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ABSTRACT

Test-Time Adaptation (TTA) for black-box models accessible only via APIs
presents a significant yet largely unexplored challenge. Existing truly black-box
methods are scarce; post-hoc output refinement shows minimal benefit, while
naively introducing Zeroth-Order Optimization (ZOO) for prompt tuning at test
time suffers from prohibitive query costs and catastrophic instability. To address
these challenges, we introduce BETA (Black-box Efficient Test-time Adaptation),
a novel framework that enables stable and efficient adaptation for both standard
Vision Models and large Vision-Language Models. BETA uniquely employs a
lightweight, local white-box steering model to create a tractable gradient pathway
for optimization, circumventing the need for expensive ZOO methods. This is
achieved through a prediction harmonization technique that creates a shared ob-
jective, stabilized by consistency regularization and a prompt learning-oriented fil-
tering strategy. Requiring only a single API call per test sample, BETA achieves a
+7.1% gain on a ViT-B/16 model and a +3.4% gain on powerful CLIP models; re-
markably, its performance surpasses that of certain white-box and gray-box TTA
methods (e.g., TENT and TPT). This practical effectiveness is further validated on
a real-world commercial API, where BETA achieves a +5.2% gain for just $0.4—a
250x cost advantage over ZOO—establishing it as a robust and efficient solution
for adapting models in the dark at test time. Code will be released.

1 INTRODUCTION

Modern deep learning models often face performance degradation when deployed in the wild due to
distribution shifts between their training data and the target domain (Recht et al., 2019; Hendrycks
& Dietterich, 2019b; Koh et al., 2021). Test-Time Adaptation (TTA) (Sun et al., 2020; Wang et al.,
2021; Niu et al., 2023; Wang et al., 2022; Manli et al., 2022) has emerged as a crucial approach to
address this challenge, aiming to adapt a pre-trained source model on-the-fly using unlabeled data
from the target domain. While model providers typically handle general updates, TTA empowers
users to develop stronger inference capabilities for fixed, pre-deployed APIs directly on their side,
ensuring performance on specific user-defined data streams. The feasibility of TTA strategies, how-
ever, is determined by the level of access to the model. While white-box access allows full parameter
and gradient manipulation (Wang et al., 2021; Niu et al., 2023), many state-of-the-art models are in-
creasingly deployed as opaque, black-box APIs (Hurst et al., 2024; Achiam et al., 2023; Team et al.,
2023). In this practical and restrictive setting, users can only provide an input and receive an output
prediction, with no access to the model’s architecture, parameters, or internal gradients (Sun et al.,
2024; Tsai et al., 2020; Ouali et al., 2023).

TTA in this strictest black-box setting remains a largely unexplored and formidable challenge. Un-
like offline transfer learning methods that rely on labeled support sets (few-shot) (Oh et al., 2023;
Park et al., 2025), we focus on the strictly online, source-free setting where the model must adapt
continuously to an unlabeled test stream. Recently, several backpropagation-free TTA methods have
been proposed to eliminate the need for gradient propagation (Niu et al., 2024; Karmanov et al.,
2024; Lee et al., 2025; Zhou et al., 2025). However, these approaches primarily target computational
efficiency—such as reducing GPU memory usage—rather than addressing privacy or commercial
constraints in black-box API scenarios (Niu et al., 2024; Meng et al., 2025). Consequently, these
methods fall into a “gray-box” category, as they require access to internal model tokens or intermedi-
ate features (detailed comparison in Table 1). Truly black-box TTA methods applicable to both VMs
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Table 1: Comparison of TTA methods across key capabilities. We evaluate each method’s require-
ments for accessing model parameters, internal tokens, intermediate features, and gradients, along-
side its visual encoder architectural flexibility, support for different model types (Vision models
(VMs)/Vision-Language models (VLMs)), and query efficiency (One API call per test sample).
Access Method w/o Params. w/o Tokens w/o Feats. w/o Grad. Arch-Agnostic VMs VLMs 1 API/Sample

TENT (Wang et al., 2021) ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓
TPT (Manli et al., 2022) ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✓

T3A (Iwasawa & Matsuo, 2021) ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✗
FOA (Niu et al., 2024) ✓ ✗ ✗ ✓ ViT-only ✓ ✓ ✗

B2TPT (Meng et al., 2025) ✓ ✗ ✓ ✓ ViT-only ✗ ✓ ✗
BCA (Zhou et al., 2025) ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✓

LAME (Boudiaf et al., 2022) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Augmentation (Farina et al., 2024) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗
Purification (Gao et al., 2023) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗
ZOO ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗
BETA (Ours) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

and VLMs are scarce, as adaptation is constrained to only the model’s inputs and outputs. While not
originally proposed for this setting, methods like LAME are applicable because they often operate
directly on output probabilities (Boudiaf et al., 2022). However, this post-hoc approach has limited
adaptive capacity and often fails to provide consistent improvements, leaving the problem of robust
black-box TTA largely open.

To address this critical gap, we explore the more powerful technique of learning an additive visual
prompt in the input space (Bahng et al., 2022). The most straightforward solution is to employ
Zeroth-Order Optimization (ZOO) (Liu et al., 2018; Spall, 1992; 1997; Hansen & Ostermeier, 2001;
Hansen et al., 2003), a strategy we investigate as a baseline. However, we find this approach suffers
from two critical limitations: prohibitively high query costs and catastrophic instability (Zhang et al.,
2024b; Wang et al., 2024a). This instability arises because the optimization is driven by noisy
unsupervised signals (e.g., entropy minimization) without true gradients. In high-dimensional input
spaces, this creates a variance-heavy estimation that can lead to degenerate solutions, corrupting the
model’s representations rather than adapting them. For example, accuracy on the Contrast corruption
collapses from 32.6% to as low as 4.1% with ZOO (Table 2). This motivates our development
of a new approach that is both highly efficient—ideally requiring only a single API call per test
sample—and robust against this optimization collapse.

We therefore propose BETA (Black-box Efficient Test-time Adaptation), a novel framework that
enables stable and efficient adaptation by leveraging a local, white-box steering model. Crucially,
this steering model acts as a local, client-side guide initialized from public checkpoints (e.g., Ima-
geNet), ensuring strict adherence to the black-box setting. It operates independently of the server-
side API, requiring zero access to the proprietary target model’s internals or training data, thus
preserving complete privacy and security. Our initial analysis revealed that naively transferring
gradients from the steering model is ineffective, as the gradient similarity between different archi-
tectures is near zero (see Fig. 2). This finding motivates our alternative approach, which moves
beyond direct gradient approximation.

BETA’s core mechanism is a prediction harmonization technique that fuses the outputs of the steer-
ing and target models, creating a shared, tractable optimization problem that is solved via a practical
asymmetric gradient pathway. However, even with an efficient gradient signal, our preliminary anal-
ysis shows that the process of learning a prompt from random initialization remains highly unstable,
leading to performance collapse (see Fig. 3). Therefore, this core mechanism is supported by two
essential stabilization techniques to make the framework robust. We introduce a consistency reg-
ularization loss to prevent destructive prompt updates and a novel prompt learning-oriented data
filtering strategy that provides a stable learning signal, distinguishing it from prior filtering methods
designed for pre-trained normalization parameter updates (Niu et al., 2022; 2023).

Our extensive experiments validate BETA’s effectiveness across various model architectures and
real-world scenarios. On standard VMs, BETA achieves an average accuracy of 62.6% on ImageNet-
C with ViT-B/16, a +7.1% gain over the source model. This result not only surpasses all black-box
baselines but remarkably outperforms strong white-box methods like TENT (Wang et al., 2021)
and CoTTA (Wang et al., 2022), all while requiring only a single API call per test sample versus
16 for ZOO-based approaches. This effectiveness extends to powerful VLMs; when adapting a
black-box CLIP model, BETA boosts its average accuracy to 63.4%. This surpasses a suite of
specialized white-box and gray-box methods developed for VLMs (e.g., TPT (Manli et al., 2022),

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Black-Box 

Target Model

Query (incurs cost           ) Response

(a). Output Refinement (LAME)

(b). Input Prompt Learning (ZOO)

Final 

Prediction

Prediction 

Refinement

…

+

(c). BETA (Ours)

Lightweight

Steering

Model

Gradient

with

Regularization

TrainableAPI Call # 𝑛

Data 

Filtering

1

𝑛

1

2

15

16

Final 

Prediction

1
+

Final 

Prediction

Prediction 

Harmonization

…

Figure 1: Comparison of black-box test-time adaptation strategies. (a) Output Refinement (LAME)
is limited to post-processing predictions, while (b) ZOO-based Input Prompt Learning requires mul-
tiple expensive API calls for prompt optimization. In contrast, (c) BETA achieves efficient single-
query adaptation by leveraging a lightweight steering model with prediction harmonization to create
a tractable gradient pathway, stabilized through data filtering and regularization.

DynaPrompt (Xiao et al., 2025), and TCA (Wang et al., 2024b)), demonstrating BETA’s unique
capability in a domain previously unexplored in the strictest black-box setting. Finally, on a real-
world commercial Clarifai API, BETA proves its immense practical value and cost-efficiency. It
achieves a +5.2% performance gain with a budget of just $0.4, whereas a ZOO-based competitor
requires over $100—a 250x greater cost—to reach a similar performance. At that same $100 budget,
BETA’s advantage widens significantly, delivering a substantial +17.1% gain.

