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ABSTRACT

Test-Time Adaptation (TTA) for black-box models accessible only via APIs
presents a significant yet largely unexplored challenge. Existing truly black-box
methods are scarce; post-hoc output refinement shows minimal benefit, while
naively introducing Zeroth-Order Optimization (ZOO) for prompt tuning at test
time suffers from prohibitive query costs and catastrophic instability. To address
these challenges, we introduce BETA (Black-box Efficient Test-time Adaptation),
a novel framework that enables stable and efficient adaptation for both standard
Vision Models and large Vision-Language Models. BETA uniquely employs a
lightweight, local white-box steering model to create a tractable gradient pathway
for optimization, circumventing the need for expensive ZOO methods. This is
achieved through a prediction harmonization technique that creates a shared ob-
jective, stabilized by consistency regularization and a prompt learning-oriented fil-
tering strategy. Requiring only a single API call per test sample, BETA achieves a
+7.1% gain on a ViT-B/16 model and a +3.4% gain on powerful CLIP models; re-
markably, its performance surpasses that of certain white-box and gray-box TTA
methods (e.g., TENT and TPT). This practical effectiveness is further validated on
areal-world commercial API, where BETA achieves a +5.2% gain for just $0.4—a
250x cost advantage over ZOO—establishing it as a robust and efficient solution
for adapting models in the dark at test time. Code will be released.

1 INTRODUCTION

Modern deep learning models often face performance degradation when deployed in the wild due to
distribution shifts between their training data and the target domain (Recht et al., 2019; Hendrycks
& Dietterich, 2019b; Koh et al., 2021). Test-Time Adaptation (TTA) (Sun et al., 2020; Wang et al.,
2021; Niu et al., 2023; Wang et al., 2022; Manli et al., 2022) has emerged as a crucial approach to
address this challenge, aiming to adapt a pre-trained source model on-the-fly using unlabeled data
from the target domain. The feasibility of TTA strategies, however, is determined by the level of
access to the model. While white-box access allows full parameter and gradient manipulation (Wang
et al., 2021; Niu et al., 2023), many state-of-the-art models are increasingly deployed as opaque,
black-box APIs (Hurst et al., 2024; Achiam et al., 2023; Team et al., 2023). In this practical and
restrictive setting, users can only provide an input and receive an output prediction, with no access
to the model’s architecture, parameters, or internal gradients (Sun et al., 2024; Tsai et al., 2020).

TTA in this strictest black-box setting remains a largely unexplored and formidable challenge, par-
ticularly for developing a unified method that can adapt both standard Vision models (VMs) and
powerful Vision-Language models (VLMs). Recently, several backpropagation-free TTA methods
have been proposed to eliminate the need for gradient propagation (Niu et al., 2024; Karmanov et al.,
2024; Lee et al., 2025; Zhou et al., 2025). However, these approaches primarily target computational
efficiency—such as reducing GPU memory usage—rather than addressing privacy or commercial
constraints in black-box API scenarios (Niu et al., 2024; Meng et al., 2025). Consequently, these
methods remain in a “gray-box” category, as they require access to internal model tokens or inter-
mediate features. Truly black-box TTA methods applicable to both VMs and VLMs are scarce, as
adaptation is constrained to only the model’s inputs and outputs. While not originally proposed for
this setting, methods like LAME are applicable because they operate directly on output probabili-
ties (Boudiaf et al., 2022). However, this post-hoc approach has limited adaptive capacity and often
fails to provide consistent improvements, leaving the problem of robust black-box TTA largely open.
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Table 1: Comparison of TTA methods across key capabilities. We evaluate each method’s require-
ments for accessing model parameters, internal tokens, intermediate features, and gradients, along-
side its visual encoder architectural flexibility, support for different model types (Vision models
(VMs)/Vision-Language models (VLLMs)), and query efficiency (One API call per test sample).

Access Method w/o Params. w/o Tokens w/o Feats. w/o Grad. Arch-Agnostic VMs VLMs 1 API/Sample
TENT (Wang et al., 2021) X X X X v v v v

O TPT (Manli et al., 2022) X X X X v X v v
FOA (Niu et al., 2024) v/ X X v/ ViT-only v v/ X
B2TPT (Meng et al., 2025) v X v v ViT-only X v X
BCA (Zhou et al., 2025) v 4 X X v 4 v v
LAME (Boudiaf et al., 2022) v v v v v v v v

[ ] Z00 4 4 4 4 v 4 v X
BETA (Ours) v 4 4 4 v v v v

To address this critical gap, we explore the more powerful technique of learning an additive visual
prompt in the input space. The most straightforward solution is to employ Zeroth-Order Optimiza-
tion (ZOO) (Liu et al., 2018; Spall, 1992; 1997; Hansen & Ostermeier, 2001; Hansen et al., 2003),
a strategy we investigate as a baseline. However, we find this approach suffers from two critical
limitations: prohibitively high query costs and catastrophic instability (Zhang et al., 2024b; Wang
et al., 2024a). This instability arises as the optimization, guided by noisy unsupervised signals like
entropy, can learn degenerate solutions that corrupt the model’s representations and cause perfor-
mance to collapse (e.g., accuracy on the Contrast corruption collapses from 32.6% to as low as
4.1% with ZOO in Table 2). This motivates our development of a new approach that is both highly
efficient—ideally requiring only a single API call per test sample—and robust against this op-
timization failure. We therefore propose BETA (Black-box Efficient Test-time Adaptation), a
novel framework that enables stable and efficient adaptation by leveraging a local, white-box steer-
ing model. Our initial analysis revealed that naively transferring gradients from the steering model
is ineffective, as the gradient similarity between different architectures is near zero (see Fig. 2). This
finding motivates our alternative approach, which moves beyond direct gradient approximation.

BETA’s core mechanism is a prediction harmonization technique that fuses the outputs of the steer-
ing and target models, creating a shared, tractable optimization problem that is solved via a practical
asymmetric gradient pathway. However, even with an efficient gradient signal, our preliminary anal-
ysis shows that the process of learning a prompt from random initialization remains highly unstable,
leading to performance collapse (see Fig. 3). Therefore, this core mechanism is supported by two
essential stabilization techniques to make the framework robust. We introduce a consistency reg-
ularization loss to prevent destructive prompt updates and a novel prompt learning-oriented data
filtering strategy that provides a stable learning signal, distinguishing it from prior filtering methods
designed for pre-trained normalization parameter updates (Niu et al., 2022; 2023).

