

# ADAPTING IN THE DARK: TOWARDS STABLE AND EFFICIENT BLACK-BOX TEST-TIME ADAPTATION

005 **Anonymous authors**

006 Paper under double-blind review

## ABSTRACT

011 Test-Time Adaptation (TTA) for black-box models accessible only via APIs  
 012 presents a significant yet largely unexplored challenge. Existing truly black-box  
 013 methods are scarce; post-hoc output refinement shows minimal benefit, while  
 014 naively introducing Zeroth-Order Optimization (ZOO) for prompt tuning at test  
 015 time suffers from prohibitive query costs and catastrophic instability. To address  
 016 these challenges, we introduce **BETA** (Black-box Efficient Test-time Adaptation),  
 017 a novel framework that enables stable and efficient adaptation for both standard  
 018 Vision Models and large Vision-Language Models. BETA uniquely employs a  
 019 lightweight, local white-box *steering* model to create a tractable gradient pathway  
 020 for optimization, circumventing the need for expensive ZOO methods. This is  
 021 achieved through a prediction harmonization technique that creates a shared ob-  
 022 jective, stabilized by consistency regularization and a prompt learning-oriented fil-  
 023 tering strategy. Requiring only *a single API call per test sample*, BETA achieves a  
 024 +7.1% gain on a ViT-B/16 model and a +3.4% gain on powerful CLIP models; re-  
 025 markably, its performance *surpasses* that of certain white-box and gray-box TTA  
 026 methods (e.g., TENT and TPT). This practical effectiveness is further validated on  
 027 a real-world commercial API, where BETA achieves a +5.2% gain for just \$0.4—a  
 028 250x cost advantage over ZOO—establishing it as a robust and efficient solution  
 029 for adapting models in the dark at test time. *Code will be released.*

## 1 INTRODUCTION

030 Modern deep learning models often face performance degradation when deployed in the wild due to  
 031 distribution shifts between their training data and the target domain (Recht et al., 2019; Hendrycks  
 032 & Dietterich, 2019b; Koh et al., 2021). Test-Time Adaptation (TTA) (Sun et al., 2020; Wang et al.,  
 033 2021; Niu et al., 2023; Wang et al., 2022; Manli et al., 2022) has emerged as a crucial approach to  
 034 address this challenge, aiming to adapt a pre-trained source model on-the-fly using unlabeled data  
 035 from the target domain. **While model providers typically handle general updates, TTA empowers**  
 036 **users to develop stronger inference capabilities for fixed, pre-deployed APIs directly on their side,**  
 037 **ensuring performance on specific user-defined data streams.** The feasibility of TTA strategies, how-  
 038 ever, is determined by the level of access to the model. While white-box access allows full parameter  
 039 and gradient manipulation (Wang et al., 2021; Niu et al., 2023), many state-of-the-art models are in-  
 040 creasingly deployed as opaque, black-box APIs (Hurst et al., 2024; Achiam et al., 2023; Team et al.,  
 041 2023). In this practical and restrictive setting, users can only provide an input and receive an output  
 042 prediction, with no access to the model’s architecture, parameters, or internal gradients (Sun et al.,  
 043 2024; Tsai et al., 2020; Ouali et al., 2023).

044 TTA in this strictest black-box setting remains a largely unexplored and formidable challenge. **Un-**  
 045 **like offline transfer learning methods that rely on labeled support sets (few-shot)** (Oh et al., 2023;  
 046 Park et al., 2025), we focus on the strictly *online, source-free* setting where the model must adapt  
 047 continuously to an unlabeled test stream. Recently, several backpropagation-free TTA methods have  
 048 been proposed to eliminate the need for gradient propagation (Niu et al., 2024; Karmanov et al.,  
 049 2024; Lee et al., 2025; Zhou et al., 2025). However, these approaches primarily target computational  
 050 efficiency—such as reducing GPU memory usage—rather than addressing privacy or commercial  
 051 constraints in black-box API scenarios (Niu et al., 2024; Meng et al., 2025). Consequently, these  
 052 methods fall into a “gray-box” category, as they require access to internal model tokens or intermedi-  
 053 ate features (**detailed comparison in Table 1**). Truly black-box TTA methods applicable to both VMs

054  
055  
056  
057  
Table 1: Comparison of TTA methods across key capabilities. We evaluate each method’s require-  
ments for accessing model parameters, internal tokens, intermediate features, and gradients, along-  
side its visual encoder architectural flexibility, support for different model types (Vision models  
(VMs)/Vision-Language models (VLMs)), and query efficiency (One API call per test sample).

| Access | Method                                | w/o Params. | w/o Tokens | w/o Feats. | w/o Grad. | Arch-Agnostic | VMs | VLMs | 1 API/Sample |
|--------|---------------------------------------|-------------|------------|------------|-----------|---------------|-----|------|--------------|
| □      | TENT (Wang et al., 2021)              | ✗           | ✗          | ✗          | ✗         | ✓             | ✓   | ✓    | ✓            |
| □      | TPT (Manli et al., 2022)              | ✗           | ✗          | ✗          | ✗         | ✓             | ✗   | ✓    | ✓            |
| ■      | T3A (Iwasawa & Matsuo, 2021)          | ✗           | ✓          | ✗          | ✓         | ✓             | ✓   | ✓    | ✗            |
| ■      | FOA (Niu et al., 2024)                | ✓           | ✗          | ✗          | ✓         | ViT-only      | ✓   | ✓    | ✗            |
| ■      | B <sup>2</sup> PT (Meng et al., 2025) | ✓           | ✗          | ✓          | ✓         | ViT-only      | ✗   | ✓    | ✗            |
| ■      | BCA (Zhou et al., 2025)               | ✓           | ✓          | ✗          | ✗         | ✓             | ✓   | ✓    | ✓            |
| ■      | LAME (Boudiaf et al., 2022)           | ✓           | ✓          | ✓          | ✓         | ✓             | ✓   | ✓    | ✓            |
| ■      | Augmentation (Farina et al., 2024)    | ✓           | ✓          | ✓          | ✓         | ✓             | ✓   | ✓    | ✗            |
| ■      | Purification (Gao et al., 2023)       | ✓           | ✓          | ✓          | ✓         | ✓             | ✓   | ✓    | ✗            |
| ■      | ZOO                                   | ✓           | ✓          | ✓          | ✓         | ✓             | ✓   | ✓    | ✗            |
| ■      | <b>BETA (Ours)</b>                    | ✓           | ✓          | ✓          | ✓         | ✓             | ✓   | ✓    | ✓            |

066  
067 and VLMs are scarce, as adaptation is constrained to only the model’s inputs and outputs. While not  
068 originally proposed for this setting, methods like LAME are applicable because they often operate  
069 directly on output probabilities (Boudiaf et al., 2022). However, this post-hoc approach has limited  
070 adaptive capacity and often fails to provide consistent improvements, leaving the problem of robust  
071 black-box TTA largely open.

072 To address this critical gap, we explore the more powerful technique of learning an additive visual  
073 prompt in the input space (Bahng et al., 2022). The most straightforward solution is to employ  
074 Zeroth-Order Optimization (ZOO) (Liu et al., 2018; Spall, 1992; 1997; Hansen & Ostermeier, 2001;  
075 Hansen et al., 2003), a strategy we investigate as a baseline. However, we find this approach suffers  
076 from two critical limitations: prohibitively high query costs and catastrophic instability (Zhang et al.,  
077 2024b; Wang et al., 2024a). This instability arises because the optimization is driven by *noisy*  
078 *unsupervised signals* (e.g., entropy minimization) without true gradients. In high-dimensional input  
079 spaces, this creates a variance-heavy estimation that can lead to degenerate solutions, corrupting the  
080 model’s representations rather than adapting them. For example, accuracy on the Contrast corruption  
081 collapses from 32.6% to as low as 4.1% with ZOO (Table 2). This motivates our development  
082 of a new approach that is both highly efficient—ideally requiring only a **single API call per test**  
083 **sample**—and robust against this optimization collapse.

084 We therefore propose **BETA (Black-box Efficient Test-time Adaptation)**, a novel framework that  
085 enables stable and efficient adaptation by leveraging a local, white-box *steering* model. **Crucially**,  
086 **this steering model acts as a local, client-side guide initialized from public checkpoints** (e.g., Im-  
087 ageNet), ensuring strict adherence to the black-box setting. It operates independently of the server-  
088 side API, requiring zero access to the proprietary target model’s internals or training data, thus  
089 preserving complete privacy and security. Our initial analysis revealed that naively transferring  
090 gradients from the steering model is ineffective, as the gradient similarity between different archi-  
091 tectures is near zero (see Fig. 2). This finding motivates our alternative approach, which moves  
092 beyond direct gradient approximation.

093 BETA’s core mechanism is a *prediction harmonization* technique that fuses the outputs of the steer-  
094 ing and target models, creating a shared, tractable optimization problem that is solved via a practical  
095 asymmetric gradient pathway. However, even with an efficient gradient signal, our preliminary anal-  
096 ysis shows that the process of learning a prompt from random initialization remains highly unstable,  
097 leading to performance collapse (see Fig. 3). Therefore, this core mechanism is supported by two  
098 essential stabilization techniques to make the framework robust. We introduce a *consistency reg-  
099 ularization* loss to prevent destructive prompt updates and a novel *prompt learning-oriented data*  
100 *filtering* strategy that provides a stable learning signal, distinguishing it from prior filtering methods  
designed for pre-trained normalization parameter updates (Niu et al., 2022; 2023).

101 Our extensive experiments validate BETA’s effectiveness across various model architectures and  
102 real-world scenarios. On standard VMs, BETA achieves an average accuracy of 62.6% on ImageNet-  
103 C with ViT-B/16, a **+7.1% gain** over the source model. This result not only surpasses all black-box  
104 baselines but remarkably outperforms strong *white-box* methods like TENT (Wang et al., 2021)  
105 and CoTTA (Wang et al., 2022), all while requiring only a single API call per test sample versus  
106 16 for ZOO-based approaches. This effectiveness extends to powerful VLMs; when adapting a  
107 black-box CLIP model, BETA boosts its average accuracy to 63.4%. This surpasses a suite of  
specialized *white-box* and *gray-box* methods developed for VLMs (e.g., TPT (Manli et al., 2022),



Figure 1: Comparison of black-box test-time adaptation strategies. **(a)** Output Refinement (LAME) is limited to post-processing predictions, while **(b)** ZOO-based Input Prompt Learning requires multiple expensive API calls for prompt optimization. In contrast, **(c)** BETA achieves efficient single-query adaptation by leveraging a lightweight steering model with prediction harmonization to create a tractable gradient pathway, stabilized through data filtering and regularization.

DynaPrompt (Xiao et al., 2025), and TCA (Wang et al., 2024b)), demonstrating BETA’s unique capability in a domain previously unexplored in the strictest black-box setting. Finally, on a real-world commercial Clarifai API, BETA proves its immense practical value and cost-efficiency. It achieves a **+5.2%** performance gain with a budget of just **\$0.4**, whereas a ZOO-based competitor requires over \$100—a 250x greater cost—to reach a similar performance. At that same \$100 budget, BETA’s advantage widens significantly, delivering a substantial **+17.1% gain**.

**Main Findings and Contributions.** (1). We provide the first systematic evaluation of TTA in the strict, API-only Black-box setting. Our analysis confirms that existing applicable methods like post-hoc output refinement have limited adaptive capacity. We further establish input prompting with ZOO as a powerful but flawed baseline, revealing its critical inefficiency and optimization instability. (2). We introduce BETA, a novel framework that addresses challenges of inefficiency and instability in Black-box TTA. It bypasses expensive query-based optimization by using a lightweight steering model to enable an efficient gradient pathway via prediction harmonization, while consistency regularization and prompt-oriented data filtering ensure robust adaptation. (3). We establish a new state-of-the-art for black-box TTA. BETA not only significantly outperforms the ZOO-based baselines but also achieves performance competitive with and even *surpasses* strong white-box adaptation methods. Its practical effectiveness is validated on a real-world commercial API, where our *single-query-per-sample* approach demonstrates a 250x cost advantage over ZOO.

## 2 RELATED WORKS

**Test-time Adaptation (TTA).** TTA adapts pre-trained models on-the-fly with unlabeled target data to handle distribution shifts (Sun et al., 2020; Niu et al., 2023; 2022; Wang et al., 2022; Zhang et al., 2025a;b; Manli et al., 2022). Most works assume *white-box* access, enabling methods to directly update model parameters by minimizing prediction entropy or using consistency objectives (Wang et al., 2021; Niu et al.; 2023). Recent backpropagation-free methods have emerged for efficiency but typically operate in a *gray-box* setting, as they still require access to internal model representations like features or tokens, making them inapplicable to strict API-only scenarios (Niu et al., 2024; Meng et al., 2025; Zhou et al., 2025; Wang et al., 2024b; Lee et al., 2025). Truly *black-box* TTA remains a significant challenge, with applicable strategies limited to post-hoc output refinement that offers limited adaptive capacity (Boudiaf et al., 2022). In contrast, our work, BETA, addresses this gap by using a local steering model to enable efficient adaptation in the strict black-box setting, creating a tractable optimization pathway without requiring direct model access or expensive queries.

**Black-box Model Adaptation.** The adaptation of black-box models has been explored across various domains, including vision and language (Sun et al., 2024; Tsai et al., 2020; Oh et al., 2023; Liu et al., 2024; Sun et al., 2022), but typically for offline transfer learning with labeled data—a setting

with fundamentally different requirements from unsupervised, online TTA. A prominent approach in this area uses ZOO to learn input prompts that reprogram a model for a specific downstream task (Oh et al., 2023; Tsai et al., 2020; Liu et al., 2020). However, these ZOO-based methods are hindered by high query costs and optimization instability (Wang et al., 2024a; Oh et al., 2023). Other methods for VLMs often operate in a gray-box setting, requiring access to intermediate representations like text embeddings (Ouali et al., 2023; Wang et al., 2024a), which violates the strict black-box assumption. Beyond optimization-based methods, we also consider input-level heuristics. Test-Time Augmentation strategies are potential candidates, but existing methods often require prior training on labeled data (Shanmugam et al., 2021) or access to logits to adjust temperature (Farina et al., 2024), violating strict black-box constraints. While basic augmentation strategies can be adapted, they drastically increase API costs, scaling linearly with the number of augmentations (e.g.,  $64 \times$  cost for standard protocols). Similarly, diffusion purification methods (Gao et al., 2023; Nie et al., 2022) utilize generative models to reconstruct inputs. While specific approaches like (Gao et al., 2023) require training a diffusion model on proprietary source data, employing an off-the-shelf diffusion model is a feasible workaround. However, the iterative nature of the reverse diffusion process results in high latency, making it unsuitable for fast, online adaptation. In contrast, our work is the first to tackle the unique challenges of *unsupervised, online* Test-Time Adaptation in this strict setting, where no labels are available and query efficiency is paramount.

