Threading the Needle: Reweaving Chain-of-Thought Reasoning
to Explain Human Label Variation

Anonymous ACL submission

Abstract

The recent rise of reasoning-tuned Large Lan-
guage Models (LLMs)—which generate chains
of thought (CoTs) before giving the final an-
swer—has attracted significant attention and of-
fers new opportunities for gaining insights into
human label variation, which refers to plausible
differences in how multiple annotators label the
same data instance. Prior work has shown that
LLM-generated explanations can help align
model predictions with human label distribu-
tions, but typically adopt a reverse paradigm:
producing explanations based on given answers.
In contrast, CoTs provide a forward reasoning
path that may implicitly embed rationales for
each answer option, before generating the an-
swers. We thus propose a novel LLM-based
pipeline enriched with linguistically-grounded
discourse segmenters to extract supporting and
opposing statements for each answer option
from CoTs with improved accuracy. We also
propose a rank-based HLV evaluation frame-
work that prioritizes the ranking of answers
over exact scores, which instead favor direct
comparison of label distributions. Our method
outperforms a direct generation method as well
as baselines on three datasets, and shows bet-
ter alignment of ranking methods with humans,
highlighting the effectiveness of our approach.

1 Introduction

Recent advances in large language models (LLMs,
Touvron et al. 2023; Dubey et al. 2024; OpenAl
2023) have shown the power of chain-of-thought
(CoT, Wei et al. 2022; Wang et al. 2023) reasoning
in improving complex decision-making tasks (Wei
et al., 2023; Sun et al., 2023; Yu et al., 2024; Team
et al., 2025; Chen et al., 2025). One prominent
direction involves reasoning-tuned LLMs, which
generate CoT reasoning steps explicitly before
producing a final answer, often guided by rein-
forcement learning to promote interpretable and
structured thinking processes (DeepSeek-Al et al.,
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Figure 1: We i) repurpose the reasoning content in CoTs
as forward and label-free method to extract explanations
for HLV, instead of direct generation (top); and ii) pro-
pose a rank-based HLV evaluation framework (bottom).

2025; Team, 2025; Hurst et al., 2024). While prior
work has primarily focused on analyzing the con-
tent and structure of CoTs to improve accuracy
or interpretability (Qin et al., 2024; Min et al.,
2024; Ameisen et al., 2025), little attention has
been given to the potential of CoTs in capturing
more nuanced aspects of human annotation be-
havior. In particular, human label variation (HLV,
Plank 2022) arises when different annotators pro-
vide divergent yet valid labels for the same input, a
phenomenon especially common in inference and
multiple-choice tasks involving ambiguous, sub-
jective, or commonsense-rich questions (Pavlick
and Kwiatkowski, 2019; Aroyo and Welty, 2015).
Modeling HLV is thus crucial for creating robust
NLP systems that reflect the diversity of human
perspectives (Uma et al., 2021; Plank, 2022).
Prior research has shown that explanation-label
pairs—either produced by humans or models—can



help LLMs better capture the distribution of hu-
man labels (Weber-Genzel et al., 2024; Chen
et al., 2024a,b). However, existing approaches
treat model explanation generation as a post-hoc
task, generating explanations after a label is cho-
sen (Chen et al., 2024a). In contrast, reasoning-
tuned LLMs offer a forward reasoning paradigm:
CoTs precede answer selection and may already
contain latent rationales for why certain labels
are chosen—rationales that, if properly extracted,
could serve as label-specific explanations.

In this work, we investigate whether CoTs can
be repurposed as a source to extract explanation-
label pairs to derive insights on HLV, as visu-
alized in Figure 1. Specifically, we propose a
novel pipeline, CoT2EL, that includes discourse
segmenters to extract such pairs from CoTs. Such
an approach allows us to view CoTs not merely as
reasoning artifacts, but as explanation-rich repre-
sentations that reflect a broader label space.

We further propose a new HLV evaluation frame-
work centered around ranking rather than label
distributions. Current HLV evaluations assume
closed-label sets and primarily focus on approx-
imating exact probability distributions. However,
exact value differences may only matter if they
yield differences in label preferences (rankings), cf.
Figure 2(a). They can also be highly sensitive to
annotator variability and availability, and a closed-
set, i.e. Figure 2(b), limits their ability to capture
broader possibilities. Therefore, we evaluate how
well model-predicted rankings over options align
with human rankings, providing a more nuanced
and robust view of model performance in settings
where annotation disagreements exist.

We conduct extensive experiments on three
benchmarks exhibiting label variation: VariErr NLI
(Weber-Genzel et al., 2024), CommonsenseQA
(Talmor et al., 2019), and Social IQa (Sap et al.,
2019). Our results across multiple LLM judges
demonstrate that explanation-label pairs extracted
from CoTs using our CoT2EL pipeline consistently
outperform both the direct explanation generation
method and explanation-free baselines in capturing
annotation disagreements. Our analysis and abla-
tion studies further reveal several key insights: i)
supporting statements within CoTs are more pre-
dictive of human choices than the opposing ones; ii)
ranking strategies aligned with human annotation
practices lead to better approximation of human la-
bel variation; and iii) well-structured input prompts
significantly enhance the informativeness of CoTs.
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Figure 2: (a) Same instance, different datasets: values
differ, rank the same. (b) illustrates human answer be-
havior across datasets compared to the enforced closed-
world assumption in normalized label probabilities.

2 Background and Motivation

2.1 Modeling Human Label Variation

Most current approaches to investigating HLV view
the label distribution from annotators as a proba-
bility distribution (e.g., Kurniawan et al., 2025;
Uma et al., 2021; Pavlick and Kwiatkowski, 2019;
Nie et al., 2020; Lee et al., 2023; Leonardelli et al.,
2023; Rizzi et al., 2024; Pavlovic and Poesio, 2024)
or assign scores (e.g., Palta et al., 2024; Wadhwa
et al., 2023) to capture annotation disagreement.
Evaluation typically focuses on how well models
approximate these distributions or scores. However,
we argue that such paradigms have key limitations:

Rank or Value: Two Complementary Views
Human annotations inherently reflect subjective
judgments, and when different groups of annota-
tors are involved, the resulting label distributions
can vary significantly. To illustrate this variation,
we examine four NLI datasets annotated by distinct
human populations: MNLI (Williams et al., 2018),
Chaos NLI (Nie et al., 2020), VariErr NLI (Weber-
Genzel et al., 2024), and Live NLI (Jiang et al.,
2023b). Among 15 shared instances across these
datasets, only 2.2% of pairwise comparisons yield
identical probability values, underscoring the sen-
sitivity of distributional scores to annotator compo-
sition. Despite these numeric differences, 43.3%
of the comparisons retain consistent label rankings
(Figure 2(a)). This suggests that while probability-
based evaluations are highly unstable under anno-
tator shifts, rank-based assessments exhibit greater
consistency. Given that many real-world applica-
tions rely more on the correct ordering of label
plausibility than exact probability estimates, we
argue for the inclusion of ranking as a complemen-
tary and more robust HLV evaluation metric.

Does the Closed-World Assumption Reflect Hu-
man Judgments? Human annotators do not al-



Input: Please read the following social scenario and the accompanying question, choose the most appropriate answer from the options provided and start your answer
with a single letter. Scenario: Ash redeemed themselves after retaking the test they failed. Question: How will Ash feel as a result?
A.relieved B.accomplished C.proud Answer:

CoTs: Okay, let’s see. The scenario is that Ash redeemed themselves by retaking a test they failed. The question is asking how Ash will feel as a result. The options
are A. relieved, B. accomplished, and C. proud.

First, I need to understand what each of these emotions means in this context. Redeeming oneself after failing a test suggests that Ash probably worked hard to retake
it and succeeded this time. So, the feelings here would be related to overcoming a challenge.

"Relieved"(A) would mean that Ash is feeling a release from the stress or worry about having failed before. Passing the test might take away that anxiety.
"Accomplished"(B) implies a sense of achievement, having completed something successfully, especially after effort. Since Ash had to retake the test, putting in the
work to pass it now would make them feel like they’ve accomplished something.

"Proud"(C) is more about self-esteem or satisfaction in one’s own achievements. It’s a bit similar to accomplished but more focused on the personal pride aspect.
Now, considering the scenario: Ash didn’t just pass a test; they redeemed themselves. That suggests that failing initially might have caused some shame or
disappointment, so passing now would alleviate that. But redemption often involves not just relief but also a sense of achievement. So both A and B are possible.
But "proud" might be more about the internal sense of pride, whereas "accomplished" is about the feeling of having achieved something through effort. Which one

fits better here? If Ash worked hard to retake and pass, then feeling accomplished makes sense. Relieved is possible, but maybe the primary feeling is
accomplishment. Proud could also be there, but maybe B is more directly related to the effort and success.

I think the best answer is B. Accomplished.