Our extensive experiments validate BETA’s effectiveness across various model architectures and
real-world scenarios. On standard VMs, BETA achieves an average accuracy of 62.6% on ImageNet-
C with ViT-B/16, a +7.1% gain over the source model. This result not only surpasses all black-box
baselines but remarkably outperforms strong white-box methods like TENT (Wang et al., 2021)
and CoTTA (Wang et al., 2022), all while requiring only a single API call per test sample versus
16 for ZOO-based approaches. This effectiveness extends to powerful VLMs; when adapting a
black-box CLIP model, BETA boosts its average accuracy to 63.4%. This surpasses a suite of
specialized white-box and gray-box methods developed for VLMs (e.g., TPT (Manli et al., 2022),
DynaPrompt (Xiao et al., 2025), and TCA (Wang et al., 2024b)), demonstrating BETA’s unique
capability in a domain previously unexplored in the strictest black-box setting. Finally, on a real-
world commercial Clarifai API, BETA proves its immense practical value and cost-efficiency. It
achieves a +5.2% performance gain with a budget of just $0.4, whereas a ZOO-based competitor
requires over $100—a 250x greater cost—to reach a similar performance. At that same $100 budget,
BETA’s advantage widens significantly, delivering a substantial +17.1% gain.

Main Findings and Contributions. (1). We provide the first systematic evaluation of TTA in
the strict, API-only Black-box setting. Our analysis confirms that existing applicable methods like
post-hoc output refinement have limited adaptive capacity. We further establish input prompting
with ZOO as a powerful but flawed baseline, revealing its critical inefficiency and optimization in-
stability. (2). We introduce BETA, a novel framework that addresses challenges of inefficiency and
instability in Black-box TTA. It bypasses expensive query-based optimization by using a lightweight
steering model to enable an efficient gradient pathway via prediction harmonization, while consis-
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tency regularization and prompt-oriented data filtering ensure robust adaptation. (3). We establish
a new state-of-the-art for black-box TTA. BETA not only significantly outperforms the ZOO-based
baselines but also achieves performance competitive with and even surpasses strong white-box adap-
tation methods. Its practical effectiveness is validated on a real-world commercial API, where our
single-query-per-sample approach demonstrates a 250x cost advantage over ZOO.

2 RELATED WORKS

Test-time Adaptation (TTA). TTA adapts pre-trained models on-the-fly with unlabeled target data
to handle distribution shifts (Sun et al., 2020; Niu et al., 2023; 2022; Wang et al., 2022; Zhang et al.,
2025a;b; Manli et al., 2022). Most works assume whifte-box access, enabling methods to directly
update model parameters by minimizing prediction entropy or using consistency objectives (Wang
etal.,2021; Niu et al.; 2023). Recent backpropagation-free methods have emerged for efficiency but
typically operate in a gray-box setting, as they still require access to internal model representations
like features or tokens, making them inapplicable to strict API-only scenarios (Niu et al., 2024; Meng
et al., 2025; Zhou et al., 2025; Wang et al., 2024b; Lee et al., 2025). Truly black-box TTA remains
a significant challenge, with applicable strategies limited to post-hoc output refinement that offers
limited adaptive capacity (Boudiaf et al., 2022). In contrast, our work, BETA, addresses this gap by
using a local steering model to enable efficient adaptation in the strict black-box setting, creating a
tractable optimization pathway without requiring direct model access or expensive queries.

Black-box Model Adaptation. The adaptation of black-box models has been explored across vari-
ous domains, including vision and language (Sun et al., 2024; Tsai et al., 2020; Oh et al., 2023; Liu
et al., 2024; Sun et al., 2022), but typically for offline transfer learning with labeled data—a setting
with fundamentally different requirements from unsupervised, online TTA. A prominent approach in
this area uses ZOO to learn input prompts that reprogram a model for a specific downstream task (Oh
et al., 2023; Tsai et al., 2020; Liu et al., 2020). However, these ZOO-based methods are hindered by
high query costs and optimization instability (Wang et al., 2024a; Oh et al., 2023). Other methods for
VLMs often operate in a gray-box setting, requiring access to intermediate representations like text
embeddings (Ouali et al., 2023; Wang et al., 2024a), which violates the strict black-box assumption.
In contrast, our work is the first to tackle the unique challenges of unsupervised, online Test-Time
Adaptation in this strict setting, where no labels are available and query efficiency is paramount.

3 METHOD

3.1 PROBLEM FORMULATION AND MOTIVATION

Test-Time Adaptation (TTA) aims to adapt a model f, pre-trained on a source domain, to an un-
labeled target domain Dy = {.q:jT}‘jD:Tl‘ encountered during inference. In the common online setting,
target data arrives as a stream of batches {B;}7_,, and the model is updated on-the-fly without
ground-truth. The feasible adaptation strategies are determined by the level of access to the model

f, which typically falls into one of three categories (Table 1):

* White-Box Access ([] ): The full model architecture and all its parameters are accessible.
This allows for the computation of gradients via backpropagation.

* Gray-Box Access ( ): Intermediate representations, e.g., internal tokens or features,
are accessible, while the full computational graph and parameters remain hidden.

* Black-Box Access (]l ): The model is treated as an opaque API. The only possible in-
teraction is to provide an input = and receive a final output prediction p(y|z) = f(x). No
information about the model’s architecture, parameters, or intermediate states is available.

Existing Approaches and Their Limitations. In this work, we focus on the most challenging
and practical black-box TTA. However, truly black-box TTA methods are scarce. Although not
originally designed for this setting, LAME (Boudiaf et al., 2022) is one of the only applicable strate-
gies, as it operates directly on model outputs via post-hoc output refinement. While efficient and
gradient-free, its adaptive capacity is inherently limited because it operates only on the final pre-
dictions. Consequently, it often struggles to provide consistent improvements and can even degrade
performance on certain domains (see Table 2). The limitations of this output-only approach motivate
our work to develop a more powerful and stable input-based TTA method for black-box models.



Under review as a conference paper at ICLR 2026

1

1

1

LR oM
-

|

1

1

1

1

1

1

1

1

1

Prediction i S 1

@ R @ a Black-Box i o

Prediction Regularization & i 1

T R S Target Model —  Flerg |

1 Final g . g : 1

I | Prediction Steerlng ...... 1

: Model :

I [ : |

1 1 Prediction o 1

: » n ’ 1 P P Harmonization :
- L — nal

M) e ==l

oL 1
I I . $, ) I
: (b). Input Prompt Learning (Z0O) Ie Query (incurs cost == ) 9 Response API Call #n Trainable :

_________________________________ e R U p—.

Figure 1: Comparison of black-box test-time adaptation strategies. (a) Output Refinement (LAME)
is limited to post-processing predictions, while (b) ZOO-based Input Prompt Learning requires mul-
tiple expensive API calls for prompt optimization. In contrast, (c) BETA achieves efficient single-
query adaptation by leveraging a lightweight steering model with prediction harmonization to create
a tractable gradient pathway, stabilized through data filtering and regularization.

3.2 BETA: BLACK-BOX EFFICIENT TEST-TIME ADAPTATION

To move beyond the limited capacity of output-only refinement, we propose BETA (Black-box Ef-
ficient Test-time Adaptation), a framework that enables efficient and stable adaptation by learning
an additive visual prompt. By introducing a lightweight steering model, it creates an efficient gradi-
ent pathway via prediction harmonization that requires only a single API call per test sample, while
consistency regularization and prompt learning-oriented filtering ensure robust adaptation.

