F̃ = {f̃1, · · · , f̃Nd

} denoting drift pixel features considered to deviate from those
distributions.

• The APG module generates multi-resolution prototypes for each category using the joint pixel
features and adaptively selects the semantic richness prototype as the alignment target for each
category.

• The drift pixels are aligned to the categorical global pixel feature distribution by pulling them
towards prototypes of the same class while simultaneously pushing them away from other prototypes
in the DPA module.

3.3 MULTIPLE RESOLUTION FEATURE EXTRACTION

We employ a multiple-resolution input strategy to guarantee the semantic richness in features and
the model’s robustness to varied resolutions of images, inspired by Hoyer et al. (2022b). Specifi-
cally, PiXL cuts out a high-resolution part XH from image X while resizing X to the same size
of XH to form a low-resolution image XL, providing abundant details and sufficient context in-
formation respectively. The extracted feature maps FL and FH from XL and XH , collaborated
with corresponding labels Y

L
and Y

H
, constitute the local distribution of pixel features given by

equation 3.
g = gL ∪ gH = {(fL

j , yj) |j = 1, · · · , NL} ∪ {(fH
j , yj) |j = 1, · · · , NH} (3)

3.4 PIXEL LEVEL SUB-DOMAIN PARTITION

PiXL employs entropy as the criteria to segregate the pixel features in g into joint pixels and drift
pixels. The entropy h of pixel feature f is determined by its predicted probability distribution. To
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Figure 2: An overview of PiXL framework. At each training step, two images are sampled and fed
into the subsequent modules. Multiple Resolution Feature Extraction Module extracts features from
low- and high-resolution images. Pixel-Level Sub-Domain Partition Module arranges pixels from
each image into joint pixels and drift pixels based on entropy. The Adaptive Prototype Generation
Module selects prototypes from different resolutions to balance context and details. Drift Pixels
Alignment Module aligns drift pixels to local prototypes.

pursue a suitable partition of pixel features, low-resolution and high-resolution pixel features are
concatenated and then sorted according to their per-pixel entropy. Subsequently, PiXL determines
the threshold ϵ using the 1 − η quantile of the sorted pixel entropy to conduct partition according
to equation 4. It should be noted that pixel partition is performed separately for each distribution to
ensure fairness, considering the entropy gap across images.

F̂ = {f̂j |hj < ϵ}, F̃ = {f̃j |hj ≥ ϵ}, j = 1, · · · , NL +NH . (4)

3.5 DRIFT PIXELS ALIGNMENT

Local prototypes. To conduct intra- and inter-distribution alignment on pixels from two sampled
distributions, local prototypes for each category are calculated on joint pixels. Given joint pixels
from distribution i and distribution j, local prototype for category k is given by:

p(k) =
1

|F̂ (k)
i ∪ F̂

(k)
j |

∑
f̂t, where f̂t ∈ F̂

(k)
i ∪ F̂

(k)
j . (5)
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The F̂
(k)
i and F̂

(k)
j refer to feature of joint pixels belongs to category k from distribution i and

distribution j respectively.

Drift pixels asymmetric contrast. Contrastive learning is employed to align pixel features intra-
and inter-distribution. We design an asymmetric alignment strategy to push drift pixels to local
prototypes p and suppress the misleading signals from drift pixels. Specifically, given a drift pixel
f̃t affiliated to category k as the anchor. The positive sample is the local prototype p(k) while other
local prototypes {p(j)|j = 1, · · ·C, j ̸= k} are negative samples. Thus, for the single drift pixel f̃t,
the asymmetric contrast loss is given as follows:

LDPA
t = LInfoNCE

(
f̃t,Pt,Nt

)
=

1

|Pt|
∑

f̃t∈Pt

− log

 e(f̃t·p(k)/τ)

e(f̃t·p(k)/τ) +
∑

p(j)∈Nt

e(f̃t·p(j)/τ)




where Pt = {p(k)},Nt = {p(j)|j = 1, · · · , C, j ̸= k}, τ is temperature parameter.
(6)

PiXL stops the gradient accumulation of prototypes p in the DPA module to realize the asymmetric
contrast. The asymmetric alignment loss to address all drift pixels from two distributions is given
by equation 7.

