
Dynamic Programming in Rank Space: Scaling Structured Inference with
Low-Rank HMMs and PCFGs

Anonymous ACL submission

Abstract

Hidden Markov Models (HMMs) and Proba-001
bilistic Context-Free Grammars (PCFGs) are002
widely used structured models, both of which003
can be represented as factor graph grammars004
(FGGs), a powerful formalism capable of de-005
scribing a wide range of models. Recent re-006
search found it beneficial to use large state007
spaces for HMMs and PCFGs. However, in-008
ference with large state spaces is computation-009
ally demanding, especially for PCFGs. To010
tackle this challenge, we leverage tensor rank011
decomposition (aka. CPD) to decrease infer-012
ence computational complexities for a subset013
of FGGs subsuming HMMs and PCFGs. We014
apply CPD on the factors of an FGG and015
then construct a new FGG defined in the rank016
space. Inference with the new FGG produces017
the same result but has a lower time complex-018
ity when the rank size is smaller than the state019
size. We conduct experiments on HMM lan-020
guage modeling and unsupervised PCFG pars-021
ing, showing better performance than previous022
work. We will release our code at github.023
com/xxx.024

1 Introduction025

Hidden Markov Models (HMMs) and Probabilistic026

Context-Free Grammars (PCFGs) are widely used027

structured models in natural language processing.028

They can both be represented as factor graph gram-029

mars (FGGs) (Chiang and Riley, 2020), which are030

a powerful tool to describe a wide range of mod-031

els, allowing exact and tractable inference in most032

situations of interest.033

Recently, researchers found it beneficial to use034

large state spaces for HMMs and PCFGs. However,035

inference with large state spaces is computationally036

demanding, especially for PCFGs. Chiu and Rush037

(2020) propose a neural VL-HMM with 215 states038

for language modeling, narrowing down the perfor-039

mance gap between HMMs and LSTMs. They im-040

pose a strong sparsity constraint (i.e., each hidden041

state can only generate a small subset of terminal 042

symbols) to decrease the time complexity of the 043

forward algorithm, thus requiring pre-clustering 044

of terminal symbols. Yang et al. (2021b) use a 045

large state space for neural PCFG induction and 046

achieve superior unsupervised constituency pars- 047

ing performance. They use tensor rank decom- 048

position (aka. canonical-polyadic decomposition 049

(CPD) (Rabanser et al., 2017)) to decrease the com- 050

putational complexity of the inside algorithm, but 051

only scale the state size from tens to hundreds be- 052

cause the resulting complexity is still high. Chiu 053

et al. (2021) use tensor matricization and low-rank 054

matrix decomposition to accelerate structured infer- 055

ence on chain and tree structure models. However, 056

their method has an even higher complexity than 057

Yang et al. (2021b) on PCFGs. 058

In this work, we propose a new approach to scal- 059

ing structured inference, which can be described 060

by FGG notations intuitively. We first provide an 061

intuitive and unifying perspective toward the work 062

of Yang et al. (2021b) and Chiu et al. (2021), show- 063

ing that their low-rank decomposition-based mod- 064

els can be viewed as decomposing large factors 065

in an FGG—e.g., the binary rule probability ten- 066

sor in PCFGs— into several smaller factors con- 067

nected by new “rank” nodes. Then we target at a 068

subset of FGGs—which we refer to as B-FGGs— 069

subsuming all models considered by Chiu et al. 070

(2021), whereby the inference algorithms can be 071

formulated via B-graphs (Gallo et al., 1993; Klein 072

and Manning, 2001). We propose a novel frame- 073

work to support a family of inference algorithms in 074

the rank space for B-FGGs. Within the framework, 075

we apply CPD on the factors of a B-FGG and then 076

construct a new B-FGG defined in the rank space 077

by marginalizing all the state nodes. Inference with 078

the new B-FGG has the same result and a lower 079

time complexity if the rank size is smaller than the 080

state size. 081

We conduct experiments in unsupervised PCFG 082

1

github.com/xxx
github.com/xxx
github.com/xxx

S
π1−→ T1

T1 = bos
X2, (0)

T1 X, (i− 1)
π2−→ T1 T2

O3

p(T2 | T1)

p(O3 | T2)

X4, (i)

O3 = wi−1

T1 X, (n)
π3−→ T1 T2

p(T2 | T1) T2 = eos

(a)

S′
π4−→ N1

X2, (0, n)

N1

X, (l − 1, l)
π5−→

N1

O2

p(N1 → O2)

O2 = wl−1

N1

X, (i, j)
π6−→

N1

N2 N3

p(N1 → N2N3)

X4, (i, k) X5, (k, j)

(b)

Figure 1: FGG representations of (a) HMMs and (b) PCFGs. Examples come from Chiang and Riley (2020).

parsing and HMM language modeling. For PCFG083

induction, we manage to use 20 times more hidden084

states than Yang et al. (2021b), obtaining much bet-085

ter unsupervised parsing performance. For HMM086

language modeling, we achieve lower perplexity087

and lower inference complexity than Chiu et al.088

(2021).089

2 Background090

2.1 Factor graph grammar091

Factor graphs are fixed-sized and thus incapable092

of modeling substructures that repeat a variable093

number of times. Chiang and Riley (2020) propose094

factor graph grammars (FGGs) to overcome this095

limitation, which are expressive enough to subsume096

HMMs and PCFGs.097

2.1.1 Basics098

We display necessary notations and concepts of099

FGGs (Chiang and Riley, 2020, Def. 1,2,5,6,8).100

Definition 1. A hypergraph is a tuple101 (
V,E, att, labV , labE

)
where102

• V and E are finite set of nodes and hyper-103

edges.104

• att : E → V ? maps each hyperedge to zero105

or more (not necessarily distinct) endpoint106

nodes.107

• labV : V → LV assigns labels to nodes.108

• labE : E → LE assigns labels to edges.109

Definition 2. A factor graph is a hypergraph with110

mappings Ω and F where111

• Ω maps node labels to sets of possible values.112

Ω(v) , Ω(labV (v)).113

• F maps edge labels to functions. F (e) , 114

F (labE(e)) is of type Ω(v1) × · · · × Ω(vk) 115

where att(e) = v1 · · · vk. 116

In the terminology of factor graphs, a node v with 117

its domain Ω(v) is a variable, and an hyperedge e 118

with F (e) is a factor. We typically use T,N,O to 119

denote hidden state, nonterminal state and observa- 120

tion variables for HMMs and PCFGs. 121

Definition 3. A hypergraph fragment is a tuple 122

(V,E, att, labV , labE , ext) where 123

• (V,E, att, labV , labE) is a hypergraph. 124

• ext ∈ V ? is a set of zero or more external 125

nodes and each of which can be seen as a 126

connecting point of this hypergraph fragment 127

with another fragment. 128

Definition 4. A hyperedge replacement graph 129

grammar (HRG) (Drewes et al., 1997) is a tuple 130

(N,T, P, S) where 131

• N,T ⊂ LE is finite set of nonterminal and 132

terminal symbols. N ∩ T = ∅. 133

• P is a finite set of rules (X → R) where 134

X ∈ N and R is a hypergraph fragment with 135

edge labels in N ∪ T 1. 136

• S ∈ N is the start symbol. 137

Definition 5. A HRG with mapping Ω, F (Def. 138

2) is referred to as an FGG. In particular, F is 139

defined on terminal edge labels T only. 140

Notations. 141

• N : variable node. N : external node. 142

1Note that, for the lhs of P , Chiang and Riley (2020) also
draw their endpoint nodes using external node notations. We
follow this practice.