The Challenge of Black-Box Prompt Optimization. A powerful adaptation strategy is to learn an
additive visual prompt, § € RF*WXC which is added to an input image z to produce a prompted
version ' = x + 4. In a black-box setting, a straightforward approach to optimize this prompt is
to employ ZOO to minimize the Shannon entropy of the model’s predictions (Wang et al., 2021),
H(pp(z')) = — Zle pH(x') log pg (') , where p%(x') is the model’s predicted probability for
class c. However, our investigation reveals two critical drawbacks: prohibitively high query complex-
ity (e.g., a standard CMA-ES setup requires 28 API queries per test sample (Niu et al., 2024)) and
Sfundamental instability. This instability stems from noisy unsupervised signals, e.g., entropy, which
can cause the optimization to learn degenerate solutions that corrupt the input’s semantic features
to produce high-confidence but incorrect predictions. This leads to inconsistent performance and
catastrophic collapse on challenging domains (e.g., on the Contrast corruption, accuracy collapses
from 32.6% to 4.1%, 26.8%, and 12.7% across three ZOO methods in Table 2).

Prediction Harmonization with Asymmetric Optimization. The failure of ZOO motivates our
gradient-based approach using the steering model. However, a second direct approach—naively
transferring the prompt gradient from the steering model—also fails, as our analysis (Fig. 2) shows
the gradient similarity between architectures is consistently near zero (=~ 0.0006). The failure of
both query-based optimization and naive gradient transfer motivates our solution: constructing a
new, shared optimization problem. To create this shared objective, we introduce a Harmonized
Prediction, py, that combines the outputs of the steering model (pg) and the black-box model (pp)
with a weighting parameter a € [0, 1]:

pu(r’) = a-ps(z’) + (1 —a)-pp(a). (1)

While the harmonized objective is defined, it must be optimized asymmetrically using only the
steering model’s gradient pathway. To justify this approach, we conduct a comprehensive gradi-
ent analysis, performed across four validation corruption domains by computing a one-step gra-
dient for each batch. For this analysis only, we temporarily assume white-box access to the tar-
get black-box model to compute otherwise inaccessible gradients. We define and compare sev-
eral key vectors: the ideal Targer Gradient (gplack = VsH(ps; fB)), the naive Local Gradient
(grocal = VsH(ps; fs)), and a ZOO Gradient (9700). Against these, we evaluate our method’s
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Ideal Harmonized Gradient (gidaeal = VsH(pu; fB, fs)) and the practical Asymmetric Harmonized
Gradient (geTa = VsH(pH: fs))-

Our analysis in Fig. 2 reveals that simpler baseline strategies fail to provide a useful update
direction in this one-step setting. The cosine similarity between the Local Gradient and the
Target Gradient is consistently near zero, confirming that naive gradient transfer is ineffective.
More importantly, the ZOO Gradient

. . . ViT-B/16 with ViT-S/16 ViT-L/16 with ViT-5/16
shows a similarly weak alignment; as TEB/L8 with VIS {TL/0 with VITS/

1.0 1.0

ZOO methods are inherently iterative, , . 208
their one-step estimate is highly noisy and & 3
proves no more effective than the local %0'6 %0'6
gradient, despite its high query cost. ™ g

002 Oo.2
BETA’s success is rooted in how the ok S Seenn
Welghtlng parameter, a’ navlgates a trade_ 0.0 0.2 0.4 R 0.6 0.8 1.0 0.0 0.2 0.4 R 0.6 0.8 1.0
Off between two competing factors. The —m— Opt. Effectiveness: cos(gsera, Gidear) Grad. Transfer: cos(gyocals 9slack)
ﬁI'St iS Objective ReleVance, Wthh mea- —e- Obj. Relevance: cos(gsjack, Gideal) Z0O0 Estimation: cos(gzo0, 9slack)

sures how well our tractable objective Fjgure 2: We analyze the trade-off between Objective
aligns with the true goal, defined as Relevance (alignment with the true target gradient) and
Relevange(a) = C_OS(QIdealv gBlacl§)~ The Optimization Effectiveness (alignment with the practi-
second is Optimization Effectiveness, ;| sieering gradient) as a function of o. The curves are

which measures how well our practical ap-  pjoted based on the validation sets of ImageNet-C.
proach can optimize this objective, defined

as Effectiveness(a) = cos(gBETA, Jideal)- As shown in Fig. 2, these factors are in opposition: a low
« yields high Relevance but negligible Effectiveness, while a high « yields perfect Effectiveness
for an irrelevant objective. The success of BETA lies in identifying an optimal range for « (e.g.,
[0.3,0.5]) where a principled compromise is struck. BETA succeeds not by directly approximating
the target gradient—a task at which both ZOO and local transfer fail—but by constructing and ef-
fectively solving a new, shared optimization problem that serves as a tractable and beneficial proxy.

While the harmonized objective provides a path for optimization, our preliminary analysis re-
veals that this process is inherently unstable when applied in isolation. To demonstrate this, we
evaluated a baseline version of our method using only the harmonized objective on the challeng-
ing ImageNet-C Contrast domain across five independent runs. The results in Fig. 3 show that
naively optimizing the randomly initialized prompt leads to either a gradual performance decay or
a catastrophic collapse, highlighting that an efficient gradient signal is not sufficient on its own.
To ensure robust adaptation, BETA incorporates two

critical stabilization mechanisms. <45

Consistency Regularization. The most critical 3

challenge is to prevent destructive prompt updates. S 301

Our analysis (Fig. 3) shows that an unconstrained g

optimization process suffers a catastrophic collapse. 5 1>

This occurs because prompts are randomly initial- @

ized, and an entropy-only objective can be mini- 01 e

0 200 400 600 800

mi learnin ner lutions th T
zed by learning degenerate solutions that corrupt Online Batch

the model’s representations. To prevent this, we in- o )

troduce a consistency regularization that anchors the Figure 3: Five independent runs of using
update to the model’s reliable pre-trained knowledge solely Eqn. (1), showmg either performance
by minimizing the KL-divergence between predic- collapse or failure to improve. Results ob-

tions on the clean (z) and prompted (z’) images: tained on ImageNet-C (Contrast, level 5).
o ps(x)
L consist ('Tv 1") = DKL(pS (I) ||p5(:l?l)) = prq(«r) log p(:g(x/) : @)
c=1 S

Prompt Learning-oriented Data Filtering. While regularization prevents collapse, our analysis
shows that performance can still degrade if the prompt is updated using all incoming data (Fig. 6).
This is because high-entropy test samples provide noisy learning signals. To ensure the prompt
learns from a stable signal, we update it using only reliable samples, identified as those with a
prediction entropy H(ps(x)) below a threshold €. The objective is then defined as:

EHarmon(x/) = wWH (J?/)H(p]—] (JU/)), (3)
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Table 2: Classification accuracy (%) on ImageNet-C (severity 5) using ViT-B/16 (87M) as the black-
box model. BETA achieves the highest performance among black-box methods and outperforms
several strong white-box approaches. White-box and gray-box methods are shown for reference.