Main Findings and Contributions. (1). We provide the first systematic evaluation of TTA in
the strict, API-only Black-box setting. Our analysis confirms that existing applicable methods like
post-hoc output refinement have limited adaptive capacity. We further establish input prompting
with ZOO as a powerful but flawed baseline, revealing its critical inefficiency and optimization in-
stability. (2). We introduce BETA, a novel framework that addresses challenges of inefficiency and
instability in Black-box TTA. It bypasses expensive query-based optimization by using a lightweight
steering model to enable an efficient gradient pathway via prediction harmonization, while consis-
tency regularization and prompt-oriented data filtering ensure robust adaptation. (3). We establish
a new state-of-the-art for black-box TTA. BETA not only significantly outperforms the ZOO-based
baselines but also achieves performance competitive with and even surpasses strong white-box adap-
tation methods. Its practical effectiveness is validated on a real-world commercial API, where our
single-query-per-sample approach demonstrates a 250x cost advantage over ZOO.

2 RELATED WORKS

Test-time Adaptation (TTA). TTA adapts pre-trained models on-the-fly with unlabeled target data
to handle distribution shifts (Sun et al., 2020; Niu et al., 2023; 2022; Wang et al., 2022; Zhang et al.,
2025a;b; Manli et al., 2022). Most works assume white-box access, enabling methods to directly
update model parameters by minimizing prediction entropy or using consistency objectives (Wang
et al., 2021; Niu et al.; 2023). Recent backpropagation-free methods have emerged for efficiency but
typically operate in a gray-box setting, as they still require access to internal model representations
like features or tokens, making them inapplicable to strict API-only scenarios (Niu et al., 2024; Meng
et al., 2025; Zhou et al., 2025; Wang et al., 2024b; Lee et al., 2025). Truly black-box TTA remains
a significant challenge, with applicable strategies limited to post-hoc output refinement that offers
limited adaptive capacity (Boudiaf et al., 2022). In contrast, our work, BETA, addresses this gap by
using a local steering model to enable efficient adaptation in the strict black-box setting, creating a
tractable optimization pathway without requiring direct model access or expensive queries.

Black-box Model Adaptation. The adaptation of black-box models has been explored across vari-
ous domains, including vision and language (Sun et al., 2024; Tsai et al., 2020; Oh et al., 2023; Liu
et al., 2024; Sun et al., 2022), but typically for offline transfer learning with labeled data—a setting
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with fundamentally different requirements from unsupervised, online TTA. A prominent approach in
this area uses ZOO to learn input prompts that reprogram a model for a specific downstream task (Oh
et al., 2023; Tsai et al., 2020; Liu et al., 2020). However, these ZOO-based methods are hindered by
high query costs and optimization instability (Wang et al., 2024a; Oh et al., 2023). Other methods
for VLMs often operate in a gray-box setting, requiring access to intermediate representations like
text embeddings (Ouali et al., 2023; Wang et al., 2024a), which violates the strict black-box as-
sumption. Beyond optimization-based methods, we also consider input-level heuristics. Test-Time
Augmentation strategies are potential candidates, but existing methods often require prior training
on labeled data (Shanmugam et al., 2021) or access to logits to adjust temperature (Farina et al.,
2024), violating strict black-box constraints. While basic augmentation strategies can be adapted,
they drastically increase API costs, scaling linearly with the number of augmentations (e.g., 64×
cost for standard protocols). Similarly, diffusion purification methods (Gao et al., 2023; Nie et al.,
2022) utilize generative models to reconstruct inputs. While specific approaches like (Gao et al.,
2023) require training a diffusion model on proprietary source data, employing an off-the-shelf dif-
fusion model is a feasible workaround. However, the iterative nature of the reverse diffusion process
results in high latency, making it unsuitable for fast, online adaptation. In contrast, our work is
the first to tackle the unique challenges of unsupervised, online Test-Time Adaptation in this strict
setting, where no labels are available and query efficiency is paramount.

3 METHOD

3.1 PROBLEM FORMULATION AND MOTIVATION

Test-Time Adaptation (TTA) aims to adapt a model f , pre-trained on a source domain, to an un-
labeled target domain DT = {xT

j }
|DT |
j=1 encountered during inference. In the common online setting,

target data arrives as a stream of batches {Bt}Tt=1, and the model is updated on-the-fly without
ground-truth. The feasible adaptation strategies are determined by the level of access to the model
f , which typically falls into one of three categories (Table 1):

• White-Box Access ( ): The full model architecture and all its parameters are accessible.
This allows for the computation of gradients via backpropagation.

• Gray-Box Access ( ): Intermediate representations, e.g., internal tokens or features,
are accessible, while the full computational graph and parameters remain hidden.

• Black-Box Access ( ): The model is treated as an opaque API. The only possible in-
teraction is to provide an input x and receive a final output prediction p(y|x) = f(x). No
information about the model’s architecture, parameters, or intermediate states is available.

Existing Approaches and Their Limitations. In the strict Black-Box TTA setting, existing
methods primarily operate on either the model’s output or its input space, each presenting dis-
tinct challenges for online API adaptation. Strategies that focus on output refinement, such as
LAME (Boudiaf et al., 2022), are highly efficient as they operate post-hoc without requiring model
queries. However, by working solely on the final predictions, their adaptive capacity is inherently
limited, often resulting in marginal performance gains.

Conversely, methods that operate on the input space offer greater adaptive potential but frequently
incur high costs or latency. Test-Time Augmentation (TTA) strategies (Shanmugam et al., 2021;
Farina et al., 2024) enhance robustness by aggregating predictions across multiple augmented views;
however, in an API setting, this linearly increases the query cost (e.g., N views require N paid API
calls), reducing economic viability. Similarly, diffusion-based adaptation methods (Gao et al., 2023;
Nie et al., 2022) effectively project inputs onto the source manifold but typically require iterative
denoising steps, introducing significant latency that hinders real-time online applications. Finally,
while Zeroth-Order Optimization (ZOO) (Niu et al., 2024) theoretically enables prompt learning
without gradients, it is often hindered by high query complexity and optimization instability in the
absence of ground-truth supervision.

3.2 BETA: BLACK-BOX EFFICIENT TEST-TIME ADAPTATION

These trade-offs motivate BETA, which seeks to combine the adaptive capacity of input prompt-
ing with the query efficiency of output-based methods. To address the inaccessibility of the target
model’s gradients while avoiding the high cost of ZOO, BETA operates using two distinct models:
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• Target Model (fB): The powerful, inaccessible black-box model (e.g., a remote API). We
can only query it to get prediction pB(x).

• Steering Model (fS): A lightweight, local white-box model (e.g., ViT-Small). We have
full access to its parameters and gradients.

To adapt the black-box model without altering its weights, we learn an additive visual prompt δ ∈
RH×W×C . This prompt is added to the input image x to produce a prompted version x′ = x + δ.
The goal is to optimize δ using gradients derived locally from fS to improve the predictions.

The Challenge of Black-Box Prompt Optimization. A powerful adaptation strategy is to learn an
additive visual prompt, δ ∈ RH×W×C , which is added to an input image x to produce a prompted
version x′ = x + δ. In a black-box setting, a straightforward approach to optimize this prompt is
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Opt. Effectiveness: cos(gBETA, gIdeal)
Obj. Relevance: cos(gBlack, gIdeal)

Grad. Transfer: cos(gLocal, gBlack)
ZOO Estimation: cos(gZOO, gBlack)

Figure 2: We analyze the trade-off between Objective
Relevance (alignment with the true target gradient) and
Optimization Effectiveness (alignment with the prac-
tical steering gradient) as a function of α. The inter-
section of these opposing curves identifies the optimal
range (e.g., α ∈ [0.4, 0.6]) where the objective is si-
multaneously relevant to the target and tractable for op-
timization. The curves are plotted based on the valida-
tion sets of ImageNet-C.

to employ ZOO to minimize the Shan-
non entropy of the model’s predic-
tions (Wang et al., 2021), H(pB(x

′)) =

−
∑C

c=1 p
c
B(x

′) log pcB(x
′) , where

pcB(x
′) is the model’s predicted probabil-

ity for class c. However, our investigation
reveals two critical drawbacks: pro-
hibitively high query complexity (e.g.,
a standard CMA-ES setup requires 28
API queries per test sample (Niu et al.,
2024)) and fundamental instability. This
instability stems from noisy unsupervised
signals, e.g., entropy, which can cause the
optimization to learn degenerate solutions
that corrupt the input’s semantic features
to produce high-confidence but incorrect
predictions. This leads to inconsistent
performance and catastrophic collapse
on challenging domains (e.g., on the
Contrast corruption, accuracy collapses
from 32.6% to 4.1%, 26.8%, and 12.7% across three ZOO methods in Table 2).

3.3 PREDICTION HARMONIZATION

From Naive Transfer to Harmonized Relaxation. Our approach is motivated by the failure of
direct estimation methods. To formalize our analysis, we introduce the notation ∇H(p; ·) to denote
the gradient of the entropy of a prediction p, computed by backpropagating through the specific
model indicated by the second argument. Using this notation, our ultimate goal is to minimize the
entropy of the black-box model, which implies following the Black-box Model Gradient gBlack =
∇H(pB ; fB). However, since fB is inaccessible, gradients cannot flow through it, rendering gBlack

intractable. Existing alternatives fail to provide a reliable substitute: ZOO suffers from prohibitive
costs and instability, while naively transferring the Local model Gradient from a steering model
(gLocal = ∇H(pS ; fS)) is ineffective, as our analysis shows the gradient similarity between different
architectures is consistently near zero (≈ 0.0006).

