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ABSTRACT

Accurate representation of the multiscale features in spatiotemporal physical sys-
tems using vision transformer (ViT) architectures requires extremely long, com-
putationally prohibitive token sequences. To address this issue, we propose an
adaptive tokenization scheme which dynamically adjusts the token sizes based on
local features. Moreover, we present a set of spatiotemporal attention schemes,
where the temporal or axial spatial dimensions are decoupled, and evaluate their
computational and data efficiencies. We assess the performance of the proposed
multiscale adaptive model, MATEY, in a sequence of experiments. The results
show that adaptive tokenization achieves improved accuracy without significantly
increasing token sequence length, but the improvement deteriorates in more com-
plex data configurations. Compared to a full spatiotemporal attention scheme or
a scheme that decouples only the temporal dimension, we find that fully decou-
pled axial attention is less efficient and expressive, requiring more training time
and model weights to achieve the same accuracy. Finally, we demonstrate in two
fine-tuning tasks featuring different physics that models pretrained on PDEBench
data outperform the ones trained from scratch, especially in the low data regime
with frozen attention.

1 INTRODUCTION

Developing foundation models for physical systems is vital for energy generation, earth sciences,
and power and propulsion systems. These models offer faster solutions than physics-based simula-
tions and can generalize better across multiple systems than single-purpose AI approaches. How-
ever, their application to physical systems, often characterized by multiple sub-processes at different
scales, is still in the early stages. For instance, fluid flowing around a cylinder creates a von Kármán
vortex street, a highly dynamic flow with rapidly evolving vortices. Accurate solutions of such mul-
tiscale systems requires a very high resolution representation to capture the most complex features
across space and time. However, for scientific machine learning as for modeling and simulation,
using very high resolutions to achieve accurate solutions incurs significant computational cost. This
is particularly true for developing foundation models using vision transformer (ViT)-based architec-
tures, as using the standard self-attention mechanism for extremely long spatiotemporal sequences
can become prohibitively computationally expensive.

Efficient representation of multiscale features in high-resolution inputs has been an active research
topic in computer vision. Three broad approaches can be characterized. First, multiscale models
like Swin Transformer (Liu et al., 2021) and MViTv2 (Li et al., 2022) introduce multiple stages with
decreasing resolution and increasing feature dimension for efficient hierarchical representations.
Second, computational techniques have been developed which facilitate training on long sequences
(e.g., sequence parallelism across GPUs (Jacobs et al., 2023)) or reduce the effective sequence length
in the attention kernel (e.g., decomposing attention along axial directions (Ho et al., 2019)). Third,
the actual sequence length can be directly shortened by pruning and merging tokens ((Haurum et al.,
2023; Meng et al., 2022; Yin et al., 2022; Bolya & Hoffman, 2023)), though this strategy may lead
to critical information loss (Liu et al., 2024).

These techniques have recently been adopted in scientific machine learning (sciML) for physical
systems. For example, the atmosphere foundation model Aurora (Bodnar et al., 2024) uses Swin
Transformer, while axial attention is applied by MPP (McCabe et al., 2023). Despite the progress,
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computational constraints remain a bottleneck, as existing approaches do not yet handle high-fidelity
solutions of applications such as computational fluid dynamics, in which input sequences can eas-
ily exceed billions of tokens. More efficient algorithms are needed to enable the development of
foundation models for multiscale multiphysics systems.

In this work, we develop a multiscale adaptive foundation model, MATEY (see Figure 1), that pro-
vides two key algorithmic contributions to address the challenges posed by spatiotemporal physical
systems. First, inspired by the adaptive mesh refinement (AMR) technique, we introduce an adaptive
tokenization method that dynamically adjusts patch sizes across the system based on local features,
which provides as much as a 2⇥ reduction in compute for similar or higher accuracy. Second,
we present a set of spatiotemporal attention schemes based on the axial attention (Ho et al., 2019)
that differ in their decomposition of long spatiotemporal sequences and identify the cost in time-to-
accuracy for axial attention. Finally, we assess the fine-tuning performance of models pretrained on
PDEBench (Takamoto et al., 2022) in two highly out-of-distribution settings, colliding thermals and
magnetohydrodynamics (MHD), that include additional physical variables not included in pretrain-
ing and observe the pretrained models outperforming random initialized models.