LDPA(F̃i, F̃j) =
1

|F̃i ∪ F̃j |

∑
f̃t

LDPA
t . (7)

3.6 ADAPTIVE PROTOTYPE GENERATION

Considering the semantic variation in the features extracted from images of different resolutions,
the local prototypes calculated from them should share complementary information. For common
classes, like sky, road, and building, context information gets compromised in high-resolution fea-
tures FH . On the contrary, the low-resolution features FLlack sufficient details. Thus, we propose
an adaptive local prototype selection module to choose the most meaningful pixels for each cate-
gory to form local prototypes. As shown in Fig. 2, the number of pixels embedded in each prototype
is also quantified simultaneously during the generation of multi-resolution prototypes, which is re-
ferred to as {(p(k), N (k))|k = 1, · · · , C}. We sort these low-resolution prototypes p(k)

L according
to their corresponding number of pixels N (k)

L and compute the median of N (k)
L , denoted as m. For

a class k, the adaptive selection of the prototype is given by equation 8.

p(k) =


p
(k)
L , N

(k)
L ≥ m,

p
(k)
L , N

(k)
L < m and N

(k)
H < N

(k)
L ,

p
(k)
H , otherwise.

(8)

3.7 LOSS

In addition to the LDPA loss, cross-entropy (CE) loss L∗
CE and a Thing-Class ImageNet Feature

Distance loss L∗
FD following Hoyer et al. (2022a;b); Vayyat et al. (2022) are also employed. The

complete loss is summarized in equation 9, where λFD is the weight of L∗
FD. Please refer to the

Appx. § A.3 for details of L∗
CE and L∗

FD.

LPiXL = L∗
CE + λFDL

∗
FD +LDPA. (9)

4 EXPERIMENTS

4.1 DATASET

GTA5. A large-scale synthetic dataset contains 24,966 annotated images. SYNTHIA. A collection
of generated urban images including 9,400 images. Cityscapes. A real-world street scene dataset
contains 2,975 training images and 500 validation images.
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4.2 TASK SETTING

Fully supervised learning. We use all the training images from Cityscapes to train our PiXL and
evaluate that on the corresponding validation part. Semi-supervised learning. We randomly select
1/4, 1/8, and 1/30 labeled images from the Cityscapes training set while utilizing the left images
as unlabeled images to train PiXL. Performance is reported on the validation part. Unsupervised
domain adaptation. We evaluate our PiXL on GTA5→Cityscapes and SYNTHIA →Cityscapes.
mIoU is utilized to evaluate the model’s performance in these tasks, which is calculated by the
average of the intersection over the union in each category.

4.3 IMPLEMENTATION DETAILS

Network architecture. The HRDA model (Hoyer et al., 2022b) is adopted as the baseline, which
consists of a MiT-B5 encoder (Xie et al., 2021b) and a feature fusion decoder from DAFormer
(Hoyer et al., 2022a). We further validate the effectiveness and plug-and-play property of PiXL on
DeepLabV3+ (Chen et al., 2018) backbone, referring to Appx. § A.2 for more details.

Training. We follow the Vayyat et al. (2022) training strategies and parameters, i.e. a batch size
of 2, the optimizer is AdamW with a learning rate of 6 × 10−5 for the encoder and 6 × 10−4 for
the decoder with linear warmup policy, DACS data augmentation, rare class sampling strategy on
labeled training data, the self-training method for unlabeled training data. In UDA and SSL settings,
we employ the Exponential Moving Average (EMA) updated teacher model to generate the pseudo
labels for unlabeled images, as shown in Fig. 5. Moreover, we set the training epoch to 60000, set
the η to 0.2 initially, and decrease it linearly until η = 0.001 during training. The model is trained
on a single Tesla V100 with 32 GB memory. More details are provided in Appx. § A.4.
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Table 1: Comparison with previous methods
in the semi-supervised setting on Cityscapes.