Access Method Noise Blur Weather Digital Avg. Gain
Gauss.  Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Bright. Contr. Elastic Pixel. JPEG
Source 56.8 568 575 46.9 356 53.1 448 622 625 657 717 32,6 46.0 670 676 555 0.0
TENT 60.3 616 618 59.2 56.5 63.5 59.1 542 645 22 79.1 67.4 61.5 725 706 59.6 +4.1
T3A 564 569 573 479 37.8 54.3 469 636 608 685 78.1 38.3 50.0 676 691 569 +14
— SAR 59.1 605  60.6 57.1 55.6 61.5 574 658 634 674 787 62.6 622 720 702 63.6 +8.1
CoTTA 633 639 645 55.0 51.0 63.5 56.1 688 692 712 783 9.6 64.3 734 712 616 +6.1
FOA™ 570 585 578 517 35.0 37.1 272 202 119 722 76.8 0.6 39.1 66.7 670 449 -10.6
LAME 565 565 572 46.4 34.7 527 442 584 615 631 714 247 44.6 66.6 672 541 -1.4
ZOO-CMA 582 596 603 50.8 38.6 552 457 585 596 597 767 4.1 49.8 712 700 545 -10
| ] ZOO-RGF 596 587 604 47.7 37.8 53.5 446 582 617 634 767 26.8 49.4 707 702 560 +0.5
ZOO-SPSA 596 587 602 47.9 38.0 53.7 447 582 617 636 767 12.7 49.4 707 702 551 -04

BETA (Ours) 60.5 60.7 61.1 545 522 59.9 563 63.6 647 66.1 781 534 62.1 733 720 626 +7.1

where the weight wy (x) filters out high- entropy samples and assigns a soft, confidence-based
weight to reliable ones: wy (z) = W L3 (ps(x))<ey (). Unlike methods that filter
for pre-trained normalization parameters to improve efficiency (Niu et al., 2022), we deliberately
retain all reliable samples for the prompt update. This is because learning a visual prompt from a
random initialization is a challenging optimization problem that benefits from more stable data.

Final Objective and Joint Optimization. BETA’s final objective combines these components to
jointly optimize the visual prompt § and the steering model’s normalization parameters #. To max-
imize the steering model’s effectiveness, we adapt the normalization layers using only samples that
are both reliable and non-redundant (Niu et al., 2022). Non-redundancy is determined by compar-
ing a sample’s prediction against an exponential moving average of past predictions, p;_1, using a
diversity margin d. The loss for the steering model’s normalization parameters 6 is:

Lsteer(2) = ws(2")H(ps (")), )
where the weight wg () identifies the desired subset by filtering for samples that are both reli-
. _ 1
able and non-redundant: wg(z) = PHGs@I=] s (ps(z))<e} * 1| cos(ps (x),p:—1)|<d} The final
objective for BETA combines the prompt-learning and the normalization-layer objectives, and the
consistency regularizer, averaged over a batch By:

»CBETA = EzGBt [»CHarmon(x/) + »CSteer(x/) + )\»Cconsist (1’7 55/)] . (5)

4 EXPERIMENTS

Datasets and Models. We evaluate our method across several challenging benchmarks: ImageNet-
C at severity level 5 (Hendrycks & Dietterich, 2019a), ImageNet-S (Sketch) (Wang et al., 2019),
and ImageNet-R (Rendition) (Hendrycks et al., 2021). In our experiments, we treat powerful, large-
scale models as the inaccessible black-box targets: standard Vision Transformers ViT-B/16 (87M
parameters) and ViT-L/16 (304M), and the Vision-Language Model CLIP with a ViT-B/16 backbone
(CLIP-B/16, 150M) (Dosovitskiy et al., 2021; Radford et al., 2021). Adaptation is guided by a much
smaller, fully accessible ViT-S/16 (22M) steering model. To validate BETA in a practical, real-world
scenario, we also test it using a commercial Clarifai' API, which charges $0.0032 per request.

Compared Methods. We conduct our comparison in the source-free Fully TTA setting, benchmark-
ing against methods with varying levels of model access. For White-box methods, we include those
applicable to both VMs and VLMs (Tent (Wang et al., 2021), T3A (Iwasawa & Matsuo, 2021),
SAR (Niu et al., 2023), and CoTTA (Wang et al., 2022)), along with specialized approaches for
VLMs (TPT (Manli et al., 2022), DynaPrompt (Xiao et al., 2025), and DPE (Zhang et al., 2024a)).
For Gray-box methods, we compare against FOA (for both VMs and VLMs) (Niu et al., 2024) and
others specific to VLMs (TDA (Karmanov et al., 2024), B2TPT (Meng et al., 2025), TCA (Wang
et al., 2024b), BCA (Zhou et al., 2025), RA-TTA (Lee et al., 2025)). Our primary comparison is
against truly Black-box methods: the post-hoc refinement method LAME (Boudiaf et al., 2022) and
three ZOO baselines (CMA-ES, RGF, and SPSA) that we implemented to learn a visual prompt.

Implementation Details. For BETA, we set the weighting parameter « to 0.4. The shared visual
prompt ¢ is trained with the AdamW optimizer using a learning rate of 0.01. We update only

"https://www.clarifai.com/


https://clarifai.com/facebook/playground?model=general-image-recognition-deit-base__bdfdeb4a60624bce90a4183bf40a69fa&user_id=facebook&app_id=image-classification

Under review as a conference paper at ICLR 2026

Table 3: Classification accuracy (%) on ImageNet-C (severity 5) using ViT-L/16 (304M) as the
black-box model. BETA achieves the best performance among black-box methods and outperforms
several strong white-box approaches. White-box and gray-box methods are shown for reference.

Access Method Noise Blur Weather Digital Avg. Gain
Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Bright. Contr. Elastic Pixel. JPEG
Source 625 620 633 529 453 60.7 552 660 623 626 799 40.1 56.2 743 728 611 0.0
TENT 672 673 654 59.2 0.9 66.7 638 697 670 619 810 60.3 65.4 773 741 631  +2.0
T3A 626 622 635 54.0 46.1 61.3 564 666 632 573 799 39.1 589 746 733 613  +02
— SAR 656 667 669 58.6 57.8 60.5 610 693 670 681 810 60.2 61.8 768 743 664 +53
CoTTA 683 697 699 57.1 542 53.5 632 725 704 262 809 535 65.6 71.1 749 638 427
FOA™ 48.1  56.1  59.1 50.2 50.6 59.6 424 575 588 56.1 722 29.1 59.5 720 704 56.1 -5.0
LAME 622 616 630 524 449 60.3 548 655 61.7 617 798 39.9 554 741 724 606 -05
ZOO-CMA 61.7 625 63.1 57.1 50.4 61.6 554 639 625 595 784 225 56.5 758 742 603 -0.8
| ] ZOO-RGF 613 629 622 56.9 50.9 59.5 525 590 589 569 757 312 57.1 747 724 595  -16

ZOO-SPSA 62.8 635 634 57.0 522 59.8 559 590 597 61.7 755 43.0 59.9 75.1 724 614 +0.3
BETA (Ours) 631 640 63.5 59.7 55.1 63.6 594 661 650 662 80.0 55.1 65.0 762 745 651 +4.0

the normalization layers of the local steering model using SGD with a learning rate of 2 x 1075,
The weight for the KL consistency regularization A is set to 50, and we set the entropy threshold
e = 0.9 x In(1000) for sample filtering. The visual prompt is structured as a padded frame with
a width of 16 pixels, amounting to 39,936 learnable parameters, and is initialized from a Gaussian
distribution. Additional experimental details are provided in Appendix A.