2 RELATED WORK

Scientific foundation models. Several research directions have been explored for building foun-
dation models for physical systems, including multiple physics pretraining (McCabe et al., 2023)
with PDEBench data, input augmentation with PDE system configurations (Hang et al., 2024), ro-
bust pretraining schemes (Hao et al., 2024), fine-tuning effectiveness investigations (Subramanian
et al., 2024), and data-efficient multiscale ViT architectures (Herde et al., 2024). While these work
made remarkable progress, they do not directly address the issue of token sequence length, which
becomes a computation bottleneck when applying ViTs to high dimension or high resolution data.

Multiscale ViTs. While most multiscale ViTs achieve hierarchical representations via multi-stage
attention blocks at different resolutions, e.g., MViTv2 (Li et al., 2022) and Swin Transformer (Liu
et al., 2021), there are a few focusing on tokenization schemes, e.g., (Yin et al., 2022; Fan et al.,
2024; Zhang et al., 2024; Havtorn et al., 2023). Among these, the single-stage MSViT with dynamic
mixed-scale tokenization (Havtorn et al., 2023), which leverages a learnable gating neural network
for token refining, is most related to our work. This approach requires a tailored gate loss func-
tion and an adaptive trimming scheme to handle the high overhead cost, which in return hurts gate
training accuracy. In contrast, the tokenization scheme in MATEY adaptively adjusts the patch sizes
directly based on local feature scales, which is simpler and more direct.

Axial attentions. The quadratic scaling nature of attention makes it computationally prohibitive
for extremely long token sequences from multidimensional systems. To address this challenge, (Ho
et al., 2019) proposed the axial attention, which decomposes the full attention into a sequence of
attention operations along each axis. It reduces the attention cost from O(N2d) to O(Nd+1), for a
given d-dimensional system with N

d tokens. ViViT (Arnab et al., 2021) factorized the spatiotem-
poral attention into spatial- and temporal-dimensions for video classification. (McCabe et al., 2023)
applied the axial attention in the Axial ViT (AViT) for spatiotemporal solutions of physical sys-
tems. While these spatiotemporal attention schemes can reduce the sequence length and hence the
attention cost, their impact on accuracy in physical systems is unclear.

3 MATEY, EXPLAINED

We propose multiscale adaptive foundation models, MATEY, to predict two-dimensional spatiotem-
poral solutions of multiple physical systems. The architecture of MATEY is illustrated in Fig-
ure 1. Given a sequence of T past solutions of some physical system at time t, MATEY predicts
the solution at a future time t + tlead by learning from sequences of solutions for multiple physical
systems. Specifically, MATEY learns a model fw such that ut+tlead ⇡ fw(ut�T+1, . . . ,ut; tlead)
by training parameters w to minimize the loss of the prediction from the solution sequence
U = [ut�T+1, . . . ,ut] against the future solution with a lead time ut+tlead . In the following para-
graphs, we give detailed descriptions for each component in MATEY.
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Figure 1: MATEY: multiscale adaptive foundation models for spatiotemporal physical systems.

Multi-physics preprocessor, postprocessor, and training. To accommodate multiple physical
systems with different sets of variables at different spatial resolutions, we adopt the multi-physics
preprocessor and postprocessor used in the MPP work (McCabe et al., 2023). For system k with
Ck variables, the preprocessor first embeds solutions ut(x, y) 2 RCk to a latent space RCuni , where
Cuni � Ck is shared among all systems. The resulting embedded solution passes through a con-
volutional block in the tokenization module and is converted into patch sequences in RCemb , which
are further passed to the attention block and then mapped back to RCk by the postprocessor, to
predict the solution fields of the Ck variables. To handle solutions with different resolutions, we fol-
low the approach in MPP by performing system-based sampling in the training process and fusing
information from samples from different systems via gradient accumulation. We employ a convo-
lutional neural network (CNN) in the tokenization module and 2D transposed convolutional blocks
in the multi-physics postprocessor to convert between patch sequences and spatiotemporal solu-
tion fields. The CNN block performs the conversion of the embedded solutions in the latent space
RCuni to the patch sequences in RCemb , while the transposed convolutional module converts the se-
quences back to the solution fields. Specifically, the preprocessor embeds the solution of system k,
Uk 2 RT⇥H⇥W⇥Ck into the unified latent representation U 2 RT⇥H⇥W⇥Cuni , which is tokenized
into sequences Z0