Methods Image Size 1/30(100) 1/8(372) 1/4(744)

ClassMix Olsson et al. (2021) 512×1024 54.07 61.35 63.63
SemiSegContrast Alonso et al. (2021) 512×512 64.90 70.10 71.70

CCT Ouali et al. (2020) 512×1024 - 74.12 75.99
GCT Ke et al. (2020) 769×769 - 72.66 76.11

MT Tarvainen & Valpola (2017) 800×800 - 73.71 76.53
AEL Hu et al. (2021) 769×769 - 77.90 79.01

U2PL Wang et al. (2022) 769×769 - 76.48 78.51
CPS Chen et al. (2021) 800×800 - 77.62 79.21
ReCo Liu et al. (2021a) 512×512 60.28 66.44 68.50

SegSDE Hoyer et al. (2021) 512×512 62.09 68.01 69.38

PiXL (DeepLabV3+) 512×512 70.62 75.20 78.20
PiXL (HRDA) 512×512 71.73 76.37 78.91

PiXL CLUDA
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Figure 4: t-SNE of pixel features in CLUDA and PiXL.
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PiXL
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Table 2: Comparison with previous methods in UDA setting on GTA5, SYNTHIA → Cityscapes.

Methods Road S.Walk Build. Wall Fence Pole Tr.Light Sign Veget. Terrain Sky Person Rider Car Truck Bus Train M.Bike Bike mIoU

GTA5 → Cityscapes
AdaptSeg Tsai et al. (2018) 86.5 25.9 79.8 22.1 20.0 23.6 33.1 21.8 81.8 25.9 75.9 57.3 26.2 76.3 29.8 32.1 7.2 29.5 32.5 41.4

CBST Zou et al. (2018) 91.8 53.5 80.5 32.7 21.0 34.0 28.9 20.4 83.9 34.2 80.9 53.1 24.0 82.7 30.3 35.9 16.0 25.9 42.8 45.9
DACS Tranheden et al. (2021) 89.9 39.7 87.9 30.7 39.5 38.5 46.4 52.8 88.0 44.0 88.8 67.2 35.8 84.5 45.7 50.2 0.0 27.3 34.0 52.1

CorDA Wang et al. (2021a) 94.7 63.1 87.6 30.7 40.6 40.2 47.8 51.6 87.6 47.0 89.7 66.7 35.9 90.2 48.9 57.5 0.0 39.8 56.0 56.6
BAPA Liu et al. (2021b) 94.4 61.0 88.0 26.8 39.9 38.3 46.1 55.3 87.8 46.1 89.4 68.8 40.0 90.2 60.4 59.0 0.0 45.1 54.2 57.4

ProDA Zhang et al. (2021) 87.8 56.0 79.7 46.3 44.8 45.6 53.5 53.5 88.6 45.2 82.1 70.7 39.2 88.8 45.5 59.4 1.0 48.9 56.4 57.5
DAFormer Hoyer et al. (2022a) 95.7 70.2 89.4 53.5 48.1 49.6 55.8 59.4 89.9 47.9 92.5 72.2 44.7 92.3 74.5 78.2 65.1 55.9 61.8 68.3

SePiCo Xie et al. (2023) 96.9 76.7 89.7 55.5 49.5 53.2 60.0 64.5 90.2 50.3 90.8 74.5 44.2 93.3 77.0 79.5 63.6 61.0 65.3 70.3
HRDA Hoyer et al. (2022b) 96.4 74.4 91.0 61.6 51.5 57.1 63.9 69.3 91.3 48.4 94.2 79.0 52.9 93.9 84.1 85.7 75.9 63.9 67.5 73.8
CLUDA Vayyat et al. (2022) 97.1 78.0 91.0 60.3 55.3 56.3 64.3 71.5 91.2 51.1 94.7 78.4 52.9 94.5 82.8 86.5 73.0 64.2 69.7 74.4

PiXL 97.0 77.6 91.1 59.9 54.1 57.2 64.8 69.1 91.5 51.8 94.8 80.5 57.3 94.6 83.8 88.7 78.0 65.6 67.8 75.0
SYNTHIA → Cityscapes