To overcome this, we relax the problem to finding a prompt that improves both models simultane-
ously. We define a Harmonized Prediction, pH , that fuses the outputs of the steering model (pS)
and the black-box model (pB) with a weighting parameter α ∈ [0, 1]:

pH(x′) = α · pS(x′) + (1− α) · pB(x′). (1)

Optimizing this shared objective presents a challenge. Theoretically, the ideal update direction, de-
noted as gIdeal = ∇δH(pH ; fS , fB), requires backpropagating through the computational graphs of
both the steering and target models. However, since the internal states of the black-box model fB are
inaccessible, gIdeal is intractable. To address this, we employ an asymmetric optimization strategy:
we approximate the ideal update by computing the gradient of the same harmonized objective but
restricting the gradient flow exclusively to the steering model’s pathway. This yields our tractable
proxy, gBETA = ∇δH(pH ; fS), which allows us to target the joint harmonized distribution without
requiring internal access to the black-box model.
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Empirical Justification. To justify the use of gBETA as a valid proxy for the intractable gIdeal,
we conduct a comprehensive gradient analysis across four validation corruption domains. For this
analysis only, we temporarily assume white-box access to the target black-box model to compute
the otherwise inaccessible vectors (gBlack and gIdeal). Our analysis in Fig. 2 confirms that simpler
strategies fail. The cosine similarity between the naive Local Gradient (gLocal) and the Target Gra-
dient (gBlack) is consistently near zero. Similarly, ZOO gradient estimates are highly noisy in the
one-step setting and prove no more effective than local transfer despite their high cost.

BETA’s success is rooted in how the weighting parameter, α, navigates a trade-off between two
competing factors shown in Fig. 2. The first is Objective Relevance, which measures how well our
tractable objective aligns with the true goal (Relevance(α) = cos(gIdeal, gBlack)). The second is
Optimization Effectiveness, which measures how well our practical proxy can optimize this objec-
tive (Effectiveness(α) = cos(gBETA, gIdeal)). These factors are in opposition: a low α yields high
Relevance but negligible Effectiveness (as gradients cannot flow through fB), while a high α yields
perfect Effectiveness for an irrelevant objective. The success of BETA lies in identifying an optimal
range for α (e.g., [0.3, 0.5]) where a principled compromise is struck. This confirms that BETA suc-
ceeds not by directly approximating the target gradient, but by constructing a shared optimization
problem where the practical proxy gBETA effectively aligns with the ideal update direction gIdeal.

3.4 STABILIZATION AND JOINT OPTIMIZATION

Instability of Unconstrained Optimization. While the harmonized objective pro-
vides a tractable gradient pathway, our investigation reveals that this process is inher-
ently unstable when applied in isolation. To demonstrate this, we evaluated a base-
line version using only the harmonized objective on the ImageNet-C Contrast domain.
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Figure 3: Five independent runs of using
solely Eqn. (1), showing either performance
collapse or failure to improve. Results ob-
tained on ImageNet-C (Contrast, level 5).

The results in Fig. 3 show that naively optimizing
the randomly initialized prompt leads to either grad-
ual decay or catastrophic collapse. This instability
stems from noisy unsupervised signals, which can
cause the optimization to learn degenerate solutions
that corrupt the input’s semantic features. To en-
sure robust adaptation, BETA incorporates two crit-
ical stabilization mechanisms.

Prompt Learning-oriented Data Filtering. The
first step to ensuring stability is to filter the train-
ing signal. Our analysis indicates that updating
the prompt using all incoming data degrades per-
formance because high-entropy test samples provide
noisy gradients. To ensure the prompt learns only
from stable signals, we update it using samples with
a prediction entropy H(pS(x)) below a threshold ϵ. This filtering is integrated directly into the
harmonization objective via a weight term wH(x′):

LHarmon(x
′) = wH(x′)H(pH(x′)), (2)

where the weight filters out high-entropy samples and assigns a soft, confidence-based score to
reliable ones: wH(x) = 1

exp[H(pS(x))−ϵ] · I{H(pS(x))<ϵ}(x). Unlike methods that filter for pre-
trained normalization parameters (Niu et al., 2022), we deliberately retain all reliable samples for the
prompt update, as learning a visual prompt from a random initialization is a challenging optimization
problem that benefits from more data.

Consistency Regularization. While filtering removes noisy samples, the optimization process it-
self requires regularization to prevent the catastrophic collapse observed in Fig. 3. Since prompts
are randomly initialized, an unconstrained entropy objective can be minimized by learning degen-
erate solutions that destroy the model’s representations. To prevent this, we introduce a consistency
regularization that anchors the update to the model’s reliable pre-trained knowledge by minimizing
the KL-divergence between predictions on the clean (x) and prompted (x′) images:

Lconsist(x, x
′) := DKL(pS(x)∥pS(x′)) =

C∑
c=1

pcS(x) log
pcS(x)

pcS(x
′)
. (3)

6
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Table 2: Classification accuracy (%) on ImageNet-C (severity 5) using ViT-B/16 (87M) as the black-
box model. BETA achieves the highest performance among black-box methods and outperforms
several strong white-box approaches. White-box and gray-box methods are shown for reference.

Access Method Noise Blur Weather Digital Avg. Gain
Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Bright. Contr. Elastic Pixel. JPEG

Source 56.8 56.8 57.5 46.9 35.6 53.1 44.8 62.2 62.5 65.7 77.7 32.6 46.0 67.0 67.6 55.5 0.0

TENT 60.3 61.6 61.8 59.2 56.5 63.5 59.1 54.2 64.5 2.2 79.1 67.4 61.5 72.5 70.6 59.6 +4.1
SAR 59.1 60.5 60.6 57.1 55.6 61.5 57.4 65.8 63.4 67.4 78.7 62.6 62.2 72.0 70.2 63.6 +8.1
CoTTA 63.3 63.9 64.5 55.0 51.0 63.5 56.1 68.8 69.2 71.2 78.3 9.6 64.3 73.4 71.2 61.6 +6.1
ETA 60.9 62.2 62.2 59.5 57.4 63.6 60.1 68.3 65.8 71.5 79.3 66.9 64.9 72.9 71.1 65.8 +10.3

T3A 56.4 56.9 57.3 47.9 37.8 54.3 46.9 63.6 60.8 68.5 78.1 38.3 50.0 67.6 69.1 56.9 +1.4
FOA* 57.0 58.5 57.8 51.7 35.0 37.1 27.2 20.2 11.9 72.2 76.8 0.6 39.1 66.7 67.0 44.9 -10.6

LAME 56.5 56.5 57.2 46.4 34.7 52.7 44.2 58.4 61.5 63.1 77.4 24.7 44.6 66.6 67.2 54.1 -1.4
ZOO-CMA 58.2 59.6 60.3 50.8 38.6 55.2 45.7 58.5 59.6 59.7 76.7 4.1 49.8 71.2 70.0 54.5 -1.0
ZOO-RGF 59.6 58.7 60.4 47.7 37.8 53.5 44.6 58.2 61.7 63.4 76.7 26.8 49.4 70.7 70.2 56.0 +0.5
ZOO-SPSA-GC 59.6 58.7 60.2 47.9 38.0 53.7 44.7 58.2 61.7 63.6 76.7 12.7 49.4 70.7 70.2 55.1 -0.4
TTA-Aug 55.4 54.2 55.2 43.7 48.6 48.9 45.5 57.8 63.1 60.0 76.9 49.6 41.7 65.7 67.8 55.6 +0.1
DDA 64.7 65.0 64.6 46.3 41.3 51.7 43.7 59.1 61.3 45.0 74.9 40.6 54.4 72.2 68.4 56.9 +1.4
BETA (Ours) 60.5 60.7 61.1 54.5 52.2 59.9 56.3 63.6 64.7 66.1 78.1 53.4 62.1 73.3 72.0 62.6 +7.1

Final Objective and Joint Optimization. BETA operates in a strictly online, one-pass manner,
performing a single gradient step for each incoming test batch Bt to ensure minimal latency. The
optimization targets are distinct: the Harmonization loss and Consistency regularization are mini-
mized to update the visual prompt δ, while the Steering loss exclusively updates the normalization
parameters θ of the steering model. To maximize the steering model’s effectiveness, we adapt these
normalization layers using only samples that are both reliable and non-redundant (Niu et al., 2022).
Non-redundancy is determined by comparing a sample’s prediction against an exponential moving
average of past predictions, p̄t−1, using a diversity margin d. The loss for the steering model’s
normalization parameters θ is defined as:

LSteer(x
′) = wS(x

′)H(pS(x
′)), (4)

where the weight wS(x) identifies the desired subset by filtering for samples that are both reliable
(low entropy) and non-redundant (high cosine distance): wS(x) =

1
exp[H(pS(x))−ϵ] · I{H(pS(x))<ϵ} ·

I{| cos(pS(x),p̄t−1)|<d}. The effective number of samples contributing to the model update is deter-
mined dynamically per batch by these filtering weights (wH and wS). The final objective for BETA
combines the prompt-learning and the normalization-layer objectives, along with the consistency
regularizer, averaged over the batch Bt:

LBETA = Ex∈Bt [LHarmon(x
′) + LSteer(x

′) + λLconsist(x, x
′)] . (5)

4 EXPERIMENTS

Datasets and Models. We evaluate our method across several challenging benchmarks: ImageNet-
C at severity level 5 (Hendrycks & Dietterich, 2019a), ImageNet-S (Sketch) (Wang et al., 2019),
and ImageNet-R (Rendition) (Hendrycks et al., 2021). In our experiments, we treat powerful, large-
scale models as the inaccessible black-box targets: standard Vision Transformers ViT-B/16 (87M
parameters) and ViT-L/16 (304M), and the Vision-Language Model CLIP with a ViT-B/16 backbone
(CLIP-B/16, 150M) (Dosovitskiy et al., 2021; Radford et al., 2021). Adaptation is guided by a much
smaller, fully accessible ViT-S/16 (22M) steering model. To validate BETA in a practical, real-world
scenario, we also test it using a commercial Clarifai1 API, which charges $0.0032 per request.