4.1 EXPERIMENTAL RESULTS

Results on ImageNet-C with Vision Models. Our main experiments evaluate BETA against a
comprehensive suite of TTA methods on the ImageNet-C benchmark. We first test using a ViT-B/16
black-box model, with results for all white, gray, and black-box methods presented in Table 2 for
a comprehensive comparison. The analysis reveals significant limitations in existing limited-access
baselines. Gray-box methods like FOA™ are inapplicable in our strict source-free setting, as their
original design requires source statistics (Niu et al., 2024). In the black-box setting, LAME fails
to improve upon the source model’s performance. While ZOO-based methods can provide some
benefit, they are inconsistent, collapsing on certain domains, and are highly inefficient, requiring 16
API calls per test sample versus BETA’s single call. In stark contrast, BETA not only consistently
improves performance across all domains but achieves an average accuracy of 62.6% (+7.1% gain).
Remarkably, this surpasses all black-box baselines by a large margin and even outperforms several
strong white-box methods such as TENT and CoTTA, approaching the accuracy of top performers
like SAR, despite operating under much stricter access constraints.

This trend of superior performance continues when using the more powerful ViT-L/16, as
shown in Table 3. Here, BETA again delivers the strongest performance among all black-
box methods, achieving a +4.0% gain while ZOO-based approaches consistently degrade per-
formance. This improvement is highly non-trivial and highlights the effectiveness of our steer-
ing mechanism. There is a substantial performance gap between the pre-trained steering model
(ViT-S/16 at 39.5% accuracy) and the target black-box model (ViT-L/16 at 61.1% accuracy).

Even when the steering model itself is .
fully adapted in a white-box seiting, its Table 4: Results on ImageNet-S/R w.r.t. Acc (%).

performance is capped at 57.4% (detailed ~ Access Method VIT-B/16 } CLIP (VIT-B/16)
. : Sketch  Rendition Avg. | Sketch Rendition Avg.
mn Appenle Table 7),' Yet, BETA suc Source 44.9 59.5 522 | 46.1 74.0 60.0
cessfully leverages this suboptimal steer- TENT 1 &9 65 95 53 64
ing model to guide the far more powerful A s S0 s34l 76 624
ViT-L/16 to a new state-of-the-art black- [ corma 500 635 568 | 504 756 630
box accuracy of 65.1%. This demonstrates Dymabrompt i B I+ G o
that BETA is not simply relying on the lo- DPE - - - | 523 804 663
’ 1 1Qo FOA" 44.7 59.2 52.0 458 73.2 59.5
cal mpdel s output, but' is successfully dis oA + - il e -
covering and transferring beneficial adap- B2TPT - - - | 7186 495 64l
. . . RA-TTA - - - 79.7 50.8 65.3
tation signals to the black-box model with- TCA _ - I 90 630
out requiring any internal access. BCA - - - 1807 509 658
LAME 44.4 59.0 51.7 454 72.8 59.1
Results on ImageNet-S and ImageNet- g 700kcr 40 51 33| 453 721 57
’ 17a- ZOO-SPSA 45.1 59.3 52.2 46.0 72.8 59.4
R. To further evaluate BETA’s generaliza 200, ol B3 22 68 T8 N4

tion capabilities, we test its performance



Under review as a conference paper at ICLR 2026

g 3
(%)
2 8
g 3
(%)

S S S S
Z 60| Lt G LI T = 60 BT G T
3 2 3 2
© 58 = = Source LAME © 58 === Source LAME © 58 = = Source LAME © 58 = = Source LAME
] == TENT —m— Ours 2 =+ TENT —m— Ours 3 =+ TENT —m— Ours ] ==« TENT —m- Ours
256 s 256 e 256 e —— e B
5 5. 54 54
0.20 0.25 0.30 0.35 0.40 0.45 0.50 0510 20 30 50 100 04 05 06 07 08 09 1.0 8 10 12 14 16 18 20
(a) Fusion Weight a (b) KL Reg. Weight A (c) Entropy Margin € (d) Prompt Size

Figure 5: Sensitivity analysis of BETA’s hyperparameters, showing stable performance across fusion
weight « in Eq. 1, regularization weight X in Eq. 5, entropy margin € in Eq. 3, and prompt size.

on ImageNet-S and ImageNet-R using ViT-B/16. The results in Table 4 demonstrate a consis-
tent trend of strong performance. On both datasets, BETA significantly improves upon the source
model’s accuracy, achieving an average of 56.3%. This not only surpasses the black-box baselines
but also outperforms strong white-box methods like T3A and SAR, underscoring our framework’s
robustness to diverse domain shifts. We then extend our evaluation to Vision-Language Models
(VLMs), applying BETA to a CLIP model with a ViT-B/16 backbone.

To our knowledge, this is the first work to explore adaptation for powerful VLMs in the strictest,
API-only black-box setting. The results in Table 4 highlight BETA’s unique effectiveness in this
challenging scenario. It is the only black-box method that can efficiently and effectively improve
the pre-trained CLIP model, boosting its average accuracy to 63.4%. Remarkably, this black-box
performance surpasses a suite of specialized white-box methods developed for VLMs, including
TENT, SAR, TPT, and DynaPrompt, as well as gray-box methods such as TCA. This consistent
success across different datasets and model types demonstrates that BETA is a general and powerful
framework for black-box adaptation.