AdaptSegTsai et al. (2018) 79.2 37.2 78.8 - - - 9.9 10.5 78.2 - 80.5 53.5 19.6 67.0 - 29.5 - 21.6 31.3 37.2
CBST Zou et al. (2018) 68.0 29.9 76.3 10.8 1.4 33.9 22.8 29.5 77.6 - 78.3 60.6 28.3 81.6 - 23.5 - 18.8 39.8 42.6

DACS Tranheden et al. (2021) 80.6 25.1 81.9 21.5 2.9 37.2 22.7 24.0 83.7 - 90.8 67.5 38.3 82.9 - 38.9 - 28.5 47.6 48.3
CorDA Wang et al. (2021a) 93.3 61.6 85.3 19.6 5.1 37.8 36.6 42.8 84.9 - 90.4 69.7 41.8 85.6 - 38.4 - 32.6 53.9 55.0

BAPA Liu et al. (2021b) 91.7 53.8 83.9 22.4 0.8 34.9 30.5 42.8 86.8 - 88.2 66.0 34.1 86.6 - 51.3 - 29.4 50.5 53.3
ProDA Zhang et al. (2021) 87.8 45.7 84.6 37.1 0.6 44.0 54.6 37.0 88.1 – 84.4 74.2 24.3 88.2 – 51.1 – 40.5 45.6 55.5

DAFormer Hoyer et al. (2022a) 84.0 40.7 88.4 41.5 6.5 50.0 55.0 54.6 86.0 - 89.8 73.2 48.2 87.2 - 53.2 - 53.9 61.7 60.9
SePiCo Xie et al. (2023) 87.0 52.6 88.5 40.6 10.6 49.8 57.0 55.4 86.8 - 86.2 75.4 52.7 92.4 - 78.9 - 53.0 62.6 64.3

HRDA Hoyer et al. (2022b) 85.2 47.7 88.8 49.5 4.8 57.2 65.7 60.9 85.3 - 92.9 79.4 52.8 89.0 - 64.7 - 63.9 64.9 65.8
CLUDA Vayyat et al. (2022) 87.7 46.9 90.2 49.0 7.9 59.5 66.9 58.5 88.3 - 94.6 80.1 57.1 89.8 - 68.2 - 65.5 65.8 66.8

PiXL 89.9 53.8 90.1 52.8 7.1 58.8 49.9 63.5 88.4 - 94.6 80.5 55.9 90.8 - 68.1 - 67.0 62.9 67.1

Table 3: Comparison with previous methods in the
fully supervised setting on Cityscapes.

Methods Image Size Cityscapes

HRNetV2 Wang et al. (2020) 512×1024 81.10
HRViT-b1 Gu et al. (2022) 1024×1024 81.63

ContrastiveSeg Wang et al. (2021b) 512×1024 82.40
HRViT-b2 Gu et al. (2022) 1024×1024 82.81

SegFormer Xie et al. (2021b) 1024×1024 84.00
Mask2Former Cheng et al. (2022) 512×1024 84.50

SeMask Jain et al. (2021) 768×768 84.98

PiXL 512×512 82.74

Table 4: Component ablation of PiXL.

Methods APG DPA mIoU ↑

baseline 73.8
PiXL ✓ 74.7 +0.9
PiXL ✓ ✓ 75.0 +1.2

Table 5: Quantile ablation of PiXL.
η 0.1 0.2 0.4 0.6 0.8

mIoU 74.8 75.0 75.0 74.9 74.1

Image HRDA CLUDA PiXL (Ours) Ground Truth

Figure 6: Qualitative comparison with baseline and SOTA methods in UDA setting on GTA5 →
Cityscapes. PiXL performs better on boundary pixels and internal pixels.