Compared Methods. We conduct our comparison in the source-free Fully TTA setting, benchmark-
ing against methods with varying levels of model access. For White-box methods, we include those
applicable to both VMs and VLMs (Tent (Wang et al., 2021), T3A (Iwasawa & Matsuo, 2021),
SAR (Niu et al., 2023), and CoTTA (Wang et al., 2022)), along with specialized approaches for
VLMs (TPT (Manli et al., 2022), DynaPrompt (Xiao et al., 2025), and DPE (Zhang et al., 2024a)).
For Gray-box methods, we compare against FOA (for both VMs and VLMs) (Niu et al., 2024) and
others specific to VLMs (TDA (Karmanov et al., 2024), B2TPT (Meng et al., 2025), TCA (Wang
et al., 2024b), BCA (Zhou et al., 2025), RA-TTA (Lee et al., 2025)). Our primary comparison is
against truly Black-box methods: the post-hoc refinement method LAME (Boudiaf et al., 2022) and
three ZOO baselines (CMA-ES, RGF, and SPSA) that we implemented to learn a visual prompt.

Implementation Details. For BETA, we set the weighting parameter α to 0.4. The shared visual
prompt δ is trained with the AdamW optimizer using a learning rate of 0.01. We update only

1https://www.clarifai.com/

7

https://clarifai.com/facebook/playground?model=general-image-recognition-deit-base__bdfdeb4a60624bce90a4183bf40a69fa&user_id=facebook&app_id=image-classification


378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Classification accuracy (%) on ImageNet-C (severity 5) using ViT-L/16 (304M) as the
black-box model. BETA achieves the best performance among black-box methods and outperforms
several strong white-box approaches. White-box and gray-box methods are shown for reference.

Access Method Noise Blur Weather Digital Avg. Gain
Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Bright. Contr. Elastic Pixel. JPEG

Source 62.5 62.0 63.3 52.9 45.3 60.7 55.2 66.0 62.3 62.6 79.9 40.1 56.2 74.3 72.8 61.1 0.0

TENT 67.2 67.3 65.4 59.2 0.9 66.7 63.8 69.7 67.0 61.9 81.0 60.3 65.4 77.3 74.1 63.1 +2.0
SAR 65.6 66.7 66.9 58.6 57.8 60.5 61.0 69.3 67.0 68.1 81.0 60.2 61.8 76.8 74.3 66.4 +5.3
CoTTA 68.3 69.7 69.9 57.1 54.2 53.5 63.2 72.5 70.4 26.2 80.9 53.5 65.6 77.1 74.9 63.8 +2.7
ETA 67.4 58.3 67.9 63.4 61.3 67.7 62.9 70.7 68.4 66.3 81.3 54.0 66.0 77.7 74.1 67.2 +6.1

T3A 62.6 62.2 63.5 54.0 46.1 61.3 56.4 66.6 63.2 57.3 79.9 39.1 58.9 74.6 73.3 61.3 +0.2
FOA* 48.1 56.1 59.1 50.2 50.6 59.6 42.4 57.5 58.8 56.1 72.2 29.1 59.5 72.0 70.4 56.1 -5.0

LAME 62.2 61.6 63.0 52.4 44.9 60.3 54.8 65.5 61.7 61.7 79.8 39.9 55.4 74.1 72.4 60.6 -0.5
ZOO-CMA 61.7 62.5 63.1 57.1 50.4 61.6 55.4 63.9 62.5 59.5 78.4 22.5 56.5 75.8 74.2 60.3 -0.8
ZOO-RGF 61.3 62.9 62.2 56.9 50.9 59.5 52.5 59.0 58.9 56.9 75.7 31.2 57.1 74.7 72.4 59.5 -1.6
ZOO-SPSA-GC 62.8 63.5 63.4 57.0 52.2 59.8 55.9 59.0 59.7 61.7 75.5 43.0 59.9 75.1 72.4 61.4 +0.3
DDA 68.0 68.3 68.0 52.8 49.8 59.3 53.8 64.3 63.4 55.8 78.0 46.9 61.1 76.4 73.1 62.6 +1.5
BETA (Ours) 63.1 64.0 63.5 59.7 55.1 63.6 59.4 66.1 65.0 66.2 80.0 55.1 65.0 76.2 74.5 65.1 +4.0

the normalization layers of the local steering model using SGD with a learning rate of 2 × 10−5.
The weight for the KL consistency regularization λ is set to 50, and we set the entropy threshold
ϵ = 0.9 × ln(1000) for sample filtering. The visual prompt is structured as a padded frame with
a width of 16 pixels, amounting to 39,936 learnable parameters, and is initialized from a Gaussian
distribution. Additional experimental details are provided in Appendix A.

4.1 EXPERIMENTAL RESULTS

Results on ImageNet-C with Vision Models. Our main experiments evaluate BETA against a
comprehensive suite of TTA methods on the ImageNet-C benchmark. We first test using a ViT-B/16
black-box model, with results for all white, gray, and black-box methods presented in Table 2 for
a comprehensive comparison. The analysis reveals significant limitations in existing limited-access
baselines. Gray-box methods like FOA* are inapplicable in our strict source-free setting, as their
original design requires source statistics (Niu et al., 2024). In the black-box setting, LAME fails
to improve upon the source model’s performance. While ZOO-based methods can provide some
benefit, they are inconsistent, collapsing on certain domains, and are highly inefficient, requiring 16
API calls per test sample versus BETA’s single call. In stark contrast, BETA not only consistently
improves performance across all domains but achieves an average accuracy of 62.6% (+7.1% gain).
Remarkably, this surpasses all black-box baselines by a large margin and even outperforms several
strong white-box methods such as TENT and CoTTA, approaching the accuracy of top performers
like SAR, despite operating under much stricter access constraints.

This trend of superior performance continues when using the more powerful ViT-L/16, as
shown in Table 3. Here, BETA again delivers the strongest performance among all black-
box methods, achieving a +4.0% gain while ZOO-based approaches consistently degrade per-
formance. This improvement is highly non-trivial and highlights the effectiveness of our steer-
ing mechanism. There is a substantial performance gap between the pre-trained steering model
(ViT-S/16 at 39.5% accuracy) and the target black-box model (ViT-L/16 at 61.1% accuracy).

Table 4: Results on ImageNet-S/R w.r.t. Acc (%).

Access Method ViT-B/16 CLIP (ViT-B/16)
Sketch Rendition Avg. Sketch Rendition Avg.

Source 44.9 59.5 52.2 46.1 74.0 60.0

TENT 49.1 63.9 56.5 49.5 75.3 62.4
SAR 48.7 63.3 56.0 49.2 76.1 62.7
CoTTA 50.0 63.5 56.8 50.4 75.6 63.0
TPT – – – 48.0 77.1 62.5
DynaPrompt – – – 48.2 78.2 63.2
DPE – – – 52.3 80.4 66.3

T3A 48.5 58.0 53.3 49.1 75.6 62.4
FOA* 44.7 59.2 52.0 45.8 73.2 59.5
TDA – – – 50.5 80.2 65.4
B2TPT – – – 49.5 78.6 64.1
RA-TTA – – – 50.8 79.7 65.3
TCA – – – 49.0 77.1 63.0
BCA – – – 50.9 80.7 65.8

LAME 44.4 59.0 51.7 45.4 72.8 59.1
ZOO-CMA 44.7 58.8 51.8 45.6 72.5 59.1
ZOO-RGF 44.4 58.1 51.3 45.3 72.1 58.7
ZOO-SPSA-GC 45.1 59.3 52.2 46.0 72.8 59.4
Ours 49.3 63.3 56.3 50.9 76.0 63.4

Even when the steering model itself is
fully adapted in a white-box setting, its
performance is capped at 57.4% (detailed
in Appendix Table 9). Yet, BETA suc-
cessfully leverages this suboptimal steer-
ing model to guide the far more powerful
ViT-L/16 to a new state-of-the-art black-
box accuracy of 65.1%. This demonstrates
that BETA is not simply relying on the lo-
cal model’s output, but is successfully dis-
covering and transferring beneficial adap-
tation signals to the black-box model with-
out requiring any internal access.

Results on ImageNet-S and ImageNet-
R. To further evaluate BETA’s generaliza-
tion capabilities, we test its performance
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Figure 5: Sensitivity analysis of BETA’s hyperparameters, showing stable performance across fusion
weight α in Eq. 1, regularization weight λ in Eq. 5, entropy margin ϵ in Eq. 2, and prompt size.

on ImageNet-S and ImageNet-R using ViT-B/16. The results in Table 4 demonstrate a consis-
tent trend of strong performance. On both datasets, BETA significantly improves upon the source
model’s accuracy, achieving an average of 56.3%. This not only surpasses the black-box baselines
but also outperforms strong white-box methods like T3A and SAR, underscoring our framework’s
robustness to diverse domain shifts. We then extend our evaluation to Vision-Language Models
(VLMs), applying BETA to a CLIP model with a ViT-B/16 backbone.

To our knowledge, this is the first work to explore adaptation for powerful VLMs in the strictest,
API-only black-box setting. The results in Table 4 highlight BETA’s unique effectiveness in this
challenging scenario. It is the only black-box method that can efficiently and effectively improve
the pre-trained CLIP model, boosting its average accuracy to 63.4%. Remarkably, this black-box
performance surpasses a suite of specialized white-box methods developed for VLMs, including
TENT, SAR, TPT, and DynaPrompt, as well as gray-box methods such as TCA. This consistent
success across different datasets and model types demonstrates that BETA is a general and powerful
framework for black-box adaptation.
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Figure 4: Performance vs. API budget
on the Real-world Clarifai API.

Results on a Real-world API. To validate BETA’s prac-
ticality, we test it on a commercial Clarifai API, bench-
marking performance against API cost in USD on the
challenging ImageNet-C Contrast domain (Fig. 4). The
results clearly show BETA’s superior efficiency and ef-
fectiveness. With a budget of just $0.4—sufficient to
adapt ∼ 120 test samples—BETA already improves upon
the source model by +5.2%. In stark contrast, a query-
intensive ZOO competitor requires over $100 to reach
a similar performance, marking a 250x cost advantage
for our method. Furthermore, at that same $100 budget,
BETA’s advantage widens significantly, as it delivers a
substantial +17.1% gain. This experiment demonstrates
BETA’s significant real-world utility, making it a practical and effective solution for adapting com-
mercial API-based models.