p
2 Rnt⇥npx⇥npy⇥Cemb , where nt = T/pt, npx = H/px, and npy = W/py with

prescribed patch size [pt, px, py] in the temporal and spatial dimensions. On the other hand, the post-
processor decodes the attention output ZL

p
2 Rnpx⇥npy⇥Cemb to the prediction upred 2 RH⇥W⇥Ck

for system k. In our work, we keep pt = 1 and Cuni = Cemb/4.

Attention mechanisms — AViT, SViT, and ViT. The standard ViT attention mechanism takes
into account the attention across the entire set of spatiotemporal dimensions, which results in a
high attention cost when extremely long spatiotemporal token sequences (e.g., from high-resolution
spatiotemporal data) are considered. To address this issue, various factorized attention mechanisms
have been proposed, such as AViT (Ho et al., 2019; McCabe et al., 2023) and a spatio-temporal
decoupled attention (Arnab et al., 2021), referred to as SViT here. These attention mechanisms
mainly consist of the same multihead self attention (MHSA) and feed forward multi-layer perceptron
(MLP) but differ in their attention block architecture. When L attention blocks are cascaded, the
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standard attention block in ViT is given as
bZ0
p
= [z0

1 , z
0
2 , . . . , z

0
N
] +Epos,

Z1
p
= MLP( eZ1

p
) + eZ1

p
, eZ1

p
= MHSA( bZ0

p
) + bZ0

p
+ MLP(tlead),

Z`

p
= MLP( eZ`

p
) + eZ`

p
, eZ`

p
= MHSA(Z`�1

p
) +Z`�1

p
, ` = 2, . . . , L

(1)

where [z0
1 , . . . , z

0
N
] denotes the full spatiotemporal token sequence of length N with each token

z0
i

2 RCemb , Epos is a positional embedding term, and each MHSA and MLP is followed by
an InstanceNorm1d module. In ViT, the token sequence is composed of full spatiotemporal
patches, meaning N = nt ·npx ·npy, resulting in an overwhelming costs of O((nt ·npx ·npy)2) op-
erations for attention. In contrast, SViT decouples the attention into npx ·npy time-attention blocks
and nt space-attention blocks cascaded sequentially, as in “MHSAtime ! MHSAspace ! MLP”,
which reduces the MHSA cost to npx · npy · O(nt2) + nt · O((npx · npy)2). AViT further de-
composes the space-attention in SViT into two axial directions following the same approach, which
leads to a cost of npx · npy · O(nt2) + nt · npy · O(npx2) + nt · npx · O(npy2). The decom-
position approach taken in both AViT and SViT neglects some spatiotemporal correlations and thus
gives shorter token sequence length for each attention blocks, at the cost of introducing additional
attention blocks. These extra attention blocks moderately increase the model size, as shown in Ta-
ble 1. Note that within the same size category, AViT and ViT are larger than ViT due to the additonal
MHSA, while AViT and ViT have similar sizes because AViT reuses the same attention for different
spatial directions. In MATEY, we implement the three attention mechanisms, AViT, SViT, and ViT,
and evaluate their performance on test problems to study how the lost spatiotemporal correlations
affect the quality of the solution and to assess the impact of decoupled attentions with additional
attention blocks on the learning efficiency for multi-physics foundation models.

Adaptive tokenization. Smaller patch sizes are preferred for better representation accuracy, as
ViTs can capture long-range correlations between patches well but lack inductive biases within
patches. However, features in physical systems often cross multiple length scales and exhibit strong
spatiotemporal inhomogeneities. Consequently, constant patch sizes that are small enough to pro-
vide good accuracy in the necessary regions of such systems result in impractically long token
sequence lengths over the entire domain. To address this issue, we propose an adaptive ViT that
dynamically adjusts the tokenization patch sizes according to local physical features. To maximize
expressiveness, we start with coarse patching and identify the most complex patches in each sample
based on a simple metric, such as the variance of local features. The identified patches are further
refined to the sub-token-scale (STS) to improve representation accuracy in these regions. Adaptive
patch size leads to patches at varying length across samples, which are handled with padding mask.
Patch position and patch area bias are represented following the embedding method in (Bodnar et al.,
2024).