2

• Xe : hyperedge e with label X ∈ N .143

indicates zero or more endpoint nodes.144

• F (e) : factor F (e).145

Fig. 1 illustrates HGG representations of HMM146

and PCFG.147

Generative story. An FGG starts with S , re-148

peatedly selects Xe and uses rule X → R149

from P to replace e with R, until no Xe ex-150

ists.151

2.1.2 Conjunction152

The conjunction operation (Chiang and Riley, 2020,153

Sec. 4) allows modularizing an FGG into two parts,154

one defining the model and the other defining a155

query. In this paper, we only consider querying the156

observed sentence w0, · · · , wn−1, which is exem-157

plified by the red part of Fig. 1. We sometimes158

omit the red part without further elaboration.159

2.1.3 Inference160

Denote ξ as an assignment of all variables, ΞD as161

the set of all assignments of factor graph D, and162

D(G) as the set of all derivations of an FGG G,163

i.e., all factor graphs generated by G. an FGG G164

assigns a score wG(D, ξ) to eachD ∈ D(G) along165

with each ξ ∈ ΞD. A factor graph D ∈ D(G)166

assigns a score wD(ξ) to each ξ ∈ ΞD:167

wD(ξ) =
∏
e∈D

F (e)(ξ(v1), . . . , ξ(vk)) (1)168

with att(e) = v1 · · · vk. Notably, wD(ξ) ,169

wG(D, ξ). The inference problem is to compute170

the sum-product of G:171

ZG =
∑

D∈D(G)

∑
ξ∈ΞD

wG(D, ξ) (2)172

To obtain ZG, the key difficulty is in the marginal-173

ization over all derivations, since
∑

ξ∈ΞD
wD(ξ)174

can be obtained by running standard variable elim-175

ination (VE) on factor graph D. To tackle this,176

Chiang and Riley (2020, Thm. 15) propose an ex-177

tended VE. For each X ∈ N, ξ ∈ ΞX
2, define PX178

as all rules in P with left-hand side X , and then179

define:180

ψX(ξ) =
∑

(X→R)∈PX
τR(ξ). (3)181

2ΞX is defined as the set of assignments to the endpoints
of an edge e labeled X, so ΞX = Ω (`1)×· · ·×Ω (`k) where
att(e) = v1 · · · vk, labV (vi) = `i.

for each rhs R = (V,EN ∪ 182

ET , att, lab
V , labE , ext), where EN , ET consist 183

of nonterminal/terminal-labeled edges only, and 184

τR(ξ) is given by: 185

τR(ξ) =
∑
ξ′∈ΞR
ξ′(ext)=ξ

∏
e∈ET

F (e)
(
ξ′(att(e))

)
∏
e∈EN

ψlabE(e)

(
ξ′(att(e))

) (4) 186

This defines a recursive formula for computing 187

ψS , i.e., ZG. Next, we will show how Eq. 3-4 188

recover the well-known inside algorithm. 189

Example: the inside algorithm. Consider π6 in 190

Fig. 2(b). All possible fragments R (rhs of π6) 191

differs in the value of k, i.e., the splitting point, 192

so we use Rk to distinguish them. Then Eq. 3 193

becomes: 194

ψXi,k(ξ) =
∑
i<k<j

τRk(ξ) (5) 195

Putting values into Eq. 4: 196

τRk(ξ) =
∑
n2,n3

p(ξ, n2, n3)ψXi,k(n2)ψXk,j (n3)

(6) 197

where p denotes FGG rule probability p(N1 → 198

N2N3). It is easy to see that ψXi,k is exactly the 199

inside score of span [i, k), and Eq. 5-6 recovers the 200

recursive formula of the inside algorithm. 201

Remark. Eq. 4 can be viewed as unidirectional 202

(from e ∈ EN to external nodes) belief propaga- 203

tion (BP) in the factor graph fragmentR, where the 204

incoming message is ψlabE (e) for e ∈ EN , and the 205

outcome of Eq. 4 can be viewed as the message 206

passed to the external nodes. The time complexity 207

of message updates grows exponentially with the 208

number of variables in the factors. Therefore, to de- 209

crease inference complexity, one may decompose 210

large factors into smaller factors connected by new 211

nodes, as shown in the next subsection. 212

2.2 Tensor rank decomposition on factors 213

Consider a factor F (e) (Def. 2), it can be repre- 214

sented as an order-k tensor in RN1×···×Nk where 215

Ni , |Ω(vi)|. We can use tensor rank decom- 216

position (aka. CPD) to decompose F (e) into a 217

weighted sum of outer products of vectors: 218

F (e) =
r∑
q=1

λqw
q
e1 ⊗wq

e2 ⊗ · · · ⊗wq
ek

219

3

v1

v2 v.. vk

F (e) →

v1

v2 v.. vk

R

F (e1)

F (e2) F (ek)

Figure 2: Using CPD to decompose a factor can be seen
as adding a new node.

(a)

N1

N2 N3

R

U

V W

X4, (i, k) X5, (k, j)

(b)

N1

N2 N3

R

U

V′

X4, (i, k) X5, (k, j)

Figure 3: Representations of the rhs of π6 (Fig. 1) af-
ter decomposition. (a): TD-PCFG (Cohen et al., 2013;
Yang et al., 2021b). (b): LPCFG (Chiu et al., 2021).

where r is the rank size; wq
ek ∈ RNk ; ⊗ is outer220

product; λq is weight, which can be absorbed into221

{wq
ek} and we omit it throughout the paper.222

Dupty and Lee (2020, Sec. 4.1) show that BP223

can be written in the following matrix form when224

applying CPD on factors:225

mei = WT
ei

(
�j∈N(e)\iWejnje

)
(7)226

nie = �c∈N(i)\emci (8)227

where mei ∈ RNi is factor-to-node message;228

nie ∈ RNi is node-to-factor message; N(·) indi-229

cates neighborhood ; Wej = [w1
ej , · · · ,w

r
ej]