4.4 RESULTS

Unsupervised domain adaptation. In the UDA setting, our PiXL outperforms the baseline model
HRDA and achieves commensurate performance with the SOTA. In GTA5 → Cityscapes and SYN-
THIA → Cityscapes, our model PiXL surpasses the baseline by a margin of 1.2% and 1.3% respec-
tively in Tab. 2. Compared with the SOTA model CLUDA, our method outperforms it by a margin
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of 0.6% and 0.3%. Specifically, in GTA5 → Cityscapes, PiXL obviously improves the performance
on rare classes, like pole, motorbike, etc. Moreover, the performance improvement is also consistent
in SYNTHIA → Cityscapes. In the common class pixels, PiXL also achieves comparable results
or surpasses the previous works, like vegetation, road, sidewalk, etc. Fig. 6 provides more details,
depicting that PiXL performs better in internal and boundary pixels. Experiments conducted in the
UDA setting confirm the effectiveness of PiXL, implying that the pixel learning scheme produces
more consistent pixel features and mitigates the domain gap at the pixel level.

Semi-supervised semantic segmentation. We evaluate PiXL on DeepLabV3+ (Chen et al., 2020)
and HRDA (Hoyer et al., 2022b) to verify its plug-and-play property. PiXL performs competitively
with the SOTA models as summarized in Tab. 1, especially in 3.3% images labeled setting, where
PiXL (DeepLabV3+), PiXL (HRDA) surpass the SOTA by 5.72% and 6.83% respectively. Fig. 3
further confirms PiXL maintains its excellent and robust performance as the labeled image ratio
varies. The qualitative analyses are available in Appx. § A.5. Experiments on semi-supervised seg-
mentation demonstrate PiXL’s ability to thrive in label-efficient scenarios, which further highlights
the strengths of pixel learning.

Fully supervised semantic segmentation. As depicted in Tab. 3, PiXL surpasses HRNetV2 and
HRViT-b1, which concentrate on multi-resolution feature mining. PiXL exhibits competitive perfor-
mance compared with the SOTA methods trained on higher resolution images, such as 768 × 768,
512 × 1024, and even 1024 × 1024. Notably, PiXL achieves this level of performance while being
trained on 512 × 512 images. Although images of lower resolution and smaller fields of view may
potentially deteriorate pixel feature representation, which exacerbates the bias of the local distribu-
tion, the pixel learning scheme effectively mitigates these influences to some extent and continues
to deliver competitive performance. The qualitative analyses are provided in Appx. § A.5.

Ablation study. We conduct abundant ablation of PiXL in GTA5 → Cityscapes task. The ablation
on components, including the DPA and APG modules, are summarized in Tab. 4. Compared with the
baseline model HRDA, our drift pixels alignment module improves the performance by 0.9%, which
verifies that the asymmetric contrast mechanism effectively addresses pixel feature variance and
ultimately improves the model’s per-pixel recognition capability. Adopting the adaptive selection
in the APG module further improves the performance of PiXL to 75.0%, which outperforms the
baseline by a margin of 1.2%. This underscores that the adaptive selection contributes to achieving
a balance between details and contextual information encapsulated in the local prototypes, making
them better alignment targets for drift pixels. Despite the ablation study of η presented in Tab.
5 demonstrating robust improvement on the baseline performance 73.8%, η still affects the model
slightly. Considering the partition threshold ϵ is determined by 1−η quantile, a larger η means more
pixels are drift pixels. The improvement is marginal when η is 0.8, confirming that the drift pixels
are indeed a small portion and tailored adjustment in PiXL refines each category’s pixel features.

Visualization. We employ t-SNE to visualize the distribution of pixel features in the embedding
space and compare the pixel features of PiXL and the SOTA method CLUDA. Fig. 4 illustrates that
PiXL refines pixel feature representation with better inter-class separability and intra-class compact-
ness. PiXL’s performance on quantitative metrics Calinski-Harabasz Index (CH) Davies-Bouldin
Index (DB), i.e., 1936.22 and 1.87 while that of CLUDA is 1722.23 and 2.42, further confirming
the above conclusion, as a larger CH and a smaller DB indicate better inter-class separability and
intra-class compactness. Both visualization and quantitative analysis substantiate the improvement
in pixel features achieved by PiXL.