4.2 ABLATION STUDIES

Hyperparameter Sensitivity. We analyze BETA’s sensitivity to its key hyperparameters in Fig. 5.
Our analysis of the fusion weight α in Eq. 1 shows that the framework’s performance is empiri-
cally robust, exhibiting stable and high performance across a wide range of values from 0.3 to 0.5
(Fig. 5a). The KL regularization weight λ in Eq. 5 is shown to be a critical component; without
it (λ = 0), performance is suboptimal as the prompt can learn degenerate solutions. As shown in
Fig. 5b, performance improves significantly with the introduction of regularization and stabilizes
across a broad range of λ values from 20 to 100. For the entropy margin ϵ in Eq. 5, our results show
that BETA performs robustly with a more lenient margin (tested from 0.4·ln(1000) to 1.0·ln(1000)).
Unlike methods adapting pre-trained parameters, learning a prompt from random initialization re-
quires more data, making a less restrictive filter beneficial (Fig. 5c). Finally, for the prompt size
(Fig. 5d), which corresponds to the frame width, we observe a clear trade-off: smaller prompts may
lack the capacity to capture the domain shift, while larger prompts are harder to optimize. The
performance peaks around a width of 16 pixels and remains stable across the tested range of 8 to 20.
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Table 6: Effect of steering model choice. The Source and TENT-adapted accuracy of each local
steering model are provided as a reference against the BETA accuracy on the large black-box models.

Dataset Black-Box Model Source LAME ZOO ViT-Tiny (6M) ResNet50 (26M) ViT-Small (22M)

Source TENT BETA Source TENT BETA Source TENT BETA

ImageNet-C ViT-B/16 (87M) 55.5 54.1 56.0 21.4 22.0 58.2 24.2 31.4 60.8 39.5 51.9 62.6

ImageNet-Sketch ViT-B/16 (87M) 44.9 44.4 45.1 20.9 21.3 45.2 27.9 29.7 47.5 32.8 35.6 49.3
CLIP-B/16 (150M) 46.1 45.4 46.0 47.0 48.7 50.9

Average - 48.8 48.0 49.0 21.1 21.7 50.1 26.7 30.2 52.3 35.0 41.0 54.3

Analysis of BETA’s Components. We conduct an ablation study to dissect the contri-
bution of each component in BETA, with results summarized in Table 5. Our analysis
first reveals that strategies focusing solely on output adaptation (Out-Adapt) are insufficient.

Table 5: Component analysis on ImageNet-C.

Method In-Adapt KL Reg. Filt. Out-Adapt Acc. Gain
Source - - - - 55.5 0.0
LAME - - - PR 54.1 -1.4
ZOO ✓ - - - 56.0 +0.5

Exp-1 - - - PH 54.2 -1.3
Exp-2 ✓ - - PH 51.6 -3.9
Exp-3 ✓ ✓ - PH 59.7 +4.3
Exp-4 ✓ - ✓ PH 60.2 +4.7

BETA ✓ ✓ ✓ PH 62.6 +7.1

Both LAME’s Prediction Refinement
(PR) and our Prediction Harmonization
(PH) strategy used in isolation (Exp-1)
fail to improve upon the source model,
demonstrating that effective black-box
TTA requires input adaptation (In-
Adapt). However, naively adding an input
prompt (Exp-2) leads to a performance
collapse to 51.6% accuracy. This high-
lights the inherent instability of learning
a randomly initialized prompt without
supervision—a task significantly more
challenging than adapting well-initialized
normalization layers. Our stabilization techniques are designed to resolve this instability. Intro-
ducing either KL regularization (KL Reg.) in Exp-3 or sample filtering (Filt.) in Exp-4 provides
a substantial performance boost, improving accuracy to 59.7% and 60.2%, respectively. The full
BETA framework, which integrates both complementary techniques, achieves the best performance
of 62.6%. This confirms that both stabilization mechanisms are essential for robust prompt learning.

Effect of Steering Model Choice. We investigate how the choice of the local steering model affects
BETA’s performance, with detailed results summarized in Table 6. Our analysis confirms that BETA
is a flexible framework that consistently improves upon the source model across different steering
models, including those with different sizes and architectures. Notably, even with a model as small
as a 6M-parameter ViT-Tiny, our method successfully boosts the performance of both large black-
box models (87M and 150M). Furthermore, the framework demonstrates strong cross-architecture
generalization, as a CNN-based ResNet-50 can effectively improve the Transformer-based ViT and
CLIP models. The improvement from BETA is highly non-trivial and goes far beyond the capa-
bilities of the steering models themselves, a finding that holds true across all tested configurations.
On average, our strongest steering model (ViT-Small), even when fully adapted with TENT, only
reaches an accuracy of 41.0%—well below the 48.8% starting accuracy of the black-box models.
Despite this, BETA successfully leverages these weaker models to support the black-box models
to a final average accuracy of 54.3%. This demonstrates that BETA is not simply relying on the
local model’s output but is effectively discovering and transferring beneficial adaptation signals to
successfully adapt large-scale models in the dark.

5 CONCLUSION

In this work, we addressed the critical challenge of adapting powerful models in the strict black-
box setting where only API access is available. We introduced BETA, a novel framework that
enables efficient and stable Test-Time Adaptation by leveraging a lightweight white-box steering
model. The core of our method is a prediction harmonization technique that creates a tractable,
shared objective, which is made robust through consistency regularization and a prompt-oriented
data filtering strategy. Our extensive experiments show that BETA significantly outperforms existing
black-box methods, achieves performance competitive with strong white-box approaches on both
Vision and Vision-Language models, and demonstrates immense practical value on a commercial
API with a 250x cost advantage over ZOO-based techniques. By demonstrating that a smaller, local
model can effectively steer a powerful, inaccessible one, our work makes robust black-box TTA a
practical reality and opens up new possibilities for adapting models in the dark at test time.
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Appendix

A ADDITIONAL EXPERIMENTAL DETAILS

A.1 BASELINES AND IMPLEMENTATION DETAILS

We compare BETA against a comprehensive suite of baselines with varying levels of model access,
including white-box, gray-box, and black-box methods.

The following methods are applicable to both standard Vision Models (VMs) and Vision-Language
Models (VLMs):

Tent (Wang et al., 2021) is a white-box method for fully test-time adaptation, which adapts a pre-
trained model to a new test distribution without requiring any source data. The core idea is to
encourage model confidence on the unlabeled test data by minimizing the Shannon entropy of its
predictions for each incoming batch. To achieve this efficiently, Tent does not update the entire
model; instead, it exclusively adapts the parameters within the model’s normalization layers. For
each test batch, it first updates the normalization statistics during the forward pass and then optimizes
the learnable channel-wise affine transformation parameters via backpropagation on the entropy loss.

SAR (Niu et al., 2023) is a white-box method designed to stabilize online Test-Time Adaptation in
challenging ”wild” scenarios, such as with mixed domain shifts or small batch sizes, where standard
entropy minimization can fail. The method identifies that model collapse during adaptation is often
caused by noisy test samples producing large, disruptive gradients. To mitigate this, SAR employs
a two-part strategy: it first filters out unreliable, high-entropy samples to reduce noise. For the
remaining data, it then uses a sharpness-aware optimizer to guide the model parameters into a flat
region of the loss landscape, enhancing robustness against any remaining noisy updates.

Continual Test-Time Adaptation (CoTTA) (Wang et al., 2022) is a white-box method designed
to adapt models to continually changing target domains, addressing the challenges of error ac-
cumulation and catastrophic forgetting. To generate more reliable pseudo-labels, it employs a
teacher-student framework where the student model is updated based on the weight-averaged and
augmentation-averaged predictions of the teacher. To prevent catastrophic forgetting over long-term
adaptation, CoTTA stochastically restores a small fraction of the student model’s weights to their
original source-trained values during the update process. The method is designed to adapt all pa-
rameters of the network.

Test-Time Template Adjuster (T3A) (Iwasawa & Matsuo, 2021) is a gray-box method for do-
main generalization that adapts a model’s final linear classifier at test time. The method is
backpropagation-free and works by first computing class-specific “pseudo-prototype” representa-
tions from the features of unlabeled test data. Once these prototypes are established, it classifies
each new test sample based on its distance to these dynamically adjusted prototypes. This allows
the model to leverage information from the target domain without requiring extensive optimization
or altering the core feature extractor.

Forward-Optimization Adaptation (FOA)2 (Niu et al., 2024) is a gray-box method designed for
test-time adaptation in scenarios where backpropagation is infeasible, such as on quantized mod-
els or edge devices. The approach is entirely training-free and avoids modifying model weights by
learning an additive input prompt using a derivative-free optimizer (CMA-ES). To guide this op-
timization, FOA introduces a novel fitness function that combines prediction entropy with a term
measuring the statistical discrepancy between the test sample’s activations and pre-computed source
data activations. The framework also includes a “back-to-source” activation shifting scheme that di-
rectly modifies the final layer’s features during the forward pass to better align them with the source
domain.

LAME (Boudiaf et al., 2022) is a black-box method for online test-time adaptation that oper-
ates without requiring access to model parameters or gradients. Instead of adapting the network’s
weights, it adapts the model’s output probabilities directly for a given batch of test data. The method

2FOA uses entropy minimization instead of activation discrepancy for source-free settings where source
statistics are unavailable in our experiments.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

proposes a Laplacian Adjusted Maximum-likelihood Estimation (LAME) objective, which finds the
optimal latent class assignments by maximizing the data likelihood while being regularized by a
Laplacian term that encourages label consistency among neighboring samples in the feature space.
This objective is optimized efficiently using a concave-convex procedure and does not require back-
propagation.