T ∈230

Rr×m; � is element-wise product. We remark that231

this amounts to replacing the large factor F (e) with232

smaller factors {F (ei)} connected by a new node233

R that represents rank, where each F (ei) can be234

represented as Wei . Fig. 2 illustrates this intuition.235

We refer to R as rank nodes and others as state236

nodes thereafter.237

3 Low-rank structured inference238

In this section, we recover the accelerated inside239

algorithms of TD-PCFG (Cohen et al., 2013; Yang240

et al., 2021b) and LPCFG (Chiu et al., 2021) in241

an intuitive and unifying manner using the FGG242

notations. The accelerated forward algorithm of243

LHMM (Chiu et al., 2021) can be derived similarly.244

Denote T ∈ Rm×m×m as the tensor represen-245

tation of p(N1 → N2N3) , and αi,j ∈ Rm246

as the inside score of span [i, j). Cohen et al. 247

(2013) and Yang et al. (2021b) use CPD to decom- 248

pose T, i.e., let T =
∑r

q=1 uq ⊗ vq ⊗ wq where 249

uq,vq,wq ∈ Rm. Denote U,V,W ∈ Rr×m as 250

the resulting matrices of stacking all uq,vq,wq, 251

Cohen et al. (2013) derived the recursive form: 252

αi,j =

j−1∑
k=i+1

UT ((Vαi,k)� (Wαk,j)) (9) 253

= UT
j−1∑
k=i+1

((Vαi,k)� (Wαk,j)) (10) 254

Eq. 9 can be derived automatically by combining 255

Eq. 7 (or Fig. 3 (a)) and Eq. 5-6. Cohen et al. 256

(2013) note that UT can be extracted to the front 257

of the summation (Eq. 10), and Vαi,k,Wαk,j can 258

be cached and reused, leading to further complex- 259

ity reduction. The resulting inside algorithm time 260

complexity is O(n3r + n2mr). 261

Recently, Chiu et al. (2021) use low-rank matrix 262

decomposition to accelerate PCFG inference. They 263

first perform tensor matricization to flatten T to 264

T′ ∈ Rm×m2
, and then let T′ = UTV where 265

U ∈ Rr×m,V ∈ Rr×m2
. By un-flattening V to 266

V′ ∈ Rr×m×m, their accelerated inside algorithm 267

has the following recursive form: 268

αi,j =

j−1∑
k=i+1

UT
(
V′ ·αk,j ·αi,k

)
(11) 269

= UT
j−1∑
k=i+1

(
V′ ·αk,j ·αi,k

)
(12) 270

Eq. 11 can be derived by combining Fig. 3 (b) and 271

Eq. 5-6. The resulting inside time complexity is 272

O(n3m2r + n2mr), which is higher than that of 273

TD-PCFG. 274

Validity of probability. A remaining problem is 275

how to ensure that T is a valid (non-negative and 276

properly normalized) probability tensor. We dis- 277

cuss this in Appd. A. 278

4 Rank-space modeling and inference 279

4.1 Rank-space inference with B-FGGs 280

Interestingly, when applying CPD on factors and if 281

the rank size is smaller than the state size, we can 282

even obtain better inference time complexities for 283

a subset of FGGs which we refer to as B-FGGs. 284

4

N1

R1

N2 N3

R2

N4 N6 N7N5

O1 O2

R3

R4 R5

R1

R2 R3

R4 O1 O2 R5

... ...

L

H I

H K J I

... ...

(a)

R1

R2 R3

H I

X4, (i, k) X5, (k, j)

R1

R2 O3

H K

X4, (i, j − 1) O3 = wj−1

R1

L

X2, (0, n)

R1

X, (i, j)
S

π1

π2

π3

π4

π5

π6

R1

O2 R3

J I

O2 = wi
X5, (i+ 1, j)

R1

O2 O3

J K

O2 = wi O3 = wi+1

O1

O1 = w1

(b)

Figure 4: (a): illustration of marginalizing state nodes N. (b): rule set of the new FGG. π1 can be applied when
k 6= i+ 1 and k + 1 6= j; π2 and π3 can be applied when i 6= j − 1; π4 can be applied when j = i+ 2.

We call a hyperedge a B-edge if its head contains285

exactly one node. B-graphs (Gallo et al., 1993) are286

a subset of directed hypergraphs whose hyperedges287

are all B-edges. Many dynamic programming algo-288

rithms can be formulated through B-graphs (Klein289

and Manning, 2001; Huang, 2008; Azuma et al.,290

2017; Chiu et al., 2021; Fu and Lapata, 2021), in-291

cluding the inference algorithms of many struc-292

tured models, e.g., HMMs, Hidden Semi-Markov293

Models (HSMMs), and PCFGs. We follow the294

concept of B-graphs to define B-FGGs.295

Definition 6. A hypergraph fragment is a B-296

hypergraph fragment iff. there is exactly one ex-297

ternal node and there is no nonterminal-labeled298

hyperedge connecting to it. An FGG is a B-FGG299

iff. all rhs of its rules are B-hypergraph fragments.300

It is easy to see that the aforementioned models301

are subsumed by B-FGGs. We can design a fam-302

ily of accelerated inference algorithms for B-FGGs303

based on the following strategy. (1) If there are mul-304

tiple factors within a hypergraph fragment, merge305

them into a single factor. Then apply CPD on the306

single factor, thereby introducing rank nodes. (2)307

Find repeated substructures that take rank nodes308

as external nodes. Marginalize all state nodes to309

derive new rules. (3) Design new inference algo-310

rithms that can be carried out in the rank space311

based on the general-purpose FGG inference algo-312

rithm and the derived new rules.313

We give two examples, the rank-space inside314

algorithm and the rank-space forward algorithm,315

in the following two subsections to help readers316

understand this strategy. 317

4.2 The rank-space inside algorithm 318

Consider an B-FGG G shown in Fig. 1(b) and 319

replace the rhs of π6 with Fig. 3(a), i.e., we use 320

CPD to decompose binary rule probability tensor. 321

Besides U,V,W ∈ Rr×m defined in Sec. 3, we 322

define the start rule probability vector as s ∈ Rm×1, 323

and the unary rule probability matrix as E ∈ Ro×m 324

where o is the vocabulary size. 325

Fig. 4(a) is an example (partial) factor graph 326

D generated by G. We highlight substructures 327

of interest with dashed rectangles. Each substruc- 328

ture consists of a node N and two factors connect- 329

ing to it. N is an external node connecting two 330

hypergraph fragments which contain the two fac- 331

tors respectively. For each substructure, we can 332

marginalize the state node N out, merging the 333

two factors into a single one. After marginaliz- 334

ing all state nodes, we obtain a (partial) factor 335

graph D′ shown in the right of Fig. 4(a) where 336

H = VUT , I = WUT ,J = VET ,K = WET 337

, L = (Us)T . We denote this transformation as 338

M(D) = D′. We define a new B-FGG G′ with 339

rules shown in Fig 4(b). It is easy to verify that for 340

each D ∈ D(G), we haveM(D) ∈ D(G′), and 341

vice versa. Moreover, we have: 342∑
ξ∈ΞD

wG(D, ξ) =
∑

ξ∈ΞM(D)