5 CONCLUSION

In this work, we propose a novel pixel learning scheme to dive semantic segmentation models into
the pixel level by treating an image as a distribution of pixels. This advocates addressing pixel-level
variance to enhance the segmentation model’s per-pixel recognition capability. We proposed PiXL,
a pure pixel-level learning framework that executes pixel-level intra- and inter-distribution (image)
alignment within the context of pixel learning. Extensive quantitative and qualitative experiments
in various settings of semantic segmentation confirm the effectiveness of PiXL, demonstrating the
feasibility and superiority of the pixel learning scheme, which deserves further exploration.
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REPRODUCIBILITY STATEMENT

To guarantee the reproducibility and completeness of this paper, we devote the following efforts:

• We illustrate the model pipeline in Fig. 2 and Fig. 5, with detailed explanations provided in section
§ 3.2 to facilitate understanding.

• We provide abundant details regarding the model implementation and hyper-parameters choice in
section § 4.3, Appx. § A.2, and Appx. § A.4.

• We comprehensively explain the loss functions in our work in Appx. § A.3.

• The code will be available upon acceptance.
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A APPENDIX

A.1 OVERVIEW

In this appendix, we provide further insights into the PiXL framework, including implementation
details § A.2, loss functions § A.3, training and inference procedures § A.4, and supplementary
qualitative analysis § A.5.

A.2 IMPLEMENTATION DETAILS

We have implemented two variants of the PiXL framework utilizing different backbones and de-
coders, as depicted in Tab 6. All the backbones have been pre-trained on ImageNet-1K.

Table 6: Variants of PiXL. † indicates the inclusion of modifications.

Framework Backbone Decoder

PiXL (DeepLabV3+) ResNet101 DeepLabV3+ Decoder†

PiXL (HRDA) MiT-B5 DAFormer Decoder
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PiXL (HRDA) We adopt the MiT-B5 as the backbone and employ a context-aware feature fusion
decoder proposed by Hoyer et al. (2022a). The MiT-B5 extracts multi-scale features from input
images, which are passed through an Atrous Spatial Pyramid Pooling (ASPP) (Chen et al., 2017).
This module generates the final feature representation for per-pixel prediction and constitutes the
pixel features used for pixel learning. The feature dimension C of each pixel is 256. The attention-
based multi-scale prediction fusion mechanism is also applied in our PiXL following Hoyer et al.
(2022b).

PiXL (DeepLabV3+) To validate the plug-and-play property of PiXL, we have also implemented
a CNN-based variant, which comprises a ResNet101 (He et al., 2016) encoder and a DeepLabV3+
head (Chen et al., 2018). In addition to enriching pixel features by combining the low-level features
with the fused features, we modify the input of the ASPP head by aligning and stacking features
from all four encoder blocks, similar to the approach employed in the DAFormer head.

A.3 LOSS FUNCTIONS

According to § 3.7, the loss function in PiXL encompasses cross-entropy loss L∗
CE, Thing-Class

ImageNet Feature Distance loss L∗
FD and our Drift Pixel Alignment loss LDPA, as detailed in § 3.5.

Cross-entropy loss Given feature map F , its cross-entropy loss is given following equation 10,
where ptk denotes the probability of pixel feature ft belongs to class k. yt signifies the label asso-
ciated with feature ft.

LCE(F ) = − 1

|F |
∑

t=1,··· ,|F |

wt

∑
k=1,··· ,C

I[yt=k] log ptk (10)

wt indicates the per-pixel cross-entropy loss weight, set to 1.0 when the label is available. Otherwise,
wt is determined by the confidence of pseudo labels to relieve noise from them. In the context
where Fj ∈ Rh×w×C is obtained from an unlabeled image Xj , we use Y j ∈ Rh×w to denote the
pseudo label predicted by the EMA teacher. Additionally, Mj ∈ Rh×w is employed to represent the
confidence of each pixel, with each value corresponding to the maximum value within each pixel’s
probability distribution. For calculating wt for each pixel in Fj , we utilize the formula provided in
equation 11, with δ set to 0.968.

wt =

∑h
x=1

∑w
y=1 [Mj(x, y) > δ]

h× w
. (11)

Since we sample two distributions at each training step and employ a multi-resolution input strategy,
the comprehensive cross-entropy loss is defined as follows:

L∗
CE = LCE(F

L
i ) +LCE(F

L
j ) + λHLCE(F

H
i ) + λHLCE(F

H
j ). (12)

The value of λH is set to 0.1 in equation 12.