Table 1: CoT Example. The examples, drawn from Social IQa, are processed using DeepSeek R1 (DeepSeek-Al
et al., 2025), with CoT segments related to options A, B, and C highlighted in blue, green, and orange, respectively.
For questions where all options appear plausible, the CoT reflects a step-by-step analysis involving comparison and
evidence evaluation. These segments offer rich material for deriving explanations relevant to our study of the HLV
phenomenon, enabling a deeper understanding of the task and the roots of HLV beyond just the final answers.

ways treat label options as strictly exhaustive or
mutually exclusive. In some contexts, they express
uncertainty or endorse multiple plausible answers,
often via indecisive choices as observed in datasets
like Live NLI and VariErr NLI (green lines in Fig-
ure 2(b)). Converting such annotations into nor-
malized probability distributions imposes a closed-
world assumption—requiring mutually exclusive,
collectively exhaustive labels summing to one (blue
lines)—which limits the label space and overlooks
ambiguous or open-ended responses common in
tasks like CommonsenseQA (Talmor et al., 2019)
or Social IQa (Sap et al., 2019) (orange lines). This
constraint can distort model evaluation by mask-
ing ambiguity. We therefore propose a rank-based
evaluation framework (§5), which better accommo-
dates indecisive and out-of-scope options.

2.2 Modeling HLV with Explanations

Recent studies have shown that explanations can ef-
fectively support the interpretation and analysis of
HLV (Jiang et al., 2023c; Chen et al., 2024b; Weber-
Genzel et al., 2024; Jiang et al., 2023b). However,
collecting human explanations is significantly more
resource-intensive than traditional label-only anno-
tation. To reduce annotation costs, recent studies
have leveraged LLMs to generate explanations for
each label. Evidence shows that with a few hu-
man labels, LLM-generated explanations can rival
human-written ones in forming valid explanation-
label pairs and supporting HLV modeling (Chen
et al., 2024a). However, this approach has three
key limitations: i) it relies on a few human labels to
select final explanations, with performance degrad-
ing when such supervision is absent; ii) it reverses

the annotation process by conditioning explanation
generation on labels, risking hallucinated reasoning
for implausible options; and iii) it treats labels inde-
pendently, lacking comparative reasoning and thus
reducing explanation depth and completeness. To
address these limitations, we study how the poten-
tial of CoTs (Table 1) from LLMs can be leveraged
to explain HLV, given their rich argumentations
and consideration of multiple alternative options.

3 Datasets

To study HLV via explanation-based methods, we
select datasets with multiple annotation choices.
An overview of the selected datasets are shown
in Table 2. Specifically, VariErr NLI (Weber-
Genzel et al., 2024) is a Natural Language Infer-
ence (NLI) dataset which includes annotations and
human-provided explanations from four annotators.
Notably, there are 500 NLI instances that also over-
lap with the Chaos NLI and MNLI datasets, provid-
ing label distributions from 100 and five annotators
for each instance, respectively. This makes VariErr
NLI an especially valuable dataset for conducting
rational, explanation-based analysis of annotation
disagreement in inference tasks.

In addition, we include two multiple-choice
question answering (MCQA) datasets: Social IQa
(SIQA, Sap et al. 2019) and CommonsenseQA
(CQA, Talmor et al. 2019). Both require gen-
eral world knowledge and reasoning to answer cor-
rectly. Importantly, Palta et al. (2024) re-annotated
these datasets, collecting Likert-scale ratings (from
1 to 5) from five annotators for each answer op-
tion (Zhang et al., 2017), as well as human feed-



HLV Datasets (num.) ‘ Instance Content ‘ Annotations

VariErr NLI hypothesis 4 from VariErr NLI
(500) premise 100 from Chaos NLI
from MNLI dev set 3 NLI labels (ENC) | 5 from MNLI
Social IQa social scenario 5 annotators score
(125) question one question-option
from SIQA dev set 3 options (ABC) pair individually.
CommensenseQA question 5 annotators score
(125) 5 options (ABCDE) | one question-option
from CQA dev set pair individually.

Table 2: An Overview of the Datasets.

back for hard-to-judge items. The mean rating is
then used as the option’s plausibility score. This
approach offers a new angle for studying HLV.

4 Extracting Explanation-Label Pairs
from Chain-of-Thought Reasoning

CoT reasoning provides rich rationales (Table 1)
to support decision-making in tasks like MCQA.
However, extracting fine-grained, option-specific
explanations from CoTs is non-trivial due to the
lack of explicit alignment between reasoning frag-
ments and individual answer options. Below we
describe our proposed method for extracting and re-
fining structured explanation-label (EL) pairs from
CoTs using LLMs as parsers and two linguistic-
motivated discourse unit segmenters.

4.1 CoT2EL Pipeline

Our method is designed to produce a set of EL pairs
that represent supporting or opposing arguments
for each answer option in a given MCQA task. The
full pipeline is depicted in Figure 3!

CoT Generation and Initial Extraction. Given
a question @) and a set of candidate labels L =
[l1,12,...,1,], we first prompt a reasoning-tuned
LLM to generate a CoT reasoning:

CoT = ReasoningModel(Q, L), 1)

We then apply both a reasoning-tuned model and
its corresponding base model in sequence, which
is used as a structured output parser. Specifically,
the CoT content is converted into a structured JSON
list of EL pairs in the following format:

{(ei,lz,5i) | €; € CoT, I, € L, s; € {support,oppose}}
2

While LLM-based parsers are able to parse and
decompose the CoT content, the directly extracted
EL pairs often exhibit issues regarding—which we

!Code will be made available for reproduction.

categorize into the following aspects (exemplified
in Figure 4): i) Informativeness: explanations
either lack key content or contain unnecessary in-
formation. ii) Faithfulness: statements may para-
phrase or hallucinate beyond the original CoT con-
tent. iii) Formatting: structural inconsistencies
or unexpected formatting issues arise in the gen-
erated JSON outputs. These issues complicate the
direct use of such pairs for downstream reasoning
evaluation and necessitate further refinement steps.

Discourse-guided Refinement. To mitigate the
aforementioned issues, we apply two discourse seg-
menters (DSeg,) that offer complementary views
of text structure to segment the CoT content into a
set of coherent discourse units: a discourse unit seg-
menter following the Rhetorical Structure Theory
(RST, Mann and Thompson 1988), which segment
sentences into clause-based units; a discourse con-
nective detector following the Penn Discourse Tree-
bank (PDTB, Webber et al. 2019), which identifies
clauses initiated with connectives (e.g. however,
because) that signal relationships between ideas.

The integration of discourse segmentation into
our pipeline is driven by the necessity to extract
logically coherent and interpretable reasoning units
from CoT content. In human annotation prac-
tices, such units often form the basis for iden-
tifying justifications that support or oppose spe-
cific answer choices. By emulating this annota-
tion logic through automated discourse models, we
impose structural and semantic regularity on the
extracted explanations. This approach facilitates re-
liable interpretation and alignment of explanation-
label pairs, thereby enhancing the transparency and
evaluability of CoT reasoning. Both discourse seg-
menters are trained using a DISRPT Shared Task
winning system DisCoDisCo (Gessler et al., 2021)
with the DISRPT 2023 Shared Task data (Braud
et al., 2023) (see Appendix A for details). The out-
puts are then processed and merged into a unified
set of valid semantic discourse units:

U = DSeg, (CoT) U DSeg, (CoT), 3)

This normalized set U forms a constrained,
high-quality space of candidate explanation units,
grounded directly in the original CoT. We align
each extracted explanation e; from Eq 2 with its
closest discourse unit in U by maximal similarity:?

*

€;

ELﬁltcr - {(6:, l:m Si)

arg max Sim(u, ei)} . @

“Implemented by Python difflib.SequenceMatcher.
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Figure 4: Three error types in ELs during LLM parsing (left) and the human validation procedure (right).

Datasets VariErr NLI SIQA CQA
EL 0,6820 0,7897 0,8200
ELfier 0,8106 0,8761 0,8684
EL-sup 0,6992 0,8167 0,8431
ELfjter-sup 0,8296 0,8825 0,8749

Table 3: Averaged scores among 4 metrics (Lexical,
Syntactic, Semantic Similarities and Levenshtein Ratio)
for human validation. Higher score, more similar.

The final result ELgy, is a set of EL pairs in
which each explanation is both semantically faith-
ful and textually aligned with a coherent discourse
unit from the original CoT content. This structured
output enhances both interpretability and utility for
evaluating reasoning processes in MCQA settings.

4.2 Validation through Human Annotation

To assess the reliability and effectiveness of our
pipeline, CoT2EL, we conducted a human annota-
tion study across the three datasets. We randomly
sampled 10 CoT instances from each dataset. For
each instance, a trained annotator’ manually iden-
tified and labeled all explanation spans within the
CoT content that either supports or opposes a given
answer label, using the target format illustrated in
Figure 3. This produced a human-curated gold
standard of EL pairs for comparison.

We utilized DeepSeek R1 660B (DeepSeek-Al
et al., 2025) to generate CoT responses. The corre-
sponding base model, DeepSeek V3 (DeepSeek-Al

3The annotator is paid according to national standards.

et al., 2024) was then incorporated to standardize
the CoT into structured EL via JSON parsing. Fol-
lowing the pipeline in Figure 3, we applied the two
discourse segmenters for refinement to produce the
final ELgye;. As shown in Figure 4, these auto-
generated pairs were then quantitatively compared
to the human-annotated counterparts across four
evaluation dimensions following Giulianelli et al.
(2023): Lexical, Syntactic, Semantic Similarities,
and Levenshtein Ratio. In addition to evaluating the
full EL sets, we also considered supporting-only
settings (EL-sup and ELg,-sup), which aligns
with the direct LLM generation method that favors
positive justifications.