wG′(M(D), ξ) 343

because marginalizing hidden variables does not af- 344

fect the result of sum-product inference. Therefore, 345

ZG = ZG′ (Eq. 2). 346

5

We can easily derive the inference (inside) algo-347

rithm of G′ by following Eq. 3-4 and Fig. 4(b) 3.348

Let αi,j ∈ Rr denote the rank-space inside score349

for span [i, j). When j > i+ 2:350

αi,j =

from π1 of Fig. 4(b)︷ ︸︸ ︷∑
i+1<k<j−1

(Hαi,k � Iαk,j)351

+ J:,wi � Iαi+1,j︸ ︷︷ ︸
from π2

+Hαi,j−1 �K:,wj−1︸ ︷︷ ︸
from π3

352

and when j = i+ 2, αi,j = J:,wi �K:,wi+1 (from353

π4). wj is the index of the j-th word of the input354

sentence in the vocabulary; A:,j indicates the j-th355

column of A.356

We note that, similar to Cohen et al. (2013), we357

can cache Hαi,k, Iαk,j and reuse them to further358

accelerate inference 4. Denote αLi,j ,α
R
i,j ∈ Rr as359

the inside scores of span [i, j) serving as a left/right360

child of a larger span. Then we have:361

αLi,i+1 = K:,i αRi,i+1 = J:,i362

αLi,j = Hαi,j αRi,j = Iαi,j363

αi,j =
∑
i<k<j

(αLi,k �αRk,j)364

and finally, ZG′ = Lα0,n. The resulting inference365

complexity is O(n3r + n2r2), which is lower than366

O(n3r + n2mr) of TD-PCFG when r < m, en-367

abling the use of a large state space for PCFGs in368

the low-rank setting.369

The key difference between the rank-space in-370

ference and the original state-space inference is371

that they follow different variable elimination or-372

ders. The former marginalizes all state nodes be-373

fore performing inference and marginalizes rank374

nodes from bottom up during inference; whereas375

the later marginalizes both state and rank nodes376

alternately from bottom up during inference.377

Low-rank inference does not support the Viterbi378

semiring 5, inhibiting the use of CYK decoding.379

Therefore, we resort to Minimum Bayes-Risk de-380

coding, similar to Yang et al. (2021b). Specifi-381

cally, we estimate the span marginals using auto-382

differentiation (Eisner, 2016; Rush, 2020), which383

3π6 is used for generating sentences of length 1, we do not
consider this in the following derivation of the inside algorithm
to reduce clutter.

4In fact, this is a typical application of the unfold-refold
transformation (Eisner and Blatz, 2007; Vieira et al., 2021).

5The Viterbi semiring is also known as the max-product
semiring. Chiu et al. (2021, Appd. C) and Yang et al. (2021b,
Sec. 6) have discussed this issue.

has the same complexity as the inside algorithm. 384

Then we use the CYK algorithm to find the final 385

parse with the maximum number of expected spans 386

in cubic time. For unsupervised learning, we mini- 387

mize − logZG′ using gradient descent. 388

4.3 The rank-space forward algorithm 389

Consider an B-FGG G shown in Fig. 1 (a). We 390

replace the rhs of π2 by the hypergraph fragment 391

in the right of Fig. 5(a), i.e., we merge the factor 392

p(T2 | T1) and p(O3 | T2) into a single factor, 393

which can be represented as T ∈ Rm×m×o and 394

can be decomposed into three matrices U,V ∈ 395

Rr×m,W ∈ Rr×o via CPD, where m/o/r is the 396

state/vocabulary/rank size. Fig. 5(b) gives an exam- 397

ple factor graph of HMMs with sentences of length 398

3. Similar to previous subsection, we marginal- 399

ize state nodes T to construct a new B-FGG G′. 400

The rule set of G′ can be obtained by replacing all 401

variable nodes T with R and modifying all fac- 402

tors accordingly, as one can easily infer from Fig. 403

5(c). Inference with G′ simply coincides with the 404

forward algorithm, which has a O(nr2) time com- 405

plexity and is lower thanO(nmr) of LHMM (Chiu 406

et al., 2021) when r < m. 407

4.4 Neural parameterization 408

We use neural networks to produce probabilities 409

for all factors, which has been shown to benefit 410

learning in previous work (Kim et al., 2019; Yang 411

et al., 2021b; Chiu and Rush, 2020; Chiu et al., 412

2021). We use the neural parameterization of Yang 413

et al. (2021b) with slight modifications. We show 414

the details in Appd. B and Appd. C. 415

5 Experiments 416

5.1 Unsupervised parsing with PCFGs 417

Setting. We evaluate our model on Penn Tree- 418

bank (PTB) (Marcus et al., 1994). Our implemen- 419

tation is based on the open-sourced code of Yang 420

et al. (2021b)6 and we use the same setting as theirs. 421

For all experiments, we set the ratio of nonterminal 422

number to the preterminal number to 1:2 7. We set 423

the rank size to 1000. We show other details in 424

Appd. D and E. 425

Main result. Table 1 shows the result on PTB. 426

Among previous unsupervised PCFG models, TN- 427

6github.com/sustcsonglin/TN-PCFG
7Although we did not explicitly distinguish between non-

terminal and preterminal symbols before, in our implementa-
tion, we follow Kim et al. (2019) to make such distinction.

6

github.com/sustcsonglin/TN-PCFG

T1 T2

O3

p(T2 | T1)

p(O3 | T2)

X4 T1

R2

T3

O4

U V

W

X4

(a)

T1T1 = bos

R2

T4

O3

R5

T7

O6

R8

T10

O9

T3 = eos

(b)

R2 R5 R8

O3 O6 O9

(c)

Figure 5: (a): merge the two factors into a single one, and apply CPD on the resulting factor. (b): factor graph of a
HMM for sentences of length 3. (c): the resulting factor graph after marginalizing the state nodes.

Model S-F1

N-PCFG (Kim et al., 2019) 50.8
C-PCFG (Kim et al., 2019) 55.2
NL-PCFG (Zhu et al., 2020) 55.3
TN-PCFG (Yang et al., 2021b) 57.7
NBL-PCFG (Yang et al., 2021a) 60.4

Ours with 9000 PTs and 4500 NTs 64.1

For reference

Constituency test (Cao et al., 2020) 62.8
S-DIORA (Drozdov et al., 2020) 57.6
StructFormer (Shen et al., 2021) 54.0
DIORA+span constraint (Xu et al., 2021) 61.2

Table 1: Results on PTB. S-F1: sentence-level F1. PTs:
preterminals. NTs: nonterminals.