### 3 METHOD

#### 3.1 PROBLEM FORMULATION AND MOTIVATION

Test-Time Adaptation (TTA) aims to adapt a model  $f$ , pre-trained on a source domain, to an unlabeled target domain  $\mathcal{D}_T = \{x_j^T\}_{j=1}^{|\mathcal{D}_T|}$  encountered during inference. In the common online setting, target data arrives as a stream of batches  $\{B_t\}_{t=1}^T$ , and the model is updated on-the-fly without ground-truth. The feasible adaptation strategies are determined by the level of access to the model  $f$ , which typically falls into one of three categories (Table 1):

- **White-Box Access** (□): The full model architecture and all its parameters are accessible. This allows for the computation of gradients via backpropagation.
- **Gray-Box Access** (■): Intermediate representations, e.g., internal tokens or features, are accessible, while the full computational graph and parameters remain hidden.
- **Black-Box Access** (■): The model is treated as an opaque API. The only possible interaction is to provide an input  $x$  and receive a final output prediction  $p(y|x) = f(x)$ . No information about the model’s architecture, parameters, or intermediate states is available.

**Existing Approaches and Their Limitations.** In the strict Black-Box TTA setting, existing methods primarily operate on either the model’s output or its input space, each presenting distinct challenges for online API adaptation. Strategies that focus on **output refinement**, such as LAME (Boudiaf et al., 2022), are highly efficient as they operate post-hoc without requiring model queries. However, by working solely on the final predictions, their adaptive capacity is inherently limited, often resulting in marginal performance gains.

Conversely, methods that operate on the **input space** offer greater adaptive potential but frequently incur high costs or latency. Test-Time Augmentation (TTA) strategies (Shanmugam et al., 2021; Farina et al., 2024) enhance robustness by aggregating predictions across multiple augmented views; however, in an API setting, this linearly increases the query cost (e.g.,  $N$  views require  $N$  paid API calls), reducing economic viability. Similarly, diffusion-based adaptation methods (Gao et al., 2023; Nie et al., 2022) effectively project inputs onto the source manifold but typically require iterative denoising steps, introducing significant latency that hinders real-time online applications. Finally, while Zeroth-Order Optimization (ZOO) (Niu et al., 2024) theoretically enables prompt learning without gradients, it is often hindered by high query complexity and optimization instability in the absence of ground-truth supervision.

#### 3.2 BETA: BLACK-BOX EFFICIENT TEST-TIME ADAPTATION

These trade-offs motivate **BETA**, which seeks to combine the adaptive capacity of input prompting with the query efficiency of output-based methods. To address the inaccessibility of the target model’s gradients while avoiding the high cost of ZOO, BETA operates using two distinct models:

216  
 217  
 218  
 219  
 220

- **Target Model ( $f_B$ ):** The powerful, inaccessible black-box model (e.g., a remote API). We can only query it to get prediction  $p_B(x)$ .
- **Steering Model ( $f_S$ ):** A lightweight, local white-box model (e.g., ViT-Small). We have full access to its parameters and gradients.

221 To adapt the black-box model without altering its weights, we learn an additive visual prompt  $\delta \in \mathbb{R}^{H \times W \times C}$ . This prompt is added to the input image  $x$  to produce a prompted version  $x' = x + \delta$ .  
 222 The goal is to optimize  $\delta$  using gradients derived locally from  $f_S$  to improve the predictions.  
 223

224 **The Challenge of Black-Box Prompt Optimization.** A powerful adaptation strategy is to learn an  
 225 additive visual prompt,  $\delta \in \mathbb{R}^{H \times W \times C}$ , which is added to an input image  $x$  to produce a prompted  
 226 version  $x' = x + \delta$ . In a black-box setting, a straightforward approach to optimize this prompt is  
 227 to employ ZOO to minimize the Shannon entropy of the model’s predictions (Wang et al., 2021),  $\mathcal{H}(p_B(x')) =$   
 228  $-\sum_{c=1}^C p_B^c(x') \log p_B^c(x')$ , where  $p_B^c(x')$  is the model’s predicted probability  
 229 for class  $c$ . However, our investigation reveals two critical drawbacks: *prohibitively high query complexity* (e.g.,  
 230 a standard CMA-ES setup requires 28 API queries per test sample (Niu et al.,  
 231 2024)) and *fundamental instability*. This instability stems from noisy unsupervised  
 232 signals, e.g., entropy, which can cause the  
 233 optimization to learn degenerate solutions  
 234 that corrupt the input’s semantic features  
 235 to produce high-confidence but incorrect  
 236 predictions. This leads to inconsistent  
 237 performance and catastrophic collapse  
 238 on challenging domains (e.g., on the  
 239 Contrast corruption, accuracy collapses  
 240 from 32.6% to 4.1%, 26.8%, and 12.7% across three ZOO methods in Table 2).  
 241  
 242

### 243 3.3 PREDICTION HARMONIZATION

244 **From Naive Transfer to Harmonized Relaxation.** Our approach is motivated by the failure of  
 245 direct estimation methods. To formalize our analysis, we introduce the notation  $\nabla \mathcal{H}(p; \cdot)$  to denote  
 246 the gradient of the entropy of a prediction  $p$ , computed by backpropagating through the specific  
 247 model indicated by the second argument. Using this notation, our ultimate goal is to minimize the  
 248 entropy of the black-box model, which implies following the **Black-box Model Gradient**  $g_{\text{Black}} =$   
 249  $\nabla \mathcal{H}(p_B; f_B)$ . However, since  $f_B$  is inaccessible, gradients cannot flow through it, rendering  $g_{\text{Black}}$   
 250 intractable. Existing alternatives fail to provide a reliable substitute: ZOO suffers from prohibitive  
 251 costs and instability, while naively transferring the **Local model Gradient** from a steering model  
 252 ( $g_{\text{Local}} = \nabla \mathcal{H}(p_S; f_S)$ ) is ineffective, as our analysis shows the gradient similarity between different  
 253 architectures is consistently near zero ( $\approx 0.0006$ ).  
 254  
 255

256 To overcome this, we relax the problem to finding a prompt that improves *both* models simultaneously.  
 257 We define a **Harmonized Prediction**,  $p_H$ , that fuses the outputs of the steering model ( $p_S$ )  
 258 and the black-box model ( $p_B$ ) with a weighting parameter  $\alpha \in [0, 1]$ :  
 259

$$260 p_H(x') = \alpha \cdot p_S(x') + (1 - \alpha) \cdot p_B(x'). \quad (1)$$

261 Optimizing this shared objective presents a challenge. Theoretically, the ideal update direction, denoted as  $g_{\text{Ideal}} = \nabla_{\delta} \mathcal{H}(p_H; f_S, f_B)$ , requires backpropagating through the computational graphs of both the steering and target models. However, since the internal states of the black-box model  $f_B$  are inaccessible,  $g_{\text{Ideal}}$  is intractable. To address this, we employ an asymmetric optimization strategy: we approximate the ideal update by computing the gradient of the *same* harmonized objective but restricting the gradient flow exclusively to the steering model’s pathway. This yields our tractable proxy,  $g_{\text{BETA}} = \nabla_{\delta} \mathcal{H}(p_H; f_S)$ , which allows us to target the joint harmonized distribution without requiring internal access to the black-box model.  
 262  
 263

270 **Empirical Justification.** To justify the use of  $g_{\text{BETA}}$  as a valid proxy for the intractable  $g_{\text{Ideal}}$ ,  
 271 we conduct a comprehensive gradient analysis across four validation corruption domains. For this  
 272 analysis only, we temporarily assume white-box access to the target black-box model to compute  
 273 the otherwise inaccessible vectors ( $g_{\text{Black}}$  and  $g_{\text{Ideal}}$ ). Our analysis in Fig. 2 confirms that simpler  
 274 strategies fail. The cosine similarity between the naive Local Gradient ( $g_{\text{Local}}$ ) and the Target Gra-  
 275 dient ( $g_{\text{Black}}$ ) is consistently near zero. Similarly, ZOO gradient estimates are highly noisy in the  
 276 one-step setting and prove no more effective than local transfer despite their high cost.

277 BETA’s success is rooted in how the weighting parameter,  $\alpha$ , navigates a trade-off between two  
 278 competing factors shown in Fig. 2. The first is **Objective Relevance**, which measures how well our  
 279 tractable objective aligns with the true goal ( $\text{Relevance}(\alpha) = \cos(g_{\text{Ideal}}, g_{\text{Black}})$ ). The second is  
 280 **Optimization Effectiveness**, which measures how well our practical proxy can optimize this objec-  
 281 tive ( $\text{Effectiveness}(\alpha) = \cos(g_{\text{BETA}}, g_{\text{Ideal}})$ ). These factors are in opposition: a low  $\alpha$  yields high  
 282 Relevance but negligible Effectiveness (as gradients cannot flow through  $f_B$ ), while a high  $\alpha$  yields  
 283 perfect Effectiveness for an irrelevant objective. The success of BETA lies in identifying an optimal  
 284 range for  $\alpha$  (e.g.,  $[0.3, 0.5]$ ) where a principled compromise is struck. **This confirms that BETA suc-  
 285 ceeds not by directly approximating the target gradient, but by constructing a shared optimization  
 286 problem where the practical proxy  $g_{\text{BETA}}$  effectively aligns with the ideal update direction  $g_{\text{Ideal}}$ .**

### 287 3.4 STABILIZATION AND JOINT OPTIMIZATION

289 **Instability of Unconstrained Optimization.** While the harmonized objective pro-  
 290 vides a tractable gradient pathway, our investigation reveals that this process is inher-  
 291 ently unstable when applied in isolation. To demonstrate this, we evaluated a base-  
 292 line version using only the harmonized objective on the ImageNet-C Contrast domain.  
 293 The results in Fig. 3 show that naively optimizing  
 294 the randomly initialized prompt leads to either grad-  
 295 ual decay or catastrophic collapse. This instability  
 296 stems from noisy unsupervised signals, which can  
 297 cause the optimization to learn degenerate solutions  
 298 that corrupt the input’s semantic features. To en-  
 299 sure robust adaptation, BETA incorporates two crit-  
 300 ical stabilization mechanisms.

301 **Prompt Learning-oriented Data Filtering.** The  
 302 first step to ensuring stability is to filter the training  
 303 signal. Our analysis indicates that updating  
 304 the prompt using all incoming data degrades per-  
 305 formance because high-entropy test samples provide  
 306 noisy gradients. To ensure the prompt learns only  
 307 from stable signals, we update it using samples with  
 308 a prediction entropy  $\mathcal{H}(p_S(x))$  below a threshold  $\epsilon$ .  
 309 This filtering is integrated directly into the  
 310 harmonization objective via a weight term  $w_H(x')$ :

$$\mathcal{L}_{\text{Harmon}}(x') = w_H(x') \mathcal{H}(p_H(x')), \quad (2)$$

311 where the weight filters out high-entropy samples and assigns a soft, confidence-based score to  
 312 reliable ones:  $w_H(x) = \frac{1}{\exp[\mathcal{H}(p_S(x)) - \epsilon]} \cdot \mathbb{I}_{\{\mathcal{H}(p_S(x)) < \epsilon\}}(x)$ . Unlike methods that filter for pre-  
 313 trained normalization parameters (Niu et al., 2022), we deliberately retain all reliable samples for the  
 314 prompt update, as learning a visual prompt from a random initialization is a challenging optimization  
 315 problem that benefits from more data.

316 **Consistency Regularization.** While filtering removes noisy samples, the optimization process it-  
 317 self requires regularization to prevent the catastrophic collapse observed in Fig. 3. Since prompts  
 318 are randomly initialized, an unconstrained entropy objective can be minimized by learning degen-  
 319 erate solutions that destroy the model’s representations. To prevent this, we introduce a consistency  
 320 regularization that anchors the update to the model’s reliable pre-trained knowledge by minimizing  
 321 the KL-divergence between predictions on the clean ( $x$ ) and prompted ( $x'$ ) images:

$$\mathcal{L}_{\text{consist}}(x, x') := D_{\text{KL}}(p_S(x) \| p_S(x')) = \sum_{c=1}^C p_S^c(x) \log \frac{p_S^c(x)}{p_S^c(x')}. \quad (3)$$



Figure 3: Five independent runs of using solely Eqn. (1), showing either performance collapse or failure to improve. Results obtained on ImageNet-C (Contrast, level 5).