For a given solution ui 2 RH⇥W⇥C and an initial coarse patch size [px1 , py1 ], the patch sequence is
refined adaptively based on local patch variance with two parameters, [pxref , pyref ] and �ref, as shown
in Figure 2. The resulting STS tokens can be incorporated in two ways. In the first approach, referred
to as “Adap Mul” (for adaptive multi-resolution tokenization), we consider the coarse and STS
tokens as separate sequences, passing through the attention blocks serially. In the second approach,
referred to as “Adap Mix” (for adaptive mixed-resolution tokenization), we append the sequence
of STS tokens directly to the end of the sequence of coarse tokens. While the second approach
leads to relatively longer token sequences, it has the potential benefit of better capturing cross-scale
correlations than the decoupled first approach.

Pretraining and fine-tuning. We pretrain the models on PDEBench data, which include five basic
2D systems: incompressible flows, compressible flows, turbulent flows, reaction-diffusion systems,
and shallow water equations. We consider two fine-tuning cases: 1) colliding thermals between a
cold and a warm bubbles from MiniWeather simulations (Norman, 2020) and 2) lid-driven cavity
MHD flows (Fambri et al., 2023). As discussed in detail in Appendix A.1, these fine-tuning datasets
were selected to be meaningfully out-of-distribution, not only in flow regime but also in includ-
ing thermal and electromagnetic components that are not represented at all in the pretraining data.
Training was performed on the Frontier and Perlmutter supercomputers at the Oak Ridge Leadership
Computing Facility (OLCF) and National Energy Research Scientific Computing Center (NERSC),
respectively, using distributed data parallelism.
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Figure 2: Adaptive tokenization that dynamically adjusts patch sizes based on local features. There
are three essential parameters: [px1 , py1 ], [pxref , pyref ] and �ref. The parameter [px1 , py1 ] denotes
the coarse patch size to start with, [pxref , pyref ] represents the refined patch size, and �ref 2 [0, 1]
determines which patches to refine. We select patches with local variances greater than �ref times
the maximum variance across all patches.

4 EXPERIMENTS

We design three experiments to evaluate 1) the performance of three spatiotemporal attention
schemes, AViT, SViT, and ViT, 2) the impact of adaptive tokenization, and 3) the effectiveness of
pretrained models on two fine-tuning tasks that feature physics different from the pretraining data.

4.1 SPATIOTEMPORAL ATTENTION SCHEMES

We evaluate AViT, SViT, and ViT for three model sizes: Tiny (Ti), Small (S), and Base (B) with 3,
6, 12 heads and hidden dimension Cemb = 192, 384, and 768, respectively (Touvron et al., 2022), as
shown in Table 1, on the colliding thermals dataset. In the same size category, AViT and SViT are
about 30% larger than ViT due to the additional attention block. More details about the experiment
are presented in Appendix A.2.

Table 1: Number of model parameters in AViT, SViT, and ViT for three model sizes, Tiny, Small,
and Base, detailed in Section 4.1. ViT results in about 30% fewer model parameters than AViT and
SViT because the latter two require additional attention blocks.