PCFG (Yang et al., 2021b) uses the largest number428

of states (500 perterminals and 250 nonterminals).429

Our model is able to use much more states thanks to430

our new inside algorithm with lower time complex-431

ity, surpassing all previous PCFG-based models by432

a large margin and achieving a new state-of-the-art433

in unsupervised constituency parsing in terms of434

sentence-level F1 score on PTB.435

Ablation study. Fig. 6 shows the change of the436

sentence-level F1 scores and perplexity with the437

change of the number of preterminals. As we can438

see, when increasing the state, the perplexity tends439

to decrease while the F1 score tends to increase, val-440

idating the effectiveness of using large state spaces441

for neural PCFG induction.442

5.2 HMM language modeling443

Setting. We conduct the language modeling ex-444

periment also on PTB. Our implementation is based445

on the open-sourced code of Chiu et al. (2021)8.446

We set the rank size to 4096. See Appd. D and E447

for more details.448

Main result. Table 2 shows the perplexity on the449

PTB validation and test sets. As discussed ear-450

8github.com/justinchiu/low-rank-models

2 4 6 8 10

55

60

65

70

Number of preterminal symbols (K)

F1
sc

or
e

(%
)

(a)

2 4 6 8 10

160

170

180

190

200

Number of preterminal symbols (K)

Pe
rp

le
xi

ty

(b)

Figure 6: The change of F1 scores and perplexities with
the change of number of perterminal symbols.

lier, VL-HMM (Chiu and Rush, 2020) imposes 451

strong sparsity constraint to decrease the time com- 452

plexity of the forward algorithm and requires pre- 453

clustering of terminal symbols. Specifically, VL- 454

HMM uses Brown clustering (Brown et al., 1992), 455

introducing external information to improve perfor- 456

mance. Replacing Brown clustering with uniform 457

clustering leads to a 10 point increase in perplexity 458

on the PTB validation set. LHMM (Chiu et al., 459

2021) and our model only impose low-rank con- 460

straint without using any external information and 461

are thus more comparable. Our method outper- 462

forms LHMM by 4.8 point when using the same 463

state number (i.e., 214), and it can use more states 464

thanks to our lower inference time complexity. 465

7

github.com/justinchiu/low-rank-models

Model Val Test

VL-HMM (215 states, Brown) 125.0 116.0
VL-HMM (214 states, Brown)† 136 -
VL-HMM (214 states, Uniform)† 146 -
LHMM (214 states) 141.4 131.8

Ours (214 states) 135.6 127.0
Ours (215 states) 137.0 126.4

For reference

HMM+RNN (Buys et al., 2018) 142.3 -
AWD-LSTM (Merity et al., 2018) 60.0 57.3

Table 2: Resulting perplexity on PTB validate set and
test set. VL-HMM: (Chiu and Rush, 2020). LHMM:
(Chiu et al., 2021). † denotes results reported by abla-
tion study of Chiu and Rush (2020).

#States Val Test

212 149.8 139.1
213 143.8 133.4
214 149.5 137.4
215 141.1 131.1

Table 3: Perplexity with varying numbers of states. Fol-
lowing Chiu et al. (2021), we fix the rank to 2048 for
faster ablation studies.

Ablation study. As we can see in Table 3, the466

perplexity tends to decrease when increasing the467

state number, validating the effectiveness of using468

more states for neural HMM language modeling.469

6 Related work470

Tensor and matrix decomposition have been used to471

decrease time and space complexities of probabilis-472

tic inference algorithms. Siddiqi et al. (2010) pro-473

pose a reduced-rank HMM whereby the forward al-474

gorithm can be carried out in the rank space, which475

is similar to our model, but our method is more gen-476

eral. Cohen and Collins (2012); Cohen et al. (2013)477

use CPD for fast (latent-variable) PCFG parsing,478

but they do not leverage CPD for fast learning and479

they need to actually perform CPD on existing480

probability tensors. Rabusseau et al. (2016) use481

low-rank approximation method to learn weighted482

tree automata, which subsumes PCFGs and latent-483

variable PCFGs. Our method can subsume more484

models. Yang et al. (2021b,a) propose CPD-based485

neural parameterizations for (lexicalized) PCFGs.486

Yang et al. (2021b) aim at scaling PCFG inference.487

We achieve better time complexity than theirs and488

hence can use much more hidden states. Yang489

et al. (2021a) aims to decrease the complexity of490

lexicalized PCFG parsing, which can also be de-491

scribed within our framework. Chiu et al. (2021) 492

use low-rank matrix decomposition, which can be 493

viewed as CPD on order-2 tensors, to accelerate 494

inference on chain and tree structure models includ- 495

ing HMMs and PCFGs. However, their method is 496

only efficient when the parameter tensors are of 497

order 2, e.g., in HMMs and HSMMs. Our method 498

leverages full CPD, thus enabling efficient infer- 499

ence with higher-order factors, e.g., in PCFGs. Our 500

method can be applied to all models considered 501

by Chiu et al. (2021), performing inference in the 502

rank-space with lower complexities. 503

Besides HMMs and PCFGs, Wrigley et al. 504

(2017) propose an efficient sampling-based 505

junction-tree algorithm using CPD to decompose 506

high-order factors. Dupty and Lee (2020) also use 507

CPD to decompose high-order factors for fast belief 508

propagation. Ducamp et al. (2020) use tensor train 509

decomposition for fast and scalable message pass- 510

ing in Bayesian networks. Bonnevie and Schmidt 511

(2021) leverage matrix product states (i.e., tensor 512

trains) for scalable discrete probabilistic inference. 513

Miller et al. (2021) leverage tensor networks for 514

fast sequential probabilistic inference. 515

7 Conclusion and future work 516

In this work, we leveraged tensor rank decompo- 517

sition (CPD) for low-rank scaling of structured in- 518

ference. We showed that CPD amounts to decom- 519

posing a large factor into several smaller factors 520

connected by a new rank node, and gave a unifying 521

perspective towards previous low-rank structured 522

models (Yang et al., 2021b; Chiu et al., 2021). We 523

also presented a novel framework to design a fam- 524

ily of rank-space inference algorithms for B-FGGs, 525

a subset of FGGs which subsume most structured 526

models of interest to the NLP community. We have 527

shown the application of our method in scaling 528

PCFG and HMM inference, and experiments on 529

unsupervised parsing and language modeling val- 530

idate the effectiveness of using large state spaces 531

facilitated by our method. 532

We believe our framework can be applied to 533

many other models which have high inference time 534

complexity and are subsumed by B-FGGs, includ- 535

ing lexicalized PCFGs, quasi-synchronous context- 536

free grammars (QCFGs), etc. A direct application 537

of our method is to decrease the inference com- 538

plexity of the neural QCFG model (Kim, 2021), 539

which has a very large grammar constant and can 540

be improved easily under our framework. 541

8

References542

Ai Azuma, Masashi Shimbo, and Yuji Matsumoto.543
2017. An algebraic formalization of forward544
and forward-backward algorithms. CoRR,545
abs/1702.06941.546

Rasmus Bonnevie and Mikkel N. Schmidt. 2021. Ma-547
trix product states for inference in discrete proba-548
bilistic models. Journal of Machine Learning Re-549
search, 22(187):1–48.550

Peter F. Brown, Vincent J. Della Pietra, Peter V. deS-551
ouza, Jenifer C. Lai, and Robert L. Mercer. 1992.552
Class-based n-gram models of natural language.553
Computational Linguistics, 18(4):467–480.554

Jan Buys, Yonatan Bisk, and Yejin Choi. 2018. Bridg-555
ing hmms and rnns through architectural transforma-556
tions.557

Steven Cao, Nikita Kitaev, and Dan Klein. 2020. Unsu-558
pervised parsing via constituency tests. In Proceed-559
ings of the 2020 Conference on Empirical Methods560
in Natural Language Processing (EMNLP), pages561
4798–4808, Online. Association for Computational562
Linguistics.563