In contrast to the methods above, the following baselines are designed specifically for the adaptation
of Vision-Language Models:

Test-Time Prompt Tuning (TPT) (Manli et al., 2022) is a white-box method that adapts Vision-
Language Models like CLIP using only a single unlabeled test sample. For each test image, TPT
creates multiple augmented views and optimizes a learnable text prompt via backpropagation to
enforce prediction consistency across them. The optimization is guided by minimizing the entropy
of the averaged predictions, and a confidence selection module filters out noisy augmentations that
yield low-confidence outputs. TPT performs a one-step update on the prompt for each test sample.

Dual Prototype Evolving (DPE) (Zhang et al., 2024a) is a white-box method that performs test-
time adaptation for VLMs by accumulating task-specific knowledge from both visual and textual
modalities. The method maintains and evolves two sets of class prototypes—one textual and one
visual—which are updated online as more test samples are processed. For each individual test
sample, DPE learns temporary residual parameters to adjust both sets of prototypes. This sample-
specific optimization is guided by a dual objective that encourages prediction consistency across
augmented views and enforces alignment between the textual and visual prototypes for each class.

DynaPrompt (Xiao et al., 2025) is a white-box method that improves online test-time prompt tun-
ing by leveraging information from previous test samples while mitigating the problem of prompt
collapse. The core of the method is an online prompt buffer containing a set of learnable prompts
that evolve over time. For each new test sample, DynaPrompt employs a dynamic selection strategy
based on prediction entropy and probability difference to choose a relevant subset of prompts from
the buffer for optimization. To adapt to new data, the framework also dynamically appends new
prompts to the buffer and removes inactive ones.

B2TPT (Meng et al., 2025) is a gray-box method that addresses test-time prompt tuning for black-
box Vision-Language Models (VLMs) where gradients are inaccessible. To overcome this, it em-
ploys a derivative-free algorithm (CMA-ES) to optimize low-dimensional ”intrinsic prompts,” which
are then projected into the full prompt space to make the high-dimensional optimization tractable.
For supervision, the framework uses a “Consistent or Confident” (CoC) pseudo-labeling strategy
to generate labels from the model’s outputs. The method jointly optimizes text and vision prompts
using a frozen CLIP ViT-B/16 backbone.

Training-free Dynamic Adapter (TDA) (Karmanov et al., 2024) is a gray-box method designed
for efficient test-time adaptation of Vision-Language Models without requiring backpropagation.
The method constructs a lightweight key-value cache during inference, which is progressively up-
dated with incoming test samples. This cache consists of two components: a positive cache that
stores image features and their corresponding high-confidence pseudo-labels, and a novel negative
cache that stores negative pseudo-labels to improve robustness against label noise. The final predic-
tion is a combination of the original CLIP output and the predictions derived from both the positive
and negative caches.

Retrieval-Augmented TTA (RA-TTA) (Lee et al., 2025) is a gray-box method that adapts Vision-
Language Models by incorporating external knowledge from a large image database at test time.
Instead of a direct image-to-image search, RA-TTA uses a novel description-based retrieval process
to find more relevant external images. For a given test image, it first identifies its most prominent
visual features by selecting matching fine-grained text descriptions from a pre-compiled library.
These selected text descriptions are then used as queries to retrieve semantically similar images
from the database, and the VLM’s initial prediction is refined using a relevance score derived from
this external knowledge.

Bayesian Class Adaptation (BCA) (Zhou et al., 2025) is a gray-box method that adapts Vision-
Language Models by updating both the class likelihood and prior at test time. It frames the adap-
tation problem using Bayes’ theorem, identifying that existing methods only adapt the likelihood
(class embeddings) while overlooking the class prior, which can shift in new domains. BCA em-
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ploys a dual-update mechanism: it adapts the likelihood by updating the most relevant class em-
bedding with an incoming visual feature via a running average. Concurrently, it adapts the prior by
using the model’s posterior prediction for the current sample to update the prior distribution of the
predicted class, allowing the model to learn the new class frequencies on the fly.

Token Condensation as Adaptation (TCA) (Wang et al., 2024b) is a gray-box method that pro-
vides an efficient, training-free solution for test-time adaptation in Vision-Language Models. The
method uniquely repurposes token condensation, a technique originally for improving ViT effi-
ciency, as an adaptation mechanism. It introduces a domain-aware token reservoir that stores reliable
class tokens from past test samples to serve as domain anchors. These anchors guide both a cross-
head token condensation process, which prunes irrelevant visual tokens, and a logits self-correction
mechanism that refines the model’s final prediction.

A.2 DETAILED ANALYSIS OF MODEL ACCESSIBILITY AND SECURITY CONSTRAINTS

In this section, we provide a rigorous definition of the black-box setting adopted in this work. While
prior literature often conflates different levels of restricted access, we draw sharp distinctions be-
tween access to raw logits, softmax probabilities, and hard predictions. This distinction is critical
for evaluating the practical applicability of Test-Time Adaptation (TTA) methods on real-world com-
mercial APIs.

Mathematical Definitions of Output Levels. Let fθ(x) denote the pre-trained model. We distin-
guish between three specific levels of output granularity: 1). Raw Logits (z): The pre-activation
output vector z ∈ RC , where values are unbounded (−∞ < zi < ∞) and unnormalized. 2). Soft-
max Probability Vector (p): The normalized output distribution obtained via the softmax function
σ(·), such that p = σ(z) ∈ [0, 1]C with

∑
i pi = 1. 3). Top-1 Hard Prediction (ŷ): A single scalar

value representing the class index with the highest confidence, ŷ = argmaxi pi, often accompanied
by a single confidence score.

Real-World API Protocols. To determine the most realistic setting for black-box adaptation, we
analyze standard commercial Machine Learning APIs (e.g., OpenAI (Hurst et al., 2024), Clarifai,
Google Cloud Vision).

• Why not Raw Logits? Access to z is frequently restricted as a security measure. Raw
logits contain rich information regarding inter-class relationships (“dark knowledge”) that
significantly facilitates Model Extraction attacks and Knowledge Distillation (Hinton et al.,
2015). By hiding z, API providers mitigate the risk of model theft.

• Why Softmax Probabilities? Most commercial APIs return the probability distribution p
rather than a single hard label ŷ. This is because downstream users typically require con-
fidence estimates to make informed decisions (e.g., thresholding low-confidence predic-
tions).

Justification for BETA’s Setting. Based on these protocols, we define the strict Black-Box set-
ting as one where the Softmax Probability Vector p is available, but Raw Logits z are hidden. This
setting strikes the balance found in real-world deployments: it provides more information than the
restrictive Label-Only setting (which only provides ŷ), enabling unsupervised objectives like en-
tropy minimization (H(p) = −

∑
pi log pi). In contrast, we classify methods that require access

to raw logits z (e.g., for temperature scaling z/τ or re-normalization (Farina et al., 2024)) as Gray-
Box. While these methods do not require gradients, they rely on information often hidden in secure
deployment environments.

B ADDITIONAL EXPERIMENTAL RESULTS
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Table 7: Performance comparison on ImageNet Variants with CLIP-B/16. BETA outperforms strong
augmentation-based and gray-box baselines while requiring only a single API call per image.

Method IN-Sketch IN-R IN-A IN-v2 ImageNet Avg. Acc Gain # API/Img
Source 46.1 74.0 47.9 60.9 66.7 59.1 - 1
LAME 45.4 72.8 48.1 61.6 66.7 58.9 -0.2 1
ZOO-SPSA-GC 46.0 72.8 50.2 61.5 65.8 59.3 +0.1 16

B2TPT (w/ tokens) 49.5 78.6 55.3 65.4 69.6 63.7 +4.6 120
ZERO (w/ logits) 48.4 77.2 59.6 64.2 69.3 63.7 +4.6 64
ZERO ensemble (w/ logits) 50.6 80.8 62.8 65.2 71.2 66.1 +7.0 448

BETA (Ours) 50.9 76.0 62.8 65.1 77.5 66.5 +7.4 1

Table 8: Performance on the fine-grained EuroSAT dataset with CLIP-B/16. BETA achieves signif-
icant gains (+11.3%) with high efficiency.

Method Accuracy (%) Gain (%) # API/Img
Source 42.0 - 1

B2TPT (w/ tokens) 46.8 +4.8 120
ZERO (w/ logits) 39.6 -2.4 64
ZERO ensemble (w/ logits) 43.8 +1.8 448

BETA (Ours) 53.3 +11.3 1

B.1 BETA’S PERFORMANCE ON OTHER IMAGENET VARIANTS AND EUROSAT

To provide a comprehensive evaluation, we extend our comparisons to include augmentation-based
strategies and recent methods tailored for Vision-Language Models (VLMs). Specifically, we com-
pare BETA against ZERO Farina et al. (2024), a test-time augmentation method that optimizes
temperature using input augmentations. We note that while ZERO requires access to raw log-
its—violating strict black-box API constraints that typically only provide probabilities—we grant
it this access for a rigorous upper-bound comparison. We evaluate both the standard ZERO (64
calls/image) and ZERO ensemble (448 calls/image, using 7 text templates). We also include
B2TPT Meng et al. (2025), a recent prompt tuning method for VLMs.

Classification of B2TPT as Gray-Box. We categorize B2TPT as a gray-box method because it
operates by modifying inputs in the embedding space. Specifically, it prepends learnable vectors
directly to the text and image embeddings (et and ev), requiring internal access to the model’s
intermediate feature representations. This contrasts with the strict black-box setting of commercial
APIs, which accept only raw image or text inputs. Furthermore, its underlying optimization (CMA-
ES) is query-intensive, requiring approximately 120 API calls per input.