324  
 325  
 326  
 Table 2: Classification accuracy (%) on ImageNet-C (severity 5) using **ViT-B/16** (87M) as the black-  
 327  
 328  
 329  
 330  
 331  
 332  
 333  
 334  
 335  
 336  
 337  
 338  
 339  
 340  
 341  
 342  
 343  
 344  
 345  
 346  
 347  
 348  
 349  
 350  
 351  
 352  
 353  
 354  
 355  
 356  
 357  
 358  
 359  
 360  
 361  
 362  
 363  
 364  
 365  
 366  
 367  
 368  
 369  
 370  
 371  
 372  
 373  
 374  
 375  
 376  
 377  
 378  
 379  
 380  
 381  
 382  
 383  
 384  
 385  
 386  
 387  
 388  
 389  
 390  
 391  
 392  
 393  
 394  
 395  
 396  
 397  
 398  
 399  
 400  
 401  
 402  
 403  
 404  
 405  
 406  
 407  
 408  
 409  
 410  
 411  
 412  
 413  
 414  
 415  
 416  
 417  
 418  
 419  
 420  
 421  
 422  
 423  
 424  
 425  
 426  
 427  
 428  
 429  
 430  
 431  
 432  
 433  
 434  
 435  
 436  
 437  
 438  
 439  
 440  
 441  
 442  
 443  
 444  
 445  
 446  
 447  
 448  
 449  
 450  
 451  
 452  
 453  
 454  
 455  
 456  
 457  
 458  
 459  
 460  
 461  
 462  
 463  
 464  
 465  
 466  
 467  
 468  
 469  
 470  
 471  
 472  
 473  
 474  
 475  
 476  
 477  
 478  
 479  
 480  
 481  
 482  
 483  
 484  
 485  
 486  
 487  
 488  
 489  
 490  
 491  
 492  
 493  
 494  
 495  
 496  
 497  
 498  
 499  
 500  
 501  
 502  
 503  
 504  
 505  
 506  
 507  
 508  
 509  
 510  
 511  
 512  
 513  
 514  
 515  
 516  
 517  
 518  
 519  
 520  
 521  
 522  
 523  
 524  
 525  
 526  
 527  
 528  
 529  
 530  
 531  
 532  
 533  
 534  
 535  
 536  
 537  
 538  
 539  
 540  
 541  
 542  
 543  
 544  
 545  
 546  
 547  
 548  
 549  
 550  
 551  
 552  
 553  
 554  
 555  
 556  
 557  
 558  
 559  
 560  
 561  
 562  
 563  
 564  
 565  
 566  
 567  
 568  
 569  
 570  
 571  
 572  
 573  
 574  
 575  
 576  
 577  
 578  
 579  
 580  
 581  
 582  
 583  
 584  
 585  
 586  
 587  
 588  
 589  
 590  
 591  
 592  
 593  
 594  
 595  
 596  
 597  
 598  
 599  
 600  
 601  
 602  
 603  
 604  
 605  
 606  
 607  
 608  
 609  
 610  
 611  
 612  
 613  
 614  
 615  
 616  
 617  
 618  
 619  
 620  
 621  
 622  
 623  
 624  
 625  
 626  
 627  
 628  
 629  
 630  
 631  
 632  
 633  
 634  
 635  
 636  
 637  
 638  
 639  
 640  
 641  
 642  
 643  
 644  
 645  
 646  
 647  
 648  
 649  
 650  
 651  
 652  
 653  
 654  
 655  
 656  
 657  
 658  
 659  
 660  
 661  
 662  
 663  
 664  
 665  
 666  
 667  
 668  
 669  
 670  
 671  
 672  
 673  
 674  
 675  
 676  
 677  
 678  
 679  
 680  
 681  
 682  
 683  
 684  
 685  
 686  
 687  
 688  
 689  
 690  
 691  
 692  
 693  
 694  
 695  
 696  
 697  
 698  
 699  
 700  
 701  
 702  
 703  
 704  
 705  
 706  
 707  
 708  
 709  
 710  
 711  
 712  
 713  
 714  
 715  
 716  
 717  
 718  
 719  
 720  
 721  
 722  
 723  
 724  
 725  
 726  
 727  
 728  
 729  
 730  
 731  
 732  
 733  
 734  
 735  
 736  
 737  
 738  
 739  
 740  
 741  
 742  
 743  
 744  
 745  
 746  
 747  
 748  
 749  
 750  
 751  
 752  
 753  
 754  
 755  
 756  
 757  
 758  
 759  
 760  
 761  
 762  
 763  
 764  
 765  
 766  
 767  
 768  
 769  
 770  
 771  
 772  
 773  
 774  
 775  
 776  
 777  
 778  
 779  
 780  
 781  
 782  
 783  
 784  
 785  
 786  
 787  
 788  
 789  
 790  
 791  
 792  
 793  
 794  
 795  
 796  
 797  
 798  
 799  
 800  
 801  
 802  
 803  
 804  
 805  
 806  
 807  
 808  
 809  
 810  
 811  
 812  
 813  
 814  
 815  
 816  
 817  
 818  
 819  
 820  
 821  
 822  
 823  
 824  
 825  
 826  
 827  
 828  
 829  
 830  
 831  
 832  
 833  
 834  
 835  
 836  
 837  
 838  
 839  
 840  
 841  
 842  
 843  
 844  
 845  
 846  
 847  
 848  
 849  
 850  
 851  
 852  
 853  
 854  
 855  
 856  
 857  
 858  
 859  
 860  
 861  
 862  
 863  
 864  
 865  
 866  
 867  
 868  
 869  
 870  
 871  
 872  
 873  
 874  
 875  
 876  
 877  
 878  
 879  
 880  
 881  
 882  
 883  
 884  
 885  
 886  
 887  
 888  
 889  
 890  
 891  
 892  
 893  
 894  
 895  
 896  
 897  
 898  
 899  
 900  
 901  
 902  
 903  
 904  
 905  
 906  
 907  
 908  
 909  
 910  
 911  
 912  
 913  
 914  
 915  
 916  
 917  
 918  
 919  
 920  
 921  
 922  
 923  
 924  
 925  
 926  
 927  
 928  
 929  
 930  
 931  
 932  
 933  
 934  
 935  
 936  
 937  
 938  
 939  
 940  
 941  
 942  
 943  
 944  
 945  
 946  
 947  
 948  
 949  
 950  
 951  
 952  
 953  
 954  
 955  
 956  
 957  
 958  
 959  
 960  
 961  
 962  
 963  
 964  
 965  
 966  
 967  
 968  
 969  
 970  
 971  
 972  
 973  
 974  
 975  
 976  
 977  
 978  
 979  
 980  
 981  
 982  
 983  
 984  
 985  
 986  
 987  
 988  
 989  
 990  
 991  
 992  
 993  
 994  
 995  
 996  
 997  
 998  
 999  
 1000  
 1001  
 1002  
 1003  
 1004  
 1005  
 1006  
 1007  
 1008  
 1009  
 1010  
 1011  
 1012  
 1013  
 1014  
 1015  
 1016  
 1017  
 1018  
 1019  
 1020  
 1021  
 1022  
 1023  
 1024  
 1025  
 1026  
 1027  
 1028  
 1029  
 1030  
 1031  
 1032  
 1033  
 1034  
 1035  
 1036  
 1037  
 1038  
 1039  
 1040  
 1041  
 1042  
 1043  
 1044  
 1045  
 1046  
 1047  
 1048  
 1049  
 1050  
 1051  
 1052  
 1053  
 1054  
 1055  
 1056  
 1057  
 1058  
 1059  
 1060  
 1061  
 1062  
 1063  
 1064  
 1065  
 1066  
 1067  
 1068  
 1069  
 1070  
 1071  
 1072  
 1073  
 1074  
 1075  
 1076  
 1077  
 1078  
 1079  
 1080  
 1081  
 1082  
 1083  
 1084  
 1085  
 1086  
 1087  
 1088  
 1089  
 1090  
 1091  
 1092  
 1093  
 1094  
 1095  
 1096  
 1097  
 1098  
 1099  
 1100  
 1101  
 1102  
 1103  
 1104  
 1105  
 1106  
 1107  
 1108  
 1109  
 1110  
 1111  
 1112  
 1113  
 1114  
 1115  
 1116  
 1117  
 1118  
 1119  
 1120  
 1121  
 1122  
 1123  
 1124  
 1125  
 1126  
 1127  
 1128  
 1129  
 1130  
 1131  
 1132  
 1133  
 1134  
 1135  
 1136  
 1137  
 1138  
 1139  
 1140  
 1141  
 1142  
 1143  
 1144  
 1145  
 1146  
 1147  
 1148  
 1149  
 1150  
 1151  
 1152  
 1153  
 1154  
 1155  
 1156  
 1157  
 1158  
 1159  
 1160  
 1161  
 1162  
 1163  
 1164  
 1165  
 1166  
 1167  
 1168  
 1169  
 1170  
 1171  
 1172  
 1173  
 1174  
 1175  
 1176  
 1177  
 1178  
 1179  
 1180  
 1181  
 1182  
 1183  
 1184  
 1185  
 1186  
 1187  
 1188  
 1189  
 1190  
 1191  
 1192  
 1193  
 1194  
 1195  
 1196  
 1197  
 1198  
 1199  
 1200  
 1201  
 1202  
 1203  
 1204  
 1205  
 1206  
 1207  
 1208  
 1209  
 1210  
 1211  
 1212  
 1213  
 1214  
 1215  
 1216  
 1217  
 1218  
 1219  
 1220  
 1221  
 1222  
 1223  
 1224  
 1225  
 1226  
 1227  
 1228  
 1229  
 1230  
 1231  
 1232  
 1233  
 1234  
 1235  
 1236  
 1237  
 1238  
 1239  
 1240  
 1241  
 1242  
 1243  
 1244  
 1245  
 1246  
 1247  
 1248  
 1249  
 1250  
 1251  
 1252  
 1253  
 1254  
 1255  
 1256  
 1257  
 1258  
 1259  
 1260  
 1261  
 1262  
 1263  
 1264  
 1265  
 1266  
 1267  
 1268  
 1269  
 1270  
 1271  
 1272  
 1273  
 1274  
 1275  
 1276  
 1277  
 1278  
 1279  
 1280  
 1281  
 1282  
 1283  
 1284  
 1285  
 1286  
 1287  
 1288  
 1289  
 1290  
 1291  
 1292  
 1293  
 1294  
 1295  
 1296  
 1297  
 1298  
 1299  
 1300  
 1301  
 1302  
 1303  
 1304  
 1305  
 1306  
 1307  
 1308  
 1309  
 1310  
 1311  
 1312  
 1313  
 1314  
 1315  
 1316  
 1317  
 1318  
 1319  
 1320  
 1321  
 1322  
 1323  
 1324  
 1325  
 1326  
 1327  
 1328  
 1329  
 1330  
 1331  
 1332  
 1333  
 1334  
 1335  
 1336  
 1337  
 1338  
 1339  
 1340  
 1341  
 1342  
 1343  
 1344  
 1345  
 1346  
 1347  
 1348  
 1349  
 1350  
 1351  
 1352  
 1353  
 1354  
 1355  
 1356  
 1357  
 1358  
 1359  
 1360  
 1361  
 1362  
 1363  
 1364  
 1365  
 1366  
 1367  
 1368  
 1369  
 1370  
 1371  
 1372  
 1373  
 1374  
 1375  
 1376  
 1377  
 1378  
 1379  
 1380  
 1381  
 1382  
 1383  
 1384  
 1385  
 1386  
 1387  
 1388  
 1389  
 1390  
 1391  
 1392  
 1393  
 1394  
 1395  
 1396  
 1397  
 1398  
 1399  
 1400  
 1401  
 1402  
 1403  
 1404  
 1405  
 1406  
 1407  
 1408  
 1409  
 1410  
 1411  
 1412  
 1413  
 1414  
 1415  
 1416  
 1417  
 1418  
 1419  
 1420  
 1421  
 1422  
 1423  
 1424  
 1425  
 1426  
 1427  
 1428  
 1429  
 1430  
 1431  
 1432  
 1433  
 1434  
 1435  
 1436  
 1437  
 1438  
 1439  
 1440  
 1441  
 1442  
 1443  
 1444  
 1445  
 1446  
 1447  
 1448  
 1449  
 1450  
 1451  
 1452  
 1453  
 1454  
 1455  
 1456  
 1457  
 1458  
 1459  
 1460  
 1461  
 1462  
 1463  
 1464  
 1465  
 1466  
 1467  
 1468  
 1469  
 1470  
 1471  
 1472  
 1473  
 1474  
 1475  
 1476  
 1477  
 1478  
 1479  
 1480  
 1481  
 1482  
 1483  
 1484  
 1485  
 1486  
 1487  
 1488  
 1489  
 1490  
 1491  
 1492  
 1493  
 1494  
 1495  
 1496  
 1497  
 1498  
 1499  
 1500  
 1501  
 1502  
 1503  
 1504  
 1505  
 1506  
 1507  
 1508  
 1509  
 1510  
 1511  
 1512  
 1513  
 1514  
 1515  
 1516  
 1517  
 1518  
 1519  
 1520  
 1521  
 1522  
 1523  
 1524  
 1525  
 1526  
 1527  
 1528  
 1529  
 1530  
 1531  
 1532  
 1533  
 1534  
 1535  
 1536  
 1537  
 1538  
 1539  
 1540  
 1541  
 1542  
 1543  
 1544  
 1545  
 1546  
 1547  
 1548  
 1549  
 1550  
 1551  
 1552  
 1553  
 1554  
 1555  
 1556  
 1557  
 1558  
 1559  
 1560  
 1561  
 1562  
 1563  
 1564  
 1565  
 1566  
 1567  
 1568  
 1569  
 1570  
 1571  
 1572  
 1573  
 1574  
 1575  
 1576  
 1577  
 1578  
 1579  
 1580  
 1581  
 1582  
 1583  
 1584  
 1585  
 1586  
 1587  
 1588  
 1589  
 1590  
 1591  
 1592  
 1593  
 1594  
 1595  
 1596  
 1597  
 1598  
 1599  
 1600  
 1601  
 1602  
 1603  
 1604  
 1605  
 1606  
 1607  
 1608  
 1609  
 1610  
 1611  
 1612  
 1613  
 1614  
 1615  
 1616  
 1617  
 1618  
 1619  
 1620  
 1621  
 1622  
 1623  
 1624  
 1625  
 1626  
 1627  
 1628  
 1629  
 1630  
 1631  
 1632  
 1633  
 1634  
 1635  
 1636  
 1637  
 1638  
 1639  
 1640  
 1641  
 1642  
 1643  
 1644  
 1645  
 1646  
 1647  
 1648  
 1649  
 1650  
 1651  
 1652  
 1653  
 1654  
 1655  
 1656  
 1657  
 1658  
 1659  
 1660  
 1661  
 1662  
 1663  
 1664  
 1665  
 1666  
 1667  
 1668  
 1669  
 1670  
 1671  
 1672  
 1673  
 1674  
 1675  
 1676  
 1677  
 1678  
 1679  
 1680  
 1681  
 1682  
 1683  
 1684  
 1685  
 1686  
 1687  
 1688  
 1689  
 1690  
 1691  
 1692  
 1693  
 1694  
 1695  
 1696  
 1697  
 1698  
 1699  
 1700  
 1701  
 1702  
 1703  
 1704  
 1705  
 1706  
 1707  
 1708  
 1709  
 1710  
 1711  
 1712  
 1713  
 1714  
 1715  
 1716  
 1717  
 1718  
 1719  
 1720  
 1721  
 1722  
 1723  
 1724  
 1725  
 1726  
 1727  
 1728  
 1729  
 1730  
 1731  
 1732  
 1733  
 1734  
 1735  
 1736  
 1737  
 1738  
 1739  
 1740  
 1741  
 1742  
 1743  
 1744  
 1745  
 1746  
 1747  
 1748  
 1749  
 1750  
 1751  
 1752  
 1753  
 1754  
 1755  
 1756  
 1757  
 1758  
 1759  
 1760  
 1761  
 1762  
 1763  
 1764  
 1765  
 1766  
 1767  
 1768  
 1769  
 1770  
 1771  
 1772  
 1773  
 1774  
 1775  
 1776  
 1777  
 1778  
 1779  
 1780  
 1781  
 1782  
 1783  
 1784  
 1785  
 1786  
 1787  
 1788  
 1789  
 1790  
 1791  
 1792  
 1793  
 1794  
 1795  
 1796  
 1797  
 1798  
 1799  
 1800  
 1801  
 1802  
 1803  
 1804  
 1805  
 1806  
 1807  
 1808  
 1809  
 1810  
 1811  
 1812  
 1813  
 1814  
 1815  
 1816  
 1817  
 181