The comparison in Table 3 shows that our fi-
nal set ELgjer more closely aligns with human an-
notations than unfiltered EL* This suggests that
our discourse-guided extraction pipeline achieves
a high degree of faithfulness and interpretability,
approximating human performance in identifying
rationale-label mappings from CoT content.

5 Rank-based HLV Evaluation

Recent studies employ the LLM-as-judge
paradigm (Zheng et al., 2023), wherein explana-
tions accompany questions and candidate labels
as inputs to an LLM (Chen et al., 2024a,b). The
resulting output distribution is evaluated against
the empirical human label distribution, using

“Detailed metrics and scores are in Appendix C.



alignment as a proxy for explanation quality.

We propose a rank-based evaluation framework
as a more robust complement to raw probabil-
ity comparisons. Building on the LLM-as-judge
paradigm, our approach shifts the evaluation focus
to label ranking. Human annotations from HLV
datasets are transformed into rankings, and the
LLM is prompted to generate corresponding rank-
ings based on the input of questions and options.
Model-generated rankings are then compared to
human-derived rankings as explanation-free base-
lines. To assess the impact of explanations, we
additionally provide EL pairs and evaluate whether
they enhance alignment with human rankings.

5.1 Ranking Generation Methods

We experiment three distinct approaches to eliciting
label rankings from LLMs?

i) Direct Ranking (Rank-rank): an LLM is explic-
itly instructed to rank the candidate labels based on
the provided question, yielding a direct ranking.
ii) First-Token-Logits Ranking (Rank-logits):
following prior work (Santurkar et al., 2023; Dur-
mus et al., 2023; Liang et al., 2023), the model is
given a set of label options (A, B, C...) and asked
to choose one. We then take the logits of the first
output token for each label and use them to rank the
labels from most to least likely. This method pro-
duces a probability-like distribution by normalizing
the logits over labels and is particularly designed
to align with the distribution-based VariErr NLI.
iii) Scoring-Based Ranking (Rank-score): in-
spired by Palta et al. (2024), we prompt an LLM
to assign each label a score from 1 to 5 based on
its plausibility. The final ranking is derived from
their scores. This method is especially motivated
by score-based SIQA and CQA.

5.2 Evaluation Metrics

To compare LLM rankings with humans, we
compute two standard rank correlation metrics:
Kendall’s 7 (Kendall, 1938) and Spearman’s p rank
correlation coefficient (Spearman, 1961). Specif-
ically, we assess three ranking generation meth-
ods proposed in §5.1: Rank-rank, Rank-logits,
and Rank-score. We further compute appropriate
similarity metrics to compare distributions from
Rank-logits and scalar scores from Rank-score
with human annotations. For probability distribu-
tions (from VariErr NLI), we use Kullback-Leibler

>Details in Appendix D.

(KL) Divergence (Kullback and Leibler, 1951),
Jensen-Shannon Distance (JSD, Endres and Schin-
delin 2003), and Total Variation Distance (TVD,
Devroye and Lugosi 2001). For scalar scores (from
SIQA and CQA), we employ Root Mean Squared
Error (RMSE, Hyndman and Koehler 2006), Mean
Absolute Error (MAE, Willmott and Matsuura
2005), and Coefficient of Determination (R2, Steel
and Torrie 1960). See details in Appendix E.

5.3 LLMs

To generate CoTs, we used two reasoning-tuned
LLMs: DeepSeek R1 660B (R1, DeepSeek-Al
etal. 2025) and QwQ 32B (QwQ, Team 2025). For
comparison with the direct explanation generation
method, we additionally included their correspond-
ing base LLMs: DeepSeek V3 (V3, DeepSeek-
Al et al. 2024) and Qwen 2.5 Max (Qwen Max,
Yang et al. 2024b). For LLM-as-judge, we adopt
Qwen2.5-7B-Instruct (qwen, Team 2024; Yang
et al. 2024a), Llama-3.1-8B-Instruct (llama, Dubey
et al. 2024), and Mistral-7B-Instruct-v0.2 (mis-
tral, Jiang et al. 2023a).

6 Results and Analyses

Figure 5 presents the main HLV evaluation results.
Across nearly all metrics and settings, ELgyer and
ELfger-sup consistently achieve superior perfor-
mance, outperforming both the explanation-free
baseline and the direct generation method (GenEX),
underscoring the effectiveness of the proposed
CoT2EL pipeline in facilitating deeper HLV un-
derstanding and explaining. Notably, although
both only contain supporting rationals, ELgye-sup
yields a marked advantage over GenEX, indicating
that the forward paradigm and attention to inter-
label dynamics enable reasoning-tuned models
to generate CoTs with richer and more HLV-
relevant content, as motivated in §2.2. Lastly, the
consistent performance of our rank-based evalua-
tion across both distributional and score-based set-
tings affirms the robustness and generalizability of
the proposed evaluation framework, as postulated
in §2.1. The full results are in Appendix F.

Support or Oppose? It is also worth noting
that ELgy-sup consistently outperforms ELgjter,
prompting further investigation into the effective-
ness of supporting versus opposing explanations.
We conducted an ablation study by isolating only
the supporting and opposing components from both
EL and ELgj,, as shown in Figure 6.
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Figure 6: Results of the ablation study comparing the effectiveness of supporting versus opposing explanations for
HLYV evaluation. Red crosses mark the best-performing data point for each setting.

It is clear that ELgy-sup achieves the best re- How to rank? Our rank-based HLV evaluation
sults in most settings across all datasets, while  framework applies three methods to obtain rank-
opposing-only explanations lead to performance  ings from LLM judges, as detailed in §5.1. We
degradation. A closer examination of individual EL  therefore investigate which ranking method yields
pairs reveals two likely reasons for this outcome: i)  the best performance, and present results in Fig-
when rejecting a label, many CoTs tend to provide  ure 7. The comparison reveals several key pat-
vague or ambiguous statements, whereas support-  terns. For the distribution-based VariErr NLI,
ing statements for a label are often more affirmative ~ Rank-logits and Rank-rank achieve comparable
and explicit; ii) LLMs used as judges may be more  average performance, whereas Rank-score per-
influenced by the clearly articulated supporting rea-  forms consistently worse across all LLM judges.
soning. This ablation study not only reveals that ~ Conversely, in the score-based SIQA and CQA,
support-oriented explanations are more effective =~ Rank-score tends to outperform Rank-logits,
for HLV modeling than oppose-oriented ones but  aligning better with the annotation procedure.
also underscores the importance of training future =~ Rank-rank, the method in which the LLM judges
LLMs to articulate rejections with greater clarity  directly rank the options, exhibits stable and com-
and confidence, rather than ambiguity. petitive performance across all datasets and judges.



Datasets VariErr NLI SIQA CQA
. . Distribution Rank-rank Score Rank-rank Score Rank-rank
Settings/Metrics
KL, ISD| TVD| 71 pT RMSE| MAE| R27 1 pt RMSE| MAE| R2% 1 ot
baseline 1,0006 02644 02776 0,4971 0,5119 0,8630 0,7461 0,1300 0,5451 0,6069 09101 0,7417 0,4255 0,5395 0,6283
HumanEX 0,9408 0,2455 0,2448 0,7411 0,7872 0,8912  0,7730 0,0912 0,4047 04377 09209 07536 0,4205 04507 0,5225
R1 - CoTparser 0,9610 02576 02637 0,5597 0,5966 0,8222  0,7113 02429 0,5450 0,6169 0,8849 0,7298 0,4428 0,5716 0,6419
R1-EL 0,9583 02566 0,2625 0,5693 0,6089 008164 0,7184 0,2479 0,5611 0,6179 0,8845 0,7298 0,4554 0,5957 0,6492
R1 - ELgjier-sup 0,9534 0,2552 0,2604 0,6050 0,6408 0,7698 0,6660 0,3176 0,6500 0,6951 08646 0,6956 0,4937 0,6114 0,6790
QwQ - CoTparser 0,9504 02534 0,2589 0,5698 0,6201 0,8607 0,7248 0,2536 0,6002 0,6346 09006 0,7326 0,4329 0,6253 0,6734
QwQ - EL 0,9488 10,2535 0,2583 10,5962 0,6357 0,8597 0,7220 0,2670 0,6089 0,6443 0,8882 0,7317 0,4357 0,6270 0,6966
QwQ-ELgier-sup 09471 02528 02552 0,6104 06475 0,7709 0,6672 03212 0,6394 0,6830 08787 0,7197 04541 06378 0,7109
Table 4: Results for the structure ablation study (qwen as judge).
08— ve s We further analyze human explanations (Hu-
1 qwen as judge
ol B = & il ol manEX) across datasets as described in §3, with
£0s I . )
. = [P ] EI: = £ a focus on how structural properties influence per
o 8 formance. In VariErr NLI, most instances provide
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Figure 7: Comparison of three ranking generation meth-
ods across datasets and LLM judges. Each box repre-
sents the aggregated statistics of a given ranking method.