Results on a Real-world API. To validate BETA’s prac-
ticality, we test it on a commercial Clarifai API, bench-
marking performance against API cost in USD on the
challenging ImageNet-C Contrast domain (Fig. 4). The
results clearly show BETA’s superior efficiency and ef-
fectiveness. With a budget of just $0.4—sufficient to
adapt ~ 120 test samples—BETA already improves upon
the source model by +5.2%. In stark contrast, a query-
intensive ZOO competitor requires over $100 to reach 05 1 2 10 20 4060 100
a similar performance, marking a 250x cost advantage Clarifai AP! Budget in USD (5)

for our method. Furthermore, at that same $100 budget, Figure 4: Performance vs. API budget
BETA’s advantage widens significantly, as it delivers a on the Real-world Clarifai APL
substantial +17.1% gain. This experiment demonstrates

BETA’s significant real-world utility, making it a practical and effective solution for adapting com-
mercial API-based models.
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4.2 ABLATION STUDIES

Hyperparameter Sensitivity. We analyze BETA’s sensitivity to its key hyperparameters in Fig. 5.
Our analysis of the fusion weight « in Eq. 1 shows that the framework’s performance is empiri-
cally robust, exhibiting stable and high performance across a wide range of values from 0.3 to 0.5
(Fig. 5a). The KL regularization weight A in Eq. 5 is shown to be a critical component; without
it (A = 0), performance is suboptimal as the prompt can learn degenerate solutions. As shown in
Fig. 5b, performance improves significantly with the introduction of regularization and stabilizes
across a broad range of A values from 20 to 100. For the entropy margin € in Eq. 5, our results show
that BETA performs robustly with a more lenient margin (tested from 0.4-1n(1000) to 1.0-1n(1000)).
Unlike methods adapting pre-trained parameters, learning a prompt from random initialization re-
quires more data, making a less restrictive filter beneficial (Fig. 5c). Finally, for the prompt size
(Fig. 5d), which corresponds to the frame width, we observe a clear trade-off: smaller prompts may
lack the capacity to capture the domain shift, while larger prompts are harder to optimize. The
performance peaks around a width of 16 pixels and remains stable across the tested range of 8 to 20.
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Table 6: Effect of steering model choice. The Source and TENT-adapted accuracy of each local
steering model are provided as a reference against the BETA accuracy on the large black-box models.

Dataset Black-Box Model  Source LAME ~ ZOO | ViT-Tiny (6M) ‘ ResNet50 26M) ‘ VIT-Small 22M)
| Source  TENT = BETA | Source TENT = BETA | Source TENT = BETA
ImageNet-C ViT-B/16 (87M) 55.5 54.1 560 | 214 20 | 582 | 242 314 608 | 395 51.9 62.6
ViT-B/16 (87M) 449 444 451 452 475 49.3
ImageNet-Sketeh ¢y 1p p/i6 (150M)  46.1 454 460 | 00 23 a3p 79 BT 47 328 36 509
Average - 488 480 490 | 2L1 21.7 501 | 267 30.2 523 | 350 410 | 543

Analysis of BETA’s Components. We conduct an ablation study to dissect the contri-
bution of each component in BETA, with results summarized in Table 5. Our analysis
first reveals that strategies focusing solely on output adaptation (Out-Adapt) are insufficient.
Both LAME’s Prediction Refinement

(PR) and our Prediction Harmonization Table 5: Component analysis on ImageNet-C.
(PH) strategy used in isolation (Exp-1)
fail to improve upon the source model, Method In-Adapt KL Reg. Filt. Out-Adapt Acc. Gain

demonstrating that effective black-box Source - - - - 555 00
TTA requires input adaptation (In- LAME - - - PR 541 -14
Adapt). However, naively adding an input 200 ’ - ' _ %60 +03
prompt (Exp-2) leads to a performance Eig; y - - o 2‘1‘% By
collapse to 51.6% accuracy. This high- Exp-3 v v B PH 507 443
lights the inherent instability of learning Exp-4 v - v PH 602  +4.7
a randomly initialized prompt without BETA v/ v v PH 626 +7.1

supervision—a task significantly more
challenging than adapting well-initialized
normalization layers. Our stabilization techniques are designed to resolve this instability. Intro-
ducing either KL regularization (KL Reg.) in Exp-3 or sample filtering (Filt.) in Exp-4 provides
a substantial performance boost, improving accuracy to 59.7% and 60.2%, respectively. The full
BETA framework, which integrates both complementary techniques, achieves the best performance
of 62.6%. This confirms that both stabilization mechanisms are essential for robust prompt learning.

Effect of Steering Model Choice. We investigate how the choice of the local steering model affects
BETA'’s performance, with detailed results summarized in Table 6. Our analysis confirms that BETA
is a flexible framework that consistently improves upon the source model across different steering
models, including those with different sizes and architectures. Notably, even with a model as small
as a 6M-parameter ViT-Tiny, our method successfully boosts the performance of both large black-
box models (87M and 150M). Furthermore, the framework demonstrates strong cross-architecture
generalization, as a CNN-based ResNet-50 can effectively improve the Transformer-based ViT and
CLIP models. The improvement from BETA is highly non-trivial and goes far beyond the capa-
bilities of the steering models themselves, a finding that holds true across all tested configurations.
On average, our strongest steering model (ViT-Small), even when fully adapted with TENT, only
reaches an accuracy of 41.0%—well below the 48.8% starting accuracy of the black-box models.
Despite this, BETA successfully leverages these weaker models to support the black-box models
to a final average accuracy of 54.3%. This demonstrates that BETA is not simply relying on the
local model’s output but is effectively discovering and transferring beneficial adaptation signals to
successfully adapt large-scale models in the dark.

5 CONCLUSION

In this work, we addressed the critical challenge of adapting powerful models in the strict black-
box setting where only API access is available. We introduced BETA, a novel framework that
enables efficient and stable Test-Time Adaptation by leveraging a lightweight white-box steering
model. The core of our method is a prediction harmonization technique that creates a tractable,
shared objective, which is made robust through consistency regularization and a prompt-oriented
data filtering strategy. Our extensive experiments show that BETA significantly outperforms existing
black-box methods, achieves performance competitive with strong white-box approaches on both
Vision and Vision-Language models, and demonstrates immense practical value on a commercial
API with a 250x cost advantage over ZOO-based techniques. By demonstrating that a smaller, local
model can effectively steer a powerful, inaccessible one, our work makes robust black-box TTA a
practical reality and opens up new possibilities for adapting models in the dark at test time.
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Appendix

A ADDITIONAL EXPERIMENTAL DETAILS

A.1 BASELINES AND IMPLEMENTATION DETAILS

We compare BETA against a comprehensive suite of baselines with varying levels of model access,
including white-box, gray-box, and black-box methods.

The following methods are applicable to both standard Vision Models (VMs) and Vision-Language
Models (VLMs):

Tent (Wang et al., 2021) is a white-box method for fully test-time adaptation, which adapts a pre-
trained model to a new test distribution without requiring any source data. The core idea is to
encourage model confidence on the unlabeled test data by minimizing the Shannon entropy of its
predictions for each incoming batch. To achieve this efficiently, Tent does not update the entire
model; instead, it exclusively adapts the parameters within the model’s normalization layers. For
each test batch, it first updates the normalization statistics during the forward pass and then optimizes
the learnable channel-wise affine transformation parameters via backpropagation on the entropy loss.

Test-Time Template Adjuster (T3A) (Iwasawa & Matsuo, 2021) is a gray-box method for do-
main generalization that adapts a model’s final linear classifier at test time. The method is
backpropagation-free and works by first computing class-specific ”pseudo-prototype” representa-
tions from the features of unlabeled test data. Once these prototypes are established, it classifies
each new test sample based on its distance to these dynamically adjusted prototypes. This allows
the model to leverage information from the target domain without requiring extensive optimization
or altering the core feature extractor.