378 Table 3: Classification accuracy (%) on ImageNet-C (severity 5) using **ViT-L/16** (304M) as the  
 379 black-box model. BETA achieves the best performance among black-box methods and outperforms  
 380 several strong white-box approaches. *White-box and gray-box methods are shown for reference.*

| Access | Method             | Noise       |             |             | Blur        |             |             | Weather     |             |             | Digital     |             |             | Avg.        | Gain        |             |             |             |
|--------|--------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|        |                    | Gauss.      | Shot        | Impul.      | Defoc.      | Glass       | Motion      | Zoom        | Snow        | Frost       | Fog         | Bright.     | Contr.      | Elastic     | Pixel.      | JPEG        |             |             |
|        | Source             | 62.5        | 62.0        | 63.3        | 52.9        | 45.3        | 60.7        | 55.2        | 66.0        | 62.3        | 62.6        | 79.9        | 40.1        | 56.2        | 74.3        | 72.8        | 61.1        | 0.0         |
|        | TENT               | 67.2        | 67.3        | 65.4        | 59.2        | 0.9         | 66.7        | 63.8        | 69.7        | 67.0        | 61.9        | 81.0        | 60.3        | 65.4        | 77.3        | 74.1        | 63.1        | +2.0        |
|        | SAR                | 65.6        | 66.7        | 66.9        | 58.6        | 57.8        | 60.5        | 61.0        | 69.3        | 67.0        | 68.1        | 81.0        | 60.2        | 61.8        | 76.8        | 74.3        | 66.4        | +5.3        |
|        | CoTTA              | 68.3        | 69.7        | 69.9        | 57.1        | 54.2        | 53.5        | 63.2        | 72.5        | 70.4        | 26.2        | 80.9        | 53.5        | 65.6        | 77.1        | 74.9        | 63.8        | +2.7        |
|        | <b>BETA</b>        | 67.4        | 58.3        | 67.9        | 63.4        | 61.3        | 67.7        | 62.9        | 70.7        | 68.4        | 66.3        | 81.3        | 54.0        | 66.0        | 77.7        | 74.1        | 67.2        | +6.1        |
|        | T3A                | 62.6        | 62.2        | 63.5        | 54.0        | 46.1        | 61.3        | 56.4        | 66.6        | 63.2        | 57.3        | 79.9        | 39.1        | 58.9        | 74.6        | 73.3        | 61.3        | +0.2        |
|        | FOA*               | 48.1        | 56.1        | 59.1        | 50.2        | 50.6        | 59.6        | 42.4        | 57.5        | 58.8        | 56.1        | 72.2        | 29.1        | 59.5        | 72.0        | 70.4        | 56.1        | -5.0        |
|        | LAME               | 62.2        | 61.6        | 63.0        | 52.4        | 44.9        | 60.3        | 54.8        | 65.5        | 61.7        | 61.7        | 79.8        | 39.9        | 55.4        | 74.1        | 72.4        | 60.6        | -0.5        |
|        | ZOO-CMA            | 61.7        | 62.5        | 63.1        | 57.1        | 50.4        | 61.6        | 55.4        | 63.9        | 62.5        | 59.5        | 78.4        | 22.5        | 56.5        | 75.8        | 74.2        | 60.3        | -0.8        |
|        | ZOO-RGF            | 61.3        | 62.9        | 62.2        | 56.9        | 50.9        | 59.5        | 52.5        | 59.0        | 58.9        | 56.9        | 75.7        | 31.2        | 57.1        | 74.7        | 72.4        | 59.5        | -1.6        |
|        | <b>ZOO-SPSA-GC</b> | 62.8        | 63.5        | 63.4        | 57.0        | 52.2        | 59.8        | 55.9        | 59.0        | 59.7        | 61.7        | 75.5        | 43.0        | 59.9        | 75.1        | 72.4        | 61.4        | +0.3        |
|        | DDA                | 68.0        | 68.3        | 68.0        | 52.8        | 49.8        | 59.3        | 53.8        | 64.3        | 63.4        | 55.8        | 78.0        | 46.9        | 61.1        | 76.4        | 73.1        | 62.6        | +1.5        |
|        | <b>BETA (Ours)</b> | <b>63.1</b> | <b>64.0</b> | <b>63.5</b> | <b>59.7</b> | <b>55.1</b> | <b>63.6</b> | <b>59.4</b> | <b>66.1</b> | <b>65.0</b> | <b>66.2</b> | <b>80.0</b> | <b>55.1</b> | <b>65.0</b> | <b>76.2</b> | <b>74.5</b> | <b>65.1</b> | <b>+4.0</b> |

391  
 392 the normalization layers of the local steering model using SGD with a learning rate of  $2 \times 10^{-5}$ .  
 393 The weight for the KL consistency regularization  $\lambda$  is set to 50, and we set the entropy threshold  
 394  $\epsilon = 0.9 \times \ln(1000)$  for sample filtering. The visual prompt is structured as a padded frame with  
 395 a width of 16 pixels, amounting to 39,936 learnable parameters, and is initialized from a Gaussian  
 396 distribution. Additional experimental details are provided in Appendix A.

## 397 4.1 EXPERIMENTAL RESULTS

398  
 399 **Results on ImageNet-C with Vision Models.** Our main experiments evaluate BETA against a  
 400 comprehensive suite of TTA methods on the ImageNet-C benchmark. We first test using a ViT-B/16  
 401 black-box model, with results for all white, gray, and black-box methods presented in Table 2 for  
 402 a comprehensive comparison. The analysis reveals significant limitations in existing limited-access  
 403 baselines. Gray-box methods like FOA\* are inapplicable in our strict source-free setting, as their  
 404 original design requires source statistics (Niu et al., 2024). In the black-box setting, LAME fails  
 405 to improve upon the source model’s performance. While ZOO-based methods can provide some  
 406 benefit, they are inconsistent, collapsing on certain domains, and are highly inefficient, requiring 16  
 407 API calls per test sample versus BETA’s single call. In stark contrast, BETA not only consistently  
 408 improves performance across all domains but achieves an average accuracy of 62.6% (+7.1% gain).  
 409 Remarkably, this surpasses all black-box baselines by a large margin and even outperforms several  
 410 strong white-box methods such as TENT and CoTTA, approaching the accuracy of top performers  
 411 like SAR, despite operating under much stricter access constraints.

412 This trend of superior performance continues when using the more powerful ViT-L/16, as  
 413 shown in Table 3. Here, BETA again delivers the strongest performance among all black-  
 414 box methods, achieving a +4.0% gain while ZOO-based approaches consistently degrade per-  
 415 formance. This improvement is highly non-trivial and highlights the effectiveness of our steer-  
 416 ing mechanism. There is a substantial performance gap between the pre-trained steering model  
 417 (ViT-S/16 at 39.5% accuracy) and the target black-box model (ViT-L/16 at 61.1% accuracy).  
 418 Even when the steering model itself is  
 419 fully adapted in a white-box setting, its  
 420 performance is capped at 57.4% (detailed  
 421 in Appendix Table 9). Yet, BETA suc-  
 422 cessfully leverages this suboptimal steer-  
 423 ing model to guide the far more powerful  
 424 ViT-L/16 to a new state-of-the-art black-  
 425 box accuracy of 65.1%. This demon-  
 426 strates that BETA is not simply relying on the  
 427 local model’s output, but is successfully dis-  
 428 covering and transferring beneficial adap-  
 429 tation signals to the black-box model with-  
 430 out requiring any internal access.

431 **Results on ImageNet-S and ImageNet-  
 432 R.** To further evaluate BETA’s generaliza-  
 433 tion capabilities, we test its performance

434 Table 4: Results on ImageNet-S/R w.r.t. Acc (%).

| Access | Method             | ViT-B/16    |             |             | CLIP (ViT-B/16) |             |             |
|--------|--------------------|-------------|-------------|-------------|-----------------|-------------|-------------|
|        |                    | Sketch      | Rendition   | Avg.        | Sketch          | Rendition   | Avg.        |
|        | Source             | 44.9        | 59.5        | 52.2        | 46.1            | 74.0        | 60.0        |
|        | TENT               | 49.1        | 63.9        | 56.5        | 49.5            | 75.3        | 62.4        |
|        | SAR                | 48.7        | 63.3        | 56.0        | 49.2            | 76.1        | 62.7        |
|        | CoTTA              | 50.0        | 63.5        | 56.8        | 50.4            | 75.6        | 63.0        |
|        | TPT                | —           | —           | —           | 48.0            | 77.1        | 62.5        |
|        | DynaPrompt         | —           | —           | —           | 48.2            | 78.2        | 63.2        |
|        | DPE                | —           | —           | —           | 52.3            | 80.4        | 66.3        |
|        | T3A                | 48.5        | 58.0        | 53.3        | 49.1            | 75.6        | 62.4        |
|        | FOA*               | 44.7        | 59.2        | 52.0        | 45.8            | 73.2        | 59.5        |
|        | TDA                | —           | —           | —           | 50.5            | 80.2        | 65.4        |
|        | B <sup>3</sup> TPT | —           | —           | —           | 49.5            | 78.6        | 64.1        |
|        | RA-TTA             | —           | —           | —           | 50.8            | 79.7        | 65.3        |
|        | TCA                | —           | —           | —           | 49.0            | 77.1        | 63.0        |
|        | BCA                | —           | —           | —           | 50.9            | 80.7        | 65.8        |
|        | LAME               | 44.4        | 59.0        | 51.7        | 45.4            | 72.8        | 59.1        |
|        | ZOO-CMA            | 44.7        | 58.8        | 51.8        | 45.6            | 72.5        | 59.1        |
|        | ZOO-RGF            | 44.4        | 58.1        | 51.3        | 45.3            | 72.1        | 58.7        |
|        | <b>ZOO-SPSA-GC</b> | 45.1        | 59.3        | 52.2        | 46.0            | 72.8        | 59.4        |
|        | <b>Ours</b>        | <b>49.3</b> | <b>63.3</b> | <b>56.3</b> | <b>50.9</b>     | <b>76.0</b> | <b>63.4</b> |



Figure 5: Sensitivity analysis of BETA’s hyperparameters, showing stable performance across fusion weight  $\alpha$  in Eq. 1, regularization weight  $\lambda$  in Eq. 5, entropy margin  $\epsilon$  in Eq. 2, and prompt size.

on ImageNet-S and ImageNet-R using ViT-B/16. The results in Table 4 demonstrate a consistent trend of strong performance. On both datasets, BETA significantly improves upon the source model’s accuracy, achieving an average of 56.3%. This not only surpasses the black-box baselines but also outperforms strong white-box methods like T3A and SAR, underscoring our framework’s robustness to diverse domain shifts. We then extend our evaluation to Vision-Language Models (VLMs), applying BETA to a CLIP model with a ViT-B/16 backbone.

To our knowledge, this is the first work to explore adaptation for powerful VLMs in the strictest, API-only black-box setting. The results in Table 4 highlight BETA’s unique effectiveness in this challenging scenario. It is the only black-box method that can efficiently and effectively improve the pre-trained CLIP model, boosting its average accuracy to 63.4%. Remarkably, this black-box performance surpasses a suite of specialized white-box methods developed for VLMs, including TENT, SAR, TPT, and DynaPrompt, as well as gray-box methods such as TCA. This consistent success across different datasets and model types demonstrates that BETA is a general and powerful framework for black-box adaptation.

**Results on a Real-world API.** To validate BETA’s practicality, we test it on a commercial Clarifai API, benchmarking performance against API cost in USD on the challenging ImageNet-C Contrast domain (Fig. 4). The results clearly show BETA’s superior efficiency and effectiveness. With a budget of just \$0.4—sufficient to adapt  $\sim 120$  test samples—BETA already improves upon the source model by +5.2%. In stark contrast, a query-intensive ZOO competitor requires over \$100 to reach a similar performance, marking a **250x cost advantage** for our method. Furthermore, at that same \$100 budget, BETA’s advantage widens significantly, as it delivers a substantial +17.1% gain. This experiment demonstrates BETA’s significant real-world utility, making it a practical and effective solution for adapting commercial API-based models.



Figure 4: Performance vs. API budget on the Real-world Clarifai API.

## 4.2 ABLATION STUDIES

**Hyperparameter Sensitivity.** We analyze BETA’s sensitivity to its key hyperparameters in Fig. 5. Our analysis of the fusion weight  $\alpha$  in Eq. 1 shows that the framework’s performance is empirically robust, exhibiting stable and high performance across a wide range of values from 0.3 to 0.5 (Fig. 5a). The KL regularization weight  $\lambda$  in Eq. 5 is shown to be a critical component; without it ( $\lambda = 0$ ), performance is suboptimal as the prompt can learn degenerate solutions. As shown in Fig. 5b, performance improves significantly with the introduction of regularization and stabilizes across a broad range of  $\lambda$  values from 20 to 100. For the entropy margin  $\epsilon$  in Eq. 5, our results show that BETA performs robustly with a more lenient margin (tested from  $0.4 \cdot \ln(1000)$  to  $1.0 \cdot \ln(1000)$ ). Unlike methods adapting pre-trained parameters, learning a prompt from random initialization requires more data, making a less restrictive filter beneficial (Fig. 5c). Finally, for the prompt size (Fig. 5d), which corresponds to the frame width, we observe a clear trade-off: smaller prompts may lack the capacity to capture the domain shift, while larger prompts are harder to optimize. The performance peaks around a width of 16 pixels and remains stable across the tested range of 8 to 20.

486 Table 6: Effect of steering model choice. The Source and TENT-adapted accuracy of each local  
 487 steering model are provided as a reference against the BETA accuracy on the large black-box models.

| Dataset         | Black-Box Model                    | Source       | LAME         | ZOO          | ViT-Tiny (6M) |      |              | ResNet50 (26M) |      |              | ViT-Small (22M) |      |              |
|-----------------|------------------------------------|--------------|--------------|--------------|---------------|------|--------------|----------------|------|--------------|-----------------|------|--------------|
|                 |                                    |              |              |              | Source        | TENT | BETA         | Source         | TENT | BETA         | Source          | TENT | BETA         |
| ImageNet-C      | ViT-B/16 (87M)                     | 55.5         | 54.1         | 56.0         | 21.4          | 22.0 | 58.2         | 24.2           | 31.4 | 60.8         | 39.5            | 51.9 | 62.6         |
| ImageNet-Sketch | ViT-B/16 (87M)<br>CLIP-B/16 (150M) | 44.9<br>46.1 | 44.4<br>45.4 | 45.1<br>46.0 | 20.9          | 21.3 | 45.2<br>47.0 | 27.9           | 29.7 | 47.5<br>48.7 | 32.8            | 35.6 | 49.3<br>50.9 |
| Average         | -                                  | 48.8         | 48.0         | 49.0         | 21.1          | 21.7 | 50.1         | 26.7           | 30.2 | 52.3         | 35.0            | 41.0 | 54.3         |

493 **Analysis of BETA’s Components.** We conduct an ablation study to dissect the contribution  
 494 of each component in BETA, with results summarized in Table 5. Our analysis  
 495 first reveals that strategies focusing solely on output adaptation (**Out-Adapt**) are insufficient.  
 496 Both LAME’s Prediction Refinement

497 (**PR**) and our Prediction Harmonization  
 498 (**PH**) strategy used in isolation (Exp-1)  
 499 fail to improve upon the source model,  
 500 demonstrating that effective black-box  
 501 TTA requires input adaptation (**In-  
 502 Adapt**). However, naively adding an input  
 503 prompt (Exp-2) leads to a performance  
 504 collapse to 51.6% accuracy. This high-  
 505 lights the inherent instability of learning  
 506 a randomly initialized prompt without  
 507 supervision—a task significantly more  
 508 challenging than adapting well-initialized  
 509 normalization layers. Our stabilization  
 510 techniques are designed to resolve this instability. Introducing  
 511 either KL regularization (**KL Reg.**) in Exp-3 or sample filtering (**Filt.**) in Exp-4 provides  
 512 a substantial performance boost, improving accuracy to 59.7% and 60.2%, respectively. The full  
 513 BETA framework, which integrates both complementary techniques, achieves the best performance  
 514 of 62.6%. This confirms that both stabilization mechanisms are essential for robust prompt learning.