These findings confirm our motivations in §5.1,
suggesting that the choice of the ranking method
should ideally align with the annotation format
used to construct the target HLV dataset—i.e., dis-
tributional versus score-based. Moreover, the ro-
bustness of Rank-rank highlights its general appli-
cability across different HLV evaluations.

Structure Matters? We conducted an additional
evaluation for the intermediate outputs in the
CoT2EL pipeline, as shown in Table 4. CoTparser
refers to the raw, unstructured explanations ex-
tracted from CoT by reasoning LLMs, before they
are decomposed into a strict JSON format to EL by
base LLMs. We found that when the explanations
are strictly structured, the LLM judge performs bet-
ter than when using the original, unstructured ones.
This shows that LLM judges utilize explanations
more effectively when they are well-organized and
explicitly indicate which parts support or oppose
each answer choice.

3 to 6 clear and high-quality human explanations
that directly support specific answers, allowing for
precise explanation-label pairs construction. In con-
trast, datasets like SIQA and CQA contain fewer
and more vague human feedback, which are often
only loosely marked as relevant. Table 4 shows
HumanEX performs significantly better on VariErr
NLI than on SIQA or CQA—while explanation
quality plays a key role, this also indirectly high-
lights the effectiveness of structured explanations.

7 Conclusion

We have demonstrated that CoTs offer a rich and
underexplored source of explanation for model-
ing human label variation, shifting from the tra-
ditional reverse explanation paradigm to the for-
ward, rationale-grounded paradigm. Our proposed
pipeline is able to extract high-quality explanation-
label pairs by leveraging LL.Ms and refining them
through linguistically-grounded discourse segmen-
tation models. Our results show that combining
LLMs with discourse segmenters improves the
alignment of model explanations with the inher-
ently diverse perspectives of human annotators.
Furthermore, our proposed rank-based evaluation
framework reflects a more faithful match to human
annotation behavior, moving beyond distributional
comparisons.

We believe our findings lay the groundwork for
more robust, explanation-driven, and linguistically-
enhanced approaches to understanding and evalu-
ating human label variation. While this work only
leveraged discourse segmentation, explicitly incor-
porating discourse relations—such as contrast or
causal—may help and provide deeper insights into
how reasoning structures map onto human disagree-
ment, ambiguity, and aid interpretation.



Limitations

One limitation of our approach lies in the use of
discourse segmenters that were trained on exist-
ing discourse datasets, which may differ in style
and content from the CoT reasoning text we ana-
lyze. As a result, the segmenter outputs may not
optimally reflect the discourse structure inherent to
CoTs, which often contain informal, fragmented,
or model-specific reasoning styles. Moreover, we
did not conduct a comprehensive evaluation of seg-
menter performance on CoT data but instead re-
lied directly on the segmenter outputs. While the
performance of the discourse segmenters is rela-
tively good for English (as shown in Appendix
A), future work might benefit from developing
or fine-tuning these discourse models specifically
on the annotated CoT data, which could poten-
tially improve the precision and interpretability of
discourse-informed explanation extraction.
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A Training Details and Performance of
DisCoDisCo

We train DisCoDisCo (Gessler et al., 2021), the
winning system of the DISRPT 2021 Shared Task
(Zeldes et al., 2021) using the latest DISRPT 2023
Shared Task data (Braud et al., 2023). Specifically,
for the discourse unit segmentation model, we use
the English GUM corpus (Zeldes, 2017) which
contains multiple genres, which has been proved to
achieve better model generalizability when trained
on genre-diverse data for discourse parsing (Liu
and Zeldes, 2023). For the connective detection
model, we use the PDTB v3 data in DISRPT, the
largest English connective dataset to date. Table
5 shows the performance of both models on their
respective test partition averaged over five runs.

Model ‘ Precision Recall F1
EDU segmentation 84.06 80.66 82.32
connective detection 94.20 9526 94.73

Table 5: Performance of the Two Discourse Segmenters.

B Detailed Implementation of the
Proposed CoT2EL Pipeline

This section describes the implementation details of
our proposed CoT2EL pipeline. As we consider the
CoT process to be a forward reasoning procedure
aligned with human annotation, we construct a task-
specific prompt for each of the three tasks—VariErr
NLI, SIQA, and CQA—that adheres to the for-
ward human annotation process. These prompts
are shown in Table 6. We additionally provide the
corresponding prompt used for the direct explana-
tion generation method (GenEX) following Chen
et al. (2024a).

By combining the prompt in Table 6 with the in-
put instance (i.e., question and candidate options),
we query the reasoning-tuned LLM to generate a
CoT reasoning trace, as expressed in Equation 1.
Subsequently, we further prompt the reasoning-
tuned LLM to parse the generated CoT into sup-
porting and opposing statements.® The upper por-
tion of Table 7 presents the specific parsing prompt.

®Preliminary experiments suggest that when only asked
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This step utilizes the reasoning-tuned LLM itself to
parse its prior output and generate the parsed CoT,
denoted as CoTparser-

Due to the diversity and randomness inher-
ent in LLM outputs, the format of CoTparser 18
highly variable and difficult to post-process. There-
fore, we leverage the JSON output capabilities
of the base LLM associated with the reasoning-
tuned LLM. Specifically, we include a system
prompt instructing the base LLM to produce a well-
structured JSON output adhering to a predefined
format (prompt at the bottom of Table 7. This al-
lows for easier downstream processing into the EL
pairs as shown in Equation 2

C Detailed Metrics and Results for
Human Validation

C.1 Metrics Calculation

To evaluate the similarity between textual expla-
nations, we follow prior work (Giulianelli et al.,
2023) and adopt three metrics that capture different
linguistic aspects: Lexical, Syntactic, and Seman-
tic similarities. In addition, we extend this frame-
work by incorporating the Levenshtein Ratio as
a fourth metric. All metrics are implemented as
distance functions normalized to the range [0, 1],
where higher values indicate greater dissimilarity.
Their definitions and computation methods are de-
tailed below.

Lexical Similarity. Lexical similarity is defined
based on the overlap of n-grams between two
strings. For n € {1,2,3}, we compute the sets
of n-grams for each string and measure the propor-
tion of shared n-grams:

|Gn(A) N Gn(B)|
[Gn(A) U Gn(B)]"

Slexical = %)
where G, (X') denotes the set of n-grams extracted
from string X. This metric rewards surface-level
lexical overlap.

Syntactic Similarity. Syntactic similarity fol-
lows the same formulation as lexical similarity but
operates on sequences of part-of-speech (POS) tags

to extract supporting statements, the reasoning-tuned LLM
tends to mix in some opposing content. By explicitly prompt-
ing the model to output supporting and opposing statements
separately, we significantly reduce this ambiguity.

"Even after obtaining the JSON outputs, we further perform
post-processing to ensure that the options correctly align with
their respective labels.
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rather than surface tokens. POS tagging is per-
formed using the spaCy pipeline:®

T (A) N Tn(B)|

A3 @

Ssyntactic =

where T,,(X) denotes the set of POS tag n-grams
of sentence X.

Semantic Similarity. Semantic similarity is com-
puted using cosine similarity between sentence em-
beddings. We use the model following Reimers
and Gurevych (2019) to obtain dense vector repre-
sentations v4 and vg:°

VA - UB
lvallllvsll’

Ssemantic = (N
Cosine similarity returns values in [—1,1],

but since embeddings from this model are non-

negative, it typically yields values in [0, 1].

Levenshtein Ratio. We also include a character-
level similarity measure: the Levenshtein Ratio.
Let lev(A, B) denote the Levenshtein distance, i.e.,
the minimum number of character-level edits (inser-
tions, deletions, substitutions) needed to transform
string A into B. The Levenshtein Ratio is defined
as:

lev(A, B)

Stev =1 — —— s
N max(|A[, |B[)

®)
where |A| and | B| are the lengths of the strings.
This score approaches 1 when the strings are nearly
identical and decreases as they diverge.

All similarity scores are bounded in [0, 1] and are
designed such that higher scores indicate stronger
similarity. This unified setup supports a nuanced,
multi-level analysis of explanation similarity and
invites future extensions involving additional lin-
guistic or pragmatic metrics.

C.2 Detailed Scores for Human Validation

We here introduce the detailed procedure for com-
puting the human validation scores. Assume that
within the Explanation-Label (EL) pairs, there are
k distinct labels. For each label, there exist two
types of explanation sets: support and oppose.
The same structure holds for the human-annotated
explanation-label pairs, denoted as ELpyman.

8From spaCy, en_core_web_md (Honnibal et al., 2020).
sentence-transformers/all-distilroberta-v1.



For each label [ € {1,...,k}, and for each
stance s € {support, oppose }, we compare the cor-
responding explanation sets from EL and ELyymap.
Let these be denoted as:

EXSett;” and EXSety® . (9)

The similarity score for each such pair is com-
puted as follows:

* If one of the sets is empty while the other is
non-empty, assign a score of 0.

If both sets are empty, assign a score of 1.