Tiny Small Base
AViT 7.5M 29.9M 119.3M
SViT 7.6M 30.0M 119.3M

ViT 5.8M 22.8M 90.9M

Figure 3 compares the final test error, defined as the normalized root-mean-square error (NRMSE),
and the training time, represented as GPU hour per step, for the nine models. For the same size
category, SViT (green) achieves the lowest error, followed by ViT (blue), and then AViT (red). In
terms of training time, SViT takes longer than AViT, while ViT is the least expensive one. ViT
processes longer token sequences and hence is expected to have a higher single-unit attention cost,
whereas AViT and SViT have multiple attention units with shorter token sequence length. The
results reported in Figure 3 show that the ViT has the lowest cost, which implies that the number
of attention blocks plays a more important role than the token sequence length in terms of training
cost in this example. This observation is due to the fact that the spatiotemporal token sequence
length (16 ⇥ 8 ⇥ 8) in this example is relatively short. We expect ViT to become more expensive
than AViT and SViT when more refined or higher dimensional solutions are considered, in which
longer token sequences are required. In general, we find that SViTs and ViTs are more expressive
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Figure 3: Learning efficiency of AViT, SViT, and ViT at three model sizes regarding final predictive
error and training time cost: SViT and ViT are observed to be more expressive and computationally
efficient than AViT in the experiment, as they require fewer model parameters and less training time
to achieve the same test accuracy.

and computationally efficient than AViTs, in that they achieve the lower predictive errors with fewer
model parameters and less training time.

4.2 ADAPTIVE TOKENIZATION

We start the evaluation of our adaptive tokenization methods in a single collision trajectory between
two thermal bubbles. Figure 4 compare the temperature contours of the true solution at t = 590 with
the predicted solutions from Ti-AViT models at constant patch sizes: ps=16 ⇥ 16 and ps=32 ⇥ 32
and adaptive tokenization (Adap Mul with px1 = py1 = 32, pxref = pyref = 16 , and �ref = 0.2).
The predicted solution from ps=32 ⇥ 32 exhibits abrupt changes with clear edges for the local
structures inside the patches, while the finer resolution model at ps=16⇥16 captures smoother, finer
structures but requiring more patches. In contrast, our adaptive tokenization method (Adap Mul)
capture smooth, fine structures comparable to ps=16 ⇥ 16 while requiring much fewer FLOPs, as
shown in Figure 5.

Figure 4: Predicted temperature contours at t = 590 from Ti-SViT models with constant patch
sizes ps=16 ⇥ 16 and ps=32 ⇥ 32 and adaptive tokenization (Adap Mul with px1 = py1 = 32,
pxref = pyref = 16 , and �ref = 0.2). Adap Mul predicts smoother, finer local structures that are
overlooked in ps=32⇥ 32, similar to the more expensive ps=16⇥ 16.

Figure 5 shows the final NRMSE loss versus the floating-point operations (measured in TeraFLOPs)
for 15 models, including the three in Figure 4. We aim to evaluate the adaptive tokenization methods
coupled with (Ti-) AViT, SViT, and ViT versus using these models with three fixed patch resolutions:
patch sizes ps=8⇥8, 16⇥16, and 32⇥32. For the same attention scheme with a fixed patch size, as
expected, increasing resolution leads to lower errors but also substantially increases the training cost,
particularly for ViT (triangles). ViT shows fewer FLOPs than AViT (squares) and SViT (circles) with
shorter sequences (blue), consistent with the time measure in Figure 3, but it significantly surpasses
the other two at the finest resolution with longer sequences (red). In contrast, our adaptive scheme
(magenta markers, Adap Mul with pxref = 16), which starts with uniform 32⇥32 patches and locally
refines to 16⇥16 on selected patches, achieves comparable accuracy to uniform 16⇥16 patches with
SViT and ViT. Moreover, Adap Mul with pxref = 16 obtains this accuracy level at reduced FLOPs.
As this reduced cost depends significantly on the spatiotemporal attention, the speedup is modest for
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SViT but becomes more significant for ViT, being more than 2⇥ more efficient than constant patch
sizes for ViT.

Figure 5: Final NRMSE loss for the three attention schemes (AViT, SViT, and ViT) with adaptive
tokenization and constant patch sizes against estimated TeraFLOPs at the Tiny size. The flops val-
ues are available in Table A1. Adaptive tokenization methods (empty markers, px1 = 32) achieves
comparable accuracy to ps=16 ⇥ 16 (green solid markers) but with 2.2⇥ fewer FLOPs in ViT (tri-
angles) and 1.16⇥ fewer FLOPs in SViT (circles), respectively. In contrast, AViT (squares), under
the same setting, achieves higher error (magenta square with pxref = 16) or lower error (cyan square
with pxref = 8) but with refined patches, making it less suitable for adaptive tokenization.