515 **Effect of Steering Model Choice.** We investigate how the choice of the local steering model affects  
 516 BETA’s performance, with detailed results summarized in Table 6. Our analysis confirms that BETA  
 517 is a flexible framework that consistently improves upon the source model across different steering  
 518 models, including those with different sizes and architectures. Notably, even with a model as small  
 519 as a 6M-parameter ViT-Tiny, our method successfully boosts the performance of both large black-  
 520 box models (87M and 150M). Furthermore, the framework demonstrates strong cross-architecture  
 521 generalization, as a CNN-based ResNet-50 can effectively improve the Transformer-based ViT and  
 522 CLIP models. The improvement from BETA is highly non-trivial and goes far beyond the capa-  
 523 bilities of the steering models themselves, a finding that holds true across all tested configurations.  
 524 On average, our strongest steering model (ViT-Small), even when fully adapted with TENT, only  
 525 reaches an accuracy of 41.0%—well below the 48.8% starting accuracy of the black-box models.  
 526 Despite this, BETA successfully leverages these weaker models to support the black-box models  
 527 to a final average accuracy of 54.3%. This demonstrates that BETA is not simply relying on the  
 528 local model’s output but is effectively discovering and transferring beneficial adaptation signals to  
 529 successfully adapt large-scale models in the dark.

## 5 CONCLUSION

530 In this work, we addressed the critical challenge of adapting powerful models in the strict black-  
 531 box setting where only API access is available. We introduced **BETA**, a novel framework that  
 532 enables efficient and stable Test-Time Adaptation by leveraging a lightweight white-box steering  
 533 model. The core of our method is a prediction harmonization technique that creates a tractable,  
 534 shared objective, which is made robust through consistency regularization and a prompt-oriented  
 535 data filtering strategy. Our extensive experiments show that BETA significantly outperforms existing  
 536 black-box methods, achieves performance competitive with strong white-box approaches on both  
 537 Vision and Vision-Language models, and demonstrates immense practical value on a commercial  
 538 API with a 250x cost advantage over ZOO-based techniques. By demonstrating that a smaller, local  
 539 model can effectively steer a powerful, inaccessible one, our work makes robust black-box TTA a  
 540 practical reality and opens up new possibilities for adapting models in the dark at test time.

540  
541 ETHICS STATEMENT542  
543 Our work adheres to the ICLR Code of Ethics. It relies on publicly available datasets and models  
544 and does not introduce any foreseeable societal risks.545  
546 REPRODUCIBILITY STATEMENT547  
548 To ensure reproducibility, we provide full implementation details in the main paper and appendix.  
549 We will release our source code publicly upon publication.550  
551 REFERENCES552  
553 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-  
554 man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical  
555 report. *arXiv preprint arXiv:2303.08774*, 2023.556  
557 Motasem Alfarra, Hani Itani, Alejandro Pardo, Merey Ramazanova, Juan Camilo Perez, Matthias  
558 Müller, Bernard Ghanem, et al. Evaluation of test-time adaptation under computational time  
559 constraints. In *Forty-first International Conference on Machine Learning*.560  
561 Hyojin Bahng, Ali Jahanian, Swami Sankaranarayanan, and Phillip Isola. Exploring visual prompts  
562 for adapting large-scale models. *arXiv preprint arXiv:2203.17274*, 2022.563  
564 Malik Boudiaf, Romain Mueller, Ismail Ben Ayed, and Luca Bertinetto. Parameter-free online  
565 test-time adaptation. *2022 IEEE/CVF Conference on Computer Vision and Pattern Recog-  
566 nition (CVPR)*, pp. 8334–8343, 2022. URL <https://api.semanticscholar.org/CorpusID:246015836>.567  
568 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas  
569 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-  
570 reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recogni-  
571 tion at scale. In *International Conference on Learning Representations*, 2021. URL <https://openreview.net/forum?id=YicbFdNTTy>.572  
573 Matteo Farina, Gianni Franchi, Giovanni Iacca, Massimiliano Mancini, and Elisa Ricci. Frustrat-  
574 ingly easy test-time adaptation of vision-language models. In *The Thirty-eighth Annual Confer-  
575 ence on Neural Information Processing Systems*, 2024. URL <https://openreview.net/forum?id=eQ6VjBhevn>.576  
577 Jin Gao, Jialing Zhang, Xihui Liu, Trevor Darrell, Evan Shelhamer, and Dequan Wang. Back to  
578 the source: Diffusion-driven adaptation to test-time corruption. In *Proceedings of the IEEE/CVF  
579 Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 11786–11796, June 2023.580  
581 Taesik Gong, Jongheon Jeong, Taewon Kim, Yewon Kim, Jinwoo Shin, and Sung-Ju Lee. Note: Ro-  
582 bust continual test-time adaptation against temporal correlation. *Advances in Neural Information  
583 Processing Systems*, 35:27253–27266, 2022.584  
585 Nikolaus Hansen and Andreas Ostermeier. Completely derandomized self-adaptation in evolution  
586 strategies. *Evolutionary computation*, 9(2):159–195, 2001.587  
588 Nikolaus Hansen, Sibylle D Müller, and Petros Koumoutsakos. Reducing the time complexity of  
589 the derandomized evolution strategy with covariance matrix adaptation (cma-es). *Evolutionary  
computation*, 11(1):1–18, 2003.590  
591 Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common cor-  
592 ruptions and perturbations. *arXiv preprint arXiv:1903.12261*, 2019a.593  
594 Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common cor-  
595 ruptions and perturbations. *arXiv preprint arXiv:1903.12261*, 2019b.

594 Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul  
 595 Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, Dawn Song, Jacob Steinhardt, and Justin Gilmer.  
 596 The many faces of robustness: A critical analysis of out-of-distribution generalization. *ICCV*,  
 597 2021.

598 Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network, 2015.  
 599 URL <https://arxiv.org/abs/1503.02531>.

600 Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-  
 601 trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint*  
 602 *arXiv:2410.21276*, 2024.

603 Yusuke Iwasawa and Yutaka Matsuo. Test-time classifier adjustment module for model-agnostic  
 604 domain generalization. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman  
 605 Vaughan (eds.), *Advances in Neural Information Processing Systems*, volume 34, pp. 2427–2440.  
 606 Curran Associates, Inc., 2021. URL [https://proceedings.neurips.cc/paper\\_files/paper/2021/file/1415fe9fea0fa1e45ddd5f5682239a0-Paper.pdf](https://proceedings.neurips.cc/paper_files/paper/2021/file/1415fe9fea0fa1e45ddd5f5682239a0-Paper.pdf).

607 Adilbek Karmanov, Dayan Guan, Shijian Lu, Abdulmotaleb El Saddik, and Eric Xing. Efficient  
 608 test-time adaptation of vision-language models. *The IEEE/CVF Conference on Computer Vision  
 609 and Pattern Recognition*, 2024.

610 Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang, Akshay Bal-  
 611 subramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips, Irena Gao, et al. Wilds: A  
 612 benchmark of in-the-wild distribution shifts. In *International conference on machine learning*,  
 613 pp. 5637–5664. PMLR, 2021.

614 Youngjun Lee, Doyoung Kim, Junhyeok Kang, Jihwan Bang, Hwanjun Song, and Jae-Gil Lee. RA-  
 615 TTA: Retrieval-augmented test-time adaptation for vision-language models. In *The Thirteenth  
 616 International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=V3zobHnS61>.

617 Shihong Liu, Samuel Yu, Zhiqiu Lin, Deepak Pathak, and Deva Ramanan. Language models as  
 618 black-box optimizers for vision-language models. In *Proceedings of the IEEE/CVF Conference  
 619 on Computer Vision and Pattern Recognition*, pp. 12687–12697, 2024.

620 Sijia Liu, Bhavya Kailkhura, Pin-Yu Chen, Paishun Ting, Shiyu Chang, and Lisa Amini. Zeroth-  
 621 order stochastic variance reduction for nonconvex optimization. *Advances in neural information  
 622 processing systems*, 31, 2018.

623 Sijia Liu, Pin-Yu Chen, Bhavya Kailkhura, Gaoyuan Zhang, Alfred O. Hero III, and Pramod K.  
 624 Varshney. A primer on zeroth-order optimization in signal processing and machine learning:  
 625 Principles, recent advances, and applications. *IEEE Signal Processing Magazine*, 37(5):43–54,  
 626 2020. doi: 10.1109/MSP.2020.3003837.

627 Shu Manli, Nie Weili, Huang De-An, Yu Zhiding, Goldstein Tom, Anandkumar Anima, and Xiao  
 628 Chaowei. Test-time prompt tuning for zero-shot generalization in vision-language models. In  
 629 *NeurIPS*, 2022.

630 Fan'an Meng, Chaoran Cui, Hongjun Dai, and Shuai Gong. Black-box test-time prompt tuning  
 631 for vision-language models. In *Proceedings of the AAAI Conference on Artificial Intelligence*,  
 632 volume 39, pp. 6099–6107, 2025.

633 Weili Nie, Brandon Guo, Yujia Huang, Chaowei Xiao, Arash Vahdat, and Animashree Anandkumar.  
 634 Diffusion models for adversarial purification. In *International Conference on Machine Learning*,  
 635 pp. 16805–16827. PMLR, 2022.

636 Shuacheng Niu, Guohao Chen, Peilin Zhao, Tianyi Wang, Pengcheng Wu, and Zhiqi Shen. Self-  
 637 bootstrapping for versatile test-time adaptation. In *Forty-second International Conference on  
 638 Machine Learning*.

639 Shuacheng Niu, Jiaxiang Wu, Yifan Zhang, Yaofu Chen, Shijian Zheng, Peilin Zhao, and Mingkui  
 640 Tan. Efficient test-time model adaptation without forgetting. In *The International Conference on  
 641 Machine Learning*, 2022.

648 Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Zhiqian Wen, Yaofu Chen, Peilin Zhao, and Mingkui  
 649 Tan. Towards stable test-time adaptation in dynamic wild world. In *International Conference on*  
 650 *Learning Representations*, 2023.

651

652 Shuaicheng Niu, Chunyan Miao, Guohao Chen, Pengcheng Wu, and Peilin Zhao. Test-time model  
 653 adaptation with only forward passes. In *Forty-first International Conference on Machine Learn-*  
 654 *ing*, 2024. URL <https://openreview.net/forum?id=qz1Vx1v9iK>.

655 Changdae Oh, Hyeji Hwang, Hee-young Lee, YongTaek Lim, Geunyoung Jung, Jiyoung Jung,  
 656 Hosik Choi, and Kyungwoo Song. Blackvip: Black-box visual prompting for robust transfer  
 657 learning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-*  
 658 *nition (CVPR)*, pp. 24224–24235, June 2023.

659

660 Yassine Ouali, Adrian Bulat, Brais Martinez, and Georgios Tzimiropoulos. Black box few-shot  
 661 adaptation for vision-language models. In *Proceedings of the International Conference on Com-*  
 662 *puter Vision (ICCV)*, 2023.

663 Seonghwan Park, Jaehyeon Jeong, Yongjun Kim, Jaeho Lee, and Namhoon Lee. ZIP: An efficient  
 664 zeroth-order prompt tuning for black-box vision-language models. In *The Thirteenth Interna-*  
 665 *tional Conference on Learning Representations*, 2025. URL [https://openreview.net/](https://openreview.net/forum?id=20egVbwvY2)  
 666 [forum?id=20egVbwvY2](https://openreview.net/forum?id=20egVbwvY2).

667

668 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,  
 669 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual  
 670 models from natural language supervision. In *International conference on machine learning*, pp.  
 671 8748–8763. PMLR, 2021.

672 Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do imagenet classifiers  
 673 generalize to imagenet? In *International conference on machine learning*, pp. 5389–5400. PMLR,  
 674 2019.

675

676 Divya Shanmugam, Davis Blalock, Guha Balakrishnan, and John Guttag. Better aggregation in  
 677 test-time augmentation. In *Proceedings of the IEEE/CVF international conference on computer*  
 678 *vision*, pp. 1214–1223, 2021.

679

680 James C Spall. Multivariate stochastic approximation using a simultaneous perturbation gradient  
 681 approximation. *IEEE transactions on automatic control*, 37(3):332–341, 1992.

682

683 James C Spall. A one-measurement form of simultaneous perturbation stochastic approximation.  
*Automatica*, 33(1):109–112, 1997.

684

685 Haotian Sun, Yuchen Zhuang, Wei Wei, Chao Zhang, and Bo Dai. BBox-adapter: Lightweight  
 686 adapting for black-box large language models. In Ruslan Salakhutdinov, Zico Kolter, Katherine  
 687 Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), *Pro-*  
 688 *ceedings of the 41st International Conference on Machine Learning*, volume 235 of *Pro-*  
 689 *ceedings of Machine Learning Research*, pp. 47280–47304. PMLR, 21–27 Jul 2024. URL <https://proceedings.mlr.press/v235/sun24p.html>.

690

691 Tianxiang Sun, Yunfan Shao, Hong Qian, Xuanjing Huang, and Xipeng Qiu. Black-box tuning for  
 692 language-model-as-a-service. In *Proceedings of ICML*, 2022.

693

694 Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller, Alexei Efros, and Moritz Hardt. Test-time train-  
 695 ing with self-supervision for generalization under distribution shifts. In *International conference*  
 696 *on machine learning*, pp. 9229–9248. PMLR, 2020.

697

698 Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,  
 699 Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly  
 700 capable multimodal models. *arXiv preprint arXiv:2312.11805*, 2023.

701

Yun-Yun Tsai, Pin-Yu Chen, and Tsung-Yi Ho. Transfer learning without knowing: Reprogramming  
 black-box machine learning models with scarce data and limited resources. In *International*  
*Conference on Machine Learning*, pp. 9614–9624. PMLR, 2020.