If both sets are non-empty:

i) For each explanation e € EXSet’;”), com-

pute its similarity with all explanations h €
)

EXSety,

in § C.1.

ii) For each explanation e, define its score as

the maximum of its average similarity across

metrics:

_using the four metrics described

sim(e) = avg_sim(e, h), (10)

max
()
heEXSety ™)

where avg_sim(e, h) denotes the mean of the
four similarity metrics.

iii) The final similarity score for the pair
(1,s) is the average of sim(e) over all e €

EXSetl;*):
1

Score("*) = ——
|[EXSety; |

>

e€EXSetl*)

sim(e),

Y

After calculating the scores for all 2k explana-
tion set pairs (i.e., each label’s support and oppose
explanations), we compute the average to obtain
the similarity score between EL and ELpyyq,, for a
single instance:

E

k
Z (Score(l’wppml> + Score(l‘o”p"“))
2k .

=1

S_instance =

12)
Finally, we average the instance-level scores
over all instances in the dataset to obtain the overall
similarity score. Importantly, although avg_sim is
used only for selecting the best match per expla-
nation, the scores for each of the four individual
metrics are also recorded and averaged across all
explanations and instances. The final results for
each of the four metrics are reported in Table 8.
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D Details of Ranking Generation
Methods

Here we elaborate on the implementation details
of the three LLM-judge-based ranking generation
methods introduced in Section 5.1. Note that for all
methods, the final ranking is obtained by averaging
the rankings from three independent runs.

Direct Ranking. In this method, we prompt the
LLM to directly generate a ranking. The prompts
used for different tasks are listed in Table 9. After
receiving a space-separated list of options, we pro-
cess the output as follows: if indices for all options
are present, we rank them according to the order
in which they appear. If only a subset of indices
is provided, the missing options are assigned the
lowest possible rank (i.e., tied for last place).

First-Token-Logits Ranking. The prompt used
in this method is identical to the one used for for-
ward chain-of-thought generation (see Table 6).
However, in this case, we focus on the first to-
ken of the LLM’s answer. Following the method
proposed in Chen et al. (2024a,b), we extract the
scores corresponding to each option index from the
first-token logits. We then normalize these scores
to obtain a probability distribution over the labels.
This distribution can be used for distribution-based
similarity evaluation or converted into rankings.

Scoring-Based Ranking. In this approach, we
ask the LLM judges to assign a likelihood score
from 1 to 5 for each option, with higher scores indi-
cating higher plausibility. The prompt used for this
setting is shown in Table 10. These scores can be
used for score-based similarity evaluation or trans-
formed into rankings for ranking-based evaluation.

To evaluate the performance of the explanations,
we augment all the above prompts with explana-
tion content and instruct the LLM judges to take
these rationales into account when making their
decisions.

E Details of the Metrics in HLV
Evaluation

This section provides a detailed explanation of the
calculation formulas for all the metrics introduced
in §5.2.

E.1 Rank Correlation Metrics

Let (x;,y;) fori = 1,...,n be paired ranks from
two sources (e.g., human vs. model).



Kendall’s 7 (Kendall, 1938) Measures the dif-
ference between the number of concordant and
discordant pairs:

C-D

tn(n—1)

13)
where C is the number of concordant pairs and D
is the number of discordant pairs.

Spearman’s p (Spearman, 1961) Measures the
Pearson correlation between rank variables:

621 1 z
n(n? — 1)

1; 1s the difference between the

p=1- (14)

where d; = x; —
ranks.

E.2 Distribution-Based Metrics

For probability distributions (from VariErr NLI),
we use:

¢ Kullback-Leibler Divergence (KL) (Kull-
back and Leibler, 1951)

¢ Jensen-Shannon Distance (JSD) (Endres
and Schindelin, 2003)

* Total Variation Distance (TVD) (Devroye
and Lugosi, 2001)

Given discrete distributions P and Q):

Dk (P|Q) = 3" Pla x), (15)
zeX :C)
1
Disp(Pl|Q) = \/5 (DL (P M) + D (QM)),  (16)
where M = (P + Q).
Dryp(P,Q) = Z |P(z) = Q(x)], (17)

a:EX

E.3 Scalar-Based Metrics

For scalar scores (e.g., from SIQA and CQA), we
use:

* Root Mean Squared Error (RMSE) (Hynd-
man and Koehler, 2006)

¢ Mean Absolute Error (MAE) (Willmott and
Matsuura, 2005)
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» Coefficient of Determination (R?) (Steel and
Torrie, 1960)

n

1
RMSE = |~ S (y; — 90)%, 18
- ;(y Ji) (18)
1 )
MAE =—3 [y: —il, (19)
=1
n . 4)2

i (Wi —9)*
where y; is the human annotation, g; is the model

prediction, and ¥ is the mean of human annota-
tions.

F HLYV Evaluation Full Results

In this section, we report the full HLV evaluation
results across all settings and datasets. All the re-
sult figures and tables presented in §6 are derived
from the detailed scores provided here. Specifi-
cally, the results for VariErr NLI are presented in
Table 11, SIQA in Table 12, and CQA in Table 13.
All rankings, scores, and distributions from LLM
judges are averaged over three independent runs.
For VariErr NLI, the gold human distributions and
rankings are computed as the average across anno-
tations from MNLI, VariErr NLI, and Chaos NLI,
as described in §3. For SIQA and CQA, the gold
human label scores are obtained by averaging the
scores provided by five annotators for each corre-
sponding label.

G Use of AI Assistants

The authors acknowledge the use of ChatGPT
solely for correcting grammatical errors, enhancing
the coherence of the final manuscript.



Datasets

| Prompts

VariErr NLI
CoT

Please determine whether the following statement is true (entailment), undetermined
(neutral), or false (contradiction) given the context below and select ONE of the listed
options and start your answer with a single letter.

Context: {premise}

Statement: {hypothesis}

A. Entailment

B. Neutral

C. Contradiction

Answer:

VariErr NLI
GenEX

You are an expert in Natural Language Inference (NLI). Please list all possible
explanations why the following statement is {target-label} given the context below
without introductory phrases.

Context: {premise}

Statement: {hypothesis}

Answer:

SIQA
CoT

Please read the following social scenario and the accompanying question, choose the most
appropriate answer from the options provided and start your answer with a single letter.
Scenario: {scenario}

Question: {question}

A. {answerA}

B. {answerB}

C. {answerC}

Answer:

SIQA
GenEX

You are an expert in social intelligence question answering. Please list all possible
explanations why the most appropriate answer is {target-label} given the following social
scenario and the accompanying question below without introductory phrases.

Scenario: {scenario}

Question: {question}

Answer:

CQA
CoT

Please read the following question, choose the most appropriate answer from the options
provided and start your answer with a single letter.

Question: {question}

A. {answerA}

B. {answerB}

C. {answerC}

D. {answerD}

E. {answerE}

Answer:

CQA
GenEX

You are an expert in commonsense question answering. Please list all possible
explanations why the most appropriate answer is {target-label} given the question below
without introductory phrases.

Question: {question}

Answer:

Table 6: The forward task-specific prompts for CoT or direct explanation generation.
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Explanations ‘ Prompts
CoTparser The content of your reasoning process is below:
{CoT}

Please extract and list all the original sentences from the aforementioned reasoning
process that support and oppose each option separately.

EL system prompt:

Convert the given markdown into a structured JSON where each option has two keys:
support and oppose. Each key should map to a list of statements from the markdown that
either support or oppose that option.

EXAMPLE JSON OUTPUT:
{
"Option A": {

"support": ["SentenceA.1","SentenceA.2"],
"oppose": ["SentenceA.3"]

}’
"Option B": {
"support": ["SentenceB.1"],
"oppose": []
}’
}
Table 7: Prompts for LLM parser and JSON structuring.
LLM:s - Datasets Lexical ‘ Syntactic ‘ Semantic ‘ Levenshtein Ratio H AVG
n=17 n=2% n=3f|n=17 n=27 n=31 | Cos.t Euct | ratio 1 | equal-avg T weight-avg 1

DeepSeek R1 - VariErr NLI - CoT
all

EL 0,6877 0,6249 0,5982 | 0,8209 0,7045 0,6468 | 0,7202 0,6877 0,6470 0,6820 0,6780
ELfijter 0,8309 0,7883 0,7756 | 0,9119 0,8295 0,7831 | 0,8265 0,7551 0,7943 0,8106 0,8062
only-support
EL-sup 0,7152  0,6607 0,6432 | 0,8233 0,7141 0,6598 | 0,7192 0,6779 0,6793 0,6992 0,6958
ELfijer-sup 0,8514 0,8108 0,7995 | 0,9199 0,8477 0,8060 | 0,8410 0,7668 0,8232 0,8296 0,8264
DeepSeek R1 - SIQA - CoT
all
EL 0,8095 0,7632 0,7471 | 0,8920 0,8071 0,7720 | 0,8228 0,7575 0,7364 0,7897 0,7809
ELfijger 0,8947 10,8823 0,8782 | 0,9197 10,8863 0,8749 | 0,8866 0,7913 0,8712 0,8761 0,8722
only-support
EL-sup 0,8360 10,7947 0,7856 | 0,9046 0,8257 0,7921 | 0,8424 0,7611 0,8081 0,8167 0,8140
EL fijter-sup 0,9000 0,8895 0,8861 | 0,9220 0,8923 0,8821 | 0,8938 0,7955 0,8810 0,8825 0,8791
DeepSeek R1 - CQA - CoT
all
EL 0,8400 0,7988 0,7843 | 0,9067 0,8399 0,8071 | 0,8408 0,7856 0,7771 0,8200 0,8123
ELfiter 0,8887 10,8749 10,8713 | 09190 0,8907 0,8721 | 0,8676 0,7722 0,8591 0,8684 0,8628
only-support
EL-sup 0,8536 0,8295 0,8250 | 0,8860 0,8515 0,8342 | 0,8585 10,8137 0,8356 0,8431 0,8412
ELfijer-sup 0,8962 10,8828 0,8797 | 0,9210 0,8967 0,8796 | 0,8724 0,7765 0,8692 0,8749 0,8697

Table 8: Results for the validation based on human annotated subsets.
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Datasets

Prompts

VariErr NLI

Please assess whether the following statement is true (entailment), undetermined (neutral),
or false (contradiction) given the context below, rank all the following options from most
appropriate to least appropriate. Only output the letters representing the options,
separated by spaces.