Results on ImageNet Variants and EuroSAT. We evaluate these baselines on the full suite of
ImageNet variants (ImageNet-S, R, A, v2, and standard ImageNet) and the challenging fine-grained
EuroSAT dataset. The results are summarized in Table 7 and Table 8.

BETA consistently outperforms these query-intensive baselines while maintaining strict API effi-
ciency. On the ImageNet variants (Table 7), BETA achieves the highest average accuracy of 66.5%,
surpassing the ensemble version of ZERO (66.1%) which requires 448 API calls per image. The effi-
ciency gap is even more pronounced on EuroSAT (Table 8), where BETA achieves a substantial gain
of +11.3% over the source model with a single API call, whereas augmentation baselines struggle
or yield marginal gains despite their high computational cost. This demonstrates that BETA’s effec-
tiveness stems from learned adaptation rather than simple data augmentation, making it a far more
practical solution for real-world deployment where API costs and rate limits are critical constraints.
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Table 9: White-box TTA performance on the ViT-Small steering model on ImageNet-C. The results
show that even when fully adapted, the steering model’s performance is capped well below that of
the unadapted black-box target models, highlighting the effectiveness of our steering mechanism.

Source TENT T3A SAR CoTTA LAME

Avg. 39.5 51.9 40.4 57.4 46.0 38.9
Gain 0.0 +12.4 +0.9 +17.9 +6.5 -0.6

Table 10: Comparison between Test-Time Knowledge Distillation (KD) and BETA on ImageNet-C.
While KD is upper-bounded by the teacher’s performance, BETA successfully adapts the black-box
model to surpass its original baseline.

Model Role Architecture Method Avg. Acc (%)

Local Steering Model ViT-S/16
Source 39.5
TENT 51.9
KD (from ViT-B/16) 50.3

Black-Box Target Model ViT-B/16 Source 55.5
BETA (Ours) 62.6

B.2 LOCAL STEERING MODEL BASELINES

B.2.1 WHITE-BOX TTA PERFORMANCE ON STEERING MODEL.

To demonstrate that BETA’s improvement is non-trivial and not simply a result of relying on the
steering model’s outputs, we present the white-box adaptation performance of the ViT-Small steer-
ing model in Table 9. There exists a substantial performance gap between the pre-trained steering
model (39.5% accuracy on ImageNet-C) and the target black-box models (e.g., ViT-L/16 at 61.1%
accuracy). Even when the steering model itself is fully adapted in a white-box setting with a strong
method like SAR, its performance is capped at 57.4%. This is still well below the starting accuracy
of the black-box model it is meant to guide. This highlights that BETA successfully leverages this
weaker, suboptimal steering model not for its direct predictions, but to discover and transfer ben-
eficial adaptation signals to the far more powerful black-box model without requiring any internal
access.

B.2.2 COMPARISON WITH TEST-TIME KNOWLEDGE DISTILLATION

A natural question arises as to whether BETA’s improvements stem from simply distilling the pow-
erful black-box model’s knowledge into the local steering model. To investigate this, and to verify
that our framework is not merely performing Test-Time Knowledge Distillation (KD), we imple-
mented a KD baseline following the protocol in (Zhao et al., 2024). Specifically, we employed the
black-box ViT-B/16 as the teacher and the local ViT-S/16 as the student, optimizing the student to
match the teacher’s predictions on the target data.

The results, summarized in Table 10, reveal a fundamental distinction between the two approaches.
Standard distillation is inherently limited by the capacity of the student model; the distilled ViT-
S/16 achieves only 50.3% accuracy, failing to even match the original performance of the black-box
teacher (55.5%). This result is expected, as KD aims to mimic the teacher’s existing boundary rather
than adapt it to the new domain.

In sharp contrast, BETA achieves 62.6% accuracy, significantly surpassing the original black-box
model. This confirms that BETA is not a distillation process where a student mimics a fixed
teacher. Instead, BETA utilizes the local model to actively adapt the input prompts for the black-box
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model, allowing the final system to break through the performance ceiling of the original pre-trained
weights.

B.3 ZEROTH-ORDER OPTIMIZATION BASELINES

As a direct approach to adapting the visual prompt δ in a black-box setting, we evaluate several
Zeroth-Order Optimization (ZOO) baselines. These derivative-free methods optimize the prompt by
minimizing a fitness function, which we define as the Shannon entropy of the black-box model’s
predictions on the prompted input, f(δ) = H(pB(x + δ)). For a fair comparison, we configure all
three ZOO methods to use 16 queries per test sample for their optimization process.

B.3.1 CMA-ES

As a representative ZOO method, Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
is a derivative-free algorithm used to optimize a high-dimensional visual prompt where gradients
are inaccessible (Hansen & Ostermeier, 2001; Hansen et al., 2003; Niu et al., 2024; Meng et al.,
2025). In each iteration, CMA-ES samples a population of candidate prompts from a multivariate
normal distribution and evaluates them using the fitness function. The goal is to find a prompt, δ,
that minimizes this entropy, encouraging high-confidence predictions. Based on the performance of
the sampled prompts, CMA-ES updates the mean and covariance matrix of the sampling distribution
to guide the search towards more promising regions of the solution space.

B.3.2 RGF

Random Gradient-Free (RGF) is a ZOO method that estimates the gradient of the fitness function
by sampling multiple random directions from a standard Gaussian distribution (Liu et al., 2018;
Tsai et al., 2020). For a given visual prompt δ, RGF approximates the gradient by averaging the
function’s response to small perturbations along these random directions, allowing it to descend
the loss landscape without direct gradient calculations. The gradient approximation at iteration t is
computed as:

gt(δt) =
1

q

q∑
i=1

f(δt + µui)− f(δt)

µ
ui (6)

where ui is a random direction vector drawn from N (0, I), µ is a small smoothing parameter, and q
is the number of directions sampled.

B.3.3 SPSA WITH GRADIENT CORRECTION (SPSA-GC)

To optimize the visual prompt under black-box constraints, we adopt the Simultaneous Perturbation
Stochastic Approximation with Gradient Correction (SPSA-GC) algorithm, as utilized in Black-
VIP (Oh et al., 2023). SPSA is a highly efficient ZOO algorithm that estimates the gradient using
only two queries per iteration (Spall, 1992). Unlike RGF, which requires sampling multiple direc-
tions, SPSA perturbs the parameters in a single random direction and its opposite. The gradient
approximation at iteration t for a visual prompt δt is computed as:

ĝt(δt) =
f(δt + µ∆t)− f(δt − µ∆t)

2µ
∆t (7)

where ∆t is a random perturbation vector drawn from a Bernoulli distribution, and µ is a small step
size.

Gradient Correction. While standard SPSA is query-efficient, the stochastic gradient estimate ĝt
can be noisy. To mitigate this, we employ the Gradient Correction mechanism proposed in Black-
VIP (Oh et al., 2023). This method integrates Nesterov’s Accelerated Gradient (NAG) into the up-
date rule, using a momentum accumulator to rectify the estimated gradient direction. By smoothing
the optimization trajectory, SPSA-GC significantly enhances stability compared to vanilla SPSA,
making it particularly suitable for the high-dimensional optimization of visual prompts.
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Table 11: API efficiency comparison: number of API calls per test sample and performance gain.

Method #API Call per test sample Accuracy (%) Gain

Source (Inference) 1 55.5 0
LAME 1 54.1 -1.4
ZOO-CMA 16 54.5 -1.0
ZOO-RGF 16 56.0 +0.5
ZOO-SPSA-GC 16 55.1 -0.4
TTA-Aug 64 55.6 +0.1
DDA 2 56.9 +1.4
BETA 1 62.6 +7.1

B.3.4 API EFFICIENCY COMPARISON ACROSS BLACK-BOX METHODS

Table 11 demonstrates BETA’s superior efficiency compared to existing black-box TTA methods.
While ZOO-based approaches (CMA, RGF, SPSA) require 16 API calls per test sample and achieve
modest or negative performance gains ranging from -1.0% to +0.5%, BETA achieves a substantial
+7.1% improvement with only a single API call per sample. This represents a 16× reduction in API
usage while delivering significantly better adaptation performance. LAME, though equally efficient
with one API call, suffers from limited adaptive capacity due to its post-hoc output refinement ap-
proach, resulting in a -1.4% performance drop. These results highlight BETA’s unique combination
of query efficiency and adaptation effectiveness in the black-box setting.

B.3.5 ORTHOGONALITY OF CONTRIBUTION: UNSUPERVISED OBJECTIVE VS. ZOO
ALGORITHMS

While we adopt the powerful ZOO algorithm like SPSA-GC (Oh et al., 2023) due to its superior ef-
ficiency, it is crucial to distinguish the role of the ZOO algorithm from the challenges inherent to the
adaptation objective. The efficacy of SPSA-GC was originally demonstrated in BlackVIP (Oh et al.,
2023) within a supervised few-shot transfer setting. In that context, the loss landscape is anchored
by ground-truth labels via a Cross-Entropy loss, providing a consistent and convex directional signal
for the zeroth-order estimator.

In contrast, our strictly unsupervised online setting relies on objectives such as entropy minimiza-
tion. We observe that replacing the supervised loss with an unsupervised one fundamentally alters
the optimization landscape, making it prone to trivial solutions. As evidenced in our experimental
results, naively applying even a robust ZOO algorithm like SPSA-GC to this unsupervised objective
leads to prompt collapse, where the model exploits high-frequency patterns to minimize entropy
without preserving semantic integrity. Therefore, we clarify that our primary contribution does not
lie in the ZOO algorithm itself. Rather, our contribution is the unsupervised stabilization frame-
work: comprising Prediction Harmonization, the Coordinator architecture, and Consistency Regu-
larization. These mechanisms effectively constrain the optimization space, preventing the instability
inherent to source-free black-box adaptation and enabling effective Test-Time Adaptation.