702 Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Olshausen, and Trevor Darrell. Tent: Fully  
 703 test-time adaptation by entropy minimization. In *International Conference on Learning Representations*, 2021. URL <https://openreview.net/forum?id=uXl3bZLkr3c>.  
 704

705 Haohan Wang, Songwei Ge, Zachary Lipton, and Eric P Xing. Learning robust global representations  
 706 by penalizing local predictive power. In *Advances in Neural Information Processing Systems*, pp. 10506–10518, 2019.  
 707

709 Qin Wang, Olga Fink, Luc Van Gool, and Dengxin Dai. Continual test-time domain adaptation.  
 710 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.  
 711 7201–7211, 2022.

712 Zhengbo Wang, Jian Liang, Ran He, Zilei Wang, and Tieniu Tan. Connecting the dots: Collaborative  
 713 fine-tuning for black-box vision-language models. In *Proceedings of International Conference on*  
 714 *Machine Learning (ICML)*, 2024a.

716 Zixin Wang, Dong Gong, Sen Wang, Zi Huang, and Yadan Luo. Is less more? exploring token  
 717 condensation as training-free test-time adaptation. *arXiv preprint arXiv:2410.14729*, 2024b.

718 Zehao Xiao, Shilin Yan, Jack Hong, Jiayin Cai, Xiaolong Jiang, Yao Hu, Jiayi Shen, Qi Wang, and  
 719 Cees GM Snoek. Dynaprompt: Dynamic test-time prompt tuning. In *The Thirteenth International*  
 720 *Conference on Learning Representations*, 2025.

722 Ce Zhang, Simon Stepputtis, Katia P. Sycara, and Yaqi Xie. Dual prototype evolving for test-time  
 723 generalization of vision-language models. In *The Thirty-eighth Annual Conference on Neural*  
 724 *Information Processing Systems*, 2024a. URL <https://openreview.net/forum?id=jsgYYXaSiS>.

726 Yihua Zhang, Pingzhi Li, Junyuan Hong, Jiaxiang Li, Yimeng Zhang, Wenqing Zheng, Pin-Yu Chen,  
 727 Jason D Lee, Wotao Yin, Mingyi Hong, et al. Revisiting zeroth-order optimization for memory-  
 728 efficient llm fine-tuning: a benchmark. In *Proceedings of the 41st International Conference on*  
 729 *Machine Learning*, pp. 59173–59190, 2024b.

730 Yunbei Zhang, Akshay Mehra, and Jihun Hamm. OT-VP: Optimal transport-guided visual prompt-  
 731 ing for test-time adaptation. In *Proceedings of the Winter Conference on Applications of Computer*  
 732 *Vision (WACV)*, pp. 1122–1132, February 2025a.

734 Yunbei Zhang, Akshay Mehra, Shuaicheng Niu, and Jihun Hamm. DPCore: Dynamic prompt  
 735 coresset for continual test-time adaptation. In *Forty-second International Conference on Machine*  
 736 *Learning*, 2025b. URL <https://openreview.net/forum?id=A6zDim0rQf>.

737 Shuai Zhao, Xiaohan Wang, Linchao Zhu, and Yi Yang. Test-time adaptation with CLIP reward  
 738 for zero-shot generalization in vision-language models. In *The Twelfth International Conference*  
 739 *on Learning Representations*, 2024. URL <https://openreview.net/forum?id=kIP0duasBb>.

741 Lihua Zhou, Mao Ye, Shuaifeng Li, Nianxin Li, Xiatian Zhu, Lei Deng, Hongbin Liu, and Zhen  
 742 Lei. Bayesian test-time adaptation for vision-language models. In *Proceedings of the Computer*  
 743 *Vision and Pattern Recognition Conference*, pp. 29999–30009, 2025.

745

746

747

748

749

750

751

752

753

754

755

756  
 757  
 758  
 759 **Appendix**  
 760

761 **A ADDITIONAL EXPERIMENTAL DETAILS**  
 762

763 **A.1 BASELINES AND IMPLEMENTATION DETAILS**  
 764

765 We compare BETA against a comprehensive suite of baselines with varying levels of model access,  
 766 including white-box, gray-box, and black-box methods.  
 767

768 The following methods are applicable to both standard Vision Models (VMs) and Vision-Language  
 769 Models (VLMs):  
 770

771 **Tent** (Wang et al., 2021) is a **white-box** method for fully test-time adaptation, which adapts a pre-  
 772 trained model to a new test distribution without requiring any source data. The core idea is to  
 773 encourage model confidence on the unlabeled test data by minimizing the Shannon entropy of its  
 774 predictions for each incoming batch. To achieve this efficiently, Tent does not update the entire  
 775 model; instead, it exclusively adapts the parameters within the model’s normalization layers. For  
 776 each test batch, it first updates the normalization statistics during the forward pass and then optimizes  
 777 the learnable channel-wise affine transformation parameters via backpropagation on the entropy loss.  
 778

779 **SAR** (Niu et al., 2023) is a **white-box** method designed to stabilize online Test-Time Adaptation in  
 780 challenging “wild” scenarios, such as with mixed domain shifts or small batch sizes, where standard  
 781 entropy minimization can fail. The method identifies that model collapse during adaptation is often  
 782 caused by noisy test samples producing large, disruptive gradients. To mitigate this, SAR employs  
 783 a two-part strategy: it first filters out unreliable, high-entropy samples to reduce noise. For the  
 784 remaining data, it then uses a sharpness-aware optimizer to guide the model parameters into a flat  
 785 region of the loss landscape, enhancing robustness against any remaining noisy updates.  
 786

787 **Continual Test-Time Adaptation (CoTTA)** (Wang et al., 2022) is a **white-box** method designed  
 788 to adapt models to continually changing target domains, addressing the challenges of error ac-  
 789 cumulation and catastrophic forgetting. To generate more reliable pseudo-labels, it employs a  
 790 teacher-student framework where the student model is updated based on the weight-averaged and  
 791 augmentation-averaged predictions of the teacher. To prevent catastrophic forgetting over long-term  
 792 adaptation, CoTTA stochastically restores a small fraction of the student model’s weights to their  
 793 original source-trained values during the update process. The method is designed to adapt all pa-  
 794 rameters of the network.  
 795

796 **Test-Time Template Adjuster (T3A)** (Iwasawa & Matsuo, 2021) is a **gray-box** method for do-  
 797 main generalization that adapts a model’s final linear classifier at test time. The method is  
 798 backpropagation-free and works by first computing class-specific “pseudo-prototype” represen-  
 799 tations from the features of unlabeled test data. Once these prototypes are established, it classifies  
 800 each new test sample based on its distance to these dynamically adjusted prototypes. This allows  
 801 the model to leverage information from the target domain without requiring extensive optimization  
 802 or altering the core feature extractor.  
 803

804 **Forward-Optimization Adaptation (FOA)**<sup>2</sup> (Niu et al., 2024) is a **gray-box** method designed for  
 805 test-time adaptation in scenarios where backpropagation is infeasible, such as on quantized mod-  
 806 els or edge devices. The approach is entirely training-free and avoids modifying model weights by  
 807 learning an additive input prompt using a derivative-free optimizer (CMA-ES). To guide this op-  
 808 timization, FOA introduces a novel fitness function that combines prediction entropy with a term  
 809 measuring the statistical discrepancy between the test sample’s activations and pre-computed source  
 810 data activations. The framework also includes a “back-to-source” activation shifting scheme that di-  
 811 rectly modifies the final layer’s features during the forward pass to better align them with the source  
 812 domain.  
 813

814 **LAME** (Boudiaf et al., 2022) is a **black-box** method for online test-time adaptation that oper-  
 815 ates without requiring access to model parameters or gradients. Instead of adapting the network’s  
 816 weights, it adapts the model’s output probabilities directly for a given batch of test data. The method  
 817

818  
 819 <sup>2</sup>FOA uses entropy minimization instead of activation discrepancy for source-free settings where source  
 820 statistics are unavailable in our experiments.  
 821

810 proposes a Laplacian Adjusted Maximum-likelihood Estimation (LAME) objective, which finds the  
 811 optimal latent class assignments by maximizing the data likelihood while being regularized by a  
 812 Laplacian term that encourages label consistency among neighboring samples in the feature space.  
 813 This objective is optimized efficiently using a concave-convex procedure and does not require back-  
 814 propagation.

815 In contrast to the methods above, the following baselines are designed specifically for the adaptation  
 816 of Vision-Language Models:

817 **Test-Time Prompt Tuning (TPT)** (Manli et al., 2022) is a **white-box** method that adapts Vision-  
 818 Language Models like CLIP using only a single unlabeled test sample. For each test image, TPT  
 819 creates multiple augmented views and optimizes a learnable text prompt via backpropagation to  
 820 enforce prediction consistency across them. The optimization is guided by minimizing the entropy  
 821 of the averaged predictions, and a confidence selection module filters out noisy augmentations that  
 822 yield low-confidence outputs. TPT performs a one-step update on the prompt for each test sample.

823 **Dual Prototype Evolving (DPE)** (Zhang et al., 2024a) is a **white-box** method that performs test-  
 824 time adaptation for VLMs by accumulating task-specific knowledge from both visual and textual  
 825 modalities. The method maintains and evolves two sets of class prototypes—one textual and one  
 826 visual—which are updated online as more test samples are processed. For each individual test  
 827 sample, DPE learns temporary residual parameters to adjust both sets of prototypes. This sample-  
 828 specific optimization is guided by a dual objective that encourages prediction consistency across  
 829 augmented views and enforces alignment between the textual and visual prototypes for each class.

830 **DynaPrompt** (Xiao et al., 2025) is a **white-box** method that improves online test-time prompt tun-  
 831 ing by leveraging information from previous test samples while mitigating the problem of prompt  
 832 collapse. The core of the method is an online prompt buffer containing a set of learnable prompts  
 833 that evolve over time. For each new test sample, DynaPrompt employs a dynamic selection strategy  
 834 based on prediction entropy and probability difference to choose a relevant subset of prompts from  
 835 the buffer for optimization. To adapt to new data, the framework also dynamically appends new  
 836 prompts to the buffer and removes inactive ones.

837 **B<sup>2</sup>TPT** (Meng et al., 2025) is a **gray-box** method that addresses test-time prompt tuning for black-  
 838 box Vision-Language Models (VLMs) where gradients are inaccessible. To overcome this, it em-  
 839 ploys a derivative-free algorithm (CMA-ES) to optimize low-dimensional “intrinsic prompts,” which  
 840 are then projected into the full prompt space to make the high-dimensional optimization tractable.  
 841 For supervision, the framework uses a “Consistent or Confident” (CoC) pseudo-labeling strategy  
 842 to generate labels from the model’s outputs. The method jointly optimizes text and vision prompts  
 843 using a frozen CLIP ViT-B/16 backbone.

844 **Training-free Dynamic Adapter (TDA)** (Karmanov et al., 2024) is a **gray-box** method designed  
 845 for efficient test-time adaptation of Vision-Language Models without requiring backpropagation.  
 846 The method constructs a lightweight key-value cache during inference, which is progressively up-  
 847 dated with incoming test samples. This cache consists of two components: a positive cache that  
 848 stores image features and their corresponding high-confidence pseudo-labels, and a novel negative  
 849 cache that stores negative pseudo-labels to improve robustness against label noise. The final predic-  
 850 tion is a combination of the original CLIP output and the predictions derived from both the positive  
 851 and negative caches.

852 **Retrieval-Augmented TTA (RA-TTA)** (Lee et al., 2025) is a **gray-box** method that adapts Vision-  
 853 Language Models by incorporating external knowledge from a large image database at test time.  
 854 Instead of a direct image-to-image search, RA-TTA uses a novel description-based retrieval process  
 855 to find more relevant external images. For a given test image, it first identifies its most prominent  
 856 visual features by selecting matching fine-grained text descriptions from a pre-compiled library.  
 857 These selected text descriptions are then used as queries to retrieve semantically similar images  
 858 from the database, and the VLM’s initial prediction is refined using a relevance score derived from  
 859 this external knowledge.

860 **Bayesian Class Adaptation (BCA)** (Zhou et al., 2025) is a **gray-box** method that adapts Vision-  
 861 Language Models by updating both the class likelihood and prior at test time. It frames the adap-  
 862 tation problem using Bayes’ theorem, identifying that existing methods only adapt the likelihood  
 863 (class embeddings) while overlooking the class prior, which can shift in new domains. BCA em-

864 ploys a dual-update mechanism: it adapts the likelihood by updating the most relevant class em-  
 865 bedding with an incoming visual feature via a running average. Concurrently, it adapts the prior by  
 866 using the model’s posterior prediction for the current sample to update the prior distribution of the  
 867 predicted class, allowing the model to learn the new class frequencies on the fly.

868 **Token Condensation as Adaptation (TCA)** (Wang et al., 2024b) is a **gray-box** method that pro-  
 869 vides an efficient, training-free solution for test-time adaptation in Vision-Language Models. The  
 870 method uniquely repurposes token condensation, a technique originally for improving ViT effi-  
 871 ciency, as an adaptation mechanism. It introduces a domain-aware token reservoir that stores reliable  
 872 class tokens from past test samples to serve as domain anchors. These anchors guide both a cross-  
 873 head token condensation process, which prunes irrelevant visual tokens, and a logits self-correction  
 874 mechanism that refines the model’s final prediction.

## 878 A.2 DETAILED ANALYSIS OF MODEL ACCESSIBILITY AND SECURITY CONSTRAINTS

880 In this section, we provide a rigorous definition of the black-box setting adopted in this work. While  
 881 prior literature often conflates different levels of restricted access, we draw sharp distinctions be-  
 882 tween access to *raw logits*, *softmax probabilities*, and *hard predictions*. This distinction is critical  
 883 for evaluating the practical applicability of Test-Time Adaptation (TTA) methods on real-world com-  
 884 mercial APIs.

885 **Mathematical Definitions of Output Levels.** Let  $f_\theta(x)$  denote the pre-trained model. We distin-  
 886 guish between three specific levels of output granularity: 1). *Raw Logits* ( $z$ ): The pre-activation  
 887 output vector  $z \in \mathbb{R}^C$ , where values are unbounded ( $-\infty < z_i < \infty$ ) and unnormalized. 2). *Soft-  
 888 max Probability Vector* ( $p$ ): The normalized output distribution obtained via the softmax function  
 889  $\sigma(\cdot)$ , such that  $p = \sigma(z) \in [0, 1]^C$  with  $\sum_i p_i = 1$ . 3). *Top-1 Hard Prediction* ( $\hat{y}$ ): A single scalar  
 890 value representing the class index with the highest confidence,  $\hat{y} = \arg \max_i p_i$ , often accompanied  
 891 by a single confidence score.

892 **Real-World API Protocols.** To determine the most realistic setting for black-box adaptation, we  
 893 analyze standard commercial Machine Learning APIs (e.g., OpenAI (Hurst et al., 2024), Clarifai,  
 894 Google Cloud Vision).