Context: {premise}

Statement: {hypothesis}

A. Entailment

B. Neutral

C. Contradiction

Answer:

SIQA

Please read the following social scenario and the accompanying question, rank all the
following options from best to worst based on relevance and appropriateness. Only output
the letters representing the options, separated by spaces.

Scenario: {scenario}

Question: {question}

A. {answerA}

B. {answerB}

C. {answerC}

Answer:

CQA

Please read the following question, rank all the following options from best to worst based
on relevance and appropriateness. Only output the letters representing the options,
separated by spaces.

Question: {question}

A. {answerA}

B. {answerB}

C. {answerC}

D. {answerD}

E. {answerE}

Answer:

Table 9: The prompts for the direct ranking method across three datasets.
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Datasets

Prompts

VariErr NLI

Please rate the following answer based on its plausibility in representing the relationship
between the context and the statement on the 5-Point Scale rating as below. Only output a
single integer corresponding to your evaluation.

Context: {premise}

Statement: {hypothesis}

Answer: {target-label}

Plausibility Ratings:

1 = Impossible

2 = Technically Possible

3 = Plausible

4 = Likely

5 = Very Likely

Rating:

SIQA

Please read the following social scenario and the accompanying question, rate the
plausibility of the answer on the 5-Point Scale rating as below. Only output a single
integer corresponding to your evaluation.

Scenario: {scenario}

Question: {question}

Answer: {target-label}

Plausibility Ratings:

1 = Impossible

2 = Technically Possible

3 =Plausible

4 = Likely

5 = Very Likely

Rating:

CQA

Please read the following question, rate the plausibility of the answer on the 5-Point Scale
rating as below. Only output a single integer corresponding to your evaluation.
Question: {question}

Answer: {target-label}

Plausibility Ratings:

1 = Impossible

2 = Technically Possible

3 = Plausible

4 = Likely
5 = Very Likely
Rating:

Table 10: The prompts for the score-based ranking method across three datasets.
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. . Distribution Rank-rank Rank-logits Rank-score
Settings/Metrics
KL] JSD| TVD| 77 pT TT pT TT pT
qwen as judge
baseline 1,0006 0,2644 0,2776 04971 05119 04619 0,5085 0,3190 0,3452
HumanEX 0,9408 0,2455 10,2448 0,7411 0,7872 0,6574 0,7151 0,3864 04151
V3 GenEX 0,9835 10,2626 0,2737 10,5071 0,5334 04648 0,5269 0,2817 0,2980
Rl
GenEX 0,9733 0,2615 0,2716 0,5142 0,5557 04688 0,5321 0,2902 0,3078
CoT 0,9565 10,2590 0,2655 0,5129 0,5421 04731 0,5399 0,3933 0,4058
CoTparser 0,9610 0,2576 0,2637 10,5597 0,5966 04786 0,5404 0,4014 0,4187
EL 0,9583 0,2566 10,2625 0,5693 0,6089 0,4928 0,5539 0,4064 0,4365
ELfijger 0,9515 0,2558 0,2611 0,5708 0,6352 0,5289 0,5802 0,4388 0,4480
EL-sup 0,9566 0,2564 0,2621 0,5905 0,6260 0,5037 0,5619 04122 0,4377
ELfijter-sup 0,9534 0,2552 0,2604 0,6050 0,6408 0,5604 0,6099 04213 0,4519
EL-opp 0,9756 0,2590 0,2675 04768 0,5071 04734 0,5117 0,3658 0,3903
ELfijer-0pp 09716 0,2585 0,2663 04898 0,5231 04785 0,5171 0,3779 0,4032
Qwen-Max GenEX 0,9833 10,2617 0,2723 0,5019 0,5459 0,4743 0,5084 0,2807 0,3006
QwQ
GenEX 0,9620 0,2576 0,2668 0,5701 0,6008 04921 0,5253 0,2608 0,2759
CoT 0,9515 0,2543 0,2606 0,5738 0,6152 0,5095 0,5383 0,4004 0,4232
CoTparser 0,9504 10,2534 0,2589 0,5698 0,6201 0,5183 0,5491 0,4022 0,4309
EL 0,9488 10,2535 0,2583 10,5962 0,6357 0,5260 0,5534 0,4200 0,4506
ELfijer 0,9409 0,2515 0,2567 0,6063 0,6369 0,5580 0,6161 0,4675 0,5027
EL-sup 0,9445 0,2533 0,2582 0,6023 0,6386 0,5286 0,5871 04475 04771
ELfijter-sup 0,9471 10,2528 0,2552 0,6104 0,6475 0,5637 0,6129 0,5287 0,5685
EL-opp 0,9647 0,2572 0,2652 0,4937 0,5269 04570 0,5123 0,3741 0,3937
ELfier-0pp 0,9547 0,2564 0,2639 0,4904 0,5281 0,5034 0,5541 0,4197 0,4095
llama as judge
baseline 1,2415 10,2962 0,3207 0,4067 0,4409 0,4324 04739 0,0788 0,0809
HumanEX 1,2032  0,2883 0,3081 04392 04640 0,5987 0,6672 0,1591 0,1689
V3 GenEX 1,2561 10,2982 10,3231 0,1716 0,1672 0,2079 02205 0,0613 0,0670
R1
GenEX 1,2580 10,2982 10,3231 0,1499 0,1529 0,1842 0,1987 0,0739 0,0737
CoT 1,1953 10,2951 0,3187 04140 04201 04574 0,5308 0,1595 0,1674
CoTparser 1,1925 0,2904 0,3088 04178 04264 04789 10,5337 10,1603 0,1730
EL 1,1883 0,2877 10,3074 0,4180 0,4339 0,4881 0,5412 0,1614 0,1761
ELfijter 1,1770  0,2874 10,3049 0,4523 0,4864 0,4980 0,5526 0,2619 0,2855
EL-sup 1,1722 0,2859 0,3048 0,4292 0,4443 04931 0,5464 0,1848 0,2051
ELfijter-sup 1,0831 0,2744 0,2878 0,4645 0,4967 0,5085 0,5568 0,2677 0,2868
EL-opp 1,2374  0,2953 10,3185 0,4000 0,3848 0,4248 04737 0,1295 0,1402
ELfier-0pp 1,2339 0,2947 0,3178 04095 0,3974 04374 04872 0,1414 0,1573
Qwen-Max GenEX 1,2552  0,2970 10,3216 0,2650 0,2779 0,3193 0,3601 0,1238 0,1358
QwQ
GenEX 1,2665 0,2991 10,3242 0,1746 0,1765 0,1798 0,1884 0,0506 0,0546
CoT 1,1979 02916 0,3140 04228 0,4593 0,5040 0,5652 10,1953 0,1374
CoTparser 1,1991 0,2886 0,3095 0,4587 04883 0,5054 0,5696 0,2064 0,2242
EL 1,1812  0,2859 10,3047 0,4696 0,4892 0,5136 0,5714 0,2207 0,2413
ELfijger 1,1004 02755 0,2827 0,5125 0,5036 0,5209 0,5802 02902 0,3119
EL-sup 1,1671 10,2836 0,3013 10,5041 0,5352 0,5194 0,5772 0,2344 0,2515
ELfijter-sup 1,0764 0,2708 0,2827 0,5239 0,5573 0,5212 0,5820 0,3128 0,3446
EL-opp 1,2392  0,2954 0,3190 0,3585 0,3824 04417 04924 0,1127 0,1175
ELfier-0pp 1,2291 10,2938 0,3165 0,3861 0,4092 0,5035 0,5111 0,1241 0,1247
mistral as judge
baseline 0,6892 0,2611 0,2949 04799 0,5096 04053 04385 0,3209 0,3444
HumanEX 0,6228 10,2336 0,2430 0,4994 0,5298 04376 04747 04311 0,4553
V3 GenEX 0,7603 0,2603 0,2841 0,3880 04101 0,3572 0,3999 0,1926 0,1999
R1
GenEX 0,8239 0,2609 0,2816 04211 04464 0,3547 0,3900 0,1398 0,1511
CoT 0,6503 0,2512 0,2756 04712 04979 04213 04677 0,3765 0,4073
CoTparser 0,6471 0,2508 0,2712 04853 0,5145 04330 04705 0,3847 0,4166
EL 0,6405 10,2490 0,2710 04860 0,5155 04342 04742 0,3931 0,4189
ELfitter 0,6334 0,2479 0,2687 0,4959 0,5240 0,4466 04825 0,4009 0,4259
EL-sup 0,6384 0,2497 0,2697 04880 0,5173 04416 04779 0,4006 0,4281
ELfijer-sup 0,6331 0,2476 0,2684 0,4942 0,5258 04439 0,4895 0,4035 0,4285
EL-opp 0,6671 0,2619 0,2844 04542 04775 04056 04402 0,3510 0,3802
ELfier-0pp 0,6495 0,2546 0,2860 04651 04812 04189 04512 0,3596 0,4031
Qwen-Max GenEX 0,8876 0,2853 10,3208 10,3435 0,3641 0,2436 02652 0,2593 0,2783
QwQ
GenEX 0,8475 10,2645 10,2889 10,3887 04112 03390 0,3757 0,3563 0,3917
CoT 0,6275 10,2580 0,2779 04873 0,5019 04336 04732 0,3993 0,4206
CoTparser 0,6213 0,2497 0,2649 04920 0,5212 04433 04795 0,4048 0,4230
EL 0,6167 0,2473 0,2639 04970 0,5269 04436 04805 0,4186 0,4293
ELfitter 0,5906 0,2445 0,2616 0,5170 0,5481 0,4588 0,5067 0,4287 0,4602
EL-sup 0,6007 0,2444  0,2626 0,5059 0,5363 04529 0,4902 04276 0,4557
ELfijer-sup 0,6003 0,2437 0,2611 0,5429 0,5756 0,4663 0,4957 0,4516 0,4812
EL-opp 0,6612 0,2691 0,2890 04562 04832 04202 04477 0,3822 0,4091
ELfier-0pp 0,6298 10,2681 0,2868 04752 0,5037 04309 04637 0,3833 0,4100
Table 11: All HLV evaluation results on VariErr NLI dataset.
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. . Score Rank-rank Rank-logits Rank-score
Settings/Metrics
RMSE| MAE| R’1 7T T 7T 20 T T
qwen as judge
baseline 0,8630  0,7461 0,1300 0,5451 0,6069 0,5500 0,6083 0,6568 0,6924
HumanEX 0,8912  0,7730  0,0912 0,4047 04377 0,5258 0,5801 0,6537 0,6904
V3 GenEX 1,0422  0,9076 -0,2196 0,4708 0,5207 0,5187 0,5647 0,5383 0,5736
R1
GenEX 09728 08473 -0,0633 04577 0,5148 0,5085 0,5650 0,5668 0,5974
CoT 0,8759 0,7582 0,1165 0,5453 0,6150 0,5482 0,6171 0,6661 0,7000
CoTparser 08222 0,7113 0,2429 10,5450 0,6169 0,5509 0,6212 0,6922 0,7330
EL 08164 0,7184 02479 0,5611 0,6179 0,5671 0,6292 0,6411 0,6756
ELfijter 0,7778  0,6775 0,3272 0,6366 0,6260 0,6020 0,6465 0,6933 0,7261
EL-sup 0,7882  0,6763 0,2829 0,6420 0,6636 0,5832 0,6454 0,6650 0,6971
ELfjer-sup 0,7698  0,6660 0,3176 0,6500 0,6951 0,6154 0,6615 0,6996 0,7334
EL-opp 0,8083  0,6919 0,2691 05841 0,6286 0,5589 0,6040 0,6551 0,7062
ELfiier-opp 0,8064  0,6903 02705 0,5899 0,6291 0,5810 0,6336 0,6783 0,7210
Qwen-Max GenEX  0,9450  0,8171 -0,0223 0,5296 0,5900 0,5103 0,5669 0,4695 0,5032
QwQ
GenEX 09599  0,8233 -0,0639 04511 04997 05176 0,5706 04794 05166
CoT 0,8662  0,7515 0,1535 0,5777 0,6004 0,5509 0,6091 0,6500 0,6916
CoTparser 0,8607  0,7248  0,2536 0,6002 0,6346 0,5632 0,6142 0,6533 0,6965
EL 0,8597  0,7220  0,2670  0,6089 0,6443 0,5669 0,6164 0,6663 0,7153
ELfiter 0,8023  0,6948 0,2884 0,6350 0,6569 05822 0,6365 0,6998 0,7235
EL-sup 0,7919  0,6875 0,2817 0,6104 0,6564 0,5876 0,6263 0,6873 0,7397
ELfijer-sup 0,7709  0,6672 0,3212 0,6394 0,6830 0,5937 0,6513 0,6982 0,7417
EL-opp 0,8472  0,7396  0,1844 0,5384 10,5883 0,5085 0,5610 0,6450 0,6872
ELfijer-opp 0,8247  0,7321  0,1999 0,5521 10,5998 0,5404 0,5991 0,6498 0,6984
llama as judge
baseline 1,0501 08665 0,1211 04219 04731 04937 05467 04449 04815
HumanEX 0,9009  0,7915 0,1045 0,1548 0,1734 0,2050 0,2204 04223 0,4508
V3 GenEX 1,0338 09230 0,1000 02915 03213 03047 03355 02705 0,2963
R1
GenEX 1,0584  0,9383 0,1100 0,2563 0,2907 0,2855 03138 0,2199 0,2401
CoT 0,9099  0,9259 0,1245 04427 04860 05160 0,5449 04657 0,4623
CoTparser 0,8988  0,8076  0,1285 04454 04988 0,5187 0,5577 04810 0,4973
EL 0,8860  0,7998 0,1463 04539 0,5101 0,5189 0,5680 0,4865 0,5150
ELfitter 0,8602 0,7948 0,1749 04888 0,5567 0,5371 05736 05136 0,5486
EL-sup 0,8909  0,7787 0,1572 04861 0,5424 0,5204 0,5750 0,4995 0,5303
ELfjjier-sup 08760  0,7678 0,2116 0,5106 0,5626 0,5634 0,6002 0,5296 0,5715
EL-opp 09071  0,8188 0,0781 03558 04177 04153 04317 04007 04264
ELfijter-opp 09025  0,8028 0,0804 03572 04416 04270 04459 04168 04471
Qwen-Max GenEX  1,0201  0,8949 0,0901 0,2970 0,3198 0,3968 04268 0,2802 0,3037
QwQ
GenEX 1,0606 09367 0,0943 02855 0,3322 0,3281 03612 0,1836 0,2061
CoT 0,8941 08005 0,1519 04468 04908 0,5282 0,5621 04399 0,4637
CoTparser 0,8904  0,7975 0,1580 04614 05121 0,5378 0,5739 0,4422 0,4686
EL 0,8902  0,7851 0,1612 0,4620 0,5216 0,5469 0,6043 0,4793 0,5093
ELfijter 0,8835 0,7822 0,1666 0,5439 0,6069 0,5646 0,6072 0,4908 0,5282
EL-sup 0,8819  0,7831 0,1627 04880 0,5440 0,5554 0,6051 04846 05186
ELfjer-sup 0,8442  0,7468 0,2385 05317 05937 0,5751 10,6252 0,5413 0,5644
EL-opp 09200 08167 0,1125 0,3887 04335 0,3941 04389 0,4057 0,4090
ELfijer-opp 09150 08101 0,1271 0,3925 04362 04297 04819 04301 0,4407
mistral as judge
baseline 1,3337  1,1461 -1,0778 0,0644 0,1059 04978 0,5251 0,4661 0,4937
HumanEX 1,2414 11,0864 -0,7425 10,3922 04106 04801 05276 0,5903 0,6271
V3 GenEX 1,3749  1,2283 -1,1310 0,3494 10,3699 03812 04392 04851 05132
R1
GenEX 1,2964 11,1349 -0,8865 03187 03401 04762 05287 04352 04661
CoT 1,0905 09563 -02716 05558 0,5803 04828 05317 0,6365 0,6949
CoTparser 1,0790  0,9371 -0,2219 0,5617 0,5982 0,4855 10,5497 0,6723 10,7038
EL 1,0661  0,9189 -0,2129 0,5690 0,6041 0,4986 0,5508 0,6674 0,7098
ELfitter 1,0470 09024 -0,1758 0,6205 0,6534 0,5160 0,5688 0,6777 0,7322
EL-sup 1,0543 09099 -0,1948 0,5702 0,6047 0,5037 0,5537 0,6762 0,7163
ELfijer-sup 11,0172  0,8789 -0,1326 0,6682 0,7053 05106 0,5768 0,6939 0,7254
EL-opp 1,1682  1,1371 -0,6817 04306 04477 04547 05086 0,6259 0,6831
ELfijer-opp 1,1097  1,0357 -0,4609 05219 05508 04667 05357 0,6403 0,6958
Qwen-Max GenEX  1,2137  1,0645 -0,6225 10,3974 04171 05246 05731 0,5322 0,5677
QwQ
GenEX 1,3583  1,1931 -1,0457 0,3805 0,4012 04051 04492 04056 04331
CoT 1,1141  1,0037 -0,3866 0,5220 0,5418 0,5375 0,5970 0,6413 0,6689
CoTparser 1,1063 09781 -0,3289 0,5230 0,5488 0,5468 0,6043 0,6499 0,6765
EL 1,0551 09755 -0,2129 0,5379 0,5686 0,5473 0,6080 0,6600 0,6862
ELfijter 1,0349 09120 -0,1833 0,5676 0,6011 0,5793 0,6465 0,6822 0,7177
EL-sup 1,0485 09147 -0,1979 05493 05794 05671 06171 0,6712 0,6961
ELfjer-sup 1,0188  0,9024 -0,1527 0,6254 0,6596 0,5927 0,6384 0,6925 0,7307
EL-opp 1,1618  1,1472 -0,6225 0,4941 0,5082 0,4989 0,5115 05974 0,6297
ELfijer-0pp 1,1383  1,0741 -0,5864 0,5141 0,5191 0,5043 0,5328 0,6230 0,6424