David Chiang and Darcey Riley. 2020. Factor graph564
grammars. In Advances in Neural Information Pro-565
cessing Systems 33: Annual Conference on Neu-566
ral Information Processing Systems 2020, NeurIPS567
2020, December 6-12, 2020, virtual.568

Justin Chiu, Yuntian Deng, and Alexander Rush. 2021.569
Low-rank constraints for fast inference in structured570
models. Advances in Neural Information Process-571
ing Systems, 34.572

Justin Chiu and Alexander Rush. 2020. Scaling hid-573
den Markov language models. In Proceedings of the574
2020 Conference on Empirical Methods in Natural575
Language Processing (EMNLP), pages 1341–1349,576
Online. Association for Computational Linguistics.577

Shay B. Cohen and Michael Collins. 2012. Tensor578
decomposition for fast parsing with latent-variable579
pcfgs. In Advances in Neural Information Process-580
ing Systems 25: 26th Annual Conference on Neural581
Information Processing Systems 2012. Proceedings582
of a meeting held December 3-6, 2012, Lake Tahoe,583
Nevada, United States, pages 2528–2536.584

Shay B. Cohen, Giorgio Satta, and Michael Collins.585
2013. Approximate PCFG parsing using tensor de-586
composition. In Proceedings of the 2013 Confer-587
ence of the North American Chapter of the Associ-588
ation for Computational Linguistics: Human Lan-589
guage Technologies, pages 487–496, Atlanta, Geor-590
gia. Association for Computational Linguistics.591

Frank Drewes, Hans-Jörg Kreowski, and Annegret Ha-592
bel. 1997. Hyperedge replacement, graph grammars.593
In Grzegorz Rozenberg, editor, Handbook of Graph594
Grammars and Computing by Graph Transforma-595
tions, Volume 1: Foundations, pages 95–162. World596
Scientific.597

Andrew Drozdov, Subendhu Rongali, Yi-Pei Chen, 598
Tim O’Gorman, Mohit Iyyer, and Andrew McCal- 599
lum. 2020. Unsupervised parsing with S-DIORA: 600
Single tree encoding for deep inside-outside recur- 601
sive autoencoders. In Proceedings of the 2020 Con- 602
ference on Empirical Methods in Natural Language 603
Processing (EMNLP), pages 4832–4845, Online. As- 604
sociation for Computational Linguistics. 605

Gaspard Ducamp, Philippe Bonnard, Anthony Nouy, 606
and Pierre-Henri Wuillemin. 2020. An efficient low- 607
rank tensors representation for algorithms in com- 608
plex probabilistic graphical models. In Interna- 609
tional Conference on Probabilistic Graphical Mod- 610
els, PGM 2020, 23-25 September 2020, Aalborg, 611
Hotel Comwell Rebild Bakker, Skørping, Denmark, 612
volume 138 of Proceedings of Machine Learning Re- 613
search, pages 173–184. PMLR. 614

Mohammed Haroon Dupty and Wee Sun Lee. 2020. 615
Neuralizing efficient higher-order belief propaga- 616
tion. CoRR, abs/2010.09283. 617

Jason Eisner. 2016. Inside-outside and forward- 618
backward algorithms are just backprop (tutorial pa- 619
per). In Proceedings of the Workshop on Structured 620
Prediction for NLP, pages 1–17, Austin, TX. Asso- 621
ciation for Computational Linguistics. 622

Jason Eisner and John Blatz. 2007. Program transfor- 623
mations for optimization of parsing algorithms and 624
other weighted logic programs. In Proceedings of 625
FG 2006: The 11th Conference on Formal Gram- 626
mar, pages 45–85. CSLI Publications. 627

Yao Fu and Mirella Lapata. 2021. Scaling struc- 628
tured inference with randomization. CoRR, 629
abs/2112.03638. 630

Giorgio Gallo, Giustino Longo, and Stefano Pallottino. 631
1993. Directed hypergraphs and applications. Dis- 632
cret. Appl. Math., 42(2):177–201. 633

Liang Huang. 2008. Advanced dynamic programming 634
in semiring and hypergraph frameworks. In Coling 635
2008: Advanced Dynamic Programming in Compu- 636
tational Linguistics: Theory, Algorithms and Appli- 637
cations - Tutorial notes, pages 1–18, Manchester, 638
UK. Coling 2008 Organizing Committee. 639

Yoon Kim. 2021. Sequence-to-sequence learning with 640
latent neural grammars. Advances in Neural Infor- 641
mation Processing Systems, 34. 642

Yoon Kim, Chris Dyer, and Alexander Rush. 2019. 643
Compound probabilistic context-free grammars for 644
grammar induction. In Proceedings of the 57th An- 645
nual Meeting of the Association for Computational 646
Linguistics, pages 2369–2385, Florence, Italy. Asso- 647
ciation for Computational Linguistics. 648

Dan Klein and Christopher D. Manning. 2001. Pars- 649
ing and hypergraphs. In Proceedings of the Sev- 650
enth International Workshop on Parsing Technolo- 651
gies (IWPT-2001), 17-19 October 2001, Beijing, 652
China. Tsinghua University Press. 653

9

http://arxiv.org/abs/1702.06941
http://arxiv.org/abs/1702.06941
http://arxiv.org/abs/1702.06941
http://jmlr.org/papers/v22/18-431.html
http://jmlr.org/papers/v22/18-431.html
http://jmlr.org/papers/v22/18-431.html
http://jmlr.org/papers/v22/18-431.html
http://jmlr.org/papers/v22/18-431.html
https://aclanthology.org/J92-4003
https://doi.org/10.18653/v1/2020.emnlp-main.389
https://doi.org/10.18653/v1/2020.emnlp-main.389
https://doi.org/10.18653/v1/2020.emnlp-main.389
https://proceedings.neurips.cc/paper/2020/hash/49ca03822497d26a3943d5084ed59130-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/49ca03822497d26a3943d5084ed59130-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/49ca03822497d26a3943d5084ed59130-Abstract.html
https://doi.org/10.18653/v1/2020.emnlp-main.103
https://doi.org/10.18653/v1/2020.emnlp-main.103
https://doi.org/10.18653/v1/2020.emnlp-main.103
https://proceedings.neurips.cc/paper/2012/hash/a58149d355f02887dfbe55ebb2b64ba3-Abstract.html
https://proceedings.neurips.cc/paper/2012/hash/a58149d355f02887dfbe55ebb2b64ba3-Abstract.html
https://proceedings.neurips.cc/paper/2012/hash/a58149d355f02887dfbe55ebb2b64ba3-Abstract.html
https://proceedings.neurips.cc/paper/2012/hash/a58149d355f02887dfbe55ebb2b64ba3-Abstract.html
https://proceedings.neurips.cc/paper/2012/hash/a58149d355f02887dfbe55ebb2b64ba3-Abstract.html
https://aclanthology.org/N13-1052
https://aclanthology.org/N13-1052
https://aclanthology.org/N13-1052
https://doi.org/10.18653/v1/2020.emnlp-main.392
https://doi.org/10.18653/v1/2020.emnlp-main.392
https://doi.org/10.18653/v1/2020.emnlp-main.392
https://doi.org/10.18653/v1/2020.emnlp-main.392
https://doi.org/10.18653/v1/2020.emnlp-main.392
http://proceedings.mlr.press/v138/ducamp20b.html
http://proceedings.mlr.press/v138/ducamp20b.html
http://proceedings.mlr.press/v138/ducamp20b.html
http://proceedings.mlr.press/v138/ducamp20b.html
http://proceedings.mlr.press/v138/ducamp20b.html
http://arxiv.org/abs/2010.09283
http://arxiv.org/abs/2010.09283
http://arxiv.org/abs/2010.09283
https://doi.org/10.18653/v1/W16-5901
https://doi.org/10.18653/v1/W16-5901
https://doi.org/10.18653/v1/W16-5901
https://doi.org/10.18653/v1/W16-5901
https://doi.org/10.18653/v1/W16-5901
http://cs.jhu.edu/~jason/papers/#eisner-blatz-2007
http://cs.jhu.edu/~jason/papers/#eisner-blatz-2007
http://cs.jhu.edu/~jason/papers/#eisner-blatz-2007
http://cs.jhu.edu/~jason/papers/#eisner-blatz-2007
http://cs.jhu.edu/~jason/papers/#eisner-blatz-2007
http://arxiv.org/abs/2112.03638
http://arxiv.org/abs/2112.03638
http://arxiv.org/abs/2112.03638
https://doi.org/10.1016/0166-218X(93)90045-P
https://aclanthology.org/C08-5001
https://aclanthology.org/C08-5001
https://aclanthology.org/C08-5001
https://doi.org/10.18653/v1/P19-1228
https://doi.org/10.18653/v1/P19-1228
https://doi.org/10.18653/v1/P19-1228