B.4 ROBUSTNESS TO LABEL IMBALANCE AND CONTINUAL SHIFTS

While our primary evaluation follows the standard episodic adaptation setting, real-world data
streams often exhibit temporal correlations or non-stationary distributions. To validate the stabil-
ity of BETA in dynamic environments, we extend our evaluation on ImageNet-C (using ViT-B/16)
to include two challenging scenarios:

• Label Imbalance (Niu et al., 2023; Gong et al., 2022): Following the protocol established
in SAR (Niu et al., 2023), we evaluate performance on data streams with highly skewed
class distributions within each batch, simulating non-i.i.d. test streams.

• Continual Domain Shifts (Wang et al., 2022; Niu et al., 2022): Following the Continual
Test-Time Adaptation (CoTTA) setting (Wang et al., 2022), the model adapts to the 15
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Table 12: Robustness analysis on ImageNet-C (ViT-B/16) under Label Imbalance and Continual
Domain Shift settings. BETA demonstrates minimal degradation compared to the standard setting,
highlighting its stability in dynamic environments.

Method Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Bright. Contr. Elastic Pixel. JPEG Avg.
Source 56.8 56.8 57.5 46.9 35.6 53.1 44.8 62.2 62.5 65.7 77.7 32.6 46.0 67.0 67.6 55.5

BETA (Standard) 60.5 60.7 61.1 54.5 52.2 59.9 56.3 63.6 64.7 66.1 78.1 53.4 62.1 73.3 72.0 62.6
BETA (Label Imbalance) 59.0 59.9 59.5 53.9 51.1 59.1 55.5 62.9 64.3 65.4 77.9 52.4 61.2 73.1 72.1 61.8
BETA (Continual Shifts) 59.5 61.0 60.4 52.3 51.4 58.4 55.2 61.8 63.3 63.8 77.4 51.8 61.7 72.5 71.3 61.5

corruption domains of ImageNet-C sequentially without resetting the model state between
domains.

The results are summarized in Table 12. BETA exhibits remarkable stability, maintaining high
performance even under these challenging conditions. In the label imbalance setting, BETA achieves
an average accuracy of 61.8%, and under continual shifts, it maintains 61.5%. This represents
minimal degradation compared to the standard i.i.d. setting (62.6%).

Why is BETA robust? This robustness is intuitive given our framework’s design. Unlike white-box
methods that directly update internal model parameters—a process known to risk catastrophic for-
getting or overfitting to biased batches—BETA keeps the parameters of the black-box target model
frozen. We exclusively learn an additive input prompt. Furthermore, the local steering model is
updated with a conservative learning rate and strong consistency regularization, preventing the opti-
mization trajectory from over-fitting to the dynamic changes or local biases in the data stream. This
makes BETA naturally resilient to the instability often observed in dynamic test-time adaptation.

B.5 MORE ABLATION STUDIES

B.5.1 ANALYSIS ON STABILIZATION MECHANISMS

We conduct a component analysis to demonstrate the importance of our two stabilization mecha-
nisms,
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Figure 6: Online Batch Accuracy on ImageNet-C
Contrast domain.

visualizing the online batch accuracy on the
challenging ImageNet-C Contrast domain. The
figure shows that the full BETA framework
(“Ours”) rapidly achieves high accuracy and
maintains stable performance across all 800 on-
line batches. In contrast, removing the data
filtering component (“w/o Data Filtering”) re-
sults in significantly lower and gradually de-
caying performance. More critically, removing
the consistency regularization (“w/o KL Reg.”)
leads to catastrophic collapse, with the model’s
accuracy plummeting to near zero after approx-
imately 400 batches. This analysis empirically
validates that both the consistency regulariza-
tion and the data filtering are essential for the
stable and effective performance of BETA.

B.5.2 ROBUSTNESS TO BATCH SIZE

In practical online deployment, the number of samples available for adaptation at any given time
step can vary significantly. To assess BETA’s sensitivity to this factor, we evaluated its performance
on ImageNet-C (ViT-B/16) using batch sizes ranging from 4 to 128. As shown in Table 13, BETA
demonstrates high robustness to batch size variations. Even with a very small batch size of 4, where
gradient estimates are typically noisy, BETA achieves an average accuracy of 59.3%, significantly
outperforming the source model baseline of 55.5%. The performance consistently improves as the
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Table 13: Effect of Batch Size on Average Accuracy (%) on ImageNet-C. BETA consistently im-
proves upon the Source model (55.5%) even when restricted to extremely small batch sizes.

Batch Size Source 4 8 16 32 64 128

Avg. Accuracy 55.5 59.3 60.1 62.3 62.5 62.6 62.6

Table 14: Computational efficiency analysis on ImageNet-C (ViT-B/16). Comparison of API calls
per image, local GPU memory usage, wall-clock time per image, and accuracy. BETA achieves
superior performance with minimal latency, matching the speed of standard inference.

Method # API Calls Local Compute GPU Mem Time/Img Avg. Gain
(per image) Required? (MB) (s) Acc (%) (%)

Source 1 ✗ - 0.045 55.5 -
LAME 1 ✓ 2 0.046 54.1 -1.4
ZOO-SPSA-GC 16 ✓ 52 0.450 55.1 -0.4
TTA-Aug 64 ✓ - 1.800 55.6 +0.1
DDA 2 ✓ 23,427 12.722 56.9 +1.4

BETA (w/ ViT-Tiny) 1 ✓ 1,292 0.047 58.2 +2.7
BETA (w/ ViT-Small) 1 ✓ 2,616 0.048 62.6 +7.1

batch size increases, saturating at 62.6% for batch sizes of 64 and above. This indicates that while
larger batches provide more stable gradients, BETA remains effective even in low-data regimes.

B.6 COMPUTATIONAL EFFICIENCY AND REAL-TIME ADAPTATION

To comprehensively assess the practicality of BETA, we analyze efficiency across two dimensions:
API costs (query complexity) and local computational overhead. We further validate performance
under a strict real-time streaming protocol, following (Alfarra et al.).

Detailed Efficiency Breakdown. We conducted a granular breakdown of wall-clock latency and
resource usage using a single NVIDIA RTX 3090 GPU. As summarized in Table 14, we compare
BETA against baselines including ZOO-SPSA-GC and Test-Time Augmentation (TTA-Aug) (Shan-
mugam et al., 2021).

The analysis yields two critical insights. First, local computation is negligible compared to API
latency. While BETA introduces a local steering model (ViT-Small), it requires only 2.6GB of GPU
memory—feasible for consumer-grade hardware—and adds a trivial 0.003s overhead per image
for the backward pass. The primary bottleneck in black-box adaptation is the API forward pass
(TAPI ≈ 0.045s), which is dominated by network latency. Second, API calls dominate total
latency. Methods relying on multiple queries per image suffer from severe slowdowns. ZOO (16
calls) and TTA-Aug (64 calls) are approximately 9.4× (0.450s) and 37.5× (1.800s) slower than
BETA per image, respectively. This clarifies the context for “backpropagation-free” approaches in
this setting: eliminating the local backward pass (0.003s) provides no practical speed benefit when
the total time is dictated by the mandatory API call (0.045s).

Computationally Constrained Evaluation. To further rigorously test feasibility in streaming sce-
narios, we adopt the Realistic Evaluation Protocol from (Alfarra et al.). This protocol penalizes
methods that cannot keep pace with a data stream arriving at the API’s maximum throughput speed
(r = 1 img/TAPI ).

We define the relative adaptation cost based on the total processing time per step: TStep =
max(TAPI , TLocal Fwd) + TLocal Bwd. Crucially, BETA allows for the parallelization of the lo-
cal steering model’s forward pass with the API query latency. Since TAPI ≫ TLocal Fwd, the local
forward cost is effectively hidden, leaving only the negligible backward pass. Consequently, BETA
maintains a relative cost C ≈ 1, allowing it to adapt to virtually 100% of the data stream. In con-
trast, query-intensive methods like ZOO incur massive adaptation lag (C ≫ 1), forcing them to skip
adaptation for the majority of samples to maintain throughput.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 15: Evaluation under Computational Time Constraints (Alfarra et al.). “Offline Acc” assumes
unlimited time, while “Online Acc” simulates a realistic stream where slow methods must skip
samples. BETA maintains performance due to its single-query efficiency.

Method Offline Acc (%) Online Acc (%)

Source 55.5 55.5
LAME 54.1 54.1
ZOO 56.0 54.3
BETA (Ours) 62.6 62.5

The results in Table 15 demonstrate the impact of this constraint. Under strict real-time conditions,
ZOO’s performance drops to 54.3% (worse than the Source), as it updates too infrequently. BETA,
however, maintains an accuracy of 62.5%, confirming it is a viable solution for real-time black-box
adaptation.

C USE OF LARGE LANGUAGE MODELS

We used a Large Language Model to assist with language polishing and improving the readability
of this manuscript. The authors are fully responsible for all research ideas, experimental results, and
claims presented in this paper.

D LIMITATIONS

While BETA demonstrates strong performance and efficiency, its effectiveness is connected to the
choice of the local steering model. In the current landscape, where most large-scale models are
Transformer-based, our method is highly applicable, as finding a steering model with a similar ar-
chitecture is straightforward. However, the performance could be suboptimal if the architectures
of the steering and target models differ significantly. Although our experiments show that cross-
architecture adaptation is effective (e.g., a CNN steering a Transformer), the improvements are
slightly less pronounced than when using architecturally similar models. Another avenue for fu-
ture research is extending this framework beyond classification to more versatile, generative tasks.
Investigating how to adapt the harmonized objective for generative outputs, where the prediction
space is vast and unstructured, would be a valuable next step.
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