Table 12: All HLV evaluation results on SIQA dataset.
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. . Score Rank-rank Rank-logits Rank-score
Settings/Metrics
RMSE| MAE| R’1 7T T 7T 20 T T
qwen as judge
baseline 09101  0,7417 04255 10,5395 0,6283 04509 0,5692 0,5953 0,6332
HumanEX 09209  0,7536 04205 04507 0,5225 0,4900 0,5754 0,5824 0,6484
V3 GenEX 09761  0,8453 03275 05461 10,6347 04296 05496 05262 0,5481
R1
GenEX 09757  0,8004 03492 0,5576 0,6383 04571 05692 0,5708 0,5946
CoT 0,8856  0,7317 03992 0,5050 0,6004 04618 0,5752 0,6077 0,6461
CoTparser 0,8849  0,7298 04428 0,5716 0,6419 04680 0,5780 0,6112 0,6738
EL 0,8845  0,7298 04554 10,5957 0,6492 04786 0,5830 0,6275 0,6852
ELfier 08649  0,7127 04887 0,6104 0,6770 0,4998 0,6110 0,6319 0,7001
EL-sup 0,8704  0,7153 04844 0,6094 0,6736 04883 0,5928 0,6301 0,6997
ELfjer-sup 0,8646  0,6956 0,4937 10,6114 0,6790 0,5152 0,6180 0,6605 0,7313
EL-opp 09722 0,8108 0,3265 05330 0,6126 04556 0,5453 0,5853 0,6728
ELfiier-opp 09584  0,8024 03276 0,5499 0,6163 04653 0,5554 0,5953 0,6832
Qwen-Max GenEX  0,9830  0,8387 10,3838 0,5599 0,6293 04512 0,5399 0,4984 0,6374
QwQ
GenEX 09607 08147 03998 0,5416 0,6349 04599 0,5553 0,5533 0,6493
CoT 0,9048  0,7498 04057 0,5884 0,6582 0,4696 0,5456 0,5869 0,6676
CoTparser 0,9006  0,7326 04329 0,6253 0,6734 04839 0,5722 0,6087 0,6710
EL 0,8882  0,7317 04357 0,6270 0,6966 0,4921 0,5849 0,6243 0,6844
ELfitter 0,8786  0,7203 04416 0,6344 0,7056 04997 0,5948 0,6372 0,7001
EL-sup 0,8880  0,7211 04377 0,6273 0,7019 04993 05977 0,6323 0,6938
ELfijer-sup 0,8787 0,7197 04541 0,6378 0,7109 0,5126 0,5999 0,6432 0,7068
EL-opp 09407  0,8821 03319 10,5480 0,6315 04553 0,5472 0,5967 0,6546
ELfijer-opp 09305  0,8000 03879 0,5623 0,6493 04625 0,5568 0,6036 0,6799
llama as judge
baseline 1,1724 11,1788 0,1980 04809 0,5707 0,3690 04313 04123 0,4562
HumanEX 1,0798 09270 0,2416 04663 05452 0,28389 03551 10,3823 0,4358
V3 GenEX 1,2123  1,0354 0,0417 03650 04337 02852 03365 03236 0,3807
R1
GenEX 1,2731  1,1097 -0,0546 04332 05210 03168 03789 10,2921 10,3525
CoT 1,1958  1,1164 0,1308 0,4655 0,5552 03603 04233 03723 04173
CoTparser 1,1775  1,0275 0,1408 04685 0,5500 0,3612 04393 0,4076 0,4602
EL 1,1605  1,0091 0,1609 04844 0,5670 03717 04418 04161 0,4603
ELfitter 1,1359  1,0727 0,1853 0,5117 0,5930 0,3732 04499 04223 04762
EL-sup 1,1429  1,0051 0,1685 0,4924 0,5865 0,3742 04467 04182 04844
ELfjier-sup 1,1302  1,0045 0,1780 0,5176 0,6030 03782 0,4534 04265 0,4867
EL-opp 1,2152  1,0848 0,0839 04367 05072 03467 04146 03434 0,3950
ELfijter-opp 1,2144  1,0801 0,0722 0,4494 0,5288 0,3544 04229 03578 0,4089
Qwen-Max GenEX  1,1995  1,0387 0,0515 04537 0,5391 0,3393 04103 03202 0,3675
QwQ
GenEX 1,2349  1,0812 0,0088 04610 0,5275 02888 0,3469 02764 0,3261
CoT 1,3606  1,0361 0,1260 0,4691 0,5564 0,3609 04438 0,3763 0,4483
CoTparser 1,1565  1,0135 10,1285 04781 0,5636 0,3665 04451 0,3993 04727
EL 1,1533  1,0127 0,1259 04844 05704 03669 04479 04158 0,4800
ELfiter 1,1499  1,0059 0,1533 05032 05858 03727 04525 04509 0,5097
EL-sup 1,1477  1,0127 0,1532 0,5005 0,5765 0,3685 0,4495 0,4480 0,5086
ELfijer-sup 1,1317 09921 10,1658 0,5238 0,5988 0,3733 0,4649 0,4631 10,5311
EL-opp 1,1678  1,0695 0,1104 04132 0,5068 03476 04124 03148 0,3698
ELfiier-opp 1,1500  1,0454 0,1254 04399 0,5403 03553 04285 03216 0,4306
mistral as judge
baseline 1,5770  1,2886 -0,7480 0,3011 0,3429 0,3768 0,4466 0,4024 0,4416
HumanEX 1,2543  1,0163 -0,0984 0,2892 03117 0,3634 04328 0,5096 0,5692
V3 GenEX 1,6096  1,3165 -0,7930 0,3751 04271 0,3058 0,3739 0,4050 0,4483
R1
GenEX 1,7442 14374 -1,0796 03607 04160 03585 04274 03245 0,3635
CoT 1,2010 09702 -0,0156 04621 05134 03761 04454 05890 0,6643
CoTparser 1,2000  0,9606 -0,0081 0,4658 0,5227 0,3806 04539 0,5988 0,6704
EL 1,1539  0,9510 10,0549 04752 05262 03816 04564 0,6055 0,6770
ELfitter 1,1461 09354 0,0727 0,5148 0,5678 0,3860 04572 0,6139 0,6836
EL-sup 1,1491 09437 0,0629 04782 0,5303 0,3827 04566 0,6118 0,6786
ELfijer-sup 1,1398 09229 10,0737 0,5298 0,5882 0,3981 0,4685 0,6133 0,6811
EL-opp 1,2232 09773 -0,0522 04486 04925 03468 04015 05449 0,5761
ELfijer-opp 1,2057 09667 -0,0296 04586 05043 03523 04333 05730 0,6031
Qwen-Max GenEX  1,4453  1,1642 -0,4438 0,4025 04581 03527 04122 04599 05177
QwQ
GenEX 1,6740  1,3514 -0,8915 0,3523 0,3962 0,3549 04270 03812 04185
CoT 1,1811 09594 0,010l 04875 05471 0,3604 04356 0,5876 0,6484
CoTparser 1,1674 09456 0,0147 04920 0,5448 0,3661 04410 05914 0,6575
EL 1,1624 09443 0,0723 04945 0,5625 0,3707 0,4469 0,6070 0,6700
ELfitter 1,1306 09235 0,0869 0,5370 0,5915 03755 04561 0,6146 0,6826
EL-sup 1,1414 09232 0,0751 05163 05727 03711 04472 0,6171 0,6830
ELfjer-sup 1,1211  0,9056 0,1132 0,5361 0,5956 10,3917 0,4638 0,6287 0,6958
EL-opp 1,2116  0,9859 -0,0387 0,4322 0,4827 10,3398 04127 0,5688 0,6302
ELfiter-opp 1,1950  0,9661 -0,0139 0,4419 0,5152 03654 04282 05911 0,6489

Table 13: All HLV evaluation results on CQA dataset.
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