SAR (Niu et al., 2023) is a white-box method designed to stabilize online Test-Time Adaptation in
challenging ”wild” scenarios, such as with mixed domain shifts or small batch sizes, where standard
entropy minimization can fail. The method identifies that model collapse during adaptation is often
caused by noisy test samples producing large, disruptive gradients. To mitigate this, SAR employs
a two-part strategy: it first filters out unreliable, high-entropy samples to reduce noise. For the
remaining data, it then uses a sharpness-aware optimizer to guide the model parameters into a flat
region of the loss landscape, enhancing robustness against any remaining noisy updates.

Continual Test-Time Adaptation (CoTTA) (Wang et al., 2022) is a white-box method designed
to adapt models to continually changing target domains, addressing the challenges of error ac-
cumulation and catastrophic forgetting. To generate more reliable pseudo-labels, it employs a
teacher-student framework where the student model is updated based on the weight-averaged and
augmentation-averaged predictions of the teacher. To prevent catastrophic forgetting over long-term
adaptation, CoTTA stochastically restores a small fraction of the student model’s weights to their
original source-trained values during the update process. The method is designed to adapt all pa-
rameters of the network.

Forward-Optimization Adaptation (FOA)> (Niu et al., 2024) is a gray-box method designed for
test-time adaptation in scenarios where backpropagation is infeasible, such as on quantized mod-
els or edge devices. The approach is entirely training-free and avoids modifying model weights by
learning an additive input prompt using a derivative-free optimizer (CMA-ES). To guide this op-
timization, FOA introduces a novel fitness function that combines prediction entropy with a term
measuring the statistical discrepancy between the test sample’s activations and pre-computed source
data activations. The framework also includes a “back-to-source” activation shifting scheme that di-
rectly modifies the final layer’s features during the forward pass to better align them with the source
domain.

LAME (Boudiaf et al., 2022) is a black-box method for online test-time adaptation that oper-
ates without requiring access to model parameters or gradients. Instead of adapting the network’s
weights, it adapts the model’s output probabilities directly for a given batch of test data. The method

2FOA uses entropy minimization instead of activation discrepancy for source-free settings where source
statistics are unavailable in our experiments.
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proposes a Laplacian Adjusted Maximum-likelihood Estimation (LAME) objective, which finds the
optimal latent class assignments by maximizing the data likelihood while being regularized by a
Laplacian term that encourages label consistency among neighboring samples in the feature space.
This objective is optimized efficiently using a concave-convex procedure and does not require back-
propagation.

In contrast to the methods above, the following baselines are designed specifically for the adaptation
of Vision-Language Models:

Test-Time Prompt Tuning (TPT) (Manli et al., 2022) is a white-box method that adapts Vision-
Language Models like CLIP using only a single unlabeled test sample. For each test image, TPT
creates multiple augmented views and optimizes a learnable text prompt via backpropagation to
enforce prediction consistency across them. The optimization is guided by minimizing the entropy
of the averaged predictions, and a confidence selection module filters out noisy augmentations that
yield low-confidence outputs. TPT performs a one-step update on the prompt for each test sample.

Dual Prototype Evolving (DPE) (Zhang et al., 2024a) is a white-box method that performs test-
time adaptation for VLMs by accumulating task-specific knowledge from both visual and textual
modalities. The method maintains and evolves two sets of class prototypes—one textual and one
visual—which are updated online as more test samples are processed. For each individual test
sample, DPE learns temporary residual parameters to adjust both sets of prototypes. This sample-
specific optimization is guided by a dual objective that encourages prediction consistency across
augmented views and enforces alignment between the textual and visual prototypes for each class.

DynaPrompt (Xiao et al., 2025) is a white-box method that improves online test-time prompt tun-
ing by leveraging information from previous test samples while mitigating the problem of prompt
collapse. The core of the method is an online prompt buffer containing a set of learnable prompts
that evolve over time. For each new test sample, DynaPrompt employs a dynamic selection strategy
based on prediction entropy and probability difference to choose a relevant subset of prompts from
the buffer for optimization. To adapt to new data, the framework also dynamically appends new
prompts to the buffer and removes inactive ones.

B2TPT (Meng et al., 2025) is a gray-box method that addresses test-time prompt tuning for black-
box Vision-Language Models (VLMs) where gradients are inaccessible. To overcome this, it em-
ploys a derivative-free algorithm (CMA-ES) to optimize low-dimensional “’intrinsic prompts,” which
are then projected into the full prompt space to make the high-dimensional optimization tractable.
For supervision, the framework uses a ”Consistent or Confident” (CoC) pseudo-labeling strategy
to generate labels from the model’s outputs. The method jointly optimizes text and vision prompts
using a frozen CLIP ViT-B/16 backbone.

Training-free Dynamic Adapter (TDA) (Karmanov et al., 2024) is a gray-box method designed
for efficient test-time adaptation of Vision-Language Models without requiring backpropagation.
The method constructs a lightweight key-value cache during inference, which is progressively up-
dated with incoming test samples. This cache consists of two components: a positive cache that
stores image features and their corresponding high-confidence pseudo-labels, and a novel negative
cache that stores negative pseudo-labels to improve robustness against label noise. The final predic-
tion is a combination of the original CLIP output and the predictions derived from both the positive
and negative caches.

Retrieval-Augmented TTA (RA-TTA) (Lee et al., 2025) is a gray-box method that adapts Vision-
Language Models by incorporating external knowledge from a large image database at test time.
Instead of a direct image-to-image search, RA-TTA uses a novel description-based retrieval process
to find more relevant external images. For a given test image, it first identifies its most prominent
visual features by selecting matching fine-grained text descriptions from a pre-compiled library.
These selected text descriptions are then used as queries to retrieve semantically similar images
from the database, and the VLM’s initial prediction is refined using a relevance score derived from
this external knowledge.

Bayesian Class Adaptation (BCA) (Zhou et al., 2025) is a gray-box method that adapts Vision-
Language Models by updating both the class likelihood and prior at test time. It frames the adap-
tation problem using Bayes’ theorem, identifying that existing methods only adapt the likelihood
(class embeddings) while overlooking the class prior, which can shift in new domains. BCA em-
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Table 7: White-box TTA performance on the ViT-Small steering model on ImageNet-C. The results
show that even when fully adapted, the steering model’s performance is capped well below that of
the unadapted black-box target models, highlighting the effectiveness of our steering mechanism.

Source TENT T3A SAR CoTTA LAME

Avg. 39.5 519 404 574 46.0 38.9
Gain 00 +124 +09 +179 +6.5 -0.6

ploys a dual-update mechanism: it adapts the likelihood by updating the most relevant class em-
bedding with an incoming visual feature via a running average. Concurrently, it adapts the prior by
using the model’s posterior prediction for the current sample to update the prior distribution of the
predicted class, allowing the model to learn the new class frequencies on the fly.