Thing-Class ImageNet Feature Distance loss The Thing-Class ImageNet Feature Distance loss,
referred to as LFD, is employed to leverage the recognition capability of an ImageNet pre-trained
backbone for training regularization purposes, following Hoyer et al. (2022a;b); Vayyat et al. (2022).
Let F ′ represent the ImageNet pre-trained backbone and Ḟ ′ denote the last layer features extracted
from F ′. Similarly, F and Ḟ represent the backbone and its corresponding last layer features from
PiXL. The distance between each pixel feature ḟj in Ḟ and its corresponding feature ḟ ′

j in Ḟ ′ is
calculated as follows:

dj =
∥∥∥ḟj − ḟ ′

j

∥∥∥
2

(13)

As illustrated in Hoyer et al. (2022a;b); Vayyat et al. (2022), the LFD is applied to thing classes
(Caesar et al., 2018), denoted as Cthings. A mask I is generated to distinguish between things and
stuff, where each element Ij indicates whether feature fj ∈ Cthings. Consequently, the LFD on
features from ImageNet-pretrained backbone F ′ and PiXL backbone F is given as follows:

L∗
FD = LFD(Ḟ , Ḟ ′) =

∑N
j=1 dj · Ij∑

j Ij
(14)
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We exclusively apply L∗
FD to labeled images, with a weight of λFD set to 0.005, in order to pre-

vent overfitting in the contexts of UDA and semi-supervised segmentation. However, we observe
a performance drop in fully supervised segmentation when L∗

FD is applied. This suggests that the
regularization might impede the exploitation of abundant supervision. Consequently, we set λFD to
0 in the fully supervised setting.

A.4 TRAINING AND INFERENCE DETAILS

A.4.1 TRAINING

• Augmentation: PiXL employs several image augmentation techniques, including random crop-
ping and random flipping. Initially, images from GTA5, SYNTHIA, and Cityscapes datasets are re-
sized to 2560×1440, 2560×1520, and 2048×1024, respectively. Subsequently, 1024×1024 patches
are randomly cropped from each image, with random flips applied as well. Unlike previous meth-
ods that downsampled the original images, this augmentation strategy preserves more image details
at the cost of contextual information, intensifying the bias of local distribution g. However, PiXL
excels in handling those issues.

• Crop in Multi-Resolution Feature Extraction: In the Multi-Resolution Feature Extraction mod-
ule, an augmented 1024×1024 image is simultaneously cropped into a 512×512 high-resolution
patch XH and resized into a 512×512 low-resolution patch XL. During the initial 12000 iterations,
random cropping is employed. Afterward, regions with high entropy are selectively cropped, aiding
PiXL in focusing on the drift pixels.

• ClassMix: We have integrated ClassMix (Olsson et al., 2021) into PiXL to enhance data augmen-
tation. Specifically, for two images Xi and Xj , we randomly select half of the classes from Xi, mix
them with Xj , and produce an augmented image X ′

j . Following Tranheden et al. (2021), we apply
color jitter and Gaussian blur to X ′

j . Subsequently, both Xi and the augmented image X ′
j are input

into PiXL, as depicted in Fig. 5.

• Pseudo label generation: An EMA-updated version of PiXL is employed as the teacher model to
generate pseudo labels for unlabeled images in UDA and semi-supervised segmentation. We denote
the parameters in the teacher model and the back-propagated PiXL at training step t as W (t)

EMA and
W

(t)
PiXL, both initialized to be the same. The EMA update process is executed in accordance with

the formula presented in equation 16.