Mitchell Marcus, Grace Kim, Mary Ann654
Marcinkiewicz, Robert MacIntyre, Ann Bies,655
Mark Ferguson, Karen Katz, and Britta Schasberger.656
1994. The Penn Treebank: Annotating predicate ar-657
gument structure. In Human Language Technology:658
Proceedings of a Workshop held at Plainsboro, New659
Jersey, March 8-11, 1994.660

Stephen Merity, Nitish Shirish Keskar, and Richard661
Socher. 2018. Regularizing and optimizing LSTM662
language models. In 6th International Conference663
on Learning Representations, ICLR 2018, Vancou-664
ver, BC, Canada, April 30 - May 3, 2018, Confer-665
ence Track Proceedings. OpenReview.net.666

Jacob Miller, Guillaume Rabusseau, and John Terilla.667
2021. Tensor networks for probabilistic sequence668
modeling. In The 24th International Conference on669
Artificial Intelligence and Statistics, AISTATS 2021,670
April 13-15, 2021, Virtual Event, volume 130 of671
Proceedings of Machine Learning Research, pages672
3079–3087. PMLR.673

Stephan Rabanser, Oleksandr Shchur, and Stephan674
Günnemann. 2017. Introduction to tensor decom-675
positions and their applications in machine learning.676
CoRR, abs/1711.10781.677

Guillaume Rabusseau, Borja Balle, and Shay B. Cohen.678
2016. Low-rank approximation of weighted tree au-679
tomata. In Proceedings of the 19th International680
Conference on Artificial Intelligence and Statistics,681
AISTATS 2016, Cadiz, Spain, May 9-11, 2016, vol-682
ume 51 of JMLR Workshop and Conference Pro-683
ceedings, pages 839–847. JMLR.org.684

Alexander Rush. 2020. Torch-struct: Deep structured685
prediction library. In Proceedings of the 58th An-686
nual Meeting of the Association for Computational687
Linguistics: System Demonstrations, pages 335–688
342, Online. Association for Computational Linguis-689
tics.690

Yikang Shen, Yi Tay, Che Zheng, Dara Bahri, Donald691
Metzler, and Aaron Courville. 2021. StructFormer:692
Joint unsupervised induction of dependency and con-693
stituency structure from masked language modeling.694
In Proceedings of the 59th Annual Meeting of the695
Association for Computational Linguistics and the696
11th International Joint Conference on Natural Lan-697
guage Processing (Volume 1: Long Papers), pages698
7196–7209, Online. Association for Computational699
Linguistics.700

Sajid M. Siddiqi, Byron Boots, and Geoffrey J. Gor-701
don. 2010. Reduced-rank hidden markov models.702
In Proceedings of the Thirteenth International Con-703
ference on Artificial Intelligence and Statistics, AIS-704
TATS 2010, Chia Laguna Resort, Sardinia, Italy,705
May 13-15, 2010, volume 9 of JMLR Proceedings,706
pages 741–748. JMLR.org.707

Tim Vieira, Ryan Cotterell, and Jason Eisner. 2021.708
Searching for more efficient dynamic programs. In709
Findings of the Association for Computational Lin-710
guistics: EMNLP 2021, pages 3812–3830, Punta711

Cana, Dominican Republic. Association for Compu- 712
tational Linguistics. 713

Andrew Wrigley, Wee Sun Lee, and Nan Ye. 2017. 714
Tensor belief propagation. In Proceedings of the 715
34th International Conference on Machine Learning, 716
ICML 2017, Sydney, NSW, Australia, 6-11 August 717
2017, volume 70 of Proceedings of Machine Learn- 718
ing Research, pages 3771–3779. PMLR. 719

Zhiyang Xu, Andrew Drozdov, Jay Yoon Lee, Tim 720
O’Gorman, Subendhu Rongali, Dylan Finkbeiner, 721
Shilpa Suresh, Mohit Iyyer, and Andrew McCallum. 722
2021. Improved latent tree induction with distant 723
supervision via span constraints. In Proceedings of 724
the 2021 Conference on Empirical Methods in Natu- 725
ral Language Processing, pages 4818–4831, Online 726
and Punta Cana, Dominican Republic. Association 727
for Computational Linguistics. 728

Songlin Yang, Yanpeng Zhao, and Kewei Tu. 2021a. 729
Neural bi-lexicalized PCFG induction. In Proceed- 730
ings of the 59th Annual Meeting of the Association 731
for Computational Linguistics and the 11th Interna- 732
tional Joint Conference on Natural Language Pro- 733
cessing (Volume 1: Long Papers), pages 2688–2699, 734
Online. Association for Computational Linguistics. 735

Songlin Yang, Yanpeng Zhao, and Kewei Tu. 2021b. 736
PCFGs can do better: Inducing probabilistic context- 737
free grammars with many symbols. In Proceedings 738
of the 2021 Conference of the North American Chap- 739
ter of the Association for Computational Linguistics: 740
Human Language Technologies, pages 1487–1498, 741
Online. Association for Computational Linguistics. 742

Hao Zhu, Yonatan Bisk, and Graham Neubig. 2020. 743
The return of lexical dependencies: Neural lexical- 744
ized PCFGs. Transactions of the Association for 745
Computational Linguistics, 8:647–661. 746