- 895 • *Why not Raw Logits?* Access to  $z$  is frequently restricted as a security measure. Raw  
 896 logits contain rich information regarding inter-class relationships (“dark knowledge”) that  
 897 significantly facilitates Model Extraction attacks and Knowledge Distillation (Hinton et al.,  
 898 2015). By hiding  $z$ , API providers mitigate the risk of model theft.
- 899 • *Why Softmax Probabilities?* Most commercial APIs return the probability distribution  $p$   
 900 rather than a single hard label  $\hat{y}$ . This is because downstream users typically require con-  
 901 fidence estimates to make informed decisions (e.g., thresholding low-confidence pre-  
 902 dictions).

903 **Justification for BETA’s Setting.** Based on these protocols, we define the strict *Black-Box* set-  
 904 ting as one where the *Softmax Probability Vector*  $p$  is available, but *Raw Logits*  $z$  are hidden. This  
 905 setting strikes the balance found in real-world deployments: it provides more information than the  
 906 restrictive *Label-Only* setting (which only provides  $\hat{y}$ ), enabling unsupervised objectives like en-  
 907 tropy minimization ( $H(p) = -\sum p_i \log p_i$ ). In contrast, we classify methods that require access  
 908 to raw logits  $z$  (e.g., for temperature scaling  $z/\tau$  or re-normalization (Farina et al., 2024)) as *Gray-  
 909 Box*. While these methods do not require gradients, they rely on information often hidden in secure  
 910 deployment environments.

## 914 B ADDITIONAL EXPERIMENTAL RESULTS

918  
919  
920  
Table 7: Performance comparison on ImageNet Variants with CLIP-B/16. BETA outperforms strong  
921 augmentation-based and gray-box baselines while requiring only a single API call per image.

| Method                         | IN-Sketch   | IN-R        | IN-A        | IN-v2       | ImageNet    | Avg. Acc    | Gain        | # API/Img |
|--------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-----------|
| Source                         | 46.1        | 74.0        | 47.9        | 60.9        | 66.7        | 59.1        | -           | 1         |
| LAME                           | 45.4        | 72.8        | 48.1        | 61.6        | 66.7        | 58.9        | -0.2        | 1         |
| <b>ZOO-SPSA-GC</b>             | 46.0        | 72.8        | 50.2        | 61.5        | 65.8        | 59.3        | +0.1        | 16        |
| B <sup>2</sup> TPT (w/ tokens) | 49.5        | 78.6        | 55.3        | 65.4        | 69.6        | 63.7        | +4.6        | 120       |
| ZERO (w/ logits)               | 48.4        | 77.2        | 59.6        | 64.2        | 69.3        | 63.7        | +4.6        | 64        |
| ZERO_ensemble (w/ logits)      | 50.6        | 80.8        | 62.8        | 65.2        | 71.2        | 66.1        | +7.0        | 448       |
| <b>BETA (Ours)</b>             | <b>50.9</b> | <b>76.0</b> | <b>62.8</b> | <b>65.1</b> | <b>77.5</b> | <b>66.5</b> | <b>+7.4</b> | <b>1</b>  |

922  
923  
924  
925  
926  
927  
928  
929  
930  
931  
932  
Table 8: Performance on the fine-grained EuroSAT dataset with CLIP-B/16. BETA achieves signif-  
933 icant gains (+11.3%) with high efficiency.

| Method                         | Accuracy (%) | Gain (%)     | # API/Img |
|--------------------------------|--------------|--------------|-----------|
| Source                         | 42.0         | -            | 1         |
| B <sup>2</sup> TPT (w/ tokens) | 46.8         | +4.8         | 120       |
| ZERO (w/ logits)               | 39.6         | -2.4         | 64        |
| ZERO_ensemble (w/ logits)      | 43.8         | +1.8         | 448       |
| <b>BETA (Ours)</b>             | <b>53.3</b>  | <b>+11.3</b> | <b>1</b>  |

## 934 935 936 937 938 B.1 BETA’S PERFORMANCE ON OTHER IMAGENET VARIANTS AND EUROSAT

939  
940  
941  
942 To provide a comprehensive evaluation, we extend our comparisons to include augmentation-based  
943 strategies and recent methods tailored for Vision-Language Models (VLMs). Specifically, we com-  
944 pare BETA against **ZERO** Farina et al. (2024), a test-time augmentation method that optimizes  
945 temperature using input augmentations. We note that while ZERO requires access to raw log-  
946 its—violating strict black-box API constraints that typically only provide probabilities—we grant  
947 it this access for a rigorous upper-bound comparison. We evaluate both the standard ZERO (64  
948 calls/image) and **ZERO\_ensemble** (448 calls/image, using 7 text templates). We also include  
949 **B<sup>2</sup>TPT** Meng et al. (2025), a recent prompt tuning method for VLMs.  
950  
951

952  
953  
954 **Classification of B<sup>2</sup>TPT as Gray-Box.** We categorize B<sup>2</sup>TPT as a gray-box method because it  
955 operates by modifying inputs in the embedding space. Specifically, it prepends learnable vectors  
956 directly to the text and image embeddings ( $e_t$  and  $e_v$ ), requiring internal access to the model’s  
957 intermediate feature representations. This contrasts with the strict black-box setting of commercial  
958 APIs, which accept only raw image or text inputs. Furthermore, its underlying optimization (CMA-  
959 ES) is query-intensive, requiring approximately 120 API calls per input.  
960  
961

962 **Results on ImageNet Variants and EuroSAT.** We evaluate these baselines on the full suite of  
963 ImageNet variants (ImageNet-S, R, A, v2, and standard ImageNet) and the challenging fine-grained  
964 EuroSAT dataset. The results are summarized in Table 7 and Table 8.

965 BETA consistently outperforms these query-intensive baselines while maintaining strict API effi-  
966 ciency. On the ImageNet variants (Table 7), BETA achieves the highest average accuracy of 66.5%,  
967 surpassing the ensemble version of ZERO (66.1%) which requires 448 API calls per image. The effi-  
968 ciency gap is even more pronounced on EuroSAT (Table 8), where BETA achieves a substantial gain  
969 of +11.3% over the source model with a single API call, whereas augmentation baselines struggle  
970 or yield marginal gains despite their high computational cost. This demonstrates that BETA’s effec-  
971 tiveness stems from learned adaptation rather than simple data augmentation, making it a far more  
972 practical solution for real-world deployment where API costs and rate limits are critical constraints.

972 Table 9: White-box TTA performance on the ViT-Small steering model on ImageNet-C. The results  
 973 show that even when fully adapted, the steering model’s performance is capped well below that of  
 974 the unadapted black-box target models, highlighting the effectiveness of our steering mechanism.

|             | Source | TENT  | T3A  | SAR   | CoTTA | LAME |
|-------------|--------|-------|------|-------|-------|------|
| <b>Avg.</b> | 39.5   | 51.9  | 40.4 | 57.4  | 46.0  | 38.9 |
| <b>Gain</b> | 0.0    | +12.4 | +0.9 | +17.9 | +6.5  | -0.6 |

981 Table 10: Comparison between Test-Time Knowledge Distillation (KD) and BETA on ImageNet-C.  
 982 While KD is upper-bounded by the teacher’s performance, BETA successfully adapts the black-box  
 983 model to surpass its original baseline.

| Model Role             | Architecture | Method             | Avg. Acc (%) |
|------------------------|--------------|--------------------|--------------|
| Local Steering Model   | ViT-S/16     | Source             | 39.5         |
|                        |              | TENT               | 51.9         |
|                        |              | KD (from ViT-B/16) | 50.3         |
| Black-Box Target Model | ViT-B/16     | Source             | 55.5         |
|                        |              | <b>BETA (Ours)</b> | <b>62.6</b>  |

## B.2 LOCAL STEERING MODEL BASELINES

### B.2.1 WHITE-BOX TTA PERFORMANCE ON STEERING MODEL.

998 To demonstrate that BETA’s improvement is non-trivial and not simply a result of relying on the  
 999 steering model’s outputs, we present the white-box adaptation performance of the ViT-Small steering  
 1000 model in Table 9. There exists a substantial performance gap between the pre-trained steering  
 1001 model (39.5% accuracy on ImageNet-C) and the target black-box models (e.g., ViT-L/16 at 61.1%  
 1002 accuracy). Even when the steering model itself is fully adapted in a white-box setting with a strong  
 1003 method like SAR, its performance is capped at 57.4%. This is still well below the starting accuracy  
 1004 of the black-box model it is meant to guide. This highlights that BETA successfully leverages this  
 1005 weaker, suboptimal steering model not for its direct predictions, but to discover and transfer ben-  
 1006 efiticial adaptation signals to the far more powerful black-box model without requiring any internal  
 1007 access.

### B.2.2 COMPARISON WITH TEST-TIME KNOWLEDGE DISTILLATION

1012 A natural question arises as to whether BETA’s improvements stem from simply distilling the pow-  
 1013 erful black-box model’s knowledge into the local steering model. To investigate this, and to verify  
 1014 that our framework is not merely performing Test-Time Knowledge Distillation (KD), we imple-  
 1015 mented a KD baseline following the protocol in (Zhao et al., 2024). Specifically, we employed the  
 1016 black-box ViT-B/16 as the teacher and the local ViT-S/16 as the student, optimizing the student to  
 1017 match the teacher’s predictions on the target data.

1018 The results, summarized in Table 10, reveal a fundamental distinction between the two approaches.  
 1019 Standard distillation is inherently limited by the capacity of the student model; the distilled ViT-  
 1020 S/16 achieves only 50.3% accuracy, failing to even match the original performance of the black-box  
 1021 teacher (55.5%). This result is expected, as KD aims to mimic the teacher’s existing boundary rather  
 1022 than adapt it to the new domain.

1024 In sharp contrast, BETA achieves 62.6% accuracy, significantly surpassing the original black-box  
 1025 model. This confirms that BETA is not a distillation process where a student mimics a fixed  
 1026 teacher. Instead, BETA utilizes the local model to actively *adapt* the input prompts for the black-box

1026 model, allowing the final system to break through the performance ceiling of the original pre-trained  
 1027 weights.

### 1028 B.3 ZEROTH-ORDER OPTIMIZATION BASELINES

1029 As a direct approach to adapting the visual prompt  $\delta$  in a black-box setting, we evaluate several  
 1030 ZerOTH-Order Optimization (ZOO) baselines. These derivative-free methods optimize the prompt by  
 1031 minimizing a fitness function, which we define as the Shannon entropy of the black-box model’s  
 1032 predictions on the prompted input,  $f(\delta) = \mathcal{H}(p_B(x + \delta))$ . For a fair comparison, we configure all  
 1033 three ZOO methods to use 16 queries per test sample for their optimization process.

#### 1036 B.3.1 CMA-ES

1037 As a representative ZOO method, **Covariance Matrix Adaptation Evolution Strategy (CMA-ES)**  
 1038 is a derivative-free algorithm used to optimize a high-dimensional visual prompt where gradients  
 1039 are inaccessible (Hansen & Ostermeier, 2001; Hansen et al., 2003; Niu et al., 2024; Meng et al.,  
 1040 2025). In each iteration, CMA-ES samples a population of candidate prompts from a multivariate  
 1041 normal distribution and evaluates them using the fitness function. The goal is to find a prompt,  $\delta$ ,  
 1042 that minimizes this entropy, encouraging high-confidence predictions. Based on the performance of  
 1043 the sampled prompts, CMA-ES updates the mean and covariance matrix of the sampling distribution  
 1044 to guide the search towards more promising regions of the solution space.

#### 1046 B.3.2 RGF

1047 **Random Gradient-Free (RGF)** is a ZOO method that estimates the gradient of the fitness function  
 1048 by sampling multiple random directions from a standard Gaussian distribution (Liu et al., 2018;  
 1049 Tsai et al., 2020). For a given visual prompt  $\delta$ , RGF approximates the gradient by averaging the  
 1050 function’s response to small perturbations along these random directions, allowing it to descend  
 1051 the loss landscape without direct gradient calculations. The gradient approximation at iteration  $t$  is  
 1052 computed as:

$$1055 g_t(\delta_t) = \frac{1}{q} \sum_{i=1}^q \frac{f(\delta_t + \mu u_i) - f(\delta_t)}{\mu} u_i \quad (6)$$

1057 where  $u_i$  is a random direction vector drawn from  $\mathcal{N}(0, I)$ ,  $\mu$  is a small smoothing parameter, and  $q$   
 1058 is the number of directions sampled.

#### 1062 B.3.3 SPSA WITH GRADIENT CORRECTION (SPSA-GC)

1063 To optimize the visual prompt under black-box constraints, we adopt the Simultaneous Perturbation  
 1064 Stochastic Approximation with Gradient Correction (SPSA-GC) algorithm, as utilized in Black-  
 1065 VIP (Oh et al., 2023). SPSA is a highly efficient ZOO algorithm that estimates the gradient using  
 1066 only two queries per iteration (Spall, 1992). Unlike RGF, which requires sampling multiple direc-  
 1067 tions, SPSA perturbs the parameters in a single random direction and its opposite. The gradient  
 1068 approximation at iteration  $t$  for a visual prompt  $\delta_t$  is computed as:

$$1070 \hat{g}_t(\delta_t) = \frac{f(\delta_t + \mu \Delta_t) - f(\delta_t - \mu \Delta_t)}{2\mu} \Delta_t \quad (7)$$

1071 where  $\Delta_t$  is a random perturbation vector drawn from a Bernoulli distribution, and  $\mu$  is a small step  
 1072 size.

1073 **Gradient Correction.** While standard SPSA is query-efficient, the stochastic gradient estimate  $\hat{g}_t$   
 1074 can be noisy. To mitigate this, we employ the Gradient Correction mechanism proposed in Black-  
 1075 VIP (Oh et al., 2023). This method integrates Nesterov’s Accelerated Gradient (NAG) into the up-  
 1076 date rule, using a momentum accumulator to rectify the estimated gradient direction. By smoothing  
 1077 the optimization trajectory, SPSA-GC significantly enhances stability compared to vanilla SPSA,  
 1078 making it particularly suitable for the high-dimensional optimization of visual prompts.