W
(t)
EMA =

{
W

(t)
PiXL, t = 0

λ
(t)
EMA ·W (t−1)

EMA + (1− λEMA) ·W (t−1)
PiXL, t ≥ 1

(15)

The λ
(t)
EMA at step t is illustrated as follows:

λ
(t)
EMA = min(1− 1

t+ 1
, 0.999) (16)

• Entropy In PiXL, we employ Information Entropy (entropy) as the measurement criteria to split
the pixels into joint and drift pixels. For a pixel feature representation f with its predicted probability
distribution, its entropy h is given by:

h = −
C∑

k=1

pk log pk. (17)

where C is the number of classes and pk is the probability of the pixel belonging to class k.

A.4.2 INFERENCE

We employ a sliding window strategy during the inference stage to make predictions, similar to
the baseline HRDA (Hoyer et al., 2022b). The sliding window has a size of 1024×1024, with an
overlap of 512× 512. Each patch within the sliding window is predicted by combining results from
the 512× 512 high-resolution and low-resolution inputs.
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A.5 QUALITATIVE ANALYSIS

This section qualitatively analyzes segmentation results in semi-supervised and fully-supervised sce-
narios to highlight PiXL’s effectiveness and robustness. As shown in Fig. 7, our results maintain
precision and consistency across major classes like road, sidewalk, and car, as well as minor classes
such as pole, bicycle, and traffic sign, even when the number of labeled images decreases signifi-
cantly. This further validates the efficacy of pixel learning, particularly in label-scarce scenarios.

We also examine several failure cases of our PiXL in Fig. 8. Pixels located at boundaries pose chal-
lenges for accurate recognition. For instance, distinguishing pixels at the boundaries of categories
like fence and traffic sign, or terrain and road, can be error-prone. Additionally, distinguishing pix-
els between categories with similar semantic information is also challenging, especially sidewalk
and road, as depicted in Fig. 8. Finally, some minor categories with very few pixels in a region can
be overlooked, such as pole.

A.6 FUTURE WORK

Through extensive experimentation, we have substantiated the efficacy of the pixel learning scheme.
This approach delves the segmentation model into the pixel level, significantly emphasizing the tai-
lored learning process for each pixel. The proposed pixel learning scheme inherently aligns with
the per-pixel recognition attributes integral to semantic segmentation. It also offers a unified frame-
work for diverse semantic segmentation scenarios by accounting for pixel-level variances. To further
harness the advantages of pixel learning, the following considerations merit attention:

• Pixel learning serves as a plug-and-play framework that seamlessly integrates with diverse back-
bones and decoders, enhancing the performance of existing models.

• While multi-resolution strategies are common in semantic segmentation, they are optional in our
scheme. In fully supervised segmentation tasks, our approach, which incorporates a multi-resolution
strategy, conserves space compared with existing models. However, further optimization opportuni-
ties exist.

• While the simple choice of η demonstrates the model’s robustness compared with the baseline,
it’s important to consider varying pixel-level variances across tasks and differences in bias between
local and global distributions. Further research on the selection strategy for η or alternative pixel
feature partitioning methods is valuable.

Image 3.3% Labeled 12.5% Labeled 25.0% Labeled 100.0% Labeled Ground Truth

Figure 7: More qualitative examples on PiXL (HRDA) on different ratios of labeled images. The
segmentation results are precise and consistent in both major categories and minor categories.
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Image 3.3% Labeled 12.5% Labeled 25.0% Labeled 100.0% Labeled Ground Truth

Figure 8: Failure cases of PiXL (HRDA) in the semi-supervised and fully-supervised setting. The
ability to recognize similar pixels lying in boundaries requires further improvement in categories
like sidewalk, road, terrain, and fence.

17


	Introduction
	Related Work
	Method
	Pixel Learning
	Overview of PiXL Framework
	Multiple Resolution Feature Extraction
	Pixel Level Sub-Domain Partition
	Drift Pixels Alignment
	Adaptive prototype generation
	Loss

	Experiments
	Dataset
	Task setting
	Implementation details
	Results

	Conclusion
	Appendix
	Overview
	Implementation Details
	Loss Functions
	Training and Inference Details
	Training
	Inference

	Qualitative Analysis
	Future Work