While the results with adaptive toknenization are positive on a single trajectory from the colliding
thermals dataset, the accuracy improvement deteriorates when applied to more complex settings
with multiple trajectories that invovle varying initial bubble locations and temperature differences.
Figure 6 compares the final test errors of Ti-SViT with constant patch sizes: ps=32⇥32, ps=16⇥16,
and adaptive tokenization with a few parametric settings. In general, the adaptive errors are between
errors of the two reference cases but still noticeably higher than the error from ps=16 ⇥ 16. The
adaptive error decreases with lower �ref values and is ideally expected to converge to the model error
with the constant fine patch size. However, we encounter training instability issues when further
reducing �ref. Addressing these stability issues is a focus of future work.

Figure 6: Final NRMSE test loss from constant patch sizes (ps=32 ⇥ 32 and ps=16 ⇥ 16) and
adaptive tokenization for diverse data configurations with initial bubble locations and intensities
varying dramatically. Adpative tokenization (with px1 = 32, pxref = 8) shows varying accuracy
improvement with different parameter settings but the improvement is not as optimal as the single
trajectory case in Figure 5.

4.3 EFFECTIVENESS OF PRETRAINING IN COLLIDING THERMALS AND MHD FINE-TUNING
TASKS

We examine the transferrability of pretrained models to fine-tuning systems with distinct physics
and different set of variables, as in Table A2. Specifically, we aim to address three broad questions:

1. Is pretraining effective when the downstream tasks have a distinct set of physical variables?
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2. How does limited fine-tuning of non-attention blocks compare to full fine-tuning?
3. How does fine-tuning data size affect convergence?

To address these three questions, we design a sets of experiments, starting from models pretrained
on PDEBench or randomly initialized models (‘* INIT’), and fine-tune them on colliding thermals
and MHD datasets with distinct physical variables. For fine-tuning each model, we either allow
all model parameters to be tunable (‘ALL’) or freeze the attention blocks and limit training to the
preprocessor, the tokenization module, and the postprocessor (‘PREPOST’). Finally, for each initial
model and fine-tuning configuration, we train four models with increasing amounts of fine-tuning
data.

For the colliding thermals dataset, Figure 7 compares the test loss with full and limited fine-tuning
using pretrained and randomly initialized models. The different training data sizes ranging from one
set of colliding thermals time-trajectory to 24 sets of trajectories. The fine-tuning task is to predict
the solution of the physical system at a lead time of tlead uniformly sampled between 1 and 50 steps.
An example of the true and predicted solutions in these four training configurations is illustrated in
Figure 8.

Figure 7: NRMSE loss for test set at different training data sizes in fine-tuning of colliding thermals
at a maximum lead time of 50 steps, with full (‘ALL’) and limited (‘PREPOST’) fine-tuning using
pretrained and randomly initialized models (‘* INIT’).

Figure 8: Temperature contours of true solution vs predicted solutions from four fine-tuned models
(on 12 trajectories) at t = 490 from Ti-SViT models for a lead time of 40 in the collision of two
thermal bubbles.

For the limited fine-tuning test with the colliding thermals dataset, the pretrained models achieve
significantly lower error than starting from scratch with randomly initialized parameters. Moreover,
while this advantage persists as the number of fine-tuning data increases, it is most pronounced
in the low data configuration of learning from a single trajectory. Indeed, we find that limited
fine-tuning with the pretrained models generalizes well even when learning from one trajectory,
seeing only moderate improvements when run on the largest dataset size considered. Overall, the
lower converged error from pretrained models suggests the frozen attention blocks clearly learned
transferable knowledge during pretraining. For full fine-tuning, the accuracy is much better than
limited fine-tuning as a result of the model being more expressive. The difference between the
pretrained and randomly initialized models is much lower, being minor in the case of a single data
configuration during training and vanishing as the amount of data increases.

For the MHD dataset, Figure 9 shows the final test NRMSE errors in lid-driven cavity flows af-
ter fine-tuning against data sizes when starting from pretrained and randomly initialized models for
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limited and full fine-tuning. The training dataset sizes used for fine-tuning range from 1 to 12 simula-
tion configurations, with each configuration including approximately 1900 samples. The fine-tuning
task is to predict the flow solution at a lead time of tlead uniformly sampled between 1 and 100 steps.
Contour plots from the true solution and the predicted solution from each training configuration are
depicted in Figure 10.