A Validity of probability 747

When learning a PCFG and a HMM, there is no 748

need to first learn T and then perform decompo- 749

sition on T. Instead, one can learn the decom- 750

posed matrices (e.g., U,V) to learn T implicitly. 751

During inference, one can follow Eq. 10 or 12 752

without the need to reconstruct T. The remain- 753

ing problem is to ensure T to be a valid proba- 754

bility tensor (i.e., nonnegative and properly nor- 755

malized) when learning it implicitly. The solution 756

of Yang et al. (2021b) is to transform Fig. 3(a) 757

into a Bayesian network, adding directed arrows 758

N1 → R,R → N2,R → N3. This is equiva- 759

lent to requiring that V,W are nonnegative and 760

column-wise normalized and U is nonnegative and 761

row-wise normalized, as described in Yang et al. 762

(2021b, Thm. 1). 763

10

https://aclanthology.org/H94-1020
https://aclanthology.org/H94-1020
https://aclanthology.org/H94-1020
https://openreview.net/forum?id=SyyGPP0TZ
https://openreview.net/forum?id=SyyGPP0TZ
https://openreview.net/forum?id=SyyGPP0TZ
http://proceedings.mlr.press/v130/miller21a.html
http://proceedings.mlr.press/v130/miller21a.html
http://proceedings.mlr.press/v130/miller21a.html
http://arxiv.org/abs/1711.10781
http://arxiv.org/abs/1711.10781
http://arxiv.org/abs/1711.10781
http://proceedings.mlr.press/v51/rabusseau16.html
http://proceedings.mlr.press/v51/rabusseau16.html
http://proceedings.mlr.press/v51/rabusseau16.html
https://doi.org/10.18653/v1/2020.acl-demos.38
https://doi.org/10.18653/v1/2020.acl-demos.38
https://doi.org/10.18653/v1/2020.acl-demos.38
https://doi.org/10.18653/v1/2021.acl-long.559
https://doi.org/10.18653/v1/2021.acl-long.559
https://doi.org/10.18653/v1/2021.acl-long.559
https://doi.org/10.18653/v1/2021.acl-long.559
https://doi.org/10.18653/v1/2021.acl-long.559
http://proceedings.mlr.press/v9/siddiqi10a.html
https://aclanthology.org/2021.findings-emnlp.322
http://proceedings.mlr.press/v70/wrigley17a.html
https://aclanthology.org/2021.emnlp-main.395
https://aclanthology.org/2021.emnlp-main.395
https://aclanthology.org/2021.emnlp-main.395
https://doi.org/10.18653/v1/2021.acl-long.209
https://doi.org/10.18653/v1/2021.naacl-main.117
https://doi.org/10.18653/v1/2021.naacl-main.117
https://doi.org/10.18653/v1/2021.naacl-main.117
https://doi.org/10.1162/tacl_a_00337
https://doi.org/10.1162/tacl_a_00337
https://doi.org/10.1162/tacl_a_00337

B Neural parameterization of PCFGs764

In this section, we give the full parameterization765

of PCFGs. We follow Yang et al. (2021b) with766

slight modifications for generations of U,V, W ∈767

Rm×r in 4.2. We use the same MLPs with two768

residual layers as Yang et al. (2021b):769

s =
exp(uTSh1(wA)∑

A′∈N exp(uTSh1(wA′))
770

E =
exp(uTEh2(wt)∑

E′∈Σ exp(uTE′h2(wt))
771

U =
exp(uTHf1(wn)∑

n′∈N exp(uTHf1(wn′))
772

V =
exp(uTHf2(wl)∑

H′∈H exp(uTH′f2(wl))
773

W =
exp(uTHf3(wl)∑

H′∈H exp(uTH′f3(wl))
774

hi(x) = gi,1(gi,2(W̃ix))775

gi,j(y) = ReLU(Ṽi,jReLU(Ũi,jy)) + y776

777

where Σ is the vocabulary set, H is the778

set of rank, N is a finite set of nonterminals,779

Wl = [Wn;Wt],wl,wn,wt ∈ Wl,Wn,Wt.780

The main differences of neural parameterization781

between ours and previous work are that we782

make the projection parameter uH shared among783

U,V, and U.784

C Neural parameterization of HMMs785

In this section, we give the full parameterization of786

HMMs, which is similar to PCFGs’ parameteriza-787

tion. Define s as start probability for HMMs. And788

the definitions of U,V,W are same as definitions789

in 4.3:790

s =
exp(uTPh1(ws))∑

s′∈S exp(uTPh1(ws′))
791

U =
exp(uTHwu)∑

H′∈H exp(uTH′wu)
792

V =
exp(uTHwv)∑

v′∈S exp(uTHwv′)
793

W =
exp(uTWh2(ww)∑

w′∈Σ exp(uTWh2(ww′))
794

hi(x) = gi,1(gi,2(W̃ix))795

gi,j(y) = ReLU(Ṽi,jReLU(Ũi,jy)) + y796

797

where S is a finite set of states, H is the set of 798

rank, Σ is vocabulary set. 799

D Data details 800

Penn Treebank (PTB) (Marcus et al., 1994)9 con- 801

sists of 929k training words, 73k validation words, 802

and 82k test words, with a vocabulary of size 10k. 803

For PCFGs, we follow Yang et al. (2021b) and 804

use their code to preprocess dataset. This process- 805

ing discards punctuation and lowercases all tokens 806

with 10k most frequent words as the vocabulary. 807

The splits of the dataset are: 2-21 for training, 22 808

for validation and 23 for test. 809

For HMMs, we follow Chiu et al. (2021) and 810

use their code to preprocess dataset. We lowercase 811

all words and substitutes OOV words with UNKs. 812

EOS tokens have been inserted after each sentence. 813

E Experimental details 814

For PCFGs, we use Xavier normal initialization 815

to initialize the weights in hi and fi. We opti- 816

mize our model using Adam optimizer with β1 = 817

0.75, β2 = 0.999, and the learning rate 0.002, set- 818

ting the dimension of all embeddings to 256. 819

For HMMs, we initialize all parameters by 820

Xavier normal initialization except for ws and ww. 821

We use AdamW optimizer with β1 = 0.99, β2 = 822

0.999, and the learning rate 0.001, and a max grad 823

norm of 5. We use dropout rate of 0.1 to dropout 824

ws and U,V in HMMs. We train for 30 epochs 825

with a max batch size of 256 tokens, and reduce 826

the learning by multiplying 1
2 if the validation per- 827

plexity fails to improve after 2 evaluations. Evalua- 828

tions are performed one time per epoch. We follow 829

Chiu et al. (2021) to shuffle sentences and lever- 830

age bucket iterator, where batch of sentences are 831

drawn from buckets containing sentences of similar 832

lengths to minizing padding. 833

We run all experiments on NVIDIA TITAN RTX 834

and NVIDIA RTX 2080ti and all experimental re- 835

sults are averaged from four runs. 836

9The licence of PTB dataset is LDC User Agreement for
Non-Members, which can be seen on https://catalog.
ldc.upenn.edu/LDC99T42

11

https://catalog.ldc.upenn.edu/LDC99T42
https://catalog.ldc.upenn.edu/LDC99T42