1080 Table 11: API efficiency comparison: number of API calls per test sample and performance gain.  
1081

| Method             | #API Call per test sample | Accuracy (%) | Gain |
|--------------------|---------------------------|--------------|------|
| Source (Inference) | 1                         | 55.5         | 0    |
| LAME               | 1                         | 54.1         | -1.4 |
| ZOO-CMA            | 16                        | 54.5         | -1.0 |
| ZOO-RGF            | 16                        | 56.0         | +0.5 |
| <b>ZOO-SPSA-GC</b> | 16                        | 55.1         | -0.4 |
| <b>TTA-Aug</b>     | 64                        | 55.6         | +0.1 |
| <b>DDA</b>         | 2                         | 56.9         | +1.4 |
| <b>BETA</b>        | 1                         | 62.6         | +7.1 |

1092 **B.3.4 API EFFICIENCY COMPARISON ACROSS BLACK-BOX METHODS**  
1093

1094 Table 11 demonstrates BETA’s superior efficiency compared to existing black-box TTA methods.  
1095 While ZOO-based approaches (CMA, RGF, SPSA) require 16 API calls per test sample and achieve  
1096 modest or negative performance gains ranging from -1.0% to +0.5%, BETA achieves a substantial  
1097 +7.1% improvement with only a single API call per sample. This represents a 16 $\times$  reduction in API  
1098 usage while delivering significantly better adaptation performance. LAME, though equally efficient  
1099 with one API call, suffers from limited adaptive capacity due to its post-hoc output refinement  
1100 approach, resulting in a -1.4% performance drop. These results highlight BETA’s unique combination  
1101 of query efficiency and adaptation effectiveness in the black-box setting.

1102 **B.3.5 ORTHOGONALITY OF CONTRIBUTION: UNSUPERVISED OBJECTIVE VS. ZOO  
1103 ALGORITHMS**

1104 While we adopt the powerful ZOO algorithm like SPSA-GC (Oh et al., 2023) due to its superior ef-  
1105 ficiency, it is crucial to distinguish the role of the *ZOO algorithm* from the challenges inherent to the  
1106 *adaptation objective*. The efficacy of SPSA-GC was originally demonstrated in BlackVIP (Oh et al.,  
1107 2023) within a *supervised* few-shot transfer setting. In that context, the loss landscape is anchored  
1108 by ground-truth labels via a Cross-Entropy loss, providing a consistent and convex directional signal  
1109 for the zeroth-order estimator.

1110 In contrast, our strictly **unsupervised online setting** relies on objectives such as entropy minimization.  
1111 We observe that replacing the supervised loss with an unsupervised one fundamentally alters  
1112 the optimization landscape, making it prone to trivial solutions. As evidenced in our experimental  
1113 results, naively applying even a robust ZOO algorithm like SPSA-GC to this unsupervised objective  
1114 leads to prompt collapse, where the model exploits high-frequency patterns to minimize entropy  
1115 without preserving semantic integrity. Therefore, we clarify that our primary contribution does not  
1116 lie in the ZOO algorithm itself. Rather, our contribution is the **unsupervised stabilization frame-  
1117 work**: comprising Prediction Harmonization, the Coordinator architecture, and Consistency Regu-  
1118 larization. These mechanisms effectively constrain the optimization space, preventing the instability  
1119 inherent to source-free black-box adaptation and enabling effective Test-Time Adaptation.

1120 **B.4 ROBUSTNESS TO LABEL IMBALANCE AND CONTINUAL SHIFTS**  
1121

1122 While our primary evaluation follows the standard episodic adaptation setting, real-world data  
1123 streams often exhibit temporal correlations or non-stationary distributions. To validate the stabili-  
1124 ty of BETA in dynamic environments, we extend our evaluation on ImageNet-C (using ViT-B/16)  
1125 to include two challenging scenarios:

- **Label Imbalance** (Niu et al., 2023; Gong et al., 2022): Following the protocol established  
1126 in SAR (Niu et al., 2023), we evaluate performance on data streams with highly skewed  
1127 class distributions within each batch, simulating non-i.i.d. test streams.
- **Continual Domain Shifts** (Wang et al., 2022; Niu et al., 2022): Following the Continual  
1128 Test-Time Adaptation (CoTTA) setting (Wang et al., 2022), the model adapts to the 15

1134 Table 12: Robustness analysis on ImageNet-C (ViT-B/16) under Label Imbalance and Continual  
 1135 Domain Shift settings. BETA demonstrates minimal degradation compared to the standard setting,  
 1136 highlighting its stability in dynamic environments.

| Method                  | Gauss. | Shot | Impul. | Defoc. | Glass | Motion | Zoom | Snow | Frost | Fog  | Bright. | Contr. | Elastic | Pixel. | JPEG | Avg. |
|-------------------------|--------|------|--------|--------|-------|--------|------|------|-------|------|---------|--------|---------|--------|------|------|
| Source                  | 56.8   | 56.8 | 57.5   | 46.9   | 35.6  | 53.1   | 44.8 | 62.2 | 62.5  | 65.7 | 77.7    | 32.6   | 46.0    | 67.0   | 67.6 | 55.5 |
| BETA (Standard)         | 60.5   | 60.7 | 61.1   | 54.5   | 52.2  | 59.9   | 56.3 | 63.6 | 64.7  | 66.1 | 78.1    | 53.4   | 62.1    | 73.3   | 72.0 | 62.6 |
| BETA (Label Imbalance)  | 59.0   | 59.9 | 59.5   | 53.9   | 51.1  | 59.1   | 55.5 | 62.9 | 64.3  | 65.4 | 77.9    | 52.4   | 61.2    | 73.1   | 72.1 | 61.8 |
| BETA (Continual Shifts) | 59.5   | 61.0 | 60.4   | 52.3   | 51.4  | 58.4   | 55.2 | 61.8 | 63.3  | 63.8 | 77.4    | 51.8   | 61.7    | 72.5   | 71.3 | 61.5 |

1141

1142

1143 corruption domains of ImageNet-C sequentially without resetting the model state between  
 1144 domains.

1145

1146 The results are summarized in Table 12. BETA exhibits remarkable stability, maintaining high  
 1147 performance even under these challenging conditions. In the label imbalance setting, BETA achieves  
 1148 an average accuracy of 61.8%, and under continual shifts, it maintains 61.5%. This represents  
 1149 minimal degradation compared to the standard i.i.d. setting (62.6%).

1150

1151 **Why is BETA robust?** This robustness is intuitive given our framework’s design. Unlike white-box  
 1152 methods that directly update internal model parameters—a process known to risk catastrophic for-  
 1153 getting or overfitting to biased batches—BETA keeps the parameters of the black-box target model  
 1154 frozen. We exclusively learn an additive input prompt. Furthermore, the local steering model is  
 1155 updated with a conservative learning rate and strong consistency regularization, preventing the opti-  
 1156 mization trajectory from over-fitting to the dynamic changes or local biases in the data stream. This  
 1157 makes BETA naturally resilient to the instability often observed in dynamic test-time adaptation.

1158

1159

## B.5 MORE ABLATION STUDIES

1160

1161

### B.5.1 ANALYSIS ON STABILIZATION MECHANISMS

1162

1163

We conduct a component analysis to demonstrate the importance of our two stabilization mechanisms,

1164

1165

visualizing the online batch accuracy on the challenging ImageNet-C Contrast domain. The figure shows that the full BETA framework (“Ours”) rapidly achieves high accuracy and maintains stable performance across all 800 online batches. In contrast, removing the data filtering component (“w/o Data Filtering”) results in significantly lower and gradually decaying performance. More critically, removing the consistency regularization (“w/o KL Reg.”) leads to catastrophic collapse, with the model’s accuracy plummeting to near zero after approximately 400 batches. This analysis empirically validates that both the consistency regularization and the data filtering are essential for the stable and effective performance of BETA.

1178

1179

1180

1181

### B.5.2 ROBUSTNESS TO BATCH SIZE

1182

1183

1184

1185

1186

1187

In practical online deployment, the number of samples available for adaptation at any given time step can vary significantly. To assess BETA’s sensitivity to this factor, we evaluated its performance on ImageNet-C (ViT-B/16) using batch sizes ranging from 4 to 128. As shown in Table 13, BETA demonstrates high robustness to batch size variations. Even with a very small batch size of 4, where gradient estimates are typically noisy, BETA achieves an average accuracy of 59.3%, significantly outperforming the source model baseline of 55.5%. The performance consistently improves as the



Figure 6: Online Batch Accuracy on ImageNet-C Contrast domain.

1188 Table 13: Effect of Batch Size on Average Accuracy (%) on ImageNet-C. BETA consistently im-  
 1189 proves upon the Source model (55.5%) even when restricted to extremely small batch sizes.  
 1190

| Batch Size    | Source | 4    | 8    | 16   | 32   | 64   | 128  |
|---------------|--------|------|------|------|------|------|------|
| Avg. Accuracy | 55.5   | 59.3 | 60.1 | 62.3 | 62.5 | 62.6 | 62.6 |

1194 Table 14: Computational efficiency analysis on ImageNet-C (ViT-B/16). Comparison of API calls  
 1195 per image, local GPU memory usage, wall-clock time per image, and accuracy. BETA achieves  
 1196 superior performance with minimal latency, matching the speed of standard inference.  
 1197

| Method                     | # API Calls (per image) | Local Compute Required? | GPU Mem (MB) | Time/Img (s) | Avg. Acc (%) | Gain (%)    |
|----------------------------|-------------------------|-------------------------|--------------|--------------|--------------|-------------|
| Source                     | 1                       | ✗                       | -            | 0.045        | 55.5         | -           |
| LAME                       | 1                       | ✓                       | 2            | 0.046        | 54.1         | -1.4        |
| <b>ZOO-SPSA-GC</b>         | 16                      | ✓                       | 52           | 0.450        | 55.1         | -0.4        |
| TTA-Aug                    | 64                      | ✓                       | -            | 1.800        | 55.6         | +0.1        |
| DDA                        | 2                       | ✓                       | 23,427       | 12.722       | 56.9         | +1.4        |
| BETA (w/ ViT-Tiny)         | 1                       | ✓                       | 1,292        | 0.047        | 58.2         | +2.7        |
| <b>BETA (w/ ViT-Small)</b> | <b>1</b>                | <b>✓</b>                | <b>2,616</b> | <b>0.048</b> | <b>62.6</b>  | <b>+7.1</b> |

1208 batch size increases, saturating at 62.6% for batch sizes of 64 and above. This indicates that while  
 1209 larger batches provide more stable gradients, BETA remains effective even in low-data regimes.  
 1210

## 1212 B.6 COMPUTATIONAL EFFICIENCY AND REAL-TIME ADAPTATION

1214 To comprehensively assess the practicality of BETA, we analyze efficiency across two dimensions:  
 1215 API costs (query complexity) and local computational overhead. We further validate performance  
 1216 under a strict real-time streaming protocol, following (Alfarra et al.).

1217 **Detailed Efficiency Breakdown.** We conducted a granular breakdown of wall-clock latency and  
 1218 resource usage using a single NVIDIA RTX 3090 GPU. As summarized in Table 14, we compare  
 1219 BETA against baselines including ZOO-SPSA-GC and Test-Time Augmentation (TTA-Aug) (Shan-  
 1220 mugam et al., 2021).

1222 The analysis yields two critical insights. First, **local computation is negligible** compared to API  
 1223 latency. While BETA introduces a local steering model (ViT-Small), it requires only 2.6GB of GPU  
 1224 memory—feasible for consumer-grade hardware—and adds a trivial 0.003s overhead per image  
 1225 for the backward pass. The primary bottleneck in black-box adaptation is the API forward pass  
 1226 ( $T_{API} \approx 0.045s$ ), which is dominated by network latency. Second, **API calls dominate total**  
 1227 **latency**. Methods relying on multiple queries per image suffer from severe slowdowns. ZOO (16  
 1228 calls) and TTA-Aug (64 calls) are approximately 9.4× (0.450s) and 37.5× (1.800s) slower than  
 1229 BETA per image, respectively. This clarifies the context for “backpropagation-free” approaches in  
 1230 this setting: eliminating the local backward pass (0.003s) provides no practical speed benefit when  
 1231 the total time is dictated by the mandatory API call (0.045s).

1232 **Computationally Constrained Evaluation.** To further rigorously test feasibility in streaming sce-  
 1233 narios, we adopt the *Realistic Evaluation Protocol* from (Alfarra et al.). This protocol penalizes  
 1234 methods that cannot keep pace with a data stream arriving at the API’s maximum throughput speed  
 1235 ( $r = 1 \text{ img}/T_{API}$ ).

1236 We define the relative adaptation cost based on the total processing time per step:  $T_{Step} =$   
 1237  $\max(T_{API}, T_{Local\_Fwd}) + T_{Local\_Bwd}$ . Crucially, BETA allows for the parallelization of the lo-  
 1238 cal steering model’s forward pass with the API query latency. Since  $T_{API} \gg T_{Local\_Fwd}$ , the local  
 1239 forward cost is effectively hidden, leaving only the negligible backward pass. Consequently, BETA  
 1240 maintains a relative cost  $\mathcal{C} \approx 1$ , allowing it to adapt to virtually 100% of the data stream. In con-  
 1241 trast, query-intensive methods like ZOO incur massive adaptation lag ( $\mathcal{C} \gg 1$ ), forcing them to skip  
 adaptation for the majority of samples to maintain throughput.

1242 Table 15: Evaluation under Computational Time Constraints (Alfarra et al.). “Offline Acc” assumes  
 1243 unlimited time, while “Online Acc” simulates a realistic stream where slow methods must skip  
 1244 samples. BETA maintains performance due to its single-query efficiency.

| Method             | Offline Acc (%) | Online Acc (%) |
|--------------------|-----------------|----------------|
| Source             | 55.5            | 55.5           |
| LAME               | 54.1            | 54.1           |
| ZOO                | 56.0            | 54.3           |
| <b>BETA (Ours)</b> | <b>62.6</b>     | <b>62.5</b>    |

1252  
 1253 The results in Table 15 demonstrate the impact of this constraint. Under strict real-time conditions,  
 1254 ZOO’s performance drops to 54.3% (worse than the Source), as it updates too infrequently. BETA,  
 1255 however, maintains an accuracy of 62.5%, confirming it is a viable solution for real-time black-box  
 1256 adaptation.

## 1258 C USE OF LARGE LANGUAGE MODELS

1260 We used a Large Language Model to assist with language polishing and improving the readability  
 1261 of this manuscript. The authors are fully responsible for all research ideas, experimental results, and  
 1262 claims presented in this paper.

## 1264 D LIMITATIONS

1266 While BETA demonstrates strong performance and efficiency, its effectiveness is connected to the  
 1267 choice of the local steering model. In the current landscape, where most large-scale models are  
 1268 Transformer-based, our method is highly applicable, as finding a steering model with a similar ar-  
 1269 chitecture is straightforward. However, the performance could be suboptimal if the architectures  
 1270 of the steering and target models differ significantly. Although our experiments show that cross-  
 1271 architecture adaptation is effective (e.g., a CNN steering a Transformer), the improvements are  
 1272 slightly less pronounced than when using architecturally similar models. Another avenue for fu-  
 1273 ture research is extending this framework beyond classification to more versatile, generative tasks.  
 1274 Investigating how to adapt the harmonized objective for generative outputs, where the prediction  
 1275 space is vast and unstructured, would be a valuable next step.