Figure 9: NRMSE loss for test set at different training data sizes in fine-tuning of lid-driven cavity
MHD flows dataset at a maximum lead time of 100 steps, with full (‘ALL’) and limited (‘PREPOST’)
fine-tuning using pretrained and randomly initialized models (‘* INIT’).

Figure 10: Contours of true horizontal magnetic field values Bx vs predicted solutions from four
fine-tuned models (on 12 trajectories) at t = 1400 from Ti-SViT models for a lead time of 80 in
lid-driven cavity MHD flows.

Overall, the fine-tuning performance is a result of model expressibility, training data size, and the
similarity between training and testing tasks. As with the colliding thermals dataset, pretrained
models outperformed the randomly initialized models for both full and limited fine-tuning runs.
However, the reduced expressibility of the limited fine-tuning configuration consistently shows an
accuracy gap, even with more training data, as they cannot fully represent the data complexity. In
contrast, full fine-tuning leads to more expressive models that can capture all training data informa-
tion when trained on limited data but often show high test errors; as more training data is provided,
they generalize well and lead to a convergent improved test error. In our fine-tuning, the randomly
initialized models perform well in testing even with a single data configuration, likely due to the
similarity between training and testing tasks. Future work will explore more challenging scenarios
with increased heterogeneity within the fine-tuning data.

While studies like McCabe et al. (2023) have demonstrated impressive outperformance from fine-
tuning of pretrained models versus randomly initialized models, these fine-tuning tests were per-
formed on data that, while distinct, was fully governed by physical equations and characterized by
physical variables that were represented in the training data. Yet for a model that aims to be foun-
dational for multiphysical systems, we argue that assessing model performance in more realistic
settings, where equations like Navier-Stokes are coupled with those from other domains of physics,
is a more informative test of the effectiveness of pretraining. Accordingly, we assess fine-tuning per-
formance on physical systems that incorporate fluid flows, which are well-represented in PDEBench,
with thermodynamics and electromagnetism, which are not. As reasonably anticipated, we find that
advantages of pretraining are reduced in this more complex setting.

5 DISCUSSION

In this paper, we make three contributions that will advance the development of foundation mod-
els for multiscale physical systems. First, we find that while some data efficiency is lost in a fully
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decoupled spatiotemporal attention scheme, such as AViT and SViT, provides an intriguing balance
of computational and data efficiency versus the standard ViT approach. Yet using SViT alone does
not sufficiently address the computational challenges associated with attention for high spatial res-
olutions. Second, we instead suggest that our adaptive tokenization scheme provides a promising
approach for working with high resolution data. This sort of adaptivity has the potential to be both
flexible and expressive enough to deal with the dynamic and sparse nature of the multiscale features
in physical data. Third, we suggest an alternative path to evaluate foundation models for multi-
scale physical systems that focuses on fine-tuning problems involving out-of-distribution physics
governed by different equations with distinct sets of physical variables. In two such settings, collid-
ing thermals and magnetohydrodynamics, we find that while pretraining does provide an advantage,
its impact is much more muted compared to fine-tuning on the same set of variables, suggesting
additional effort is required to obtain truly foundational models in this space.
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Vivit: A video vision transformer, 2021. URL https://arxiv.org/abs/2103.15691.

Cristian Bodnar, Wessel P Bruinsma, Ana Lucic, Megan Stanley, Johannes Brandstetter, Patrick
Garvan, Maik Riechert, Jonathan Weyn, Haiyu Dong, Anna Vaughan, et al. Aurora: A foundation
model of the atmosphere. arXiv preprint arXiv:2405.13063, 2024.

Daniel Bolya and Judy Hoffman. Token merging for fast stable diffusion. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, pp.
4599–4603, June 2023.

F. Fambri, E. Zampa, S. Busto, L. Rı́o-Martı́n, F. Hindenlang, E. Sonnendrücker, and M. Dumbser.
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