Token Condensation as Adaptation (TCA) (Wang et al., 2024b) is a gray-box method that pro-
vides an efficient, training-free solution for test-time adaptation in Vision-Language Models. The
method uniquely repurposes token condensation, a technique originally for improving ViT effi-
ciency, as an adaptation mechanism. It introduces a domain-aware token reservoir that stores reliable
class tokens from past test samples to serve as domain anchors. These anchors guide both a cross-
head token condensation process, which prunes irrelevant visual tokens, and a logits self-correction
mechanism that refines the model’s final prediction.

A.2 ADDITIONAL EXPERIMENTAL RESULTS

White-box TTA performance on the ViT-Small steering model. To demonstrate that BETA’s
improvement is non-trivial and not simply a result of relying on the steering model’s outputs, we
present the white-box adaptation performance of the ViT-Small steering model in Table 7. There
exists a substantial performance gap between the pre-trained steering model (39.5% accuracy on
ImageNet-C) and the target black-box models (e.g., ViT-L/16 at 61.1% accuracy). Even when the
steering model itself is fully adapted in a white-box setting with a strong method like SAR, its
performance is capped at 57.4%. This is still well below the starting accuracy of the black-box
model it is meant to guide. This highlights that BETA successfully leverages this weaker, suboptimal
steering model not for its direct predictions, but to discover and transfer beneficial adaptation signals
to the far more powerful black-box model without requiring any internal access.

Our stabilization mechanisms are essential for robust performance. @ We conduct a
component analysis to demonstrate the importance of our two stabilization mechanisms,
visualizing the online batch accuracy on the
challenging ImageNet-C Contrast domain. The
figure shows that the full BETA framework |7 wioKtRes. wio Data Fitering = Ours
(“Ours”) rapidly achieves high accuracy and
maintains stable performance across all 800 on-
line batches. In contrast, removing the data
filtering component (“w/o Data Filtering”) re-
sults in significantly lower and gradually de-
caying performance. More critically, removing
the consistency regularization (“w/o KL Reg.”)
leads to catastrophic collapse, with the model’s 0 200 400 600 800
accuracy plummeting to near zero after approx- Online Batch

imately 400 batches. This analysis empirically

validates that both the consistency regulariza- Figure 6: Online Batch Accuracy on ImageNet-C
tion and the data filtering are essential for the Contrast domain.

stable and effective performance of BETA.
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A.3 ZEROTH-ORDER OPTIMIZATION BASELINES
As a direct approach to adapting the visual prompt § in a black-box setting, we evaluate several

Zeroth-Order Optimization (ZOO) baselines. These derivative-free methods optimize the prompt by
minimizing a fitness function, which we define as the Shannon entropy of the black-box model’s
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predictions on the prompted input, f(§) = H(pp(z + J)). For a fair comparison, we configure all
three ZOO methods to use 16 queries per test sample for their optimization process.

A.3.1 CMA-ES

As a representative ZOO method, Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
is a derivative-free algorithm used to optimize a high-dimensional visual prompt where gradients
are inaccessible (Hansen & Ostermeier, 2001; Hansen et al., 2003; Niu et al., 2024; Meng et al.,
2025). In each iteration, CMA-ES samples a population of candidate prompts from a multivariate
normal distribution and evaluates them using the fitness function. The goal is to find a prompt, 9,
that minimizes this entropy, encouraging high-confidence predictions. Based on the performance of
the sampled prompts, CMA-ES updates the mean and covariance matrix of the sampling distribution
to guide the search towards more promising regions of the solution space.

A.3.2 RGF

Random Gradient-Free (RGF) is a ZOO method that estimates the gradient of the fitness function
by sampling multiple random directions from a standard Gaussian distribution (Liu et al., 2018;
Tsai et al., 2020). For a given visual prompt §, RGF approximates the gradient by averaging the
function’s response to small perturbations along these random directions, allowing it to descend
the loss landscape without direct gradient calculations. The gradient approximation at iteration ¢ is
computed as:

1N F(8e + pug) — £(0
q:- K

where u; is a random direction vector drawn from N'(0, I), p is a small smoothing parameter, and ¢

is the number of directions sampled.

A.3.3 SPSA

Simultaneous Perturbation Stochastic Approximation (SPSA) is a highly efficient ZOO algo-
rithm that estimates the gradient of a function using only two queries per iteration (Spall, 1992;
1997; Oh et al., 2023). Unlike RGF, which samples multiple directions, SPSA perturbs the current
prompt vector in a single random direction and its opposite. The gradient is then approximated by
observing the difference in the function’s output at these two points. The gradient approximation at
iteration ¢ for a visual prompt d; is given by:

1) Ay) — f(6y — pA
9:(8,) = J(0r+p t)2 S0y — ply)
"
where A; is a random perturbation vector where each component is drawn from a Bernoulli distri-

bution, and p is a small step size. This two-sided perturbation allows SPSA to estimate the gradient
with a minimal number of function evaluations.

Ay (7

A.3.4 API EFFICIENCY COMPARISON ACROSS BLACK-BOX METHODS

Table 8 demonstrates BETA’s superior efficiency compared to existing black-box TTA methods.
While ZOO-based approaches (CMA, RGF, SPSA) require 16 API calls per test sample and achieve
modest or negative performance gains ranging from -1.0% to +0.5%, BETA achieves a substantial
+7.1% improvement with only a single API call per sample. This represents a 16x reduction in API
usage while delivering significantly better adaptation performance. LAME, though equally efficient
with one API call, suffers from limited adaptive capacity due to its post-hoc output refinement ap-
proach, resulting in a -1.4% performance drop. These results highlight BETA’s unique combination
of query efficiency and adaptation effectiveness in the black-box setting.

B USE OF LARGE LANGUAGE MODELS

We used a Large Language Model to assist with language polishing and improving the readability
of this manuscript. The authors are fully responsible for all research ideas, experimental results, and
claims presented in this paper.
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Table 8: API efficiency comparison: number of API calls per test sample and performance gain.

Method #API Call per test sample Accuracy (%) Gain
Source (Inference) 1 55.5 0
LAME 1 54.1 -1.4
ZOO-CMA 16 54.5 -1.0
ZOO-RGF 16 56.0 +0.5
ZOO-SPSA 16 55.1 -0.4
BETA 1 62.6 +7.1

C LIMITATIONS

While BETA demonstrates strong performance and efficiency, its effectiveness is connected to the
choice of the local steering model. In the current landscape, where most large-scale models are
Transformer-based, our method is highly applicable, as finding a steering model with a similar ar-
chitecture is straightforward. However, the performance could be suboptimal if the architectures
of the steering and target models differ significantly. Although our experiments show that cross-
architecture adaptation is effective (e.g., a CNN steering a Transformer), the improvements are
slightly less pronounced than when using architecturally similar models. Another avenue for fu-
ture research is extending this framework beyond classification to more versatile, generative tasks.
Investigating how to adapt the harmonized objective for generative outputs, where the prediction
space is vast and unstructured, would be a valuable next step.
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